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Samenvatting 

Voor een commutatieve algebra A die eindig voortgebracht is over een lichaam 
k , werd het affiene schema Spec A gedefinieerd door Grothendieck. Met een 
eindig voortgebrachte commutatieve gegradeerde algebra A= k+A1+A2 + ... , 
associeert men op een gelijkaardige manier, een projectief schema Proj A. In 
beide gevallen, werd ringtheorie gebruikt om de meetkundige structuur van 
deze schemas te beschrijven en omgekeerd. Men kan <lit beschouwen als een 
motivatie om te proberen een meetkundig object te associeren met een niet­
commutatieve gegradeerde algebra, <lat ons meer kan vertellen over de algebra 
zelf en vice versa. 

In deze thesis, beschouwen we de niet-commutatieve gegradeerde algebras 
die regulier zijn in de zin van Artin en Schelter, in het bijzonder diegene 
die globale dimensie drie hebben. Zij k een algebrai"sch gesloten lichaam en 
A= k+A1 +A2+ ... zo een drie dimensionale Artin-Schelter reguliere algebra, 
voortgebracht in graad een. 

Artin , Tate en Van den Bergh associeerden in hun artikel [6] de volgende 
meet kundige data met A: een projectief schema E, een automorfisme a van E 
en een inverteerbare schoof £, op E . Vertrekkende van zo een data, definieerden 
zij oak een "hulp"algebra B, die soms isomorf is met A en anders kan bekomen 
warden uit A door een regulier normaliserend element is van graad drie of vier 
uit te delen. Deze algebra wordt nu de getwiste homogene coordinatenring 
van de data (E, a,£) genoemd. 

Dit mooie samenspel tussen ringtheoretische aspecten en niet-commutatieve 
meetkunde is weergegeven in Hoofdstuk l. We gebruiken het in Hoofdstuk 2 
om een beschrijving te geven van de categorie Cf van de eindig voortgebrachte 
gegradeerde A-modulen van Gelfand-Kirillov dimensie een (modulo de eindig 
dimensionale over k). 

Voor het bewijs van <lit resultaat, gebruiken we Gabriels classificatie van 
categorieen van eindige lengte in t ermen van de zogenaamde pseudocompacte 
ringen (zie Stelling 2.2.1). Omdat sommige lezers, een beetje bang zouden 
kunnen warden bij de confrontatie met topologische ringen, wijden we Sec­
tie 2.2-2.4 aan hen. Het blijkt <lat voor een pseudocompact moduul M over 
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een pseudocompacte ring A, behoorlijk wat eigenschappen geldig zijn in de 
categorie PC(A) van pseudocompacte modulen over A , als en slechts als ze 
geldig zijn in Mod(A), met of zonder bijkomende hypothesen. Bijvoorbeeld, 
M E PC(A) is simpel, resp. noethers in PC(A) als en slechts als deze eigen­
schappen gelden in Mod(A). Voor verdere informatie aangaande PC(A) en de 
connectie met Mod(A), verwijzen we naar Sectie 2.2. 

In Sectie 2.5, beschrijven we de pseudocompacte ring die we associeren met 
de categorie C1. Het is een product van ringen met een eenvoudige structuur: 
een factor bestaat ofwel uit dubbel oneindige onder-triangulaire matrices, ofwel 
is het een order over een niet-commutatieve complete reguliere lokale ring in 
twee variabelen. 

In Hoofdstuk 3, gaan we verder met de studie van drie dimensionale 
Artin-Schelter reguliere algebras, in het bijzonder diegene die drie generatoren 
hebben van graad een en eindig zijn over hun centrum. 

Zij A dus een drie dimensionale drie generator Artin-Schelter reguliere 
algebra die eindig is over zijn centrum R. Zij X de klassieke Proj van R en 
stel 01:i. = A. Ot,. is een schoof van Ox-algebras, waarvan we het centrum 
noteren door Z . Ste! Z = SpecZ . We noemen Z het centrum van Proj A en 
we vermoeden Z ~ IF2• --

Dit was reeds bewezen door Artin in het geval <lat E glad is [3] en door 
Izusu Mori [25] in het geval <lat E bestaat ui t drie verschillende lijnen. Al­
hoewel we <lit vermoeden niet in het algemeen kunnen bewijzen, zullen we 
aantonen dat het waar is als k een algebrai'sch gesloten lichaam is van karak­
teristiek 0. 

Onze manier om het vermoeden te bewijzen in <lit geval, is zeer verschil­
lend van de benaderingen van Artin en Mori. Artin maakt gebruik van de 
meetkunde van Iijn en "vette" puntmodulen over A, terwijl Mori expliciete 
berekeningen gebruikt. Onze strategie start met het ontwikkelen van de eerste 
beginselen van een intersectietheorie voor O 1:i.. 

We moeten erop wijzen dat in [21], [26] alternatieve intersectietheorieen 
ontwikkeld werden voor niet-commutatieve ringen. Al die theorieen zijn vanzelf­
sprekend equivalent (op de doorsnede van hun definitiedomeinen) maar ver­
talingen tussen hen zijn soms moeilijk. Daarom prefereren we eigen definities 
te hanteren die sterker verbonden zijn met de theorie van orders. 

De reden om een intersectietheorie voor O t:i. te ontwikkelen is, <lat we de 
zelf-intersectie van het dualiserende moduul wz van Z willen berekenen. We 
doen <lit door deze zelf-intersectie te koppelen aan de zelf-intersectie van de 
(niet-commutatieve) dualiserende schoof van 01:i.. We bekomen zo <lat de zelf­
intersectie van wz 9 is. In een volgende stap1 bewijzen we dat wz 1 ample 
is en als laatste tonen we aan, door gebruik te maken van ons belangrijkste 
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resultaat Theorema 2.1.1 van Hoofdstuk 2, <lat Z glad is. Deze feiten samen, 
im pliceren Z ~ IP'2 • 

In het laatste hoofdstuk van deze thesis, keren we terug naar de niet­
commutatieve complete lokale ringen die we nodig hadden voor de beschrijving 
van de categorie C 1 van Hoofdstuk 2. Meer bepaald beschouwen we ringen van 
de vorm C = k((x, y))/('1/J), waar 7/; alleen t ermen heeft van totale graad ~ 2 en 
k een lichaam is van karakteristiek p ( we laten p = 0 toe) . We vermoeden <lat 
hun centrum Z(C) ofwel triviaal is, ofwel een ring van formele machtreeksen 
in twee variabelen z en w. We geloven ook <lat als het kwadratische deel van 
7/; van de vorm yx - xy is en p > 0, de generatoren van Z( C) de volgende vorm 

n n ( hebben; z = xP + cp(x), w = yP + () x, y) voor een zekere n > 0 en waar cp 
en () ofwel triviaal zijn, ofwel alleen termen bevatten in x, y van totale graad 
> pn. 

We bewijzen <lit vermoeden in het geval C een Ore extensie B [[y; a, o]] 
is, met B = k[[x]], a een k-lineair automorfisme van B en o een k-lineaire 
a-derivatie van B. De gevallen waarin het centrum van C niet-triviaal is, zijn: 

• a= id , p > 0. 

• o = O, a# id, orde(a) < oo. 

• of. 0, a f. id , orde(a) < oo. 

In het eerste geval, kunnen we z = xP nemen en w = yP - cp(x)y, waar 
cp(x) het speciale element van B is gedefinieerd in Sectie 4.2. Als de x-adic 
valuatie v(o(x) ) van o(x) ~ 3 is, dan is v(cp(x) ) > p - l waaruit het tweede 
deel van het vermoeden volgt . 

Als o = 0, a niet-triviaal is en eindige orde n heeft, bekomen we <lat 
z = xa(x) ... an-1 (x) EB en w = yn. Onder de hypothesen van het tweede 
deel van het vermoeden, bewijzen we <lat z van de vorm xn+ hogere orde 
termen is en n = pm, voor een zekere m . 

In het laatste geval, duikt hetzelfde element z van B op als in bet voor­
gaande geval. Van w kunnen we enkel bewijzen dat het de vorm heeft, vereist 
door het vermoeden, maar we kunnen er geen mooie uitdrukking voor geven. 

In de laatste sectie van deze thesis, geven we een nieuw bewijs van een resul­
taat van G . Baron en A. Schinzel. Oorspronkelijk gebruikten we dit resultaat 
om te bewijzen <lat als a triviaal is en p > 0, dan w = yP - cp(x)y E Z(C) . 
Later vonden we een direct bewijs van <lit laat st e resultaat en <lit leidde ook 
tot een nieuw bewijs van het resultaat van Baron en Schinzel. Waar het bewijs 
van [12) nogal technisch is, is het onze rechttoe rechtaan en het is gebasseerd 
op algemene berekeningen met derivaties. 
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Introduction 

For a commutative algebra A which is finitely generated over a field k, the 
affine scheme Spec A was defined by Grothendieck. Similarly, to a finitely 
generated commutative graded algebra A = k + A1 + A2 + ... , one associates 
a projective scheme Proj A. In both cases, ringtheory was used te describe 
the geometric structure of these schemes and vice versa. One may consider 
this as a motivation to try to associate to a non-commutative graded algebra, 
a geometrical object, which can tell us more about the algebra itself and vice 
versa. 

In this thesis, we consider the non-commutative graded algebras which 
are regular in the sense of Artin and Schelter, in particular those which have 
global dimension three. Assume that k is an algebraically closed field and let 
A = k + A1 + A2 + .. . , be such a three dimensional Artin-Schelter regular 
algebra, generated in degree one. 

Artin, Tate and Van den Bergh associated in their paper [6] the following 
geometric data to A: a projective scheme E, an automorphism a of E and 
an invertible sheaf £ on E. Starting from such data, they also defined an 
auxiliary algebra B, which is sometimes isomorphic to A and otherwise is 
obtained from A by dividing out a regular normalizing element of degree three 
or four . This algebra is now called the twisted homogeneous coordinate ring 
of the data (E , a,£). 

This nice interplay between ring theoretical aspects and non-commutative 
geometry is presented in Chapter 1. We use it in Chapter 2 to give a description 
of the category Cf of finitely generated graded A-modules of Gelfand-Kirillov 
dimension one (modulo those of finite dimension over k). 

For the proof of this result, we use Gabriel's classification of finite length 
categories in terms of so-called pseudocompact rings (see Theorem 2.2.1). 
Since some readers, might feel some anxiety when confronted with topological 
rings, we dedicate Section 2.2-2.4 to them. It turns out that for a pseudo­
compact module Mover a pseudocompact ring A, quite a few properties hold 
in the category PC(A) of pseudocompact modules over A, if and only if they 
hold in Mod(A), with or without some additional hypotheses. For instance, 

1 
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M E PC(A) is simple, resp. noetherian in PC(A) if and only if these prop­
erties hold in Mod(A). For further information on PC(A) and its connection 
with Mod(A), we refer to Section 2.2. 

In Section 2.5, we describe the pseudocompact ring associated to the cate­
gory C1. It is a product of rings with a simple structure: an individual factor 
eit her consists of doubly infinite lower triangular matrices or else, it is an order 
over a non-commutative complete regular local ring in two variables. 

In Chapter 3, we continue with the study of three dimensional Artin­
Schelter regular algebras, in particular those which have t hree generators of 
degree one and are finite over their center. 

So let A be a three dimensional three generator Artin-Schelter regular 
algebra which is finite over its center R. Let X be the classical Proj of R and 
put 01:,. = A. 01:,. is a sheaf of Ox-algebras, whose center we denote by Z. 
Put Z = SpecZ. We call Z the center of ProjA and we conjecture Z ~ lP'2 • 

This was already proved by Artin in the case that E is smooth [3] and by 
lzusu Mori [25] in the case that E consists of t hree distinct lines. Although 
we are not able to prove t he conjecture in general, we will show t hat it holds 
if k is an algebraically closed field of characteristic 0. 

Our method for proving the conjecture in t his case, is very different from 
the approaches by Artin and Mori. Artin uses the geometry of line and "fat " 
point modules over A, whereas Mori uses explicit computation. Our strategy 
starts with the development of the rudiments of an intersection theory for O 1:,. . 

We should point out that in [21], [26], alternative intersection theories 
for non-commutative rings were introduced. All these theories are of course 
equivalent (on the intersections of their domains of definition) but translating 
between them sometimes takes some effort. That is why we have preferred to 
use our own definitions which are more directly tied to the theory of orders. 

The reason for developping an intersection theory for O 1:,., is t hat we want 
to compute the self-intersection of the dualizing module wz of Z. We do this by 
relating this self-intersection to the self-intersection of the (non-commutative) 
dualizing sheaf of 01:,.. We obtain that the self-intersection of wz is 9. As 
a next step, we show that wz 1 is ample and finally, using our main result 
Theorem 2.1.1 from Chapter 2, we show that Z is smooth. These facts together 
imply Z ~ lP'2• 

In the final chapter of t his thesis, we return to the non-commutative com­
plete regular local rings needed for the description of t he category Cf in Chap­
ter 2. To be more precise, we consider rings of the form C = k((x, y))/(7/J), 
where 7/J only has terms of total degree ~ 2 and k is a field of characteristic p 
(we allow p = 0). We conjecture that their center Z (C) is eit her trivial, or else 
a formal power series ring in two variables z and w. We also believe t hat if the 
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quadratic part of 'I/; is of the form yx - xy and p > 0, the generators of Z(C) 
have the form z = xP" + 1.p(x), w = yPn + O(x, y) for some n > 0 and where <p 

and Oare either trivial, or else contain only terms in x, y of total degree> pn. 
We prove this conjecture in the case C is an Ore extension B[[y; u, o]], where 

B = k[[x]], er is a k-linear automorphism of B and o is a k-linear er-derivation 
of B. The cases in which the center of C is non-trivial are: 

• er= id, p > 0. 

• o = 0, u =I- id, order(er) < oo. 

• 5 # 0, er =I- id , order(er) < oo. 

In the first case, we can take z = xP and w = yP - cµ(x)y, where cp(x) is 
the special element of B defined in Section 4.2. If the x-adic valuation v(5(x)) 
of 5(x) is ~ 3, then v(cµ(x)) > p - 1 which yields the second part of the 
conjecture. 

When o = 0, er is non-trivial and has finite order n, we obtain that z = 
xer(x) ... ern- 1 (x) EB and w = yn. Under the hypotheses of the second part 
of the conjecture, we prove that z is of the form xn + higher order terms and 
n = pm, for some m. 

In the last case , the same element z of B appears as in the previous case. 
For w, we can only prove that it has the form required in the conjecture, but 
we can't give a nice expression for it. 

In the final section of this thesis, we give a new proof of a result by G. 
Baron and A. Schinzel. We originally relied on the result to prove that if er 
is trivial and p > 0, then w = yP - cv(x)y E Z(C). Afterwards, we found a 
direct proof of this last result and this also leads to a new proof of the result 
by Baron and Schinzel. Whereas the proof in [12) is rather technical, ours is 
straightforward and relies on general computations with derivations. 
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Chapter 1 

Preliminaries 

1.1 Introduction 

Although it is strictly not necessary, we assume that k is an algebraically 
closed field. 

In the Chapters 2 and 3 of this work, we consider graded algebras A = 
k+A1 +A2 + .. . that are regular in the sense of Artin-Schelter. In this chapter 
we work out some generalities about these algebras which will be used in the 
following ones. 

Throughout, let A= k+A1 +A2 + . . . be a graded algebra that is generated 
by finitely many elements of degree one. We have the following definition. 

Definition 1.1.1. A is Artin-Schelter regular of dimension d if it satisfies the 
following conditions 

{i) A has finite global dimension d. 

{ii) A has polynomial growth 
i.e. dimk An :::; cn°, for some positive real numbers c, 8. 

{iii) A is Gorenstein, meaning that 

{ 
k if n = d 

ExtA (k, A) = 
0 otherwise 

The Gelfand- Kirillov dimension of A is one more t han the minimal 8 in 
(ii). Note that for every regular algebra we know, the minimal such 8 is equal 
to d - 1. 

5 
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1.2 Three dimensional Artin-Schelter regular alge­
bras 

The three dimensional regular algebras generated in degree one, were classified 
in [5] and later in [6], [7]. As was shown in [5], there are two possibilities for 
such an algebra A. 

• A has three generators of degree one and three defining relations of 
degree two. 

• A has two generators of degree one and two defining relations of degree 
three. 

The number of generators will be denoted by r, and the degrees of the defining 
relations by s. So the possible values are 

(r S) -- { (3, 2) d an r + s = 5 
' (2, 3) 

Throughout this chapter, we assume that an algebra A can be presented 
by r generators of degree one and r defining relations of degrees, with (r, s) 
as above. 

Definition 1.2.1. 1. Let A be an algebra which can be presented by r gen-
erators Xj of degree one and r relations Ji = I:j==l mijXj of degree s, 
such that, (r, s) = (3, 2) or (2, 3) as before . Let M = (mij)i, j and write 
for the defining relations f = M x. The algebra A is called standard if 
there is an invertible matrix Q E G Lr ( k) such that xt M = ( Q J) t. 

2. A standard algebra A is nondegenerate if the rank of the matrix M(p) 
is at least r - 1 for all points p E P 2 if (r, s) = (31 2), or for all points 
p E P 1 x P 1 if (r,s) = (2, 3). 

We recall from [6] 

Theorem 1.2.2. 1. The regular algebras of global dimension three gener-
ated in degree one are exactly the nondegenerate standard alge bras. 

2. They are left and right noetherian. 

Let A be a graded algebra as before. Write Ji for the multilinearizations 
of the defining relations of A and let r denote the locus of common zeros of 
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the k Thus, P C IF2 X IF2 if r = 3, and f C IF1 X P 1 X IF1 if r = 2. Define t he 
projections 

prs(P(l) X ,,. X p(s)) = (p(l) X ... X p(s-l)) 

(drop the last component) 

pr1 (p(l) X . .. X p(s)) = (p(2) X ... X p(s)) 

(drop the first component) 

If A is standard, then the images of r under these two projections are the 
same (see [6], §4). Let E be the image of r under these projections. Since 
f = M x, it is clear that E is the locus of zeros of the multihomogenized 
polynomial det(M). 

If det(M) is not identically zero, then E is a divisor of degree 3 in P2 in 
case r = 3, and a divisor of bidegree (2, 2) in IF1 x lP'1 in the case r = 2. We 
then say that A is elliptic. 
Otherwise, E is all of IF2 if r = 3, and all of P1 x JP1 when r = 2. We call A 
linear in this case. 

Since E = prs(r) = pr1(f), we may view r as the graph of a correspon­
dence pr

5 
(f) ~ pr1 (f) from E to itself. Observe that A is nondegenerate 

if and only if one of the projections pr 5 , pr1 : r ~ E is an isomorphism 
([6], Lemma 4.4). That is, if and only if r is the graph of an automorphism 
u:E~E. 

So to every three dimensional Artin-Schelter regular algebra A, generated 
in degree one, we can associate a triple T(A) = (E, u, £), where E is the 
scheme prs(r), u is the automorphism of E defined by rand£, is the invertible 
OE-module 7r*('.J(l), with 71' the inclusion of E in lP'2 if r = 3, or the projection 
of E on the .first factor IF1 if r = 2. In both cases the map 71' : E ~ pr-I 

is the morphism defined by the sections of L Furthermore, in the case that 
r = 2, u is of the form u(p, q) = (q, f(p, q)), if A is elliptic and if A is linear, 
then u has the form u(p, q) = (q, r(p)), where r is an isomorphism of lP'1 . 

1.3 Algebras associated to a triple 

In this section we start with an abstract triple T and define from it two algebras 
A= A(T) and B = B(T), and a homomorphism /3 = f3(T) : A(T) ~ B(T). 

Definition 1.3.1. A triple T consists of data (E, u, £), where E is a scheme, 
u is an automorphism of E, and £ is an invertible sheaf on E whose global 
sections define a morphism 71' : E ~ !Fr-l, and where one of the following 

holds: 
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Case r = 3 

(a) Eis a divisor of degree 3 in P2
1 and£ is the restriction of O 2(1). 

(b) E = P 2
, and £ = 0 2 ( 1) . 

Case r = 2 

( a) E is a divisor of bidegree (2, 2) in P 1 x P 1, a has the form a(p, q) = 
(q, f(p, q)), and£= pr* 0 1 (1) where pr is the projection of E on 
the first factor P 1. 

(b) E = P1 x P1, a has the form a(p, g) = (q, r(p)), where T is an 
automorphism of P1, and£= pr* 0 1 (1) with pr as in (a). 

We will say that a triple of type ( a) is elliptic and triples of type (b) will 
be called linear. 

Definition 1.3.2. A triple T = (E, a,£) is said to be regular if it satisfies 

{ 
( a - 1) 2 

,\ = 0 if r = 3 

(a - l)(a2 
- 1)..\ = 0 if r = 2 

where,\ denotes the class of£ in Pic(E) . 

So let T = (E, a,£) be a triple and 1r : E --+ pr-l be the morphism 
determined by the global sections of£. 

Set Bo= H0 (E, OE) and for each integer n > 0, 

where [}' is the pullback a*£ and tensor products are taken over OE. We 
define 

B(T) = B = EBn~oBn 

Multiplication on Bis defined by the rule that if a E Bm and b E Bn, then 

a. b = a@ b"m 

To define A(T) , let T = I: Tn be the tensor algebra over k on T1 = 
H0 (pr- t, 0 r-1 (1)) . The isomorphism 
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induces a homomorphism T --r B. Let J = "£ ln be its kernel, and let I be 
the two-sided ideal of T generated by J3 • We define 

A(T) =A= T/I 

T he composition of the natural homomorphisms 

T/ I --r T/J --r B 

yields a canonical homomorphism f3(T) = f3 : A --r B which is biject ive in 
degree one. 

Recall from Theorem 6.8 in [6]. 

Theorem 1.3.3 . Let T be a triple. Let A= A(T) and B = B(T) . Then 

1. /3 is always surjective. 

2. If T is linear, then /3 is an isomorphism. 

3. If T is elliptic and regular, the kernel of /3 has the form gA = Ag, where 
g is a non-zero normalizing element of degree s + 1. 

4. If Tis regular, then A is a regular algebra of global dimension three, and 
in the elliptic case, the element g of (3.) is left and right regular. 

Now let A be a three dimensional regular algebra generated in degree one 
and T(A) = (E, a-,£) the triple associated to A. Let A' and B be the two 
algebras associated to t he triple T( A). From (6] it follows that 

P roposition 1.3.4. 1. The algebras A' and A are canonically isomorphic. 

2. If A is linear, then A ~ B. 

3. If A is elliptic, then B ~ A/ g A, where g is a regular normalizing element 
of degrees+ 1. 

Note that since the algebra A(T) defined above, depends only on B(T), 
we can look here at A via B and this approach was found very rewarding. 

1.4 Modules over regular algebras 

Let A be a regular algebra of dimension three, generated in degree one. The 
graded A-modules we are interested in , are the so-called point modules, since 
they are in one-to-one correspondence with the points of the associated scheme 
E (see [6]). 
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Definition 1.4.1. A point module M is a graded right A-module which sat­
isfies the following properties 

(i) Mo= k. 

(ii) Mo generates M, and 

(iii) dimk Mn = l, for all n ~ 0. 

For a graded left or right module M which is locally finite, i.e. each graded 
piece Mn is a finite dimensional k-vector space, one defines the Hilbert function 

by 

and the Hilbert series by 

n 

Note that, since A itself is locally finite as an A-module, it has a Hilbert series. 

Definition 1.4.2. Let M be a graded locally finite A-module. The leading 
coefficient e(M) of the series expansion of hM is powers of 1- t, is called the 
multiplicity of M. 

The multiplicity e(M) of M is positive and an integer multiple of the 
multiplicity e(A) of A. Furthermore, we have 

e(A) = { 
1 

1/2 

if r = 3 

if r = 2 

In particular, we have for a point module M that 

1 
hM(t) = - and e(M) = 1 

1-t 

Furthermore, the Gelfand-Kirillov dimension of M is equal to one, M is also 
a B-module and critical [7], that is 

Definition 1.4.3. A graded A-module M is critical, if for every graded sub­
module NC M, N =/ 0, we have GKdim(M/N) < GKdim(M). 

For further results on critical modules, see [7]. 
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1.5 The non-commutative projective scheme 

In this section, we give a definition of Proj A in the case that A = k + A1 + 
A2 + ... is a right noetherian graded k-algebra. 

Definition 1.5.1. 1. A graded right A-module M is called right bounded 
if Mn= 0, for n ~ 0. 

2. A graded right A-module M is said to be torsion if it is a direct limit 
lim M(a) in which each M(a) is right bounded. 
--ta 

Let 

Gr{A) := the category of graded right A - modules 

Tors{A) := the full subcategory of Gr(A) of torsion modules 

Morphisms in the category Gr(A) are the homomorphisms of degree zero. 
Since Tors(A) is a dense subcategory of Gr(A), it makes sense to put 

QGr(A) := the quotient category Gr(A)/ Tors(A) 

So the objects of QGr(A) are the same as those of Gr(A) but there are more 
morphisms. 

Let 

1r: Gr(A) -t QGr{A) 

be the canonical functor and A the object in QGr(A) which is the image in 
QGr(A) of AA. 

Definition 1.5.2. The projective scheme of A, denoted by Proj A, is the pair 
(QGr(A) , A). 

This definition of Proj A, which was worked out by Artin and Zhang, is 
compatible with the classical one for commutative graded rings (see [20]) only 
under some additional hypotheses, such as that A is generated in degree one. 

Starting from a triple (C,CJ,s), consisting of a Grothendieck category C, 
an object CJ and an autoequivalence s on C, Artin and Zhang defined a homo­
geneous coordinate ring 

This fundamental construction leads in the case C = Qch(X), the category 
of quasi-coherent sheaves on a projective scheme X, to a non-commutative 
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analogue of the homogeneous coordinate ring of X. This is called the twisted 
homogeneous coordinate ring of X and is defined as follows. 

Let X be a projective scheme over k, £ the invertible sheaf Ox (1) and a 
an automorphism of X. Denote the pullback a*£ by £a and set , for n > 0 

B r ra r an- I 
n =,1.., @ ,1.., @ ••• @ ,1.., 

and Bo= Ox. 

Definition 1.5.3. The twisted homogeneous coordinate ring associated to the 
triple (X, a,£) is the graded ring 

with multiplication defined by, if a E Bm , b E Bn, then a· b = a 0 ba"'. 

In [8], Artin and Van den Bergh defined the functors 

where 

Gr(B) 

Qch(X) 

-t Qch(X) 

-t Gr(B) 

Gr(B) := the category of graded right B - modules 

Qch(X) := the category of quasi-coherent sheaves 

on the projective scheme X 

For the definition of r *, let , for all n > 0, 

where £a-i = <7*£. For a quasi-coherent sheaf Fon X , we define 

r.(F) = EBne H0 (X,F ® Bn) 

Definition 1.5.4. We say that£ is a -ample if the functor 

-1 - I 
s : Qch(X)--+ Qch(X ) : M t--t M a ® £ a 

has the property that for every coherent sheaf M , one has H 1 ( X , sn M ) = 0 
and sn M is generated by global sections for large n . 

From Theorem 3.12 in [8), it follows that 
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Theorem 1.5.5. Let a be an automorphism of a projective scheme X over 
k, and let £ be a a-ample invertible sheaf on X. Let B = !}(X, er,£) be the 
ring defined in Definition 1. 5.3, then the functors r * and (-) induce inverse 
equivalences 

(.=.) 

Gr(B)/ Tors(B) ~ Qch(X) 
r. 

where Tors(B) := the full subcategory of Gr(B) of torsion modules. 

For a three dimensional regular algebra A, generated in degree one, the 
twisted homogeneous coordinate ring associated to the triple 7(A) = (E, a,£) 
is exactly the algebra B described in Proposition 1.3.4. And since in this case£ 
is er-ample (Corollary 6.21 in [7]), the functors r * and (..:::_)define an equivalence 
of the categories Qch (E) and QGr(B), the quotient category Gr(B)/ Tors(B). 
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Chapter 2 

Graded modules of GKdim 1 
over a three dimensional 
Artin-Schelter regular algebra 

2.1 Introduction and statement of the main result 

Let A be a three dimensional Artin-Schelter regular algebra and k an alge­
braically closed field . We want to give a description of the category of finitely 
generated A-modules of Gelfand-Kirillov dimension one (modulo those of fi­
nite dimension over k). 
This is an application of Theorem 2.1.1, stated below. 

Theorem 2.1.1. Let A beak-linear locally noetherian Grothendieck category 
(that is, an abelian cat egory which satisfies AB5 and has a family of noetherian 
generators). Let G : A --+ A be an autoequivalence and let 'f/ : G --+ id A be a 
natural transformation such that r,(F) is surjective for every injective object in 
A. Let B be the full subcategory of A consisting of objects M with 'fJ(M) = 0 
and let Cf be the full subcategory of A consisting of finite length objects whose 
composition factors lie in B. 

Assume that every simple object in B has finite injective dimension in A 
and furthermore that there is a Cohen-Macauly curve Y over k such that B is 
equivalent to Qch (Y), the category of quasi-coherent Oy-modules. For x E Y 
denote by 'Px the object of B corresponding to x and define r : Y --+ Y by 
a-1(Px) = PTX. Then we have the following. 

1. CJ = ffizEY/{,,-)CJ,z, where CJ,z is the full subcategory of CJ consisting of 
objects whose Jordan-Holder quotients are given by 'Py with y E 0,,.(z). 

15 
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2. There is a category equivalence F between C J,z and the category of finite 
dimensional right modules over a ring Cz. This ring Cz has the following 
form: 

(a) If IOr(z) I = oo then Cz is given by Z x Z lower triangular matrices 
with entries in Oy z. In this case z is regular on Y and thus we . ' 
have Ov,z ~ k[[x]]. 

(b) If IOr(z) I = n then Cz is given by a ring of n X n matrices of the 
form 

R RU RU 

RU 

R R 

where R is a complete local ring of the form 

R = k((x,y))/(1/J) 

with 

1/J = yx - qxy + higher order terms 

for some q Ek*, or 

(2.1) 

1/J = yx - xy - x 2 + higher order terms (2.2) 

U is a regular normalizing element in rad(R) such that R/(U) = 
6Yz· , 
If z is not fixed under T then z is regular on Y and also U ¢ 
rad2 (R). 

3. Let I = Z if IOr(z)I = oo and I = Z/nZ if IOr(z)I = n. In this way 
the elements of Cz correspond to I x I -matrices. For i E I , let ei be the 
corresponding diagonal idempotent. Then every finite dimensional right 

Cz -representation W satisfies W = EBi Wei. 

4. Put Si= eiCz/ rad(eiCz)· Then F(P,,.,z) = Si. 

5. Define the following normal element N of Cz . 

(a) If 10,,.(z) I = oo, then N is given by the matrix whose entries are 
everywhere zero except on the lower subdiagonal where they are one. 
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(b) If IOr(z)I < oo, then 

0 0 U 

N= 
1 0 

0 1 0 

Let</>= N · N-1 then we have the following commutative diagram 

where Modr(Cz) denotes the category of right Cz-modules. 

6. If M is an object in C J,z then one has the following commutative diagram. 

FG(M) F(11(A;1)) F(M) 

II 
F(M)tf, 

II 
~ F(M) 

7. Let C J,z,Y be the pullback of C J,z in Qcb (Y) . Thus the objects of C J,z,Y 
are the finite length objects in Qch (Y) whose support is contained in the 
r-orbit of z. Put Dz = Cz/(N) = IL Oy,T;Z. Let n z be a shorthand for 
the product of the completion functors C)r;z · Then the following diagram 
is commutative. 

(·)z 1 

If we think of the curve Y as being embedded in a kind of non-commutative 
space A then Theorem 2.1.1 gives us some insight into the structure of A in a 
neighbourhood of Y. 

The application we have in mind is the following. 
Let A be a three dimensional Artin-Schelter regular algebra, generated in 
degree one. Recall A possesses a regular normalizing element g in degree 
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three or four such that B = A/ (g) is a twisted homogeneous coordinate ring 
associated to a triple (Y, er,£) with Y a plane curve of arithmetic genus one 
and£= Oy(l). Since£ is er-ample, the functors 

Gr(B) ~ Qch(Y) 

Qch(Y) I._; Gr(B) 
(2.3) 

factor through the quotient map 1r : Gr(A) -+ QGr(A) to give inverse equiv­
alences between QGr(B) and Qch(Y). The pointmodules of A are all annihi­
lated by g and hence it follows easily from the category equivalence (2.3) that 
they are of the form Px = r*(k(x)), for x E Y. Put Px = 1rPx. Let G be the 
autoequivalence of Gr(A) given by - ®A gA and denote by the same letter the 
induced autoequivalence on QGr(A). The natural transformation 77(M) is the 
obvious map G(M)-+ M obtained from the inclusion gA c......+ A. 

It is clear that the hypotheses for Theorem 2.1.1 are satisfied, whence we 
can apply that theorem in order to give a description of the category of A­
modules of Gelfand-Kirillov dimension one modulo those of finite dimension 
over k. 

The proof of Theorem 2.1.1 is based upon a result by Gabriel [18], stat ing 
that locally finite categories are dual to pseudocompact rings. 

Sections 2.2-2.4, are devoted to some generalities concerning pseudocom­
pact rings. We are especially interested in the relationship between topological 
and non-topological properties of such rings. 
In Sections 2.5, 2.6 we give some classification theorems which are slightly 
more general than what we need for the proof of T heorem 2.1.1. 
Finally in section 2.7, we give the proof of Theorem 2.1.1. 

We introduce some extra notations and conventions. 
If C is a ring then Mod(C) refers to the category of left modules over C. The 
category of right modules is denoted by Modr(C). Note that as before, we 
denote the category of graded right-modules over a graded ring A as Gr(A). 
An unspecified module will always be a left module. 

If M is a left module over a ring C and ¢ is an automorphism of C t hen 
4>M is the left C -module which is equal to M as a set, but which has its 
multiplication twisted by ¢, i.e. c · m = ¢(c)m. A similar notation is used 
for right modules. 
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2.2 Pseudocompact rings 

A ring A provided with a topology, is a topological ring if the following are 
satisfied 

(T1) The map 

(T2) The map 

(T3) T he map 

(x, y) t-+ x + y from Ax A to A is continuous. 

X 1-t -X 

(x, y) i-+ xy 

from A to A is continuous. 

from A x A to A is continuous. 

(T1) and (T2) express that the topology on A is compatible with its struc­
ture as a group. We say that a topology on a ring A is compatible with the 
ringstructure if (T1), (T2 ) and (T3) are satisfied. 

A left topological module M over a topological ring A, is a left A-module 
provided with a topology compatible with its groupstructure and satisfying 

(TM) The map ( a, m) t-+ am from A x M to M is continous. 

A left topological module Mover a topological ring A is pseudocompact if it 
is Hausdorf, complete and its topology is generated by left submodules of finite 
colength. A itself is said to be a pseudocompact ring is A is pseudocompact as 
a left A-module. 

In the rest of this section A will be a pseudocompact ring. 
The category of pseudocompact modules over A is denoted by PC(A). It is an 
abelian category satisfying AB5* and AB3 [18]. Its dual category is a locally 
finite category. That is, a Grotbendieck category possessing a set of generators 
of finite length. 

Conversely assume that C is a locally finite category. If M, N E C t hen 
the natural topology on Home ( M, N) is the linear topology generated by the 
subgroups of the form 

(S) = {f: M-+ Nlf(S) = O} 

where S runs through the objects of finite length in C. 
The following result is proved in [18]: 

Theorem 2.2.1. If E is an injective cogenerator for C then A = Endc (E), 
equipped with the natural topology, is a pseudocompact ring, and the functor 
which sends M E C to Home (M, E) (with the natural topology) is an equiva­
lence of categories between C and PC(A) 0 • 

One easy property of a linear topology will be used repeatedly below. 

Lemma 2.2.2. Assume that M is a topological group with a topology gener­
ated by subgroups and L C M is an open subgroup. Then L is also closed and 
the quotient topology on M/ L is discrete. 



20 Graded modules of GK dim 1 

Proof. L is the complement of the union of cosets of L in M which are not 
equal to L. Since this union is a union of open sets, it is itself open. Thus L is 
closed. L is the inverse image of e in M/ L and hence {e} is open and closed 
in the quotient topology. D 

The following proposition records for further reference some of the prop­
erties of the forgetful functor PC(A)-+ Mod(A) [18). 

Proposition 2.2.3 . The forgetful functor PC(A) -+ Mod(A) is faithful and 
commutes with kernels, cokernels and products. In particular, it reflects iso­
morphism and exactness. If M E PC(A) then the subobjects of M in PC(A) 
are in one-one correspondence with the subobjects of M in Mod(A) which are 
closed. 

Let Fin(A) be the full subcategory of Mod(A) consisting of objects which 
are of finite length and let PCFin(A) be its pullback in PC(A) . 
A module of finite length carrying a linear topology can only be separated if 
its topology is discrete since the fundamental system of environments of e that 
generates the linear topology, can't contain infinitely many environments, so 
{ e} has to be a member of the fundamental system and therefore the topology 
must be discrete. 
So we conclude immediately that the forgetful functor 

PCFin(A)-+ Fin(A) 

is fully faithful. 
The following lemma gives us more information on PCFin(A). 

Lemma 2.2.4. 1. An object in PC(A) is simple in PC(A) if and only if it 
is simple in Mod(A) . 

2. The objects in PCFin(A) are precisely the finite length objects in PC(A). 

Proof. 1. Assume that O # S E PC(A) is simple in PC(A). We want to 
show that Sis simple in Mod(A). Take O # x E S. Since S is Hausdorf, 
there exists an open submodule L C S, not containing x. Lis also closed 
(Lemma 2.2.2) and thus it is pseudocompact if we give it t he induced 
topology. Since S is simple in PC(A), we obtain L = 0. This implies 
that S = S/ L carries the discrete topology. But then every submodule 
of Sis closed and thus it is a subobject of Sin PC(A). Since Sis simple 
in PC(A), there can be no non-trivial subobjects and thus S is simple 
in Mod(A) . The other direction is clear since subobjects of an object in 
PC(A) come from subobjects of that object in Mod(A). 
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2. This follows from 1. D 

Let us say that M E PC(A) is finitely generated in PC(A) if there is a 
surjective map Ak-+ Min PC(A) for some k. 

Proposition 2.2.5. Assume that M, N E PC(A), M finitely generated. 
Then 

Hompc(A)(M, N) = HomMod(A)(M, N) 

Proof. If n E N then the map a f-t an is continuous which yields 

HomPC(A)(A, N) = HomMod(A)(A, N) 

This proves the proposition for M = A and hence also for M = Ak. 
Now assume M general. There is an exact sequence in PC(A) 

0 -+ M' -+ F -+ M -+ 0 

with F = Ak. This yields a commutative diagram with exact rows 

0 -+ Hompc(A) (M, N) -+ Hompc(A) (F, N) -+ HomPC(A) (M',N) 

1 1 1 
0 -+ HomMod(A)(M, N) -+ HomMod(A)(F, N) -+ HomMod(A)(M', N) 

The vertical maps are injective and the middle one is an isomorphism. It 
follows that the left map must be an isomorphism. D 

Corollary 2.2.6. An object in PC(A) is finitely generated in PC(A) if and 
only if it is finitely generated in Mod (A). 

Corollary 2.2. 7. A direct summand in Mod(A) of a finitely generated object 
in PC(A) is a direct summand in PC(A). In particular, a finitely generated 
object in PC(A) is projective in PC(A) if and only if it is projective in Mod(A). 

Proof. If M is a finitely generated object in PC(A) then a direct summand of 
M is the image of a n idempotent in E ndMod(A)(M). The result now follows 
from Proposition 2.2.5 and 2.2.3. D 

Corollary 2.2.8. If M E PC(A) is finitely generated then a submodule L C 

Mis open if and only if M/L E PCFin(A). 
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Proof. If L is open then it is closed by Lemma 2.2.2 and of finite colength. 
Hence M/L E PCFin(A). 
Conversely, assume M/ L E PCFin{A). By Proposition 2.2.5 the quotient 
map M -t- M/ L is continous. Since, again by Lemma 2.2.2, M/ L carries the 
discrete topology, {O} C M/ L is open and thus so is its inverse image L. D 

Since PC(A) is the dual of a locally finite category, it has projective covers. 
The projective covers of the pseudocompact simples are the indecomposable 
projectives. Furthermore every projective in PC{A) is a product of such in­
decomposable projectives. By [18) the indecomposable projectives are of the 
form Ae, where e is a primitive idempotent in A. 

Recall also from [18) that if (ei)ieI is a summable set of primitive, pairwise 
orthogonal idempotents with sum 1 then A = ILer Aei and every indecom­
posable projective in PC(A) is isomorphic to at least one Aei. 

Lemma 2.2.9. The (Aei)ieI are the projective covers inMod(A) of the simple 
A-modules which are pseudocompact. 

Proof. Since the Aei are projective covers of simple modules in PC(A), this 
follows from the fact that EndMod(A) (Aei) = Endpc(A) (Aei) is local. D 

From Proposition 2.2.3 it follows that M is noetherian in PC(A) if it 
satisfies the ascending chain condition on closed subobjects. Thus if M is 
noetherian in Mod(A) then it is noetherian in PC(A). 
We now show that the converse holds. 

Proposition 2.2.10. Every subobject in Mod(A) of a noetherian object in 
PC(A) is closed and hence lies in PC(A). 

Proof. Let M be a noetherian object in PC(A). Since the (Aei)iEI form a set 
of generators for PC(A), Mis a quotient of a direct sum of a finite number of 
such Aei, and in particular is finitely generated. 

Assume now that N C Min Mod(A). We have to show that N = N . 
Since N is a closed submodule of M it is also noetherian in PC(A). Therefore, 
without loss of generality, we may assume that N = M. 

We want to show that N = M. Assume that this is not so. Consider the 
partially ordered set 

P = {N c N' <; MI N' E Mod(A)} 

Since M is finitely generated, P has a maximal element by Zorn's lemma. 
Again without loss of generality, we may replace N by t his maximal element. 
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In that case M/N is simple. However M/N is not pseudocompact since oth­
erwise by Proposition 2.2.5 N = ker(M -+ M/N) would be pseudocompact 
and hence closed which is impossible because N = M #- N. 

Let </> : Aei -+ M be a non-zero map. Then either 4>-1 (N) = Aei or 
Aei/ 4>- 1 (N) is simple but not pseudocompact. The last case is impossible since 
by Lemma 2.2.9 Aei has only one simple quotient, and this simple quotient 
is pseudocompact. Thus N contains the image of every </> and therefore N = 
M. D 

Corollary 2.2.11. An object in PC(A) is noetherian in PC(A) if and only if 
it is noetherian in Mod (A) . 

Corollary 2.2.12. Assume that M E PC(A) is noetherian. Then the topology 
on M is the co.finite topology. That is, a submodule L C M is open if and only 
if M/ L has finite length in Mod(A). 

Proof. Since M is noetherian in PC(A), it is finitely generated. So if a sub­
module L CM is open, M/ LE PCFin(A) by CoroUary 2.2.8 and therefore it 
has finite length. 
For the other direction, let L be a submodule of M of finite colength. By 
Proposition 2.2.10 L is closed in M. Hence M/ Lis pseudocompact and since 
it is of finite length, it carries the discrete topology. Thus {O} CM/Lis open, 
and so is its inverse image L. D 

Let R, I, M be respectively a ring, an ideal in Rand an R-module. Then 
the I-adic topology on R is the linear topology generated by the submodules of 
M of the form I n M. In a pseudocompact ring A the Jacobson radical rad(A) 
is the common annihilator of the simple pseudocompact A-modules [[18], dual 
of Prop IV.12). 
The following is a reformulation of the previous corollary. 

Corollary 2.2.13. Assume that M E PC(A ) is noetherian. Then the topology 
on M is given by the rad(A)-adic topology. 

Proof. It suffices to show that M/ rad(A)M is a finite sum of simples. There­
fore we look at the subcategory of t he semisimple objects in PC(A), which is 
precisely PC(A/ rad(A)) and this latter is still the dual category of a locally 
finite category. So we may replace M by M/ rad(A)M and A by A/ rad(A). 
Since M is noetherian in PC(A), it corresponds to a artinian object in the 
dual category and therefore it must be a finite direct sum of simples. D 

Definition 2.2.14. We say that A is locally noetherian if the (Aei)iEl are 
noetherian in PC(A). 
We say that A is noetherian if A is noetherian in PC(A). 
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Proposition 2 .2.15. Let A be locally noetherian and M, N E PC(A). As­
sume that M is noetherian. Then 

Exttc(A)(M, N) Ext~od(A)(M, N) 

Proof. The case i = 0 follows from Proposition 2.2.5. 
For i > 0 we use an exact sequence 

0 -t M' -t P -t M -t 0 

in PC(A) with P a finite direct sum of Aei. Since A is locally noetherian, M' 
is also noetherian and so by induction 

Extto(A)(M, N) = Exttc(A)(P/M\ N) = Ext~-c\A/M', N) 

= Ext~;d(A)(M',N) = Ext~od(A)(P/M', N) 

= Extkfod(A) (M, N) 

Proposition 2.2.15 yields the following corollary. 

D 

Corollary 2.2.16. Let pc(A) resp. mod(A) be the full subcategory of PC(A) 
resp. Mod(A) consisting of noetherian objects. Then the functor 

pc(A) -t mod(A) 

is fully faithful! and its essential image, i.e. all the objects in mod(A) which are 
isomorphic to an object in the image, is closed under extensions. In particular, 
PCFin(A) is closed under extensions inside Fin(A). 

It also follows from Proposition 2.2.15 that : 

Proposition 2.2.17. If A is locally noetherian and ME PC(A) is noetherian 
then 

proj dimMod(A) M = proj dimpc(A) M 

Now we discuss briefly automorphisms of pseudocompact rings. 

Lemma 2.2.18. Assume that A is a pseudocompact ring. If ¢ E Aut(A), 
then ¢ is continuous if and only if for every pseudocompact A -module S of 
finite length, we have that <l>S is pseudocompact. 
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Proof. "=;," We only have to prove that left multiplication by an element of 
A on ¢,S (which has the discrete topology) is continuous. Since ¢ is assumed 
to be continuous, this is clear. 
"~'' Assume that L C A is an open ideal. Then A/ L is pseudocompact of 
finite length (Corollary 2.2.8) and hence ¢,(A/ L) ~ A/¢-1 (L) is pseudocom­
pact of finite length. Again by Corollary 2.2.8 this implies ¢-1 (L) is open in 
A. D 

Corollary 2 .2.19. If A is locally noetherian and ¢ E Aut(A) then ¢ is a 
homeomorphism. 

Proof. It suffices to show that ¢ is continuous. By Lemma 2.2.18 and Corol­
lary 2.2.16, we must show that if S is pseudocompact simple, then so is ¢,S. 
Since S has a projective cover of the form A e, for some primitive idempotent 
e, ¢,S is a quotient of a Aq;-1 ( e) . By Proposition 2.2.10, it follows that ¢,S is 
pseudocom pact. 

D 

To close this section, we discuss noetherian pseudocompact rings. 

Proposition 2.2.20. Let A be a noetherian pseudocompact ring. Then the 
forgetful functor 

pc(A)-+ mod(A) (2.4) 

is an equivalence of categories. 

Proof. By Corollary 2.2.16 we only have to show that (2.4) is essentially sur­
jective. 
Let ME mod(A). Then M has a resolution 

¢, 
Fi -+ Fo -+ M -+ O 

where the ~ are finitely generated free A-modules. By Proposition 2.2.5, 
¢ E Hompc(A)(F1, Fa). Therefore M = coker¢ E PC(A). D 

Proposition 2.2.21. Assume that A is a noetherian pseudocompact ring. 
Put J = rad(A). Then 

1. A/J is semisimple in Mod(A). 

2. A is complete for the J-adic topology. 

3. The topology on A coincides with the J-adic topology. 
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Conversely, if A is a left noetherian ring satisfying 1., 2. then A is pseudo­
compact when equipped with the J -adic topology. 

Proof. "~" Since A/ J is semisimple and Jn is finitely generated, all Jn / Jn+l 
are finite direct sums of simples. Hence A/ Jn has finite length for all n. 
Therefore 2. implies that A is pseudocompact. 
"*" By [18) A/ J is a product of endomorphism rings of vectorspaces. Since 
A/ J is also noetherian, it must be semisimple. This proves l. Property 2. 
follows from 3. and 3. is precisely Corollary 2.2.13. D 

Proposition 2.2.22. Let A be a pseudocompact ring, N E rad(A) a regular 
normalizing element. Assume that ME PC(A) is such tat M/N M is finitely 
generated. Then M is finitely generated. 

Proof. The key point is that the N-adic topology on M and A is finer than 
the given topology on M (as an element of PC(A)). Thus if (fi)i is a Cauchy 
sequence for the N-adic topology, then it is convergent in the given topology. 

Let t1 , . . . , tn E M be such that ti", ... , tn generate M/N M. We show that 

ti,··· ,tn generate M. 
Take t E M. Then there exist at1

), ... , a~
1

) E A, t(1) E M such that 

n 

t - I:aF\ = Nt(l) 

i=l 

Continuing this procedure, we find a{ E A such that 

t - (~ af >ti + L N ai2>ti + ... + ~ NP- 1af ti) E NP M 
' t t 

and hence 

t = L L(Nj - 1a{) ti 
i j 

Thus M is generated by t1, ... , tn. D 

From this we deduce the following. 

Proposition 2.2.23. Let A be a pseudocompact ring, N E rad(A) a regu­
lar normalizing element. Assume that M E PC(A) is such that M/NM is 

noetherian. Then M is noetherian. 
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Proof. Let T C M be an arbitrary submodule . We want to show that Tis 
finitely generated. We define first 

Tsat = { t E M I :3 k : Nkt E T} 

Obviously, (Tsat)sat = Tsat and Tsat n NP M = NPTSat. Since Tsat I NTsat C 
M/NM, WP. find that Tsat/NTsat is finitely generated and hence so is Tsat by 
the previous proposition. 

Since Tsat is finitely generated, it follows from the definition of Tsat that 
there exists a k such that NkTsat C T. Thus Tsat n Nk M = NkTsat c T. 
Since NkTsat is finitely generated, it now suffices to show that T /(TsatnNk M) 
is finitely generated. Now clearly, M/NkM is noetherian and hence so is the 
subobject T/(Tsat n NkM). 0 

2.3 A matrix representation for pseudocompact rings 

If A is an arbitrary ring, M a left A-module and (ei)i=l, ... ,n a finite set of 
pairwise orthogonal idempotents with sum 1 then it is classical that A is 
isomorphic to the matrix ring 

Au A12 A1n 

A21 An A2n 

With Aij = eiAej and Mis isomorphic to the set of column vectors (M1 , .. . , Mn)t 
with Mj = ejM. 

An element a in A is sent to the matrix ( eiaej )ij and an element m of M 
is sent to (ejm)j· 
It is clear how to extend this result to the pseudocompact situation. 

Lemma 2.3.1. Assume that (ei)iEI is a summable set of orthogonal idempo­
tents in a pseudocompact ring A such that Li ei = 1. Let M be a pseudocom­
pact A-module and put Aij = eiAej, Mi = eiM. 
Then A is isomorphic to the ring of doubly infinite matrices (aij) ij E (Aij)ij 
with summable columns and M is isomorphic to the set of summable column 
vectors (mi)i E (Mi)i. 
The isomorphisms are given by the maps 

( aij )ii t-+ Li,j aij 

(mi) i t-+ Li mi 
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Note that this lemma only says something about the ring structure on A 
and the module structure on M, but nothing about the topology. 

Below we give the Ai the topology induced from A and Mi the topology 
induced from M. Since Aij = eiAej is closed in A, it is complete. A similar 
argument is true for Mi. Furthermore the topology is linear (given by abelian 
subgroups). We also have multiplication mappings 

Aij X Ajk -+ Ak 

Aij x Mi -+ Mj 

and since these are induced from the multiplication on A and M, they are 
continuous. This makes Aii into a topological ring, Aij into a topological 
Aii - Ajj-bimodule and Mi into a left topological Aii-module. 

Lemma 2.3.2. 1. Ai is a pseudocompact ring and Aij is a pseudocompact 
Aii -module. 

2. Mi is a pseudocompact Aii-module. 

Proof. It suffices to prove 2. Indeed if we take M = Aej (and afterwards 
j = i), then we obtain part 1. 

Let L C M be an open submodule. If T is an Aii-submodule of eiM con­
taining L n eiM = eiL then 'I'= AT+ L is an A-submodule of M containing 
L, and furthermore 'I' n ei M = T. Thus length(T/e1L) ::::; length ('I'/L) ::::; 
length(M/ L) and so it follows that the length of eiM/(eiM n L) is bounded 
by that of M/ L . Since the topology on eiM is induced from that on M we 
deduce that eiM is pseudocompact. D 

Unfortunately it is not in general true that A and M carry the induced 
topology from the product topologies on IL/Aij ) and ni M i. A counter 
example is given by the endomorphism ring of an infinite dimensional vector 
space. 

Under some mild extra hypotheses, this defect can be repaired. Note that 
the Aei are pseudocompact projectives. Hence they are products of indecom­
posable pseudocompact projectives. 

Proposition 2 .3.3. Let (ei)iEl be as in Lemma 2.3.1. Assume that every 
indecomposable pseudocompact projective is a summand of at most a finite 
number of Aei . Then as topological spaces 

(2.5) 

M (2 .6) 
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Proof. We certainly have A 
We have an inclusion 

It Aej. Hence it suffices to prove (2.6). 

29 

(2.7) 

which is given by the product of the maps M-+ Mi : m i--t eim. These maps 
are continuous and hence the inclusion is also continuous. 

We now show that the topology on Mis courser than the induced topology 
for the inclusion (2. 7) . 

Let L C M be an open submodule. Since M/ L has finite length, the 
hypotheses imply that HomA (Aei, M/ L) is non-zero for at most a finite num­
ber of i. Since Hom(Aei,M/L) = ei(M/L), we deduce that for almost all 
i, Mi = eiM C L. Hence IL(Mi n L) is open in IL Mi. Observing that 
Mn IL(Mi n L) C L yields that Lis the union of cosets of Mn IL(Mi n L) in 
L. Since t his union is a union of sets which are open for the topology induced 
by (2.7), it is itself open for this topology. This finishes the proof. 

The proof we have just given also shows that if ( mi)i E IL Mi then ( mi)i 
is summable in M. Sending (mi)i to I:; mi defines an inverse to the inclu­
sion (2.7). 
A similar result holds for A. D 

2.4 Global dimension 

In this section A is a pseudocompact ring. We define 

GI dim A = supMEPC(A) proj dimpc(A) (M) 

Note that we often have proj dimpc (A) M = proj dimMod(A) M by Proposi­
tion 2.2.17. Therefore, if no confusion can arise, we make no distinction be­
tween those two types of projective dimension, and we simply write proj dim(M) . 

Lemma 2.4.1. We also have 

GI dim A = sup se~c(A) proj dimrc(A) S 
s simple 

Proof. By Theorem 2.2.1 it suffices to prove the dual statement for locally 
finite categories. So assume C is such a category and inj dim ( S) :S: n, for every 
simple Sin C. Hence for every finite length module F one also has inj dim (F) :S: 
n . If M E C arbitrary, then by definition, M is a direct limit of finite length 
objects. By the proof [[19] , Thm. 1.10.1], monomorphisms into injectives 
can be constructed in a functorial way and hence so can injective resolutions. 
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Taking the direct limit of the injective resolutions of the subobjects of finite 
length of M yields an injective resolution of M of length ::; n (C is locally 
noetherian and hence a direct limit of injectives is injective). D 

The following result is very classical. 

Proposition 2.4.2. Let N E rad(A) be a regular normalizing element in A. 
Assume that A is locally noetherian. Then 

Gldim A ~ Gldim A/(N) + 1 

Proof. Let Gldim A/(N) = p. We have to show that projdim S ~ p + 1, 
for every pseudocompact simple. Since S = Ae/ rad(Ae) for some primitive 
idempotent e of A, it suffices to prove that 

proj dim rad(P) ~ p 

where P runs through the indecomposable projectives in PC(A). 
This follows from Lemma 2.4.3 below. D 

Lemma 2.4.3. Assume that A is locally noetherian and let L be a noetherian 
pseudocompact A-module which is N -torsion free. Then 

proj dim L = proj dimA/(N) L/N L 

Proof. By degree shifting one reduces to the case where L / N L is projective 
over A/(N). In that case the result follows by an appropriate version of 
Nakayama's Lemma. D 

The following type of result seems to be referred to less often. 

Proposition 2.4.4. Assume that A is locally noetherian and NE rad(A) is a 
regular normalizing element such that for every indecomposable pseudocompact 
projective one has NP </.. rad2 (P). Then 

Gldim A/(N) + 1::; Gldim A (2.8) 

Proof. This is an immediate generalization of the proof by Serre that local 
rings of finite global dimension are regular. 

Let ef> = N · N-1 . By Corollary 2.2.19 ef> is a homeomorphism. 
Let P be an indecomposable pseudocompact projective over A with cosocle 

S. We have an inclusion 

rt,-iS ~ N P/N rad(P) Y rad(P)/N rad(P) (2.9) 
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Now we also have NP n rad2(P) = N rad(P) and thus there is an inclusion 

N P/N rad(P) 4 rad(P)/ rad2 (P) {2.10) 

rad ( P) / rad2 
( P) is a finite sum of sim pies and hence this inclusion splits. From 

the commutative diagram 

NP/Nrad(P) ~ rad(P)/N rad(P) 

ll 1 
NP/Nrad(P) ~ rad(P)/ rad2 (P) 

we deduce that (2.9) is also split. 
Thus 

proj dim A S - 1 proj dim A rad(P) 

proj dimA/(N) rad(P)/N rad(P) 

> projdimA/(N) ef,-1S 

Taking the supremum over all S yields (2.8). 

2.5 A classification problem 

(Lemma 2.4.3) 

D 

Let I be either Z or Z/nZ. In this section we aim to classify the following 
data. 

(A) A pseudocompact ring A with a sum mable set of primitive orthogonal 
idempotents (ei)iEI such that I::i ei = 1 and Aei '1- Aej for if. j . 

(B) A regular normalizing element N E rad (A), inducing a homeomorphism 
</; = N · N-1 such that </>( ei) = ei+l and such that the image of the 
(ei)iEI becomes central in B = A/(N). 

The solution to this classification problem is the following. 

Proposition 2.5.1. 1. If III = Z then A is isomorphic to the ring Tr(R) 
of lower triangular I x I -matrices with entries in a local pseudocom­
pact ring R. The topology on Tr(R) is the product topology. Under the 
isomorphism the ei correspond to the diagonal idempotents and N cor­
responds to the matrix in which every entry is zero except those on the 
lower subdiagonal, which are one. 
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2. If III = Z/nZ then A is isomorphic to a ring of n x n-matrices of the 
form 

R UR UR 

R UR UR 

R R 
UR 

R 

(2.11) 

where R is a local pseudocompact ring and U is a normalizing element 
in rad(R) inducing a homeomorphism U-u- 1 • The topology on (2.11) is 
the product topology. Under the isomorphism of A with (2.11) the (ei)i 
correspond to the diagonal idempotents and N corresponds to the matrix 

0 0 U 

1 0 0 

0 1 (2.12) 

0 

0 0 1 0 

Proof. It is clear t hat the rings exhibited in 1., 2. and the corresponding N, 
(ei)iEI satisfy (A) and (B), so we only have to be concerned with t he converse. 
To simplify the notations we put Pi = Aei and Si = Pi/ rad(.n) will be the 
unique simple quotient of Pi . 

Recall that by Proposition 2.3.3 we have a matrix form A= (Aij)ij and we 
also have N = I:i ei+l N ei = I:i Ni+ l,i. Since N is regular we have injections 

(2.13) 

(2 .14) 

and furt hermore since the image of the ( ei)i is central in B , A/NA is diagonal. 
This implies that (2.13) and (2.14) are isomorphisms for ii= j - l. 

Left and right multiplication by N are continuous. Furthermore since A 
is pseudocompact, it follows t hat t he final topology on AN for right mult ipli­
cation, coincides with the induced topology. This final topology is defined as 
follows: let g be right multiplication by N on A, V C AN is open {:} g-1 (V) 
is open in A . We claim that this is also the case for left multiplication with 
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N on A. Indeed left multiplication by N is the composition A ~ A -±+ A . 
The fact that </> is a homeomorphism shows what we want. 

Since (2.13) and (2.14) are restrictions from left and right multiplication 
by N, they are continuous. Furthermore the topology on the image coincides 
with the induced topology. This means in particular that if i # j - l, they 
are homeomorphisms. 
The fact that N is normalizing also implies 

(2 .15) 

We will first consider the case III < oo. 
We define No= l and for i = 1, ... , n - l, Ni= Ni,i-1 ... N1,o and maps 

Oij : Aij -+ Aoo: a t-t Ni- 1aNj 

Note that Aij Nj C AiO and left multiplication by Ni defines a homeomorphism 
from Aoo -+ Aio since it is a composition of maps of the form (2.14) where 
i # j - l. Therefore it makes sense to use Ni- 1• 

Clearly if a E Aij, b E Ajk, then ()ij(a) Ojk(b) = ()ik(ab) and hence()= 
(Oij )ij de-fines an inclusion of A into Mn(A00) . We want to understand its 
image. 

If i ~ j then Bij is a homeomorphism since in this case right multiplication 
by Nj is a homeomorphism as it is a composition of maps of the form (2.13) 
where i # j - l. Thus (}ij (Ai) = A 00 • Hence we look at the case i < j . We 
have 

Oij(Aij) = Ni-I AijNj = AojNj 

since NiAoj = Aij in t his case. We also have, using maps of the form (2.13) 
where i # j - l 

AojNj = Ao,j+1Nj+1,jNj = Ao,j+1Nj+1 = . .. = Ao,n-1Nn-1 = AooU 

with U = No,n-1Nn-1 ,n-2 ... Ni,o, Thus 

Oi1(Ai1) = Aoo U 

By (2.15), we have A00U = U A00 and thus U is a regular normalizing element 
in A00 . Hence (putting R = A00 ) 

O(A) = 

R UR UR 

R UR UR 

R R 
UR 

R 
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From the definition of U it is clear that U · u-1 is a homeomorphism. 
One computes 

O(N);; = N,-
1 N;;N; = { ~ if i # j + 1 

if i = i + 1, i I n - 1 

if i = 0, j = n - 1 

If U (/.. rad(R) then it is easily seen that N ¢ rad(A) and thus (B) would be 
violated. 

Let us now consider the case III = oo. 
The following three lemmas are standard. 

Lemma 2.5.2. Ext1(Si, Sj) = 0 for i I j, j - 1 
(The hypothesis III = oo is not used here.) 

Proof. Assume Ext1 (Si, Sj) # 0. Then there is a non-trivial extension 

There are now two possibilities 

(2 .16) 

* NF= 0. In this case (2.16) is an extension as B-modules. Since the (ei)i 
are central in B, they define endomorphisms of F. Left multiplication 
by ej is the identity on Sj and annihilates Si if i # j . This yields the 
following 

0 -+ Sj -+ F -+ Si -+ O 

11 .!- ej· .!- f 
O -+ Sj -+ F -+ Si 

where J is the zero map. By the snake lemma it then follows that 
F = Si EfJ Sj, which is impossible since F is a non-trivial extension, so i 
must be equal to j. 

* NF # 0. In this case left multiplication by N defines a non-trivial map 
Si -+q, Sj and since Si, q,Sj are simple, this map must be an isomorphism. 
Thus Si =¢, Sj. Now q,Sj is a simple quotient of q,Aej = Aej -l· Thus 
q,Sj = Sj-I and we find i = j - 1. D 

Lemma 2.5.3. Assume III= oo. Let M be a finite length module in mod(A) 
with composition factors among the (Sj}j. Assume M/ rad(M) = Si . Then 
the composition factors of M are of the form Sk, k ~ i . 
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Proof. We prove this by induction on the length of M . Let St C M be a 
simple submodule. By induction , the subquotients of M/ St are of the form 
sk, k ~ i. 

Hence if t < i, then it follows from Lemma 2.5.2 that Ext1 (M/ St, St) = 0 
and thus M = M/ St€f1St. In particular, St is a simple quotient of M, different 
from Si, contradicting the hypotheses. 0 

Lemma 2.5.4. Assume III= oo. Then Hom(?;, Pj) = 0 for i < j. 

Proof. Assume there is a non-trivial map Pi Y:+ Pj. Since Pj is separated 
there exists an open submodule L s;; Pj such that Pi/'lj;-1 (L) is non zero . 
Pj/L has finite length and is modulo its radical, equal to Sj, Pi/'lj;-1 (L) is a 
subobject of Pj/L and since Si is a quotient of Pi/'lj;-1 (L), it follows that Si 
is a subquotient of Pj/ L . This implies that i ~ j by Lemma 2.5.3 and we are 
done. 0 

We now finish the proof of Proposition 2.5.1. 
Since HomA(Pi, Pj) = eiAej = Aij this last lemma implies that in the case 
III= oo the matrix form for A is lower triangular. 

For every ( i, j), i ~ j there is a homeomorphism 

obtained by composing homeomorphisms of the form (2.13) and (2.14). One 
checks that ()ij is uniquely determined in this way. By a verification as in the 
case III < oo (but somewhat more complicated) one also shows that ()i i is 
compatible with multiplication and Bi+1,i(Ni+I,i) = 1. 

Thus .4 is isomorphic to the ring of lower triangular matrices with ent ries 
in R = Aoo and N has the required form. 
This finishes the proof of Proposition 2.5.1. D 

We now exhibit when pseudocompact rings as in Proposition 2.5.1 are 
locally noetherian and have finite global dimension. 

Proposition 2.5 .5. Let A be a pseudocompact ring as in Proposition 2. 5.1. 
Then A is locally noetherian if and only if R is noetherian. Furthermore if R 
is noetherian then 

G I dim A= { 

Gl dim R + l if III = oo 

Gl dim R/(U) + 1 if 2 ~III< oo 

Gldim R if III = 1 

(2.17) 
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Proof. We have 

A/(N) = { R/(U)f if III < 00 

R1 if III= 00 
(2.18) 

The condition for A to be noetherian then follows from Proposition 2.2.23 . 
The statement about the global dimension is clear in the case II I = 1. 

For III > 1 we notice that N satisfies the hypotheses of P roposition 2.4.2 and 
2.4.4. Then (2.17) follows from (2.18). D 

2.6 More classification 

In this section we classify rings R satisfying 

(C) R is local, complete and contains an algebraically closed field k, isomor­
phic to its residue field. 

(D) Let m be the maximal ideal of R . We require that m contains a regular 
normalizing element U such that R/(U) is a commutative noetherian 
Cohen-Macauly local ring of Krull dimension one. 

(E) proj dimR R/m < oo. 

The solution to this cl assification problem is as follows . 

Proposition 2 .6.1. Assume that R satisfies (C), (D) and (E) above. Then 

R ~ k((x, y))/(</>) 

where 

</> = yx - qxy + higher order terms 

for some q E k* or 

¢ = yx - xy - x2 + higher order terms 

Conversely, every such ring satisfies (C), (D) and (E). 

(2.19) 

(2.20) 

(2.21) 

Proof. Let us first show that a ring R of the form (2.19) with ¢ of the form 
(2.20) or (2.21) does indeed satisfy (C), (D) and (E). 

It is clear that (C) is satisfied. For (E) observe that we have</> = ux + vy 
for some u, v Em such that (u, v) form a basis of m/m2

• This means that we 
have a complex 

O--+ R (uvl R2 ~ R--+ R/m --+ 0 (2.22) 
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and we have to show that this complex is exact . 
We filter R with the m-adic filtration. For this filtration it is easy to see that 

gr R = k(x, y)/(0) (2.23) 

where() consists of the quadratic part of¢. 
The exactness of 

0--+ gr R (u,v~ (gr R)2 L gr R--+ R/m--+ 0 (2.24) 

which follows from the fact that all the morphisms are graded, implies the 
exactness of (2 .22). This proves (E) . 

Now let us consider (D). We assume that R is not commutative since 
otherwise (D) is trivial. From (2.23) it follows that R is a domain, so every 
element of R is regular. Put U = [y, x]. We claim that U is normalizing. This 
was independently observed by Artin and Stafford. Assume first that we are 
in the case (2.20). One computes 

Ux 

Uy 
qxU + [x, , ] 
q- 1yU + q- 1[y, ,] 

where , represents the non-quadratic terms of </>. Now clearly 

[x , ,] 

[y' , ] 

(2.25) 

(2.26) 

for appropriate Ui, Vi , ui , vi E R. Substituting (2 .26) into (2.25) and then 
substituting t he resulting equations repeatedly into themselves, yields the for­
mulas 

Ux (qx + ... )U 
Uy (q-1y + .. . )U 

Thus U is a normalizing element. 
Case (2.21) is treated similarly starting from 

Ux xU + [x,,] 
Uy (y - 2x) U + [y 1 1'] - [ X 1 1'] 

Since R/[y, x] = k[[x, y]]/(¢) is clearly Cohen-Macauly of Krull dimension 
one, we have shown that R satisfies (D) . 

Now we prove the converse. Note that by (D), R is automatically left and 
right noetherian . 
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Step 1. proj dimR R/m = 2 

Proof. We have 

proj dimR R/m 1 + proj dimR m 

1 + proj dimR/(U) m/Um (Lemma 2.4.3) 

In particular, proj dimR/(U) m/Um is finite. Since R/(U) is commutative of 
Krull dimension one, this implies proj dimR/(U) m/Um :S 1. 

Thus proj dimR R/m :S 2. 
Assume that the projective dimension of R/m is strictly less than 2. It 

cannot be 0, hence it must be one. This means that there is a resolution 

0-+ Rn-+ R-+ R/m-+ 0 

which easily yields that R is the completion of a free k-algebra in n variables. 
If n > 1 then R is not noetherian and if n = 1 then R is a discrete valuation 
ring and hence (D) is not satisfied. D 

Step 2. The minimal resolution of R/m looks like 

X 

O -t R (u vi R2 ~ R -t R/ m --t 0 

where (x, y), (u, v) form bases for m/m2
• 

Proof. The minimal resolution of R/m looks like 

(2.27) 

Tensoring with R/(U) = R yields an exact sequence 

-b - a -
0-+R -+ R -+R-+ 0 

By taking ranks, it then follows that a = b + l. 
Since R/(U) is Cohen-Macauly we have, for i :S 1 

Extk(R/m, R) = Exti/(U)(R/m, R/(U)) = 0 

By dualizing (2.27) and using the previous, Step 1 and the fact that R is local, 
we find a minimal resolution of Ext'h,(R/m,R) as right R-module 

(2.28) 
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Now Extk(R/m, R) is an nihilated by m and thus dimk Extk(R/m, R) = b. 
Hence if b-/:- 1, we see that (2.28) decomposes as a direct sum of subcomplexes. 
But then so does the dual complex (2.27), which is impossible s ince t his is a 
minimal projective resolution of a simple R-module. We conclude that b = 1, 
a= 2. 

We now find that the minimal resolution of R/m looks like (2.27) with 
(x, y) a basis for m/m2

• Since the dual complex of (2.27) is a minimal resolu­
tion of R/m (as right module), we find that (u, v) is also a basis for m/m2

• 0 

We can now conclude the proof of Theorem 2.6.1. From Step 2 it follows 
that R is as in (2.19) with </> = ux + vy . It is now easy to see that </> can be 
put in one of the standard forms (2.20) (2.21) . 0 

Proposition 2.6.2. Let R, m, U be as in Proposition 2.6.1. Then R/(U) is 
regular if and only if U r:/. m2

• 

Proof. If U E m/m2 then by Proposition 2.4.4 R/(U) is regular. Conversely, 
assume that R/(U) is regular. T hen 

1 = dimk (m/(U))/(m/(U)) 2 = dimk m/((U) + m 2
) 

whence U r:/. m 2
• 0 

Remark 2.6.3. T his result is false in higher dimension. Consider for example 

R = k((x, y))/([x, [x, y]] , [y, [x,y]]) 

Then R/([x, y]) = k[[x, y]] is regular , but [x, y] E rad2 (R). 

2. 7 Proof of Theorem 2.1.1 

We start by discussing t hings a bit more generally. 
Let A be a Grothendieck category, G : A --+ A an a utoequivalence and 17 : 
G--+ idA a natural transformation such that 

17(G(A)) = G(17(A)) (2 .29) 

for a ll A E A. Define 

B = {A E Al 17(A) = O} 

Then the following properties are easily verified . 

Lemma 2. 7 .1 . 1. B is closed under subquotients, direct sums and direct 
products (and hence under limits and colimits). 



40 Graded modules of GK dim 1 

2. B is closed under G, a-1 and if A E A then ker 77(A), coker 77(A) E B. 

3. Let i* : B --+ A be the inclusion functor. The functors i!, i* : A --+ !3 
defined by 

i!(A) = ker(A ?J(G-1(A)) a-1(A)) 

i*(A) = coker(G(A) ~ A) 

are respectively the right and the left adjoint of i*. 

Rem.ark 2. 7 .2. The condition (2.29) is not automatic. A counter example is 
given by A= Mod(A) with A= k EB V, where Vis a k-vectorspace such that 
V 2 = 0 in A. For G we take M 1--t,t, M for some 'lj; E GL(V), which we extend 
in the obvious way to A. To define T/, we take v E V, not 'lj;-invariant and we 
define ¢ :,t, A --+ A as the bimodule map which sends 1 to v. Then we put 
ry(-) =¢ @A-. In this case G(ry(A)) =fa ry(G(A)), and in particular Bis not 
G-invariant. 

Nevertheless (2.29) holds in the case we are interested in as the following 
lemma shows. 

Lemma 2. 7.3. Assume that for all injectives E E A we have that 17(E) is 
surjective. Then (2.29) holds. 

Proof. We have that 77 G is a natural transformation G2 -4 G. Applying 
this to the map G-1ryG : GE -4 E, we get a commutative diagram (using 
E = G(G-1 (E))). 

GZ(E) 

?J(GE) l 
GE 

11(GE) GE 

11(E) l 
E 

G-1?J(GE) 

Applying this diagram with E injective and using the surjectivity hypothesis 
we find that G - 1 (ry(GE)) = 77(E). 

Now let A EA be arbitrary and let 

0 --tA--+E--+F 

be an injective resolution of A. This yields commutative diagrams. 

O ----+ GA ----+ GE ----+ G F 

G(?J(A)) r G(?J(E)) r G(?J(F)) r 
O ----+ G2 A----+ G2 E----+ G2 F 



Graded modules of GK dim 1 41 

0 ----+ GA ----+ GE ----+ G F 

11(G(A)) r 11(G(E) ) r 7J(G(F)) r 
O----+ G2A----+ G2E----+ G2F 

The fact that the rightmost squares of these diagrams are commutative, yields 
the result in general. D 

Now let V C B be a G, c-1-stable localizing subcategory (that is, closed 
under subquotients, extensions and direct sums) and define 1)00 as the full sub­
category of A consisting of objects A having an ascending filtration (~A)iE 
such that 

(2 .30) 

If there is such a fi ltration with FnA = Fn+iA = ... 1 then we say that A E 1Jn. 
Note that 7Jn = Bn n V 00

• 

If A E A then t here is a maximal filtration (RnA)n on A satisfying the 
first two properties in (2.30) with V = B. This filtration is given by 

RnA = ker(A ~ c-n A) 

An object A E A is in Bn if RnA = A and it is in B00 if UnRnA = A. A is in 
V 00 if in add ition Rn+1A/ RnA E 'D. 

We also consider the descending filtration on A given by 

T his filtration satisfies LnA/ Ln+lA E B. If A E Bm, then LnA C Rm-nA, for 
all n ~ m. 

Proposition 2.7.4. 1. V 00 is a localizing subcategory in A. 

2. Assume that A is locally noetherian. If V is closed under injective hulls 
in !3 , then V 00 is closed under injective hulls in A. 

Proof. 1. Only the closedness under extensions is not immediately clear. 
Let 

be an extension such that D 1 , D2 E 1)00
• 

We consider four cases. 
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( a) If D 1 E vm and D 2 E vn, for some m, n then it is easy to see that 
A E vm+n. 

(b) Assume D 1 E vn, for some n. Let F be a filtration on D 2 satisfying 
(2.30). Then A = Ur,p- 1(FiD 2). Since by (a) all 'I/J-1 (FiD2) are in 
1)00

, we conclude that this is also true for A. 

(c) Assume D 2 E v n, for some n . T hen LnA C D 1 and hence LnA E 
1)00

• The exact sequence 

combined with (b) (RnA E vn) shows what we want. 

(d) Assume now that Di, D 2 are general. Using (c), we can now use 
the same reasoning as in (b) to finish the proof. 

2. This assertion can be split into two parts. 

(a) B00 is closed under injective hulls in A. 
To prove this let B <-+ A be an essential extension with B E B00 

and A E A . We have to show that A E B00
• 

We may clearly assume that A/ B contains no subobject in B00
• 

Assume first t hat A is noetherian. In that case B E Bn for some n. 
From the exact sequence 

we deduce that A/ B ~ c-n(LnA) . Hence LnA contains no subob­
ject in B00

• Thus LnA n B = 0 and hence LnA = 0. This yields 
A = B and we are through. 
Now assume that A is general. By hypothesis A = UiEIAi where 
the Ai are noetherian. By looking at the pairs (B n ~,A), we find 
that Ai E B00

• Hence A E B00
• 

(b) 1)00 is closed under injective hulls in B00
• 

To prove t his, assume that D <-+ B is an essent ial extension with 
D E V 00 and B E B00

• Since B = UnE RnB, by considering all 
the pairs (RnB n D, RnB), we may reduce to the case B E Bn. We 
t hen use induction on n. If n = 1 then B E B, D E V and the 
result follows from the hypotheses on 'D. 
Assume now n > 1. We have the standard exact sequence 

(2.31) 
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Since B E Bn, it follows that RnB = B. Therefore the exact 
sequence 

yields that LnB = 0, so BE Bn. This implies that L1B C Rn-1B, 
thus L1B E Bn-1 . Clearly R 1B E B. So looking at the pairs 
(R1B n D, R 1B) and (L1B n D, L 1B) and induction, reveals that 
RiB, L1B E 1>00

• Hence from (2.31), we deduce that BE 1>00
• D 

From here on we assume that A is locally noetherian. 
Let (Ti)iEJ be the simple objects in B. It is easy to see that these are also the 
simple objects B00

• 

Define t: J -t J by c-1 (Ti) = Tti· Clearly tis a permutation of J . 
We Jet V, C be the minimal localizing subcategories of B and B00 containing 

(Ti)iEJ . Clearly C = 1>00
• 

For i, j E J, we write i "'1> j, i "'C j if Ti, Tj are respectively in the same 
connected component of V and C. 
With a reasoning similar to Lemma 2.5.2, one shows that 

i "'C j ~ :lj E Z : i "'7> tP j (2.32) 

Let I( C J be a union of equivalence classes for "'7>, stable under t, C 1
. By 

(2.32), I( is then also a union of equivalence classes for "'C. 

We denote by 'DK, CK the minimal localizing subcategories of 1) and C 
containing (Ti)iEK. Clearly 

C 
1) 

tB(KEJ/"'c)CK 

tB(KEJ/,..,v)VK 
(2.33) 

Let Ei be the injective hull of Ti in C. Put EK = tBiEK Ei. Then EK 
is an injective cogenerator of CJ( . The injective hull of Ti in 1) is given by 
Fi= R1E;. We also put FK = tBiEI<Fi. 

Proposition 2.7.5. Assume that ry(EK) is surjective. Let CK= En<lc(E1<), 
DK= End1>(FK) with the natural topology (as in Theorem 2.2.1). Then there 
is a regular normalizing element N E rad (CK) with the following properties. 

1. DK = CK/(N) as pseudocompact rings. 

2. Put ¢ = N · N- 1 . Let ei E CK be the idempotent corresponding to the 
projection EK -t E;. Then ¢(e;) = eti· 
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3. Let U ECK . There is an isomorphism as CK-modules 

p :q, Hom(U, EK) --t Hom(GU, EK) 

which is functorial in U. 

4. There is a commutative diagram. 

Hom(U,EK) 
N, 
~ <t,Hom(U,EK) 

II pl (2.34) 

Hom(U,EK) 
Hom(1J(V),EK) 

--=---+ Hom(GU,EK) 

5. ¢ is a homeomorphism. 

Proof. Since ker('IJ(G- 1 (EK))) = R1EK = FK and 'IJ(EK) is surjective which 
yields that 'IJ(G- 1(EK)) = a-1 ('1J(EK)) is also surjective, we have an exact 
sequence 

Applying Home(-, EK) and using the fact that Homc(FK, EK)= Homv(FK, FK) 
by Lemma 2.7.1 (3.), we obtain an exact sequence 

(2.35) 

Here r(f) = J o'IJ(G- 1 (EK)) and s(g) = glFK. 
If U is a finite length object in 1), then one checks that s - 1 (DK (U) ) = cl( (U) 
and hence s is continuous. 

Now choose isomorphisms µi : c-1 (Ei) --t Eti and letµ= $iEKµi , The 
map which sends h to hoµ defines an isomorphism CK --t Homc(G-1 (EK) , EK)· 
Put N = µ o 'IJ(G- 1 (EK)), as element of CK. Then (2.35) yields an exact se­
quence 

from which we deduce that N is regular and normalizing. 
The simple pseudocompact CK-modules are of the form Homc(Ti, EK) and 

if f : Ti --t EK is a map in C, then f has its image in FK and thus is annihilated 
by 'IJ· Hence N f = µ'l]f = 0 and thus NE rad(CK) · 
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We now show that N satisfies 2. ei is the composition of the projection 
Pi : Ex -t Ei and the injection qi : Ei -t Ex. The fact that N eiN-1 = eti 
now follows from the following commutative diagram. 

Ex ~ Ei ~ EK 

17(G-1(EK)) 1 11(G-1(E;)) 1 11(G-1(E1<)) 1 
c-1 (EK) 

a-1(p;) c-1 (Ei) 
a-1 (q;) c-1 (Ex) 

µ1 /Lil µl 

Ex ~ Eti ~ EK 

Now we prove 3. Define the map 

p: Hom(U, Ex) -t Hom(GU, EK) : fr+ G(µ- 1 f) 

We investigate the behaviour of p with respect to left multiplication by an ele­
ment g of CK, We find p(gf) = G(µ- 1gf) = G(µ- 19µµ- 1 f) = G(µ- 1gµ)p(f). 
Now we look at the following commutative diagram. 

EK 
G(µ-1 gµ) 

Ex 

17(G- 1(EK)) 1 77(G- 1 (EK)) 1 
G-1(EK) 

µ-lgµ 
~ c-1 (EK) 

µl µl 

EK ~ EK 

From this diagram we deduce that G(µ- 1gµ) = N - 1gN = cp-1 (g) . So we 
conclude that to make pa map of CK-modules, it suffices to twist Hom(U, EK) 
by <P· 

Now we prove 4. The commutativity of (2.34) amounts to the identity 
G(µN f) = f17(U), for fin Hom(U, EK). Since G(µ - 1 N f) = G(17(G-1(EK))f) 
= 71(EK)G(f), this follows from the fact t hat T/ is a natural transformation. 

Finally we note that 5. follows from Lemma 2.2.18 and 3. D 

Now we specialize to the situation of Theorem 2.1.1. 
Thus B = Qch(Y) for a Cohen-Macauly curve Y and J = Y, since the simple 
objects in Qch (Y) are the pointmodules, which correspond to the points of Y. 
This also implies that Tx = Px and t = r. 
It is also clear that x "''D y <=> x = y and thus the equivalence classes for "''D 
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are singletons. From (2.32), it follows that t he equivalence classes for "'C are 
given by the r-orbits. 
Finally we have for K C Y 

(2.36) 

With these data, the proof of Theorem 2.1.1 is now a simple matter of 
translation using the results of the section 2.5, 2.6, .. .. 

Proof. 1. This follows from (2.33). 

2.,3. By Theorem 2.2.1, the functor P 0 given by MM Hom(M, EK) defines 
an equivalence between the dual of C f,z and the category of left pseudo­
compact modules over the ring Cz = CK, where K is the r-orbit of z. 
By Proposition 2.7.5, DK = CK/(N) for N E rad(CK) such that </> = 
N · N - 1 is a homeomorphism and such that </>(ey) = ery · Thus CK 
satisfies the hypotheses of Proposition 2.5.1. From that proposition, it 
follows that we can put CK and Nin the required matrix forms and that 
we have R = 6Y,z if IKI = oo and R/(U) = 6Y,z if IKI < oo. 
To find out the exact form of R, we first note that by (2.36), DK is lo­
cally noetherian and hence so is CK by Proposition 2.2.23. Furthermore, 
by Proposition 2.7.4, every object in CK has finite injective dimension. 
Thus CK has finite global dimension. Hence the hypotheses for Propo­
sition 2.6.1 are satisfied and thus R does indeed have the form (2.1) or 
(2.2) . 

Now note that if 2 :S III < oo, then Proposit ion 2.5.5 actually tells 
us t hat GI dim 6Y,z < oo. T hus z is regular on Y . Also by Proposi­
tion 2.6.2, this implies that U if. rad2 (R). 

The essential image of P 0 is given by the pseudocompact left Cz-modules 
of finite length. From Proposit ion 2.3.3, it follows t hat such modules cor­
respond precisely to the finite dimensional left modules over Cz satisfying 
V = EBieiV. 
Under the duality V M V*, such modules correspond to the finite di­
mensional right CK-modules W satisfying W = EBiWei. 

We now claim that in fact every finite dimensional Cz representation is 
pseudocompact. This is clear if IOr(z)I < oo, so assume IOr(z)I = oo. 
In that case t he statement depends upon the fact that card(k) = oo. 
Clearly we may reduce to the case that W is simple. T hen W is annihi­
lated by the Jacobson radical of Cz, which according to [18] is precisely 
given by the common annihilator of t he pseudocompact simple modules. 
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In other words, rad(Cz) is given by the lower triangular matrices, hav­
ing only non-units on the diagonal. Thus W is a IL k-module. A finite 
dimensional simple module over a commutative k-algebra is clearly one 
dimensional. Hence dim(W) = 1 and we have a corresponding character 
X : ll k -+ k. Choose a = (ai)i E IL k in such a way that ai f= aj if 
if= j. Then there exists b Ek such that x(a - b) = 0. But ai - b = 0 for 
at most one i, and hence the ideal generated by a-bis either improper or 
the kernel of the projection map pri : IL k-+ k. The first case is clearly 
impossible and the second case implies that x is given by projection on 
the i'th factor. Hence W is pseudocompact. 

Putting F(M) = Hom(M, EK)* finishes the proof of 2., 3. 

4. Since F0 (Priz) is by construction the i'th simple module of Cz, it is given 
by Czei/ rad(Czei). Hence F(Pr;:z) = (Czei/ rad(Czei))* = eiCz/ rad(eiCz). 

5. This amounts to the construction of a natural isomorphism between 
FG(M) and (F M) it, for M EC J, z· 
Since FG(M) = Hom(GM, Er<)* and (FM)¢ = (Homc(M, EK)* )it, = 
it,(Homc(M, EK)*), we can use p* with pas in Proposition 2.7.5 (3 .). 

6. This diagram can be obtained by dualizing (2.34). 

7. LetM E Qch(Y). Then FM= Homc(M , Er<)* = HomQch(Y )(M,Fr~)* 
= IL HomQch(Y)(M, ~)*whereas before Fi is the injective hull of k(r'z ) 
in Qch(Y). It follows from Matlis duality that HomQch(Y)(M, Fi)* is the 
completion of M at ri z . D 
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Chapter 3 

The center of the Proj of a 
three dimensional 
Artin-Schelter regular algebra 

3.1 Introduction 

In this chapter we will prove that in characteristic 0, the center of Proj A, 
where A is a three dimensional three generator Artin-Schelter regular alge­
bra which is finite over its center, is the projective plane IP'2 , using the main 
theorem (Theorem 2.1.1) of the previous chapter in a slightly adjusted version. 

Let us indicate the general settings of this chapter. 
As was pointed out in the first chapter, one associates to a triple (Y, er, £) 
where Y C IP'2 is a cubic divisor, er E Aut(Y) and £ = C'.Jy(l) which has the 
additional property [,(l - o-)2 ~ C'.Jy, a three dimensional regular algebra A [6]. 
We recall that the homological properties of A closely resemble those of a 
polynomial ring in three variables and in the framework of [9], it is natural to 
think of Proj A as a non-commutative IP'2• 

Assume now that er has finite order. In that case it has been shown in [7] 
that A is finite over its center R . Let X be the classical Proj of R [20] . To 
A we may associate a sheaf of Ox-algebras OD.. . Let Z = Z(OD..) · In general 
Z will not be equal to ('.) x, so we define Z = SpecZ. We call Z the center of 
ProjA. 

Motivated by many examples, we dare to make the following conjecture. 

Conjecture 3.1.1. Z ~ ]P'2 • 

As was said before, we will show that Conjecture 3.1. l is true in charac­
teristic 0. 

49 
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In Section 3.2 we develop the rudiments of an intersection theory for 01:,. 
Section 3.3 is dedicated the the Proj of graded rings which are finite over a 
commutative graded ring whereas Section 3.4 specifies to our situation. In this 
last section we will use the intersection theory developed in the first section 
to prove the conjecture in characteristic 0. 

3.2 Intersection theory on orders over surfaces 

In these notes k will be an algebraically closed basefield. 
Below X will be a normal projective surface with function field I{. Let D 

be a central simple algebra over I< and let 06. be a maximal Ox-order. 
Our aim is to develop the rudiments of an intersection theory for O 6.. More 

precisely, define the following sets. 

Divr 06. 

Div1 06. 

Div th 

{locally free fractional right 06.-ideals} 

{locally free fractional left ('.J 1:,-ideals} 

{locally free fractional twosided Ch-ideals} 

We shall use the notation Div,. 06. where * = r, l or 0. Recall that T is a 
fractional right ('.J 1:, -ideal if for all x E X, Tx is a right O 6.,x- submodule in D 
which is also a right Ox,x-lattice such that Tx I( = D. In this case, we say 
that Tis locally free if for all x E X, Tx is a free right Ot,,x-module. In a 
similar way, we define locally free fractional left or twosided O 1:,-ideals. 
In the definition of Div O 1:, "free" refers to either left free or right free . It 
is well-known that these are equivalent. For completeness we include a proof 
here. 

Lemma 3.2.1. Assume that T is a twosided fractional O 1:, -ideal. If T is 
locally left free then it is locally right free and vice versa. 

Proof. It is sufficient to check this locally. So let x E X be a closed point. 
Assume that T is locally left free. This means that Tx = 0 6.,xa for some 
regular a E D. Since a E Tx and Tx is also a right ideal, we obtain aOt,,x C 
01:, xa and thus Ot, x C a- 106. xa. This is an inclusion of two orders and since ' , , 
06.,x is maximal, this must be an equality. Thus in fact aOt, ,x = Ot,,xa. This 
proves what we want. 0 

We also put 

Div*,+ Ot, ={IE Div* 06. I I C Ot,} 

where*= r, l, 0. 
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As usual the product between lattices in D restricts to products 

(3.1) 

Div Ve:. x Div1 Vt::. -+ Div1 Vt::. {3.2) 

The following lemma is also well-known 

Lemma 3.2.2. If LE Div1 Vt::., and if Risa fractional right Ve:.-ideal then 
the canonical map R ®o A L -+ RL is an isomorphism. 

Proof. We may check this locally in a point x E X. Tensoring the inclusion 
Rx YD with Lx yields the following commutative diagram. 

Rx ®o.:i..:r Lx 
a 

---+ D®oAx Lx 

/31 1~ 
RxLx 

5 
---+ DLx 

Here a ll maps are the canonical ones. Since Lx is free, it follows that a is an 
injection. The vertical map , is an isomorphism, since it is clearly surjective 
and dim D ®oi:..,x Lx = 1 = dim DLx. Since ,a = 8/3 it follows that /3 is 
injective. Since it is also clearly surjective, we are done. D 

For LE Div1 Ve:. we define L* by 

L*(U) = {a ED I L(U)a c Vt::.(U)} 

for affine UC X. 
Take x E X, if Lx = Ve:.,xa, for some regular a E D, then L; = a-1Vt:.,x· 

From this it follows that L* E Divr Ve:.. 
A similar operation, also denoted by (-)* is defined on Div,. Ve:.. Clearly (-)* 
defines a bijection between Div1 Ve:. and Div,. Vt::.. 

We recall the following. 

Lemma 3.2.3. 1. If T E Div Ve:. then T* 1 computed as left or as right 
fractional ideal is the same and lies again in Div Ve:,.. 

2. Div (J t:. equipped with the lattice product is a commutative group. The 
inverse is given by (-)*. 
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Proof. Div O t:,. is clearly a subsemi-group of the group 1) of reflexive divisorial 
Ot:,.-ideals. It is well known that the analogues of 1.,2. hold for 'D (35, Thm 
2.3]. 
Now let T E Div Ot::.. and assume that we compute T* using the fact that 
T E Div1 Ot:i., For x E X , let r E Ot:i.,x and a E T;. Since Tx is a right 
Ot:i.,x-module, it follows that Tx(ra) C Ot:i.,x, so T; is a left Ot:i.,x-module. 
Similarly one checks that T; is also a left Ox,x-lattice such that KT; = D. 
From Lemma 3.2.1 and the fact that T* is locally right free, it then follows 
that T* E Div Ot:i. . Thus Div Ot:,. is closed under (-)*, which yields that 1.,2. 
hold also for Div Ot:i., D 

We want to define a pairing 

(-, -) : Divr Ot:,. X Div1 Ch -t Z 

having the following properties for LE Div1 01:,., RE Divr 01:,. and TE Div Ot:i. 

(11) (RT,L)=(R,L)+(T,L) 

(12) (R,TL) = (R,T) + (R , L) 

(13) (R, L) depends only on the isomorphism class of R and L. 

Of course these conditions have to be supplemented with a condition which 
tells us what happens in the case that R, L are "transversal" in some sense. 

If L E Div*,+ 0.0. then we define Supp L C X as the support of the coherent 
Ox-module Ot:i./ L. Clearly we have 

X E Supp L ~ Lx /= Ch,x 

We can now add a further desirable condition for (- , - ) . 

(14) If RE Divr,+Ot:,. and LE Div1,+01:,. and if SuppR and SuppL have 
finite intersection then (R, L) = dimk 01:,./ R ®01::,. 01:,./ L 

Note that "dim" makes sense here since we are applying it to a sheaf with 
finite support (SuppOt:i./R®o1::,. 01:,./L = SuppRnSuppL). 

The classical way of defining intersection numbers is through a moving 
lemma. So our next aim will be to develop a substitute for this. 

Let Div*,++ 01:,. for * = r, l, 0 be the subset of Div*,+ 01:,. consisting of 
fractional ideals whose dual is generated by global sections as Ox-module. 

Lemma 3.2.4. (Moving Lemma) Assume that L E Div1,++ 01:,.. Let E be an 
effective divisor on X and S a finite subset of X. Then there exists L' E 
Divi,++ Ot:i. isomorphic to L such that E and Supp L' have finite intersection 
and such that Supp L' n S = 0. 
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Proof. Step 1. Let x E X we claim that 

{a E r(X, L*) IX E Supp(La)} (3.3) 

is a closed subset of r(X, L*). 
We have Lx = Vt.,xC. If a E r(x, L*) then Supp(La) will contain X 

if and only if Vt. ,xca i- Vt.,x· This is equivalent with ca not being a unit 
in Ot.,x· Finally the latter is equivalent with ca not being a unit in P = 
Ot.,x/ rad(Ot.,x). 

So we obtain that the set from (3.3) is the inverse image of the non-units 
in P under the linear map a i---+ ca. Since the non-units form a closed subset 
of the semi-simple k-algebra P, we are through (note that we didn 't use that 
L* is generated by global sections) . 

Step 2. Now we show that if x E X is a closed point then there exists a E 
f(X, L*) such that x (/. Supp(La). 

Since L* is generated by global sections there exist a E f (X, L*) such that 
L; = aOt.,x· Then Lx = Vt.,xa- 1 and hence (La)x = Vt.,x · This is precisely 
what we want . 

Step 3. Now we prove the lemma. For the intersection of E and Supp L' 
to be finite it is sufficient to prove that Supp L' has no common component 
with E, since in that case Supp L' has at most one point in common with each 
component of E. So the intersection of E and Supp L' contains less points then 
there are components of E and since E is an effective divisor it has finitely 
many components. 

Choose x1 , . . . , Xn EX, such that every component of E cont ains at least 
one of the Xi . T hen for each y E { x1, . .. , Xn} U S the set 

Sy= {a E f(X, L*) I y (/. Supp(La)} 

is open in r(X, L*) and non-empty (by the previous steps) . So Sy is a dense 
open subset in f(X, L*) . Hence, since f(X, L*) is irreducible, there exist 
an element b in the intersection of the Sy. P ut L' = Lb. It is clear that 
L' E Div1,++ Ot. . Since for all i , b E Bx; it follows that E and Supp L' have 
no common component and b E Sy, for all y ES yields that Sn Supp L' = ©. 

Now we prove our main theorem. 

Theorem 3.2.5 . There is a unique pairing 

(-, - ) : Divr Ot,. X Div1 Vt.---+ Z 

satisfying the properties (Il)-(14) above. 

D 
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Before we start the proof of this theorem we give a lemma that will be 
used many times. 

Lemma 3 .2 .6 . 1. Let L E Div1 Ot:,. Then there exist T E Div++ Ot:. as 
well as L i E Div1,++ Ot:. such that L ~ T*L1 . 

2. Let E be an effective divisor on X and S a finite subset of X. Then 
there exists L 1, T as in 1. such that EnSuppL1 1 EnSuppT are finite 
and such that Supp L1 n S = Supp T n S = 0. 

3. Let T E Div Ot:,. Then there exist T1 , T2 E Div++ Ot:. such that T '.::::'. 
T{T2. 

Proof. l. Choose an ample Mon Ox. For n large enough, Mn is generated 
by global sections, so in particular there exists a global section f of Mn. 
Since M is invertible, it is locally free . Hence Mn is also locally free and 
in particular torsion free, so f is injective. Replace Mn by M. 
Let K be the function field of X. Then K is flat over Ox , so f induces 
a monomorphism g : K-+ M ®ox K which is actually an isomorphism 
since locally t he sheaves are one-dimensional vectorspaces over K. 
The canonical map i : M -+ M ®ox K is injective, since M is torsion free. 
Put M' = g- 1(iM). M' is generated by global sections and furthermore 
M' is embedded in Kand contains Ox. Finally replace M' by M. 

Since Mis ample, form large enough, Ot:.Mm = Ot:.®Ox M m, L*Mm = 
L* ®ox Mm will be generated by global sections. Hence by a similar 
argument as above, there will be a fractional right ideal I in D containing 
Ot:., which is isomorphic to L* Mm . 
Put L1 = I* and T = Ot:. M-m . Then L ~ T* Li. 

2. By the classical moving lemma [20, Lemma V.1.2] we may choose M in 
1. in such a way that T has the correct properties. Then we can do the 
same with L 1 using Lemma 3.2.4. 

3. This is proved in a similar way as 1. except that we may not replace a n 
element in Div Ot:. by an isomorphic one since then it will usually be no 
longer in Div Ot:,. 

As above let V be the group of divisorial fractional O A ideals. As already 
said above Div O t:. C 1). It is known [35, Thm 2.3] that 1) is the free 
group on the height one prime ideals in Ot:., and furthermore that for any 
IE 7J there exist some n > 0 and J E Div Ox such that I n= (JOt:,)** . 
Note that we take the dual here in Div Ox . 

Let TE Div Ot:. and let n > 0, J E Div Ox be such that Tn = (JOt:.) 0
• 

Choose an ample line bundle, M on X contained in K. For some m 
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the product (J n Ox )Mm will have a section a. In other words Ox C 
(J n Ox)· a-1 Mm. We now replace M by a-1 Mm. Then Ox C M and 
Ox C JM. 

The fact that Ox C J M and Ot. is a fl at Ox-module, implies Ot. C 
Tn M. From this, also using Ox C M, we obtain O t,. C Tn Mn. Using 
the structure of t he ordered group 1J t his implies Ot. C TM. 
We still have TM C T M 2 C · · ·, whence by replacing M with a suffi­
ciently high power we may assume that both Ot,.M and TM are gener­
ated by global sections. 
We now take T1 = (TM)* and T2 = Ot,.M*. D 

Proof of Theorem 3.2.5. We follow the same strategy as the proof of the cor­
responding commutative result in (20). 

First we prove uniqueness. 
First note that if LE Div1 Ot., RE Divr Ot. then by (11) we have 

(R, Ot.) = (R, Ot.) + (R, Ot.) 

and hence 

(R,Ot.) = 0 (3.4) 

Similarly we have ( 0 t,., L) = 0. 
Now take in addition T E Div O t,.. Then by Lemma 3.2.3 we have TT* = 

Ot,. . It follows again from (11) that 

0 = (R, TT*)= (R, T) + (R, T*) 

and thus 

(R, T*) = -(R, T) (3.5) 

Similarly we have (T*,L) = -(T,L). 
It follows from Lemma 3.2.6 as well as (3.5) and (11)(12) that(-,-) is 

completely determined by its value on elements of Div*,++ Ot,.. 
However in that case we may apply the moving lemma to reduce ourselves 

to a computation of (R, L) such that Supp Rn Supp L is finite. In that case 
(R,L) is determined by (I4). 

To prove the existence, we follow the same method and check that every­
thing is well-defined. 
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Step 1. We start by defining the intersection pairing on Div*,++ Oe:,.. 
Let R E Div r,++ 0 t:,. and L E Div1,++ 0 t:,.. We define 

(3.6) 

where R' E Divr,++ OtJ. and L' E Divi,++ Oe:,. are chosen in such a way (using 
the moving lemma) that R' ~ R, L' ~ L and Supp L' n Supp R' is finite. 
Of course we have to check that this is independent of the choice of L' , R'. 

To prove this we claim we verify the following : if R E Divr,+ OtJ. and 
L E Div1,+ Oe:,. are such that Supp L n Supp R is finite then 

where x is the Euler characteristic . 
The right hand side of this equation is clearly independent of t he isomorphism 
classes of L and R. 

We start by tensoring the obvious locally free resolution of Oe:,./ R 

O-+ R-+ Oe:,.-+ Oe:,./ R-+ 0 

by Oe:,./ L. This yields the complex 

R @o6 Oe:,./L -+ Oe:,./L 

By definition the homology of the previous complex is Torf6 (0e:,. / R,Oe:,. / L) 
with i = 0, 1. Thus we obtain from the additivity of X 

x(Oe:,./R0o6 Oe:,./L)- x(Torf6 (0e:,./R,Oe:,./L)) 

= x(Oe:,./ L) - x(R@ot:,. Oe:,./L) 

We clearly have 

x(Ob./L) = x(Ob.) - x(L) 

Furthermore by tensoring 

on the left with R we find 

Summarizing everything, we obtain, whatever the choice of L, R, that 
x(Oe:,./ R @0

6 
Ob./ L) - x(Torf6 (Oe:,./ R, Ob./ L)) is equal to the righthand 

side of (3.7) . 
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In our case Supp0t,/R0o,:,. Vt./L is finite and hence 

x(Ot./R®o,:,. 06./L) = dimkOt./R ®o,:,. 06./L 

Thus to prove (3.7), we have to show that 

T orrA (Vt:./ R, Vt:./ L) = 0 

57 

(3.8) 

Pick x EX. We have Rx= aOt:.,x, Lx = 06.,xb, for some regular a, b ED. 
Then 

Tori ( 0 t.,x/ Rx, 0 t.,x/ Lx) 

ker(06.,x/a06.,x ~ Ot.,x/aOt.,x) 

Now SuppR n SuppL is finite so Tor1(06.,x/Rx, Vt. ,x/Lx) is a fini te dimen­
sional Ox,x-submodule of Vl:i,x/aOc,.,x· This must then be zero by the as­
sumption that 06.,x is reflexive (and hence Cohen-Macauly). 

Now assume that RE Divr,++ 06., TE Div++ Ot., LE Div1,++ Vt:,.. We 
verify (12) in this case. 

By the above discussion we already know that (R, TL) depends only on 
the isomorphism classes of R and TL. Hence by the moving lemma we may 
assume that Supp Rn Supp(T L) is finite. 

Consider the following exact sequence 

0 -+ L/TL-+ Vt./T L-+ 06./ L-+ 0 (3.9) 

and also the identity L/TL = Ot./T ®o,:,. L which is obtained from tensoring 
the obvious resolution of Vt./T by Land using T@o,:,. L ~ TL by Lemma 3.2.2. 
By (3.8), the sequence (3.9) remains exact after applying Ot:./ R®o,:,. -. Hence 
we obtain the exact sequence 

0 -+ 06./R®o,:,. Oc,./T®o,:,. L-+ Ot./R ®o,:,. Ot:./TL-+ Ot./R ®o11 06./L-+ 0 

From the fact that L is locally free we deduce that for all x E X we have 

((06./R ®o,:,. Vc,./T) ®o,:,. L)x ~ (Ot./R ®o11 Oc,./T)x 

This implies in particular, that Supp(06./ R ®o.,:,. Ot:./T ®o,:,. L) = Supp Rn 
Supp T C Supp Rn Supp(T L) which is finite. Since Supp Rn Supp L is also 
finite, it follows from the previous and (3.6) that 

(R ,TL) dimk06./R ®o,:,. Oc,./TL 
dimk(Ot./ R ®o,:,. 06./T ®oA L) + (R , L) 

dimk(Ob../ R ®oA 06./T) + (R, L) 
(R,T) + (R,L) 
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So (12) holds in this case. 
To complete the first step we still have to verify (Il) in this case, this can 

be obtained using the same method under similar hypotheses. 

Step 2 . Now let LE Div1,++ 06 and let R be arbitrary. Using Lemma 3.2.6 
(or rather its version for right ideals) we find decompositions R ~ R1T* with 
R1 E Divr,++ ('.)6 and TE Div++ 06 . Then we define 

(R,L) = (R1,L) - (T,L) (3 .10) 

Of course this could depend on the choice of R1, T. To see that this is not the 
case write R ~ R2 T'* with R2 E Divr,++ 06 and T' E Div++ 06 . We have to 
show that 

(R1, L) - (T, L) = (R2, L) - (T', L) 

which by the part of (11) from the previous step, is equivalent to 

The equality now follows from the fact that, using the commutativity of the 
multiplication in Div 06, we have R2T = R1T'. 

Now we claim that the definition (3.10) satisfies (11) for those R, T, L 
where it makes sense. 
So assume that RE Divr 06, TE Div ('.)6 and L E Divi,++ 06 . According to 
Lemma 3.2.6 we may write R = R1Ti, T = T2T3 with R1 E Divr,++ 06 and 
T1, T2 , T3 E Div++ OA. Then we find using the definition (3.10) and the part 
of (11) from Step 1 

(RT, L) (R1T(T2T3, L) 
(R1T2(T1T3)*, L) 

(R1T2, L) - (T1T3, L) 

(R1, L) + (T2, L) - (T1, L) - (T3, L) 

(R1T( ,L) + (T2T;,L) 

(R, L) + (T, L) 

To verify (12) in this case, we take R E Divr 06, T E Div++ 06 and 
L E Div1,++ ('.)A· Again by Lemma 3.2.6, we may write R = R 1Ti with 
R1 E Divr,++ ('.)6 and T1 E Div++ ('.)6· It now follows from the definition 
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(3.10) and the part of (I2) from Step 1 that 

(R, TL) (R1Ti, TL) 

(R1,TL)- (T1,TL) 

(R1, T) + (R1, L) - (T1, T) - (Ti, L) 

(R1T{,T) + (R1Ti,L) 

= (R, T) + (R,L) 

Finally we check (I3) for definition (3.10). 
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Assume that R ~ R', for R, R' E Divr Ot. and L ~ L', for L, L' E Div1,++ Ot.. 
Using Lemma 3.2.6, we find decompositions R' ~ R ~ R 1T* with R1 E 
Divr,++ Ot. and TE Div++ Ot. , It follows that 

(R', L') (R1, L') - (T1, L') 

(R1 ,L)-(T1,L) (by (I3) from Step 1) 
(R,L) 

Step 3. Finally assume now that L E Div1 Ot. and R E Divr Ot.. We write 
L = T* L1 by Lemma 3.2.6 and we define (R, L) = (R, £1) - (R, T). 
One now verifies exactly as in the previous step that this is well defined and 
furthermore that the properties (11)(12) and (I3) are satisfied. 

Step 4. We still have to verify that the definition of (R, L) satisfies (14) under 
the hypotheses that RE Divr,+ 0.6., LE Div1,+ Ot. and SuppL n SuppR is 
finite. 

As usual, we can find L 1 E Div1,++ Ot. and T E Div++ Ot. such that 
L ~ T* L1 and Supp Rn Supp £ 1 is finite. So TL ~ L1 E Div1 ,++ Ot. and 
Supp Rn Supp(T L) is finite. 
Then an exact sequence as in (3.9) shows, usin g (3.8) which is satisfied since 
Supp Rn Supp L is finite, that 

dimk Ot./ R®o6 Ot./TL 

= dimk OA/ R ®06 Ot./ L + dimk Of:\/ R ®oA Ot:./T 

Since we can also find T' E Div++ 0 t. such that RT' E Div r,++ 0 t. and 
Supp(RT') n Supp(T L) is finite, one checks with the same reasoning as at the 
end of Step 1 that 

dimk Ot./ RT'®o6 Ot:./T L 

= dimk Ot:;./T' ®oA 0.6./TL +dimk OA/R®oA Ot./TL 
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Finally since Supp(RT') n SuppT is finite , we have 

dimk Ot:./ RT'0oe:. 06./T 

= dimk 06./T' 0oe:. 01::,./T + dimk 06./ R 00,:,. 06./T 

Summarizing everything, we obtain 

dimk06./R0o,:,. Ot:./L 

= dimk 06./R0oe:. ()t:,./TL - dimk 06./R 00,:,. 06. / T 

= dimk 06./ RT' 0oe:. 06./T L - dimk 01::,./T' 0 0,:,. 06. / T L 

- dimk 06./RT' 00,:,. 06./T + dimk 06./T' 00,:,. 06./T 

= (RT', TL) - (T', TL) - (RT', T) + (T',T) (by Step 1) 

= (R, L) (using (11) and (12)) 

D 

The following proposition provides an additional property of the intersec­
tion pairing. 

P roposition 3 .2.7. Let L E Div1 06., RE Divr 06.. Then we have 

(R,L) = x (R 0oe:. L) - x (R)- x(L) +x(06.) 

In particular, ifT,T' E DivOt:. then (T,T') = (T',T). 

Proof. Using Lemma 3.2.6, we write R = R'T2, L = Ti L' with T1, T2 E 
Div++ 06., L' E Div1,++ 06. and R' E Divr,++ 06. in such a way t hat the 
supports of R', L', T1, T2 have finite pairwise intersection. 
T his has t he effect t hat we can neglect the higher Tor's in t he computation 
below (by (3.8)). For simplicity we also write "0" for "0oe:." and "O" for 06.. 
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We have 

x(R'T; ® r; L') - x(R'T;) - x(Ti* L') + x(O) 

= (x(R'T; ® L') + x(R'T; ® r; /0 ® L')) 
- x(R'T;) - x(T; L') + x(O) 

= (x(R' ® L') + x(R' 0 r; /0 0 L')) 
+ (x(R' 0 r; ;a 0 L') + x(R' ® r; /O 0 r; /O 0 L')) 

- (x(R') + x(R' 0 r; /O)) 
- (x(Tt /0 ® L') + x(L')) + x(O) 

= x(R' ® r;;a ®Tt/O 0 L') 

+ (x(R' 0 r; /O 0 L') - x(R' ® r; /O)) 

+ (x(R' 0 r; /0 0 L') - x(Ti* /0 0 L')) 

+ x(R' ® L') - x(R') - x(L') + x(O) 

= x(R' ® r;;o @r; ;a 0 L') 

- x(R' 0 r;;o 0 0/L') - x(O/R' ®T{ /0 ® L') 

+ x(R' 0 L') - x(R') - x(L') + x(O) 

Now we use again the hypothesis on the support of R', L', T1, T2. This 
allows us to replace some of the "x" by "dim" in the above formula. 
Furthermore we can compute this dimension by looking at stalks. Using the 
fact t hat R', L', T1, T2 are locally free we obtain 

x(R' 0 r; /0 0 T; /00 L') 

- x(R' ® r; /0 0 0/ L') - x(O/ R' 0 r; /0 0 L') 

+ x(R' 0 L') - x(R') - x(L') + x(O) 

= dimk O/T2 ® O/T1 - dimk O/T2 0 0/ L' 

- dimk 0/R' 0 O/T1 + dimk 0/ R' 0 0/ L' 

= (T2, T1) - (T2, L') - (R', T1) + (R', L') 

= (R'T2,Ti*L') 

= (R, L) 

In the first equality we have used (3 .7). 

We will also need the following. 

D 

Lemma 3.2.8. AsS'ume that M, M' E Div Ox and assume that 0~ has PI­
degree s. Then (Ot!i..M, Ot!i..M') = s2 (M, M') . 
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Proof. By additivity and the classical moving lemma we may assume that 
M, M' E Div++ Ox and furthermore that Supp M and Supp M' intersect in a 
finite number of points where O t,. is free of rank s2 over Ox. 

Since Supp(Ot,.M) n Supp(Ot,.M') C Supp Mn Supp M', it follows from 
(14) that 

(Ob..M, Ot,.M') dimk Ot,./Oc:,.M 0oA Ot:. /Oc:,._M' 

dimkOc:,. ©ox (Ox/M ®ox Ox/M') 

Now if x E Supp Mn Supp M' then clearly 

Summing over the points in Supp Mn Supp M' proves what we want. D 

3.3 The Proj of graded rings finite over a commu-
tative graded ring 

Let A = k + A 1 + A2 + · · · be a twosided noetherian graded ring which is finite 
over a commutative graded ring R. By the Artin-Tate lemma, R is finitely 
generated. By m we denote the ideal R>O· 

Throughout assume that A is generated in degree one. Let X be the 
classical Proj of R (see [20]) . If Mis a graded R-module then we denote the 
associated quasi-coherent Ox-module by M [20] . 

Using the definition of ( ..::_ ) we see that A defines a sheaf of Ox-algebras. 
We denote t his sheaf by Oc:,. and by Qch(Oc:,.) we denote the category of quasi­
coherent Oc:,.-modules, these are quasi-coherent Ox-modules which are also 
Oc:,.-modules. 

If Mis a graded A-module then M will be a Oc:,.-module. As usual, for a 
graded A (or R-module) M, we let M(n) be th:2ded module whose grading 

is defined by M(n)m = Mm+n· Put Oc:,. (n) = A(n). For M a Ot:,.-module we 
put M(n) = Ot:,.(n) ©oA M. 

Now recall that for any noetherian graded ring A = k + A1 + · · · the 
category QGr(A) is defined as Gr(A)/ Tors(A) where Tors(A) represents the 
locally right bounded graded A-modules. 7r : Gr(A) -+ QGr(A) is the quotient 
functor and Proj A is the pair (QGr(A), 1r(AA)). 

Now M i-t M defines a functor Gr(A)-+ Qch(Oc:,.) such t hat AA is sent to 
Oc:,. and which factors through QGr(A) . This functor defines an equivalence 
of ProjA with the pair (Qch(Oc:,.), Ot:,.). The key observation to prove this, is 
the following: 
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(*) If f E R is a homogeneous element of strictly positive degree then A1 is 
strongly graded ( see [27]). 

Note that for (*) we need essentially that A is generated in degree one. -----For the functor to define an equivalence, one must prove that Oll(l) = A(l) 
is invertible, which is true if for f E m, (A1 )i is invertible over (At )o. Since 
At is strongly graded we are through . 

In the sequel we will also use the notation ( ..:::_) when M is a graded R-central 
A-bimodule. In that case Mis canonically an Ox-central Oll-bimodule. 

Using the property (*) exhibited above one easily proves for a graded A­
module M, that 

(3.11) 

If M is an A-module then we define the local cohomology modules of M 
by 

H~>o (M) = inj limn Ext~(A/A~n, M) 

It is well-known that Hfn (M) = Ht
0 
(M) (see for example (9, lemma 8.2.(3)]). 

Hence if Mis a R-central graded A-bimodule then so is H~>o (M). 
We define R(n) by EBrE Rm and Af(n) by EBrE Mrn· If n > 0 then R 

and R(n) have the same classical Proj. Furthermore it is easily seen that for 
M E Gr(R) we have M = (M(n)y-. 

Finally note the following lemma. 

Lemma 3.3.1. Assume that ME Gr(R). Then Hfn(M )(n) = H~(n) (M(n)). 

Proof. Clearly R is finitely generated as a module over R(n). Put p = m(n). 
It follows that we have 

where Af(n,j) = EBt=j mod nMt . 

Now the definition of local cohomology easily yields that n;(M(n,i)) has its 

grading concentrated in degree nZ + j. Thus we obtain (Hfn(M))(n,j) = 
Hi(M(n,i)) and the result we were proving is a particular case of this. D 

If Mis a finitely generated graded A-module, then Hfn (M) is finite dimen­
sional in every degree ( condition "x", see for example [9, Theorem 8.3]). 
In general a graded k-vectorspace V which is finite dimensional in every degree 
is called locally finite. In that case we define V' as the k-dual of V. 
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It is clear that (-)' is a functor which sends graded left A-modules to graded 
right A-modules and also graded bimodules to graded bimodules. 

Assume that R has dimension n. Since A is a finitely generated R-module 
and R C A it follows that A has dimension n also. 
It is well-known that for any graded R-module M one has H;,.(M) = 0 for 

l > n. 
We define the dualizing module of 0~ by 

w~ = (H; (A)'J 

It is well-known that the corresponding definition for wx yields the classical 
dualizing module (not the dualizing complex!). This can for example be ob­
tained from (43] where it is shown using local duality, that (H::-i(R)'frepresents 
the functor Hn- 1(X , - )*. Since representing objects are unique, Serre duality 
[20, Prop III 7.5] implies what we want. 

We have the following lemma. 

Lemma 3.3.2. One has 

Proof. We replace A and R by some Veronese such that R is generated in 
degree one. By Lemma 3.3.1 this does not affect wx and w~ . 

Now for finitely generated graded R-mod ules M, N we have 

rlomox (M, N) = HomR(M, NJ 

and this isomorphism is compatible with possible A-module structure on M 
and N. To see this we may verify it on affine opens and there we can use (*). 

Specializing to M = A and N = H::-i (R)' yields 

Now we claim that for any finitely generated graded R-module M we have a 
natural isomorphism: 

(3.12) 

In fact since we are comparing two left exact contravariant functors it suffices 
to take M = R and this is clear. The fact that (3.12) is natu ral in M implies 
that in case M is a bimodule it is compatible with the bimodule structure. 
This finishes the proof. D 
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3.4 Three dimensional Artin-Schelter regular alge­
bras 

In this section A will be a three-dimensional t hree generator Artin-Schelter 
regular algebra finite over its center R. Let (Y, a ,£) be the associated triple. 
It follows that CJ has finite order. 

Now we use the notations which where introduced in the beginning of this 
chapter. So X is the classical Proj of Rand we put Oei. = A. 

Let Z = Z(Oei.). And denote by Z the projective scheme Spec
0

xZ which 

has Z as its structure sheaf (see [3]). Since Ox CZ C Oei., Z is a covering of 
X and we consider Ot:i. as a sheaf on Z. 

By D we denote the degree zero part of the graded quotient ring of A. 
Thus Oei. is an Ox-order in D. 

Our aim is now to give a proof of Conjecture 3.1.1 in characteristic zero. So 
from now on we assume that k is an algebraically closed field of characteristic 
zero. 

Assume that A is elliptic. In that case Y is given by a divisor of degree 
three in 1P'2 . 

As before, put B = A/(g) where g is a normalizing element in A of degree 
three. So B is the twisted homogeneous coordinate ring associated to the 
triple (Y,CJ,£). In particular one has that ProjB is equivalent to (Y,Oy ) . 

We need the following lemma. 

Lemma 3.4.1. B is a commutative sheaf of Ox -algebras and furthermore 
Spec..B is isomorphic to Y. 

Proof. We recall the definition of B as 

n 

with multiplication a · b = ab"m for a E Bm , b E En. 
Let t be the order of CJ and put M = £ 0 · · · 0 £"t-i. Since £ is a-ample [6), 
it follows that M is ample. 
Furthermore it i.s clear that B(t) = EBn>o H 0 (Y, M ®n), the classical homoge­
neous coordinate ring of Y associated to-M . In particular B(t) is commutative 
and t he classical Proj of B(t) is Y. 

Since B = (B(t) )~ we deduce that ..B is commutat ive. Furthermore one 
easily verifies from the definit ions that Spec.B is nothing but the classical Proj 

of B (see for example [3]). Hence SpecB is isomorphic to Y. D 
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Remark 3.4.2. In case A is linear, it is easy to see that with an argument 
as in the previous lemma, one has that B is commutative. Since in the linear 
case A~ B , it follows that Z = Z(OA) = Z(A) = Z(B) = B. This yields 
that Z = Y = IP'2 and Conjecture 3.1.1 is proved in this case. Thus we may 
assume in the rest of this chapter that A is elliptic. 

In view of Lemma 3.4.1, we will commit a slight abuse of notation by 
writing Oy for B. 

By the fact that Qch(OA) is equivalent to QGr(A) it follows that the 
simple OA-modules are in one-one correspondence with t he simple objects in 
QGr(A). 
Let M E Gr(A) represent such a simple object. Clearly we may assume that 
M is finitely generated and critical. In particular, the multiplication by g 

is either injective or the zero map, since a critical module is also monoform, 
which implies that a non-zero map is always injective. 

In the first case the simplicity of 1r M implies that M/ gM is finite dimen­
sional. Hence from the exact sequence 

h 
0--+ M(-3)n--+ Mn--+ (M/gM) n --+ 0 

it follows that dim Mn_3 = dim Mn, exept for finitely many n. Thus M has 
almost a periodic Hilbert function. 
In the second case M is a B-module. Recall that using the description of 
B as twisted homogeneous coordinate ring, we find that M corresponds to a 
simple Oy-module, that is to a point on Y. Using the explicit description of 
the equivalence of Qch(Y) a nd QGr(B) it follows that Mis equivalent modulo 
Tors(A) to a point module. 

In any case we can say that Mis critical of Gelfand-Kirilov dimension one. 
Conversely it is clear that such an M will give rise to simple object in QGr(A) 
since GKdim(M/M') = 0 implies that M/M' is torsion. 

Critical M of Gelfand-Kirilov dimension were studied in [6]. It was shown 
that their multiplicity is either equal to 1 or some number m > 1 and that 
their Hilbert function is constant for sufficiently large n. Those that have 
multiplicity 1 are precisely those that are annihilated by g. 

If Mis as in the previous paragraph then M is a simple OA-module and 
in particular it is supported in a point x E X. Then x lies in some standard 
open D+ (!) associated to a homogeneous element f E R of positive degree. 
By definition we have MI D+(f) = (M1 )o, 
Now M is critical and multiplication by f on M is not the zero-map, so it 
must be injective. Since the Hilbert function of M is constant for sufficiently 
large n, it follows that multiplication by f on M must be an isomorphism in 
high degree. 
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It follows that dim (M1 )0 = dim Mn for n ~ 0. Thus if M has multiplicity e 
then dim M = e. 

Put :1 = (gAf Assume that OA has PI-degree s. Since we are assuming 
that A is not linear, it follows that s > 1. 
By the above discussion the simple VA-modules are either 1 ors-dimensional 
and the one-dimensional ones are anihilated by :f. Note that if t hey are not 
!-dimensional, they must be s-dimensional since the multiplicity m > 1 from 
the above discussion is now exactly s. This follows from the fact that over an 
algebraically closed field k, the PI-degree is the maximum of the dimensions 
of the simple representations which is m is our case. 

By the Artin-Procesi theorem it follows that .7 defines the ramification of 
(h. More precisely, put 'I= :1 n Oz. T hen V('I) is the non-Azumaya locus 
of OA in Z , that is the set of x E Z such that C'.h,x is not Azumaya. 
Put S = V('I)red· 

Proposition 3.4.3. 1. Z is isomorphic to lP' 2. 

2. Y and S with their natural embeddings into lP'2 have one of the following 
forms: 

• A smooth elliptic curve. 

• The union of a line and a conic which intersect in two distinct 
points. 

• The union of three lines which intersect in three different points. 

• An elliptic curve with a node. 

Let q E S . Then 6 A,q has the following form 

• If q is a node then 6A,q = k((x, y))/(yx - (,xy), where(, is an s'th 
root of unity. 

• If q is smooth then 

T Tx Tx 

T 

Tx 

T 

(s x s-matrices) where T = k[[x, y]]. 

3. The obvious map Y --+ S is one-one on singular points and outside the 
singular points defines an s-sheeted covering. 
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The proof will consist of a number of lemmas 

Lemma 3.4.4. Assume that A is an order of PI-degree s > 1 in a central 
simple algebra E over the quotient field L of the two dimensional complete 
local ring P = Z(A) containing a copy of its residue field k. Assume in 
addition that A is basic, and furthermore that there is an invertible ideal J in 
A such that A/ J is commutative. Finally assume that A is reflexive and of 
finite global dimension. 
Then the following hold. 

1. J is generated by a normalizing element N. 

2. A is isomorphic to 

T Tx Tx 

T 

Tx 

T 

(t X t-matrices) where T is a complete local ring of the form 

T = k((x, y))/(7/J) 

with 

'l/; = yx - (xy 

for some p 'th root of unity(, such that pt equals s . 

3. P is regular. 

"(3 .13) 

(3.14) 

4. If A has more then one simple module then N and the above isomorphism 
may be chosen in such a way that N corresponds to 

0 0 X 

1 0 
(3.15) 

0 1 0 

5. If A has exactly one simple module then N and the above isomorphism 
may be chosen in such a way that N corresponds to x, or xy. 
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6. If A has more then one simple module then A/(N) is a direct sum of 
discrete valuation rings. If A has exactly one simple module then A/(N) 
is either a discrete valuation ring, or isomorphic to k[[x, y]]/(xy). 

Proof. There are many ways of proving this. For example, with a little bit 
of work, we could deduce it from [30] or [2]. It can also be proved with a 
computation similar to [39, §3]. 

We prefer to prove it using a slightly extended version of Theorem 2.1.1. 

If C is a finite length category, then C0
, where H is the closure under 

direct limits, is a locally finite category. So Gabriel associates to C0 a pseudo­
compact ring A such that C0 is equivalent to the dual of PC(A), the category of 
pseudocompact modules over A. From this it follows that C is equivalent to the 
category of pseudocompact finite length modules over A. Furthermore if A is 
basic then an A with this property is unique up to (non-unique) isomorphism. 

We apply this with C being the finite length modules over A. Then it is 
clear that the associated pseudocompact ring is A itself. 

On the other hand Mod(A) almost satisfies the hypotheses of Theorem 2.1.1 
with the functor G = J ®A - except that A/ J is not quite a "Cohen-Macaulay 
curve" . However from the fact that A is reflexive it follows that A/ J is a 
one-dimensional Cohen-Macaulay ring, and this is sufficient for the proof. 

Using this observation, Theorem 2.1.1 now yields that C is equivalent to 
the category of pseudocompact finite length modules over a finite direct sum 
of rings 

T TU TU 

T 

TU 
T 

(3.16) 

where T is a (in general non-commutative) complete local ring of global di­
mension 2. 

Hence by the uniqueness alluded to above, A is isomorphic to a direct sum 
of such rings. However A is prime, so it must be isomorphic to exactly one 
ring of the form (3.16). 
Note that it is exactly the form (3.16) we get from Theorem 2.1.1 since A has 
finite global dimension. 

The fact that T has the form (3.14) follows from the fact that T is finite 
over its center, as well as the fact that we are in characteristic zero (for example 
using [2]). 
From this we also obtain that P = Z(A) ~ k[[xP, yP]]. Thus Pis regular. 
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Now we still need to find the explicit form of N. 
If A has more than one simple then according to Theorem 2.l.l 2(b) ("n"> 

1 in this case) N is of the form 

0 0 U 

N= 
1 0 

0 1 0 

with U a normalizing element in T contained in rad(T) - rad2 (T). 
If ( = 1 then we can take x = U. If ( # 1 then the only normalizing elements 
in T not contained in rad2(T) are x and y (up to a unit). So possibly after 
interchanging x and y we may assume that U = x. 

Assume now that A has exactly one simple (so "n"= 1). In that case 
A= T . Since we had assumed s > 1 it follows that T is not commutative, so 
( # 1. Since N has the property that T/(N) is commutative, (N) must contain 
[y, x]. So (N)/(xy) must be an ideal in k[[x, y]]/(xy) such that the quotient 
has no finite dimensional submodules (this follows from the corresponding 
property of A/(N) which in turn follows from the fact that A was assumed 
reflexive). It follows that the only possibilities for (N) are (x), (y) or (xy). 
Since we are free to change N by a unit and to interchange x and y it follows 
that we may take N = x or N = xy. 

To end the proof we need to prove 6. However this is a sim pie consequence 
of 4. and 5. D 

Lemma 3.4.5. Assume that A is a hereditary order in a central simple algebra 
E over the quotient field L of a discrete valuation ring P. Assume that A 
contains an invertible ideal J such that A/ J is a field. Then A is a maximal 
order and ( assuming characteristic zero) the ramification index of A is equal 
to the PI-degree of A. 

Proof. We want to work with completions, so let P be the m-adic completion 
of P, where m is the unique maximal ideal of P. Let L be the quotient field 
of F. Then E = i 0L E is a central simple L-algebra a nd A= P 0p A is a 
hereditary ? -order in E. Since J = F@pJ is an invertible ideal of A and A/J 
is a field , we obtain from Theorem (39.14) in [29] that A is a maximal order 
in E and thus A is a maximal order in E. D 

Lemma 3.4.6. Z is smooth. Y is as stated in Proposition 3.4. 3 and S has 
normal crossings. 

Proof. First we make a few general observations: 
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1. 0 ti. locally has finite global dimension . This follows from the fact that 
A has finite global dimension and is generated in degree one ( using (*)). 

2. (Jti. is reflexive as Oz-module. This follows for example from the fact 
that A has no non-trivial extensions by one-dimensional modules (see [7, 
Thm 4.1]). 

First we prove that Z is smooth. 
Let q E Z - S. By the above O ti.,q is Azumaya of finite global dimension 

and hence the center of Oti.,q, which is equal to Oz,q also has finite global 
dimension. Thus Z is smooth at q. _ 

Now we consider the case q ES. Applying (-) to the exact sequence 

0-+ gA-+ A-+ B-+ 0 

using Lemma 3.4.1 yields an exact sequence 

0-+ .7-+ Ot1 -+ Oy -+ 0 

which yields an exact sequence 

0-+ jq-+ 06.,q-+ 0y,q -+ 0 

So Ot:.,q/ jq is commutative by Lemma 3.4.1. 
We claim t hat 66.,q is basic. If it weren't then by the fact that the simple 

representations of O 6. have either dimension 1 or s, it follows that 6 ti.,q must 
have a simple representation of dimensions. However, since q ES, Oti.,q also 
has a simple representation of dimension 1. This contradicts the addit ivity 
principle for PI-degree [11]. 

Using the observations 1. and 2. above, it follows that the Oz,q-order Oti.,q 
satisfies the hypotheses for Lemma 3.4.4. Thus Oz,q is regular and hence Z is 
smooth in q. 

Since 6Y,q ~ Oti. ,q/ Jq, Lemma 3.4.4 (6.) implies that Y has at most a node 
in q. Furthermore we see immediately that the ramification locus of Oti.,q has 
normal crossings. Hence it follows that S has normal crossings in q. 

Using the fact that Y is a cubic divisor in IF2 we now deduce from (4.13) 
in [6], that Y is as stated in the proposition. D 

Lemma 3 .4 . 7. 
in Ot1. 

1. The irreducible components of Y define invertible ideals 

2. 0 ti. is a maximal order. 

3. 0 ti. has ramification index s in all components of S. 
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Proof. For some comments on why these assertions need some kind of proof 
see Remark 3.4.8 below. 

1. Since :J is invertible by construction and Y is reduced by Lemma 3.4.6, 
this is clear if Y consists of one component. So assume that this is not 
the case and let Y1 be an irreducible component of Y with Y1 =/:- Y. Let 
:!1 be the corresponding ideal in O t:::... 

We first prove that :71 is reflexive as Oz-module. To see this let :J{ be 
the bidual of :71 with respect to Oz. Since Z is smooth, :71 is equal to :J{ 
in height one primes. In other words :J{I :71 is a zero dimensional sub­
module of Oy1 • Since 0y1 is irreducible, it contains no such su bmodules . 
It follows that :J{ = :!1. 

Since the explicit models given in Lemma 3.4.4 yield that O t:::.. locally has 
global dimension two (this is easily seen directly), standard arguments 
now imply that :]1 is at least locally projective (on either side) as Ot:::..­
module. 

Let p be a point in Y1 which is singular in Y (such a point exists since 
Y is connected by Lemma 3.4.6) and let q be the corresponding point in 
s. 
Since pis singular in Y, (}t::,_,9 has only one simple module by Lemma 3.4.4 
(6.), so by Lemma 3.4.4 (2.), Ot:::..,g = k((x, y))/(yx - (xy) . Thus for 
example J1,9 = (x) (Lemma 3.4.4 (5.)). In particular J1 ,9 is invertible. 

Our aim is now to show that the cokernel K of 

1s zero. 
By the previous discussion 1(9 is clearly zero. Since as usual 6 t:::..,q is faith­
fully flat as Ot:::..,g-module, it follows that K9 is also zero. Now let S1 be 
the image of Y1 in S, it then follows by semicontinuity, that K I U = 0 
for an open neighbourhood U of q in S1 . Since S1 is irreducible and 
obviously also K I Z - S1 = O, we conclude that the support of K is 
zero-dimensional. 
On the other hand since :]1 is locally projective as Ot::,_-module, it easily 
follows that :71 0 oA :Jt is at lea.st reflexive as Oz-module. So in partic­
ular it has no extensions by sheaves of finite support. We conclude that 
K = 0 and so :71 is an invertible ideal in Ot:::... 

2. Since Ot:::.. is reflexive it suffices to show that Ot:::.. is a maximal order in 
codimension one, i.e. that localisation on height one primes is a maximal 
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order. The explicit local models of Ot,. yield that Ob.. is homologically 
homogeneous [16). From this it follows that localizations of O t,. at generic 
points of irreducible curves are hereditary. Thus what we want to prove 
follows from Lemma 3.4.5 and (1.). 

3. This follows also from Lemma 3.4.5. D 

Remark 3.4.8. First we remark that from the fact that J is invertible, it 
does not trivially follow that :11 is invertible. Indeed consider the following 
example 

(
Ow Ow(-w)) 
Ow Ow 

(3.17) 

where W = IF1
, w E P 1 and let 

:J = (Ow(-w) Ow(-w)) 
Ow Ow(-w) 

then clearly :J is invertible and Ot./ .J defines two copies of the point w. If 
we take one copy to define .J1, then we find 

.Ji= (Ow(-w) Ow(-w)) 
Ow Ow 

which is not invertible. 
The fact that O t,. is maximal also does not follow for trivial rea.sons. Note 

that it was shown in [37) that A is a maximal order. However this does not a 
priori imply that A is a maximal order. To illustrate this we can use the same 
counterexample. 
Let A= EBnE An with An = r(W, :7-n). Then 

A ~ ( k [ x, y] k [ x, y ]( -1 )) 
k[x, y](l) k[x , y] 

where k[x, y] is graded by deg x = 1, deg y = 2. Obviously A is a maximal 
order and one easily verifies that A = 0 t,.. On the other hand O t. is clearly 
non-maximal. 

In dimension one, one cannot construct such an example with A a domain 
by Tsen's theorem. However this is possible in higher dimension. Start for 
example with a maximal order Or in a division algebra over a surface Wand 
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then take a "tame" suborder 06. [35) of Or ramified in a curve over which Or 
itself is unramified. 

Nevertheless it is conceivable that the methods in [37) may be adapted to 
prove that A is a maximal order in a reasonable level of generality. However 
for simplicity we have prefered to give a direct proof in our special case. 

Lemma 3.4.9. 1. If q E 5, then 66. ,q has the form indicated in the state-
ment of Proposition 3.4.3. 

2. The obvious map Y -, S is one-one on singular points and outside the 
singular points defines an s-sheeted covering. 

Proof. 1. If q is a node on Y, then 6 6.,q has one simple and so it has the 
required form by Lemma 3.4.4 (2.). If q is smooth on Y, then 66.,q has 
more than one simple and with the notation of Lemma 3.4.4 (2.) "t" 
must be exactly s, since all components of S have equal ramification 
index s by the previous lemma. It then follows from Lemma 3.4.4 (2.) 
that Tis the commutative ring k[[x, y]]. 

2. This can now be verified directly using the explicit form of 6 6. ,q. D 

Proof of Proposition 3.4.3. The only parts of Proposition 3.4.3 that still need 
proof are the fact that Z = lP2 and the explicit form of S. However once we 
have shown that Z = lP2 then the form of S can be verified case by case using 
Lemma 3.4.9 (2.) and the fact that S has normal crossings. 

So it remains to show that Z = JP' 2• To do this we compute Wt!,.. Using 
standard theory of maximal orders and Lemma 3.3.2, we find 

(3.18) 

-------On the other hand by definition Wt!,. = H!(A)'. Now it has been shown by 
Yekutieli [42) that H!(A)' is equal to (gA)>. where .\ is an automorphism 
which on An, is multiplication by an for some scalar a. It is clear that .\ 
disappears when we apply(..=:_) and hence Wt!,.= (gA;= :J. 

Comparing with (3.18) yields that 

(3 .19) 

Using t he fact that gA only differs by a graded automorphism from A(-3), 
it is easy to see that 3-1 is ample (in the sense of [9)). 
Since we are in characteristic zero, the trace map shows that Oz is a direct 

summand of a 6.. 

From this we deduces the following: 
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Sublemma . Wz1 is ample on z. 
Proof. Let M be a coherent sheaf on Z. We have to show that for i > 0 and 
for large n Hi(z, Wzn 0oz M) = 0 [20, Prop IIl.5.3]. Since Oz is a direct 
summand of Ot:,., it is sufficient to show t hat Hi(z, Ot:,. 0oz ,,_,zn 0oz M) = 0 
for large n. Now by (3.19), we have Ot:,. 0oz Wzn = :r-ns. Since :r-1 is ample 
this proves what we want. D 

From this sublemma, we deduce, using [10, Ex. V.l], that Z is either 
JP'1 x JP'1 or else is obtained by blowing up at most eight points in JP'2 in general 
position. 

To find out the actual form of Z, we compute the self intersection (wz, wz). 

(wz, wz) fi(:Js, :Js) 
~(J, JS) 

(.J,.J) 
x(.J2

) - 2x(.J) + x(Ch) 
x (Ot:,. / .J) - x(.J I .J2

) 

by Lemma 3.2.8 and (3.19) 

using repeatedly (11) 

using repeatedly (12) 

by Proposition 3.2.7 

using the obvious exact sequences 

Now we have Ot:;. / .J = Oy and thus by the fact that Y has arithmetic genus 
one, we deduce x(Ot:./.J) = 0. 
Furthermore .J / :12 = (gA/gA2T ~ (A/gA)(-3T (as left modules). To com­
pute the Euler characteristic of A/ g A, we use that it is a twisted homoge­
neous coordinate ring of Y associated to a line bundle of degree three (and an 
automorphism). Under the equivalence explained in chapter 1, (A/Ag)(-3) 
corresponds to a line bundle of degree -9 on Y. Thus x(.J / .J2

) = - 9, since Y 
has arithmetic genus 1. 
Combining everything we find that (wz, wz) = 0 - (-9) = 9. 

Now we have (w 2,w 2) = 9 and (w ix 1,w i x 1) = 8. Since blowing up 
fur ther reduces (w, w) [20, Prop V .3.3] the only possibility is Z ~ IP2• D 
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Chapter 4 

The center of a 
non-commutative regular 
local ring of dimension two 

4.1 Introduction 

In order to extend the proof of Proposition 3.4.3 to characteristic p > 0, we 
should at least be able to compute the center of rings of the form (2 .1) and 
(2 .2). We are unable to do this. In this chapter we consider some special cases. 

Let us be more specific. Below k is a field. The rings we will be concerned 
with, are of the form 

C = k((x, y))/(7/;) 

where 'ljJ only has term of total degree 2 2 and where the quadratic part of 'ljJ 
is non-degenerate. 

We propose the following conjecture: 

Conjecture 4.1.1. Let C be as above. Then the center of C is either trivial, 
or else it is a formal power series ring in two variables. If the quadratic part 
of 'ljJ is of the form yx - xy and the characteristic p of k is > 0 then Z(C) is 
generated by elements of the form xPn + cp( x) and yP.,. + fJ( x, y) for some n > 0 
and where. <p and 8 are trivial or contain only terms in x, y of total degree 
> pn. 

In this chapter , we will prove this conjecture in the case that C is given 
by an Ore extension. That is 

C = B[[y; a, 8]] 

77 
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where B is k[[x]], a is a k-linear automorphism of B and o is a k-linear a­
derivation of B. Thus o satisfies 

o(ab) = a(a)o(b) + o(a)b 

and C is obtained from B by adjoining the variable y, subject to the commu­
tation rule 

yb = a(b)y + o(b) (4.1) 

In other words C = k((x , y))/('lj;) where 'lj; is given by yx - a(x)y - o(x). 
Thus for 'lj; to have only terms of degree ~ 2, it is necessary that 8 ( x) contains 
only terms of degree ~ 2, if o is non trivial. We assume this throughout. 

We will prove the following theorem: 

Theorem 4.1.2 . If C is an Ore extension as above then Conjecture 4.1.1 
holds. 

Our treatment of the case where a is trivial relied originally on the following 
combinatorial result by G. Baron and A. Schinzel in [12]. 

Proposition 4 .1.3. For any prime p and any residues Xi mod p, we have: 

I: Xa(1)(Xa( l) + Xo-(2)) · · · (xo-(1) +, , · + Xe1(p-l)) 

o-ESp-1 

(mod p) 

where Sp-I is the group of all permutations a of {1, ... ,p - l}. 

Afterwards we discovered a new approach which is independent of the 
above result. It turns out that we can now even give a new proof of the result 
by G. Baron and A. Schinzel, using Lemma 4.2.1. This proof is produced in 
the final section of this chapter. 

Let us give an outline of the strategy used in the following for proving 
Theor'em 4.1.2. 

First we dispense with some trivial cases. If a is trivial and 8 = 0 then 
there is nothing to prove. In addition, it is easy to prove that in the following 
cases the center of C is trivial. 

1. a is trivial, 8 is not trivial and p = 0. 

2. The order of a is infinite. 
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In subsequent sections we deal with the remaining cases. In Section 4.2, 
we discuss the case where a is the identity and p > 0. In Section 4.3, we focus 
on the case where 8 is trivial and a is not trivial but has finite order. Finally 
in Section 4.4 we deal with the case where both a and 8 are non-trivial and a 
has finite order. 
In this last case our approach is somewhat indirect and we do not obtain nice 

expressions for the elements generating the center. 

4.2 The case where a is the identity and p > 0 

It follows from (4.1) that in this case the commutation relation between y and 

x is given by 

yx xy+8(x) 

In this case we prove 

Z(C) = k[[z, w]] 

where z = xP and w = yP - cp(x)y, with 

& ( 8 ( (8 8(x) ) ) ) Cp(x) = OX OX , . . a;-· b(x) , .. · 8(x) · 8(x) 

in which :x and 8(x) occur (p - 1) times. 

It is obvious that [x , z] = 0. Furthermore from 

[y, z] = 8(xP) = x8(xP-1
) + 8(x)xp-l = .. . 

I: xa8(x)xb = p8(x)xp-l = 0 
a+b=p-1 

11,b~O 

we deduce that z also commutes with y. Hence z is in the center of C. 

(4.2) 

To prove that w is in the center of C we use the following key-lemma. This 
lemma will also be used in the new proof of Proposition 4.1.3. 

Lemma 4.2.1. Let J E B and put 

a &9 
where both ax and f occur (p- 1) times. Then ox = 0. 
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Proof. Without loss of generality we may assume that J -f 0. Define the 
derivation d of B by 

d(b) :=ab. f ax 
and consider the derivation e = dP - g ·don B. 

If we evaluate e in x, we get 

e(x) = dP(x) - g. d(x) 

= f . :x ( :x (. .. ( !f . f) .... f) . f) -g . f 

=f·g-g · f 
=0 

and so e is identically zero on B. In particular, e commutes with d. 
On the other hand we have 

[e, d] = [dP - gd, d] 

= -[g·, d]d 

= (dg)d 

= a g fd 
ox 

Evaluating at x and using the fact that f -f 0, this yields ~: = 0. D 

Let YI, respectively Yr be left , respectively right multiplication by y on B. 
Because YI and Yr commute, we see that 

It follows that we have 

[yP, x] = [y, [y, . .. , [y, 8(x)] .. . ]] ((p - 1) times y) 

By repeatedly using the fact that, for all J(x) EB 

[y, f ( X)] = a f ( X) [y, X] = {) f ( X) · £5 ( X) ax ax 
we deduce, for f(x) = 8(x) 

[yP, X] = Cp ( X) [y, X] 
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It follows that w commutes with x. 

Furthermore, applying Lemma 4.2.1 with f = o(x) EB, we deduce 

0 Cp(X) 
[y , W] = [y 1 Cp ( X)] Y = O [y, X] Y = 0 

X 

Thus w commutes also with y and we obtain k[[z, w]] C Z(C). 

Let Q(Z(C)) and Q(C) be respectively the quotientfields of Z(C) and C. 
Since {xayb IO~ a, b ~ p - 1} is a basis of Cover k[[z, w]], we see that C is 
free of rank p2 over k[[z, w]]. This implies 

p2 = dimk((z,w)) Q(Z(C)) dimQ(Z(C)) Q(C) 

whence 

dimQ(Z(C)) Q(C) E {1 , p, p2
} 

Since C is not commutative and dimQ(Z(C)) Q(C) is a square according to [17], 
it follows that 

dimQ(Z(C)) Q(C) = p2 

and furthermore that Z(C) and k[[z, w]] have the same quotientfield. 
As indicated above C is free of rank p2 over k[[z , w]] . In particular C 

is finitely generated as a module over k[[z, w]]. It fo llows that Z(C) is also 
finitely generated as a module over k[[z, w]] and thus Z(C) is integral over 
k[[z, w]]. Since k[[z, w]] is integrally closed, this yields Z(C) = k[[z, w]]. 

So in order to complete the proof Conjecture 4.1.1 in this special case, 
we have to show that if v(o(x)) 2:: 3, v(cv(x)) > p - l, where v is the x-adic 
valuation on B. Therefore, put, for all r 2:: 2 

a ( a ( (oo(x) ) ) ) Cr(x) = OX OX . . . ~ · o(x) ... · o(x) · o(x) 

in which f and o(x) occur (r - 1) times. 
uX 

We prove by induction that v(cr(x)) 2:: 2(r - 1). 
Since v(o(x)) 2:: 3, we get 

v(c2(x)) = v (
8!~1:)) ~ 2 
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By induction, we have 

V ( Cr ( X)) = V ( :X ( Cr-1 ( X) · 0 ( X))) 

= V ( Cr - I ( X)) + V ( 0 ( X)) - 1 

2:2(r-2)+3-1 

= 2(r - 1) 

So v(cp(x)) 2: 2(p - 1) > p - 1. 

4.3 The case where o 
has finite order 

0 and a is not trivial but 

In this case the commutation relation between y and ;z; is given by: 

yx=<i(x)y (4.3) 

We will denote the order of <7 by n and put A = B0
• Let K, L be the 

quotientfields of A, B respectively. We prove that 

Z(C) = k[[z, yn]] 

where z = X<i(x) ... an-l(x). 
Let us first discuss the structure of A. 

Lemma 4.3.1. A = k[[z]], with z as above. 

Proof. It is obvious that A is a complete discrete valuation ring and k is a 
copy of its residue field. So A is a formal power series ring k[[ u ]], where u is a 
uniformizing element. 

Since J( is complete under a discrete valuation and L is a finite extension 
of l(, the uniformizing element u must be of the form xe + higher terms, 
where e is the ramification index. Furthermore, since the residue class degree 
equals 1, we conclude that e = [L : I<] = n . 

It is easy to see that since er is k-linear, 

a(x) = ( x + higher terms 

where ( is an nth root of unity. 
So z = x a(x) ... <in-l (x) is of the form xn + higher terms. Therefore z is also 
a uniformizing element and furthermore A = k[[z]] . D 
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It is clear that AC Z(C) and that yn belongs to the center of C. We now 
look at the other inclusion. 

Let f be in Z ( C). We can write f, in a unique way, in the form Ei>o ai yi, 
where ai EB. Since f E Z(C), we have (using (4.3)) -

0 = [x, f] = L ai(x - ai(x))yi 
i>O 

Hence, for all i EN, if ai i= 0, x = ai(x), son divides i. 
On the other hand we have 

0 = [y, f] = L(a(ai) - ai)yi+l 
i>O 

so a(ai) = ai, for all i in N. This yields ai E A, for a ll i in N. 
It follows that f E k[[z, yn]] . 

We have now proved that Z(C) is a formal power series ring in the two 
variables z, w. The remaining claim of Conjecture 4.1.1 follows from the fact 
that if a ( x) is of the form x + higher terms, then 

• If p = 0 and a is non-trivial then its order is infinite (easily proved). 

• If p > 0 and if the order of a is fin ite then it is a power of p [36]. 

4.4 The case where a and o are non trivial and a 
has finite order 

Here we have the following commutationrelation between y and x : 

yx = a(x) y + J(x) (4.4) 

As before we denote the order of a by n and we assume n i= l. We put 
A = Ba and we let J( and L be respectively the quotientfields of A and B. 
We extend the action of a and J to L and we denote these extended maps also 
by a and J. 

It was shown in Lemma 4.3.1, that A is the ring of power series over k in 
z = xa(x) .. . an- l(x) EB. 

For convenience we will first work in the polynomial Ore extension S = 
B[y; a, J] . We will prove the following theorem. 

Theorem 4.4.1. The center Z (S) of S is the ring of polynomials A[w], where 
w is a monic (skew) polynomial of degree n in y with coefficients in B. In 
particular, we find that S is free of rank n2 over Z(S). 
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The proof of this theorem depends on the following lemma: 

Lemma 4.4.2. Let D, D' be central simple algebras of the same PI-degree 
with centers Z, Z', respectively. Assume that D ~ D'. Then Z ~ Z' and 
furthermore the map <p : D 0z Z' -t D', defined by cp(d 0 z') := dz' , is an 
isomorphism. 

Proof. Denote the PI-degree of D and D' by m. Then the PI-degree of DZ' 
is also equal tom since we have inclusions D ~DZ'~ D'. 

Furthermore, from Z' ~ Z(DZ') ~ DZ' ~ D' (where Z(DZ') is the center 
of DZ'), we deduce 

m 2 =[DZ': Z(DZ')] ~[DZ': Z'] ~ [D': Z'] = m2 

This yields [DZ': Z'] = m2 = [D': Z'). And it follows that DZ'= D' and in 
particular 

Z ~ Z(DZ') = Z(D') = Z' 

From DZ'= D' we also conclude that the map cp: D 0z Z'-+ D' defined 
above, is an epimorphism. Since D is a central simple algebra, the same 
holds for D ®z Z'. So D ®z Z' is simple, which implies that <p has to be an 
isomorphism. D 

Proof of Theorem 4.4.1. For all f E B, we have, working out the identity 
8(x f) = 8(1 x) 

8 (j) = (7 (j) - j · 8 ( X) 
r7(x) - X 

(4.5) 

This implies 8(1) = 0, for all f E A. So the polynomial ring R = A[y] is a 
commutative subring of S. 

Now consider S as right R-module. Since B is free of rank n over A = 
k[[xn + higher terms]), Sis free of rank n over R. Furthermore, left multipli­
cation yields an injective ringhomomorphism 

(4.6) 

It follows that Sis isomorphic to a subring of the matrix ring Mn(R), which 
is a PI-ring since R is commutative. So S satisfies a polynomial identity and 
furthermore, the PI-degree of S is less or equal to the PI-degree of Mn(R) 
which is n. We claim that it is exactly n. 

To see this, filter S by y degree and denote the associated graded ring 
by gr S. Since gr 5 = B[y; a], we see that gr 5 is a domain and furthermore 
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Z(gr S) = A[V11] by Section 4.3. So gr S is a prime ring of rank n2 over its 
center which implies that its PI-degree is equal to n. Since the PI-degree of 
S ~ PI-degree of gr S, it now follows that the PI-degree of S is exactly n. 

Let E be the quotient-field of S. As in ( 4.6) we have an inclusion 

(4.7) 

Since E and EndK(y)(EK(y)) are both central simple algebras of PI-degree n, 

( 4.7) induces, by Lemma 4.4.2, an isomorphism 

<p: E0z(E) K(y)-+ EndK(y)(EK(y)) (4.8) 

defined by <p(e ® f) = i(e) f. 
This means that we can compute the characteristic polynomial of each e E E, 
in EndK(y)(EK(y))· 

Since S is an Ore extension, it is also a maximal order by [23] and so it is 
closed under taking coefficients of reduced characteristic polynomials. Using 
this observation we can now explicitly construct elements in the center of S 
since the coefficients of reduced characteristic polynomials are central elements 
of E. The coefficient we are interested in , is the reduced norm of y . 

By definition this reduced norm may be computed by taking the image of 
yin EndK(y)(EK(y)) under (4.8), i.e. <p(y0 l) = i(y), where i(y) is left multi­
plication by y, and then computing the determinant ofi(y) in EndK(y)(EK(y))· 

To perform this computation we need a suitable basis for E / I( (y). We 
pick a normal basis {!,a(!), ... , an-l (!)} for L /I{, for some f E L [17] . This 
is still a basis for E / I( (y). 

We now compute the matrix of i(y) explicitly. 
By (4.4) we get, for all O:::; j .:::; n - 1, 

i(y)(ai(J)) = aj+l(J)y + o(ai(J)) 

Since {f, a(!), ... , an-l (!)} is a basis for L / [( 

n-1 

i(y)(ai(J)) = ai+l(J)y+ Lai(f)aji 
i=O 

for certain aji E J( . 

It follows that the matrix of i(y) = D +Cy, where D = (aji) E Mn(K) and 

0 1 0 0 

0 0 1 0 

C= 
0 0 0 1 

1 0 0 0 
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the matrix of a cyclic permutation. 
This yields 

Nrd(y) = det(D +Cy)= (-1t+1yn + lower terms in y 

Put w = (-1r+i Nrd(y). Clearly A[w] c Z(S). Since Bis free of rank 
n over A and w = yn + lower terms in y, S is free of rank n2 over A[w]. In 
particular, Z(S) is integral over A[w]. Since A[w] C Z(S) C S, it follows that 

I<(w) C Q(Z(S)) c E (4.9) 

where Q(Z(S)) is the quotientfield of Z(S). 
Since S is free of rank n2 over A[w] and E is a central simple algebra of 
Pl-degree n, ( 4.9) yields 

dimK(w) Q(Z(S)) = 1 

Thus A[w] and Z(S) have the same quotientfield. The fact that A[w] is inte­
grally closed and Z(S) is integral over A[w], now implies A[w] = Z(S) . D 

In the next proposition we will obtain more information on the element w 
constructed in the above theorem. Let v be the x-adic valuation on B. 

Proposition 4.4.3. Assume that v(8(x)) = a. If w = yn + I:~l fi(x) yi, 
then for i > 0 we have 

v(fi) 2:: (a - l)(n - i) 

Furthermore there exists an element qo(z) E k[[z)] such that 

v(fo + qo(z)) 2:: (a - l)n 

In the proof of this proposition we need the result of the following lemma: 

Lemma 4.4.4. If J E B , then 

Proof. Put r = v(f) and f = I:t:r aixi, where ai E k and ar I= 0. 

Case 1. r 2:: 1 
If we denote f by J(x) and I:;=o;:> aw(x)i by f(a(x)), we have 

a(!) - f _ f(cr(x)) - f(x) _ f(x + h) - f(x) 
a(x)-x a(x)-x h 
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where h = CT(x) - x. 
It is easy to see that 

f(x + hl- f(x) = % (~ a;,P;,;hj-i-1) x' 

where 

{
o if i ~ 1 

'lpij = j ! . . . 
'!('- ·)' 1fi<J i. J i • 
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Since CT is of the form (x + higher terms, where ( in an nth root of unity, 
v(h) 2:: l. It follows that 

v (:~~~ = [) = v (f(x + hi- f(x)) 2:: mini((r - i- l)v(h) + i) 2:: r - 1 

Case 2. r = 0 
Since a is an automorphism which is also k-linear, it follows that 

V ( 0 (j) - f) = V ( (T (g) - g) 
o(x)-x a(x) -x 

where g = f - ao. 
So applying Case 1 tog, this yields 

D 

We return now to the proof of Proposition 4.4.3. 

Proof of Proposition 4.4.3. Put fj = x-a+1y. If we multiply (4.4) on the left 
with x-a+l, we obtain 

J} X = CT(x) J} + X - a+ l O(x) ( 4.10) 

Consider the ring 5 = B[y; a, 6], where 8 is the CT-derivation of B defined 
by 8(b) = x-a+1o(b). We clearly have inclusions SC SC L[y; a, o]. 

Applying Theorem 4.4.1 to S, we find that S has a central element w of 
the form 

n -1 

W = Yn + L9i(x)i (4.11) 
i=O 
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with gi(x) EB. 
Verifying the commutationrelation of x-a+l and y, we find 

Y X-a+l = e1(x-a+1) y + S(x-a+l) (4 .12) 

Using (4.5) and Lemma 4.4.4, we have for all J EB 

v(S(f)) = v (:~;~ = ~ · S(x)) = v (:~:~ = ~) + v(S(x)) ~ v(f) - 1 + a 

In particular, it follows that S(x-a+l) EB. 
Using (4.12), we can rewrite win the following form 

n-1 

w = z-a+lyn + ho(x) + I)x e1(x) . . . O"i-l(x))-a+ lhi(x)yi 
i=l 

where hi(x) EB, for all O 5 i 5 n - 1 and with z the element of A defined in 
Section 4.3. 

Multiplying w with za-1 , we get the element 

n-1 

yn + za-lho(x) + I)ai(x) .. . an-1 (x)t-lhi(x)yi 
i=l 

which we will denote by w'. 
Let us write Po(x) for za- lho(x) and Pi(x) for (ai(x) ... an- 1 (x))a-lhi(x), 

for all 1 5 i 5 n - 1. 
It follows that 

v (Po ( x)) = ( a - 1) v ( z) + v ( ho ( x)) ~ ( a - 1) n ~ 0 

and, for all 1 5 i 5 n - 1 

v(p;(x )) - (a - 1) (t v(a; (x))) + v(h;(x)) 2: (a - l)(n - i) 2: 0 

So w' belongs to S and since it is a central element of S, w' E Z(S). 
By Theorem 4.4.1, this yields w' has to be of the form 

w' = ~ qi(z)wi (4.13) 

Looking at the degree of y, reduces (4.13) tow'= qo(z ) + q1 (z) wand 
since the coefficient of yn = 1, it follows that w' = qo(z) + w. Hence, for all 
1:Si:Sn - 1 

v(fi(x )) = v(Pi(x)) ~ (a - l)(n - i) 
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and 

v(qo(z) + fo(x)) = v(po(x)) 2: (a - l)n 

D 

Corollary 4.4.5. Let C be the formal power series ring k[[ x ]][[y; a, 8]] and n 
the order of a. Then the center of C is equal to k[[ z, w ]] , where z = xn + ip( x) 
and w = yn + B(x, y). If v(o(x)) 2: 3, then <.p and(} contain only terms in x, 
y of total degree > n. 

Proof. Let M C S be the twosided ideal generated by x, y. Clearly C is equal 
to the M-adic completion of S. Let m be the maximal ideal of Z(S) generated 
by z, w. It is easy to see that 

M 2n C mS CM 

mas n Z(S) = ma 

Thus the completion of Z(S) at the induced topology, coincides with the 
completion at the m-adic topology, which is k[[z, w]]. 

Since S C C, the PI-degree of C is 2: n. On the other hand, using the 
properties of completion, every identity in S vanishes in C. So the Pl-degree 
of C is exactly n. 

Since Z(C) :) k[[z, w]], rkz(C) C = n2 and k[[z, w]] is integrally closed, we 
prove exactly as before that Z(C) = k[[z, w]]. 

From Proposition 4.4.3, it follows that we may assume 

n- 1 

W = Yn + L f i(x)yi 
i=O 

such that for all O :S i :S n - 1, we have 

v(fi(x)) 2: (a - l)(n - i) 

where a = v(o(x)) . So in the case that v(o(x)) 2: 3, (} has the required form . 
The proof of Lemma 4.3.1 yields the statement about <.p . D 

To complete the proof of Theorem 4.1.2, we use the fact that if a(x) is of 
the form x + higher terms and the characteristic p > 0, the order of a is a 
power of p [32). 

Remark 4.4.6. Although we cannot give a nice expression for w in general, 
we can do so in a few special cases. 
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• If n = 2 and p = 2, then w can be taken equal to 

2 a(8(x)) - 8(x) 
w =y - y 

a(x)-x 

Note that by Lemma 4.4.4, w is indeed an element of C. 

• If a(x ) has the form x+ higher terms, p > 0 and 8(x)/(a(x) - x) is 
a-invariant, then w = yn. 

4.5 A new proof of Proposition 4.1.3 

Let k be a field of characteristic p > 0 and consider the field k( t 1, ... , tp-1 ), 

where t 1 , ... ,tp-1 are variables. Let J = "I:,f;;:; fiti E k(t1,· ·· ,tp-1)[x), Ji E 
k[x] be arbitrary. 

Since k(t1 , ... , tp- I) is also a field of characteristic p, it follows from 
Lemma 4.2.1 that f satisfies 

where ! occurs p times and f (p - 1) times. 

We first compute !; . Assume /i = "I:,1J~0 ajiXj E k[x]. We can rewrite f 
in the form 

where m = max{ n1, ... , np-d and for all ni < j s; m, a ji = 0. It follows t hat 

T his yields, taking the coefficient of t 1 .. . tp-l in (4.14) 

'"""'&2 (&( (&fa(1) ) ) )-~ &x2 ax · · · ~ ' fu(2) · · ·' fu(p-2) · ! a(p-1 ) - 0 
uESp-I 
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for all polynomials f; over a field k of characteristic p > 0. 

Consider the following expression in the variables Ji, ... , fp-l 

~ [ 8
2 

( 0 ( ({) fu(l) ) ) ) 6 8x2 ax . . . ~ . fu{2) .... f u(p-2) . fu(p-1) 
uESp-1 

f)P f u( l) ] 
{)xP . f u(2) ' · · ·. fu(p-1) (4.15) 

(4.15) has the following properties 

( a) ( 4.15) = 0, if Ji, ... , fp-l are polynomials over a field k of characteristic 
p > 0. 

(b) Over any field, we may rewrite (4.15) in the form 

(4.16) 

such that au1 •• . up-i E Z. 

Using these properties we will prove that the coefficients of ( 4.16) are 
multiples of p. 

Define for q, n E N the symbolic nth power q(n) of q as follows: 

i n)_ 
{ 

1 
q(g-l) .. . (g-n+l) 

if n = 0 

if n ~ l 

Now let (gi)i=l, ... ,p-l E N be arbitrary and put Ji = xg,. Then it is easy 
to see that ( 4.16) equals 

a q(ui) q(up-1) Xq1 - u 1 XQp-1 - up- 1 
U[ .. ,Up-1 1 '• • p-1 • • • 

ul,•••,Up-1 

Since (4.16) is zero in k by property (a) we deduce: 

(4.17) 
'U) , ... ,Up-l 

Let X be the k-vectorspace of all functions h : kP-l -+ k. By [13] 
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is a basis for X. 
We may transform these 'normal' monomials into 'symbolic' monomials by a 
triangular matrix with ones on the diagonal. It follows t hat 

is also a basis for X. 
Since (4.17) holds for all q1 , ... , Qp-l EN, this implies 

Ut,•••,Up-1 

We conclude that the coefficients au1 . .. up-i are zero rn k and hence t hey are 
divisible by p, as elements of Z. 

Let us look now at the difference of (4.15) and (4.16), i.e. 

" [ 8
2 

( 8 ( ( 0 f a(l) ) ) ) ~ f)x2 8x · · · ~ · fa(2) · · · · fa(p-2) · f a(p-1) 

aESp-1 

(4.18) 

- f)P;;;l) · f a(2 ) · · · · · fa(p-1) ] - L 
U [, ... ,Up-1 

By definition (4.18) is equal to zero over any field with a derivation. We 
will consider (4.18) over the complex numbers C. Let (vi)i=t, ... ,p-1 E C and 
put Ji = ev;x . We deduce that 

" [v ( + ) ( + + )2 e(vap)+ ... + va(p- t)) x ~ a (l) Va( l ) Va(2) · · · Va (l) · · · Va(p- 1) 
aESp-1 

- VP e (Va(l)+ ... +va(p-l}) x ] _ " a VU ! Vup- 1 e(v1+ ... +vp_i)x = Q 
a (l) ~ U J ... Up- I 1 . '. p-1 

u1, .. ,,Up- l 

If we divide this by e (vi + ... +vp-d x, we have, for all v1, . .. , Vp-1 E C 

L [vcr( l) (va(l) + Va(2)) · .. (va(l) + ... + Va(p-1))
2 

- v~(l) ] 
aESp-1 

U t ,··· ,up-1 
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So the po1ynomial 

L [xu(l) (xu(l) + Xcr(2)) · · · (xcr(l) + · · · + Xcr(p-1))
2 

- x:(i)] 
crESp-1 

U1 , ••. ,tLp-1 

is identically zero. 
If we reduce this modulo p, this yields 

[ L Xcr(lj(Xa( l) + Xa(2)) · · · (Xcr(l) + · · · + Xcr(p-1))] (x1 + · · · + Xp-1) 
crESp-1 

= xf + ... + x~_ 1 = (x1 + ... + Xp-1)P 

Hence Proposition 4.1.3 is proved. 

(mod p) 
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