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Samenvatting

Voor een commutatieve algebra A die eindig voortgebracht is over een lichaam
k, werd het affiene schema SpecA gedefinieerd. Met een eindig voortgebrachte
commutatieve gegradeerde algebra A = k +A1 +A2 + . . ., associeert men een
projectief schema ProjA. In beide gevallen, werd ringtheorie gebruikt om de
meetkundige structuur van deze schemas te beschrijven en omgekeerd, door
gebruik te maken van onder andere het fundamentele artikel van Serre [33],
kunnen we de meetkundige structuur gebruiken om iets te zeggen over de alge-
bras. Men kan dit beschouwen als een reden om te proberen een meetkundig
object te associëren met een niet-commutatieve gegradeerde algebra, dat ons
meer kan vertellen over de algebra zelf en vice versa.

In dit werk, beschouwen we de niet-commutatieve gegradeerde algebras die
regulier zijn in de zin van Artin en Schelter. In het bijzonder diegene die
globale dimensie 3 hebben. Zij k een algebräısch gesloten lichaam en A =
k + A1 + A2 + . . . zo een drie dimensionale Artin-Schelter reguliere algebra,
voortgebracht in graad één.

Artin, Tate en Van den Bergh associeerden in hun artikel [6] de volgende
meetkundige data met A: een projectief schema E, een automorfisme σ van
E en een inverteerbare schoof L op E. Zij zochten ook naar een weg terug
en definieerden een algebra B, die isomorf is met A in het geval A lineair is,
en met A/gA als A elliptisch is, waar g een regulier normaliserend element is
van graad 3 of 4. Sinds het artikel [8], noemen we B de getwiste homogene
coördinatenring van A en in dat artikel voorzagen Artin en Van den Bergh ons
van een weg terug van de meetkundige gegevens naar de algebra zelf.

Dit mooie samenspel tussen ringtheoretische aspecten en niet-commutatieve
meetkunde is weergegeven in Hoofdstuk 1. We gebruiken het in Hoofdstuk 2
om een beschrijving te geven van de categorie van de eindig voortgebrachte
gegradeerde A-modulen van Gelfand-Kirillov dimensie één (modulo de eindig
dimensionale over k). We vinden deze beschrijving door het belangrijkste re-

i



ii Samenvatting

sultaat van Hoofdstuk 2 te gebruiken in het geval A de categorie is van de
gegradeerde rechtse A-modulen (modulo de torsiemodulen).

Voor het bewijs van Stelling 2.0.1, gebruiken we een resultaat van Gabriel
(zie Stelling 2.1.1) en dit impliceert dat we enkele algemeenheden over pseu-
docompacte ringen nodig hebben. Omdat sommige lezers van dit werk, bang
zouden kunnen worden bij de confrontatie met topologische ringen, hebben we
Sectie 2.1-2.3 aan hen gewijd. Het blijkt dat voor een pseudocompact moduul
M over een pseudocompacte ring A, behoorlijk wat eigenschappen geldig zijn
in de categorie PC(A) van pseudocompacte modulen over A, als en slechts als
ze geldig zijn in Mod(A), met of zonder bijkomende hypothesen. Bijvoorbeeld,
M ∈ PC(A) is simpel, resp. noethers in PC(A) als en slechts als het simpel,
resp. noethers is in Mod(A). Voor verdere informatie aangaande PC(A) en
de connectie met Mod(A), verwijzen we naar Sectie 2.1. Om zich nog beter te
voelen bij het werken met pseudocompacte ringen A, voorzien we de lezer van
een matrixvoorstelling voor zo een ringen. Als (ei)i∈I een sommeerbare verza-
meling is van orthogonale idempotenten in A zodat

∑
ei = 1 en we stellen dat

Aij = eiAej, dan geldt, met een kleine hypothese, dat A =
∏

i,j Aij als topolo-
gische ruimten. We kunnen hetzelfde doen voor een pseudocompact A-moduul
M , i.e. stel Mi = eiM , dan is M =

∏
iMi als topologische ruimten. Dit werk

werd gedaan in Sectie 2.2.
Nu, zonder het resultaat van Gabriel, kunnen we de categorie Cf die we

willen beschrijven, reeds schrijven als ⊕z∈E/<τ>Cf,z, met Cf,z een zekere volle
deelcategorie van Cf . Gabriel zorgt ervoor dat we precies weten wat Cf,z is.
Meer bepaald, er volgt uit Stelling 2.1.1 dat de duale categorie van Cf,z equiva-
lent is met de categorie van linkse pseudocompacte modulen met eindige lengte
over een ring Cz. Dus als we de vorm van Cz kennen, zijn we klaar.

Van de ring Cz kunnen we bewijzen (zie Sectie 2.6) dat hij voldoet aan de
hypothesen (A) en (B) van Sectie 2.4. Het is om die reden dat we in die laat-
ste sectie de pseudocompacte ringen classificeren die voldoen aan (A) en (B).
Hieruit volgt dan dat Cz kan voorgesteld worden door een matrix, waarvan de
vorm afhankelijk is van de kardinaliteit van de τ -orbit Oτ (z) van z. In het geval
dat |Oτ (z)| =∞, wordt Cz gegeven door de ZZ×ZZ beneden-driehoeksmatrices
met coëfficiënten in een lokale pseudocompacte ring R. We vonden dat R iso-
morf is met k[[x]]. Als |Oτ (z)| <∞, dan maakt de matrixvoorstelling van Cz
ook gebruik van een lokale pseudocompacte ring R maar hier was het moeilijker
om de vorm van R te bepalen. Dit probleem werd opgelost in Sectie 2.5. Dus
zijn we klaar met de beschrijving van Cf , de categorie waarin we geinteresseerd
waren en dit beeindigt ook het tweede hoofdstuk.
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In Hoofdstuk 3, gaan we verder met de studie van drie dimensionale Artin-
Schelter reguliere algebras, in het bijzonder diegene die 3 generatoren hebben
van graad één en eindig zijn over hun centrum. Deze keer gebruiken we het
samenspel tussen ringtheoretische aspecten en niet-commutatieve meetkunde,
in tegenstelling tot het voorgaande hoofdstuk, om iets te besluiten over de
meetkunde, meer bepaald, over het centrum van het projectieve schema ProjA.

Zij A dus een drie dimensionale 3 generator Artin-Schelter reguliere algebra
die eindig is over zijn centrum R. Zij X de klassieke Proj van R en stelO∆ = Ã.
O∆ is een schoof van OX-algebras, waarvan we het centrum noteren door Z.
Grothendieck voorzag ons van een constructie van een projectief schema Z,
waarvan de structuurschoof precies Z is. Dit projectief schema noemen we het
centrum van ProjA en we vermoeden dat Z ∼= IP2.

Dit was reeds bewezen door Artin in het geval dat E glad is [3] en door Izusu
Mori [25] in het geval dat E bestaat uit drie verschillende lijnen. Alhoewel we
dit vermoeden niet in het algemeen kunnen bewijzen, zullen we aantonen dat
het waar is als k een algebräısch gesloten lichaam is van karakteristiek 0.

Onze manier om het vermoeden te bewijzen in dit geval, is zeer verschil-
lend van de benaderingen van Artin en Mori. Artin maakt gebruik van de
meetkunde van lijn en “vette” puntmodulen over A, terwijl Mori expliciete
berekeningen gebruikt. Onze strategie start met het ontwikkelen van de eerste
beginselen van een intersectietheorie voor O∆.

We moeten erop wijzen dat in [21], [26] alternatieve intersectietheorieën
ontwikkeld werden voor niet-commutatieve ringen. Al die theorieën zijn vanzelf-
sprekend equivalent (op de doorsnede van hun definitiedomeinen) maar ver-
talingen tussen hen zijn soms moeilijk. Daarom prefereren we een eigen defini-
tie te hanteren die sterker verbonden is met de theorie van orders.

We willen een intersectietheorie voor O∆ ontwikkelen omdat we de zelf-
intersectie van het dualiserende moduul ωZ van Z willen berekenen, in het geval
dat A elliptisch is. Merk op dat, als A lineair is, Z = E zodat we klaar zijn in
dit geval. Stel J := (gA)̃. Door een resultaat van Yekutieli [41], volgt dat het
dualiserende moduul ω∆ van O∆ gelijk is aan J . Omdat we zullen bewijzen
dat O∆ een maximaal order is, volgt hieruit dat J s = O∆ ⊗OZ ωZ , waar s de
PI-graad is van O∆. Door gebruik te maken van onze intersectietheorie, volgt
dat de zelf-intersectie van ωZ gelijk is aan 9.

Aan de andere kant, omdat J −1 ampel is en in karakteristiek 0, OZ een
directe sommant is van O∆, hebben we dat ω−1

Z ampel is op Z. Samen met
het feit dat Z glad is, bepaalt dit de mogelijke vormen van het oppervlak Z.
We beeindigen dit hoofstuk door te kijken naar de zelf-intersecties van deze
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mogelijkheden waaruit we kunnen besluiten dat Z ∼= IP2.

In het laatste hoofdstuk van dit werk, keren we terug naar de ringen R die
we nodig hadden voor de beschrijving van de categorie Cf van Hoofdstuk 2.
Meer bepaald beschouwen we ringen van de vorm C = k〈〈x, y〉〉/(ψ), waar ψ
alleen termen heeft van totale graad ≥ 2 en k een lichaam is van karakteristiek
p. We vermoeden dat hun centrum Z(C) ofwel triviaal is, ofwel een ring van
formele machtreeksen in twee variabelen z en w. We geloven ook dat als het
kwadratische deel van ψ van de vorm yx− xy is en p > 0, de generatoren van
Z(C) de volgende vorm hebben: z = xp

n
+ ϕ(x), w = yp

n
+ θ(x, y) voor een

zekere n > 0 en waar ϕ en θ ofwel triviaal zijn, ofwel alleen termen bevatten
in x, y van totale graad > pn.

We bewijzen dit vermoeden in het geval C een Ore extensie B[[y;σ, δ]]
is, met B = k[[x]], σ een k-lineair automorfisme van B en δ een k-lineaire
σ-derivatie van B. De gevallen waarin het centrum van C niet-triviaal is, zijn:

• σ = id, p > 0.

• δ = 0, σ 6= id, orde(σ) <∞.

• δ 6= 0, σ 6= id, orde(σ) <∞.

In het eerste geval, kunnen we z = xp nemen en w = yp − cp(x)y, waar
cp(x) het speciale element van B is gedefinieerd in Sectie 4.1. Als de x-adic
valuatie v(δ(x)) van δ(x) ≥ 3 is, dan is v(cp(x)) > p − 1 waaruit het tweede
deel van het vermoeden volgt in dit geval.

Als δ = 0, σ niet-triviaal is en eindige orde n heeft, bekomen we dat
z = xσ(x) . . . σn−1(x) ∈ B en w = yn. Onder de hypothesen van het tweede
deel van het vermoeden, bewijzen we dat z van de vorm xn+ hogere orde
termen is en n = pm, voor een zekere m.

In het laatste geval, duikt hetzelfde element z van B op als in het voor-
gaande geval. Van w kunnen we enkel bewijzen dat het de vorm heeft, vereist
door het vermoeden, maar we kunnen er geen mooie uitdrukking voor geven.

In de laatste sectie van dit werk, voorzien we de lezer van een nieuw bewijs
van een resultaat van G. Baron en A. Schinzel. We hebben dit gevonden omdat
we dit resultaat oorspronkelijk gebruikten toen we bewezen in het geval dat σ
triviaal is en p > 0, dat w = yp−cp(x)y ∈ Z(C). Later gebruikten we hiervoor
een andere manier en die leidde ook tot het nieuwe bewijs. Waar het bewijs
van [12] nogal technisch is, is het onze rechttoe rechtaan en het is gebasseerd
op algemene berekeningen met derivaties.
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Introduction

For a commutative algebra A which is finitely generated over a field k, the
affine scheme SpecA was defined. To a finitely generated commutative graded
algebra A = k + A1 + A2 + . . ., one associates a projective scheme ProjA. In
both cases, ringtheory was used te describe the geometric structure of these
schemes and vice versa, using amongst other things the fundamental paper
of Serre [33], we can use the geometric structure to say something about the
algebras. One could consider this as a reason to try to associate to a non-
commutative graded algebra, a geometrical object, which can tell us more
about the algebra itself and vice versa.

In this work, we consider the non-commutative graded algebras which are
regular in the sense of Artin and Schelter. In particular those who have global
dimension 3. Assume that k is an algebraically closed field. Let A = k+A1 +
A2 + . . ., be such a three dimensional Artin-Schelter regular algebra, generated
in degree one.

Artin, Tate and Van den Bergh associated in their paper [6] the following
geometric data to A: a projective scheme E, an automorphism σ of E and an
invertible sheaf L on E. They were also looking for a way back and defined an
algebra B, which is isomorphic to A in the case A is linear, and to A/gA when
A is elliptic, where g is a regular normalizing element of degree 3 or 4. Since
the paper [8], we call B the twisted homogeneous coordinate ring of A and in
this paper Artin and Van den Bergh provided us with the way back from the
geometric data to the algebra itself.

This nice interplay between ringtheoretical aspects and non-commutative
geometry is presented in Chapter 1. We use it in Chapter 2 to give a descrip-
tion of the category of finitely generated graded A-modules of Gelfand-Kirillov
dimension one (modulo those of finite dimension over k). We find this descrip-
tion, using the main result of Chapter 2 in the case A is the category of graded
right A-modules (modulo torsion modules).
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2 Introduction

For the proof of Theorem 2.0.1, we use a result of Gabriel (see Theo-
rem 2.1.1) and this involves generalities on pseudocompact rings. Since some
of the readers of this work, might feel frightened when confronted with topo-
logical rings, we dedicated Section 2.1-2.3 to them. It turns out that for a
pseudocompact module M over a pseudocompact ring A, quite some prop-
erties hold in the category PC(A) of pseudocompact modules over A, if and
only if they hold in Mod(A), with or without some additional hypotheses. For
instance, M ∈ PC(A) is simple, resp. noetherian in PC(A) if and only if it is
simple, resp. noetherian in Mod(A). For further information on PC(A) and its
connection with Mod(A), we refer to Section 2.1. To even feel more comfort-
able when working with pseudocompact rings A, we provide the reader with a
matrix representation for such rings. If we assume that (ei)i∈I is a summable
set of orthogonal idempotents in A such that

∑
ei = 1 and put Aij = eiAej,

then under some minor hypotheses, A =
∏

i,j Aij as topological spaces. The
same can be done for a pseudocompact A-module M , i.e. put Mi = eiM , then
M =

∏
iMi as topological spaces. This work is done in Section 2.2.

Now, without the result of Gabriel, we are able already to write the cate-
gory Cf , which we want to describe, as ⊕z∈E/<τ>Cf,z, where Cf,z is some full
subcategory of Cf . Further Gabriel sees to it that we know exactly what Cf,z
is. That is, from Theorem 2.1.1 it follows that the dual category of Cf,z is
equivalent to the category of left pseudocompact modules of finite length over
a ring Cz. So if we know the form of Cz, we are through.

For the ring Cz, we can prove (see Section 2.6) that it satisfies the hy-
potheses (A) and (B) of Section 2.4. For this reason, we classify in this last
section, pseudocompact rings satisfying (A) and (B). It follows that Cz can be
represented by a matrix, whose form depends on the cardinality of the τ -orbit
Oτ (z) of z. In the case that |Oτ (z)| = ∞, Cz is given by the ZZ × ZZ lower
triangular matrices with entries in a local pseudocompact ring R. We found
that R is isomorphic to k[[x]]. If |Oτ (z)| <∞, the matrix representation of Cz
also involves a local pseudocompact ring R but here it was harder to deduce
the form of R. This problem is solved in Section 2.5. So we are finished with
the description of Cf , the category we were interested in and also with our
second chapter.

In Chapter 3, we continue with the study of three dimensional Artin-
Schelter regular algebras, in particular those who have 3 generators of degree
one and are finite over their center. This time, we use the interplay between
ringtheoretical aspects and non-commutative geometry, in contrast with the
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previous chapter, to decide something on the geometry, to be more precise, on
the center of the projective scheme ProjA.

So let A be a three dimensional three generator Artin-Schelter regular al-
gebra which is finite over its center R. Let X be the classical Proj of R
and put O∆ = Ã. O∆ is a sheaf of OX-algebras, whose center we denote by
Z. Grothendieck provided us with the construction of a projective scheme
Z, whose structure sheaf is precisely Z. This projective scheme is called the
center of ProjA and we conjecture that Z ∼= IP2.

This was already proved by Artin in the case that E is smooth [3] and by
Izusu Mori [25] in the case that E consists of three distinct lines. Although
we are not able to prove the conjecture in general, we will show that it holds
if k is an algebraically closed field of characteristic 0.

Our method for proving the conjecture in this case, is very different from
the approaches by Artin and Mori. Artin uses the geometry of line and “fat”
point modules over A, whereas Mori uses explicit computation. Our strategy
starts with the development of the rudiments of an intersection theory for O∆.

We should point out that in [21], [26], alternative intersection theories
for non-commutative rings were introduced. All these theories are of course
equivalent (on the intersections of their domains of definition) but translating
between them sometimes takes some effort. That is why we have preferred to
use our own definition which is more directly tied to the theory of orders.

The reason for developping an intersection theory for O∆, is that we want
to compute the self-intersection of the dualizing module ωZ of Z, in the case
A is elliptic. Note that, when A is linear, Z = E so we are through. Put
J := (gA)̃. By a result of Yekutieli [41], it follows that the dualizing module
ω∆ of O∆ is equal to J . Since we will prove that O∆ is a maximal order, this
yields J s = O∆⊗OZ ωZ , where s is the PI-degree of O∆. Using our intersection
theory, it follows that ωZ has self-intersection 9.

On the other hand, since J −1 is ample and in characteristic 0, OZ is a
direct summand of O∆, we deduce that ω−1

Z is ample on Z. Together with the
fact that Z is smooth, this determines the possible shapes of the surface Z.
We finish this chapter with looking at the self-intersections of this possibilities
for Z, from which we obtain that Z ∼= IP2.

In the final chapter of this work, we return to the rings R needed for the
description of the category Cf of Chapter 2. To be more precise, we consider
rings of the form C = k〈〈x, y〉〉/(ψ), where ψ only has terms of total degree
≥ 2 and k is a field of characteristic p. We conjecture that their center Z(C)
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is either trivial, or else a formal power series ring in two variables z and w. We
also believe that if the quadratic part of ψ is of the form yx − xy and p > 0,
the generators of Z(C) have the form z = xp

n
+ ϕ(x), w = yp

n
+ θ(x, y) for

some n > 0 and where ϕ and θ are either trivial, or else contain only terms in
x, y of total degree > pn.

We prove this conjecture in the case C is an Ore extension B[[y;σ, δ]], where
B = k[[x]], σ is a k-linear automorphism of B and δ is a k-linear σ-derivation
of B. The cases in which the center of C is non-trivial are:

• σ = id, p > 0.

• δ = 0, σ 6= id, order(σ) <∞.

• δ 6= 0, σ 6= id, order(σ) <∞.

In the first case, we can take z = xp and w = yp−cp(x)y, where cp(x) is the
special element of B defined in Section 4.1. If the x-adic valuation v(δ(x)) of
δ(x) is ≥ 3, then v(cp(x)) > p−1 which yields the second part of the conjecture
in this case.

When δ = 0, σ is non-trivial and has finite order n, we obtain that z =
xσ(x) . . . σn−1(x) ∈ B and w = yn. Under the hypotheses of the second part
of the conjecture, we prove that z is of the form xn + higher order terms and
n = pm, for some m.

In the last case, the same element z of B appears as in the previous case.
For w, we can only prove that it has the form required in the conjecture, but
we can’t give a nice expression for it.

In the final section of this work, we provide the reader with a new proof
of a result by G. Baron and A. Schinzel. We found this since we originally
relied on the result when proving in the case that σ is trivial and p > 0, that
w = yp − cp(x)y ∈ Z(C). Afterwards, we used another approach which also
lead to the new proof. Whereas the proof in [12] is rather technical, ours is
straightforward and relies on general computations with derivations.



Chapter 1

Preliminaries

Although it is strictly not necessary, we assume that k is an algebraically closed
field.

In the Chapters 2 and 3 of this work, we consider graded algebras A =
k + A1 + A2 + . . . that are regular in the sense of Artin-Schelter. In this
chapter we work out some generalities about these algebras which will be used
in the following ones.

Throughout, let A = k+A1 +A2 + . . . be a graded algebra that is generated
by finitely many elements of degree one. We have the following definition.

Definition 1.0.1. A is Artin-Schelter regular of dimension d if it satisfies the
following conditions

(i) A has finite global dimension d.

(ii) A has polynomial growth
i.e. dimk An ≤ cnδ, for some positive real numbers c, δ.

(iii) A is Gorenstein, meaning that

ExtnA(k,A) =

{
k if n = d

0 otherwise

The Gelfand-Kirillov dimension of A is 1 more than the minimal δ in (ii).
Note that for every regular algebra we know, the minimal such δ is equal to
d− 1.

5



6 Preliminaries

1.1 Three dimensional Artin-Schelter regular

algebras

The three dimensional regular algebras generated in degree one, were classified
in [5] and later in [6], [7]. As was shown in [5], there are two possibilities for
such an algebra A.

• A has three generators of degree one and three defining relations of degree
two.

• A has two generators of degree one and two defining relations of degree
three.

The number of generators will be denoted by r, and the degrees of the defining
relations by s. So the possible values are

(r, s) =

{
(3, 2)

(2, 3)
and r + s = 5

Throughout this chapter, we assume that an algebra A can be presented
by r generators of degree one and r defining relations of degree s, with (r, s)
as above.

Definition 1.1.1. 1. Let A be an algebra which can be presented by r gen-
erators xj of degree one and r relations fi =

∑r
j=1mijxj of degree s,

such that, (r, s) = (3, 2) or (2, 3) as before. Let M = (mij)i,j and write
for the defining relations f = Mx. The algebra A is called standard if
there is an invertible matrix Q ∈ GLr(k) such that xtM = (Qf)t.

2. A standard algebra A is nondegenerate if the rank of the matrix M(p)
is at least r − 1 for all points p ∈ IP2 if (r, s) = (3, 2), or for all points
p ∈ IP1 × IP1 if (r, s) = (2, 3).

We recall from [6]

Theorem 1.1.2. 1. The regular algebras of global dimension 3 generated
in degree one are exactly the nondegenerate standard algebras.

2. They are left and right noetherian.
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Let A be a graded algebra as before. Write f̃i for the multilinearizations of
the defining relations of A and let Γ denote the locus of common zeros of the
f̃i. Thus, Γ ⊂ IP2 × IP2 if r = 3, and Γ ⊂ IP1 × IP1 × IP1 if r = 2. Define the
projections

prs(p
(1) × . . .× p(s)) = (p(1) × . . .× p(s−1))

(drop the last component)

pr1(p(1) × . . .× p(s)) = (p(2) × . . .× p(s))

(drop the first component)

If A is standard, then the images of Γ under these two projections are the
same (see [6], §4). Let E be the image of Γ under these projections. Since
f = Mx, it is clear that E is the locus of zeros of the multihomogenized
polynomial det(M̃).

If det(M̃) is not identically zero, then E is a divisor of degree 3 in IP2 in
case r = 3, and a divisor of bidegree (2, 2) in IP1 × IP1 in the case r = 2. We
then say that A is elliptic.
Otherwise, E is all of IP2 if r = 3, and all of IP1 × IP1 when r = 2. We call A
linear in this case.

Since E = prs(Γ) = pr1(Γ), we may view Γ as the graph of a correspondence
prs(p) −→ pr1(p) from E to itself. Observe that A is nondegenerate if and
only if one of the projections prs, pr1 : Γ −→ E is an isomorphism ([6], Lemma
4.4). That is, if and only if Γ is the graph of an automorphism σ : E −→ E.

So to every three dimensional Artin-Schelter regular algebra A, generated in
degree one, we can associate a triple T (A) = (E, σ,L), where E is the scheme
prs(Γ), σ is the automorphism of E defined by Γ and L is the invertible OE-
module π∗O(1), with π the inclusion of E in IP2 if r = 3, or the projection of
E on the first factor IP1 if r = 2. In both cases the map π : E −→ IPr−1 is the
morphism defined by the sections of L. Furthermore, in the case that r = 2,
σ is of the form σ(p, q) = (q, f(p, q)), if A is elliptic and if A is linear, then σ
has the form σ(p, q) = (q, τ(p)), where τ is an isomorphism of IP1.

1.2 Algebras associated to a triple

In this section we start with an abstract triple T and define from it two algebras
A = A(T ) and B = B(T ), and a homomorphism β = β(T ) : A(T ) −→ B(T ).
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Definition 1.2.1. A triple T is a set (E, σ,L), where E is a scheme, σ is an
automorphism of E, and L is an invertible sheaf on E whose global sections
define a morphism π : E −→ IPr−1, and where one of the following holds:

Case r = 3

(a) E is a divisor of degree 3 in IP2, and L is the restriction of OIP2(1).

(b) E = IP2, and L = OIP2(1).

Case r = 2

(a) E is a divisor of bidegree (2, 2) in IP1×IP1, σ has the form σ(p, q) =
(q, f(p, q)), and L = pr∗OIP1(1) where pr is the projection of E on

the first factor IP1.

(b) E = IP1 × IP1, σ has the form σ(p, q) = (q, τ(p)), where τ is an
automorphism of IP1, and L = pr∗OIP1(1) with pr as in (a).

We will say that a triple of type (a) is elliptic and triples of type (b) will
be called linear.

Definition 1.2.2. A triple T = (E, σ,L) is said to be regular if it satisfies{
(σ − 1)2λ = 0 if r = 3

(σ − 1)(σ2 − 1)λ = 0 if r = 2

where λ denotes the class of L in Pic(E).

So let T = (E, σ,L) be a triple and π : E −→ IPr−1 be the morphism
determined by the global sections of L.

Set B0 = H0(E,OE) and for each integer n > 0,

Bn = H0(E,L ⊗ Lσ ⊗ . . .⊗ Lσn−1

)

where Lσ is the pullback σ∗L and tensor products are taken over OE. We
define

B(T ) = B = ⊕n≥0Bn

Multiplication on B is defined by the rule that if a ∈ Bm and b ∈ Bn, then

a · b = a⊗ bσm
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where bσ
m

= b ◦ σm.

To define A(T ), let T =
∑
Tn be the tensor algebra over k on T1 =

H0(IPr−1,OIPr−1(1)). The isomorphism

π∗ : T1 −→ B1

induces a homomorphism T −→ B. Let J =
∑
Jn be its kernel, and let I be

the two-sided ideal of T generated by Js. We define

A(T ) = A = T/I

The composition of the natural homomorphisms

T/I −→ T/J −→ B

yields a canonical homomorphism β(T ) = β : A −→ B which is bijective in
degree 1.

Recall from Theorem 6.8 in [6].

Theorem 1.2.3. Let T be a triple. Let A = A(T ) and B = B(T ). Then

1. β is always surjective.

2. If T is linear, then β is an isomorphism.

3. If T is elliptic and regular, the kernel of β has the form gA = Ag, where
g is a non-zero normalizing element of degree s+ 1.

4. If T is regular, then A is a regular algebra of global dimension 3, and in
the elliptic case, the element g of (3.) is left and right regular.

Now let A be a three dimensional regular algebra generated in degree one
and T (A) = (E, σ,L) the triple associated to A. Let A′ and B be the two
algebras associated to the triple T (A). From [6] it follows that

Proposition 1.2.4. 1. The algebras A′ and A are canonically isomorphic.

2. If A is linear, then A ∼= B.

3. If A is elliptic, then B ∼= A/gA, where g is a regular normalizing element
of degree s+ 1.

Note that since the algebra A(T ) defined above, depends only on B(T ),
we can look here at A via B and this approach was found very rewarding.
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1.3 Modules over regular algebras

Let A be a regular algebra of dimension 3, generated in degree one. The graded
A-modules we are interested in, are the so-called point modules, since they are
in one-to-one correspondence with the points of the associated scheme E (see
[6]).

Definition 1.3.1. A point module M is a graded right A-module which satisfies
the following properties

(i) M0 = k.

(ii) M0 generates M , and

(iii) dimkMn = 1, for all n ≥ 0.

For a graded left or right module M which is locally finite, i.e. each graded
piece Mn is a finite dimensional k-vector space, one defines the Hilbert function
by

n 7→ dimkMn

and the Hilbert series by

hM(t) =
∑
n

(dimkMn)tn

Note that, since A itself is locally finite as an A-module, it has a Hilbert series.

Definition 1.3.2. Let M be a graded locally finite A-module. The leading
coefficient e(M) of the series expansion of hM is powers of 1− t, is called the
multiplicity of M .

The multiplicity e(M) of M is positive and an integer multiple of the
multiplicity e(A) of A. Furthermore, we have

e(A) =

{
1 if r = 3

1/2 if r = 2

In particular, we have for a point module M that

hM(t) =
1

1− t
and e(M) = 1

Furthermore, the Gelfand-Kirillov dimension of M is equal to 1, M is also a
B-module and critical [7], that is
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Definition 1.3.3. A graded A-module M is critical, if for every graded sub-
module N ⊂M , N 6= 0, we have GK dim(M/N) < GK dim(M).

For further results on critical modules, see [7].

1.4 The non-commutative projective scheme

In this section, we give a definition of ProjA in the case that A = k + A1 +
A2 + . . . is a right noetherian graded k-algebra.

Definition 1.4.1. 1. A graded right A-module M is called right bounded if
Mn = 0, for n >> 0.

2. A graded right A-module M is said to be torsion if it is a direct limit
lim
−→α

M(α) in which each M(α) is right bounded.

Let

Gr(A) := the category of graded right A−modules

Tors(A) := the full subcategory of Gr(A) of torsion modules

Morphisms in the category Gr(A) are the homomorphisms of degree zero. Since
Tors(A) is a dense subcategory of Gr(A), it makes sense to put

QGr(A) := the quotient category Gr(A)/Tors(A)

So the objects of QGr(A) are the same as those of Gr(A) but there are more
morphisms.

Let
π : Gr(A) −→ QGr(A)

be the canonical functor and A the object in QGr(A) which is the image in
QGr(A) of AA.

Definition 1.4.2. The projective scheme of A, denoted by ProjA, is the pair
(QGr(A),A).

This definition of ProjA is compatible with the classical one for commu-
tative graded rings (see [20]) only under some additional hypotheses, such as
that A is generated in degree one. Artin and Zhang, who worked out this way
of defining ProjA in the non-commutative case [9], were inspired by Serre.



12 Preliminaries

Also interested in an extension of a theorem of Serre, Artin and Van den
Bergh introduced the twisted homogeneous coordinate rings (see [8]).

VIND JE DIT GEEN SCHITTERENDE OVERGANG ? IK KON NIETS
ANDERS BEDENKEN OM OVER TE GAAN NAAR DE TWISTED HOMO-
GENEOUS COORDINATE RINGS, WEET JIJ MISSCHIEN IETS BETER
?
NOG EEN VRAAGJE, IS HET EEN PROBLEEM DAT PROJ A HIER
GEDEFINIEERD IS VOOR RECHTSE MODULEN TERWIJL WE HET
IN HOOFDSTUK 3 EIGENLIJK GEBRUIKEN MET LINKSE MODULEN
MAAR IN HOOFDSTUK 1 DAN WEER MET RECHTSE ?

Let X be a projective scheme over k, L the invertible sheaf OX(1) and σ
an automorphism of X. Denote the pullback σ∗L by Lσ and set, for n > 0

Bn = L ⊗ Lσ ⊗ . . .⊗ Lσn−1

and B0 = OX .

Definition 1.4.3. The twisted homogeneous coordinate ring associated to the
triple (X, σ,L) is the graded ring

B = ⊕n≥0Bn = ⊕n≥0 H0(X,Bn)

with multiplication defined by, if a ∈ Bm, b ∈ Bn, then a · b = a⊗ bσm.

In their paper, Artin and Van den Bergh defined the functors

˜(−) : Gr(B) −→ Qch(X)

Γ∗ : Qch(X) −→ Gr(B)

where

Gr(B) := the category of graded right B −modules

Qch(X) := the category of quasi-coherent sheaves

on the projective scheme X

For the definition of Γ∗, let, for all n > 0,

B−n = Lσ−1 ⊗ . . .⊗ Lσ−n

where Lσ−1
= σ∗L. For a quasi-coherent sheaf F on X, we define

Γ∗(F) = ⊕
n∈ZZ H0(X,F ⊗ Bn)
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Definition 1.4.4. We say that L is σ-ample if the functor

s : Qch(X)→ Qch(X) :M 7→Mσ−1 ⊗ Lσ−1

has the property that for every coherent sheaf M, one has H1(X, snM) = 0
and snM is generated by global sections for large n.

From Theorem 3.12 in [8], it follows that

Theorem 1.4.5. Let σ be an automorphism of a projective scheme X over
k, and let L be a σ-ample invertible sheaf on X. Let B = B(X, σ,L) be the

ring defined in Definition 1.4.3, then the functors Γ∗ and ˜(−) induce inverse
equivalences

Gr(B)/Tors(B)

˜(−)
−→
←−
Γ∗

Qch(X)

where Tors(B) := the full subcategory of Gr(B) of torsion modules.

For a three dimensional regular algebra A, generated in degree one, the
twisted homogeneous coordinate ring associated to the triple T (A) = (E, σ,L)
is exactly the algebra B described in Proposition 1.2.4. And since in this case L
is σ-ample (Corollary 6.21 in [7]), the functors Γ∗ and ˜(−) define an equivalence
of the categories Qch(E) and QGr(B), the quotient category Gr(B)/Tors(B).
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Chapter 2

Graded modules of GKdim 1
over a three dimensional
Artin-Schelter regular algebra

Let A be a three dimensional Artin-Schelter regular algebra and k an alge-
braically closed field. We want to give a description of the category of finitely
generated A-modules of Gelfand-Kirillov dimension one (modulo those of finite
dimension over k).
This is an application of Theorem 2.0.1, stated below.

Theorem 2.0.1. Let A be a k-linear locally noetherian Grothendieck category
(that is, an abelian category which satisfies AB5 and has a family of noetherian
generators). Let G : A → A be an autoequivalence and let η : G → idA be a
natural transformation such that η(F ) is surjective for every injective object in
A. Let B be the full subcategory of A consisting of objects M with η(M) = 0
and let Cf be the full subcategory of A consisting of finite length objects whose
composition factors lie in B.

Assume that every simple object in B has finite injective dimension in A
and furthermore that there is a Cohen-Macauly curve Y over k such that B is
equivalent to Qch(Y ), the category of quasi-coherent OY -modules. For x ∈ Y
denote by Px the object of B corresponding to x and define τ : Y → Y by
G−1(Px) = Pτx. Then we have the following.

1. Cf = ⊕z∈Y/〈τ〉Cf,z, where Cf,z is the full subcategory of Cf consisting of
objects whose Jordan-Holder quotients are given by Py with y ∈ Oτ (z).

15
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2. There is a category equivalence F between Cf,z and the category of finite
dimensional right modules over a ring Cz. This ring Cz has the following
form :

(a) If |Oτ (z)| =∞ then Cz is given by ZZ×ZZ lower triangular matrices
with entries in ÔY,z. In this case z is regular on Y and thus we have

ÔY,z ∼= k[[x]].

(b) If |Oτ (z)| = n then Cz is given by a ring of n × n matrices of the
form 

R RU . . . RU
...

. . . . . .
...

...
. . . RU

R . . . . . . R


where R is a complete local ring of the form

R = k〈〈x, y〉〉/(ψ)

with
ψ = yx− qxy + higher order terms (2.1)

for some q ∈ k∗, or

ψ = yx− xy − x2 + higher order terms (2.2)

U is a regular normalizing element in rad(R) such that R/(U) =
ÔY,z.
If z is not fixed under τ then z is regular on Y and also U 6∈ rad2(R).

3. Let I = ZZ if |Oτ (z)| = ∞ and I = ZZ/nZZ if |Oτ (z)| = n. In this way
the elements of Cz correspond to I × I-matrices. For i ∈ I, let ei be the
corresponding diagonal idempotent. Then every finite dimensional right
Cz-representation W satisfies W = ⊕iWei.

4. Put Si = eiCz/ rad(eiCz). Then F (Pτ iz) = Si.

5. Define the following normal element N of Cz.

(a) If |Oτ (z)| = ∞, then N is given by the matrix whose entries are
everywhere zero except on the lower subdiagonal where they are one.
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(b) If |Oτ (z)| <∞, then

N =


0 . . . 0 U

1
. . . 0

...
. . . . . .

...

0 . . . 1 0


Let φ = N ·N−1 then we have the following commutative diagram

Cf,z
G−−−→ Cf,zyF yF

Modr(Cz)
(−)φ−−−→ Modr(Cz)

where Modr(Cz) denotes the category of right Cz-modules.

6. IfM is an object in Cf,z then one has the following commutative diagram.

FG(M)
F (η(M))−→ F (M)∥∥∥∥ ∥∥∥∥

F (M)φ
·N−→ F (M)

7. Let Cf,z,Y be the pullback of Cf,z in Qch(Y ). Thus the objects of Cf,z,Y
are the finite length objects in Qch(Y ) whose support is contained in the
τ -orbit of z. Put Dz = Cz/(N) =

∏
i ÔY,τ iz. Let (̂ )z be a shorthand for

the product of the completion functors (̂ )τ iz. Then the following diagram
is commutative.

Cf,z,Y
∼=−−−→ Cf,z

(̂ )z

y F

y
Modr(Dz) −−−→ Modr(Cz)

From this theorem we can extract the following corollary.

Corollary 2.0.2. If z is not a fixed point for τ then z is regular on Y .
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If we think of the curve Y as being embedded in a kind of non-commutative
space A then Theorem 2.0.1 gives us some insight into the structure of A in a
neighbourhood of Y .

The application we have in mind is the following.
Let A be a three dimensional Artin-Schelter regular algebra, generated in de-
gree one. Recall A possesses a regular normalizing element g in degree three
or four such that B = A/(g) is a twisted homogeneous coordinate ring asso-
ciated to a triple (Y, σ,L) with Y a plane curve of arithmetic genus one and
L = OY (1). Since L is σ-ample, the functors

Gr(B)
(−)−→ Qch(Y )

Qch(Y )
Γ∗−→ Gr(B)

(2.3)

factor through the quotient map π : Gr(A) → QGr(A) to give inverse equiv-
alences between QGr(B) and Qch(Y ). The pointmodules of A are all annihi-
lated by g and hence it follows easily from the category equivalence (2.3) that
they are of the form Px = Γ∗(k(x)), for x ∈ Y . Put Px = πPx. Let G be the
autoequivalence of Gr(A) given by −⊗A gA and denote by the same letter the
induced autoequivalence on QGr(A). The natural transformation η(M) is the
obvious map G(M)→M obtained from the inclusion gA ↪→ A.

It is clear that the hypotheses for Theorem 2.0.1 are satisfied, whence we
can apply that theorem in order to give a description of the category of A-
modules of Gelfand-Kirillov dimension one modulo those of finite dimension
over k.

The proof of Theorem 2.0.1 is based upon a result by Gabriel [18], stating
that locally finite categories are dual to pseudocompact rings.

Sections 2.1-2.3, are devoted to some generalities concerning pseudocom-
pact rings. We are especially interested in the relationship between topological
and non-topological properties of such rings.
In Sections 2.4, 2.5 we give some classification theorems which are slightly
more general than what we need for the proof of Theorem 2.0.1.
Finally in section 2.6, we give the proof of Theorem 2.0.1.

We introduce some extra notations and conventions.
If C is a ring then Mod(C) refers to the category of left modules over C. The
category of right modules is denoted by Modr(C). Note that as before, we
denote the category of graded right-modules over a graded ring A as Gr(A).
An unspecified module will always be a left module.
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If M is a left module over a ring C and φ is an automorphism of C then

φM is the left C-module which is equal to M as a set, but which has its
multiplication twisted by φ, i.e. c ·m = φ(c)m. A similar notation is used
for right modules.

2.1 Pseudocompact rings

A ring A provided with a topology, is a topological ring if the following are
satisfied

(T1) The map (x, y) 7→ x+ y from A× A to A is continuous.

(T2) The map x 7→ −x from A to A is continuous.

(T3) The map (x, y) 7→ xy from A× A to A is continuous.

(T1) and (T2) express that the topology on A is compatible with its struc-
ture as a group. We say that a topology on a ring A is compatible with the
ringstructure if (T1), (T2) and (T3) are satisfied.

A left topological module M over a topological ring A, is a left A-module
provided with a topology compatible with its groupstructure and satisfying

(TM) The map (a,m) 7→ am from A×M to M is continous.

A left topological module M over a topological ring A is pseudocompact if it
is Hausdorf, complete and its topology is generated by left submodules of finite
colength. A itself is said to be a pseudocompact ring is A is pseudocompact as
a left A-module.

In the rest of this section A will be a pseudocompact ring.
The category of pseudocompact modules over A is denoted by PC(A). It is an
abelian category satisfying AB5* and AB3 [18]. Its dual category is a locally
finite category. That is, a Grothendieck category possessing a set of generators
of finite length.

Conversely assume that C is a locally finite category. If M,N ∈ C then
the natural topology on HomC(M,N) is the linear topology generated by the
subgroups of the form

(S) = {f : M → N |f(S) = 0}

where S runs through the objects of finite length in C.
The following result is proved in [18]:
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Theorem 2.1.1. If E is an injective cogenerator for C then A = EndC(E),
equipped with the natural topology, is a pseudocompact ring, and the functor
which sends M ∈ C to HomC(M,E) (with the natural topology) is an equiva-
lence of categories between C and PC(A)0.

One easy property of a linear topology will be used repeatedly below.

Lemma 2.1.2. Assume that M is a topological group with a topology generated
by subgroups and L ⊂ M is an open subgroup. Then L is also closed and the
quotient topology on M/L is discrete.

Proof. L is the complement of the union of cosets of L in M which are not
equal to L. Since this union is a union of open sets, it is itself open. Thus L is
closed. L is the inverse image of e in M/L and hence {e} is open and closed
in the quotient topology.

The following proposition records for further reference some of the proper-
ties of the forgetful functor PC(A)→ Mod(A) [18].

Proposition 2.1.3. The forgetful functor PC(A) → Mod(A) is faithful and
commutes with kernels, cokernels and products. In particular, it reflects iso-
morphism and exactness. If M ∈ PC(A) then the subobjects of M in PC(A)
are in one-one correspondence with the subobjects of M in Mod(A) which are
closed.

Let Fin(A) be the full subcategory of Mod(A) consisting of objects which
are of finite length and let PCFin(A) be its pullback in PC(A).
A module of finite length carrying a linear topology can only be separated if
its topology is discrete since the fundamental system of environments of e that
generates the linear topology, can’t contain infinitely many environments, so
{e} has to be a member of the fundamental system and therefore the topology
must be discrete.
So we conclude immediately that the forgetful functor

PCFin(A)→ Fin(A)

is fully faithfull.
The following lemma gives us more information on PCFin(A).

Lemma 2.1.4. 1. An object in PC(A) is simple in PC(A) if and only if it
is simple in Mod(A).
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2. The objects in PCFin(A) are precisely the finite length objects in PC(A).

Proof. 1. Assume that 0 6= S ∈ PC(A) is simple in PC(A). We want to
show that S is simple in Mod(A). Take 0 6= x ∈ S. Since S is Hausdorf,
there exists an open submodule L ⊂ S, not containing x. L is also closed
(Lemma 2.1.2) and thus it is pseudocompact if we give it the induced
topology. Since S is simple in PC(A), we obtain L = 0. This implies
that S = S/L carries the discrete topology. But then every submodule
of S is closed and thus it is a subobject of S in PC(A). Since S is simple
in PC(A), there can be no non-trivial subobjects and thus S is simple
in Mod(A). The other direction is clear since subobjects of an object in
PC(A) come from subobjects of that object in Mod(A).

2. This follows from 1.

Let us say that M ∈ PC(A) is finitely generated in PC(A) if there is a
surjective map Ak →M in PC(A) for some k.

Proposition 2.1.5. Assume that M, N ∈ PC(A), M finitely generated. Then

HomPC(A)(M,N) = HomMod(A)(M,N)

Proof. If n ∈ N then the map a 7→ an is continuous which yields

HomPC(A)(A,N) = HomMod(A)(A,N)

This proves the proposition for M = A and hence also for M = Ak.
Now assume M general. There is an exact sequence in PC(A)

0→M ′ → F →M → 0

with F = Ak. This yields a commutative diagram with exact rows

0 −→ HomPC(A)(M,N) −→ HomPC(A)(F,N) −→ HomPC(A)(M
′, N)y y y

0 −→ HomMod(A)(M,N) −→ HomMod(A)(F,N) −→ HomMod(A)(M
′, N)

The vertical maps are injective and the middle one is an isomorphism. It
follows that the left map must be an isomorphism.
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Corollary 2.1.6. An object in PC(A) is finitely generated in PC(A) if and
only if it is finitely generated in Mod(A).

Corollary 2.1.7. A direct summand in Mod(A) of a finitely generated object
in PC(A) is a direct summand in PC(A). In particular, a finitely generated
object in PC(A) is projective in PC(A) if and only if it is projective in Mod(A).

Proof. If M is a finitely generated object in PC(A) then a direct summand of
M is the image of an idempotent in EndMod(A)(M). The result now follows
from Proposition 2.1.5 and 2.1.3.

Corollary 2.1.8. If M ∈ PC(A) is finitely generated then a submodule L ⊂M
is open if and only if M/L ∈ PCFin(A).

Proof. If L is open then it is closed by Lemma 2.1.2 and of finite colength.
Hence M/L ∈ PCFin(A).
Conversely, assume M/L ∈ PCFin(A). By Proposition 2.1.5 the quotient
map M → M/L is continous. Since, again by Lemma 2.1.2, M/L carries the
discrete topology, {0} ⊂M/L is open and thus so is its inverse image L.

Since PC(A) is the dual of a locally finite category, it has projective covers.
The projective covers of the pseudocompact simples are the indecomposable
projectives. Furthermore every projective in PC(A) is a product of such in-
decomposable projectives. By [18] the indecomposable projectives are of the
form Ae, where e is a primitive idempotent in A.

Recall also from [18] that if (ei)i∈I is a summable set of primitive, pairwise
orthogonal idempotents with sum 1 then A =

∏
i∈I Aei and every indecompos-

able projective in PC(A) is isomorphic to at least one Aei.

Lemma 2.1.9. The (Aei)i∈I are the projective covers in Mod(A) of the simple
A-modules which are pseudocompact.

Proof. Since the Aei are projective covers of simple modules in PC(A), this
follows from the fact that EndMod(A)(Aei) = EndPC(A)(Aei) is local.

From Proposition 2.1.3 it follows that M is noetherian in PC(A) if it satis-
fies the ascending chain condition on closed subobjects. Thus if M is noethe-
rian in Mod(A) then it is noetherian in PC(A).
We now show that the converse holds.

Proposition 2.1.10. Every subobject in Mod(A) of a noetherian object in
PC(A) is closed and hence lies in PC(A).
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Proof. Let M be a noetherian object in PC(A). Since the (Aei)i∈I form a set
of generators for PC(A), M is a quotient of a direct sum of a finite number of
such Aei, and in particular is finitely generated.

Assume now that N ⊂ M in Mod(A). We have to show that N = N .
Since N is a closed submodule of M it is also noetherian in PC(A). Therefore,
without loss of generality, we may assume that N = M .

We want to show that N = M . Assume that this is not so. Consider the
partially ordered set

P = {N ⊂ N ′  M | N ′ ∈ Mod(A)}

Since M is finitely generated, P has a maximal element by Zorn’s lemma.
Again without loss of generality, we may replaceN by this maximal element. In
that case M/N is simple. However M/N is not pseudocompact since otherwise
by Proposition 2.1.5 N = ker(M → M/N) would be pseudocompact and
hence closed which is impossible because N = M 6= N .

Let φ : Aei → M be a non-zero map. Then either φ−1(N) = Aei or
Aei/φ

−1(N) is simple but not pseudocompact. The last case is impossible since
by Lemma 2.1.9 Aei has only one simple quotient, and this simple quotient
is pseudocompact. Thus N contains the image of every φ and therefore N =
M .

Corollary 2.1.11. An object in PC(A) is noetherian in PC(A) if and only if
it is noetherian in Mod(A).

Corollary 2.1.12. Assume that M ∈ PC(A) is noetherian. Then the topology
on M is the cofinite topology. That is, a submodule L ⊂M is open if and only
if M/L has finite length.

Proof. Since M is noetherian in PC(A), it is finitely generated. So if a sub-
module L ⊂M is open, M/L ∈ PCFin(A) by Corollary 2.1.8 and therefore it
has finite length.
For the other direction, let L be a submodule of M of finite colength. By
Proposition 2.1.10 L is closed in M . Hence M/L is pseudocompact and since
it is of finite length, it carries the discrete topology. Thus {0} ⊂M/L is open,
and so is its inverse image L.

Let R, I, M be respectively a ring, an ideal in R and an R-module. Then
the I-adic topology on R is the linear topology generated by the submodules of
M of the form InM . In a pseudocompact ring A the Jacobson radical rad(A)
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is the common annihilator of the simple pseudocompact A-modules [[18], dual
of Prop IV.12].
The following is a reformulation of the previous corollary.

Corollary 2.1.13. Assume that M ∈ PC(A) is noetherian. Then the topology
on M is given by the rad(A)-adic topology.

Proof. It suffices to show that M/ rad(A)M is a finite sum of simples. There-
fore we look at the subcategory of the semisimple objects in PC(A), which is
precisely PC(A/ rad(A)) and this latter is still the dual category of a locally
finite category. So we may replace M by M/ rad(A)M and A by A/ rad(A).
Since M is noetherian in PC(A), it corresponds to a artinian object in the
dual category and therefore it must be a finite direct sum of simples.

Definition 2.1.14. We say that A is locally noetherian if the (Aei)i∈I are
noetherian in PC(A).
We say that A is noetherian if A is noetherian in PC(A).

Proposition 2.1.15. Let A be locally noetherian and M, N ∈ PC(A). As-
sume that M is noetherian. Then

ExtiPC(A)(M,N) = ExtiMod(A)(M,N)

Proof. The case i = 0 follows from Proposition 2.1.5.
For i > 0 we use an exact sequence

0→M ′ → P →M → 0

in PC(A) with P a finite direct sum of Aei. Since A is locally noetherian, M ′

is also noetherian and so by induction

ExtiPC(A)(M,N) = ExtiPC(A)(P/M
′, N) = Exti−1

PC(A)(M
′, N)

= Exti−1
Mod(A)(M

′, N) = ExtiMod(A)(P/M
′, N)

= ExtiMod(A)(M,N)

Proposition 2.1.15 yields the following corollary.
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Corollary 2.1.16. Let pc(A) resp. mod(A) be the full subcategory of PC(A)
resp. Mod(A) consisting of noetherian objects. Then the functor

pc(A)→ mod(A)

is fully faithfull and its essential image, i.e. all the objects in mod(A) which are
isomorphic to an object in the image, is closed under extensions. In particular,
PCFin(A) is closed under extensions inside Fin(A).

It also follows from Proposition 2.1.15 that :

Proposition 2.1.17. If A is locally noetherian and M ∈ PC(A) is noetherian
then

proj dimMod(A) M = proj dimPC(A) M

Now we discuss briefly automorphisms of pseudocompact rings.

Lemma 2.1.18. Assume that A is a pseudocompact ring. If φ ∈ Aut(A), then
φ is continuous if and only if for every pseudocompact A-module S of finite
length, we have that φS is pseudocompact.

Proof. “⇒” We only have to prove that left multiplication by an element of A
on φS (which has the discrete topology) is continuous. Since φ is assumed to
be continuous, this is clear.
“⇐” Assume that L ⊂ A is an open ideal. Then A/L is pseudocompact of finite
length (Corollary 2.1.8) and hence φ(A/L) ∼= A/φ−1(L) is pseudocompact of
finite length. Again by Corollary 2.1.8 this implies φ−1(L) is open in A.

Corollary 2.1.19. If A is locally noetherian and φ ∈ Aut(A) then φ is a
homeomorphism.

Proof. It suffices to show that φ is continuous. By Lemma 2.1.18 and Corol-
lary 2.1.16, we must show that if S is pseudocompact simple, then so is φS.
Since S has a projective cover of the form Ae, for some primitive idempo-
tent e, A is locally noetherian and A/ rad(A) is pseudocompact semisimpel,
it follows from Lemma 2.2, page 218 in [17] that S = Ae/ rad(Ae). So

φS = Aφ−1(e)/ rad(Aφ−1(e)) and thus by the same lemma in [17], Aφ−1(e)
is a projective cover of φS. It now follows from Lemma 2.1.9 that φS is pseu-
docompact simple.

To close this section, we discuss noetherian pseudocompact rings.
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Proposition 2.1.20. Let A be a noetherian pseudocompact ring. Then the
forgetful functor

pc(A)→ mod(A) (2.4)

is an equivalence of categories.

Proof. By Corollary 2.1.16 we only have to show that (2.4) is essentially sur-
jective.
Let M ∈ mod(A). Then M has a resolution

F1
φ→ F0 →M → 0

where the Fi are finitely generated free A-modules. By Proposition 2.1.5,
φ ∈ HomPC(A)(F1, F0). Therefore M = cokerφ ∈ PC(A).

Proposition 2.1.21. Assume that A is a noetherian pseudocompact ring.
Put J = rad(A). Then

1. A/J is semisimple.

2. A is complete for the J-adic topology.

3. The topology on A coincides with the J-adic topology.

Conversely, if A is a left noetherian ring satisfying 1., 2. then A is pseudo-
compact when equipped with the J-adic topology.

Proof. “⇐” Since A/J is semisimple and Jn is finitely generated, all Jn/Jn+1

are finite direct sums of simples. Hence A/Jn has finite length for all n.
Therefore 2. implies that A is pseudocompact.
“⇒” By [18] A/J is a product of endomorphism rings of vectorspaces. Since
A/J is also noetherian, it must be semisimple. This proves 1. Property 2.
follows from 3. and 3. is precisely Corollary 2.1.13.

Proposition 2.1.22. Let A be a pseudocompact ring, N ∈ rad(A) a regular
normalizing element. Assume that M ∈ PC(A) is such tat M/NM is finitely
generated. Then M is finitely generated.

Proof. The key point is that the N -adic topology on M and A is finer than
the given topology. Thus if (fi)i is a Cauchy sequence for the N -adic topology,
then it is convergent in the given topology.
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Let t1, . . . , tn ∈M be such that t1, . . . , tn generate M/NM . We show that
t1, . . . , tn generate M .

Take t ∈M . Then there exist a
(1)
1 , . . . , a

(1)
n ∈ A, t(1) ∈M such that

t −
n∑
i=1

a
(1)
i ti = Nt(1)

Continuing this procedure, we find aji ∈ A such that

t −

(∑
i

a
(1)
i ti +

∑
i

Na
(2)
i ti + . . .+

∑
i

Np−1api ti

)
∈ NpM

and hence

t =
∑
i

∑
j

(N j−1aji ) ti

Thus M is generated by t1, . . . , tn.

From this we deduce the following.

Proposition 2.1.23. Let A be a pseudocompact ring, N ∈ rad(A) a regu-
lar normalizing element. Assume that M ∈ PC(A) is such that M/NM is
noetherian. Then M is noetherian.

Proof. Let T ⊂ M be an arbitrary submodule. We want to show that T is
finitely generated. We define first

T sat = {t ∈M | ∃ k : Nkt ∈ T}

Obviously, (T sat)sat = T sat and T sat ∩ NpM = NpT sat. Since T sat/ NT sat ⊂
M/NM , we find that T sat/NT sat is finitely generated and hence so is T sat by
the previous proposition.

Since T sat is finitely generated, it follows from the definition of T sat that
there exists a k such that NkT sat ⊂ T . Thus T sat ∩ NkM = NkT sat ⊂ T .
Since NkT sat is finitely generated, it now suffices to show that T/(T sat∩NkM)
is finitely generated. Now clearly, M/NkM is noetherian and hence so is the
subobject T/(T sat ∩NkM).
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2.2 A matrix representation for pseudocom-

pact rings

If A is an arbitrary ring, M a left A-module and (ei)i=1,...,n a finite set of pair-
wise orthogonal idempotents with sum 1 then it is classical that A is isomorphic
to the matrix ring 

A11 A12 . . . A1n

A21 A22 . . . A2n

...
...

...

An1 An2 . . . Ann


WithAij = eiAej andM is isomorphic to the set of column vectors (M1, . . . ,Mn)t

with Mj = ejM .
An element a in A is sent to the matrix (eiaej)ij and an element m of M

is sent to (ejm)j.
It is clear how to extend this result to the pseudocompact situation.

Lemma 2.2.1. Assume that (ei)i∈I is a summable set of orthogonal idempo-
tents in a pseudocompact ring A such that

∑
i ei = 1. Let M be a pseudocom-

pact A-module and put Aij = eiAej, Mi = eiM .
Then A is isomorphic to the ring of doubly infinite matrices (aij)ij ∈ (Aij)ij
with summable columns and M is isomorphic to the set of summable column
vectors (mi)i ∈ (Mi)i.
The isomorphisms are given by the maps

(aij)ij 7→
∑

i,j aij

(mi)i 7→
∑

imi

Note that this lemma only says something about the ring structure on A
and the module structure on M , but nothing about the topology.

Below we give the Aij the topology induced from A and Mi the topology
induced from M . Since Aij = eiAej is closed in A, it is complete. A similar
argument is true for Mi. Furthermore the topology is linear (given by abelian
subgroups). We also have multiplication mappings

Aij × Ajk → Aik

Aij ×Mi → Mj
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and since these are induced from the multiplication on A and M , they are
continuous. This makes Aii into a topological ring, Aij into a topological
Aii − Ajj-bimodule and Mi into a left topological Aii-module.

Lemma 2.2.2. 1. Aii is a pseudocompact ring and Aij is a pseudocompact
Aii-module.

2. Mi is a pseudocompact Aii-module.

Proof. It suffices to prove 2. Indeed if we take M = Aej (and afterwards
j = i), then we obtain part 1.

Let L ⊂M be an open submodule. If T is anAii-submodule of eiM contain-
ing L∩eiM = eiL then T̃ = AT+L is an A-submodule ofM containing L, and
furthermore T̃∩eiM = T . Thus length(T/eiL) ≤ length(T̃ /L) ≤ length(M/L)
and so it follows that the length of eiM/(eiM ∩L) is bounded by that of M/L.
Since the topology on eiM is induced from that on M we deduce that eiM is
pseudocompact.

Unfortunately it is not in general true that A and M carry the induced
topology from the product topologies on

∏
ij(Aij) and

∏
iMi. A counter ex-

ample is given by the endomorphism ring of an infinite dimensional vector
space.

Under some mild extra hypotheses, this defect can be repaired. Note that
the Aei are pseudocompact projectives. Hence they are products of indecom-
posable pseudocompact projectives.

Proposition 2.2.3. Let (ei)i∈I be as in Lemma 2.2.1. Assume that every
indecomposable pseudocompact projective is a summand of at most a finite
number of Aei. Then as topological spaces

A =
∏
i,j

Aij (2.5)

M =
∏
i

Mi (2.6)

Proof. We certainly have A =
∏

j Aej. Hence it suffices to prove (2.6).
We have an inclusion

M ⊂
∏
i

Mi (2.7)
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which is given by the product of the maps M → Mi : m 7→ eim. These maps
are continuous and hence the inclusion is also continuous.

We now show that the topology on M is courser than the induced topology
for the inclusion (2.7).

Let L ⊂ M be an open submodule. Since M/L has finite length, the
hypotheses imply that HomA(Aei,M/L) is non-zero for at most a finite number
of i. Since Hom(Aei,M/L) = ei(M/L), we deduce that for almost all i, Mi =
eiM ⊂ L. Hence

∏
i(Mi ∩ L) is open in

∏
iMi. Observing that M ∩

∏
i(Mi ∩

L) ⊂ L yields that L is the union of cosets of M ∩
∏

i(Mi ∩L) in L. Since this
union is a union of sets which are open for the topology induced by (2.7), it is
itself open for this topology. This finishes the proof.

The proof we have just given also shows that if (mi)i ∈
∏

iMi then (mi)i
is summable in M . Sending (mi)i to

∑
imi defines an inverse to the inclu-

sion (2.7).
A similar result holds for A.

2.3 Global dimension

In this section A is a pseudocompact ring. We define

Gl dim A = supM∈PC(A) proj dimPC(A)(M)

Note that we often have proj dimPC(A) M = proj dimMod(A) M by Proposi-
tion 2.1.17. Therefore, if no confusion can arise, we make no distinction be-
tween those two types of projective dimension, and we simply write proj dim(M).

Lemma 2.3.1. We also have

Gl dim A = sup S∈PC(A)

S simple
proj dimPC(A) S

Proof. By Theorem 2.1.1 it suffices to prove the dual statement for locally finite
categories. So assume C is such a category and inj dim(S) ≤ n, for every simple
S in C. Hence for every finite length module F one also has inj dim(F ) ≤ n.
If M ∈ C arbitrary, then by definition, M is a direct limit of finite length
objects. By the proof [[19], Thm. 1.10.1], monomorphisms into injectives
can be constructed in a functorial way and hence so can injective resolutions.
Taking the direct limit of the injective resolutions of the subobjects of finite
length of M yields an injective resolution of M of length ≤ n (C is locally
noetherian and hence a direct limit of injectives is injective).
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The following result is very classical.

Proposition 2.3.2. Let N ∈ rad(A) be a regular normalizing element in A.
Assume that A is locally noetherian. Then

Gl dim A ≤ Gl dim A/(N) + 1

Proof. Let Gl dim A/(N) = p. We have to show that proj dim S ≤ p + 1,
for every pseudocompact simple. Since S = Ae/ rad(Ae) for some primitive
idempotent e of A, it suffices to prove that

proj dim rad(P ) ≤ p

where P runs through the indecomposable projectives in PC(A).
This follows from Lemma 2.3.3 below.

Lemma 2.3.3. Assume that A is locally noetherian and let L be a noetherian
pseudocompact A-module which is N-torsion free. Then

proj dim L = proj dimA/(N) L/NL

Proof. By degree shifting one reduces to the case where L/NL is projective
over A/(N). In that case the result follows by an appropriate version of
Nakayama’s Lemma.

The following type of result seems to be referred to less often.

Proposition 2.3.4. Assume that A is locally noetherian and N ∈ rad(A) is a
regular normalizing element such that for every indecomposable pseudocompact
projective one has NP 6⊂ rad2(P ). Then

Gl dim A/(N) + 1 ≤ Gl dim A (2.8)

Proof. This is an immediate generalization of the proof by Serre that local
rings of finite global dimension are regular.

Let φ = N ·N−1. By Corollary 2.1.19 φ is a homeomorphism.
Let P be an indecomposable pseudocompact projective over A with cosocle

S. We have an inclusion

φ−1S ∼= NP/N rad(P ) ↪→ rad(P )/N rad(P ) (2.9)
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Now we also have NP ∩ rad2(P ) = N rad(P ) and thus there is an inclusion

NP/N rad(P ) ↪→ rad(P )/ rad2(P ) (2.10)

rad(P )/ rad2(P ) is a finite sum of simples and hence this inclusion splits. From
the commutative diagram

NP/N rad(P ) −→ rad(P )/N rad(P )∥∥∥∥ y
NP/N rad(P ) −→ rad(P )/ rad2(P )

we deduce that (2.9) is also split.
Thus

proj dimA S − 1 = proj dimA rad(P )

= proj dimA/(N) rad(P )/N rad(P ) (Lemma 2.3.3)

≥ proj dimA/(N) φ−1S

Taking the supremum over all S yields (2.8).

2.4 A classification problem

Let I be either ZZ or ZZ/nZZ. In this section we aim to classify the following
data.

(A) A pseudocompact ring A with a summable set of primitive orthogonal
idempotents (ei)i∈I such that

∑
i ei = 1 and Aei 6∼= Aej for i 6= j.

(B) A regular normalizing element N ∈ rad(A), inducing a homeomorphism
φ = N ·N−1 such that φ(ei) = ei+1 and such that the image of the (ei)i∈I
becomes central in B = A/(N).

The solution to this classification problem is the following.

Proposition 2.4.1. 1. If |I| = ZZ then A is isomorphic to the ring TI(R)
of lower triangular I × I-matrices with entries in a local pseudocom-
pact ring R. The topology on TI(R) is the product topology. Under the
isomorphism the ei correspond to the diagonal idempotents and N cor-
responds to the matrix in which every entry is zero except those on the
lower subdiagonal, which are one.
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2. If |I| = ZZ/nZZ then A is isomorphic to a ring of n × n-matrices of the
form 

R UR . . . . . . UR
... R UR . . . UR
...

...
. . . . . .

...
...

...
. . . UR

R R . . . . . . R


(2.11)

where R is a local pseudocompact ring and U is a normalizing element
in rad(R) inducing a homeomorphism U ·U−1. The topology on (2.11) is
the product topology. Under the isomorphism of A with (2.11) the (ei)i
correspond to the diagonal idempotents and N corresponds to the matrix

0 . . . . . . 0 U

1 0 . . . . . . 0

0 1
. . .

...
...

. . . . . . . . . 0

0 . . . 0 1 0


(2.12)

Proof. It is clear that the rings exhibited in 1., 2. and the corresponding N ,
(ei)i∈I satisfy (A) and (B), so we only have to be concerned with the converse.
To simplify the notations we put Pi = Aei and Si = Pi/ rad(Pi) will be the
unique simple quotient of Pi.

Recall that by Proposition 2.2.3 we have a matrix form A = (Aij)ij and we
also have N =

∑
i ei+1Nei =

∑
iNi+1,i. Since N is regular we have injections

Aij
·Nj,j−1−→ Ai,j−1 (2.13)

Aij
Ni+1,i·−→ Ai+1,j (2.14)

and furthermore since the image of the (ei)i is central in B, A/NA is diagonal.
This implies that (2.13) and (2.14) are isomorphisms for i 6= j − 1.

Left and right multiplication by N are continuous. Furthermore since A is
pseudocompact, it follows that the final topology on AN for right multiplica-
tion, i.e. let g be right multiplication by N on A, V ⊂ AN is open ⇔ g−1(V )
is open in A, coincides with the induced topology. We claim that this is also
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the case for left multiplication with N on A. Indeed left multiplication by N is

the composition A
·N−→ A

φ−→ A. The fact that φ is a homeomorphism shows
what we want.

Since (2.13) and (2.14) are restrictions from left and right multiplication
by N , they are continuous. Furthermore the topology on the image coincides
with the induced topology. This means in particular that if i 6= j− 1, they are
homeomorphisms.
The fact that N is normalizing also implies

Ni+1,i Aij = Ai+1,j+1 Nj+1,j (2.15)

We will first consider the case |I| <∞.
We define N0 = 1 and for i = 1, . . . , n− 1, Ni = Ni,i−1 . . . N1,0 and maps

θij : Aij → A00 : a 7→ N−1
i aNj

Note that AijNj ⊂ Ai0 and left multiplication by Ni defines a homeomorphism
from A00 → Ai0 since it is a composition of maps of the form (2.14) where
i 6= j − 1. Therefore it makes sense to use N−1

i .

Clearly if a ∈ Aij, b ∈ Ajk, then θij(a) θjk(b) = θik(ab) and hence θ = (θij)ij
defines an inclusion of A into Mn(A00). We want to understand its image.

If i ≥ j then θij is a homeomorphism since in this case right multiplication
by Nj is a homeomorphism as it is a composition of maps of the form (2.13)
where i 6= j − 1. Thus θij(Aij) = A00. Hence we look at the case i < j. We
have

θij(Aij) = N−1
i AijNj = A0jNj

since NiA0j = Aij in this case. We also have, using maps of the form (2.13)
where i 6= j − 1

A0jNj = A0,j+1Nj+1,jNj = A0,j+1Nj+1 = . . . = A0,n−1Nn−1 = A00U

with U = N0,n−1Nn−1,n−2 . . . N1,0. Thus

θij(Aij) = A00 U

By (2.15), we have A00U = UA00 and thus U is a regular normalizing element
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in A00. Hence (putting R = A00)

θ(A) =



R UR . . . . . . UR
... R UR . . . UR
...

...
. . . . . .

...
...

...
. . . UR

R R . . . . . . R


From the definition of U it is clear that U · U−1 is a homeomorphism.

One computes

θ(N)ij = N−1
i NijNj =


0 if i 6= j + 1

1 if i = j + 1, j 6= n− 1

U if i = 0, j = n− 1

If U 6∈ rad(R) then it is easily seen that N 6∈ rad(A) and thus (B) would be
violated.

Let us now consider the case |I| =∞.
The following three lemmas are standard.

Lemma 2.4.2. Ext1
A(Si, Sj) = 0 for i 6= j, j − 1

(The hypothesis |I| =∞ is not used here.)

Proof. Assume Ext1
A(Si, Sj) 6= 0. Then there is a non-trivial extension

0→ Sj → F → Si → 0 (2.16)

There are now two possibilities

∗ NF = 0. In this case (2.16) is an extension as B-modules. Since the (ei)i
are central in B, they define endomorphisms of F . Left multiplication
by ej is the identity on Sj and annihilates Si if i 6= j. This yields the
following

0 → Sj → F → Si → 0

‖ ↓ ej· ↓ f
0 → Sj → F → Si

where f is the zero map. By the snake lemma it then follows that
F = Si ⊕ Sj, which is impossible since F is a non-trivial extension, so i
must be equal to j.
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∗ NF 6= 0. In this case left multiplication by N defines a non-trivial map
Si →φ Sj and since Si, φSj are simple, this map must be an isomorphism.
Thus Si =φ Sj. Now φSj is a simple quotient of φAej = Aej−1. Thus

φSj = Sj−1 and we find i = j − 1.

IK ZOU NOG EEN UITLEG WILLEN SCHRIJVEN BIJ DIE MAP
VAN Si NAAR φSj. DE EERSTE KEER LIFTEN IS VOLGENS MIJ
HET VOLGENDE:

F → F/Sj
↘
N · ↓

F

WAT EEN NIET NUL MAP GEEFT VAN Si NAAR F . MAAR WAT
IS DE TWEEDE LIFT OM IN Sj TERECHT TE KOMEN ?

Lemma 2.4.3. Assume |I| =∞. Let M be a finite length module in mod(A)
with composition factors among the (Sj)j. Assume M/ rad(M) = Si. Then
the composition factors of M are of the form Sk, k ≥ i.

Proof. We prove this by induction on the length of M . Let St ⊂M be a simple
submodule. By induction, the subquotients of M/St are of the form Sk, k ≥ i.

Hence if t < i, then it follows from Lemma 2.4.2 that Ext1
A(M/St, St) = 0

and thus M = M/St⊕St. In particular, St is a simple quotient of M , different
from Si, contradicting the hypotheses.

Lemma 2.4.4. Assume |I| =∞. Then Hom(Pi, Pj) = 0 for i < j.

Proof. Assume there is a non-trivial map Pi
ψ→ Pj. Since Pj is separated there

exists an open submodule L  Pj such that Pi/ψ
−1(L) is non zero. Pj/L has

finite length and is modulo its radical, equal to Sj. Pi/ψ
−1(L) is a subobject of

Pj/L and since Si is a quotient of Pi/ψ
−1(L), it follows that Si is a subquotient

of Pj/L. This implies that i ≥ j by Lemma 2.4.3 and we are done.

We now finish the proof of Proposition 2.4.1.
Since HomA(Pi, Pj) = eiAej = Aij this last lemma implies that in the case
|I| =∞ the matrix form for A is lower triangular.

For every (i, j), i ≥ j there is a homeomorphism

θij : Aij → A00
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obtained by composing homeomorphisms of the form (2.13) and (2.14). One
checks that θij is uniquely determined in this way. By a verification as in the
case |I| < ∞ (but somewhat more complicated) one also shows that θij is
compatible with multiplication and θi+1,i(Ni+1,i) = 1.

Thus A is isomorphic to the ring of lower triangular matrices with entries
in R = A00 and N has the required form.
This finishes the proof of Proposition 2.4.1.

We now exhibit when pseudocompact rings as in Proposition 2.4.1 are
locally noetherian and have finite global dimension.

Proposition 2.4.5. Let A be a pseudocompact ring as in Proposition 2.4.1.
Then A is locally noetherian if and only if R is noetherian. Furthermore if R
is noetherian then

Gl dim A =


Gl dim R + 1 if |I| =∞
Gl dim R/(U) + 1 if 2 ≤ |I| <∞
Gl dim R if |I| = 1

(2.17)

Proof. We have

A/(N) =

{
R/(U)I if |I| <∞
RI if |I| =∞

(2.18)

The condition for A to be noetherian then follows from Proposition 2.1.23.
The statement about the global dimension is clear in the case |I| = 1. For

|I| > 1 we notice that N satisfies the hypotheses of Proposition 2.3.2 and 2.3.4.
Then (2.17) follows from (2.18).

2.5 More classification

In this section we classify rings R satisfying

(C) R is local, complete and contains an algebraically closed field k, isomor-
phic to its residue field.

(D) Let m be the maximal ideal of R. We require that m contains a regular
normalizing element U such that R/(U) is a commutative noetherian
Cohen-Macauly local ring of Krull dimension one.
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(E) proj dimR R/m <∞.

The solution to this classification problem is as follows.

Proposition 2.5.1. Assume that R satisfies (C), (D) and (E) above. Then

R ∼= k〈〈x, y〉〉/(φ) (2.19)

where
φ = yx− qxy + higher order terms (2.20)

for some q ∈ k∗ or

φ = yx− xy − x2 + higher order terms (2.21)

Conversely, every such ring satisfies (C), (D) and (E).

Proof. Let us first show that a ring R of the form (2.19) with φ of the form
(2.20) or (2.21) does indeed satisfy (C), (D) and (E).

It is clear that (C) is satisfied. For (E) observe that we have φ = ux + vy
for some u, v ∈ m such that (u, v) form a basis of m/m2. This means that we
have a complex

0 −→ R
(u v)−→ R2

(xy )−→ R −→ R/m −→ 0 (2.22)

and we have to show that this complex is exact.
We filter R with the m-adic filtration. For this filtration it is easy to see that

gr R = k〈x, y〉/(θ) (2.23)

where θ consists of the quadratic part of φ.
The exactness of

0 −→ gr R
(u,v)−→ (gr R)2

(xy )−→ gr R −→ R/m −→ 0 (2.24)

which follows from the fact that all the morphisms are graded, implies the
exactness of (2.22). This proves (E).

Now let us consider (D). We assume that R is not commutative since other-
wise (D) is trivial. From (2.23) it follows that R is a domain, so every element
of R is regular. Put U = [y, x]. We claim that U is normalizing. This was
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independently observed by Artin and Stafford. Assume first that we are in the
case (2.20). One computes

Ux = qxU + [x, γ]

Uy = q−1yU + q−1[y, γ]
(2.25)

where γ represents the non-quadratic terms of φ. Now clearly

[x, γ] =
∑

i uiUvi

[y, γ] =
∑

i u
′
iUv

′
i

(2.26)

for appropriate ui, vi, u
′
i, v

′
i ∈ R. Substituting (2.26) into (2.25) and then

substituting the resulting equations repeatedly into themselves, yields the for-
mulas

Ux = (qx+ . . .)U

Uy = (q−1y + . . .)U

Thus U is a normalizing element.
Case (2.21) is treated similarly starting from

Ux = xU + [x, γ]

Uy = (y − 2x)U + [y, γ]− [x, γ]

Since R/[y, x] = k[[x, y]]/(φ) is clearly Cohen-Macauly of Krull dimension
one, we have shown that R satisfies (D).

Now we prove the converse. Note that by (D), R is automatically left and
right noetherian.

Step 1. proj dimR R/m = 2

Proof. We have

proj dimR R/m = 1 + proj dimR m

= 1 + proj dimR/(U) m/Um (Lemma 2.3.3)

In particular, proj dimR/(U) m/Um is finite. Since R/(U) is commutative of
Krull dimension one, this implies proj dimR/(U) m/Um ≤ 1.
Thus proj dimR R/m ≤ 2.
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Assume that the projective dimension of R/m is strictly less than 2. It
cannot be 0, hence it must be one. This means that there is a resolution

0→ Rn → R→ R/m→ 0

which easily yields that R is the completion of a free k-algebra in n variables.
If n > 1 then R is not noetherian and if n = 1 then R is a discrete valuation
ring and hence (D) is not satisfied.

Step 2. The minimal resolution of R/m looks like

0 −→ R
(u v)−→ R2

(xy )−→ R −→ R/m −→ 0

where (x, y), (u, v) form bases for m/m2.

Proof. The minimal resolution of R/m looks like

0 −→ Rb g−→ Ra f−→ R −→ R/m −→ 0 (2.27)

Tensoring with R/(U) = R yields an exact sequence

0→ R
b → R

a → R→ 0

By taking ranks, it then follows that a = b+ 1.
Since R/(U) is Cohen-Macauly we have, for i ≤ 1

ExtiR(R/m,R) = Exti−1
R/(U)(R/m,R/(U)) = 0

By dualizing (2.27) and using the previous, Step 1 and the fact that R is local,
we find a minimal resolution of Ext2

R(R/m,R) as right R-module

0 −→ R
f t−→ Ra gt−→ Rb −→ Ext2

R(R/m,R) −→ 0 (2.28)

Now Ext2
R(R/m,R) is annihilated by m and thus dimk Ext2

R(R/m,R) = b.
Hence if b 6= 1, we see that (2.28) decomposes as a direct sum of subcomplexes.
But then so does the dual complex (2.27), which is impossible since this is a
minimal projective resolution of a simple R-module. We conclude that b = 1,
a = 2.

We now find that the minimal resolution of R/m looks like (2.27) with (x, y)
a basis for m/m2. Since the dual complex of (2.27) is a minimal resolution of
R/m (as right module), we find that (u, v) is also a basis for m/m2.
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We can now conclude the proof of Theorem 2.5.1. From Step 2 it follows
that R is as in (2.19) with φ = ux + vy. It is now easy to see that φ can be
put in one of the standard forms (2.20) (2.21).

Proposition 2.5.2. Let R, m, U be as in Proposition 2.5.1. Then R/(U) is
regular if and only if U 6∈ m2.

Proof. If U ∈ m/m2 then by Proposition 2.3.4 R/(U) is regular. Conversely,
assume that R/(U) is regular. Then

1 = dimk (m/(U))/(m/(U))2 = dimk m/((U) +m2)

whence U 6∈ m2.

Remark 2.5.3. This result is false in higher dimension. Consider for example

R = k〈〈x, y〉〉/([x, [x, y]], [y, [x, y]])

Then R/([x, y]) = k[[x, y]] is regular, but [x, y] ∈ rad2(R).

2.6 Proof of Theorem 2.0.1

We start by discussing things a bit more generally.
Let A be a Grothendieck category, G : A → A an autoequivalence and η :
G→ idA a natural transformation such that

η(G(A)) = G(η(A)) (2.29)

for all A ∈ A. Define
B = {A ∈ A| η(A) = 0}

Then the following properties are easily verified.

Lemma 2.6.1. 1. B is closed under subquotients, direct sums and direct
products (and hence under limits and colimits).

2. B is closed under G, G−1 and if A ∈ A then ker η(A), coker η(A) ∈ B.

3. Let i∗ : B → A be the inclusion functor. The functors i!, i∗ : A → B
defined by

i!(A) = ker(A
η(G−1(A))−−−−−−→ G−1(A))

i∗(A) = coker(G(A)
η(A)−−−→ A)

are respectively the right and the left adjoint of i∗.
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Remark 2.6.2. The condition (2.29) is not automatic. A counter example is
given by A = Mod(A) with A = k ⊕ V , where V is a k-vectorspace such that
V 2 = 0 in A. For G we take M 7→ψ M for some ψ ∈ GL(V ), which we extend
in the obvious way to A. To define η, we take v ∈ V , not ψ-invariant and we
define φ :ψ A → A as the bimodule map which sends 1 to v. Then we put
η(−) = φ ⊗A −. In this case G(η(A)) 6= η(G(A)), and in particular B is not
G-invariant.

Nevertheless (2.29) holds in the case we are interested in as the following
lemma shows.

Lemma 2.6.3. Assume that for all injectives E ∈ A we have that η(E) is
surjective. Then (2.29) holds.

Proof. We have that η G is a natural transformation G2 → G. Applying
this to the map G−1ηG : GE → E, we get a commutative diagram (using
E = G(G−1(E))).

G2(E)
η(GE)−−−→ GE

η(GE)

y η(E)

y
GE −−−−−−→

G−1η(GE)
E

Applying this diagram with E injective and using the surjectivity hypothesis
we find that G−1(η(GE)) = η(E).

Now let A ∈ A be arbitrary and let

0→ A→ E → F

be an injective resolution of A. This yields commutative diagrams.

0 −−−→ GA −−−→ GE −−−→ GF

G(η(A))

x G(η(E))

x G(η(F ))

x
0 −−−→ G2A −−−→ G2E −−−→ G2F

0 −−−→ GA −−−→ GE −−−→ GF

η(G(A))

x η(G(E))

x η(G(F ))

x
0 −−−→ G2A −−−→ G2E −−−→ G2F

The fact that the rightmost squares of these diagrams are commutative, yields
the result in general.
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Now let D ⊂ B be a G, G−1-stable localizing subcategory (that is, closed
under subquotients, extensions and direct sums) and define D∞ as the full sub-
category of A consisting of objects A having an ascending filtration (FiA)

i∈IN
such that

F0A = 0, Fn+1A/FnA ∈ D, A = ∪nFnA (2.30)

If there is such a filtration with FnA = Fn+1A = . . ., then we say that A ∈ Dn.
Note that Dn = Bn ∩ D∞.

If A ∈ A then there is a maximal filtration (RnA)n on A satisfying the first
two properties in (2.30) with D = B. This filtration is given by

RnA = ker(A
ηn−→ G−nA)

An object A ∈ A is in Bn if RnA = A and it is in B∞ if ∪nRnA = A. A is in
D∞ if in addition Rn+1A/RnA ∈ D.

We also consider the descending filtration on A given by

LnA = im(GnA
ηn−→ A)

This filtration satisfies LnA/Ln+1A ∈ B. If A ∈ Bm, then LnA ⊂ Rm−nA, for
all n ≥ m.

Proposition 2.6.4. 1. D∞ is a localizing subcategory in A.

2. Assume that A is locally noetherian. If D is closed under injective hulls
in B, then D∞ is closed under injective hulls in A.

Proof. 1. Only the closedness under extensions is not immediately clear.
Let

0→ D1 → A
ψ→ D2 → 0

be an extension such that D1, D2 ∈ D∞.

We consider four cases.

(a) If D1 ∈ Dm and D2 ∈ Dn, for some m, n then it is easy to see that
A ∈ Dm+n.

(b) Assume D1 ∈ Dn, for some n. Let F be a filtration on D2 satisfying
(2.30). Then A = ∪iψ−1(FiD2). Since by (a) all ψ−1(FiD2) are in
D∞, we conclude that this is also true for A.
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(c) Assume D2 ∈ Dn, for some n. Then LnA ⊂ D1 and hence LnA ∈
D∞. The exact sequence

0 −→ GnRnA −→ Gn(A)
ηn−→ LnA −→ 0

combined with (b) (RnA ∈ Dn) shows what we want.

(d) Assume now that D1, D2 are general. Using (c), we can now use
the same reasoning as in (b) to finish the proof.

2. This assertion can be split into two parts.

(a) B∞ is closed under injective hulls in A.
To prove this let B ↪→ A be an essential extension with B ∈ B∞
and A ∈ A. We have to show that A ∈ B∞.
We may clearly assume that A/B contains no subobject in B∞.
Assume first that A is noetherian. In that case B ∈ Bn for some n.
From the exact sequence

0 −→ B −→ A
ηn−→ G−n(LnA) −→ 0

we deduce that A/B ∼= G−n(LnA). Hence LnA contains no subob-
ject in B∞. Thus LnA ∩ B = 0 and hence LnA = 0. This yields
A = B and we are through.
Now assume that A is general. By hypothesis A = ∪i∈IAi where
the Ai are noetherian. By looking at the pairs (B ∩Ai, Ai), we find
that Ai ∈ B∞. Hence A ∈ B∞.

(b) D∞ is closed under injective hulls in B∞.
To prove this, assume that D ↪→ B is an essential extension with
D ∈ D∞ and B ∈ B∞. Since B = ∪

n∈INRnB, by considering all
the pairs (RnB ∩D,RnB), we may reduce to the case B ∈ Bn. We
then use induction on n. If n = 1 then B ∈ B, D ∈ D and the
result follows from the hypotheses on D.
Assume now n > 1. We have the standard exact sequence

0 −→ R1B −→ B
η−→ G−1(L1B) −→ 0 (2.31)

Since B ∈ Bn, it follows that RnB = B. Therefore the exact
sequence

0 −→ Gn(RnB) −→ GnB
ηn−→ LnB −→ 0
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yields that LnB = 0, so B ∈ Bn. This implies that L1B ⊂ Rn−1B,
thus L1B ∈ Bn−1. Clearly R1B ∈ B. So looking at the pairs
(R1B ∩ D,R1B) and (L1B ∩ D,L1B) and induction, reveals that
R1B, L1B ∈ D∞. Hence from (2.31), we deduce that B ∈ D∞.

From here on we assume that A is locally noetherian.
Let (Ti)i∈J be the simple objects in B. It is easy to see that these are also the
simple objects B∞.
Define t : J → J by G−1(Ti) = Tti. Clearly t is a permutation of J .

We let D, C be the minimal localizing subcategories of B and B∞ containing
(Ti)i∈J . Clearly C = D∞.
For i, j ∈ J , we write i ∼D j, i ∼C j if Ti, Tj are respectively in the same
connected component of D and C.
With a reasoning similar to Lemma 2.4.2, one shows that

i ∼C j ⇒ ∃j ∈ ZZ : i ∼D tpj (2.32)

Let K ⊂ J be a union of equivalence classes for ∼D, stable under t, t−1. By
(2.32), K is then also a union of equivalence classes for ∼C.

We denote by DK , CK the minimal localizing subcategories of D and C
containing (Ti)i∈K . Clearly

C = ⊕(K∈J/∼C)CK
D = ⊕(K∈J/∼D)DK

(2.33)

Let Ei be the injective hull of Ti in C. Put EK = ⊕i∈KEi. Then EK is an
injective cogenerator of CK . The injective hull of Ti in D is given by Fi = R1Ei.
We also put FK = ⊕i∈KFi.

Proposition 2.6.5. Assume that η(EK) is surjective. Let CK = EndC(EK),
DK = EndD(FK) with the natural topology (as in Theorem 2.1.1). Then there
is a regular normalizing element N ∈ rad(CK) with the following properties.

1. DK = CK/(N) as pseudocompact rings.

2. Put φ = N · N−1. Let ei ∈ CK be the idempotent corresponding to the
projection EK → Ei. Then φ(ei) = eti.

3. Let U ∈ CK. There is an isomorphism as CK-modules

p :φ Hom(U,EK)→ Hom(GU,EK)

which is functorial in U .
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4. There is a commutative diagram.

Hom(U,EK)
N ·−→ φ Hom(U,EK)∥∥∥∥ p

y
Hom(U,EK)

Hom(η(U),EK)−→ Hom(GU,EK)

(2.34)

5. φ is a homeomorphism.

Proof. Since ker(η(G−1(EK))) = R1EK = FK and η(EK) is surjective which
yields that η(G−1(EK)) = G−1(η(EK)) is also surjective, we have an exact
sequence

0 −−−→ FK −−−→ EK
η(G−1(EK))−−−−−−−→ G−1(EK) −−−→ 0

Applying HomC(−, EK) and using the fact that HomC(FK , EK) = HomD(FK , FK)
by Lemma 2.6.1 (3.), we obtain an exact sequence

0 −→ HomC(G
−1(EK), EK)

r−→ CK
s−→ DK −→ 0 (2.35)

Here r(f) = f ◦ η(G−1(EK)) and s(g) = g|FK .
If U is a finite length object in D, then one checks that s−1(DK (U)) = CK (U)
and hence s is continuous.

Now choose isomorphisms µi : G−1(Ei) → Eti and let µ = ⊕i∈Kµi. The
map which sends h to h◦µ defines an isomorphism CK → HomC(G

−1(EK), EK).
Put N = µ ◦ η(G−1(EK)), as element of CK . Then (2.35) yields an exact
sequence

0 −→ CK
·N−→ CK −→ DK −→ 0

from which we deduce that N is regular and normalizing.

The simple pseudocompact CK-modules are of the form HomC(Ti, EK) and
if f : Ti → EK is a map in C, then f has its image in FK (DIT BEGRIJP
IK NIET !!) and thus is annihilated by η. Hence Nf = µηf = 0 and thus
N ∈ rad(CK).

We now show that N satisfies 2. ei is the composition of the projection
pi : EK → Ei and the injection qi : Ei → EK . The fact that NeiN

−1 = eti
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now follows from the following commutative diagram.

EK
pi−−−→ Ei

qi−−−→ EK

η(G−1(EK))

y η(G−1(Ei))

y η(G−1(EK))

y
G−1(EK)

G−1(pi)−−−−→ G−1(Ei)
G−1(qi)−−−−→ G−1(EK)

µ

y µi

y µ

y
EK

pti−−−→ Eti
qti−−−→ EK

Now we prove 3. Define the map

p : Hom(U,EK)→ Hom(GU,EK) : f 7→ G(µ−1f)

We investigate the behaviour of p with respect to left multiplication by an ele-
ment g of CK . We find p(gf) = G(µ−1gf) = G(µ−1gµµ−1f) = G(µ−1gµ)p(f).
Now we look at the following commutative diagram.

EK
G(µ−1gµ)−−−−−→ EK

η(G−1(EK))

y η(G−1(EK))

y
G−1(EK)

µ−1gµ−−−→ G−1(EK)

µ

y µ

y
EK

g−−−→ EK

From this diagram we deduce that G(µ−1gµ) = N−1gN = φ−1(g). So we
conclude that to make p a map of CK-modules, it suffices to twist Hom(U,EK)
by φ.

Now we prove 4. The commutativity of (2.34) amounts to the identity
G(µNf) = fη(U), for f in Hom(U,EK). SinceG(µ−1Nf) = G(η(G−1(EK))f) =
η(EK)G(f), this follows from the fact that η is a natural transformation.

Finally we note that 5. follows from Lemma 2.1.18 and 3.

Now we specialize to the situation of Theorem 2.0.1.
Thus B = Qch(Y ) for a Cohen-Macauly curve Y and J = Y , since the simple
objects in Qch(Y ) are the pointmodules, which correspond to the points of Y .
This also implies that Tx = Px and t = τ .
It is also clear that x ∼D y ⇔ x = y and thus the equivalence classes for ∼D
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are singletons. From (2.32), it follows that the equivalence classes for ∼C are
given by the τ -orbits.
Finally we have for K ⊂ Y

DK =
∏
x∈K

ÔY,x (2.36)

KAN JE MISSCHIEN EVEN UITLEGGEN HOE JE AAN DEZE LAATSTE
EQUATION KOMT ?

With these data, the proof of Theorem 2.0.1 is now a simple matter of
translation using the results of the section 2.4, 2.5,. . ..

Proof. 1. This follows from (2.33).

2.,3. By Theorem 2.1.1, the functor F ◦ given by M 7→ Hom(M, EK) defines
an equivalence between the dual of Cf,z and the category of left pseudo-
compact modules over the ring Cz = CK , where K is the τ -orbit of z.
By Proposition 2.6.5, DK = CK/(N) for N ∈ rad(CK) such that φ =
N ·N−1 is a homeomorphism and such that φ(ey) = eτy. Thus CK satis-
fies the hypotheses of Proposition 2.4.1. From that proposition, it follows
that we can put CK and N in the required matrix forms and that we
have R = ÔY,z if |K| =∞ and R/(U) = ÔY,z if |K| <∞.
To find out the exact form of R, we first note that by (2.36), DK is lo-
cally noetherian and hence so is CK by Proposition 2.1.23. Furthermore,
by Proposition 2.6.4, every object in CK has finite injective dimension.
Thus CK has finite global dimension. Hence the hypotheses for Propo-
sition 2.5.1 are satisfied and thus R does indeed have the form (2.1) or
(2.2).

Now note that if 2 ≤ |I| <∞, then Proposition 2.4.5 actually tells us that
Gl dim ÔY,z < ∞. Thus z is regular on Y . Also by Proposition 2.5.2,
this implies that U 6∈ rad2(R).

The essential image of F ◦ is given by the pseudocompact left Cz-modules
of finite length. From Proposition 2.2.3, it follows that such modules cor-
respond precisely to the finite dimensional left modules over Cz satisfying
V = ⊕ieiV . KAN JE DIT AUB EVEN VERDUIDELIJKEN ?
Under the duality V 7→ V ∗, such modules correspond to the finite di-
mensional right CK-modules W satisfying W = ⊕iWei.

We now claim that in fact every finite dimensional Cz representation is
pseudocompact. This is clear if |Oτ (z)| < ∞, so assume |Oτ (z)| = ∞.
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In that case the statement depends upon the fact that card(k) =∞.
Clearly we may reduce to the case that W is simple. Then W is annihi-
lated by the Jacobson radical of Cz, which according to [18] is precisely
given by the common annihilator of the pseudocompact simple modules.
In other words, rad(Cz) is given by the lower triangular matrices, hav-
ing only non-units on the diagonal. Thus W is a

∏
i k-module. A finite

dimensional simple module over a commutative k-algebra is clearly one
dimensional. Hence dim(W ) = 1 and we have a corresponding character
χ :

∏
i k → k. Choose a = (ai)i ∈

∏
i k in such a way that ai 6= aj if

i 6= j. Then there exists b ∈ k such that χ(a− b) = 0. But ai− b = 0 for
at most one i, and hence the ideal generated by a−b is either improper or
the kernel of the projection map pri :

∏
i k → k. The first case is clearly

impossible and the second case implies that χ is given by projection on
the i’th factor. Hence W is pseudocompact.

Putting F (M) = Hom(M, EK)∗ finishes the proof of 2., 3.

4. Since F ◦(Pτ iz) is by construction the i’th simple module of Cz, it is given
by Czei/ rad(Czei). Hence F (Pτ iz) = (Czei/ rad(Czei))

∗ = eiCz/ rad(eiCz).

5. This amounts to the construction of a natural isomorphism between
FG(M) and (FM)φ for M∈ Cf,z.
Since FG(M) = Hom(GM, EK)∗ and (FM)φ = (HomC(M, EK)∗)φ =

φ(HomC(M, EK)∗), we can use p∗ with p as in Proposition 2.6.5 (3.).

6. This diagram can be obtained by dualizing (2.34).

7. LetM∈ Qch(Y ). Then FM = HomC(M, EK)∗ = HomQch(Y )(M, FK)∗ =∏
i HomQch(Y )(M, Fi)

∗ where as before Fi is the injective hull of k(τ iz)
in Qch(Y ). It follows from Matlis duality that HomQch(Y )(M, Fi)

∗ is the
completion of M at τ iz.
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Chapter 3

The center of the Proj of a
three dimensional
Artin-Schelter regular algebra

In this chapter we will prove that in characteristic 0, the center of ProjA, where
A is a three dimensional three generator Artin-Schelter regular algebra which
is finite over its center, is the projective plane IP2, using the main theorem
(Theorem 2.0.1) of the previous chapter in a slightly adjusted version.

Let us indicate the general settings of this chapter.
As was pointed out in the first chapter, one associates to a triple (Y, σ,L)
where Y ⊂ IP2 is a cubic divisor, σ ∈ Aut(Y ) and L = OY (1) which has the
additional property L(1−σ)2 ∼= OY , a three dimensional regular algebra A [6].
We recall that the homological properties of A closely resemble those of a
polynomial ring in three variables and in the framework of [9], it is natural to
think of ProjA as a non-commutative IP2.

Assume now that σ has finite order. In that case it has been shown in [7]
that A is finite over its center R. Let X be the classical Proj of R [20]. To
A we may associate a sheaf of OX-algebras O∆. Let Z = Z(O∆). In general
Z will not be equal to OX , so we define Z = SpecZ. We call Z the center of
ProjA.

Motivated by many examples, we dare to make the following conjecture.

Conjecture 3.0.1. Z ∼= IP2.

As was said before, we will show that Conjecture 3.0.1 is true in character-
istic 0.

51
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In Section 3.1 we develop the rudiments of an intersection theory for O∆.
Section 3.2 is dedicated the the Proj of graded rings which are finite over a
commutative graded ring whereas Section 3.3 specifies to our situation. In this
last section we will use the intersection theory developed in the first section to
prove the conjecture in characteristic 0.

3.1 Intersection theory on orders over surfaces

In these notes k will be an algebraically closed basefield.
Below X will be a normal projective surface with function field K. Let D

be a central simple algebra over K and let O∆ be a maximal OX-order.
Our aim is to develop the rudiments of an intersection theory for O∆. More

precisely, define the following sets.

DivrO∆ = {locally free fractional right O∆-ideals}
DivlO∆ = {locally free fractional left O∆-ideals}
DivO∆ = {locally free fractional twosided O∆-ideals}

We shall use the notation Div∗O∆ where ∗ = r, l or ∅. Recall that T is a
fractional right O∆-ideal if for all x ∈ X, Tx is a right O∆,x- submodule in D
which is also a right OX,x-lattice such that TxK = D. In this case, we say that
T is locally free if for all x ∈ X, Tx is a free right O∆,x-module. In a similar
way, we define locally free fractional left or twosided O∆-ideals.
In the definition of DivO∆ ”free” refers to either left free or right free. It
is well-known that these are equivalent. For completeness we include a proof
here.

Lemma 3.1.1. Assume that T is a twosided fractional O∆-ideal. If T is locally
left free then it is locally right free and vice versa.

Proof. It is sufficient to check this locally. So let x ∈ X be a closed point.
Assume that T is locally left free. This means that Tx = O∆,xa for some regular
a ∈ D. Since a ∈ Tx and Tx is also a right ideal, we obtain aO∆,x ⊂ O∆,xa and
thus O∆,x ⊂ a−1O∆,xa. This is an inclusion of two orders and since O∆,x is
maximal, this must be an equality. Thus in fact aO∆,x = O∆,xa. This proves
what we want.

We also put
Div∗,+O∆ = {I ∈ Div∗O∆ | I ⊂ O∆}
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where ∗ = r, l, ∅.
As usual the product between lattices in D restricts to products

DivrO∆ ×DivO∆ → DivrO∆ (3.1)

DivO∆ ×DivlO∆ → DivlO∆ (3.2)

The following lemma is also well-known

Lemma 3.1.2. If L ∈ DivlO∆, and if R is a fractional right O∆-ideal then
the canonical map R⊗O∆

L→ RL is an isomorphism.

Proof. We may check this locally in a point x ∈ X. Tensoring the inclusion
Rx ↪→ D with Lx yields the following commutative diagram.

Rx ⊗O∆,x
Lx

α−−−→ D ⊗O∆,x
Lx

β

y yγ
RxLx

δ−−−→ DLx

Here all maps are the canonical ones. Since Lx is free, it follows that α is an
injection. The vertical map γ is an isomorphism, since it is clearly surjective
and dimD ⊗O∆,x

Lx = 1 = dimDLx. Since γα = δβ it follows that β is
injective. Since it is also clearly surjective, we are done.

For L ∈ DivlO∆ we define L∗ by

L∗(U) = {a ∈ D | L(U)a ⊂ O∆(U)}

for affine U ⊂ X.
Take x ∈ X, if Lx = O∆,xa, for some regular a ∈ D, then L∗x = a−1O∆,x.

From this it follows that L∗ ∈ DivrO∆.
A similar operation, also denoted by (−)∗ is defined on DivrO∆. Clearly (−)∗

defines a bijection between DivlO∆ and DivrO∆.
We recall the following.

Lemma 3.1.3. 1. If T ∈ DivO∆ then T ∗, computed as left or as right
fractional ideal is the same and lies again in DivO∆.

2. DivO∆ equipped with the lattice product is a commutative group. The
inverse is given by (−)∗.
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Proof. DivO∆ is clearly a subsemi-group of the group D of reflexive divisorial
O∆-ideals. It is well known that the analogues of 1.,2. hold for D [35, Thm
2.3].
Now let T ∈ DivO∆ and assume that we compute T ∗ using the fact that
T ∈ DivlO∆. For x ∈ X, let r ∈ O∆,x and a ∈ T ∗x . Since Tx is a right O∆,x-
module, it follows that Tx(ra) ⊂ O∆,x, so T ∗x is a left O∆,x-module. Similarly
one checks that T ∗x is also a left OX,x-lattice such that KT ∗x = D. From
Lemma 3.1.1 and the fact that T ∗ is locally right free, it then follows that
T ∗ ∈ DivO∆. Thus DivO∆ is closed under (−)∗, which yields that 1.,2. hold
also for DivO∆.

We want to define a pairing

(−,−) : DivrO∆ ×DivlO∆ −→ ZZ

having the following properties for L ∈ DivlO∆, R ∈ DivrO∆ and T ∈ DivO∆

(I1) (RT,L) = (R,L) + (T, L)

(I2) (R, TL) = (R, T ) + (R,L)

(I3) (R,L) depends only on the isomorphism class of R and L.

Of course these conditions have to be supplemented with a condition which
tells us what happens in the case that R,L are “transversal” in some sense.

If L ∈ Div∗,+O∆ then we define SuppL ⊂ X as the support of the coherent
OX-module O∆/L. Clearly we have

x ∈ SuppL ⇐⇒ Lx 6= O∆,x

We can now add a further desirable condition for (−,−).

(I4) If R ∈ Divr,+O∆ and L ∈ Divl,+O∆ and if SuppR and SuppL have
finite intersection then (R,L) = dimkO∆/R⊗O∆

O∆/L

Note that “dim” makes sense here since we are applying it to a sheaf with
finite support (SuppO∆/R⊗O∆

O∆/L = SuppR ∩ SuppL).
The classical way of defining intersection numbers is through a moving

lemma. So our next aim will be to develop a substitute for this.
Let Div∗,++O∆ for ∗ = r, l, ∅ be the subset of Div∗,+O∆ consisting of

fractional ideals whose dual is generated by global sections as OX-module.



Center of ProjA 55

Lemma 3.1.4. (Moving Lemma) Assume that L ∈ Divl,++O∆. Let E be an
effective divisor on X and S a finite subset of X. Then there exists L′ ∈
Divl,++O∆ isomorphic to L such that E and SuppL′ have finite intersection
and such that SuppL′ ∩ S = ∅.

Proof.

Step 1. Let x ∈ X we claim that

{a ∈ Γ(X,L∗) | x ∈ Supp(La)} (3.3)

is a closed subset of Γ(X,L∗).
We have Lx = O∆,xc. If a ∈ Γ(X,L∗) then Supp(La) will contain x if and

only if O∆,xca 6= O∆,x. This is equivalent with ca not being a unit in O∆,x.
Finally the latter is equivalent with ca not being a unit in P = O∆,x/ rad(O∆,x).

So we obtain that the set from (3.3) is the inverse image of the non-units
in P under the linear map a 7→ ca. Since the non-units form a closed subset
of the semi-simple k-algebra P , we are through (note that we didn’t use that
L∗ is generated by global sections).

Step 2. Now we show that if x ∈ X is a closed point then there exists a ∈
Γ(X,L∗) such that x 6∈ Supp(La).

Since L∗ is generated by global sections there exist a ∈ Γ(X,L∗) such that
L∗x = aO∆,x. Then Lx = O∆,xa

−1 and hence (La)x = O∆,x. This is precisely
what we want.

Step 3. Now we prove the lemma. For the intersection of E and SuppL′

to be finite it is sufficient to prove that SuppL′ has no common component
with E, since in that case SuppL′ has at most one point in common with each
component of E. So the intersection of E and SuppL′ contains less points then
there are components of E and since E is an effective divisor it has finitely
many components.

Choose x1, . . . , xn ∈ X, such that every component of E contains at least
one of the xi. Then for each y ∈ {x1, . . . , xn} ∪ S the set

Sy = {a ∈ Γ(X,L∗) | y 6∈ Supp(La)}

is open in Γ(X,L∗) and non-empty (by the previous steps). So Sy is a dense
open subset in Γ(X,L∗). Hence, since Γ(X,L∗) is irreducible, there exist an
element b in the intersection of the Sy. Put L′ = Lb. It is clear that L′ ∈
Divl,++O∆ . Since for all i, b ∈ Sxi it follows that E and SuppL′ have no
common component and b ∈ Sy, for all y ∈ S yields that S∩SuppL′ = ∅.
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Now we prove our main theorem.

Theorem 3.1.5. There is a unique pairing

(−,−) : DivrO∆ ×DivlO∆ → ZZ

satisfying the properties (I1)-(I4) above.

Before we start the proof of this theorem we give a lemma that will be used
many times.

Lemma 3.1.6. 1. Let L ∈ DivlO∆. Then there exist T ∈ Div++O∆ as
well as L1 ∈ Divl,++O∆ such that L ∼= T ∗L1.

2. Let E be an effective divisor on X and S a finite subset of X. Then there
exists L1, T as in 1. such that E ∩ SuppL1, E ∩ SuppT are finite and
such that SuppL1 ∩ S = SuppT ∩ S = ∅.

3. Let T ∈ DivO∆. Then there exist T1, T2 ∈ Div++O∆ such that T ∼=
T ∗1 T2.

Proof. 1. Choose an ample M on OX . For n large enough, Mn is generated
by global sections, so in particular there exists a global section f of Mn.
Since M is invertible, it is locally free. Hence Mn is also locally free and
in particular torsion free, so f is injective. Replace Mn by M .
Let K be the function field of X. Then K is flat over OX , so f induces
a monomorphism g : K → M ⊗OX K which is actually an isomorphism
since locally the sheaves are one-dimensional vectorspaces over K.
The canonical map i : M →M⊗OXK is injective, since M is torsion free.
Put M ′ = g−1(iM). M ′ is generated by global sections and furthermore
M ′ is embedded in K and contains OX . Finally replace M ′ by M .

Since M is ample, for m large enough, O∆M
m = O∆⊗OX Mm, L∗Mm =

L∗ ⊗OX Mm will be generated by global sections. Hence by a similar
argument as above, there will be a fractional right ideal I in D containing
O∆, which is isomorphic to L∗Mm.
Put L1 = I∗ and T = O∆M

−m. Then L ∼= T ∗L1.

2. By the classical moving lemma [20, Lemma V.1.2] we may choose M in
1. in such a way that T has the correct properties. Then we can do the
same with L1 using Lemma 3.1.4.
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3. This is proved in a similar way as 1. except that we may not replace an
element in DivO∆ by an isomorphic one since then it will usually be no
longer in DivO∆.

As above let D be the group of divisorial fractional O∆ ideals. As already
said above DivO∆ ⊂ D. It is known [35, Thm 2.3] that D is the free
group on the height one prime ideals in O∆, and furthermore that for any
I ∈ D there exist some n > 0 and J ∈ DivOX such that In = (JO∆)∗∗.
Note that we take the dual here in DivOX .

Let T ∈ DivO∆ and let n > 0, J ∈ DivOX be such that T n = (JO∆)∗∗.
Choose an ample line bundle, M on X contained in K. For some m
the product (J ∩ OX)Mm will have a section a. In other words OX ⊂
(J ∩ OX) · a−1Mm. We now replace M by a−1Mm. Then OX ⊂ M and
OX ⊂ JM .

The fact that OX ⊂ JM and O∆ is a flat OX-module, implies O∆ ⊂
T nM . From this, also using OX ⊂ M , we obtain O∆ ⊂ T nMn. Using
the structure of the ordered group D this implies O∆ ⊂ TM .
We still have TM ⊂ TM2 ⊂ · · · , whence by replacing M with a suffi-
ciently high power we may assume that both O∆M and TM are gener-
ated by global sections.
We now take T1 = (TM)∗ and T2 = O∆M

∗.

Proof of Theorem 3.1.5. We follow the same strategy as the proof of the cor-
responding commutative result in [20].

First we prove uniqueness.
First note that if L ∈ DivlO∆, R ∈ DivrO∆ then by (I1) we have

(R,O∆) = (R,O∆) + (R,O∆)

and hence
(R,O∆) = 0 (3.4)

Similarly we have (O∆, L) = 0.
Now take in addition T ∈ DivO∆. Then by Lemma 3.1.3 we have TT ∗ =

O∆. It follows again from (I1) that

0 = (R, TT ∗) = (R, T ) + (R, T ∗)

and thus
(R, T ∗) = −(R, T ) (3.5)
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Similarly we have (T ∗, L) = −(T, L).
It follows from Lemma 3.1.6 as well as (3.5) and (I1)(I2) that (−,−) is

completely determined by its value on elements of Div∗,++O∆.
However in that case we may apply the moving lemma to reduce ourselves

to a computation of (R,L) such that SuppR ∩ SuppL is finite. In that case
(R,L) is determined by (I4).

To prove the existence, we follow the same method and check that every-
thing is well-defined.

Step 1. We start by defining the intersection pairing on Div∗,++O∆.
Let R ∈ Divr,++O∆ and L ∈ Divl,++O∆. We define

(R,L) = dimkO∆/R
′ ⊗O∆

O∆/L
′ (3.6)

where R′ ∈ Divr,++O∆ and L′ ∈ Divl,++O∆ are chosen in such a way (using
the moving lemma) that R′ ∼= R, L′ ∼= L and SuppL′ ∩ SuppR′ is finite.
Of course we have to check that this is independent of the choice of L′, R′.

To prove this we claim we verify the following : if R ∈ Divr,+O∆ and
L ∈ Divl,+O∆ are such that SuppL ∩ SuppR is finite then

dimkO∆/R⊗O∆
O∆/L = χ(R⊗O∆

L)− χ(R)− χ(L) + χ(O∆) (3.7)

where χ is the Euler characteristic.
The right hand side of this equation is clearly independent of the isomorphism
classes of L and R.

We start by tensoring the obvious locally free resolution of O∆/R

0→ R→ O∆ → O∆/R→ 0

by O∆/L. This yields the complex

R⊗O∆
O∆/L→ O∆/L

By definition the homology of the previous complex is T orO∆
i (O∆/R,O∆/L)

with i = 0, 1. Thus we obtain from the additivity of χ

χ(O∆/R⊗O∆
O∆/L)− χ(T orO∆

1 (O∆/R,O∆/L))

= χ(O∆/L)− χ(R⊗O∆
O∆/L)

We clearly have
χ(O∆/L) = χ(O∆)− χ(L)
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Furthermore by tensoring

0→ L→ O∆ → O∆/L→ 0

on the left with R we find

χ(R⊗O∆
O∆/L) = χ(R)− χ(R⊗O∆

L)

Summarizing everything, we obtain, whatever the choice of L,R, that
χ(O∆/R⊗O∆

O∆/L)−χ(T orO∆
1 (O∆/R,O∆/L)) is equal to the righthand side

of (3.7).
In our case SuppO∆/R⊗O∆

O∆/L is finite and hence

χ(O∆/R⊗O∆
O∆/L) = dimkO∆/R⊗O∆

O∆/L

Thus to prove (3.7), we have to show that

T orO∆
1 (O∆/R,O∆/L) = 0 (3.8)

Pick x ∈ X. We have Rx = aO∆,x, Lx = O∆,xb, for some regular a, b ∈ D.
Then

T orO∆
1 (O∆/R,O∆/L)x = Tor1(O∆,x/Rx,O∆,x/Lx)

= ker(O∆,x/aO∆,x
×b−→ O∆,x/aO∆,x)

Now SuppR ∩ SuppL is finite so Tor1(O∆,x/Rx,O∆,x/Lx) is a finite dimen-
sional OX,x-submodule of O∆,x/aO∆,x. This must then be zero by the assump-
tion that O∆,x is reflexive (and hence Cohen-Macauly).

Now assume that R ∈ Divr,++O∆, T ∈ Div++O∆, L ∈ Divl,++O∆. We
verify (I2) in this case.

By the above discussion we already know that (R, TL) depends only on
the isomorphism classes of R and TL. Hence by the moving lemma we may
assume that SuppR ∩ Supp(TL) is finite.

Consider the following exact sequence

0→ L/TL→ O∆/TL→ O∆/L→ 0 (3.9)

and also the identity L/TL = O∆/T ⊗O∆
L which is obtained from tensoring

the obvious resolution of O∆/T by L and using T⊗O∆
L ∼= TL by Lemma 3.1.2.
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By (3.8), the sequence (3.9) remains exact after applying O∆/R⊗O∆
−. Hence

we obtain the exact sequence

0→ O∆/R⊗O∆
O∆/T ⊗O∆

L→ O∆/R⊗O∆
O∆/TL→ O∆/R⊗O∆

O∆/L→ 0

From the fact that L is locally free we deduce that for all x ∈ X we have

((O∆/R⊗O∆
O∆/T )⊗O∆

L)x ∼= (O∆/R⊗O∆
O∆/T )x

This implies in particular, that Supp(O∆/R ⊗O∆
O∆/T ⊗O∆

L) = SuppR ∩
SuppT ⊂ SuppR ∩ Supp(TL) which is finite. Since SuppR ∩ SuppL is also
finite, it follows from the previous and (3.6) that

(R, TL) = dimkO∆/R⊗O∆
O∆/TL

= dimk(O∆/R⊗O∆
O∆/T ⊗O∆

L) + (R,L)

= dimk(O∆/R⊗O∆
O∆/T ) + (R,L)

= (R, T ) + (R,L)

So (I2) holds in this case.
To complete the first step we still have to verify (I1) in this case, this can

be obtained using the same method under similar hypotheses.

Step 2. Now let L ∈ Divl,++O∆ and let R be arbitrary. Using Lemma 3.1.6
(or rather its version for right ideals) we find decompositions R ∼= R1T

∗ with
R1 ∈ Divr,++O∆ and T ∈ Div++O∆. Then we define

(R,L) = (R1, L)− (T, L) (3.10)

Of course this could depend on the choice of R1, T . To see that this is not the
case write R ∼= R2T

′∗ with R2 ∈ Divr,++O∆ and T ′ ∈ Div++O∆. We have to
show that

(R1, L)− (T, L) = (R2, L)− (T ′, L)

which by the part of (I1) from the previous step, is equivalent to

(R1T
′, L) = (R2T, L)

The equality now follows from the fact that, using the commutativity of the
multiplication in DivO∆, we have R2T = R1T

′.
Now we claim that the definition (3.10) satisfies (I1) for those R, T , L

where it makes sense.
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So assume that R ∈ DivrO∆, T ∈ DivO∆ and L ∈ Divl,++O∆. According to
Lemma 3.1.6 we may write R = R1T

∗
1 , T = T2T

∗
3 with R1 ∈ Divr,++O∆ and

T1, T2, T3 ∈ Div++O∆. Then we find using the definition (3.10) and the part
of (I1) from Step 1

(RT,L) = (R1T
∗
1 T2T

∗
3 , L)

= (R1T2(T1T3)∗, L)

= (R1T2, L)− (T1T3, L)

= (R1, L) + (T2, L)− (T1, L)− (T3, L)

= (R1T
∗
1 , L) + (T2T

∗
3 , L)

= (R,L) + (T, L)

To verify (I2) in this case, we take R ∈ DivrO∆, T ∈ Div++O∆ and
L ∈ Divl,++O∆. Again by Lemma 3.1.6, we may write R = R1T

∗
1 with R1 ∈

Divr,++O∆ and T1 ∈ Div++O∆. It now follows from the definition (3.10) and
the part of (I2) from Step 1 that

(R, TL) = (R1T
∗
1 , TL)

= (R1, TL)− (T1, TL)

= (R1, T ) + (R1, L)− (T1, T )− (T1, L)

= (R1T
∗
1 , T ) + (R1T

∗
1 , L)

= (R, T ) + (R,L)

Finally we check (I3) for definition (3.10).
Assume that R ∼= R′, for R, R′ ∈ DivrO∆ and L ∼= L′, for L, L′ ∈ Divl,++O∆.
Using Lemma 3.1.6, we find decompositions R′ ∼= R ∼= R1T

∗ with R1 ∈
Divr,++O∆ and T ∈ Div++O∆. It follows that

(R′, L′) = (R1, L
′)− (T1, L

′)

= (R1, L)− (T1, L) (by (I3) from Step 1)

= (R,L)

Step 3. Finally assume now that L ∈ DivlO∆ and R ∈ DivrO∆. We write
L = T ∗L1 by Lemma 3.1.6 and we define (R,L) = (R,L1)− (R, T ).
One now verifies exactly as in the previous step that this is well defined and
furthermore that the properties (I1)(I2) and (I3) are satisfied.
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Step 4. We still have to verify that the definition of (R,L) satisfies (I4) under
the hypotheses that R ∈ Divr,+O∆, L ∈ Divl,+O∆ and SuppL ∩ SuppR is
finite.

As usual, we can find L1 ∈ Divl,++O∆ and T ∈ Div++O∆ such that
L ∼= T ∗L1 and SuppR ∩ SuppL1 is finite. So TL ∼= L1 ∈ Divl,++O∆ and
SuppR ∩ Supp(TL) is finite.
Then an exact sequence as in (3.9) shows, using (3.8) which is satisfied since
SuppR ∩ SuppL is finite, that

dimkO∆/R⊗O∆
O∆/TL

= dimkO∆/R⊗O∆
O∆/L+ dimkO∆/R⊗O∆

O∆/T

Since we can also find T ′ ∈ Div++O∆ such that RT ′ ∈ Divr,++O∆ and
Supp(RT ′)∩ Supp(TL) is finite, one checks with the same reasoning as at the
end of Step 1 that

dimkO∆/RT
′⊗O∆

O∆/TL

= dimkO∆/T
′ ⊗O∆

O∆/TL+ dimkO∆/R⊗O∆
O∆/TL

Finally since Supp(RT ′) ∩ SuppT is finite, we have

dimkO∆/RT
′⊗O∆

O∆/T

= dimkO∆/T
′ ⊗O∆

O∆/T + dimkO∆/R⊗O∆
O∆/T

Summarizing everything, we obtain

dimkO∆/R⊗O∆
O∆/L

= dimkO∆/R⊗O∆
O∆/TL− dimkO∆/R⊗O∆

O∆/T

= dimkO∆/RT
′ ⊗O∆

O∆/TL− dimkO∆/T
′ ⊗O∆

O∆/TL

− dimkO∆/RT
′ ⊗O∆

O∆/T + dimkO∆/T
′ ⊗O∆

O∆/T

= (RT ′, TL)− (T ′, TL)− (RT ′, T ) + (T ′, T ) (by Step 1)

= (R,L) (using (I1) and (I2))

The following proposition provides an additional property of the intersec-
tion pairing.
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Proposition 3.1.7. Let L ∈ DivlO∆, R ∈ DivrO∆. Then we have

(R,L) = χ(R⊗O∆
L)− χ(R)− χ(L) + χ(O∆)

In particular, if T, T ′ ∈ DivO∆ then (T, T ′) = (T ′, T ).

Proof. Using Lemma 3.1.6, we write R = R′T ∗2 , L = T ∗1L
′ with T1, T2 ∈

Div++O∆, L′ ∈ Divl,++O∆ and R′ ∈ Divr,++O∆ in such a way that the
supports of R′, L′, T1, T2 have finite pairwise intersection.
This has the effect that we can neglect the higher T or ’s in the computation
below (by (3.8)). For simplicity we also write “⊗” for “⊗O∆

” and “O” for O∆.

We have

χ(R′T ∗2 ⊗ T ∗1L′)− χ(R′T ∗2 )− χ(T ∗1L
′) + χ(O)

= (χ(R′T ∗2 ⊗ L′) + χ(R′T ∗2 ⊗ T ∗1 /O ⊗ L′))
− χ(R′T ∗2 )− χ(T ∗1L

′) + χ(O)

= (χ(R′ ⊗ L′) + χ(R′ ⊗ T ∗2 /O ⊗ L′))
+ (χ(R′ ⊗ T ∗1 /O ⊗ L′) + χ(R′ ⊗ T ∗2 /O ⊗ T ∗1 /O ⊗ L′))
− (χ(R′) + χ(R′ ⊗ T ∗2 /O))

− (χ(T ∗1 /O ⊗ L′) + χ(L′)) + χ(O)

= χ(R′ ⊗ T ∗2 /O ⊗ T ∗1 /O ⊗ L′)
+ (χ(R′ ⊗ T ∗2 /O ⊗ L′)− χ(R′ ⊗ T ∗2 /O))

+ (χ(R′ ⊗ T ∗1 /O ⊗ L′)− χ(T ∗1 /O ⊗ L′))
+ χ(R′ ⊗ L′)− χ(R′)− χ(L′) + χ(O)

= χ(R′ ⊗ T ∗2 /O ⊗ T ∗1 /O ⊗ L′)
− χ(R′ ⊗ T ∗2 /O ⊗O/L′)− χ(O/R′ ⊗ T ∗1 /O ⊗ L′)
+ χ(R′ ⊗ L′)− χ(R′)− χ(L′) + χ(O)

Now we use again the hypothesis on the support of R′, L′, T1, T2. This
allows us to replace some of the “χ” by “dim” in the above formula.
Furthermore we can compute this dimension by looking at stalks. Using the
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fact that R′, L′, T1, T2 are locally free we obtain

χ(R′ ⊗ T ∗2 /O ⊗ T ∗1 /O ⊗ L′)
− χ(R′ ⊗ T ∗2 /O ⊗O/L′)− χ(O/R′ ⊗ T ∗1 /O ⊗ L′)
+ χ(R′ ⊗ L′)− χ(R′)− χ(L′) + χ(O)

= dimkO/T2 ⊗O/T1 − dimkO/T2 ⊗O/L′

− dimkO/R′ ⊗O/T1 + dimkO/R′ ⊗O/L′

= (T2, T1)− (T2, L
′)− (R′, T1) + (R′, L′)

= (R′T ∗2 , T
∗
1L
′)

= (R,L)

In the first equality we have used (3.7).

We will also need the following.

Lemma 3.1.8. Assume that M,M ′ ∈ DivOX and assume that O∆ has PI-
degree s. Then (O∆M,O∆M

′) = s2(M,M ′).

Proof. By additivity and the classical moving lemma we may assume that
M,M ′ ∈ Div++OX and furthermore that SuppM and SuppM ′ intersect in a
finite number of points where O∆ is free of rank s2 over OX .

Since Supp(O∆M) ∩ Supp(O∆M
′) ⊂ SuppM ∩ SuppM ′, it follows from

(I4) that

(O∆M,O∆M
′) = dimkO∆/O∆M ⊗O∆

O∆/O∆M
′

= dimkO∆ ⊗OX (OX/M ⊗OX OX/M ′)

Now if x ∈ SuppM ∩ SuppM ′ then clearly

dimk(O∆ ⊗OX (OX/M ⊗OX OX/M ′))x = s2 dimk(OX/M ⊗OX OX/M ′)x

Summing over the points in SuppM ∩ SuppM ′ proves what we want.

3.2 The Proj of graded rings finite over a com-

mutative graded ring

Let A = k+A1 +A2 + · · · be a twosided noetherian graded ring which is finite
over a commutative graded ring R. By the Artin-Tate lemma, R is finitely
generated. By m we denote the ideal R>0.
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Throughout assume that A is generated in degree one. Let X be the clas-
sical Proj of R (see [20]). If M is a graded R-module then we denote the
associated quasi-coherent OX-module by M̃ [20].

Using the definition of ˜(−) we see that Ã defines a sheaf of OX-algebras.
We denote this sheaf by O∆ and by Qch(O∆) we denote the category of quasi-
coherent O∆-modules, these are quasi-coherent OX-modules which are also
O∆-modules.

If M is a graded A-module then M̃ will be a O∆-module. As usual, for a
graded A (or R-module) M , we let M(n) be the graded module whose grading

is defined by M(n)m = Mm+n. Put O∆(n) = Ã(n). For M a O∆-module we
put M(n) = O∆(n)⊗O∆

M.
Now recall that for any noetherian graded ring A = k + A1 + · · · the

category QGr(A) is defined as Gr(A)/Tors(A) where Tors(A) represents the
locally right bounded graded A-modules. π : Gr(A)→ QGr(A) is the quotient
functor and ProjA is the pair (QGr(A), π(AA)).

Now M 7→ M̃ defines a functor Gr(A)→ Qch(O∆) such that AA is sent to
O∆ and which factors through QGr(A). This functor defines an equivalence
of ProjA with the pair (Qch(O∆),O∆). The key observation to prove this, is
the following:

(*) If f ∈ R is a homogeneous element of strictly positive degree then Af is
strongly graded (see [27]).

Note that for (*) we need essentially that A is generated in degree one.

For the functor to define an equivalence, one must prove that O∆(1) = Ã(1)
is invertible, which is true if for f ∈ m, (Af )1 is invertible over (Af )0. Since
Af is strongly graded we are through.

In the sequel we will also use the notation ˜(−) when M is a graded R-central
A-bimodule. In that case M̃ is canonically an OX-central O∆-bimodule.

Using the property (*) exhibited above one easily proves for a graded A-
module M , that

M̃(n) = O∆(n)⊗O∆
M̃ (3.11)

If M is an A-module then we define the local cohomology modules of M
by

H i
A>0

(M) = inj limn ExtiA(A/A≥n,M)

It is well-known that H i
m(M) = H i

A>0
(M) (see for example [9, lemma 8.2.(3)]).

Hence if M is a R-central graded A-bimodule then so is H i
A>0

(M).
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We define R(n) by ⊕
r∈INRrn and M (n) by ⊕

r∈INMrn. If n > 0 then R

and R(n) have the same classical Proj. Furthermore it is easily seen that for
M ∈ Gr(R) we have M̃ = (M (n))̃.

Finally note the following lemma.

Lemma 3.2.1. Assume that M ∈ Gr(R). Then H i
m(M)(n) = H i

m(n)(M
(n)).

Proof. Clearly R is finitely generated as a module over R(n). Put p = m(n). It
follows that we have

H i
m(M) = H i

p(M) = ⊕jH i
p(M

(n,j))

where M (n,j) = ⊕t=j mod nMt.
Now the definition of local cohomology easily yields that H i

p(M
(n,j)) has its

grading concentrated in degree nZZ + j. Thus we obtain (H i
m(M))(n,j) =

H i
p(M

(n,j)) and the result we were proving is a particular case of this.

If M is a finitely generated graded A-module, then H i
m(M) is finite dimen-

sional in every degree (condition “χ”, see for example [9, Theorem 8.3]).
In general a graded k-vectorspace V which is finite dimensional in every degree
is called locally finite. In that case we define V ′ as the k-dual of V .
It is clear that (−)′ is a functor which sends graded left A-modules to graded
right A-modules and also graded bimodules to graded bimodules.

Assume that R has dimension n. Since A is a finitely generated R-module
and R ⊂ A it follows that A has dimension n also.
It is well-known that for any graded R-module M one has H l

m(M) = 0 for
l > n.

We define the dualizing module of O∆ by

ω∆ = (Hn
m(A)′)̃

It is well-known that the corresponding definition for ωX yields the classical
dualizing module (not the dualizing complex!). This can for example be ob-
tained from [42] where it is shown using local duality, that (Hn

m(R)′)̃ represents
the functor Hn−1(X,−)∗. Since representing objects are unique, Serre duality
[20, Prop III 7.5] implies what we want.

We have the following lemma.

Lemma 3.2.2. One has

ω∆ = HomOX (O∆, ωX)



Center of ProjA 67

Proof. We replace A and R by some Veronese such that R is generated in
degree one. By Lemma 3.2.1 this does not affect ωX and ω∆.

Now for finitely generated graded R-modules M , N we have

HomOX (M̃, Ñ) = HomR(M,N )̃

and this isomorphism is compatible with possible A-module structure on M
and N . To see this we may verify it on affine opens and there we can use (*).

Specializing to M = A and N = Hn
m(R)′ yields

HomOX (O∆, ωX) = HomR(A,Hn
m(R)′)̃

Now we claim that for any finitely generated graded R-module M we have a
natural isomorphism:

HomR(M,Hn
m(R)′) = Hn

m(M)′ (3.12)

In fact since we are comparing two left exact contravariant functors it suffices
to take M = R and this is clear. The fact that (3.12) is natural in M implies
that in case M is a bimodule it is compatible with the bimodule structure.
This finishes the proof.

3.3 Three dimensional Artin-Schelter regular

algebras

In this section A will be a three-dimensional three generator Artin-Schelter
regular algebra finite over its center R. Let (Y, σ,L) be the associated triple.
It follows that σ has finite order.

Now we use the notations which where introduced in the beginning of this
chapter. So X is the classical Proj of R and we put O∆ = Ã.

Let Z = Z(O∆). And denote by Z the projective scheme SpecOX
Z which

has Z as its structure sheaf (see [3]). Since OX ⊂ Z ⊂ O∆, Z is a covering of
X and we consider O∆ as a sheaf on Z.

By D we denote the degree zero part of the graded quotient ring of A.
Thus O∆ is an OX-order in D.

Our aim is now to give a proof of Conjecture 3.0.1 in characteristic zero. So
from now on we assume that k is an algebraically closed field of characteristic
zero.
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Assume that A is elliptic. In that case Y is given by a divisor of degree
three in IP2.

As before, put B = A/(g) where g is a normalizing element in A of degree
three. So B is the twisted homogeneous coordinate ring associated to the triple
(Y, σ,L). In particular one has that ProjB is equivalent to (Y,OY ).

We need the following lemma.

Lemma 3.3.1. B̃ is a commutative sheaf of OX-algebras and furthermore
SpecB̃ is isomorphic to Y .

Proof. We recall the definition of B as⊕
n

Γ(Y,L ⊗ · · · ⊗ Lσn−1

)

with multiplication a · b = abσ
m

for a ∈ Bm, b ∈ Bn.
Let t be the order of σ and put M = L ⊗ · · · ⊗ Lσt−1

. Since L is σ-ample [6],
it follows that M is ample.
Furthermore it is clear that B(t) = ⊕n≥0H

0(Y,M⊗n), the classical homoge-
neous coordinate ring of Y associated toM. In particular B(t) is commutative
and the classical Proj of B(t) is Y .

Since B̃ = (B(t))̃, we deduce that B̃ is commutative. Furthermore one
easily verifies from the definitions that SpecB̃ is nothing but the classical Proj

of B (see for example [3]). Hence SpecB̃ is isomorphic to Y .

Remark 3.3.2. In case A is linear, it is easy to see that with an argument
as in the previous lemma, one has that B̃ is commutative. Since in the linear
case A ∼= B, it follows that Z = Z(O∆) = Z(Ã) = Z(B̃) = B̃. This yields
that Z = Y = IP2 and Conjecture 3.0.1 is proved in this case. Thus we may
assume in the rest of this chapter that A is elliptic.

In view of Lemma 3.3.1, we will commit a slight abuse of notation by
writing OY for B̃.

By the fact that Qch(O∆) is equivalent to QGr(A) it follows that the simple
O∆-modules are in one-one correspondence with the simple objects in QGr(A).
Let M ∈ Gr(A) represent such a simple object. Clearly we may assume that
M is finitely generated and critical. In particular, the multiplication by g
is either injective or the zero map, since a critical module is also monoform,
which implies that a non-zero map is always injective.
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In the first case the simplicity of πM implies that M/gM is finite dimen-
sional. Hence from the exact sequence

0 −→M(−3)n
h−→Mn −→ (M/gM)n −→ 0

it follows that dimMn−3 = dimMn, exept for finitely many n. Thus M has
almost a periodic Hilbert function.
In the second case M is a B-module. Recall that using the description of
B as twisted homogeneous coordinate ring, we find that M corresponds to a
simple OY -module, that is to a point on Y . Using the explicit description of
the equivalence of Qch(Y ) and QGr(B) it follows that M is equivalent modulo
Tors(A) to a point module.

In any case we can say that M is critical of Gelfand-Kirilov dimension one.
Conversely it is clear that such an M will give rise to simple object in QGr(A)
since GK dim(M/M ′) = 0 implies that M/M ′ is torsion.

Critical M of Gelfand-Kirilov dimension were studied in [6]. It was shown
that their multiplicity is either equal to 1 or some number m > 1 and that
their Hilbert function is constant for sufficiently large n. Those that have
multiplicity 1 are precisely those that are annihilated by g.

If M is as in the previous paragraph then M̃ is a simple O∆-module and
in particular it is supported in a point x ∈ X. Then x lies in some standard
open D+(f) associated to a homogeneous element f ∈ R of positive degree.
By definition we have M̃ | D+(f) = (Mf )0.
Now M is critical and multiplication by f on M is not the zero-map, so it
must be injective. Since the Hilbert function of M is constant for sufficiently
large n, it follows that multiplication by f on M must be an isomorphism in
high degree.
It follows that dim(Mf )0 = dimMn for n � 0. Thus if M has multiplicity e
then dim M̃ = e.

Put J = (gA)̃. Assume that O∆ has PI-degree s. Since we are assuming
that A is not linear, it follows that s > 1.
By the above discussion the simple O∆-modules are either 1 or s-dimensional
and the one-dimensional ones are anihilated by J . Note that if they are not
1-dimensional, they must be s-dimensional since the multiplicity m > 1 from
the above discussion is now exactly s. This follows from the fact that over an
algebraically closed field k, the PI-degree is the maximum of the dimensions
of the simple representations which is m is our case.
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By the Artin-Procesi theorem it follows that J defines the ramification of
O∆. More precisely, put I = J ∩ OZ . Then V(I) is the non-Azumaya locus
of O∆ in Z, that is the set of x ∈ Z such that O∆,x is not Azumaya.
Put S = V(I)red.

Proposition 3.3.3. 1. Z is isomorphic to IP2.

2. Y and S with their natural embeddings into IP2 have one of the following
forms:

• A smooth elliptic curve.

• The union of a line and a conic which intersect in two distinct
points.

• The union of three lines which intersect in three different points.

• An elliptic curve with a node.

Let q ∈ S. Then Ô∆,q has the following form

• If q is a node then Ô∆,q = k〈〈x, y〉〉/(yx− ζxy), where ζ is an s’th
root of unity.

• If q is smooth then

Ô∆,q
∼=


T Tx · · · Tx
...

. . . . . .
...

...
. . . Tx

T · · · · · · T


(s× s-matrices) where T = k[[x, y]].

3. The obvious map Y → S is one-one on singular points and outside the
singular points defines an s-sheeted covering.

The proof will consist of a number of lemmas

Lemma 3.3.4. Assume that Λ is an order of PI-degree s > 1 in a central
simple algebra E over the quotient field L of the two dimensional complete local
ring P = Z(Λ) containing a copy of its residue field k. Assume in addition
that Λ is basic, and furthermore that there is an invertible ideal J in Λ such
that Λ/J is commutative. Finally assume that Λ is reflexive and of finite global
dimension.
Then the following hold.
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1. J is generated by a normalizing element N .

2. Λ is isomorphic to 
T Tx · · · Tx
...

. . . . . .
...

...
. . . Tx

T · · · · · · T

 (3.13)

(t× t-matrices) where T is a complete local ring of the form

T = k〈〈x, y〉〉/(ψ)

with
ψ = yx− ζxy (3.14)

for some p’th root of unity ζ, such that pt equals s.

3. P is regular.

4. If Λ has more then one simple module then N and the above isomorphism
may be chosen in such a way that N corresponds to

0 · · · 0 x

1
. . . 0

...
. . . . . .

...

0 · · · 1 0

 (3.15)

5. If Λ has exactly one simple module then N and the above isomorphism
may be chosen in such a way that N corresponds to x, or xy.

6. If Λ has more then one simple module then Λ/(N) is a direct sum of
discrete valuation rings. If Λ has exactly one simple module then Λ/(N)
is either a discrete valuation ring, or isomorphic to k[[x, y]]/(xy).

Proof. There are many ways of proving this. For example, with a little bit
of work, we could deduce it from [30] or [2]. It can also be proved with a
computation similar to [38, §3].

We prefer to prove it using a slightly extended version of Theorem 2.0.1.
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If C is a finite length category, then C̃◦, where (̃−) is the closure under direct

limits, is a locally finite category. So Gabriel associates to C̃◦ a pseudocompact
ring A such that C̃◦ is equivalent to the dual of PC(A), the category of pseu-
docompact modules over A. From this it follows that C is equivalent to the
category of pseudocompact finite length modules over A. Furthermore if A is
basic then an A with this property is unique up to (non-unique) isomorphism.

We apply this with C being the finite length modules over Λ. Then it is
clear that the associated pseudocompact ring is Λ itself.

On the other hand Mod(Λ) almost satisfies the hypotheses of Theorem 2.0.1
with the functor G = J⊗Λ− except that Λ/J is not quite a “Cohen-Macaulay
curve”. However from the fact that Λ is reflexive it follows that Λ/J is a
one-dimensional Cohen-Macaulay ring, and this is sufficient for the proof.

Using this observation, Theorem 2.0.1 now yields that C is equivalent to
the category of pseudocompact finite length modules over a finite direct sum
of rings 

T TU · · · TU
...

. . . . . .
...

...
. . . TU

T · · · · · · T

 (3.16)

where T is a (in general non-commutative) complete local ring of global di-
mension 2.

Hence by the uniqueness alluded to above, Λ is isomorphic to a direct sum
of such rings. However Λ is prime, so it must be isomorphic to exactly one
ring of the form (3.16).
Note that it is exactly the form (3.16) we get from Theorem 2.0.1 since Λ has
finite global dimension.

The fact that T has the form (3.14) follows from the fact that T is finite
over its center, as well as the fact that we are in characteristic zero (for example
using [2]).
From this we also obtain that P = Z(Λ) ∼= k[[xp, yp]]. Thus P is regular.

Now we still need to find the explicit form of N .

If Λ has more than one simple then according to Theorem 2.0.1 2(b) (“n”>
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1 in this case) N is of the form

N =


0 · · · 0 U

1
. . . 0

...
. . . . . .

...

0 · · · 1 0


with U a normalizing element in T contained in rad(T )− rad2(T ).
If ζ = 1 then we can take x = U . If ζ 6= 1 then the only normalizing elements
in T not contained in rad2(T ) are x and y (up to a unit). So possibly after
interchanging x and y we may assume that U = x.

Assume now that Λ has exactly one simple (so “n”= 1). In that case Λ = T .
Since we had assumed s > 1 it follows that T is not commutative, so ζ 6= 1.
Since N has the property that T/(N) is commutative, (N) must contain [y, x].
So (N)/(xy) must be an ideal in k[[x, y]]/(xy) such that the quotient has no
finite dimensional submodules (this follows from the corresponding property
of Λ/(N) which in turn follows from the fact that Λ was assumed reflexive).
It follows that the only possibilities for (N) are (x), (y) or (xy). Since we are
free to change N by a unit and to interchange x and y it follows that we may
take N = x or N = xy.

To end the proof we need to prove 6. However this is a simple consequence
of 4. and 5.

Lemma 3.3.5. Assume that Λ is a hereditary order in a central simple algebra
E over the quotient field L of a discrete valuation ring P . Assume that Λ
contains an invertible ideal J such that Λ/J is a field. Then Λ is a maximal
order and (assuming characteristic zero) the ramification index of Λ is equal
to the PI-degree of Λ.

Proof. We want to work with completions, so let P̂ be the m-adic completion
of P , where m is the unique maximal ideal of P . Let L̂ be the quotient field
of P̂ . Then Ê = L̂ ⊗L E is a central simple L̂-algebra and Λ̂ = P̂ ⊗P Λ is a
hereditary P̂ -order in Ê. Since Ĵ = P̂ ⊗P J is an invertible ideal of Λ̂ and Λ̂/Ĵ
is a field, we obtain from Theorem (39.14) in [29] that Λ̂ is a maximal order
in Ê and thus Λ is a maximal order in E.

Lemma 3.3.6. Z is smooth. Y is as stated in Proposition 3.3.3 and S has
normal crossings.
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Proof. First we make a few general observations:

1. O∆ locally has finite global dimension. This follows from the fact that
A has finite global dimension and is generated in degree one (using (*)).

2. O∆ is reflexive as OZ-module. This follows for example from the fact
that A has no non-trivial extensions by one-dimensional modules (see [7,
Thm 4.1]).

First we prove that Z is smooth.
Let q ∈ Z − S. By the above O∆,q is Azumaya of finite global dimension

and hence the center of O∆,q, which is equal to OZ,q also has finite global
dimension. Thus Z is smooth at q.

Now we consider the case q ∈ S. Applying ˜(−) to the exact sequence

0→ gA→ A→ B → 0

using Lemma 3.3.1 yields an exact sequence

0→ J → O∆ → OY → 0

which yields an exact sequence

0→ Ĵq → Ô∆,q → ÔY,q → 0

So Ô∆,q/Ĵq is commutative by Lemma 3.3.1.

We claim that Ô∆,q is basic. If it weren’t then by the fact that the simple

representations of O∆ have either dimension 1 or s, it follows that Ô∆,q must

have a simple representation of dimension s. However, since q ∈ S, Ô∆,q also
has a simple representation of dimension 1. This contradicts the additivity
principle for PI-degree [11].

Using the observations 1. and 2. above, it follows that the ÔZ,q-order Ô∆,q

satisfies the hypotheses for Lemma 3.3.4. Thus ÔZ,q is regular and hence Z is
smooth in q.

Since ÔY,q ∼= Ô∆,q/Ĵq, Lemma 3.3.4 (6.) implies that Y has at most a node

in q. Furthermore we see immediately that the ramification locus of Ô∆,q has
normal crossings. Hence it follows that S has normal crossings in q.

Using the fact that Y is a cubic divisor in IP2 we now deduce from (4.13)
in [6], that Y is as stated in the proposition.
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Lemma 3.3.7. 1. The irreducible components of Y define invertible ideals
in O∆.

2. O∆ is a maximal order.

3. O∆ has ramification index s in all components of S.

Proof. For some comments on why these assertions need some kind of proof
see Remark 3.3.8 below.

1. Since J is invertible by construction and Y is reduced by Lemma 3.3.6,
this is clear if Y consists of one component. So assume that this is not
the case and let Y1 be an irreducible component of Y with Y1 6= Y . Let
J1 be the corresponding ideal in O∆.

We first prove that J1 is reflexive as OZ-module. To see this let J ′1 be the
bidual of J1 with respect to OZ . Since Z is smooth, J1 is equal to J ′1 in
height one primes. In other words J ′1/J1 is a zero dimensional submodule
of OY1 . Since OY1 is irreducible, it contains no such submodules. It
follows that J ′1 = J1.

Since the explicit models given in Lemma 3.3.4 yield that O∆ locally has
global dimension two (this is easily seen directly), standard arguments
now imply that J1 is at least locally projective (on either side) as O∆-
module.

Let p be a point in Y1 which is singular in Y (such a point exists since Y
is connected by Lemma 3.3.6) and let q be the corresponding point in S.
Since p is singular in Y , Ô∆,q has only one simple module by Lemma 3.3.4

(6.), so by Lemma 3.3.4 (2.), Ô∆,q = k〈〈x, y〉〉/(yx − ζxy). Thus for

example Ĵ1,q = (x) (Lemma 3.3.4 (5.)). In particular Ĵ1,q is invertible.

Our aim is now to show that the cokernel K of

J1 ⊗O∆
J ∗1 → O∆

is zero.
By the previous discussion K̂q is clearly zero. Since as usual Ô∆,q is
faithfully flat as O∆,q-module, it follows that Kq is also zero. Now let S1

be the image of Y1 in S, it then follows by semicontinuity, that K | U = 0
for an open neighbourhood U of q in S1. Since S1 is irreducible and
obviously also K | Z − S1 = 0, we conclude that the support of K is
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zero-dimensional.
On the other hand since J1 is locally projective as O∆-module, it easily
follows that J1⊗O∆

J ∗1 is at least reflexive asOZ-module. So in particular
it has no extensions by sheaves of finite support. We conclude that K = 0
and so J1 is an invertible ideal in O∆.

2. Since O∆ is reflexive it suffices to show that O∆ is a maximal order in
codimension one, i.e. that localisation on height one primes is a maximal
order. The explicit local models of O∆ yield that O∆ is homologically
homogeneous [16]. From this it follows that localizations ofO∆ at generic
points of irreducible curves are hereditary. Thus what we want to prove
follows from Lemma 3.3.5 and (1.).

3. This follows also from Lemma 3.3.5.

Remark 3.3.8. First we remark that from the fact that J is invertible, it
does not trivially follow that J1 is invertible. Indeed consider the following
example

O∆ =

(
OW OW (−w)

OW OW

)
(3.17)

where W = IP1, w ∈ IP1 and let

J =

(
OW (−w) OW (−w)

OW OW (−w)

)
then clearly J is invertible and O∆/J defines two copies of the point w. If we
take one copy to define J1, then we find

J1 =

(
OW (−w) OW (−w)

OW OW

)
which is not invertible.

The fact that O∆ is maximal also does not follow for trivial reasons. Note
that it was shown in [37] that A is a maximal order. However this does not a
priori imply that Ã is a maximal order. To illustrate this we can use the same
counterexample.
Let A = ⊕

n∈ZZAn with An = Γ(W,J −n). Then

A ∼=

(
k[x, y] k[x, y](−1)

k[x, y](1) k[x, y]

)
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where k[x, y] is graded by deg x = 1, deg y = 2. Obviously A is a maximal
order and one easily verifies that Ã = O∆. On the other hand O∆ is clearly
non-maximal.

In dimension one, one cannot construct such an example with A a domain
by Tsen’s theorem. However this is possible in higher dimension. Start for
example with a maximal order OΓ in a division algebra over a surface W and
then take a “tame” suborder O∆ [35] of OΓ ramified in a curve over which OΓ

itself is unramified.
Nevertheless it is conceivable that the methods in [37] may be adapted to

prove that Ã is a maximal order in a reasonable level of generality. However
for simplicity we have prefered to give a direct proof in our special case.

Lemma 3.3.9. 1. If q ∈ S, then Ô∆,q has the form indicated in the state-
ment of Proposition 3.3.3.

2. The obvious map Y → S is one-one on singular points and outside the
singular points defines an s-sheeted covering.

Proof. 1. If q is a node on Y , then Ô∆,q has one simple and so it has the

required form by Lemma 3.3.4 (2.). If q is smooth on Y , then Ô∆,q has
more than one simple and with the notation of Lemma 3.3.4 (2.) “t”
must be exactly s, since all components of S have equal ramification
index s by the previous lemma. It then follows from Lemma 3.3.4 (2.)
that T is the commutative ring k[[x, y]].
KAN JE AUB EVEN UITLEGGEN WAAROM ER IN HET GEVAL
VAN SMOOTH ALTIJD MEER DAN 1 SIMPEL IS, UIT DE STELLING
VAN ARTIKEL 1 VOLGT TOCH MAAR ALLEEN (NOT REGULAR
⇒ 1 SIMPEL), DUS EEN ENKELE PIJL ?

2. This can now be verified directly using the explicit form of Ô∆,q.

Proof of Proposition 3.3.3. The only parts of Proposition 3.3.3 that still need
proof are the fact that Z = IP2 and the explicit form of S. However once we
have shown that Z = IP2 then the form of S can be verified case by case using
Lemma 3.3.9 (2.) and the fact that S has normal crossings.

So it remains to show that Z = IP2. To do this we compute ω∆. Using
standard theory of maximal orders and Lemma 3.2.2, we find

ω∆ = HomOZ (O∆, ωZ) = J 1−s ⊗OZ ωZ (3.18)
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On the other hand by definition ω∆ = H̃3
m(A)′. Now it has been shown by

Yekutieli [41] that H3
m(A)′ is equal to (gA)λ where λ is an automorphism which

on An, is multiplication by αn for some scalar α. It is clear that λ disappears
when we apply ˜(−) and hence ω∆ = (gA)̃ = J .

Comparing with (3.18) yields that

O∆ ⊗OZ ωZ = J s (3.19)

Using the fact that gA only differs by a graded automorphism from A(−3),
it is easy to see that J −1 is ample (in the sense of [9]).
Since we are in characteristic zero, the trace map shows that OZ is a direct
summand of O∆.
From this we deduces the following:

Sublemma . ω−1
Z is ample on Z.

Proof. Let M be a coherent sheaf on Z. We have to show that for i > 0 and
for large n H i(Z, ω−nZ ⊗OZ M) = 0 [20, Prop III.5.3]. Since OZ is a direct
summand of O∆, it is sufficient to show that H i(Z,O∆ ⊗OZ ω−nZ ⊗OZM) = 0
for large n. Now by (3.19), we have O∆⊗OZ ω−nZ = J −ns. Since J −1 is ample
this proves what we want.

From this sublemma, we deduce, using [10, Ex. V.1], that Z is either
IP1 × IP1 or else is obtained by blowing up at most eight points in IP2 in
general position.

To find out the actual form of Z, we compute the self intersection (ωZ , ωZ).

(ωZ , ωZ) = 1
s2

(J s,J s) by Lemma 3.1.8 and (3.19)

= 1
s
(J ,J s) using repeatedly (I1)

= (J ,J ) using repeatedly (I2)

= χ(J 2)− 2χ(J ) + χ(O∆) by Proposition 3.1.7

= χ(O∆/J )− χ(J /J 2) using the obvious exact sequences

Now we have O∆/J = OY and thus by the fact that Y has arithmetic genus
one, we deduce χ(O∆/J ) = 0.
Furthermore J /J 2 = (gA/gA2)̃ ∼= (A/gA)(−3)̃ (as left modules). To com-
pute the Euler characteristic of A/gA, we use that it is a twisted homoge-
neous coordinate ring of Y associated to a line bundle of degree three (and an
automorphism). Under the equivalence explained in chapter 1, (A/Ag)(−3)
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corresponds to a line bundle of degree -9 on Y . Thus χ(J /J 2) = −9, since Y
has arithmetic genus 1.
Combining everything we find that (ωZ , ωZ) = 0− (−9) = 9.

Now we have (ωIP2 , ωIP2) = 9 and (ωIP1
×IP1 , ωIP1

×IP1) = 8. Since blowing

up further reduces (ω, ω) [20, Prop V.3.3] the only possibility is Z ∼= IP2.
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Chapter 4

The center of a
non-commutative regular local
ring of dimension two

By the previous chapter, it is clear that we are interested in centers. In this
final chapter we will look at the center of a class of rings, which includes the
ones mentioned in Proposition 2.5.1. MICHEL, KAN JE DE PARAGRAAF
HIERBOVEN MISSCHIEN DOOR IETS BETERS VERVANGEN ? IK KON
NIETS ANDERS DAN DIT VERZINNEN.

Let us be more specific. Below k is a field. The rings we will be concerned
with, are of the form

C = k〈〈x, y〉〉/(ψ)

where ψ only has term of total degree ≥ 2 and where the quadratic part of ψ
is non-degenerate.

By the proof of Proposition 2.5.1, such rings have global dimension two
and it may be argued that they are the non-commutative analogues of two-
dimensional regular local rings. This explains at once the title of this chapter.

We propose the following conjecture:

Conjecture 4.0.1. Let C be as above. Then the center of C is either trivial,
or else it is a formal power series ring in two variables. If the quadratic part
of ψ is of the form yx− xy and the characteristic p of k is > 0 then Z(C) is
generated by elements of the form xp

n
+ϕ(x) and yp

n
+ θ(x, y) for some n > 0

and where ϕ and θ are trivial or contain only terms in x, y of total degree
> pn.

81
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MICHEL, KLOPT DE FORMULERING VAN DE CONJECTURE ZO
VOLLEDIG ?

In this chapter, we will prove this conjecture in the case that C is given by
an Ore extension. That is

C = B[[y;σ, δ]]

where B is k[[x]], σ is a k-linear automorphism of B and δ is a k-linear σ-
derivation of B. Thus δ satisfies

δ(ab) = σ(a)δ(b) + δ(a)b

and C is obtained from B by adjoining the variable y, subject to the commu-
tation rule

yb = σ(b)y + δ(b) (4.1)

In other words C = k〈〈x, y〉〉/(ψ) where ψ is given by yx − σ(x)y − δ(x).
Thus for ψ to have only terms of degree ≥ 2, it is necessary that δ(x) contains
only terms of degree ≥ 2, if δ is non trivial. We assume this throughout.

We will prove the following theorem:

Theorem 4.0.2. If C is an Ore extension as above then Conjecture 4.0.1
holds.

Our treatment of the case where σ is trivial relied originally on the following
combinatorial result by G. Baron and A. Schinzel in [12].

Proposition 4.0.3. For any prime p and any residues xi mod p, we have:∑
σ∈Sp−1

xσ(1)(xσ(1) + xσ(2)) . . . (xσ(1) + . . .+ xσ(p−1))

≡ (x1 + · · ·+ xp−1)p−1 (mod p)

where Sp−1 is the group of all permutations σ of {1, . . . , p− 1}.

Afterwards we discovered a new approach which is independent of the above
result. It turns out that we can now even give a new proof of the result by
G. Baron and A. Schinzel, using Lemma 4.1.1. This proof is produced in the
final section of this chapter.

Let us give an outline of the strategy used in the following for proving
Theorem 4.0.2.

First we dispense with some trivial cases. If σ is trivial and δ = 0 then
there is nothing to prove (since we do not consider this case). In addition, it
is easy to prove that in the following cases the center of C is trivial.
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1. σ is trivial, δ is not trivial and p = 0.

2. The order of σ is infinite.

In subsequent sections we deal with the remaining cases. In Section 4.1,
we discuss the case where σ is the identity and p > 0. In Section 4.2, we focus
on the case where δ is trivial and σ is not trivial but has finite order. Finally
in Section 4.3 we deal with the case where both σ and δ are non-trivial and σ
has finite order.
In this last case our approach is somewhat indirect and we do not obtain nice
expressions for the elements generating the center.

4.1 The case where σ is the identity and p > 0

It follows from (4.1) that in this case the commutation relation between y and
x is given by

y x = x y + δ(x) (4.2)

In this case we prove

Z(C) = k[[z, w]]

where z = xp and w = yp − cp(x)y, with

cp(x) =
∂

∂x

(
∂

∂x

(
. . .

(
∂ δ(x)

∂x
· δ(x)

)
. . . · δ(x)

)
· δ(x)

)

in which
∂

∂x
and δ(x) occur (p− 1) times.

It is obvious that [x, z] = 0. Furthermore from

[y,z] = δ(xp) = xδ(xp−1) + δ(x)xp−1 = . . .

=
∑

a+b=p−1
a,b≥0

xaδ(x)xb = pδ(x)xp−1 = 0

we deduce that z also commutes with y. Hence z is in the center of C.

To prove that w is in the center of C we use the following key-lemma. This
lemma will also be used in the new proof of Proposition 4.0.3.
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Lemma 4.1.1. Let f ∈ B and put

g =
∂

∂x

(
∂

∂x

(
. . .

(
∂ f

∂x
· f
)
. . . · f

)
· f
)
∈ B

where both
∂

∂x
and f occur (p− 1) times. Then

∂ g

∂x
= 0.

Proof. Without loss of generality we may assume that f 6= 0. Define the
derivation d of B by

d(b) :=
∂ b

∂x
· f

and consider the differential operator e = dp − g · d on B.
We have

dp(xi+j) =

p∑
l=0

(p
l

)
dl(xi)dp−l(xj)

This sum reduces to dp(xi)xj +xidp(xj) in characteristic p since p divides
(p
l

)
,

for all 1 ≤ l ≤ p− 1. It follows that e is also a derivation of B.
If we evaluate e in x, we get

e(x) = dp(x)− g · d(x)

= f · ∂
∂x

(
∂

∂x

(
. . .

(
∂ f

∂x
· f
)
. . . · f

)
· f
)
− g · f

= f · g − g · f
= 0

and so e is identically zero on B. In particular, e commutes with d.
On the other hand we have, for all i > 0

[e, d](xi) = e(d(xi))

= ixi−1e(f)

= ixi−1

(
f
∂

∂x
(fg)− gf ∂ f

∂x

)
= ixi−1f 2∂ g

∂x

= f
∂ g

∂x
d(xi)
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and

[e, d](x) = e(d(x)) = e(f) = f 2∂ g

∂x
= f

∂ g

∂x
d(x)

It follows that

f
∂ g

∂x
d = 0

on B. Evaluating at x and using the fact that f 6= 0, this yields
∂ g

∂x
= 0.

Let yl, respectively yr be left, respectively right multiplication by y on B.
Because yl and yr commute, we see that

[y,−]p =

p∑
i=0

(p
i

)
yil(−yr)p−i = ypl − y

p
r = [yp,−]

It follows that we have

[yp, x] = [y, [y, . . . , [y, δ(x)] . . .]] ((p− 1) times y)

By repeatedly using the fact that, for all f(x) ∈ B

[y, f(x)] =
∂ f(x)

∂x
[y, x] =

∂ f(x)

∂x
· δ(x)

we deduce, for f(x) = δ(x)

[yp, x] = cp(x) [y, x]

It follows that w commutes with x.
Furthermore, applying Lemma 4.1.1 with f = δ(x) ∈ B, we deduce

[y, w] = [y, cp(x)] y =
∂ cp(x)

∂x
[y, x] y = 0

Thus w commutes also with y and we obtain k[[z, w]] ⊂ Z(C).

Let Q(Z(C)) and Q(C) be respectively the quotientfields of Z(C) and C.
Since {xayb | 0 ≤ a, b ≤ p − 1} is a basis of C over k[[z, w]], we see that C is
free of rank p2 over k[[z, w]]. This implies

p2 = dimk((z,w))Q(Z(C)) dimQ(Z(C)) Q(C)
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whence

dimQ(Z(C)) Q(C) ∈ {1, p, p2}

Since C is not commutative and dimQ(Z(C))Q(C) is a square according to [17],
it follows that

dimQ(Z(C))Q(C) = p2

and furthermore that Z(C) and k[[z, w]] have the same quotientfield.

As indicated above C is free of rank p2 over k[[z, w]]. In particular C is
finitely generated as a module over k[[z, w]]. It follows that Z(C) is also finitely
generated as a module over k[[z, w]] and thus Z(C) is integral over k[[z, w]].
Since k[[z, w]] is integrally closed, this yields Z(C) = k[[z, w]].

So in order to complete the proof Conjecture 4.0.1 in this special case, we
have to show that if v(δ(x)) ≥ 3, v(cp(x)) > p − 1, where v is the x-adic
valuation on B. Therefore, put, for all r ≥ 2

cr(x) =
∂

∂x

(
∂

∂x

(
. . .

(
∂ δ(x)

∂x
· δ(x)

)
. . . · δ(x)

)
· δ(x)

)

in which
∂

∂x
and δ(x) occur (r − 1) times.

We prove by induction that v(cr(x)) ≥ 2(r − 1).

Since v(δ(x)) ≥ 3, we get

v(c2(x)) = v

(
∂ δ(x)

∂x

)
≥ 2

By induction, we have

v(cr(x)) = v

(
∂

∂x
(cr−1(x) · δ(x))

)
= v(cr−1(x)) + v(δ(x))− 1

≥ 2(r − 2) + 3− 1

= 2(r − 1)

So v(cp(x)) ≥ 2(p− 1) > p− 1.
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4.2 The case where δ = 0 and σ is not trivial

but has finite order

In this case the commutation relation between y and x is given by:

y x = σ(x) y (4.3)

We will denote the order of σ by n and put A = Bσ. Let K, L be the
quotientfields of A, B respectively. We prove that

Z(C) = k[[z, yn]]

where z = x σ(x) . . . σn−1(x).
Let us first discuss the structure of A.

Lemma 4.2.1. A = k[[z]], with z as above.

Proof. It is obvious that A is a complete discrete valuation ring and k is a
copy of its residue field. So A is a formal power series ring k[[u]], where u is a
uniformizing element.

Since K is complete under a discrete valuation and L is a finite extension of
K, the uniformizing element u must be of the form xe + higher terms, where
e is the ramification index. Furthermore, since the residue class degree equals
1, we conclude that e = [L : K] = n.

It is easy to see that since σ is k-linear,

σ(x) = ζ x+ higher terms

where ζ is an nth root of unity.
So z = x σ(x) . . . σn−1(x) is of the form xn + higher terms. Therefore z is also
a uniformizing element and furthermore A = k[[z]].

It is clear that A ⊂ Z(C) and that yn belongs to the center of C. We now
look at the other inclusion.

Let f be in Z(C). We can write f , in a unique way, in the form
∑

i≥0 ai y
i,

where ai ∈ B. Since f ∈ Z(C), we have (using (4.3))

0 = [x, f ] =
∑
i≥0

ai(x− σi(x))yi
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Hence, for all i ∈ IN, if ai 6= 0, x = σi(x), so n divides i.
On the other hand we have

0 = [y, f ] =
∑
i≥0

(σ(ai)− ai)yi+1

so σ(ai) = ai, for all i in IN. This yields ai ∈ A, for all i in IN.
It follows that f ∈ k[[z, yn]].

We have now proved that Z(C) is a formal power series ring in the two
variables z, w. The remaining claim of Conjecture 4.0.1 follows from the fact
that if σ(x) is of the form x+ higher terms, then

• If p = 0 and σ is non-trivial then its order is infinite (easily proved).

• If p > 0 and if the order of σ is finite then it is a power of p [36].

4.3 The case where σ and δ are non trivial and

σ has finite order

Here we have the following commutationrelation between y and x :

y x = σ(x) y + δ(x) (4.4)

As before we denote the order of σ by n and we assume n 6= 1. We put
A = Bσ and we let K and L be respectively the quotientfields of A and B. We
extend the action of σ and δ to L and we denote these extended maps also by
σ and δ.

It was shown in Lemma 4.2.1, that A is the ring of power series over k in
z = x σ(x) . . . σn−1(x) ∈ B.

For convenience we will first work in the polynomial Ore extension S =
B[y;σ, δ]. We will prove the following theorem.

Theorem 4.3.1. The center Z(S) of S is the ring of polynomials A[w], where
w is a monic (skew) polynomial of degree n in y with coefficients in B. In
particular, we find that S is free of rank n2 over Z(S).

The proof of this theorem depends on the following lemma:
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Lemma 4.3.2. Let D, D′ be central simple algebras of the same PI-degree
with centers Z, Z ′, respectively. Assume that D ⊆ D′. Then Z ⊆ Z ′ and
furthermore the map ϕ : D ⊗Z Z ′ → D′, defined by ϕ(d ⊗ z′) := dz′, is an
isomorphism.

Proof. Denote the PI-degree of D and D′ by m. Then the PI-degree of DZ ′ is
also equal to m since we have inclusions D ⊆ DZ ′ ⊆ D′.

Furthermore, from Z ′ ⊆ Z(DZ ′) ⊆ DZ ′ ⊆ D′ (where Z(DZ ′) is the center
of DZ ′), we deduce

m2 = [DZ ′ : Z(DZ ′)] ≤ [DZ ′ : Z ′] ≤ [D′ : Z ′] = m2

This yields [DZ ′ : Z ′] = m2 = [D′ : Z ′]. And it follows that DZ ′ = D′ and in
particular

Z ⊆ Z(DZ ′) = Z(D′) = Z ′

From DZ ′ = D′ we also conclude that the map ϕ : D ⊗Z Z ′ → D′ defined
above, is an epimorphism. Since D is a central simple algebra, the same
holds for D ⊗Z Z ′. So D ⊗Z Z ′ is simple, which implies that ϕ has to be an
isomorphism.

Proof of Theorem 4.3.1. For all f ∈ B, we have, working out the identity
δ(x f) = δ(f x)

δ(f) =
σ(f) − f

σ(x) − x
· δ(x) (4.5)

This implies δ(f) = 0, for all f ∈ A. So the polynomial ring R = A[y] is a
commutative subring of S.

Now consider S as right R-module. Since B is free of rank n over A =
k[[xn + higher terms]], S is free of rank n over R. Furthermore, left multipli-
cation yields an injective ringhomomorphism

S ↪→ EndR(SR) (4.6)

It follows that S is isomorphic to a subring of the matrix ring Mn(R), which
is a PI-ring since R is commutative. So S satisfies a polynomial identity and
furthermore, the PI-degree of S is less or equal to the PI-degree of Mn(R)
which is n. We claim that it is exactly n.

To see this, filter S by y degree and denote the associated graded ring
by grS. Since grS = B[y;σ], we see that grS is a domain and furthermore
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Z(grS) = A[yn] by Section 4.2. So grS is a prime ring of rank n2 over its
center which implies that its PI-degree is equal to n. Since the PI-degree of
S ≥ PI-degree of grS, it now follows that the PI-degree of S is exactly n.

Let E be the quotientfield of S. As in (4.6) we have an inclusion

i : E ↪→ EndK(y)(EK(y)) (4.7)

Since E and EndK(y)(EK(y)) are both central simple algebras of PI-degree n,
(4.7) induces, by Lemma 4.3.2, an isomorphism

ϕ : E ⊗Z(E) K(y) −→ EndK(y)(EK(y)) (4.8)

defined by ϕ(e⊗ f) = i(e) f .
This means that we can compute the characteristic polynomial of each e ∈ E,
in EndK(y)(EK(y)).

Since S is an Ore extension, it is also a maximal order by [23] and so it is
closed under taking coefficients of reduced characteristic polynomials. Using
this observation we can now explicitly construct elements in the center of S
since the coefficients of reduced characteristic polynomials are central elements
of E. The coefficient we are interested in, is the reduced norm of y.

By definition this reduced norm may be computed by taking the image of
y in EndK(y)(EK(y)) under (4.8), i.e. ϕ(y ⊗ 1) = i(y), where i(y) is left multi-
plication by y, and then computing the determinant of i(y) in EndK(y)(EK(y)).

To perform this computation we need a suitable basis for E/K(y). We pick
a normal basis {f, σ(f), . . . , σn−1(f)} for L/K, for some f ∈ L [17]. This is
still a basis for E/K(y).

We now compute the matrix of i(y) explicitly.
By (4.4) we get, for all 0 ≤ j ≤ n− 1,

i(y)(σj(f)) = σj+1(f)y + δ(σj(f))

Since {f, σ(f), . . . , σn−1(f)} is a basis for L/K

i(y)(σj(f)) = σj+1(f)y +
n−1∑
i=0

σi(f)aji

for certain aji ∈ K.
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It follows that the matrix of i(y) = D + C y, where D = (aji) ∈Mn(K) and

C =


0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

...

0 0 0 . . . 1

1 0 0 . . . 0


the matrix of a cyclic permutation.

This yields

Nrd(y) = det(D + Cy) = (−1)n+1yn + lower terms in y

Put w = (−1)n+1 Nrd(y). Clearly A[w] ⊂ Z(S). Since B is free of rank
n over A and w = yn + lower terms in y, S is free of rank n2 over A[w]. In
particular, Z(S) is integral over A[w]. Since A[w] ⊂ Z(S) ⊂ S, it follows that

K(w) ⊂ Q(Z(S)) ⊂ E (4.9)

where Q(Z(S)) is the quotientfield of Z(S).
Since S is free of rank n2 over A[w] and E is a central simple algebra of
PI-degree n, (4.9) yields

dimK(w) Q(Z(S)) = 1

Thus A[w] and Z(S) have the same quotientfield. The fact that A[w] is inte-
grally closed and Z(S) is integral over A[w], now implies A[w] = Z(S).

In the next proposition we will obtain more information on the element w
constructed in the above theorem. Let v be the x-adic valuation on B.

Proposition 4.3.3. Assume that v(δ(x)) = a. If w = yn +
∑n−1

i=0 fi(x) yi,
then for i > 0 we have

v(fi) ≥ (a− 1)(n− i)

Furthermore there exists an element q0(z) ∈ k[[z]] such that

v(f0 + q0(z)) ≥ (a− 1)n

In the proof of this proposition we need the result of the following lemma:
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Lemma 4.3.4. If f ∈ B, then

v

(
σ(f)− f
σ(x)− x

)
≥ v(f)− 1

Proof. Put r = v(f) and f =
∑+∞

i=r aix
i, where ai ∈ k and ar 6= 0.

Case 1. r ≥ 1
If we denote f by f(x) and

∑+∞
i=r aiσ(x)i by f(σ(x)), we have

σ(f)− f
σ(x)− x

=
f(σ(x))− f(x)

σ(x)− x
=
f(x+ h)− f(x)

h

where h = σ(x)− x.
It is easy to see that

f(x+ h)− f(x)

h
=

+∞∑
i=0

(
+∞∑
j=r

ajψi,jh
j−i−1

)
xi

where

ψij =

{
0 if i ≥ j

j!
i!(j−i)! if i < j

Since σ is of the form ζx+ higher terms, where ζ in an nth root of unity,
v(h) ≥ 1. It follows that

v

(
σ(f)− f
σ(x)− x

)
= v

(
f(x+ h)− f(x)

h

)
≥ mini((r − i− 1)v(h) + i) ≥ r − 1

Case 2. r = 0
Since σ is an automorphism which is also k-linear, it follows that

v

(
σ(f)− f
σ(x)− x

)
= v

(
σ(g)− g
σ(x)− x

)
where g = f − a0.

So applying Case 1 to g, this yields

v

(
σ(f)− f
σ(x)− x

)
≥ v(g)− 1 ≥ 0 ≥ v(f)− 1
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We return now to the proof of Proposition 4.3.3.

Proof of Proposition 4.3.3. Put y = x−a+1y. If we multiply (4.4) on the left
with x−a+1, we obtain

y x = σ(x) y + x−a+1 δ(x) (4.10)

Consider the ring S = B[y;σ, δ], where δ is the σ-derivation of B defined
by δ(b) = x−a+1δ(b). We clearly have inclusions S ⊂ S ⊂ L[y;σ, δ].

Applying Theorem 4.3.1 to S, we find that S has a central element w of
the form

w = yn +
n−1∑
i=0

gi(x)yi (4.11)

with gi(x) ∈ B.
Verifying the commutationrelation of x−a+1 and y, we find

y x−a+1 = σ(x−a+1) y + δ(x−a+1) (4.12)

Using (4.5) and Lemma 4.3.4, we have for all f ∈ B

v(δ(f)) = v

(
σ(f)− f
σ(x)− x

· δ(x)

)
= v

(
σ(f)− f
σ(x)− x

)
+ v(δ(x)) ≥ v(f)− 1 + a

In particular, it follows that δ(x−a+1) ∈ B.
Using (4.12), we can rewrite w in the following form

w = z−a+1yn + h0(x) +
n−1∑
i=1

(x σ(x) . . . σi−1(x))−a+1hi(x)yi

where hi(x) ∈ B, for all 0 ≤ i ≤ n− 1 and with z the element of A defined in
Section 4.2.

Multiplying w with za−1, we get the element

yn + za−1h0(x) +
n−1∑
i=1

(σi(x) . . . σn−1(x))a−1hi(x)yi

which we will denote by w′.
Let us write p0(x) for za−1h0(x) and pi(x) for (σi(x) . . . σn−1(x))a−1hi(x),

for all 1 ≤ i ≤ n− 1.
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It follows that

v(p0(x)) = (a− 1)v(z) + v(h0(x)) ≥ (a− 1)n ≥ 0

and, for all 1 ≤ i ≤ n− 1

v(pi(x)) = (a− 1)

(
n−1∑
j=i

v(σj(x))

)
+ v(hi(x)) ≥ (a− 1)(n− i) ≥ 0

So w′ belongs to S and since it is a central element of S, w′ ∈ Z(S).
By Theorem 4.3.1, this yields w′ has to be of the form

w′ =
∑

qi(z)wi (4.13)

Looking at the degree of y, reduces (4.13) to w′ = q0(z) + q1(z)w and
since the coefficient of yn = 1, it follows that w′ = q0(z) + w. Hence, for all
1 ≤ i ≤ n− 1

v(fi(x)) = v(pi(x)) ≥ (a− 1)(n− i)
and

v(q0(z) + f0(x)) = v(p0(x)) ≥ (a− 1)n

Corollary 4.3.5. Let C be the formal power series ring k[[x]][[y;σ, δ]] and n
the order of σ. Then the center of C is equal to k[[z, w]], where z = xn +ϕ(x)
and w = yn + θ(x, y). If v(δ(x)) ≥ 3, then ϕ and θ contain only terms in x, y
of total degree > n.

Proof. Let M ⊂ S be the twosided ideal generated by x, y. Clearly C is equal
to the M -adic completion of S. Let m be the maximal ideal of Z(S) generated
by z, w. It is easy to see that

M2n ⊂ mS ⊂M

maS ∩ Z(S) = ma

Thus the completion of Z(S) at the induced topology, coincides with the com-
pletion at the m-adic topology, which is k[[z, w]].

Since S ⊂ C, the PI-degree of C is ≥ n. On the other hand, using the
properties of completion, every identity in S vanishes in C. So the PI-degree
of C is exactly n.
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Since Z(C) ⊃ k[[z, w]], rkZ(C) C = n2 and k[[z, w]] is integrally closed, we
prove exactly as before that Z(C) = k[[z, w]].

From Proposition 4.3.3, it follows that we may assume

w = yn +
n−1∑
i=0

fi(x)yi

such that for all 0 ≤ i ≤ n− 1, we have

v(fi(x)) ≥ (a− 1)(n− i)

where a = v(δ(x)). So in the case that v(δ(x)) ≥ 3, θ has the required form.
The proof of Lemma 4.2.1 yields the statement about ϕ.

To complete the proof of Theorem 4.0.2, we use the fact that if σ(x) is of
the form x+ higher terms and the characteristic p > 0, the order of σ is a
power of p [32].

Remark 4.3.6. Although we cannot give a nice expression for w in general,
we can do so in a few special cases.

• If n = 2 and p = 2, then w can be taken equal to

w = y2 − σ(δ(x))− δ(x)

σ(x)− x
y

Note that by Lemma 4.3.4, w is indeed an element of C.

• If σ(x) has the form x+ higher terms, p > 0 and δ(x)/(σ(x) − x) is
σ-invariant, then w = yn.

4.4 A new proof of Proposition 4.0.3

Let k be a field of characteristic p > 0 and consider the field k(t1, . . . , tp−1),
where t1, . . . , tp−1 are variables. Let f =

∑p−1
i=1 fiti ∈ k(t1, . . . , tp−1)[x] be

arbitrary.
Since k(t1, . . . , tp−1) is also a field of characteristic p, it follows from Lemma 4.1.1

that f satisfies

∂2

∂x2

(
∂

∂x

(
. . .

(
∂ f

∂x
· f
)
. . . · f

)
· f
)

= 0 (4.14)
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where
∂

∂x
occurs p times and f (p− 1) times.

We first compute ∂ f
∂x

. Assume fi =
∑ni

j=0 ajix
j ∈ k[x]. We can rewrite f in

the form

f =
m∑
j=0

(
p−1∑
i=1

ajiti

)
xj

where m = max{n1, . . . , np−1} and for all ni < j ≤ m, aji = 0. It follows that

∂ f

∂x
=

m∑
j=1

j

(
p−1∑
i=1

ajiti

)
xj−1

=

p−1∑
i=1

(
ni∑
j=1

jajix
j−1

)
ti

=

p−1∑
i=1

∂ fi
∂x

ti

This yields, taking the coefficient of t1 . . . tp−1 in (4.14)

∑
σ∈Sp−1

∂2

∂x2

(
∂

∂x

(
. . .

(
∂ fσ(1)

∂x
· fσ(2)

)
. . . · fσ(p−2)

)
· fσ(p−1)

)
= 0

for all polynomials fi over a field k of characteristic p > 0.

Consider the following expression in the variables f1, . . . , fp−1

∑
σ∈Sp−1

[
∂2

∂x2

(
∂

∂x

(
. . .

(
∂ fσ(1)

∂x
· fσ(2)

)
. . . · fσ(p−2)

)
· fσ(p−1)

)
−
∂p fσ(1)

∂xp
· fσ(2) · . . . · fσ(p−1)

]
(4.15)

(4.15) has the following properties

(a) (4.15) = 0, if f1, . . . , fp−1 are polynomials over a field k of characteristic
p > 0.

(b) Over any field, we may rewrite (4.15) in the form
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∑
0≤u1,...,up−1≤p−1

au1...up−1

∂u1 f1

∂xu1
· . . . · ∂

up−1 fp−1

∂xup−1
(4.16)

such that au1...up−1 ∈ ZZ.

Using these properties we will prove that the coefficients of (4.16) are mul-
tiples of p.

Define for q, n ∈ IN the symbolic nth power q(n) of q as follows:

q(n) =

{
1 if n = 0

q(q − 1) . . . (q − n+ 1) if n ≥ 1

Now let (qi)i=1,...,p−1 ∈ IN be arbitrary and put fi = xqi . Then it is easy to
see that (4.16) equals∑

u1,...,up−1

au1...up−1 q
(u1)
1 . . . q

(up−1)
p−1 xq1−u1 . . . xqp−1−up−1

Since (4.16) is zero in k by property (a) we deduce:∑
u1,...,up−1

au1...up−1 q
(u1)
1 . . . q

(up−1)
p−1 = 0 (in k) (4.17)

Let X be the k-vectorspace of all functions h : kp−1 → k. By [13]{
xu1

1 . . . x
up−1

p−1 | for all 1 ≤ i ≤ p− 1, ui ≤ p− 1
}

is a basis for X.
We may transform these ‘normal’ monomials into ‘symbolic’ monomials by a
triangular matrix whose determinant is equal to 1. It follows that{

x
(u1)
1 . . . x

(up−1)
p−1 | for all 1 ≤ i ≤ p− 1, ui ≤ p− 1

}
is also a basis for X.

Since (4.17) holds for all q1, . . . , qp−1 ∈ IN, this implies∑
u1,...,up−1

au1...up−1 x
(u1)
1 . . . x

(up−1)
p−1 = 0 (in k)
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We conclude that the coefficients au1...up−1 are zero in k and hence they are
divisible by p, as elements of ZZ.

Let us look now at the difference of (4.15) and (4.16), i.e.∑
σ∈Sp−1

[
∂2

∂x2

(
∂

∂x

(
. . .

(
∂ fσ(1)

∂x
· fσ(2)

)
. . . · fσ(p−2)

)
· fσ(p−1)

)
(4.18)

−
∂p fσ(1)

∂xp
· fσ(2) · . . . · fσ(p−1)

]
−

∑
u1,...,up−1

au1...up−1

∂u1 f1

∂xu1
· . . . · ∂

up−1 fp−1

∂xup−1

By definition (4.18) is equal to zero over any field with a derivation. We
will consider (4.18) over the complex numbers C . Let (vi)i=1,...,p−1 ∈ C and
put fi = evix. We deduce that∑
σ∈Sp−1

[
vσ(1)(vσ(1) + vσ(2)) . . . (vσ(1) + . . .+ vσ(p−1))

2 e(vσ(1)+...+vσ(p−1))x

−vpσ(1)e
(vσ(1)+...+vσ(p−1))x

]
−

∑
u1,...,up−1

au1...up−1 v
u1
1 . . . v

up−1

p−1 e(v1+...+vp−1)x = 0

If we divide this by e(v1+...+vp−1)x, we have, for all v1, . . . , vp−1 ∈ C∑
σ∈Sp−1

[
vσ(1) (vσ(1) + vσ(2)) . . . (vσ(1) + . . .+ vσ(p−1))

2 − vpσ(1)

]
−

∑
u1,...,up−1

au1...up−1 v
u1
1 . . . v

up−1

p−1 = 0

So the polynomial∑
σ∈Sp−1

[
xσ(1) (xσ(1) + xσ(2)) . . . (xσ(1) + . . .+ xσ(p−1))

2 − xpσ(1)

]
−

∑
u1,...,up−1

au1...up−1 x
u1
1 . . . x

up−1

p−1 = 0

is identically zero.
If we reduce this modulo p, this yields ∑

σ∈Sp−1

xσ(1)(xσ(1) + xσ(2)) . . . (xσ(1) + . . .+ xσ(p−1))

 (x1 + . . .+ xp−1)

≡ xp1 + . . .+ xpp−1 ≡ (x1 + . . .+ xp−1)p (mod p)

Hence Proposition 4.0.3 is proved.



Bibliography

[1] K. Ajitabh, Modules over elliptic algebras and quantum planes, Proc.
London Math. Soc. (3) 72 (1996), 567-587.

[2] M. Artin, Maximal orders of global dimension and krull dimension two,
Invent. Math 84 (1986), 195-222.

[3] M. Artin, Geometry of quantum planes, Cont. Math. 124 (1992), 1-15.

[4] M. Artin, A conjecture about graded algebras of dimension 3,

[5] M. Artin and W. Schelter, Graded algebras of global dimension 3, Adv.
in Math. 66 (1987), 171-216.

[6] M. Artin, J. Tate and M. Van den Bergh, Some algebras associated to
automorphisms of elliptic curves, in “The Grothendieck Festschrift”, 1,
33-85, Birkhauser, Boston 1990.

[7] M. Artin, J. Tate and M. Van den Bergh, Modules over regular algebras
of dimension 3, Invent. Math. 106 (1991), 335-388.

[8] M. Artin and M. Van den Bergh, Twisted homogeneous coordinate rings,
J. Algebra 133 (1990), 249-271.

[9] M. Artin and J. J. Zhang, Noncommutative projective schemes, Adv. in
Math. 109 (1994), no. 2, 228-287.

[10] A. Beauville, Complex Algebraic Surfaces, Second Edition, Cambridge
University Press (1996).

[11] G.M. Bergmann and L.W. Small, PI degrees and prime ideals, J. Algebra
33 (1975),435-462.

99



100 Bibliography

[12] G. Baron and A. Schinzel, An extension of Wilson’s theorem, C. R. Math.
Rep. Acad. Sci. Canada 1 (1978/79), no. 2, 115–118.

[13] Z. I. Borevitch and I. R. Shafarevitch, Number theory, Academic Press,
1966.
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