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Chapter 1 

An introduction to learning 
with artificial neural nets. 

1.1 Modelling the brain. 

One of the main reasons to mimic the brain by creating networks of 
artificial neurons (nerve cells) is the fact that it can only be outper­
formed by a computer in tasks based on simple arithmetic. Indeed , 
the human brain, which learns without any explicit instructions, inter­
pretes imprecise information from the senses at an incredible rapid rate 
and it can deal with information that is fuzzy, noisy or inconsistent. A 
good example of Lhe s uperiority of the brain is the processing of visual 
information : a baby which is one year old is much better and faster 
at recognizing objects, faces, and so on Lhan even the most advanced 
artificial intelligence system running on the fastest computer. 
Our brain (l.5-2kg) consists of 1011 neurons. In Fig.(1.1) we depicted 
a so called pyramidal neuron which play a role in memory functioning. 
One observes that tree like networks of nerve fib er called dendrites are 
connected to the cell body, where t he cell nucleus is located. Extend­
ing from each cell body is a single long fiber called the axon , which 
eventually branches into strands and substrands. The axon of a typical 
neuron makes a few thousand synapses with other neurons. 
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Fig.(1.1): A pyramidal neuron. 
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The transmission of signals from one nerve cell to another is a complex 
chemical process in which specific transmitter substances are released. 
This causes spikes of electrical activity in the axon and its t housands 
of branches. At the end of each branch, a structure called a synapse 
converts the activity of the axon into effects that raise or lower the 
electrical potential inside the body of the receiving cell. 
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When the potential of a neuron reaches a certain threshold, it sends 
a pulse of fixed strength down its axon and as a result to all con­
nected nerve cells. Learning occurs by changing the effectiveness of the 
synapses so that the influence of one neuron on another changes. 

Because our knowledge of neurons is incomplete and our computing 
power is limited, brain models are necessarily idealisations of real net­
works of neurons. Artificial neural networks are typically composed 
of interconnected units, which serve as model neurons. The synapse 
is modeled by a modifiable weight, which is associated with each con­
nection. The electrical output of a neuron is represented by a single 
number which represents its activity. Each unit converts Lhe incoming 
activities into a single outgoing signal. 

Fig.(1.2): Artificial neuron or unit which first sums all 
the incoming activities and then calculates the output 
using t he transfer function g. 

This conversion is performed in two stages. First all incoming activities 
are multiplied by the weight or strength of the corresponding synapse 
and then these weighted inputs are added together to get a quantity 
called the total input . Second, the unit uses a transfer function g to 
transform the total input into the outgoing activity. 'fhe function g 
can have various forms, but the most common have a linear, threshold 
or sigmoidal shape. For treshold units, the output is set at one of two 
levels, depending on whether the total output is greater than or less 
than some threshold value. 
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For sigmoid units, the output varies continuously but not linearly as 
the input changes. Sigmoid units bear a greater resemblance to real 
neurons than threshold units, but both must be considered rough ap­
proximations. 
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Fig.(1.3): Some of the transferfunctions used in artificial 
neural networks : g(x) = sign(x) (full curve), g(x) = 
tanh(x) (dotted curve) and g(x) = x (dashed curve) . 

The simplest neural network architecture one can consider, but the 
building block for more complicated nets is the perceptron. It consists 
of an input layer of N units and one output unit with feed-forward 
connections between them. The input-output relation can be w--ritten 
down in the following way : 

Su = g (f J; si) , 
t = l 

(1.1) 

where we have considered a neuron which recieves signals from N other 
neurons. The activity of the i-th neuron js characterized by 8; and is 
mult iplied with the strength J; of the corresponding synapse. The 
connections J; can have continuous or binary values. For the transfer 
funct ion one can consider one of the functions plotted in Fig. (1.3). 
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Fig . (1.4): A perceptron with N input units Si connected 

with the output unit So through the synapses with weights 

k 

1. 2 The teacher-student scenario 

5 

To gain more insight into the mechanism of learning one can investigate 
a very simple scenario, namely that of a student perceptron learning 
from examples generated by a teacher perceptron. The perceptrons we 
will consider are characterised by an N-dimensional continuous weight­
vector J which defines a map from the N-dimensional input space Lo a 
binary output according to: 

. ( J.e) fo = sign ..fJii . (1.2) 

T he vectors J and ~ are normalirnd as J2 = e = N . 
A teacher perceptron, characterized by t he weight vector T returns the 
classification 

Vµ= l , ... , P, ( 1.3) 
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on a set of P randomly selected training patterns /;/ . On the basis of 
t his inform ation one likes to select a student perceptron J such that it 
reproduces as closely as possible the classification of the teacher . 
The performance of a student perceptron is usually quantified by the 
generali zation error c:(J ) defined as the probability that J and T dis­
agree on a randomly chosen question S. One finds for the generalisation 
error [3] : 

c:(J ) j dµ( S ) e ( - ( ~) . ( ~)) 
1 
- arccos(R), 
7r 

where R is the overlap between student J and teacher T : 

0 .5 

0 .4 

0 .3 
'(R) 

0.2 

0.1 

0 
0 

R= T .J 
N . 

0.2 0.4 
R 

0.6 0.8 

Fig .(1.5) : The generalisat ion error c as a function of the 
overlap R between student and teacher. 

(1.4) 

(1.5) 

(1.6) 

The patterns we consider are uniformly distributed on the N -dimensional 
sphere. As a resul t the integral in (1.4) can be writt en as : 

+oo .I dµ(S) . .. "' .I dS 8 (S.S - N) ... (1.7) 
-oo 
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One has to determine the normalisation constant in order that : 

+ oo 

j dµ(S) = l. 
- oo 

7 

(1.8) 

The expression (1.5) for the generalisation error can easily be derived 
geometrically. T he vectors J and T both lie on the surface of an N­
dimensional sphere. Tn Fig.(1.6) we have drawn only the J - T plane. 
One immediatly sees that st udent and teacher will disagree on a new 
question S if its projection into t he J - T plane lies in the shaded 
region. Considering random questions one finds: 

c:(J ) = 
2() 

2rr 

1 (T.J) = ;arccos N 

(1.9) 

(1.10) 

Fig. (1.6) : Student and teacher will disagree if the projec­
t ion of the new pattern S into the J - T plane lies in 
the shaded region. 
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The question which now arises is how we will use the information pro­
vided by the teacher to construct a student perceptron J with an as 
low as possible generalisation error. Several learning algorithms already 
have been proposed. In the next section we give a short overview of 
these learning rules and the corresponding generalisation error. 

1.3 Learning rules. 

1.3.1 The Hebb rule. 

Following a hypothesis made by the psychologist Hebb about the way 
in which synaptic strengths in the brain change in response to experi­
ence one can propose a simple learning mechanism. In the case where 
a student perceptron learns from examples generated by a teacher per­
ceptron one defines t he Hebb vector as : 

J 1 ~ c µc11 
Heb/)= ~-N w'- ':.O , 

I 1•= l 

with I the normalisation factor. 

(1.11) 

Considering t he limit N--+ +oo and P--+ + oo with a:= P/N fini te, 
Vallet [22] derived the generalisation error for the Hebb rule and found: 

1 ( 1 ) E 1-fobb = - arccos ~ _ 
7f 1 + 2!:. 

2a 

(1.12) 

For a good learning rule, the generalisation error must rapidly go to 
zero as the number of examples increases. Therefore it is interesting 
to st udy the behaviour of c(a) when a becomes large. The large a 
behaviour of EHcbb is : 

<x --> +oo 
0.40 

EH ebb"' -Jo· (1.13) 

The Hebb algorithm is simple but has the disadvantage of a finite train­
ing error, i.e. not all example patterns e1• are classified correctly. The 
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training error, i.e. the fraction of misclassified patterns bas been cal­
culated in [22] and is given by : 

1 00 ((ii 1) et = 2 - j Dt erf t V ; + J2a . 
0 

The error function etf is defined as : 

:,; dt 
erf(x) = 2 / r:;; exp (-t2) . 

. y7r 
0 

1.3.2 The Adaline rule. 

( 1.14) 

( 1.15) 

The problem of learning can also be treated as an optimization process. 
This approach leads to the definition of a certain cos t function E(J) 
which has a global minimum at the vector J which has the desired 
propert ies. One can, for example, demand that the student vector J 
obeys the constraints : 

Vµ = l , .. . ,P (1.16) 

with r;, > 0. In analogy with the Adaline learning algorithm used in the 
storage problem [10] one can define the cost function : 

(1.17) 

This cost function defines the following gradient descent dynamics : 

"J ~ ( J .e '') µ (:µ u i "' 0 "' - r.r-so {; c,,o · 
µ = 1 vN 

( 1.18) 

A modification of t he cost function ( 1.17) in which r;, is set to l and 
where th e normalisation condition for t he st udent vector J is dropped , 
has been originally introduced by W idrow and Hoff for t he storage 
problem . This learning rule, which is usually called the pseudo-inverse 
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rule has been studied for the generalisation problem by Opper et al. in 
[23]. They obtain for the generalisation error: 

Ep1(0:) = ~ arccos ( 
20:(l - a) ) 

(0: < 1), (1.19) rr - 2ct 

Ep1(0:) ~ arccos ( 
2(o:-1)) (a> 1). (1.20) = rr + 20: - 4 

For large a this leads to a generalisation error : 

0.24 
(1.21) a--+ +oo C:PJ"' fo. 

1.3.3 The Gibbs rule. 

The previous learning rules in general do not lead to the exact classifi­
cation of all the training patterns e'. Since one is particulary interested 
in learning rules which lead to student vectors with zero training error , 
one can study the so called version space. T he version space is de­
fined as the set of all properly normalized 1\/-dimensional vectors which 
reproduce the classification of the training patterns by the teachers per­
fectly. 
In [3], Seung et al. show that the overlap R of a random vector from the 
version space with the teacher is given by the following transcendental 
equation : 

(l .22) 

Plugging the resulting R(o) into (1.5) gives the generalisation error of 
the ''Gibbs perceptron" (which is not a unique vector but a sample 
from the version space). 
The large a behaviour of c:c;bbs is [3) : 

0.625 
a--+ +oo : C:Gibbs ""--. (1.23) 

Cl' 

Note that the generalisation error for t he Hebb and Adaline rule exhibit 
a convergence to zero proportional to 1 / fo where a typical member of 
the version space leads to t he much faster 1/o: decay . 
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1.3.4 The Adatron rule. 

The stabilities >P are, in analogy with the storage problem, defined as: 

J.t/ . (T.!") >.." = -- sign -- . JR JR 
( 1.24) 

All vectors from t he version space reproduce the classification of the 
example patterns correctly. As a result they obey the constraints : 

)..I'> 0 Vµ=l, ... ,P. (1.25) 

In [12] Anlauf and Biehl propose the Adatron algorithm which makes 
it possible to construct the maximally stable perceptron. The J -vector 
which characterizes this perceptron satisfies contraints which are stronger 
than (1.25) : 

N' 2: "', V µ = l, . . . , P, (1.26) 

for the largest possible value of t,,. 

Geometrically J MS corresponds to the vector which is the most distant 
from the borders of the version space. The thermodynamic properties 
of the maximally stable perceptron are described in [23]. For large o: 
one finds [28] that the generalisation error again goes to zero propor­
tional to 1/o: but with a smaller coefficient than the one for the Gibbs 
rule: 

o: - +oo 
0.5005 

€Ms"'--. 
a 

(1.27) 
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0 .5 

0.4 

0.3 
E (0) 

0.2 

0 .1 ---
0 

0 2 3 4 5 
a 

Fig.{l. 7): The generalisation error E. as a function of 
ex for the Hebb (dotted line), Gibbs (full line) and the 
maximally stable perceptron (dashed line). 

1.3.5 The Bayes rule. 

A very different type of learning rule is t,he Bayes prescription. Follow­
ing this rule one classifies a new pattern following the majority vote of 
all J-vectors of the version space. Opper and Haussler [13] calculated 
the generalisation error of t he Bayes classification algorithm and found 
the following result: 

1 ) EBaye.,(o) = ; arccos ( J Raibbs(a) , (1.28) 

with Ra;bb~ the typical overlap of a member of the version space with 
the teacher T (solution of the equation (1.22)). For large a one finds 
for the generalisation error [13] : 

0.442 
Cl -t +oo : E.naye.s rv -­

a 
(1.29) 
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A priori it seems unlikely that the Bayes rule can be represented by 
a perceptron which is the same independent of which new question is 
being asked. 
Surprisingly, Watkin [24] showed that t here is indeed such a member, 
namely the perceptron characterized by the center of mass of all the 
vectors of the version space. By exploiting results from [26], P.Reimann 
showed in [32] that the Bayes vector J Bayes makes the smallest angle 
with the unknown teacher vector T among all the student vectors that 
can be inferred from the given set of examples. Thus one can conclude 
that the Bayes rule is the optimal learning strategy. 

0.5 

0 .4 

0.3 
E (a) 

0 .2 

0.1 

0 
0 2 4 6 8 1 0 

a 

Fig.(1.8): Generalisation error of a typical member of the 
version space (Gibbs) and the one corresponding with 
the Bayes prescript ion (dashed line) . 

We are aware of 2 algorithms that try to construct the Bayes vector. 
Watkin [24) proposed the sampler method which is based on t he idea of 
generating random vectors in the version space using the adatron algo­
rithm. The " Billiard-method" [27] of Ruj an uses the theory of billiards 
to generate a long trajectory of a vector in the version space which 
leads to an estimate of the Bayes vector. Both algorithms are difficult 
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to implement. 

If one considers cost functions with a unique and non-degenerate min­
imum one can construct a student vector by using a simple gradient 
descent algorithm. In Chapter 2 of this thesis, we will present a 
streamlined method to calculate the generalisation error which is valid 
whenever the student perceptron can be identified as the unique min i­
mum of a specific cost function. To illustrate our method we will, using 
simple cost functions, rederive the results for the Hebb, Adaline and 
Adatron learning rule in a transparant and shor t way. 
We furtermore use our method to study a new class of cost functions 
that penalises students which are close to the border of the version 
space. As a result we single out a cost funct ion which makes it possible 
to construct a student perceptron that leads to a generalisation error 
extremely close to t he one of the Bayes classifier. By calculating the 
overlap of this vector with the center of mass of the version space we 
show that the minimum of our optimal cost function is situated very 
close to the "Bayes-vector". This result is import because we now have 
the disposal of a practical algorithm to construct a student vector with 
almost opLimal generalisation properties. 
In Chapter 3 we investigate if the cost function which gave results 
very close to optimal in the case of uniformly distributed patterns also 
leads to large overlaps in the case of a structured input space. We show 
that the previously mentioned class of potentials lead to an overlap R 
which is at least larger than t he overlap obtained by using the Adatron 
learning rule. 
In Chapter 4 we address the problem of learning from a teacher with 
binary synapses. In view of the binary nature of the components of 
the teacher, one might expect that a lower error can be achieved by 
working with the clipped version of the student vector. It turns out 
that t his is not always the case. In this thesis we show that the overlap 
for a vector with components J(J;), where f can be any odd function 
of its argument, is a simple function of tbe origjnal overlap R. 
It turns out that clipping leads to a larger overlap only if the original 
overlap R is larger than a certain treshold. V./e furthermore show that 
the optimal choice of f is a hyperbolic tangent. The corresponding 
general isation error can go to zero exponentially fast in a 2 , for a large. 
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A unified approach : 
Gradient descent learning. 

2.1 General theory 

In this section a streamlined procedure will be developed to calculate 
the generalisation error of a student vector J obtained by minimizing 
a cost function E(J) : 

p 

E (J) = L V (N') (2.1) 
µ= l 

where )./' is given by (1.26) and will be called t he st ability of the µ-th 
pattern. Because of its similarity with mechanics the function V(.\) 
will be ca1Jed potential. 
We restrict ourselves to cost functions E ( J) with a unique minimum. In 
order to calculate the overlap R between student and teacher vector and 
the corresponding generalisation error s( a), tbe formalism of staListical 
mechanics turns out to be a powerful tool. Using the cost fuuction 
E (J) we define the partition function 

Z = J dµ(J) e - {JE(J ), (2.2) 

15 
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with 

+oo 

/ dµ(J) "" ./ dJ 8(J2 
- N). (2.3) 

T hrough its dependence on the randomly chosen training patterns, Z 
is a random variable. In the t hermodynamic limit where N -----t + oo 
and P -----t + oo with ex = P / N fixed, one expects t he corresponding free 
energy f to be self-averaging. In this way the free energy per neuron 
can be calculated as: 

(2.4) 

with (.)€ the average over the pattern distribution. To calculate t he 
quenched average in (2.4) one commonly uses the replica method. T he 
free energy can be written as 

(2.5) 

Under assumpt ion of replica symmetry, one finds ( for a detailed cal­
culation see Appendix A) : 

[ 
q - R2 l 

-J = e;:J{ 2/3(l _ q) + 213 1n(l - q) 

a + oo +oo +oo d>. 
- 7J j 'Dt1 j 'Dt2 ln / exp (g(t1, t2 , q, R, >.))] , 

- oo - oo -·= J21r( l - q) 
(2.6) 

with 

T he meaning of the order parameters is as usual: q is the overlap be­
tween two typical J -vectors and R is the overlap between a typical 
J-vector and the teacher vector T. The word typical refers to the J 
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vectors which give the exponentially dominant conLribution of the free 
energy. 

In order to find the ground state energy, we let f3 -; +oo. Since we 
take only into account cost functions with a unique non-degenerate 
minimum, the overlap between two typical J -vectors should tend to 1 
(q-; 1). Introducing t he orderparameter x = /3(1 - q) the free energy 
reduces to: 

_ [1 - R2 

- JT - 0 = extr ---
x,R 2x 

+oo + oo (>. - t)2 
-2a j Vt 1 j V t2 min [V(>.) + , J], (2.8) 

,\ 2x 
-oo 0 

with 

t = Rt2 + Vl - R2
t1. (2.9) 

Let us call >.0(t , x) the value of>. which minimizes the expression 

V (>. ) + (>. - t)2 
2x 

(2.10) 

This function will play a crucial role in the following. Introducing it 
in (2.8) easily leads to the extremum equations for x and R. One gets 
(for details see Appendix A) after an orthogonal transformat ion of the 
variables t1 and t2 that the saddle point equations can be written as : 

/2 +oo 

R = V ;o: j Vt >.0 (..Jl - R2t, x) , (2 .11) 
- oo 

l - R2 = 2o: j°
0vtH(-~ ) (>.0(t,x) - t)2. (2. 12) 

- oo 

Solving these equations immediately leads to the generalisation error 
of the vector which minimizes E(J) by plugging R(o:) into (1.5) . 
Note that the function >.0 (t, x) is identical to the one obta,ined in the 
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analogous treatment of the capacity problem [10). Using >.0 (t , x) some 
interesting quant ities can be easily calculated. The ground state energy 
is given by : 

+oo +oo 

e = 2o: / Vt1 ./ 'Dt2 V(>.0 (t , x)) (2.13) 
- oo 0 

+oo 

./ d>.P(>.)V(-\) (2.14) 
- oo 

where the probability density P(,\) of the aligned field is given by 

+oo +oo 

P (-\) = ./ Vt1 ./ Vt2 8(>. - >.o(t,x)). (2.15) 
- oo 0 

The training error Et is defined as the fraction of misclassified patterns . 
Such a pattern corresponds to an overlap ,\ < 0. Therefore 

0 

Ct = ./ d,\ P (>.. ). (2.16) 
- 00 

All previous results are given using the RS-ansatz. In Appendix A a 
local stability analysis has been performed. The resulting Almeida­
Thouless condition [16] t akes on the the following simple form in terms 
of >..o : 

+= ( Rt ) 
2o: ./ V t H ~ (>.0'(t, x) - 1)2 < l. 

- oo 

(2. L 7) 

Note that a sufficienL condition for RS breaking is t he presence of a 
discontinuity of the alignment >..0(t) as a function of t [20]. 
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2.2 Recovering previous results 

First we will identify the cost functions which correspond to t he algo­
rithms discribed in Section 1.3, i.e. the Hebb, Adaline and Adatron 
learning rule and recover the well known results. In a later section, we 
will present a new class of cost functions that allow us to approximate 
closely the (opt imal) Bayes results. Remark that since the Gibbs per­
ceptron is not a unique vector but a sample from the version space our 
formalism does not apply to this case. 

2.2.1 The Hebb potential 

If we choose : 

V(,\) = - ,\, 

- 4 - 2 0 2 4 
). 

Fig.(2.1): The Hebb potent ial (2.18) . 

the cost function E(J) becomes 

P J cl' 
E(J) = - E-·<;._ (/i. 

µ= l vN 

(2.18) 

(2.19) 

T he min imum of the cost function E( J ) on the surface J2 = N is known 
explicit ly, namely 

(2.20) 
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With the proper normalisation constant , (2.20) is equal to the Hebb­
vector. Applying the method developed in previous section, we fi rst 
have to determine the function Ao(t , x). This can be done by plugging 
(2 .18) into the expression (2 .10) . 
T his leads to 

-5!:__ ( - ,\ (,\ - t)2 ) = 0 
d,\ + 2x ' (2.21) 

and as a result: 

,\0(t, x) = t + x. (2.22) 

Inserting this into the saddle point equations (2. 11) and (2.12) gives: 

1 - R2 = 2a: x
2 

/

00 

Vl H ( - h ) , (2.23) 
- oo 

R = ~ a: X . (2.24) 

One easily finds that : 

R (2.25) 

X = '2 :. (2 .26) 

From (2.25) and (2.26) the asymptotic behaviour can be derived. One 
finds: 

a:--; +oo : 

1 ·v2a 
€ H ebb= -

2 
- ----y- + O(a), 

7r 2 

1 1 0.40 
€ Hebb "' J'Er ja. rv fo ' 

which corresponds with the results obtained in [22] by Vallet. 

(2.27) 

(2 .28) 
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2.2.2 The Adaline potential 

The Adaline rule corresponds to gradient descent with the potential 
function: 

where ,.,, is a positive constant. 

10 

8 

6 
V(1'.) 

4 

2 

0 
. 4 . 2 0 2 4 

1,. 

Fig. (2.2): The adaline potential (2.29) with ,.,, = 0.5. 

The function .\0(t, x) which minimizes (2 .10) is : 

l + K,X 
.\o(t. x) = --. 

' l + x 

This leads to the saddle point equations : 

R = /20:_x "'· y; l +x 

(2.29) 

(2.30) 

(2.32) 

For a fixed value of,.,,; there exists a lower bound for n , given by : 
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1'or a< ac the equations (2.31) and (2.32) have no acceptable solution 
( i.e. x ?: 0 and O :S R .$ l ). The expression (2.33) for ac can be 
obtained by putting x = +oo in the equations (2.31) and (2.32). E lim­
ination of R leads to ac.(11:). The breakdown of the presented formalism 
for o: < °'" is due to the fact that the minimum of E(J) is degenerate 
in this case. 
From (2.31) and (2.32) we obtain that the large a behaviour of the 
generalisation error is : 

1 ( 1 z 2K ) 1 c(K) rv - - (1 + r,,) - -
r,,yn 2 v2i (2.34) 

As an extension one can also study the case where one optimizes the 
parameter r,, for each value of a. By eliminati ng x from (2 .31 ) and 
(2.32) one obtains the equat,ion for R(o:, r,,) : 

(2.35) 

Deriving (2.35) with respect to Kand putting R'(K) = 0 yields: 

(2.36) 

Eliminating R between (2.35) and (2.36) leads to the equation for 
/1:opt(a) : 

(2.37) 
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5 

4 

3 
K 

2 

0 
0 2 3 

(l 

Fig.(2.3): Kmin(o:) and K:apt(a,) as defined in the text. For 

0: --+ +oo, Kapt tends to #· 
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The function K:opt(a: ) is shown in Fig. (2 .3). The vaJue of Kopt decreases 

rapidly as 0: increases and tends to its asymptotic value # when 
o:--+ +oo. On the same figure we have also plot ted Kmin(o) for 0: < 1 
which is the inverse function of a:c(K) defined by (2.33). Fig.(2.4) shows 
the generalisation error e(a:) for the Adallne rule with optimal choice 
of K and compares it to the result for the Hebb rule. T he asymptotic 
behaviour yields : 

( ) 
0.24 

£ a: "" y'a (2.38) 

which is considerably better than the Hebb rule (2.28). 



24 Chapter 2 

0. 5 

0.4 

0.3 
£ (a) 

0.2 
- .. ~ - - .. - -

0 .1 

0 
0 2 4 6 8 1 0 

a 

Fig. (2.4): The generalisation error c( a) obtained by usi ng 
the Adaline learning rule with r.,opt and as a comparison 
the Hebb generaUsation error. 

2.2.3 The Adatron potential 

Following the crit erion of "maximal stability" , one looks for the J­
vector such that >..µ > r., ( V µ = 1, . .. , P) , for the largest possible value 
of r.,, 
This can be realized by considering the potential : 

V ( >..) = { +oo >.. < "' 
0 ).., ?_r., (2.39) 

and determine the largest possible value of r., for which there exists a 
solution J with cost E equal to zero. 
From (2.10) , one finds for the function >..0 (t, x): 

>..o(t , x) = t + (r., - t)()(r., - t). (2.40) 
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By inserting this result into the saddle point equations Eq. (2.11) and 
Eq.(2.12), one finds that the variable x disappears altogether, and one 
obtains following two equations : 

1 - R2 

2a 
K. ( R ) J 'Dt H - t (K, - t)2 

.JI - R2 
-oo 

..;1:n2 

J 1)t (11: - tVl - R2), 

- 00 

(2.41) 

(2 .42) 

which are identical to t hose given in [23] . T he equation for 11: arises 
from the fact that there is a unique value of this parameter, namely 
precisely the one corresponding to "optimal stabili ty" , for which our 
formalism applies (i.e t here is a non-degenerate ground state with zero 
value of the cost). T hese equations can now be used to calculate the 
maximum value of K, and t he corresponding value of R. 

An alternative and more transparant method uses the following po­
tent ial : 

V(>.) = { ~oo >. < "' 
/\ >.~n: 

(2.43) 

V(l-.) 

-1 0 2 3 4 ,. 
Fig .(2.5): The potential (2.43) with n: = 1.0. 
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Th is leads to : 

>.0(t, x) = t - x + (K: - l + x)B(K: - t + x). (2.44) 

Insert ing >.0(t, x) into (2.11) and (2.12) leads to the following equations 
determining R and x for given value of r;, and a: 

1 ;aR2 = _zx 1>t H ( - h) (11; - t)2 

+"l VtH ( 
Rt ) 2 

v'l - R2 X 

~+.i 
Vl-R.2 

.I Vt K: + j00 

Vt (tv'l - R2 - x) . 
-oo Jf:~2 

(2.45) 

(2.46) 

As in the case of the Adaline learning rule we have that for a fixed value 
of ti, these two equations have a "physical" solution only if O :S R :::; 1 
and O :::; x :::; +oo. This is only the case when n is lying in the interval 
[nmin(r;,), O:max(K,)]. For a: < O:min(r;,) our formalism is not valid since 
there are a lot of J vectors which have E(J) = 0. In that case q < 1 
and as a result x = + oo for /3 - +oo. For a > amin one obtains 
x < +oo. At a= l¥max one has x = 0 and for all a > O'.,,,wx one obtains 
E(J) = +oo for all J vectors. The values for CTmin(r;,) and l¥max( r;,) can 
be calculated by putting x = +oo and x = 0 in the equations (2.45) 
and (2.46). 

If we put x = +oo the equations (2.45) and (2.46) become : 

l - R 2 jvtH( Rt ) (K, - t)2 , (2 .47) = .,/1=R} 2a 
-oo 

~: +oo 

= .I Vt,.,, = K,. (2.48) 
- oo 
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The integral in (2.47) can be calculated : 

1 - R2 

2a 
= ~("'2 + I ) - 2A: +/

00 

1Jt t H (-h) 
2 · l - R2 

-00 

I .., 2"'R 
2("'- + 1) - v'2ir' 

The equations for Dmin and R can thus be wTitten as : 

1 - R2 

27 

(2.49) 

(2.50) 

(2.51) 

(2.52) 

These equations are equal to the saddle point equations (2.31) and 
(2.32) for the Adaline learning rule with :r = +oo . As a result Drrnn = ac 
with ac defined in (2.33). This is not a surprise since at the value of 
a corresponding with x = +oo there only exist one J with zero cost. 
All stabilities >..1, are equal to "' and the vector which satisfies these 
constraints is independent of the shape of the potential V(>..)(it only 
has to be minimal at >.. = K,). 

Let us now put x = 0. The equations (2.45) and (2.46) become : 

l - R2 

2n 
= fl< Vt H ( - Rt ) ("' - t)2 

JI - R2 ' 
-oo 

K 

,/1-112 

j Dl (K: - tv' l - R2
). 

- 00 

(2.53) 

(2.54) 

For a given value of"' t hese two equations determine Dmax and the cor­
responding value of R. 
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K 

Fig.(2 .6): Ctmin(r.) and ltmax(K;) defined as in the text. 

Remark that the equations (2.53) and (2.54) are identical to the equa­
tions (2.41) and (2.42) for the maximally stable perceptron . This is 
not a surprise since Cl!max(r.) which has been plotted in Fig.(2 .6) can be 
interpreted differently. For each value of o , this curve gives the largest 
value of r. for which a solution with finite value of E(J) exists. But this 
is clearly the maximal stable perceptron. Similarly, the curve ctmin(K) 
is t he same as K;min(o) for the Adaline rule. 

The asymptotic behaviour of £ for the maximal stable student can be 
determined from (2 .53) and (2.54). For o - +oo, we have that K; - 0 
and R - I. First we change the integration variable in equation (2.41) 
via the coordinate transformation : 

t 
u = . 

JI - R2 
(2.55) 

This leads to : 

1 

2ov'l - R2 



Chapter 2 29 

(2 .56) 

The equation (2.42) can be rewri tten as : 

K 

-J, - n2 
fir R I K, V2 O!~ = 'Dt (v'l - R2 -t). 

- oo 

(2.57) 

For a -+ +oo we have : K. -+ 0 and R -+ 1. As a result one can make 
the ansatz that : 

B = JI -R2 ' 

stay finite and obtain the equations: 

1 

2A 

D 

I a::-H(-u) (B - u)2 
v21r 

- oo 

B 

= I Dt (B - t). 
-00 

(2.58) 

(2.59) 

(2.60) 

(2.61) 

Numerically solving the equations for A and B leads to the following 
asymptotic form for the generalisation error of the maximum stable 
perceptron [23] : 

Eg = 
A I 0.5005 

1f 
(2.62) 

which is equal to the result fou nd by Opper in [28] . 



2.3 A class of cost functions which favour 
large overlaps w ithin the version space. 

2.3 .1 The Hebb rule within the version space. 

Since we know that the center of mass of the version space has opti­
mal generalisation properties one might expect that potential functions 
which "push" the student vector away from the boundaries of the ver­
sion space will result in a low generalisation error. One of the easiest 
choices we can make is taking + oo for ,\ < 0 and the Hebb potential 
inside the version space, i.e. 

V(A) 

V(J.)= { +oo ,\ < 0 
-,\ .\>0. 

- 1 0 1 2 3 
A 

Fig.(2.7): T he potent ial function (2.63). 

The corresponding solution of (2.10) is : 

,\0(t ,x) = (t + x) O(t + x) 

(2.63) 

(2.64) 

Inserting this in the saddle point equations (2.11) and (2.12) gives : 

R = {f;.o: J°
0

vt(Jl - R2t+x)B(Jl - R2t+x) (2.65) 
- 00 
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+oo ( Rt ) 
1 - R2 = 2a j Vl 1-J -~ (( t + .1.:) B(t + x) - t )2 

- 00 

(2.66) 

N umerica11y solving these saddle point equations result in a generalisa­
tion error which is plotted together with € H ebb in Fig.(2.8) . 

0 .5 

0.4 

0.3 
E (a) 

0.2 

0 .1 

0 
0 1 2 3 4 5 

Cl 

Fig.(2.8): The generalisation error of the Hebb rule ( dashed 
curve) and the one resulting from the equations (2.65) 
and (2.66). 

The large a behaviour of £ can be calculated by rewTit ing the equations 
(2.65) and (2.66). Let us begin by considering the fi rst equation. 
Equation (2.66) can be written ru: : 

1 - R2 = 2o: [~x2 + /_,, V t H ( - Rt ) (t2 - :i.:2) ] . (2.67) 
2 v'l - R2 

-oo 

The transformation : 

t 
u=~== 

v'l - R2 ' 
(2.68) 
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leads to : 

1 x2 

2o:Jl - R2 (1 - R2)3/2 

+ 

X 

- VI - R2 2 

J dn e- ~(1- R2)u2H( - Ru)(u2 - _ x_). 
1 - R2 

- oo 

The second saddle point equation (2.65) becomes : 

Dt(x + Vl - F?,2 t) . 

(2.69) 

(2 .70) 

If a: --. +oo then R --. l and x --. 0. From (2 .69) it is clear tbat 
if aJI - R2 is to stays finite in order to obtain a generalisation error 
proportional to 1/ o:, it is necessary tbat x2 

/ (1 - R2 ) 312 remains fini te. 
But t hen x/Jl - R2 must go to zero. Consider now t he second saddle 
point equation (2.65) and write it as : 

(2 .71) 

Since x/Jl - R2 --. 0 when o:--. +oo, t his equation becomes : 

/2 +oo 
1 = y ;O'.v'l=R2 / Dt t , 

0 

(2.72) 

from which we get: 

av11 - R2 = 1r. (2. 73) 

As a result we obtain for the asymp totic form of the generalisation error 
corresponding with the Hebb rule inside the version space: 

c(ei)= ~ = ~. 
7r O'. 

(2.74) 
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2.3.2 Bounds for the generalization error associ-
ated to a monotonous potent ial. 

It is possible to derive a bound for the generalization error correspond­
ing with cost functions based on potentials, defined within the version 
space, that are monotonous decreasing functions of >. . Consider the 
case of a monotonous decreasing potential: 

V(>.) = +oo >. < O 

V'(>.) < 0 ,\ > 0. (2.75) 

T he function >.0(t, x) that minimizes (2.10) is a solution of the following 
equation: 

,\ - t = -xV'(>.). (2. 76) 

provided >. ~ 0 and it is zero otherwise. Consequently one finds that : 

Ao ( t , x) 2: 0 t :S 0 
>.0 (t,x)2:t t 2: 0. 

Using this in the saddle point equation (2.11) yields : 

00 

j Dt >.o(tv'l - R2, x) 
-oo 

(2.77) 

(2 . 78) 

(2. 79) 

> j Dt t Vl - R2 = ~ - (2.80) 
0 2~ 

Hence 

(2.81) 

and thus for every monotonous decreasing potential in the version space 
we have: 

c(a) :S 1o*(a) Va.> 0, (2.82) 
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with 

1 r;:G2 c:* (a) = - arccos 
2 2 

, 
7r n +a 

(2.83) 

which for large a leads to : 

(2.84) 

2.3.3 A class of repulsive potentials within the 
version space. 

A generalisation of the potential (2.63) is given by the following general 
class of monotonic potential functions: 

v+ (>.) = { +oo >. < 0 
s _ ,\' >. > 0 

,S 

(2.85) 

with s real and I- 0. For s = 0, we define \//(>.) as: 

+ _ { +oo >. < 0 
~ =o(>-)- -In>. >. > 0 (2.86) 

V (le) 

-1 0 2 3 4 
le 

Fig.(2.9): The potential (2.85) for s = - 1.0 and s= 0.25. 
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We star t by pointing out that the parameter s may not be larger than 
2 in order to avoid t he divergence of the integral determining the value 
of the free energy, cf. Eq.(2.6) . F\irthermore, it is shown in Appendix 
B t hat the cost functions associated with the above potential is convex 
Vs ::; 1, hence the minimum is unique and can be found by grad ient 
descent. Ats = 1, the curvature of t he potential switches sign with the 
result that, for the values 1 < s ::; 2, one of t he conditions in our proof 
is not met. Ln fact we will find t hat the local stability of the replica 
symmetric solut ion is violated. 

We now use our general method for determining the minimum of t he 
cost function for different values of the parameters. Since the potential 
V/( A) has infinite value for A < 0 the function Ao is defined as : 

min [1~/(>.)- (A; t)
2

] . 
A~O X 

(2 .87) 

This means that >.0 ( t) satisfies 

\S- 1 A-t Q 
- A +-- = . (2.88) 

X 

if, for a given value of t, this leads to a solution Ao > 0. If this is not 
the case we have Ao = 0. 
So, t he function that minimizes (2.1 0) for t he potential V/ (>.) is given 
by: 

(2.89) 

H is not possible to solve Ao(t , x) for general s but one can trivially 
solve (2.89) for the inverse function: 

(2.90) 

For s < 1, the function t(Ao, x) is a monotonously increasing function 
on the interval Ao > 0 ranging from -oo at ,\0 = 0 t o +oo as Ao -+ +oo. 
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5 

0 

t(A) . 5 

- 1 0 

- 1 5 
0 2 3 4 5 

"-
Fig.(2.10): The function t(>-) for s = -1 and x = l.O. 

In this case, it is convenient to use ,\0 as new integration variable in 
the saddle point equations Eq.(2. 11) and Eq.(2.12) and to calculate the 
integrals numerically. 

0.5 

t ("-) 0 

-0.5 
0 1 

"-

I 

l 
j 
2 

Fig.(2.11): The function t(,\) for s = l.5 and x = 1.0. 
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For 1 < s < 2, however , t(An) decreases from t he value O at Ao = 0 
to a minimum tm < 0 at a certain value Ac and then increases steadily 
for larger values of >.. In this case, since Ao has t o be nonnegative, the 
function Ao(l , x) = 0 for t < l-rn . At l = tm, it makes a .finite jump 
to the value Ac and follows further the increasing branch of the inverse 
function l(>.0 , :r). 

A(t) 

2 

0 ......_~_........__,'--'-~-'--'--'---'--'--'---'-~ -'-' 

-0 . 5 0 0.5 
t 

Fig.(2.12): T he function Ao(t) for s = 1.5 and x = 1.0. 
The discontinuity occurs at tm = - 0.25. 

The integrals must now be split in a part ~oo < t < 4n where A0(t ,x) = 
0 and in a part trn < t < +oo where Ao can again be used as new in­
tegration variable. In this way, we never need the explicit solution of 
Eq.(2.89) for Ao(t ,x ). 

With regard to the stability of the replica symmetric solution it is im­
media tly clear from the existence of a discontinuity of A0(x , "t) at l = tm 
t hat for 2 > s > l the AT-condition (2.17) is not fulfill ed and we have 
RSB (Replica Symmetry Breaking). 
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2.3.4 Numerical results. 

By using the above discribed technique, one can solve the saddle point 
equations numerically and find the values for R(ex) and x(ex) . In Fig. 
(2.13) the generalisation error is plotted for several values of s. 

0.4 

0.3 
E (a) 

0.2 

0.1 

0 
0 2 4 6 8 1 0 

a 

Fig.(2.13): Generalisation error for s = 1 (full line), 
s = 0.25 (long dashes) ands= - 1 (short dashes). 

For s < l , one finds by numerical evaluation that the RS solution sat­
isfies the stability condition (2. 17). This was to be expected since for 
this case we showed that the minimum of the cost function is unique 
and non-degenerate. 

2.3.5 Asymptotic behaviour. 

To get a more precise idea of how the generalization error depends on 
the parameter s, we derive tbe exact asymptotic results for small ex and 
large ex values. 
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For ex small , R ---> 0 and x---> oo. From Eqs.(2.11) and (2 .12) one gets: 

hence 

R =~ 

1 v'2a 
€(a) "' - - -3-

2 7f2 

which is identical to the small a behaviour for t he Hebb rule. 

(2.91) 

(2.92) 

The calculation of the asymptotic behaviour is similar Lo the deriva­
tion for t he Hebb rule inside t he version space (section 2.1) but more 
involved and therefore is presented in Appendix C. We briefly discuss 
the results. For a --t +oo the order parameters R and x will respec­
t ively tend to 1 and O. Introducing this limit into the saddle point 
equations results equations for the variables A and B which are defined 
as: 

A 
7r 

x l /(2 -s} 

B = J1 - R2 . 

(2.93) 

(2.94) 

The coefficient A is t he interesting one because it is directly related to 
the asymptotic behaviour of c (a) : 

A 
c:(a)"' -

a 
(2.95) 

In solving the equations for A and B , one must disLinguish two cases . 
For s ::::: 1/2 the equations yield A = 1 and B = 0. The asymptotic 
behaviour t hus saturates the upper bound (2.84) . For s < 1/2 , B is 
different from O and one should determine A and B numerically . The 
value of A is represented in Fig. (2.14) as a function of s. 
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s 
Fig.(2.14): The proportionality constant A describing 

the assymptotic decay of the generalisation in function 
of the value of s. On the figure the proportionali ty con­
stants of the Gibbs, maximal stability and Bayes rule 
are indicated. 

As one moves from large to sma]l s values, one observes that A first 
takes on a constant plateau value equal to 1 for ! :::::_ s :::; 2, then de­
creases from the value 1 for s = 1/2 to a minimum value of A ::::: 0.443 
for s ::::: - 1.35 after which it again slightly increases and asymptotically 
approaches to the value A ::::: 0.50 which is presumably identical to the 
asymptotic value for the perceptron with maximal stability. The value 
for A attains its minimum 0.443 which is extremely close to ABaycs 

which is 0.442. 
In F ig. (2. l 5) we plot the generalisation curve for the optimal s value 
- 1.35 together with the Bayes generalisa tion error. T he deviation is 
smaller than 1 percent for all values of et. 

It is important to recall that since the cost function .has a unique non­
degenerate minimum one can easily construct t he J-vector which mini­
mizes the optimal cost function by applying the gradient descent tech­
nique. 
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Fig.(2.15): Theoretical results for the Bayes rule (full 
curve) and for the repulsive potential v:,+(A) with s = 
- 1.35 (dotted line) together with simulation results for 
a system with 50 neurons. 
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To check the theoretical results some simulations have been carried out. 
Since an inverse power law potential s = -1 is numerically less time 
consuming and stil gives results within 1 percent of the Bayes rule we 
used this potential for the simulations. The results for a system of 50 
input neurons are plotted in Fig. (2.15) and show excellent agreement 
with the theoretical curve. 

2.4 A class of potentials which favour small 
overlaps within the version space 

The worst student from the version space is the one with the smallest 
overlap R with the teacher. Engel and Van den Broeck [25] have cal­
culated the large a behaviour of the generalisation error for this worst 
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student. A one step Replica Symmetry Breaking (RSB) calculation 
predicts : 

3 1 
c(a:) "' - - . 

2 a: 
(2.96) 

The question which arise, is if we can define a cost function E(J) which 
after minimisation produces ''bad students". Since we know that the 
version space is convex and t hat the best possible student t hat can be 
constructed on the basis of the training set is the center of mass, we 
infer t hat the students with larger generalization error can typically 
be found close to the boundaries of the version space. To verify this 
intuition , we consider t he following class of functions t hat favour small 
values of>.: 

V(1.) 

{ 
+oo ,\ < 0 

v.-(>.) = +>-s• , 0 /I> . 

1 
"­

2 3 

Fig. (2.16): Attractive potential functions for s = 0.5 and 
s = 2.0. 

(2 .97) 

The parameter s now may take on positive values only. Negative values 
must be excluded as t hey would destroy t he convergence of the integral 
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over ,\ in (2 .6) . 
The lowest energy E(J) will be O for all values of a < l. Indeed , 
for a < 1, many different students will satisfy the stabilty conditions 
,\µ = 0 (µ = 1, ... ,p) so that Eqs. (2.11) and (2.12) , which are based on 
the assumption of a unique non-degenerate min.imurn , do not describe 
this case. vVe therefore limit ourselves here to a > l. 

The function V
3
- (>,) is a monotonously increasing function of>. . This 

makes it possible to calculate a lower bound for the generalisation error. 
T he class of potentials defined by (2.97) satisfies the conditions : 

V(>-) = +oo >- < O 
V'(>-) > 0 >- > 0. (2.98) 

From (2.10) we find consequently : 

>-o(l, x) = 0 t.::; 0 (2.99) 

>-o(t , x) 5: t t ~ o. (2.100) 

Using t his in the saddle point equation Eq.(2.11) yields : 

00 

fff_-rr2 ~ -- 1· r,--,=;;; V7i._._ Dt ,\0 (tvl-R2, x) (2.101) 
-00 

oo J 1- R2 
< j Dt l J1 - R2 = y'2ir . . 

0 

(2.102) 

Hence 
2 

R2 a < ) 
- a2 + 7r2 

(2. 103) 

and thus for every monotonic increasing potential in the version space 
we have: 

c(a) '2': e*(n) Vo.> 1, (2.104) 

wit h 

1 w;;2 E*(a) = - arccos 
2 2 1f -rr +a 

(2.lOS) 
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This means that for large a the generalisation error behaves as : 

1 €(a:) 2: .s*(a:) r--- -. 
Q 

The equation for Ao (t ,x ) now reads 

Ao - t = - XAo- l (Ao 2: 0). 

(2.106) 

(2.107) 

From its definit;ion it follows that x 2: 0. Since Ao must be nonnegative, 
we immicliatly see that ,\0 (t,x) = 0 for t S 0. 
It is easy to solve Eq. (2. L07) for t he inverse function 

t(Ao , x) =Ao+ xA~- i (Ao ::::: 0). (2.108) 

Fors> 1, t(Ao, x) is zero at Ao = 0 and increases steadily with increas­
ing A0 . This defines Lhe inverse function uniquely. 

t (11.) 

0 2 3 4 5 

" 
Fig.(2.17): The function t(A) for s = 3.0 and x = 1.0. 

For O < s < l on the other hand, t(A0 ,x) decreases from + oo at Ao = 0 
to a minimum tm > 0 at a certain value Ac and then increases s teadily 
for larger values of A. 
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0 2 3 4 5 

Fig.(2.18): The function t(A) for s = 0.1 and x = 1.0. 

In this case Ao(t, :r) = 0 for "l < tm. At t = L,.,, , it makes a finite jump to 
the inverse function of l(Ao, a). Using these observations, the integrals 
in the saddle point equations can again be calculated by splitting tl1e 
integration interval in a part - oo < t < tm where Ao = 0 and a part 
tm < t < +oo where Ao can be used as new integration variable. The 
equations are then easily solved numerically for any value of a and s. 

The most interesting point is t he behaviour of £(a) for a -. oo. Here 
we proceed as in Appendix C . For s 2'. !, we obtain 

(2.109) 

so that we saturate the lower bound c:• (2.106). For smaller values of s 

however, the asymptotic behavior is like A/a with the proportionality 
factor A larger than 1 and reaching a maximum of approximately 1.28 
in the limits-> 0, cf. Fig.(2.19) . 
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Chapter 2 

Fig.(2.19): Proportionality constant A(s) for the class of 
attractive potentials (2.97). The broken line indicates 
that the replica symmetric solution is unstable (for finite 
a) . 

This result should be compared with the result 1.5/ a for the worst 
student of the version space, cf. Eq.(2.96). 
The results of the present section have been obtained assuming Replica 
Symmetry. It is however clear that replica symmetry must be broken 
for O < s < l, where the function >-o(t) has a discontinuity in function 
of t. Furthermore, a numerical evaluation of the integTal appearing in 
(2.17) leads to the conclusion that replica symmetry is broken for all 
values of s > 0, except for t he limiting values a -+ l and a -+ oo, 
where the replica symmetric solution is margi11ally stable. A similar 
behaviour of replica symmetry breaking between two limiting values of 
a was also observed for the worst case scenario [25] . In this case, i t was 
proven that replica symmetry and one-step replica symmetry breaking 
lead to an identical asymptotic behavior of the generalization error for 
a -+ oo, which is t herefore believed to be exact. For the same reason, 
we expect that t he asymptotic results derived above may also be exact. 
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0 

-0.04 

-0.08 

-0. 12 
0 5 1 0 15 20 25 

a 
Fig.(2.20): AT condition for the attractive potential 

(2.97) with s = 2. Negativity of t he function means 
that the I--teplica Symmetry is broken. 

2.5 Overlaps between student vectors 

In the previous sections several cost functions E(J) have been proposed 
which after minimization lead to student vectors J 5 . Since t he Bayes 
vector has been defined as t he center of mass of the version space , it is 
useful to calculate the overlap S of the vector J s with the vector JcM · 
T he center of mass of t he version space JcM is defined as : 

J cM = ,JR.fv dm(J) J 
/.fv dm(J) J~ dm(J') J.J' 

(2.110) 

with 

+co ., P (J.~µ (T.e)) 1 dm(J) ,...._, .I dJ 8(J- - N) fI () rr::r sign rr::r 
V - co ,, = l V N V N 

(2.111) 
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The overlap S can be written as : 

with 

S = (Jc~.JE\ 
= ~(Javf/ E\ 

j<LV = l dm(J) J .Iv 

Chapter 2 

(2.112) 

(2.113) 

(2.114) 

and q the typical overlap of two members of t he version space and 
< . >e the quenched average over the pat tern set. (2.113) follows from 

the fact that .lav is not a properly normalised vector (J ~v f. N). Since 
we expect our problem to be self averaging the norm of this wctor 
should tend to q. 

The overlap S can be calculated using the replica method [29]. The 
replicated partition function zn can be defined as : 

(2.115) 

where we have introduced two sets of replicas : 

(2.116) 

and 

(2. 117) 

During the replica calculation (for details see Appendix D ), the fol­
lowing order parameters have to be introduced (together with t heir 
conjugates) : 

Qab = \/a < b = 1, ... , n (2. 118) 
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Ja.T 
Ya= 1, ... , n (2.119) Ta 

N 

Qab 
J;.Jb 

Ya<b=l, .. . ,n (2.120) 
N 

i'a = 
J:.T 

Va= l , ... ,n (2.121) 
N 

The order parameters which express the overlap between the two sets 
of replicas : 

(2 .1 22) 

After introduction of the Replica Symmetry ansatz and taking the limit 
n -. 0, the free energy f associated to this problem can be written as : 

-(3.f = -(3fi - /3h (2.123) 

with 

f1 : the free energy of t he Gibbs problem (3). 

h : the free energy of the generalisation problem with an arbitrary 
cost function E(J) (section 2.l ). 

One also .finds that (_?.123) is independent of the overlap parameter 

S (and its conjugate S). To determine S one should derive the s~dd le 

point equations before taking the limit, n-. 0. Aft.er eliminating S one 
gets: 

~ +oo +oo +oo 

S - RR = 2ay ~ j Vy j Vt j Vt' 
0 - oo - oo 

( 
~ ) exp (- !g2 (ij, R ,y, t, t')) 

. >-o(x, R,y,t)- yR+vl - R·t ( _ ) 
H g(ij, R, y , t , l') 

(2.124) 
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where we have used the expression : 

with 

( - R-. ') - - y.R + ~(at + ~t') 
g q, . , Y, t, t - .._/1 - ij ' 

0.9998 

0 .9997 

s 

0.9995 

0 

S - RR 
a = . 

v'l - R2)ii - _R,2 

2 4 6 8 1 0 
a 

(2.125) 

(2 . 126) 

Fig.(2.21): Overlap S between center of mass of the ver­
sion space and the student constructed using the optimal 
repulsive potential, (2.85) with s = -1 .35. 

Note that we let /3 --. +oo and as in section 2.1 introduce x = /3(1 - q). 
The function >.0(x, R, y, t) minimizes the expression : 

(2.127) 

Remark that the order parameter S gives the overlap of JE with Jav· 
To obtain the overlap with the center of mass one still has to divide by 
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.fa: 

s = _J__ 
.fij 

(2 .128) 

The overlap between the center of mass of the version space and the 
vector obtained by minimizing the cost function (2 .85) with optimal 
s (s = - 1.35) has been calculated and plotted in Fig. (2.21). One 
observes that the overlap Sis very close to 1 which leads to the conclu­
sion t hat the cost function (2.85) with optimal s (s = - 1.35) attains it 
mini.mum very close to the center of mass of the version space. 

In Fig. (2.22) some other results are plotted. One observes that even 
a repulsive potential v/ with s = 0.25 leads to an overlap S with the 
center of mass which is larger than 0.98 for all a values. 

\ 

0.95 
I ,.. 
\ 

,.. 
/ 

) / 
s ·., / 

/ ..._ _ 
0 .9 

0.85 
0 2 4 6 8 10 

a 
Fig. (2.22): T he overlap S of the center of mass of the ver-

sion space with the Hebb vector (dotted line) and with 
the vector obtained by using t he Hebb rule inside the 
version space ( dashed )foe). The result for the repulsive 
potential V/ wit h s = 0.25 (full line) is also displayed. 

Following the same procedure one can calculate the overlap of two vec­
tors JE1 and J E 2 which respectively minimize the cost functions E1 an 
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(2.129) 

Usi ng an analogue deri vation as the one explained in Appendix D leads 
to : 

{N +oo +oo +oo 

S - RR = 2av ---;;;;- / Dy j Dt j Dt' 
0 - 00 -00 

. (>.1 (x , R ,y,l) - yR + v'l- R2t) 

. ( .\2(i, R, y, l , t1) - yR + J 1 - R2(at + v'l - a2t')) (2.130) 

with 

S- RR 
a = --- ~== 

v'l - R2Jq - J?,2 
(2.131) 

The funct ion >.1 (x, R, y , l ) minimizes the expression : 

(.\ - yR + v' l - R 2t) 2 

Vi(.\) + 2x ' (2.132) 

and >.2 (i , R, y, t , t') minimizes: 

( >. - yR + J1 - R2 (at + v'l - a2t')) 2 

V2(>.) + 2i (2.133) 

As an illustrat ion we plotted in Fig. (2.23) the overlap between the 
Hebb-vector and t he student defined by (2. 63) (Hebb rule inside the 
w rsion space) and also the overlap between the latter and the student 
generated by minimizing the cost function (2.85) with s = 0.25. 
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0 .99 

S 0 .98 

0 .97 

0 2 4 6 8 10 
a 

Fig.(2.23): The overlap S between the student defined 
by (2.63) (Hebb rule inside the version space) and t be 
Hebb vector (full line) and secondly the overlap with 
the student generated by minimizing the cost function 
(2.85) with s= 0.25 (dashed line). 

53 
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Chapter 3 

Learning from 
non-uniformly distributed 
examples. 

3.1 The gaussian model. 

In Chapter 2 we considered an unstructured distribution of the example 
pat terns, i.e. t he training set is drawn from a uniform distribution. 
In many practical situations however, the distribution of the example 
patterns will be non-uniform. 
Let us assume that t he set of patterns !;/1" , µ. = 1, . . . , P is general.e<l 
by P independent samplings from a non-uniform disLribution P*(elC) 
where C represents a symmetry breaking orientation. In this chapter we 
will restrict ourselves to the case where the teacher vector T coincides 
with the structure generating vector C. Under assumption of cilindrical 
symmetry around the T -axis, one can write t he probabili ty distribution 
of the patterns as : 

P"(elT) ~ 8 (e - N) exp (-v• ( %) ) . (3.1 ) 

The corresponding distribution of the overlap h between pattern and 
teacher: 

(3.2) 

55 
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is given by : 

+oo 
P*(h) "" j de 6(h - %) P*(~IT) 

- 00 

(3 .3) 

( 
h2 ) "" exp - 2 - V*(h) . (3.4) 

In particular for a uniform pattern distribution one has V*(h) = 0. For 
the perceptron the classification by the teacher of a pattern e as tt 
automatically implies that the pattern -eµ is classified as - t{{'. One 
can thus consider the set of P alligned patterns 

all of which are classified as + l. 
The distribution P**(u) with 

'vµ=l, . .. , P 

IT.el 
'U=--

yN 

(3.5) 

(3.6) 

of the overlap of these aligned patterns with the teacher vector is given 
by: 

P**(u) = [P*(u) + P*(-u)] O(u). (3.7) 

If the potential V*(h) is even one gets : 

P**(u) = 2 B(u) P*(u). (3.8) 

As in [32, 33] we will concentrate on the so called gaussian model where 
the patterns are distributed according to the potential : 

h2 
V*(h) = a2 (3.9) 

with a a real parameter which satisfies -1 < a < +oo. The potential 
(3 .9) leads to the following distribution for the overlap u : 

P**(u) = 2 O(u) /
1 ~ a exp ( - ( I +

2
a) u

2

). (3. 10) 
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2 

I 
I 
\ 

P(u) 
I 
I 
I 

············'- ··-
\ ·-- .. 

\ 

' 0 
..... 

0 2 3 4 
u 

Fig.(3.1): T he probability distribution (3.10) for a 
0 (full curve), a = - 0.5 (pointed curve) and a = 5.0 
( dashed curve) . 
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For a = 0 one obtains uniformly distributed patterns. For a > 0 the 
patterns are more densely distributed around the plane ort hogonal to 
the teacher T (equator). In the a < 0 case this zone is less densely 
populated . Following [34] one cru1 characterize the a > 0 case as the 
problem in which the student has to learn from "difficult" patterns. 
For a< 0 the teacher presents "easy" examples to the student. 

3.2 Gibbs and Bayes learning. 

P.R.eimaru1 and C.Van den Broeck [32] studied Gibbs and Bayes super­
vised learning from non-uniformly distributed examples by mapping the 
supervised problem to an unsupervised one. T he task in unsupervised 
learning [35, 36, 37] is to discover a certain distribut ion from the avail­
able examples. This can only be done by usin)2; some a-priori knowledge 
about the structure which has to be inferred . lf the form of the a-priori 
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probability distribution of the patterns (3 .1) is known exactly one can 
obtain the so called a posteriori probability distribution [32]: 

P(J l{{"})-exp (-f v• (~)) 6(.1.J - N), (3.11 ) 

which is the probability that a particular hypothesis (student) vector J 
coincides with the unknown teacher vector T given the set of example 
patterns { e}. 
The vector which characterizes the Gibbs perceptron is defined as a 

random sample from the distribution (3.11). The Bayes-vector [36] is 
defined as the (weighted) center of mass of the distribution (3.11) i.e. 

(3.12) 

with the proper normalisation constant (J1 = N). 
For the gaussian model, a replica calculation leads to the fol.lowing sad­
dle point equation [32] which determines t he overlap Rcibbs between the 
Gibbs perceptron and the teacher : 

2 ) +oo ex ( Rz2 ) 
1 + a(] - R) = a(a (J - R + ~ / Vz p (I - R )(l+a) ) (3.13) 

1 + a 1rR H ( V R ) · -oo -(I- R)(I+a)Z 

Solving this equation numerically leads to Rcibbs and Rsaye.s since t he 
relation: 

Rsayes = j R Gibbs 

stays valid [32]. 
The small and large a behaviour of R 8 aye.s are given by : 

a ---. +oo 

~ 2) 
Raayris = y ~ + O(a 

1r
2 (0.442)2 

RJJayes = 1 - 2 (l + a)o:2 • 

(3.14) 

(3. 15) 

(3.16) 
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For a = 0, one recovers the well known results for uniformly distributed 
patterns. As in [34] one can see from (3.15) and (3. 16) that an ideal 
student learns best on t he basis of easy ex amples for small o: but in 
order to obtain optimal generalisation properties for large a one should 
present example patterns characterized by a large positive a (difficult 
examples). 

3.3 Calculation of the overlap with the 
teacher using gradient descent learn­
ing. 

T he results from the previous section for optimal and Gibbs learning 
have been obtained by explicitly ta.king into account the knowledge 
about the pattern distribution P*(~IT ). In practice one does not know 
if the example patterns generated by the teacher are correlat ed . There­
fore it is interesting to calculate the performance of some learning rules 
which do not use the additional information about the distribution from 
which the training patterns are drawn. 
'Vile will apply our general method of Chapter 2 to calculate the overlap 
R between the teacher T and the student which minimizes the cost 
function : 

p 

E(J)=LV(N') (3.1 7) 
µ = l 

with )..I' the stabilty of the µ-th pattern. 
A replica calculation very similar to the one performed for the case of 
uniformly distributed patterns ( only the averaging over the patterns is 
different) leads to the following expression for the free energy : 

q - R2 l 
- f = e:,rl (2,6(1 - q) + 2,6 ln(l - q) 

+oo +oo +oo d).. 

-~ j D **t2 j Dt1 ln j V exp (g(t1 , l2, q, R , >.)) ) 
-oo -00 -00 21r( l - q) 
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(3.18) 

with 

and 

(3.20) 

Remark that, apart from the integration with respect to t2 ,equation 
(3.18) is equal to the expression (2.6). 
If one only considers cost functions E(J) with a unique non-degenerate 
minimum one should let the temperature T go to zero in order to find 
the ground state energy. Int roducing the order parameter x = p(l - q) 
into expression (3.18) leads to : 

with 

The saddle point equations yield : 

+oo +oo 

1 - R2 = o: / D**t2 ./ Vti P,o - v)2 
- oo -oo 

where the funct ion >.0 ( v, x) minimizes the expression 

V(>.) + (>.-v)2 
2x 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 
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The Almeida-Thouless stability condition [16] for t he Replica Syinmet­
ric saddle poin t takes on the following form : 

+oo +oo (f)).. )2 
CY J D**l2 J Dt1 OVO - 1 < 1. 

- DO -00 

(3.26) 

3.4 Hebb and maximal stability learn­
ing. 

3.4 .1 Hebb learning. 

T he Hebb potential is : 

V(>.) = - >. . (3 .27) 

T he corresponding funct ion >.0 has been determined in section 2.2. In­
serting )..0 in t he saddle point equations and using t he probability dis­
tribution P"(t ) (3.10) for t he gaussian model leads to : 

R 

1 - R2 2ax2
. 

Elimination of x results in : 

RHeb1,(a) = J n(l +
2
~ + 21'.¥. 

For large ex t he overlap R goes to l as : 

R l 
7r( l + a) 

a _,, + oo Hebb ,...., -
4
a . 

3.4.2 Maximal stability learning. 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

Maximal stability learning (Adatron algori t,hm) can be described by 
considering the potent ial : 

V(>.) = { +oo >. < "' 
0 >. > "' 

(3.32) 
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This leads to the function >.0 (v,:r) : 

>-o(v , x) = v + (1,, - v) 8(1,, - v) . (3.33) 

Inserting this function into the saddle point equations (3 .23) and (3.24) 
gives : 

(3.34) 

+oo +oo 

l-R2 
Cl I V**t2 I Vt1 (1,, - V )

2 fJ(K, - V ). 

-00 - oo 

(3.35) 

Numerically solving these equations leads to 1,,(a) and R(a) correspond­
ing wi th the maximal stability criterion. 

3.4.3 N umerical results. 

Tn Fig. (3.2) we present numerical results for the gaussian model with 
a = - 0.5. T he overlap obtained by using the Hebb and Adatron rule 
are compared with the results for Gibbs and Bayes learning. One ob­
serves that for a < 5.0 the Hebb rule is superior to the Adatron rule 
and produces overlaps which are close to optimal. T his can be under­
stood by noting that for a < 0 t he probability t hat a pattern has a 
large overlap with the teacher is higher than in the case of the uniform 
distributed patterns (a = 0). Since the Hebb rule is nothi ng more than 
the (normalised) sum of the aligned patterns ell: this algorithm should 
lead to large overlaps wit h the teacher . For a ::::::: 5 one sees that t he 
curves for RHebb and RMs tend to each other and cross for larger a. 
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Fig. (3.2): The overlap between student and teacher for 
the Bayes (upper full curve) and Gi.bbs (lower full curve) 
rule for Lhe gaussian model wiLh a= - 0.5 together with 
t he over lap obtained by using Lhe Hebb (shor t dashes) 
and Adatron (long dashes) rule. 
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In Fi.g.(3.3) the results for the gaussian model wit h a = 5 are pre­
sented.Remind t hat for a > 0 the patterns are lying close to t he plane 
orthogonal to the teacher . One observes t hat the Hebb rule in this case 
does not lead to large overlaps. The Adatron algorithm gives larger 
overlaps than the Hebb rule but for 0.5 < a < 3 the difference with the 
optimal overlap is rather large. T herefore it is interesting to investigate 
if t he class of repulsive potentials defined in Chapter 2 produce overlaps 
which are closer to t he optimal ones. 
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Fig.(3.3): The overlap between student and teacher for 
t he Bayes (upper full curve) and Gibbs (lower full curve) 
rule for the gaussian model with a= 5 together with the 
overlap obtained by using the Hebb (short dashes) and 
Adatron (long dashes) rule. 

3.5 Gradient descent learning with a re­
pulsive potential. 

The class of repulsive potentials defined as : 

v+(>.) = { +oo >. < o 
s _ A" ,.\ > Q 

s ' 

(3.36) 

lead for uniformly distributed example patterns and optimal choice of 
the parameter s to a student perceptron with almost optimal generali­
sation properties. Using the general method explained in the previous 
section, we can calculate the overlap of the student vector obtained by 
minimizing the cost functions corresponding with the potentials (3 .36) 
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and the teacher for the gaussian model . 

First we rewrite the saddle point equat ions (3.23) and (3.24) by trans­
forming the integration variables t1 and t 2 . If one carries out the l,rans­
formation t2 -> v"f+a t2 and then introduces the new integration 
variables t and t' by applying the orthogonal transformation : 

(3 .37) 

(3.38) 

with 

b2 = 1 + a(l - R2
) 

l + a ' 
(3.39) 

one gets for the saddle point equations : 

+oo +oo 

R = 2a j Vt j Vt'(>..o(bt ,x)- bt ) 
- oo --;"!"=nt"==='SI"' 

v'(i+a)(1 - R2) 

+oo ( Rt ) 1 - R2 = 2a j Vt H - J ( >..0 ( bt, x) - bt')2 
_

00 
(1 + a)(l - R2) 

(3.41) 

The function >..0 (bt, x) now minimizes the expression : 

V(>..) + (>. ;:t;)2. (3.42) 

Extremizing (3.42) using (3.36) defines >..o(bt , x) : 

>..o - bt = x>..g- 1 (>..o > 0). (3.43) 
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The saddle point equations (3.40) and (3.41) can be solved nwnerically 
by applying the same techniques as the ones proposed for the case of 
t be uniformly distributed example patterns. The results for s = - l.35 
are presented in the next figures . 
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Fig.(3.4): T he overlap R(o:) between student and teacher 
for the Bayes rule (full curve) and Hebb rule (short 
dashes) together with the result obtained by minimizing 
the repulsive potential with s = -1.35 for the gaussian 
model with a = - 0.5 . 
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Fig. (3. 5): The overlap between student and t eacher for 
tbe Bayes rule (full curve) and the Adatron rule (long 
dashes) together wit b the overlap obtained by minimiz­
ing the repulsive potential with s = - 1.35 for the gaus­
sian model with a = 5. 
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One sees from Fig.(3.4) t hat for a = - 0.5 the repulsive potential leads 
to overlaps which are almost equal to those of the Hebb rule for small 
a. For bigger a the overlap R becomes very close to t he optimal one. 
F'rom Fig.(3.5) we see that for a = 5 the minimization of the repulsive 
potential withs = - 1.35 gives overlaps R which , for a< 5, are smaller 
than the ones obtained by using the Adatron algorithm. 

Closer examination of t he numerical results for different s values lets 
us conclude that for a different from zero, the optimal value for s is a 
dependent. The opt imal value of s has been calculated numerically for 
a = 5 and is depicted in F ig.(3.6). One gets that for small a one should 
use a large negative value for s . For large values of a one observes that 
s0 ,,1 tends to a value close to - 1.5 . 

- 5 

Sop! - 1 0 -

- 1 5 

0 5 10 
a 

15 20 

Fig.(3.6): T he optimal value for s as a function of a for 
t he gaussian model with a= 5. 

The overlap R obtained by using s0 ,,t , which is plotted in Fig (3.7) 
together with the s = - 1.35 curve, is slightly higher than the one of 
the Adat ron algorithm but still is not satisfyi ng for intermediate values 
of a. 
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Remark that although for small o: values the optimal value Sapt differs 
t he most from - 1.35 we do uot obtain a overlap which is significantly 
better. Only in the region 0.5 < o: < 3 we obtain a higher overlap by 
using lower s values. 

0.8 , 
/ 

0.6 
A 

0.4 

0.2 

0 
0 2 3 4 5 

a 

Fig.(3.7): The overlap R obtained by using the optimal 
value Sovt(o:) (full curve) together with the result ob­
tained by using s = -1.35 . 

T'o determine Supt for large o: we proceed by using the same methods as 
in the case for uniform distributed patterns . As explained in Appendix 
C for uniform distributed examples, we can rewrite the saddle point 
equations (3.40) and (3.41) as: 

1 B'2 
+oo dz ( 1 B'2 z2

) 
- = -- f -- exp - --- h(z) 
2A1 ·./'Er . ,/'Er 2 1 + a 

- oo 

(3.44) 

1 B';i +oo ( B' z ) ( z ) 
2 

- = -- dzH - h z -
2A' V27r J y'1+a ( ) y'1+a 

-oo 

(3.45) 
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with 

A' 

B' = 

7T 

l 
xr-. 

J l-R2 
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(3.46) 

(3.47) 

Taking the R --+ 1 limit leads to the equations (C.15) and (C.16) of 
Appendix C with 

A' 
A=-­y'T+a. (3.48) 

By numerically solving the equations (C .15) and (C.16) we have already 
calculated the A(s) curve. the function A(s) attai ns its minimal value 
0.443 at s = - l.35. As a result we can conclude t hat for large values 
of a the repulsive potential V/ with s = - 1.35 still leads to overlaps 
between student and teacher which are close to optimal , i.e. 

a--+ +oo 
?T2 (0.443)2 

R= l - . 
2 (l + a)a2 

(3.49) 
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The Ising teacher problem. 

4.1 Introduction 

One of the main reasons to describe neural networks with Ising or more 
generally with discrete valued synapses is the possibility of implement­
ing these systems in hardware. Therefore, the analysis and properties of 
these networks and the search for learning met hods capable of working 
under these limitations are important research subjects. Clearly the 
discretization of the connections modifies the learning problem com­
pletely because the topology of the phase space differs. Indeed, all 
Ising vectors are the corners of an N-dimensional hypercube. We will 
again address the problem of a student perceptron J which learns from 
a set of randomly cl1osen training examples /;," , µ = 1, . .. , P whose 
classification (/t is provided by the teacher perceptron T . Now, how­
ever, t he teacher T has Ising synapses, i.e. 

T; = ± 1 Vi= 1, . .. , N. ( 4.1) 

The generalisation error for the Tsing Gibbs perceptron , which is ob­
tained by random sampling from t he set of Ising vectors belonging to 
the version space, has been studied in [41] for the zero temperature case 
and in [3] for t he case with temperature different from zero. 
For zero temperat ure one observes a first order phase transition to per­
fect generalisation (c: = 0) at Ocr: = 1.24. This means that beyond Ocr. , 

only one Ising vector ]jes in the version space which obviously musL be 
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the teacher T. The Ising Bayes vector has been defined by Opper in 
[42] as the center of mass of all lsing Gibbs vectors and in general does 
not has binary components . As in the case with continuous valued 
perceptron vectors the generalisation error c is equal to: 

c lJayes = ~ arccos ( V RGibbs) . 

0.5 

' 0 .4 ' ' ' 
0 .3 ' ' ' E (a) ..... 

...... ..... 
0.2 ...... 

0 .1 

0 
0 2 

a 

Fig.(4.1): The generalisation error c for the Ising Gibbs 
(full curve) and Ising Bayes (dashed curve) perceptron . 

(4.2) 

Even though it is known th at zero generalisation error can be achieved 
for n > ac t here are no practical algorithms that come near to this 
result. 

As in Chapter 2 we can construct a student vector with cont inuous 
components using a certain cost function . .But, one might expect that, 
if one uses the extra information about the the teacher, a lower gener­
alisation error can be achieved. 
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One of the learning strategies wich can be followed is to construct a 
student vector with continuous couplings using gradient descent learn­
ing and clip or transform its components . 

A few simple clipping scenarios have already been studied. Van den 
Broeck and Bouten [38] have derived the generalisation error of the 
clipped Hebb perceptron. The synapses of the student are given by : 

ji = sign ( ~ ,f et(t) . 
vP µ= 1 

They obtained for the overlap between student and teacher : 

R 
J.T 
N 

= erf (/;). 

(4.3) 

( 4.4) 

( 4.5) 

From ( 4.5) it is elem that no t,ransi tion to perfect learning is achieved 
but for large values of a: the generalisation error approaches zero expo­
nentially fast. 

Cl: -+ +oo : €. rv exp ( - ;: ) . (4.6) 

Bolle and Shim [39] generalised the result (4.5) by considering a non­
linear modulation of the Hebb learning rule . 

In the next sections we will show that, t he overlap R of the vector 
obtained by clipping or transforming the continuous student vector J 
can be found as a simple function of the overlap R of J with the Ising 
teacher T . 
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4.2 Clipping. 

In [38] and [39] only the Hebb rule has been considered to construct 
the vector J. Using a gradient descent algorithm one can construct 
the student vector which minimizes a certain cost function E(J). As 
in Chapter 2 we will restrict ourselves to cost funct ions E( J) with 
a unique non-degenerate minimum where the information about the 
patterns enters in an additive way : 

p 

E (J) = L V (,\µ) . (4.7) 
/>= I 

In view of the binary nature of the components of the teacher T one 
could expect that a higher overlap can be achieved by clipping the 
continuous components of the student vector. Following thjs idea the 
quantity of interest is R: 

R = / ! 't sign(J;) r;) . 
\ i = l ~ 

(4.8) 

As usual < . >~ stands for the quenched average over the set of ex­
ample patterns. With the assumption t hat all order parameters are 
self-averaging in the thermodynamical limit a replica calculation has 
been carried out to determine R as a fun ction of a. In Appendix E , 
where we have also considered the case of a generic and easy teacher 
[38, 39], this calculation has been elaborated in details. 

At the Replica Symmetric saddle point, one obtains: 

R= j+
00vz(H( R-~z) -H(R+~ z)) , (4.9) 

~ .Jl-q 
- oo 

where q is the typical overlap of 2 replicated continuous J vectors and 
R is the overlap of a J vector and the teacher T. T he values for this 
parameters are solely determined by extremizing the free energy (2.6) 
of the "continuous" problem. 
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To find the ground state of the fun ction E(J) one considers the /3 - > 

+oo limit. Taking into account the fact that the cost function E(J) 
has a non-degenerate minimum, q should tend to 1. Introducing this 
limit in the equation (4.9) leads to : 

R = H( h )-H(h) (4.10) 

= erf ( R ) 
/2(1 - R2 ) . 

( 4.11) 

We see t hat R(a.) is determined by a simple expression in terms of 
R( a.), independent of the cost function which was used to construct the 
continuous student vector J. The function ( 4.11) is plotted in Fig. ( 4. 2) 
together with the R = R line. 
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0 0.2 0.4 0.6 0 .8 

A 

Fig.(4.2) : The overl ap R of the clipped student j with 
the Ising teacher (full line) together with the original 
overlap R (dotted line) . 

One observes that the overlap R is a monotonous increasing function 
of R. The overlap between student and teacher will increase t hrough 
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clipping only if the prior overlap R is larger than 0.78. For smaller 
values of R clipping leads to a small decrease of t he overlap. 

The result (4.11) can also be obtained using a simple geometric ap­
proach. Suppose one applies a general odd function f (clipping is a 
special case) to the components of a student vector J which has been 
obtained by an arbitrary learning rule. The components of the properly 
normalized , transformed vector j are given by : 

N 
(4.12) 

}: J (J;)2 
j = I 

Using the facts that f is an odd function and T is an Ising teacher, one 
can write the overlap R between j and T as follows : 

k ( 1 N _ ) N LJ, T, (4.13) 
,= 1 e 

N 

( }: J(J,T;) ) 
i= l (4.14) 

N 
N I: J2(J/I';) 

j=l e 
N 

( I/Nl:f(J1T;) ) 
(4.15) 

1/N I: j2(J;T;) 
j = l ~ 

If we assume .R to be self-averaging one can write, for N - +oo, using 
the law of large numbers : 

1 N 

N tt f (t;) = (J(t)) ( 4. 16) 

+ oo I dt P(t) f(t) , ( 4.17) 
- oo 
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with P (t) the probability density oft = J; T;. 

This reduces Eq. (4.15) to : 

R - (f(t)) 
- j(f2(t)). 

77 

(4.18) 

If the overlap between the J -vector and the teacher vector T has a 
given value R, but all locations of the J -vector are otherwise equally 
probable, one finds the following result for P(t ) : 

+oo 
.[ dJ 8(J1 T1 -t) 8(J 2 

- N) 8(J.T - NR) 
P(l) = -_oo __ +_oo ___________ _ 

.[ dJ 8(J 2 - N) 8(J .T - N R) 
( 4.19) 

- oo 

(4 .20) 
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t 

Fig.(4.3) : The probability distribution P(t) for R = 0.2 
(full line) and R = 0.9 (dashed line). 
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The Equations (4.18) and (4.20) are the basic results of this section. 
They give the new overlap R of the transformed vector j in terms of 
the old overlap R for any od<l function f. 
Returning to the plain clipping scenario we have: 

J(t) = sign(t). (4.21) 

The overlap of the clipped student j with the teacher T follows from 
(4.18) and (4.20) : 

+oo 

R j dt P(t) sign(t) (4.22) 
- oo 

2H(h)-1 1 -R2 
(4.23) 

( R ) (4.24) = erf , 
,/2(1 - R 2 ) 

which is equal to the result (4.11) obtained by performing the much 
longer replica calculation. 
To obtain the generalisation error as a function of a , the learning al­
gorithm used to construct the vector J has to be specified and the 
corresponding function R(a) has to be substituted in Eq. (4.24). 
For example, t he Hebb-student has : 

(4.25) 

inserting this in ( 4..24) leads to 

R=err(m , ( 4.26) 

which is exactly the result derived in [38]. 
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Since it is advantageous to clip starting from the continuous perceptron 
J with the largest possible overlap R, the largest possible A can be 
obtained by clipping the (continuous) Bayes vector. The Bayes vector 
has been identified as the center of mass of the version space and can 
be constructed by applying a gradient descent algorithm on the cost 
function E(J) defined by the potential : 

v +().) = { +oo >. < 0 
s - ~ >. > 0 ., 

(4.27) 

with s = - 1.35 [40]. In Fig. ( 4.4) the generalisation error of t,he Ising 
student obtained by clipping the optimal conti nuous student is plotted 
together with the Ising Gibbs result. 
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Fig.(4.4): Generalisation error for the Ising Gibbs and 
Ising Bayes perceptron together with the results for clipped 
Hebb ( dotted line) and the error obtained by clipping 
Lhe vector which minimizes the cost function defined 
through the potential (4.27) wi ths= 0.25 (dashed line) 
and s= - 1.35 (full line) . 
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One observes that for o: < 1.24 the generalisation error for the clipped 
optimal continuous student is smaller than the error for the the Ising 
Gibbs perceptron but at nc no transition to perfect learning is achieved. 
This means that, since for a > 1.24 there only remains one Ising vector 
in the versinn space ( the teacher T itself) , clipping produces a vector 
outside the version space. 

The theoretical results have been checked by carrying out some simu­
la lions using the inverse power potent ial ( ( 4.27) with s = - 1.0) to con­
struct J. The results for a system with 100 input units are presented 
in Fig. ( 4.5) and show nice agreement with the theoretical results. 
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Fig. ( 4.5) : Theoretical generalisation error of the student 
vector obtained by clipping the vector which minimizes 
the inverse power cost function (full line) together with 
simulation result s. 

Ftom ( 4. 11) one easily obtains t he small a behaviour of R ; 

- 2 R R -
- V'rr J 2(1 - R2 ) ' 

( 4.28) 
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which leads to 

(4.29) 

For large values of 0: one gets : 

( 
l R2 ) - l exp -2 t - R2 

R = 1 - . 
Jir (R/ /2(1 - R2 ) , 

(4.30) 

which leads to a generalisation error 

E "' exp(-~~- ) . 21- R2 
( 4.31) 

Since we know that for the class of potentials described in Lhe previous 
chapter the generalisation error behaves as 11/o, we conclude that the 
generalisation error of the clipped student J will behave as : 

£ "'exp (- Co2
) , ( 4.32) 

with C a constant depending on the chosen potential. 

4.3 Partial clipping. 

Since plain clipping is a bad strategy for small R values one can con­
sider pru·tially clipped student vectors . The idea is t o clip only the 
components J; which are, in absolute value, larger than a certain Lresh­
old value K,. Following the suggestion of Bolle and Shim [39] one can 
choose the piece-wise linear function 

J(t) = { sign(t) it!> K. 
t /K. ltl <K 

( 4.33 ) 
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f (I) 0 

-0.5 
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- 1 .5 
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t 
Fig.(4.6): The piece-wise linear function (4.33) with K = 

1.0. 

Using the expressions (4. 18) and (4.20) one finds: 

H ( v~~~2) - H ( v~-:_~2) + r dt P(t) (t/ K) 
R(K) = - K 

+re 
H ( t<- R ) + /{ ( t<+R ) + .f dt P(t) (t/K)2 
~ ~ -t< 

(4.34) 

For each value of R, one can determine the value of the treshold K which 
maximizes the overlap R. It is not a surprise that the optimal value r,,• 

is small for large R and increases as R becomes small . The fraction of 
clipped components is given by : 

+oo 

j dx (P(x) + P(- x)) ( 4.35) 

and is plotted in Fig.(4.7) . 
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Fig. ( 4. 7): The fraction of clipped synapses corresponding 
with the optimal value 1,;. 

4.4 Optimal transformation 

83 

One can now try to determine the function f which maximizes R.. This 
function f* can be found as the solution of the variational problem : 

8 R= o. ( 4.36) 

Varying (4.18) with respect to f leads to: 

+oo I dt 8f(t) P(t) [< f 2 > - < f > f(t )J = 0. (4.37) 
-oo 

Assuming 8.f (t) to be odd, one obtains : 

P(t) - P (-t) 
f* (l) = P(t) + P(- t,) 

tanh (i ~ ~2 ) . 

(1.38) 

(4.39) 
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Fig.(4 .8): The optimal function f*(t) for R = 0.6 (full 
curve) and R = 0.9 (dashed curve). 

The function J* is in principle only determined up to a multiplicative 
constant but t he value of this constant is of no importance since it drops 
out of the final expressions. We see th at f*(x) converges to sign(x) in 
the limi t R _, 1. 

The optimal transformation ( 4.39) has also been obtained by Solle and 
Shim [39] for the modulated Hebb rule but our derivation shows that 
it remains valid for any learning rule. 
The optimal value R* can be found by combining (4.39) and (4.18). 
This leads to : 

+oo ( 1 (l- R)2 ) 

I exp - - 2 ( R t ) < F(t) >= dt 2 1- R tanh 1 - R2 
...:00 J21r( l - R2

) 

(4.40) 

Using the transformation : 

t-R 
u=~== JI - R2 ' 

( 4.41) 

one can rewrite the equation (4.40) as: 

+oo R R 
< f*( t ) >= j 'Du tanh (i _ R2 ( u + 

1 
_ R2 )). (4.42) 

- oo 
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In an analogue way one obtains : 

+oo R R 
< (J*(t))2 >= j Du tanh

2 (i _ R 2 ( u + 1 _ R2 )). (4.43) 
-00 

Now one can use the identity : 

+oo +oo 
j Dt tanh[,,;(t + ,,;)] = j Dt tanh2[11:(t + 11: )J , (4.44) 

- oo - 00 

which is valid for every value of K. It can be proven in the following 
way : substraction of left and right part of (4.44 ) leads to: 

+j ooD [ ( )] (cosh[,,;(t + ,,;)] - sinh[r,:(l + ,,;)] ) -
l tanh r,: t + K h[ ( )] -

COS K /, + K 
- oo 

+j ooD h[ ( )] (2exp( -[K(t + K)]) ) ttan Kl+K . 
cosh [K(t + K)] 

-oo 

Changing the integration variable from t to u = t + K leads to : 

exp(-K2 / 2) +Joo Du sinh(Ku) 
cosh2 (Ku) 

-oo 

which obviously is equal to zero. Using this result we get : 

< f* >=< f*2 > 

which leads to 

( 4.45) 

( 4.46) 

(4.47) 

k· = J< f* > (4.48) 

+oo R 
j dt P(t) tanh (

1 
_ R2t). (4.49) 

-oo 

T his result is presented in Fig. (4.9) together wit.h tbe resulL for par­
tially clipping with optimal Lhreshold K = ,,;* . Note that. the latter 
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result is nearly optimal as conjectured in [39] . 
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A 

Fig. ( 4 . 9): The overlap R* of the optmally transformed 
vector (full line) together with the result for partially 
clipping with optimal threshold K, = K* (dashed line) . 
The dotted line is R = R. 

To check the theoretical result for the optimal transformation simula­
tions for a system of 100 input neurons have been carried out and they 
lead to excellent agreement with the theoretical. results. 
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Fig. ( 4.10): Theoretical generalisation error of the student 
vector obtained by optimally transforming the vector 
which minimizes the inverse power cost function (full 
line) together with simulation results for N = 100 . 
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Of particular interest is the behaviour of the overlap R in the limit 
R--+ 1. From Eq. (4.49) one obtains 

R--+ 1 
( 

l R2 ) R = 1 - 1 exp - 2~ 

/2ir (Rf /(1 - R2 ) 

(4.50) 

which is equal to the asymptotic behaviour of plain clipping. 
So, also in th is case we obtain that for large a, the generalisation error 
goes as 

£"' exp (-Cci) . ( 4.51) 

In Fig. (4.11 ), we present the generalisation error obtained by applying 
J* to t he Bayes perceptron. Although we are not able to reproduce the 
first order phase transition to perfect generalisation one observes that 
below the transition point a,= 1.24 the curve follows very closely that 
of the Ising Bayes perceptron which is the best possible result (but for 
which no practical algorithm exists). 
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Fig.(4.11): The generalisation error for the optimally 
transformed continuous Bayes vector (da5hed cur ve) and 
optimally transformed Hebb vector (long dashes) . 
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Appendix A 

Replica calculation for a 
general cost function. 

Using the replica method, the free energy per neuron f is defined as : 

1 
-(Jf = N(ln Z)e, (A .l) 

. 1 
bm -N ln (Zn) c . 
n -----,0 n ._ (A.2) 

The partiLion function Z is given by : 

z = f dµ(J)e-fiE(J). (A.3) 

The notation < . >e is used for t he quenched average over the example 

patterns. The J -vect ors all fulfil the normalisation const raint J2 = N. 
As a result one can write the integration in the partition function as : 

too I dµ(J) . . . "-' I dJ i5(J 2 - N) . .. (A.4) 
-oo 

too N 

= I fI VJi ··· 
- oo l = l 

(A.5) 

with 

dJi ( 1 2) VJ, = - - exp - -I . 
i V27r 2 ' 

(A.6) 
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The cost. functions E(J) which we wiU consider are of the form : 

p 

E(J ) = L V(,\µ) 
µ= l 

with,\µ t he "stability" of the µ-th pattern 

J.eµ (T·e') N' = ,/N sign ,/N 

The replicated partition function < zn > can be written as : 

(A.7) 

(A.8) 

(zn)e = j il dµ( Ja) exp(-o:NGr(Ja )) (A.9) 
a = I 

with the function Gr(Ju) defined as : 

Gr(Ja ) = - !Jt j dµ(e) exp (-(3 t V (~ sign (~))). (A.10) 

T he measure dµ(e) for the patterns is equal to dµ(J ) defined in (A.4). 
Introduction of the variables Xu and y via 6-functions yields : 

+oo n +oo +oo n J e 
Gr = - ln j II dxa j dy j dµ(e) II 6(xa - .JR) 

-oo a=l -oo -oo a= l 

T.e ( " ) .b(y - !TI) exp -(3 L V (x,,. sign(y)) . (A. 11) 
vN a= 1 

Using the exponential expression for the 8-functions and carrying out 
the integral with respect to e gives : 

Gr = - ln +/oo TI dxadxa +loo dy dy 
. a=l 27f . 27f 

- oo - oo 
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In (A.12) we have introduced the usual overlap orderparameters : 

Ja.Jb 
Va< b = 2, .. . ,n (A.13) qab = 

N 

Ra 
Ja.T 

Va.= l , .. . ,n. (A.14) = 
N 

The replicated partition function < Z" > can be rewritten as : 

(Zn) = +/~ fr dqabdQab +Joo fr dRadft +Joo fr dEa 
~ 27r 21r 

_
00 

a<b=2 _00 a= l _ 00 a= l 

. exp N L Ea - L RJ?.a - L Qailab + Go - cxG,. , 
( 

n n n ) 

a= 1 a= l a<b= 2 

(A.15) 

with the function Go defined as : 

The function G,. is defined in (A. 12). 

For N ---+ +oo (thermodynamic limit) , the integral with respect to the 
orderparamet ers q<>fJ and Ra. (and their conjugates) is domin ated by the 
saddle point . The free energy is obtained by analytically cont inuing 
t he saddle point to n = 0 : 

. 1 - /3! = hm -N In (Zn), (A .17) 
n -+O n ~ 

= lim .!._ extr_ ( - f E« - f RaRa 
n ->O n (Ea,R,,,Qao,Ra/iab) a=l tt= l 

f Qab9.ab + Go - aGr). (A.18) 
a< b= 2 
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At this point of the calculation one has to introduce an ansatz for the 
order parameters. According to the Replica Symmetry (RS) ansatz one 
treats all replicas equivalently and the saddle point takes the form 

Qab = q, (A. 19) 

Ra = R, (A.20) 

ijub = ij , (A.21) 

Ra k (A.22) 

Introducing this ansatz into (A. 18) and letting n -> 0 leads to : 

- {J f = extr (E + ~qq - RR + ~ fe + ~ - ~ ln (2E + ij) 
(E,q,t/ ,nJl) 2 2 2E + q 2 

+ DO +DO + DO d)., 

+ 2a / D t2 / Dt 1 In / -,=;=== 
0 _:DO _:DO V 21T(l - q) 

. exp (- {JV(.\ ) + l (>,, - t2R - ~t1)2)). (A.23) 
2 1 - q 

The adjoint variables E,q and R can be eliminated using their saddle 
point equations: 

2E + ij 
1 

= 
' l - q 

R2 + ii q 
= (l - q)2 ' 

k R 
l -q 

Finally we obtain the free energy : 

( 
1 l - R2 l 

f = extr - - - - ln (l - q) 
(q,R) 2 ,6(1 - q) 2{3 

(A.24) 

(A.25) 

(A.26) 
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2a +oo +oo +oo d>.. 
- /3 j Vt2 j 1>t1 ln j I 

0 - oo - oo y21r(l - q) 

.exp ( -/3V(>..) + ! (>.. - t2R - ~t1)2) ). (A.27) 
2 1-q 

In order to find the ground state energy, we must take the limit f3 --> 

+oo. Since we concentrate on cost functions E( J) with a non-degenerate 
minimum q should tend to 1. Introducing the variable x = /3(1 - q) 
reduces the free energy to the following expression : 

. _ (1- R2 

JT- D = - extr --
(x, R) 2x 

(A.28) 

wit h 

(A. 29) 

The integrand of the last integral can also be written as 

V( \ ( R )) (>-o(x , R, t i, t2) - l )2 

/\0 X, , t 1, t2 + 
2 :r; 

(A .30) 

with >-o(x, R, t 1, t2) the function which satisfies: 

(A.31) 

At last we can extremize the free energy with respect to x and R. 
This leads to the saddle point equations : 
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+oo + oo 

1 - R2 = 20: / Vt2 .f Vt1 (>.0 (x , R, t1 , t2) - t)2. 
0 - 00 

Appendix A 

(A.32) 

(A.33) 

A more useful form of these equations is obtained by applying following 
orthogonal transformation on the integration variables t1 and t2 : 

t = Rt2+JI-R2t 1 , (A.34) 

(A.35) 

The saddle point equations finally become : 

/2 +oo 

R = V ;n / Vt >.o(x, JI - R2t) (A.36) 
- ()() 

(A.37) 

The equations (A.36) and (A.37) have been obtained using the RS­
ansatz. To check the local stability of the RS solution one should 
analyse the eigenvalues of the Hessian matrix of the free energy at the 
RS saddle point. Almeida and Tbouless [16] calculated the eigenvectors 
representing orthogonal fluctuations to the RS-solution. A derivation 
very analog to the one carried out by Gardner and Derrida in [46] leads 
to the following condition: 

(P' - 2Q' + S'). (P - 2Q + S) < 1. (A.38) 

where P1,Q1,S1,P,Q and Sare defined in [46] . The first factor is, as in 
the storage case [46], equal to: 

(P' - 2Q' + S') = (1 - q)2
. (A.39) 

Calculation of the second factor leads to : 

(P - 2Q + S) = 
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2a J00 

V t H ( - h ) [ << x2 >> - << x >>2J2 (A.40) 
- 00 

The average < < . > > is defined as : 

+oo ) J d;;>- J(x) exp ( -f3V(>. ) + i x(>- - t ) - 1(1 - q)x2 

<< f (x ) > >= -oo+ oo . 

J d;;>- exp (- f3V(>-) + ix(>- - t) - ! (I - q)x2) 
- oo 

(A.41) 

We now calculate < < x > > and < < x2 > > . Performing the gaussian 
integral wit h respect to x leads to the following expression for << 
X >>: 

+ ( I~) . 
00 d>s -fW (>s) - 2 1--.:_q >s- t 

i J e -
- oo ~ 1- q 

+oo ( - {3V(>s)- l ( ~- t)2) J d>- e 2 1- • 

- 00 J2,r(1 - q) 

<< X >>= (A.42) 

For {3 -, + oo the jntegral with respect to A can be calculated using 
steepest descent. T his yields : 

. >.0(t, x) - t (A.43) << x >>=i ----
1 - q ' 

with >.0(t ,x) defined as above. 
Following the suggestion made by Bouten in [20] one remarks that : 

[ l d << X > > 
< < X2 > > - < < X > > 2 = i dt . 

Deriving (A.43) with respect to t very easily leads to: 

[<< x2 >> - << x >>2
] = -. -

1
- (1 - >-~(t ,x)) . 

1 - q 

Finaly we obtain : 

(A.44) 

(A.45) 

2 +
00 

( R ) (P - 2Q + S) = (l -aq)2 .f m H ~ [>.~ - 1]
2 

(A.46) 
- 00 
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Introducing (A.39) and (A.46) in (A.38) leads to the so called AT­
condi t ion for the RS-saddle point: 

2a j+oo Vt H ( Rt ) [X - 1]2 < 1. 
v'l - R2 o 

- oo 

(A.47) 



Appendix B 

Convexity of the cost 
function associated with the 
potential V8+(.\). 

ln this Appendix we will show that the cost functions associated with 
the repulsive potentials v;,+ (>.) defined in Chapter 2 are convex on the 
sphere J2 = N for s S l , hence the minimum is unique and can be 
found by gradient descent. Indeed, For s S 1 and >. 2: 0, the potential 
V/(>. ) obeys the following two inequali ties: 

which is val id Va , 0 S a S l and 

V(p>.) S V(>.) ,Yp 2' 1. (B.2) 

Consider now any two vectors J1 and J 2 with >.1 and >.2 2: 0 and 
J r= J~ = N and a vector J' = aJ1 + (1 - a)J 2 , 0 S a S l , lying on 
the line t hat connects them. 
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Fig. (2.1) : The vectors Ji,J2 ,J' and J as discribed in text. 

By applying inequality (B.l) to every term of the sum defining E(J'), 
one finds that 

(B.3) 

This proves the convexity of E(J) within the sphere J2 = N. 
We now consider the vector J that is parallel and in the same direction 
of J', but with the "proper" normalization J 2 = N. Clearly J = pJ' 
with p 2:: 1, since J' lies inside the hypersphere (J'2 

:::; N) . Equation 
(B.2) immediately y ields : 

E(J):::; E(J') 

Combining (B.3) and (B.4) leads to t he result : 

(B.4) 

(8.5) 

This proves the convexity of E(J ) on the surface of the sphere J 2 = N. 
At s = 1 the curvature of the potential V(.:X.) changes sign with the 
resul t that for 1 < s :::; 2 the condition (B.1) is not met. 



Appendix C 

Large a behaviour for the 
generalisation error 
corresponding with the 
repulsive potential V8+(.,\). 

We consider the class of potential functions : 

v +(>.) = { +oo ,\ < 0 
.~ _ .X' >. > 0 

s 

with s real and-=/= 0. Fors = 0, we define V/(>.) as: 

+ { +'.)() >. < 0 
V.=o(>.) = - ln >. >. > 0 

The funct ion >.0 (t , x) should fulfil the condition : 

>. - t - x>.s- l = 0 (>. > 0) 

(C.l) 

(C.2) 

(C.3) 

The solution >.0(t, x) of Eq.(C.3) exhibits t he following scaling be­
haviour: 

>.a(t, x) = x 2 : , ,\a ( t, , 1) . 
x2- , 

(C.4) 
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This scaling relation can be found by rewriting (C.3) as 

or 

1 

( 
--1... )s-2 x~ t 

1 - x ,- 2,\ = -,-
xi'=:, >. 

If we now define t he following variables : 

we obtain the equation : 

Thus, we have : 

h = 
l 

x,=; >. , 

l 

z = x-r=.t, 

h - hs-J = z . 

• t >.0(t,x) = x'hh(-1 ) . 

x~ 

(C.5) 

(C .6) 

(C.7) 

(C.8) 

(C.9) 

(C.10) 

Using the scaling relation (C.4) one can rewrite the first saddle point 
equation as : 

1 
( 

--1... )2+00 

. x 2-., j ~e- 1/2(1- n2),,2H(- Ru) 
)1 - R2 v'2?r 

-oo 
2a-)l - R2 -

[ ( ~ ) ../f=-li!J2 . h u 1 , 1 -u 1 , 

xr-; x~ 
(C.11) 

where we have introduced the new integration variable u = t/-J I - R2. 
The second saddle point equation becomes : 

0 h=~ j00

Dth[t~,1J . V 2 a 1 - R2 1 - R2 x 2- • 
-oo 

(C.12) 
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If a -+ +oo , R tends to 1 and x to 0. We will make the ansatz 
that 

A 
o:v'l - R2 

7r 
(C.13) 

B 
xl/(2- s) 

(C.14) = 
,/l-R2 

stay finite. As a result one can for, a -+ + oo, rewrite the equation 
(C.11) as: 

1 +oo dz 
- = B3 

/- H(-Bz)[h(z)-z] 2 

21r A .Ji; 
- 00 

where we have introduced the integration variable z = u/ B. 
The second saddle point equation yields : 

1 +Joo l 
r,c = B 'Dt h( B) 

v21rA . 
-oo 

Using (C.9) we can rewrite the integral in (C.15) as : 

+oo 

I _!!:!.__ H(-Bz)[h(z)J2<s-1) 
,./2rr 

-oo 

(C.15) 

(C.16) 

(C.17) 

This integral diverges for 2 > s ~ 1/ 2 and is convergent for s < 1/2. 
This can be proven in following way. 
The divergence of t he integrand occurs at z -+ +oo. Indeed, if z -+ 

+oo, than one observes by re-writ ing equation (C.9) as: 

1 - ~ = h s-2 
h ' 

(C.18) 

t hat for s < 2, h should tend to +oo in order to satisfy the above 
equation. In the limit z--+ +oo equation (C.18) leads to: 

Jim _hz = l. 
z-..+oo 

(C.19) 
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This implies that : 

lim 
z -->+oo (.:.)2(s-l) = 

h 1. (C.20) 

As a resul t the integral (C.17) wi!J converge if tbe integral 

+co 

I ~ H (-Bz)z2(s - I) 
. ,/2n 

- oo 

converges.This is the case for 2(s - 1) < -1. 

(1) s 2'. 1/ 2 

(C.21) 

Since the integral in (C.15) diverges, B should be equal to zero if we 
want to obtain a finite value for A. From t he scaling relation we obtain 

B h( ! ) = ,\(t, B2- s). 

The second saddle point equation yields: 

l +oo 
~ = j V t Ao(t, B 2- s) 

v21rA 
- 00 

Putting B = 0 one obtains 

+oo 

-
1

- - ./ Vt ,\0(t , 0). v21rA -
- oo 

(C.22) 

(C.23) 

(C.24) 

But, >-.0 (t, 0) = t for t > 0 and ,\0(t, 0) = 0 for t < 0. As a result one 
obtains that : 

1 + oo 1 
-- = j Vt t = fF,,,. -/2irA V «-n 

0 

(C.25) 
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Finally one gets the following result : 

A=a~ =l (C.26) 
7r 

(ii) s < t 

Numerical evaluation of (C.15) and (C.16) leads to t he asymptotic be­
haviour of the generalisation error . 



104 Appendix C 



Appendix D 

Replica calculation of the 
overlap S. 

T he center of mass of t he version space J cu is de.fined as : 

Jcu = ffi J'v dm(J ) J 

J J'v dm(J ) J'v dm(J') J .J' 

with 

(D.l ) 

[ dm(J ) = _l dJ b(J
2 

- N) ft e (~ sign (~)) (D.2) 

Tbe overlap S can be written as : 

with 

_l /Jav·J E) 
yq\ N ( 

Jav = r dm(J) J . .Iv 
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(D.3) 

(D.4) 

(D.5) 
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q is the typical overlap of two members of the version space and < . > l 
stands for the quenched average over t he pattern set. T he overlap S 
can be calculated by studying the following partition function using t he 
replica method: 

Z = .Iv dm(J *) j dµ(J ) exp (- /3E(J)). 

where .f dµ(J ) is denned in Appendix A. 
The replicated partition function zn can be written as : 

One observes that we have introduced two sets of replicas : 

and 

The patterns { µ are gaussian distributed : 

+oo N d( 1 
(f({ ))l = _L ]1 virr exp(- i;) !({ ). 

(D.6) 

(D.8) 

(D.9) 

(D.10) 

Using the same methods as in Appendix A leads to following expression 
for < zn >( 

/ ft dJ;8(J;.J;- N) j ft dJu,c5(Ju'·J e1, - N)exp (-o:NGr) , 
· u = 1 u'= l 

(D.11) 

wit h 

Gr = -ln +/oo+Joo IT d.>..a dxa +/ oo +/oo ft d~a dia 
· a=l 27r · a= l 27!" -oo - oo - (X) - oo 
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+oo +oo n d d +/ '?" +Jood~!y' . j j [J u;1f Va " 

-oo O a-l -oo - oo 

. exp (it XaAa + t iu>-a + iyf;) 

. exp (it Va(ua - sign(y))\) - {3 E V(>.asign(y))) 

. +Joo IT'D(; exp (-i ~d= Xala,; + f XaJ;i + iJT;)) ~D.12) 
_

00 
i=l V JV a= l a=l 

Carrying out the average over the patterns results in the introduction 
of the following order parameters : 

Ja.Jb ( ) q,.b = N Va < b = 2, ... , n , 0 .13 

Ja.T 
Va= l , ... ,n, (D.14) Ta = --

N 

i'Jab 
J; .Jb 

Va < b = 2, ... , n , (D.15) 
N 

fa = 
J;.T 

Va= 1, .. , ,n. (D.16) 
N 

The order parameters which express the overlap between Lhe two sets 
of replicas are : 

Va, b = 1, ... , n . (D.17) 

The conjugate variables are called respectively Fab,fa, Fn.b, i'a and tb. 
After introduction of the Replica Symmetry ansatz one has to use fol­
lowing transformation in order to be able to use the Hubbard-Stratonovich 
formula to linearise the terms in Xa and .ia: 

(q - R2
) x2 + 2(8 - RR)XX + (ii - k,2)X 2

) = 

~ ( 1 + a) ( J q - R2 X + J if - R.2 x) 2 

+~(1 - a) ( Jg - R2x - Jq - k,2x_ r (D.18) 
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n - n 
with X = I:: Xa and X = L Xa· 

a=l a= l 
The variable a is defined as : 

(D.19) 

Taking the limit n ---; 0 one obtains for t he free energy f per neuron : 

( 
- 1 -

- (JJ = ex.tr E + E + 2(qF + ijR) 

• "-- L 1 - -
- (RR + RR) - 2 Jn(2E + F) - 2 ln (2E + F) 

A ::.2 -

1 R2 + F l R + F 
+ + - -22E + F 22E+ F 

+oo +oo +oo d>.. 
+2a / Vy ./ Vt ln / .j? _ 

n - oo -oo ~1r(l q) 

exp (-(JV(>.. ) - 1 (>.. - yR + ~t)2) 
2 1 - q 

+ oo +oo +oo d5' 
+ 2a f Vy./ V t In / V _ 

() -oo O 21r(l - q) 

( 
1(5' - yk + ~t)2

)) 
exp - 2 1 - q (D.20) 

Comparing (D.20) with the free energy of Appendix A before taking 
t he (J -, +oo limit; and with the free energy obtained in [3] by Seung 
et al. leads to: 

- (Jf = - (Jfi - (Jh (D.21) 

wit h Ji the free energy of the Gibbs problem [3] and h the free energy 
of the generalisation problem with an arbitrary cost function E(J) (Ap­
pendix A). 

The free energy (D.21) is independent of the overlap parameter S (and 
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its conjugate S). This is not a surprise since the two sets of replicas 
have there own independend potential, thus their thermodynarnk be­
haviour should not depend on the overlap between two vectors from 
different replica sets . To determine S one should extrirnize the free 
energy with respect to Sa& and l ab before introducing the Replica Sym­
metry ansatz. After taking the n --, 0 limit one obtains the following 
equations: 

S(2E + F)(2E + F) = RR + s (D.22) 

and 

~ +oo += +oo 

S(l - q)(l -ij) = 2ay~ /Vy./ Vt j Vt' 
0 - oo -oo 

( 
~) exp (- 1g2(q, R, y, t , t' ) 

>-o(x, R, y, t) -yR + v 1 - frt ( _ ) .23) 
H g(ij, R, y, t , t' ) 

where we define the function g as : 

(
- - ') _ -yR + ~(at + v1f=a2t') 

g q,R ,y,t ,t - ~ . 
y l - q 

(D.24) 

After ejjminating S one gets : 

~ +oo +oo +oo 

S - RR = 2ay ~ j Vy j Vt j ve 
0 - oo - oo 

( 
~) exp(- 1g2(q, R, y, t, t' )) 

. >-u(x , R, Y, t) - yR + v 1 - R2t ( _ ) 
H g(ij, R, y , t , t') 

(D.25) 

with 

S- RR 
a = ----- -

Vl - R2Jq - R,2 
(D.26) 
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Note that we let /3 -; +oo and introduced x = /3(1 - q). The function 
>.o ( x, R , y, t) minimizes the expression : 

(>. - yR + vl - R2t) 2 

V(>. ) + 2x (D.27) 

Numerically solving equation (D .25) leads to S and to S, the overlap 
of the center off mass of the version space with the vector J minimizing 
t he cost function EJ). 



Appendix E 

Clipping : the replica 
calculation. 

In this appendix the overlap of a clipped perceptron with an Ising 
teacher will be calculated using the replica method. 

R = / ~ i: sign(J,J r;) . 
\ •=l ~ 

(E.l ) 

The teacher perceptron T has binary synapses and the student per­
ceptron J has been constructed by minimizing t he cost function E(J). 
The cost function E(J) is defined as : 

p 

E (J ) = L V (N' )) 
,,=l 

and the corresponding partit ion f1mction is : 

Z = J dµ( J) e- (JE(J ) . 

Using the replica approach one can write Lhe free energy as : 

-/Jf = lim lN Ln (Zn) c. 
n --.0 n <;, 

(E.2) 

(E.3) 

(E.4) 

with zn the replicated parti tion function. T he free energy defined by 
(E.4) is equal to the one defined in Appendix A. In order to be able to 
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study the properties of the clipped perceptron one can introduce t he 
following identities: 

1 = j+oo du 8 ('u - ;,., t sign(Ji) ~i) 
- oo v N ' "" 1 

(E.5) 

+ oo + oo d d ( ( 1 N ) ) j j ~1r v exp iv u - ../JV; sign(Ji) ~i . (E.6) 
- oo - oo 

This calculation is very similar to the one presented in Appendix A. 
Therefore , we wi ll only discus the points where it is significantly differs 
from the one presented in Appendix A. 
The integral in which one averages over the gaussian distributed exam­
ple patterns yields : 

N +oo ( · ( n " ) ) IT j 'D~j exp - ~~J L Xa J;" + L. Va sign(J;°) + y T; (E.7) 
1=1 _ 00 Y fv a= l a = l 

Calculation of this simple gaussian integral leads, besides the usual Qab 

and r a , to the introduction of the following order parameters : 

f.. sign(J{). sign(Jn 
Qab = i =l N , (E.8) 

f a 
t sign(J{) . sign(T;) 
i= 1 N . 

(E.9) 

One also has to introduce parameters which express the overlap between 
the replicated student vectors Ja and the clipped vectors sign(J") . 

2- t1Jtl 
Ni= l 

(E.10) 

Pab = ! t Jf sign( Jn 
i=l 

(E.11 ) 

Introduction of the Replica Symmetry ansatz and taking the limit n -> 

0 leads to t he saddle point equations : 

(E.12) 
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The saddle point equations determining R , Q , P and p are : 

+oo 

R = j 'Dz (sign( J )) , (E.13) 
- oo 

+oo 

Q = j 'Dz ((sign(J) ))2, (E. 14) 
- 00 

+oo 
p j 'Dz (J ) (sign (J)) , (E.15) 

- oo 

+ oo 

p = j vz (I J I) , (E.16) 
- oo 

where we have used < f(J) > for : 

7'° dJ J (J) exp (-!(2E + F) J 2 + (R + v'Fz)J) 
(J(J)) = - 00 + , (E.17) r dJ exp (-H2E + F)J2 + (R + v'Fz)J) 

- 00 

with E ,F and R as defined in Appendix A. The equations (E.13) and 
(E.14) can be easily calculated : 

R = +foovz (H(- R+~ z) - H(R +~ z)) 
. Jl-q ~ 

- oo 

(E.18) 

Q = +J oo 'Dz (H (-R+ ~ z)-H (R + ~ z)) 2 

J1=q Jr=q 
-oo 

(E.19) 

As explained in Appendix A we take the /3 -+ +oo limit in order to 
obtain the ground state energy. If the minimum of the cost function is 
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unique and non-degenerate q should tend to 1. To carry out this limit 
one should split the integration interval of different parts: 

- ~ ( ) R = j V z H R + ,fii=--Ifiz 
yl-q 

- 00 

R 

+ +foo V z H ( R + v<i=--Ifiz ) - - ..;f.-n2 Vz H (R + ~ z ) 
. yT=q . yT=q 

R - oo 
- ,/q- R2 

+Joo V z H (R + ~ z ) 
~ R 

- ,/q- R2 

(E.20) 

Taking the limit q-----, 1 and using that H (+oo) = 0 and H(- oo) = 1 
one gets: 

n 
+oo - ~ 

R= f V z- f V z. (E.21) 
R 

- Vq - R2 
-oo 

FinalJy, we obtain: 

(E.22) 

(E.23) 

In an analog way we obtain for q -----, 1 that Q will tend to l. For the 
orderparameters p and P we obtain : 

( 
R ) J2(1 - R

2
) ( 1 R2 ) P ~ p ~ R ecf ,/ + . ,/ii exp - - ~ R

2 
E.24) 

2(1 - R.2) 7r 2 1 -
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The result (E.23) has been obtained for a teacher T with Ising synapses. 
In [38] and [39] one also considers different types of teachers. It is easy 
to generalise the expression (E.23) for a general teacher. One obtains : 

+oo +oo 

R = j 'Dz j dµ(T) T (sign(J)), (E.25) 
- oo - oo 

with 

J'?° dJ J(J) exp (-H2E + F)J2 +(RT+ v'Ji'z)J) 
(J(J)) = - oo +oo _ . (E.26) 

J dJ exp (-t(2E + F)J2 +(RT+ llz)J) 
- oo 

This leads to : 
+oo +oo 

R = j 'Dz j dµ(T) T (H ( RT+~z) -R (RT +~z)). 
v'J-q .y'T=q 

- oo - oo 

Letting q go to 1 gives : 

+oo ( RT ) R = j d1-t(T) T erf V 
_

00 
2(1 - R2 ) 

The components of a generic teacher are distributed as: 

dµ(T) = dTexp (- !T2). 
·./2ir 

Plugging (E.29) in (E.28), leads to: 

11 = ~R V 7r 

By using RHebb(a.) one recovers the result from [3]. 
For an easy (or diluted) teacher one has : 

(E.28) 

(E.29) 

(E.30) 

dJ.t(T) = dT [ (1 - Po) 6(T) + ~o ( 6(T + ~) + 6(T ~)) JE.31 ) 

(E.27) 
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The corresponding R yields: 

R = Po erf . - ( 1 R ) 
vPci vPo J2(1 - R2) 

(E.32) 



N eder landstalige 
samenvatting. 

Artificiele neurale netwerken 

Alhoewel de meeste van de taken die we elke dag opnieuw vervullen een­
voudig lijken, is het zeer moeilijk om robotten te ontwerpen die deze 
taken even vlug en precies kunnen uitvoeren. Daarom lijkt het inter­
essant om de menselijke hersenen te beschrijven of ze1fs na te bouwen. 
De zogenaamde artificiele neurale netwerken zijn een poging daartoe. 
Deze netwerken bestaan uit onderling verbonden eenvoudige elernenten 
die we neuronen zullen noemen omdat ze gemodelleerd zijn naar de 
typische werking van de zenuwcellen in de hersenen. 

Fig.(N.1): De aktiviteit van een artificieel neuron wordt 
berekend door al de inkomende aktiviteit.en op te t ellen 
en dan gebruik te maken van de transferfunktie g. 
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De neuronen, die gekenmerkt warden door een bepaalde aktiviteit, zijn 
onderling verbonden door middel van konnekties met een welbepaalde 
sterkte. De akti viteiL van een welbepaald neuron wordt berekend door 
de aktiviteiten van de verbonden neuronen met de korresponderende 
sterkte van de konnektie te vermenigvuldigen en dan op te tellen. Met 
het bebulp van de tranferfunctie g wordt deze som dan omgezet in de 
aktiviteit van het neuron. 
Het eenvoudigste neurale netwerk is het perceptron. Dit bestaat uit een 
laag van N neuronen die alle verbonden zijn met het uitgangsneuron. 
Deze architectuur is voorgesteld in de volgende tekening. 

Si °' S2 °' S3 0-

SN-IC)/ 

SN if 

Jl 

12 

,,~ l so 
JN-1 

Fig.(N.2): Een perceptron met N input neuronen S; ver­
bonden met de output So via de konnekties J;. 

Het verband tussen de aktivteit van het u.itgangsneuron en de ak­
tiviteiten van de N ingangsneuronen wordt gegeven door de volgende 
uitdrukking: 

(N.1) 

De aktiviteit van het i-de neuron is gekarakteriseerd door S; en de 
sterkte van de korresponderende konnektie is gegeven door J;. In deze 



N ederlandstalige samenvatting 119 

thesis wordt de drempeltransferfunctie g(x) = s ign(x) beschouwd. 
Om meer inzicht t e krijgen in het leermechanisme kunnen we een zeer 
eenvoudig scenario onderzoeken, namelijk dat van een leerling percep­
tron dat informatie krijgt van een leraa.r perceptron. Konkreet betekent 
dit <lat we op basis van de klassificatie van P willekeurig geselecteerde 
voorbeelden e (gegenereerd door de leraar) , een leerling willen kon­
strueren die niet alleen alle voorbeelden op de juiste manier klasseert, 
maar ook op een willekeurige ander voorbeeld zo frequent rnogelijk het­
zelfde antwoord als de leraar geeft. 

Formeler kan het leerling-leraar scenario als volgt. warden gedenn ieerd: 

• De leraar is gekarakteriseerd door de op N genormeerde vector 
T. 

• De leraar T genereert de klassificatie van P willekeurig gese­
lecteerde voorbeelden e1

• ; 

\:/µ = l , ... ,P. (N.2) 

• Op basis van de bovenstaande informatie wi llen we een leer­
lingsperceptron J (met J2 = N) konstrueren dat de klassifikatie 
van patronen e door de leraar zo goed mogelijk reproduceert. 

De performantie van de leerling J wordt gekarakteriseerd door de zo­
gena.amde generalisatiefout c, gedefinieerd als de kans dat leerling en 
leraar bet oneens zijn over de klassifikatie van een willekeurig gekozen 
vector S. De generalisatiefout is gegeven door de volgende eenvoudige 
uitdrukking : 

1 
c(J ) = - arccos(R) , 

1f 

waarbij R de overlap is tussen de vectoren J en T: 

R = J.T 
N . 

(N.3) 

(N.4) 
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Deze uitdrukking kan zeer eenvoudig worden afge]eid. De vectoren J 
en T liggen op het oppervlak van een N dimensionale sfeer. Als we nu 
enkel het J - T vlak tekenen zien we onmiddellijk <lat leerling en leraar 
het oneens zullen zijn over de klassifikatie van een nieuw patroon als de 
projectie van dat patroon in het gearceerde deel van de tekening ligt . 
Dit heeft tot gevolg dat: 

c:(J ) = 
2f) 

2rr 

1 (T.J) = ;arccos N . 

Fig. (N.3): Leraar en leerling zullen het niet eens zijn over 
de klassifikatie van een nieuw patroon S, als de projektie 
in het J - T vlak in het gearceerde gebied ligt. 

(N.5) 

(N.6) 
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Theoretische beschrijving 

Een van de meest gebruikte methodes om een leer ling te selecteren is het 
minimaliseren van een passende kost funktie E(.J). Als het minimum 
van de kost funkt ie uniek is kunnen we het construeren door gebruik te 
maken van de eenvoudige "gradient descent'; t,ecbniek. 
In deze thesis beperken we ons tot kost functies van de gedaante : 

p 

E(J) = L V(N' ), (N.7) 
µ.= l 

met >.µ gedefinieerd als : 

J.~µ (T.1:/) 
>.µ = IN" sign IN . (N.8) 

Merk op dat de classificatie van het µ-de leervoorbeeld door de leerling 
J korrekt is als >. 11 > 0. 
Om nu de generalisatiefout c te berekenen voor een willekeurige kost­
functie met een uniek minimum kunnen we gebruik maken van de tech­
nieken ontwikkelt in de statist ische mechanika ter beschrijving van spin­
glazen. Met de kostfunctie E(.J) kunnen we volgende partitiefunctie 
definieren: 

+oo 
z = .f dJ 8(J 2 - N) cf:JE(J ) _ (N.9) 

-DO 

In de thermodynamische limiet , waarbij N -> +oo en P -> +oo met, 
a = P / N vast, kan de vrije energie per neuron geschreven worden als : 

(N.10) 

waarbij (\ staat voor het gemidde)de over de patronen. Gebruik mak­
end van de replica methode vinden we voor de vrije energie: 

/
·T= D (1 - R2 - = extr ---

. x,R 2x 

+ oo +oo [ ),. "] 
- 2n / vt, / vt2 mJn V(>. ) + ( ;1;l )- ) 

- oo 0 

(N.11 ) 
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met 

(N.12) 

R(a) kan bepaaJd worden door de vrije energie af te leiden naar Ren 
x . Dit levert volgende vergelijkingen op: 

R (N.13) 

De functie >-o(l, x) is gedefinieerd door de volgende uitdrukking: 

d (' (.>--t)2) 
d.>- _V (-\) + 2x = O. (N.15) 

Uit de vergelijkingen (N.13) en (N. 14) kan de generalisatiefout voor een 
willekeurige kos tfunctie E(J) berekend worden voor elke waarde van a 
door R(a) te substi tueren in de uitdrukking (N.3). 

Resultaten voor een klasse van repulsieve 
potentialen. 

De "version space" is gedefinieerd aJs de verzameling op N genormeerde 
vektoren J die de leervoorbeelden e, korrekt klassi.ficeren. Volgens de 
Bayes leerregel moet de klassifikatie van een nieuw patroon bepaald 
worden door de meerderheid van de perceptronvektoren die deel uit­
rnaken van de version space. Dus, als er 10 vektoren in de version 
space liggen en 6 daarvan klassificeren dat nieuwe patroon als + 1 clan 
zegt de Bayes regel dat we dat patroon als + l moeten klassificeren. 
·w atkin toonde aan dat de Bayes Jeerregel kan gerepresenteerd worden 
door een perceptron waarbij de konnekties gekarakteriseerd zijn door 
de massamiddelpuntsvector van de "version space" . P. Reimann toonde 
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aan dat, als we enkel gebruik maken van de informatie vervat in de 
klassificatie van de P patronen door de leraar, deze vector de kleinst 
mogelijke hoek maakt met het leraarsperceptron T en bijgevolg geken­
merkt wordt door de laagst mogelijke genera]jsatiefout c: . 
Geinspireerd door dit resultaat kan men nu op zoek gaan naar een 
kost functie E(J) die bet mogelijk maakt om een leerlingvector te kon­
strueren die zeer dicht bij de Bayes vektor Jigt. We beschouwen daartoe 
een klasse van kost funkLies gedefinieerd door de potentiaaJ : 

v +(>.) = { +oo .X < 0 
8 - ~ >. > 0 

s 

(N.16) 

met de parameters reeel en kleiner dan - 2. Voor s = 0 definieren we 
V/(>-) als volgt: 

V (),) 

Fig.(N.4): 
0.25. 

- 1 

(N .17) 

0 2 3 4 
t. 

De potentiaal (N .16) voor s = - l.O and s = 
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De potentiaal V;,+(>.) is gelijk aan + oo voor negatieve waarden van .\. 
Bijgevolg hebben enkel vectoren die gelegen zijn in de version space een 
eindige waarde van E. Voor ,\ > 0 nemen we een monotoon dalen.de 
fonktie. Aangezien de randen van de version space bepaald worden 
door de vlakken ,\µ = 0 betekent <lit dat we leerlingperceptronen. die te 
dicht bij de r1;tnd van de version space liggen gaan bestraffen. Men kan 
aantonen (Appendix B) dat de kostfuncties gedefinieerd door boven­
staande repulsieve potentialen een uniek minimum hebben voor s :S: 1. 

Als we nu gebruik maken van het formalisme uit de vorige sectie kun­
nen we de generalisatie fout c: (cx) gaan berekenen voor elke waarde van 
s . Analyse van de numerieke resultaten leidt tot het besluit dat er een 
optimale waarde voor s bestaat. Inderdaad, de generalisatie fout t: die 
we bekomen met de parameter Sopt = - 1.35 is voor alle wa.arde van a , 
kleiner clan die voor de andere s waarden. 

0.5 

0 .4 

0.3 
E(a) 

0.2 

0.1 

0 
0 2 4 6 8 1 0 

a 

Fig.(N.5): Analytische resultaten voor de Bayes leerregel 
( voile lijn) en voor de potentiaal v.+ ( ,\) met s = -1.35 
(stre,,eplijn) sarnen met simulatieresultaten voor een sys­
teem van 50 neurouen. 
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Als we nu de generalisatie fout bekomen door het gebruik van deze 
optimale repulsieve potentiaal vergelijken met de generalisatiefout van 
de Bayes leerregel zien we <lat op de schaal van de tekeniog de resul­
taten bijna niet te onderscheiden zijn ( ze verschillen voor elke waarde 
van a minder dan 1%). Op de tekening zijn ook de resultaten van een 
computersimulatie te zien voor een systeem van 50 neuronen. We zien 
dat de simulatieresultaten zeer goed overeenkomen met de numeriek 
berekende generalisatiefout. 

Het belangrijke aan dit resultaat is <lat we nu een praktisch algoritme 
Lebben om een leerling perceptron te konstrueren die bijna even goed 
generaliseert als de Bayes leerregel. 

0.9998 

0 .9997 

s 

0.9995 

0 2 4 6 8 10 
u 

Fig.(N.6): Overlap S tussen de vektor J die de optimale 
repulsieve potentiaal min imaliseert en het rnassamid­
delpunt van de version space . 

We kunnen de overlap S tussen een vektor J E die een zekere kostfunctie 
E minimaliseert en het massamiddelpunt van de version space gaan 
berekenen. I-let massamiddelpunt van de version space kan op volgende 
manier worden gedefinieerd: 

JcM = vfii Iv dm(J)J , 
/Iv dm(J) J;i dm(J1)J.J1 

(N.18) 
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met 

.fvdm(J) = _:L
00

dJ b(J
2 

- N) ]1 B (~ sign (~ )). (N.19) 

De overlap S wordt dan: 

(N.20) 

Voor de repulsieve potentiaal met Sopt = - 1.35 is het resultaat voorgesteld 
in de voorgaande figuur. 'Ne zien <lat voor elke waarde van o: deze vek­
tor extreem dicht bij het massamiddelpunt JcM ligt. 

Leraars met binaire koppelingen 

Tot nu toe hebben we enkel leraars beschouwd met kontinue koppelin­
gen T, . We willen nu echter het leerling-leraar scenario bestuderen voor 
het geval van een Ising Jeraar. DiL wil zeggen dat de komponenten van 
de leraar binair zijn, i.e. 

'Ii= ± 1 Vi = 1, . . . , N. (N.21) 

Om een student te konstrueren kan natuurlijk terug de kostfunctie ge­
bruikt worden die voor een leraar met kontinue koppe]ingen bijna opti­
male resultaten geeft. Rekening houdend met de extra informatie dat 
de koppelingen van de leraar binair zijn kan men zich echter de vraag 
stellen of er niet een nog lagere generalisatie fout kan bereikt worden. 
Een van de strategieen die men kan volgen is een arbitraire Jeerregel ge­
bruike11 om een leerling J met kontinue koppelingen te konstrueren en 
de korn ponenten van die vector te vervangen door ± 1 naargelang hun 
teken. In het Engels wordt deze strategie "clippen" genoemd. Hier 
zullen we deze techniek "knippen" noemen. 

De komponenten van een algemeen getransformeerde vektor J zijn 
gedefinieerd als volgt: 

v1N f(J,) 
N 

Z f (Ji) 2 

j = 1 

(N.22) 
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\A/e veronderstellen dat de funkt ie f oneven is. Het knippen van de 
vektor J is een speciaal geval van bovenstaande trru1sformatie waarbij 
J(x) = sign(x). 
We zullen nu aantonen <lat de overlap R tussen de getransformeerde 
leerling j en de leraar T een eenvoudige funktie is van de overlap R 
t ussen de vector J en T. De overlap .R wordt gegeven door : 

R = (N.23) 

(N .24) 

N 

/ 1/N Z: J(JiT;) ) 

- \ J1/N }J'(J;'I',) < 

(N.25) 

Gebruik makend van de wet van de grote getallen kunnen de somrnen 
geschreven worden als integralen: 

1 N - L J(t;) = U(t)) 
N i = l 

+ oo 

= j dl P(t) f (t) 
- 00 

met P (t ) de kansverdeling van de v,u-iabele t, = ), 'I'; . 
P (t ) is gegeven door: 

ex (- .!. (l - R)2 ) 
P(t ) = p 2 1- R2 

j 2n(l - R2) 

Dit reduceert de uitdrukking voor R tot : 

R = U(t)) 
j (J2(t)). 

(N.26) 

(N.27) 

(N.28) 

(N.29) 
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Als we nu de functie : 

J(t) = sign(t) 

substit ueren in de uitdrukking voor R geeft <lit als resultaat: 

ii ~ e,f (;2(1 ~ R'J 
met erf(t) de error funktie. 
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0 0.2 0.4 0.6 0.8 

A 
Fig. (N. 7): De overlap R van de geknipte leerling j met 

de Ising leraar (voile Jijn) sarnen met de originele overlap 
R (streeplijn). 

(N.30) 

(N.31) 

Uit de figuur is duidelijk dat knippen de overlap enkel vergroot als de 
oorspronkelijke overlap R groter is dan 0.78. We kunnen ons dan ook 
afvragen of we geen betere keuze kunnen maken voor de funktie f. 
We kunnen bijvoorbeeld enkeJ de grootste komµon enten van de vektor 
J gaan knippen. 
Dit wordt bereikt door volgende functie f te gebruiken: 

f (x) = { sign(x) Ix/ > /'i, 

x//'i, /x/<r;, (N.32) 
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met ;;, een positieve parameter. 
Dit leidt tot volgende uitdrukking voor R: 

+t< 
H (;;~~2)- H (_;;~~2) + f dt P(t) (t/;;,) 

R = _,. 

H C,;~~2) + H C,;~~2 ) + f dt P(t) (t/;;,)2 

(N.33) 
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Fig. (N.8): De overlap R* van de optimaal geiransformeerde 
vektor samen met het resultaat voor het gedeeltelijk 
geknipte vektor met r; = r;, * (streeplijn) samen met de 
R = R rechte. 

De optimale transform atie f* kan bekomen worden door R te varieren 
naar f: 

8 R= o. (N.34) 

Dit levert volgend resultaat op voor de optimale functie f*(l) : 

f*(t) = tanh (i}: R2 t) (N.35) 
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De bijbehorende waarde voor R is : 

+oo 

R* = j dt P(t) tanh C _RR2 t) (N.36) 
- oo 

Dit resultaat is voorgesteld in de vorige figuur sarnen met bet resultaat 
voor gedeeltelijk knippen (met optimale waarde voor r;,). 
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