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Samenvatting

Het hoofddoel van deze thesis is de studie van de Calabi-Yau (CY) eigenschap van
pointed Hopf algebra’s U (D, \) van eindig Cartan type en hun overeenkomstige Nichols
algebra’s B(V).

We gebruiken de homological integral om de rigid dualizing complex van een
pointed Hopf algebra U(D, ) te berekenen. We geven een nodige en voldoende voor-
waarde voor U(D, \) om een CY algebra te zijn. CY pointed Hopf algebra’s U (D, \)

met dimensie lager dan 5 worden geclassificeerd.

Een Nichols algebra B(V) van eindig Cartan type is een NP-gegradeerde algebra
(p € N), zodat de geassocieerde gegradeerde algebra GrB(V) een quantum veelterm
algebra is. We verkrijgen de rigid dualizing complex van B(V) door middel van een
analyse van de relaties met de rigid dualizing complexen van GrB(V) en U(D, X). We

geven een nodige en voldoende voorwaarde voor B(V) om een CY algebra te zijn.

Het blijkt dat de algebra’s U(D, A) en B(V) niet gelijktijdig CY algebra’s kunnen
zijn. Zij H een eindig dimensionale Hopf algebra en zij R een braided Hopf algebra in
de category EYD van Yetter-Drinfeld modulen. Het verband tussen de CY eigenschap
van R en van R#H wordt besproken. In het geval dat R CY is en H semi-simpel is,
berekenen we de homological integral van R# H en geven we een nodige en voldoende
voorwaarde opdat R#H een CY algebra is. Indien H de groep algebra kI’ van een
eindige groep I' is en R#KID een CY algebra is, geven we een nodige en voldoende
voorwaarde voor R om een CY algebra te zijn, door middel van de rigid dualizing

complex van R te berekenen.

Ten slotte bestuderen we de eigenschappen van een eindig dimensionale pointed



Hopf algebra u(D, A, ). Door gebruik te maken van de Hochschild-Serre spectraal
reeks, beschrijven we de volledige structuur van de Ext algebra van een Nichols algebra
van type As in termen van voortbrengers en relaties. Als toepassing bewijzen we dat
pointed Hopf algebra’s u(D, A, u) met Dynkin diagrammen van type A, D of E, met
uitzondering van type A; en A; X A} met orde N; > 2 voor minstens één component
J, wild zijn. Ten tweede bestuderen we de CY eigenschap van een eindig dimensionale
Hopf algebra u(D, A, u). Dit is onmogelijk een CY algebra. Door een analyse van de
structuur van de Ext algebra, bekomen we dat de bijhorende stable categorie geen
CY categorie is.

vi



Introduction

The notion of a Calabi-Yau (CY) category has its origin in algebraic geometry. The
bounded derived category of coherent sheaves on a CY manifold has a Serre functor
which is isomorphic to a power of the shift functor. A triangulated category satisfying
this condition was defined to be a CY category by Kontsevich [47]. He used CY

categories to study the homological mirror symmetry.

In this thesis, we follow Ginzburg’s definition of a CY algebra [32] (Definition
1.5.6). This definition is a non-categorical definition, and was inspired by Van den
Bergh’s duality theorem [67]. If A is a CY algebra of dimension d, then the category
Di’td(A) is a CY category by [44, Lemma 4.1], where D?d(A) is the full triangulated
subcategory of the derived category of A consisting of complexes whose homology is

of finite total dimension.

In recent years, CY algebras (categories) have attracted lots of attention. In
the representation theory of finite dimensional algebras, cluster categories are 2-CY
categories. Thus CY categories (algebras) have found their applications in Fomin-
Zelevinsky’s cluster-tilting theory [, [36], [42], [43] etc.. Besides, CY categories
have been also applied to mathematical physics, notably to String Theory and to the
coformal field theory [24], [48] etc..

In [35], He, Van Oystaeyen and Zhang discussed the CY property of cocommu-
tative Hopf algebras by using the homological integral. A necessary and sufficient
condition for a Noetherian Hopf algebra to be a CY algebra was given there. In ad-
dition, Noetherian cocommutative CY Hopf algebras of dimension not greater than 3
were classified. The notion of a homological integral was introduced by Lu, Wu and
Zhang in order to study infinite dimensional AS-Gorenstein (Definition Hopf

algebras [53]. It generalizes the notion of an integral of a finite dimensional Hopf
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algebra.

CY algebras are closely related to algebras having a rigid dualizing complex (Def-
inition . An algebra A is a CY algebra of dimension d if and only if A is ho-
mologically smooth and has a rigid dualizing complex A[d] (cf. Corollary . In
fact, dualizing complexes are of great interest of their own. The non-commutative ver-
sion of a dualizing complex (Definition[L.5.9) was introduced by Yekutieli in 1990 [74].
Since then it became a useful tool to study homological properties of non-commutative
algebras [37], [38], [75], [77] etc.. Roughly speaking, a dualizing complex is a complex
which induces a duality between certain subcategories of derived categories of modules
(cf. ) However, dualizing complexes are not unique. To overcome this weak-
ness, Van den Bergh introduced the notion of a rigid dualzing complex in [68], which
is unique up to isomorphism. Brown and Zhang gave the rigid dualizing complex of
an AS-Gorenstein Hopf algebra [20]. Let g be a finite dimensional semisimple Lie
algebra. The rigid dualizing complex of the quantized enveloping algebra U,(g) was
given by Chemla [23]. It turns out that the algebra U,(g) is a CY algebra. As far as
we know, there are no literature concerning the CY property or dualizing complexes
of braided Hopf algebras.

A Hopf algebra A is called pointed, if all its simple left or right comodules are
1-dimensional. This is equivalent to saying that the coradical of A is a group algebra.
For example, group algebras, universal enveloping algebras of Lie algebras, and quan-
tized enveloping algebras of finite dimensional semisimple Lie algebras are all pointed
Hopf algebras. For a pointed Hopf algebra A, its coradical filtration is a Hopf algebra
filtration. Let Gr A be its associated graded Hopf algebra. Its degree zero part is kI,
where T' is the group of all group-like elements of A. Then there is a Hopf algebra
projection from Gr A onto kI'. By a theorem of Radford [62], Gr A is the biproduct
or the bosonization

Gr A = R#KT,

where R is a braided Hopf algebra in the category of Yetter-Drinfeld modules over
kT

The vector space V consisting of primitive elements of R is a Yetter-Drinfeld
module over kI'. The algebra B(V) generated by V is a braided Hopf subalgebra of
R. Its algebra structure and coalgebra structure depend only on the braiding of V.
Now the algebra B(V) is called the Nichols algebra of V. The structure of a Nichols

algebra first appeared in [60] and was rediscovered independently by several authors
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later [71], [54].

Andruskiewitsch and Schneider made a lot of contribution to the classification
of pointed Hopf algebras. Their method consists of three parts. First, determine
all possible Nichols algebras B(V'), and then determine the structure of all pointed
Hopf algebras A with I" being the group of group-like elements of A such that Gr A =
B(V)#kT. Finally, decide which Hopf algebras A are generated by group-like elements

and skew-primitive elements.

The Hopf algebras U(D, A) constructed in [7] constitute a large class of pointed
Hopf algebras with finite Gelfand-Kirillov dimension, whose group-like elements form
an abelian group. Such a pointed Hopf algebra U (D, A) is viewed as a generalization of
the quantized enveloping algebra U,(g), g a finite dimensional semisimple Lie algebra.
The main purpose of this thesis is to study the CY property of the algebras U(D, \)

and their corresponding Nichols algebras.

Now we formulate our main results. We work over a fixed algebraically closed field
k with characteristic 0. Let I" be a free abelian group of finite rank,

D(T', (9:)1<i<os (Xi)1<i<o, (@ij)1<i,j<6)

a generic datum of finite Cartan type for I' (Definition [1.4.1)), and A a family of
linking parameters for D (Definition [1.4.3)). For simplicity, we define ¢;; = x;(g:),
1<i4,5<9.

Let ® be the root system of the Cartan matrix (a;;), {ou,--- ,ap} a set of simple
roots, and X the set of connected components of the Dynkin diagram. Let ®,
J € X, be the root system of the component J. For 1 < ¢,5 < 0, we write ¢ ~ j
if they belong to the same connected component. Assume that wo = s;, -+ - s;, is a
reduced decomposition of the longest element in the Weyl group W as a product of

simple reflections. Then

/81 = ai1a/62 = 84y (Oé@), e 76p = Siy Sip—l(aip)
are the positive roots. If §; = Zle m;a;, then we define

me

gﬂi:ginl...g(9 andxﬂizxanl...x”ene.
The CY property of U(D,\) is discussed in Chapter First, we obtain the
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following theorem.

Theorem 1. (Theorem [2.1.5) Let D be a generic datum of finite Cartan type for a

free abelian group T' of rank s, and A a family of linking parameters for D.

(1) The rigid dualizing complex of the Hopf algebra A = U(D, ) is ,A[p + s],
where p is the number of the positive roots and s is the rank of I'. The algebra
automorphism 1 is defined by Y(xy) = Hle’i#k Xg, (9K)Tk, for all 1 < k <0,
and ¥ (g) = (IT0_, Xs,)(9) for any g € ', where each jy is the integer such that

Bj, = .

(2) The algebra A is CY if and only if [T%_, Xg, =€ and 8?2 is an inner automor-

phism.

The proof is based on the homological integral of U(D, A). Note that the algebra
U(D,)) is a CY algebra if and only if its associated graded algebra U(D,0) (with
respect to the coradical filtration) is a CY algebra.

In Section we classify CY pointed Hopf algebras U(D, A) of dimensions less
than 5. It turns out that U,(sly) is the only quantized enveloping algebra appearing
in the classification.

Let V be the braided vector space with basis {1, - , 29} whose braiding is given
by

c(xi X .Ij) = q;jTj Q@ x;

for any 1 < 4,7 < 0. Then the associated graded algebra of U(D, \) with respect to
the coradical filtration is U(D,0) = B(V)#KkI" (cf. Theorem |1.4.7)).

In Chapter |3| we discuss the Nichols algebra B(V'). It is a braided Hopf algebra.
The general method of computing the rigid dualizing complex of an AS-Gorenstein
Hopf algebra can not be easily modified to suit the case of a braided Hopf algebra. For
the special case of B(V'), we prove that the algebra B(V) is a connected AS-regular
algebra (Proposition. In addition, it is an NP*!-filtered algebra whose associated
graded algebra GrR is a quantum polynomial algebra (Corollary . Since a
quantum polynomial algebra is a Koszul AS-regular algebra, it is not difficult to
obtain its rigid dualizing complex. When A is an N-filtered algebra whose associated
graded algebra Gr A is a connected AS-Gorenstein algebra (Definition , the
relation between the rigid dualizing complex of A and the one of Gr A was discussed



in [68, Prop. 8.2], [76, Prop. 1.1] and [77, Prop. 6.18]. Since these results only work
for an N-filtered algebra, we construct a sequence of algebras

R=R9 RW ... GrR=RW,

such that each of which is the associated graded algebra of the previous one with
respect to an N-filtration. Furthermore, with the relation between the rigid dualizing
complex of R and the one of U(D,0) = R#KI', we obtain the rigid dualizing complex
of R.

Theorem 2. (Theorem and Lemma [3.2.1)) Let V' be a generic braided vector
space of finite Cartan type, and R = B(V') the Nichols algebra of V. For each 1 <
k <0, let ji be the integer such that 3;, = ay.

(1) The rigid dualizing complex is isomorphic to ,R[p], where ¢ is the algebra au-
tomorphism defined by

Jr—1

o) = (L i@ NCIT X oo =TT xi, (90)a,

i=jr+1 i=1,i#jk
for any 1 < k <6.
(2) The algebra R is a CY algebra if and only if

Jr—1

H Xk(g/si): H X[ii(gk)7
i=1

i=jr+1

forany 1 <k <0.

After obtaining the aforementioned theorems, we compare the CY property of a
pointed Hopf algebra U(D, A) and the corresponding Nichols algebra B(V') in Section
It turns out that if one of them is CY, then the other one is not. This leads to
the following question:

Let H be a Hopf algebra, and R a braided Hopf algebra in the category of Yetter-
Drinfeld modules over H. What is the relation between the C'Y property of R and that
of R#H?

Let R be a Koszul CY algebra (not necessarily a braided Hopf algebra) and H the
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group algebra kI', where I is a finite group of automorphisms of R. In [72], Wu and
Zhu showed that the smash product R#H is CY if and only if the homological deter-
minant (Deﬁnition of the H-action is trivial. Later, this result was generalized
to the case where R is a p-Koszul CY algebra and H is an involutory CY Hopf algebra
[52]. The authors defined an H-module structure on the Koszul bimodule complex of
R, and they computed the H-module structures on the Hochschild cohomologies. The
homological determinant for graded automorphisms of an AS-Gorenstein algebra was
first defined by Jgrgensen and Zhang in order to study the AS-Gorenstein property

of invariant subrings [39]. A Hopf algebra version was introduced later in [46].

Let H be a finite dimensional Hopf algebra and R a Noetherian braided Hopf
algebra in the category ZYD of Yetter-Drinfeld modules. Inspired by Wu and Zhu'’s
work, in Section [£.I] we use the homological determinant of the H-action to describe

the homological integral of R# H. We then give a necessary and sufficient condition
for R#H to be a CY algebra, when R is CY and H is semisimple.

Theorem 3. (Theorem [4.1.11)) Let H be a semisimple Hopf algebra and R a Noethe-
rian braided Hopf algebra in the category BYD of Yetter-Drinfeld modules. Suppose
that the algebra R is CY of dimension dg. Then R#H is CY if and only if the

homological determinant of R is trivial and the algebra automorphism ¢ defined by
¢(r#h) = Su(r1))(SE(r(0))SH (h)

for any r#h € R#H is an inner automorphism.

We can also ask ourselves when R is CY, if R#H is CY? In Section[4.2] we answer
this question when H = kI is the group algebra of a finite group. We first construct
a bimodule resolution of R from a projective resolution of k over the algebra R#KT .

Based on this, we obtain the rigid dualizing complex of R when R is AS-Gorenstein.

We explain some notations first. We use A(r) = r! ® r? to denote the comultipli-
cation for a braided Hopf algebra (cf. ) The algebra R is a I'-comodule, so R is a
I'-graded module. Let ¢ denote the I'-comodule structure. Then R = @g4er Ry, where
Ry={reR|d(r)=ger} Ifr=>3 prywithry, € Ry, then 6(r) =3 rg®rg.
See Remark £2.7] for detail.

Theorem 4. (Theorem 4.2.9) Let I' be a finite group and R a braided Hopf algebra

xii



in the category LYD of Yetter-Drinfeld modules. Assume that R is an AS-Gorenstein
algebra with injective dimension d. If fll% = ke, for some algebra homomorphism
&r * R — k, then R has a rigid dualizing complex ,R[d], where ¢ is the algebra
automorphism defined by o(r) = >_ cp Er(rY)hdet(g)g 1 (SE((r?),)) for all r € R.
Here hdet denotes the homological determinant of the group action.

Following the foregoing theorem, we obtain the following result, characterizing the
CY property of R when R#KkI" is CY.

Theorem 5. (Theorem Let T be a finite group and R a braided Hopf algebra
in the category RYD of Yetter-Drinfeld modules. Define an algebra automorphism ¢
of R by
p(r) = g7 (Sk(ry)),
ger
for any r € R. If R#KI is a CY algebra, then R is CY if and only if the algebra

automorphism @ is an inner automorphism.

The groups of group-like elements of pointed Hopf algebras discussed in Chapter
(] are all infinite. There are CY pointed Hopf algebras with a finite abelian group of
group-like elements. We provide some examples at the end of Chapter

Now we turn to finite dimensional pointed Hopf algebras. Let

D(T, (9i)1<i<o, (Xi)1<i<o, (@ij)1<ij<0)

be a datum of finite Cartan type such that I' is a finite abelian group. We assume
that the order x;(g;) = gi; is odd for any 1 < ¢ < 6, and that the order of g;; is prime
to 3 for all 7 in a connected component of type G2. Then by equation , the order
N; of g;; is constant in each component J € . Denote this common order by N.

Let A be a family of linking parameters for D and p a family of root vector param-
eters (Deﬁnition. The finite dimension Hopf algebra u(D, A, i) is a deformation
of the bosonization of a finite dimensional Nichols algebra by kI'. Andruskiewitsch
and Schneider [8] proved that u(D, A, ) is finite dimensional and pointed. Conversely,
if H is a finite dimensional pointed Hopf algebra with an abelian group of grouplike
elements with order not divisible by primes less than 11, then H 2 w(D, A, ) for some
D, A\, .
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The homological properties of an algebra R over a field k rely exclusively on the
structure of its Ext algebra Exty(k, k). In two recent papers [29] [61] support varieties
of modules over finite dimensional Hopf algebras were introduced. It turns out that
support varieties are useful tools to study homological properties and representations
of finite dimensional (braided) Hopf algebras. To define and to compute support
varieties over a (braided) Hopf algebra we need first to understand the Ext algebra
of the (braided) Hopf algebra. These motivate us to study the structure of the Ext
algebra of a finite dimensional Nichols algebra. In Chapter 5] we give the full structure

of the Ext algebra of a Nichols algebra of type As in terms of generators and relations

(Proposition Theorem [5.1.11{ and Theorem [5.1.12]).

Using these structures, we can show that for a finite dimensional pointed Hopf
algebra A of type As, the support variety of k over A is isomorphic to the variety of
k over the associated graded algebra with respect to the coradical filtration of A. We
then apply the main theorems in Chapter [5| to show that if the components of the
Dynkin diagram of a pointed Hopf algebra u(D, A, i) are of type A, D, or E, except
for A; and Ay x Ay, and the order N; > 2 for at least one component, then u(D, A, p)

is wild (Proposition [5.2.2)).

This thesis mainly discuss the CY property. A finite dimensional CY algebra must
be semisimple. So a finite dimensional algebra u(D, A, u) is not a CY algebra. But a
finite dimensional Hopf algebra is Frobenius, so its stable category is a triangulated
category. A mnatural question now arises: is the stable category of a pointed Hopf
algebra u(D, A\, u) a CY category? By analyzing the structure of the Ext algebra of
w(D, A, ), it turns out that in most cases, the answer to this question is negative.
The details can be found at the end of Section
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Notations and conventions

Throughout, k is a fixed algebraically closed field with characteristic 0. All vector
spaces and algebras are assumed to be over k. (—)* denotes the functor Homy (—, k).

The unfinished tensor ® means ®y.

Without otherwise stated, a Hopf algebra means a Hopf algebra with a bijective
antipode. We use the (sumless) Sweedler’s notation for the comultiplication and
coaction. The comultiplication for a braided Hopf algebra R is denoted by

Alr) =7 ®@r?

Let A be a Hopf algebra, and £ : A — k an algebra homomorphism. We write [¢] to
be the winding homomorphism of ¢ defined by

[€](a) = &(ar)as,

for any a € A.

Given an algebra A, we write A°P for the opposite algebra of A and A€ for the
enveloping algebra A ® A° of A. For any bimodule mentioned in this thesis, we
assume that k acts centrally on it. Then the category of A-A-bimodules is equivalent
to the category of left (or right) A¢-modules. ModA denotes the category of left
A-modules. We use Mod A to denote the category of right A-modules.

For a left A-module M and an algebra automorphism ¢ : A — A, ,M stands for
the left A-module twisted by the automorphism ¢. Similarly, for a right A-module N,
we have Ny. Observe that Ag = 41 A as A-A-bimodules. Ay = A as A-A-bimodules

if and only if ¢ is an inner automorphism.

A Noetherian algebra in this thesis means a left and right Noetherian algebra. If
the injective dimension of 4 A and A4 are both finite, then these two integers are
equal by [78, Lemma A]. We call this common value the injective dimension of A.
The left global dimension and the right global dimension of a Noetherian algebra are
equal [70, Exe. 4.1.1]. When the global dimension is finite, then it is equal to the

injective dimension.
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Chapter 1

Preliminaries

In this chapter, we first recall the definitions of a braided Hopf algebra and a Nichols
algebra which are important in the classification theory of pointed Hopf algebras. In
this thesis, we will concentrate ourselves on pointed Hopf algebras of finite Cartan
type. We explain the definition in Section At last, we recall the definition and
basic properties of Calabi-Yau algebras.

1.1 Graded and filtered algebras

In this section, we fix some notations of graded algebras and filtered algebras. Let
A = ®;ezA; be a graded algebra. We denote by GrMod(A) the category of graded left
A-modules with graded homomorphisms of degree 0. Let M = @®;czM; be a graded
module, we denote by M(I) the I-th degree shift of M. That is, M(l) = ®;ezM(1);
and M(l); = M,y for each i € Z. A module F in GrMod(A) is called graded free,
if there is an index set A such that F' = @;caF; and each Fj is a shift of A. For
graded modules M and N, we write Homy (M, N) for the space of all A-module

homomorphisms. Set
HOMA(Mv N)k = {f € HOHlA(M, N)|f(M7) C Ni-‘rk}a

and
HOI\/[A(]\47 N) = Oez I‘IOI\/IAU\f7 N)k

1



CHAPTER 1. PRELIMINARIES

Let EXT%(—,—) be the derived functor of HOM4(—, —). If M is finitely gener-
ated, then Hom4 (M, N) = HOM4(M,N). If A is in addition Noetherian, then
ExtYy (M, N) = EXTY (M, N) for i > 0.

A Z-filtration on an algebra A is given by an ascending chain of vector subspaces
of A, FA = {F,A | n € Z} such that 1 € FyA and F,AF,,A C F,inA, for all
n,m € Z. If there is a filtration FM = {F,M | n € Z} on an A-module M, such
that F,AF,,M C F, 1, M, for all n,m € Z, then M is called a filtered module. A
filtration F'M is exhaustive if M = U;ez M. If Niep F, M = 0, then FM is called
separated. All filtration considered in this thesis are exhaustive and separated. We
write FiltMod(A) for the category of filtered A-modules and filtered homomorphisms
of degree 0. Shift of filtered modules and filtered free modules can be defined similarly
to the case of graded modules. Let M and N be two filtered A-modules with filtration
FM = {F;M | i € Z} and FN = {F;N | i € Z} respectively. We denote by
Hom 4 (M, N) for the vector space of A-module homomorphisms from M to N. We
define

HOMA (M, N)y :={f € Homa(M,N) | f(F;M) C F; (N}

and
HON[A(Z\47 N) = Ugez HOMA(M, N)k

Now the vector space HOM 4 (M, N) is filtered by F, HOM 4(M, N) = HOM4(M, N)j.
We denote by EXTY(—, —) the derived functor of HOM 4(—, —). Similarly, if M is
finitely generated, then Homy4 (M, N) = HOM4 (M, N). If A is in addition Noethe-
rian, then Ext’ (M, N) = EXT% (M, N) for i > 0.

Let M be a filtered module with filtration F'M. If there exist mq,--- ,ms € M
and ki,--- ,ks € Z, such that for all : € Z

FiM =Y (Fi_, Aym;,
j=1
then F'M is called a good filtration on M.

If M is a filtered module with a good filtration F'M, then M is finitely generated.

However, the converse is not necessarily true (see [51, Rem. 1.5.2] for an example).



1.2. BRAIDED HOPF ALGEBRAS

1.2 Braided Hopf algebras

1.2.1 Braided tensor categories

In this subsection, we briefly recall the definition of a braided tensor category which
is the appropriate setting for a braided Hopf algebra. For more detail about braided

tensor categories, one refers to [41].

Definition 1.2.1. A tensor category (¢,®,1,a,l,r) is a category € equipped with

e a tensor product ® : € X € — €;

an object I, called the unit of the tensor category;

a natural isomorphism a : ®(® X id) — ®(id X®), called the associativity con-

straint;

a natural isomorphism [ : ®(I x id) — id, called the left unit constraint with

respect to I;

a natural isomorphism r : ®(id xI) — id, called the right unit constraint with

respect to I;

such that the Pentagon Axiom and the Triangle Axiom are satisfied. That is, the
following two diagrams

ay,v,w ®idx
U@(VIW))Y X <—— (UR V)@ W)R® X

J/QU@)V,W,X
“U,VRW,X (U®V)® (W X)
\LGU,V,W@)X

id®aV,W.X
UR@UVRW)®X) — > U R (VR (W®R X))

v, I, W
(VeI ew VeIew)

T‘W\ %W
Vew

are commutative for all objects U, V,W and X in %.

3
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The most fundamental example of a tensor category is given by the category of
vector spaces over a field k. It is equipped with the usual tensor product, the unit
object I is the field k itself.

Let & be a tensor category with a tensor product ® : € x € — %. Denote by
T:% X6 — € x € the flip functor. That is, 7(V,W) = (W, V) for any V,W in €.

A commutativity constraint c is a natural isomorphism ¢ : ® — ®7.

Definition 1.2.2. Let (¢,®,1I,a,l,7) be a tensor category.

(1) A braiding is a commutativity constraint ¢ satisfying the Hexagon Axiom. That
is, the following two diagrams

c

Vew
U@(VRAW) —= (VW)U

ay,v,w ay,W,U

A
/

UeVv)ew Ve WeU)

idy, ®CU1W

/
A

CU,V®idW

a

U,W
(VU)W ——= V(U W)

c W
URV)QW —= W R ([UQRV)

—1 —1
U, V,W ‘w,U,v

U®(Vew) WRU)eV

idy ®@cy,w ! cy,w ®idy

/
A

U,w,v
URQWQRV) — (URQW)R V
commute for any objects U,V and W in €.

(2) A braided tensor category (¢,®,1,a,l,r, c) is a tensor category with a braiding.

As a consequence of the Hexagon Axiom, the following equation holds for any
objects U,V and W in € (we have omitted the associativity morphisms)

(CV,W X ldU)(ldV ®CU,W)(CU,V ® ldw) = (ldW ®CU,V)(CU,W X ldv)(ldU ®CV,W)-

1.2.2 Braided vector spaces and Yetter-Drinfeld modules

Definition 1.2.3. Let V be a vector space and ¢: V®V — V ® V a linear isomor-

phism. Then (V,c¢) is called a braided vector space, if ¢ is a solution of the following

4
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braid equation

(c®id)(id ®c)(c®id) = (id ®c)(c ® id) (id ®c).

An easy and important example is a braided vector space of diagonal type. A
braided vector space (V, ¢) is said to be of diagonal type if there is a basis {z; | i € I'}
of V' and a family of non-zero scalars ¢;; € k, i,j € I, such that

C(.’Ei (02 (Ej) = qijl'j &® ZTi,

for all i,j € I.

We mainly discuss examples of braided vector spaces related to the notion of a
Yetter-Drinfeld module.

Definition 1.2.4. Let H be a Hopf algebra. A (left-left) Yetter-Drinfeld module
V over H is simultaneously a left H-module and a left H-comodule satisfying the

compatibility condition
5(h . ’U) = hlv(,1)8h3 ® hg - V(0),

foranyv eV, he H.

We denote by £YD the category of Yetter-Drinfeld modules over H with mor-
phisms given by H-linear and H-colinear maps.

The tensor product of two Yetter-Drinfeld modules M and N is again a Yetter-
Drinfeld module with the module and comodule structures given as follows

h(m ®n) = him ® hon and 0(m @ n) = m_yn—1) @ m) @ n(),

for any h € H, m € M and n € N. This turns the category of Yetter-Drinfeld
modules YD into a braided tensor category.

For any two Yetter-Drinfeld modules M and NV, the braiding cpyrnv : M @ N —
N ® M is given by

CJM,N("”@”) =m(1) - n®m(0),
for any m € M and n € N.

Yetter-Drinfeld modules over a group algebra are important in this thesis. Let T’

5
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be a group. We abbreviate ﬁE;yD to LYD.

A kI'-comodule V is just a I'-graded vector space: V = @4erVy, where V, = {v €
V | 6(v) = g ® v}. From the definition of a Yetter-Drinfeld module, we obtain that
V € LYD if and only if gV}, C Vghg-1, for all g,h € T'. In particular, if I' is abelian,
then a Yetter-Drinfeld module over kI' is nothing but a I'-graded I'-module.

1.2.3 Braided Hopf algebras

We deal in this thesis only with braided Hopf algebras in categories of Yetter-Drinfeld
modules.

Definition 1.2.5. Let H be a Hopf algebra.
(1) An algebra (R, m,u) in £YD is an algebra (R, m,u), where m : R® R — R is

the multiplication, and u : k — R is the unit, such that R € £YD and both m

and u are morphisms in gyD.

(2) A coalgebra (R,A,¢) in EYD is a coalgebra (R,A,e), where A : R - R® R
is the comultiplication, and ¢ : R — k is the counit, such that R eg YD and
both A and e are morphisms in ZYD.

Let R and S be two algebras in gyD. Then R® S is a Yetter-Drinfeld module in
HYD, and becomes an algebra in the category 2D with the multiplication m R®S
defined by

MRres = (Mr ® mg)(id ®c @ id).

Denote this algebra by R®S.
Definition 1.2.6. Let H be a Hopf algebra. A braided bialgebra in YD is a collec-
tion (R, m,u, A, ¢), where

e (R,m,u) is an algebra in £YD.

e (R,A,¢) is a coalgebra in Z£YD.

e A:R— R®R and ¢ : R — k are morphisms of algebras.

If in addition, the identity is convolution invertible in End(R), then R is called a
braided Hopf algebra in 2YD. The inverse of the identity is called the antipode of R.

6
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A graded braided Hopf algebra in ¥ YD is a braided Hopf algebra R = @, R; in
HyD, such that R is a (positively) graded algebra and a graded coalgebra, with each
R; a Yetter-Drinfeld module.

In order to distinguish comultiplications of braided Hopf algebras from those of
usual Hopf algebras, we use Sweedler notation with upper indices for braided Hopf

algebras
Alr)y=rt@r? (1.1)

If A is a Hopf algebra, the adjoint representation “ad” is defined by

ad(z)(y) = 21ySa(x2),

for all z,y € A. Similarly, the braided adjoint representation “ad.” of a braided Hopf
algebra R in £ YD is given by

ade(z)(y) = m(m @ Sg)(id ®@c)(Ar ®id)(z ® y), (1.2)

for all z,y € R.

If x is a primitive element, then the braided adjoint representation of x is just
ade(z)(y) = m(id —c)(z ® y) == [z,y]c.

[x,y]c is called a braided commutator.

Let H be a Hopf algebra and R a braided Hopf algebra in the category ZYD.
Then R#H is a usual Hopf algebra with the following structure [62]:

e The multiplication is given by
(r#g)(s#h) := rgi(s)#g2h (1.3)

with unit ur ® ug.

e The comultiplication is given by
A(r#h) = r'# (%) _1yha @ (%) (o) #ho (1.4)

with counit eg ® ep.
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e The antipode is given by
Srpn (r#h) = (13Su(r—1)h))(Sr(r0))#1). (1.5)

The algebra R# H is called the Radford biproduct or bosonization of R by H. R
is a subalgebra of R#H and H is Hopf subalgebra of R#H.

Conversely, let A and H be two Hopf algebras and 7 : A - H, . : H — A
Hopf algebra homomorphisms such that 7¢ = idg. In this case the algebra of right

coinvariants with respect to w
R=A“T:={aec A| (iden)A(a) =a® 1},
is a braided Hopf algebra in £YD, with the following structure [62]:

e The action of H on R is the restriction of the adjoint action (composed with ¢).

e The coaction is (7 ® id)A.

R is a subalgebra of A.

e The comultiplication is given by

Agr(r) =r1tSun(re) @ rs.

The antipode is given by
Sr(r) =m(r1)Sa(rs).
Define a linear map p: A — R by

pla) = a1Spm(az),

for all a € R.

Theorem 1.2.7. [62] The morphisms V : A — R#H and ® : R#H — A defined by
V(a) = p(ar)#m(az) and ®(r#h) = ru(h)

are mutually inverse isomorphisms of Hopf algebras.



1.3. NICHOLS ALGEBRAS

1.3 Nichols algebras

An important class of braided Hopf algebras generated by primitive elements is formed
by Nichols algebras B(V') of braided vector spaces V. They appeared first in the paper
[60] of Nichols.

Definition 1.3.1. Let V be a Yetter-Drinfeld module over a Hopf algebra H. A
graded braided Hopf algebra R = @®;>0R; in the category £YVD is called a Nichols
algebra of V if the following conditions hold:

e Ry =2k and R 2 V.

e R = P(R), the primitive elements in R.

e R is generated as an algebra by Rj.

We denote the algebra R by B(V).

Proposition 1.3.2. [4] Given a Yetter-Drinfeld module V', a Nichols algebra of V

exists and is unique up to isomorphism.

Example 1.3.3. Let V be a finite dimensional vector space and 7: V@V - V@V
the flip map. The braided vector space (V,7) can be viewed as a Yetter-Drinfeld
module over any Hopf algebra H with trivial action and trivial coaction. The Nichols
algebra B(V) is isomorphic to S(V'), the symmetric algebra of V.

In some sense, a Nichols algebra is a generalization of the symmetric algebra of a
vector space where the flip map is replaced by a general braiding.

Example 1.3.4. Let (V,c¢) be a braided vector space of Hecke type, that is, there is
a scalar ¢ € k such that
(c=¢q)(c+1)=0.

By [5, Prop. 3.4], if the scalar g is either 1 or not a root of unity, then B(V) = T(V)/I,
where T'(V) is the tensor algebra of the vector space V', and [ is the ideal generated
by Im(c — q).



CHAPTER 1. PRELIMINARIES

1.4 Pointed Hopf algebras of finite Cartan type

A Hopf algebra A is called pointed, if all its simple left or right comodules are 1-
dimensional. This is equivalent to saying that the coradical of A is a group algebra.

The coradical filtration {A; | i = 0} of a Hopf algebra is defined inductively as
follows. Ag is the coradical of A. For each i > 1, define

A=A AR A1+ Ay ® A).

If A is a pointed Hopf algebra, then its coradical filtration is a Hopf algebra filtration
(cf. [58, Lemma 5.2.8]). Coradical filtration is important in the classification of

pointed Hopf algebras, more detail can be found in [5], [§] etc.

A large classes of pointed Hopf algebras with an abelian group of group-like ele-
ments consists of the pointed Hopf algebras of finite Cartan type. The corresponding
Nichols algebras provide examples of Nichols algebras of diagonal type.

For a datum of finite Cartan type, we follow the notations in [63] and [8], which
are slightly different from the ones in [7]. We need the following terminology:

e an abelian group [
e a Cartan matrix (a;;) € Z%*% of finite type, where 6 € N;

e a set X of connected components of the Dynkin diagram corresponding to the
Cartan matrix (a;;). If 1 < ¢,5 < 0, then ¢ ~ j means that they belong to the

same connected component;
e elements ¢g1,--- ,gp € I' and characters x1,---,x¢ € T such that

X;(9i)xi(95) = xi(9:)*, xi(g:) # 1, for all 1 <i,j < 6. (1.6)

Definition 1.4.1. The collection D(F, (gi)lgig‘% (Xi)lgigg, (aij)1§i7j<9) is called a
datum of finite Cartan type for I'.

For simplicity, we define ¢;; = x;(g;). Then equation (1.6) reads as
Qi =457, g # 1, forall 1 <i,j <6. (1.7)

10



1.4. POINTED HOPF ALGEBRAS OF FINITE CARTAN TYPE

A datum D is called generic if ¢;; is not a root of unity for all 1 < i< 6 and I is

a free abelian group of finite rank (cf. [7]).

Remark 1.4.2. In [63], a generic datum only requires that g;; is not root of unity
for each 1 < i < #. In this thesis, we mainly discuss the algebras constructed in [7].

For convenience, we further assume that I' is a free abelian group of finite rank.

Given a datum D, we fix a braided vector space defined as follows. Let V be a
Yetter-Drinfeld module over the group algebra kI' with basis x; € V¥, 1 < i < 6.

Then V is a braided vector space of diagonal type whose braiding is given by
c(z; ® J)j) =q;x; @z, 1<4,7<0. (1.8)

The braiding is called generic if ¢;; is not a root of unity for all 1 <7 < 6.

Since the Cartan matrix is of finite type and

Qjq

Gijqi = 45’ = ;) 1<4,5 <9, (1.9)
there are d; € {1,2,3}, 1 <i <6, and g5 € k, J € X, such that
gi = ¢, diai; = djaj, (1.10)
for all J € X and 4,5 € J (cf. [8, Lemma 2.3]). Set

ot iges
qij = ) )
1 1% ]
Then
% = GijQji> Qi = Giis
forall 1 <i4,5 < 0.

Therefore, when the braiding is generic, it is twist equivalent to a braiding of DJ-
type (Drinfeld-Jimbo type) [, Sec. 1]. When the group T is a finite abelian group,
the braiding is twist equivalent to a braiding of FL-type (Frobenius-Lusztig type) [5l
Defn. 4.5].

Definition 1.4.3. Vertices 1 < 4,5 < 0 are called linkable if i ~ j, g;g; # 1 and
XiXj = €.

11
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A family of linking parameters for D is a family A = (\;j)1<i<j<o of elements in
k such that the following conditions are satisfied for all 1 <17 < j < 6,

if i and j are not linkable then A;; = 0.

Lemma 1.4.4. [6,lemma 5.6] Any vertex 1 < i < 0 is linkable to at most one verter.

Let ® be the root system corresponding to the Cartan matrix (a;;) with II =
{aq, -+, g} aset of fixed simple roots. Let W be the Weyl group of the root system
®. We fix a reduced decomposition of the longest element

wo = S, -+ Si,

of W as a product of simple reflections. Then the positive roots ®T are precisely the
followings

B = Qi Ba = Sil(ai2)7 T 7ﬁp = Siy "'Sip,l(aip).

It g; = Ele m;ay, then we define

me

957’, :glnlgg

ma

andxﬂile ”'X;n0~

Similarly, we write U5, = X, (gﬁj ).

1.4.1 Hopf algebras U(D, \)

Definition 1.4.5. Let D be a datum of finite Cartan type for a group I', and X\ a
family of linking parameters for D. The algebra U (D, A) is defined to be the quotient
Hopf algebra of the smash product k(z1, - -, 29)#KkI modulo the ideal generated by
the following relations

(Serre relations) (ade ;) =% (x;

) =0, 1
(hnkmg relations) TiTj; — X5 (gz)lfjl’z = )\1](1 — gigj)a 1

where ad, is the braided adjoint representation (cf. (1.2))).
The comultiplication structure of U (D, \) is given by

Alz)=2;1+g; @z, Alg) =9®g,

12
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foralll<i<fandgerl.

In the rest of this subsection, we assume that the datum D is generic. In this
case, U(D, \) is the algebra generated by x1,--- ,zy and ylil, -,y subject to the
following relations (cf. [7, Sec. 4])

vituy =yt vatuRt =1 1<mh <,
(group action) yn; = X;(Yn)T;yn, 1<j<60, 1<h<s,
(Serre relations)  (ad.x;)' ™% (x;) =0, 1<4,j<0, i#7, i~j,
(linking relations) x;x; — x;(g:)zx: = Aij(1 — ¢ig5), 1<i<j<O, invj

(1.11)

Let V' be the braided vector space as defined in (1.8]). It can be easily derived from
the proof of [7, Thm. 4.3] that the Nichols algebra B(V') is the algebra generated by

x;, 1 <4 < 0, subject to the relations

ade(z;)" ", =0, 1<4,j <0, i#j.

Root vectors for a quantum group U, (g) were defined by Lusztig [54]. Up to a non-
zero scalar, each root vector can be expressed as an iterated braided commutator. As
in [6l Sec. 4.1], this definition can be generalized to a pointed Hopf algebra U(D, A).

For each positive root 5;, 1 < 7 < p, the root vector xz, is defined by the same

Bi
iterated braided commutator of the elements x1,---,xz9, but with respect to the
general braiding.

Remark 1.4.6. If 3; = oy, then Ty = L. That is, x1,-- -,y are the simple root
vectors.

Theorem 1.4.7. [7, Thm. 4.3] Let D = (T, (9:), (xs), (aij)) be a generic datum of
finite Cartan type and A a family of linking parameters for D. The algebra U(D, \)

s a pointed Hopf algebra with comultiplication determined by
Alyn) =yn @y, Alw) =2, @1+g @z, 1<h<s1<i<0.
Furthermore, U(D, \) has a PBW-basis given by monomials in the root vectors
{x‘;ll~o~x‘;§g|ai20, 1<i<pandgeTl}. (1.12)
There is an isomorphism of graded Hopf algebras GrU (D, \) = B(V)#kI' = U(D,0),

13
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where GrU (D, \) is the associated graded algebra of U(D, \) with respect to the corad-
ical filtration. The algebra U(D,\) has finite Gelfand-Kirillov dimension and is a

domain.

Example 1.4.8. Let D be a datum of finite Cartan type given by

o ' = (y1,y2) = Z2, a free abelian group of rank 2;

e the Cartan matrix is of type As, that is,

(27)

® g =y, xi(g;) =q",1<1,j <2, where ¢ € k is not a root of unity.
Then the algebra U(D,0) is generated by z;, yiﬂ, 1 < i < 2, subject to the relations
Y Ui = Y Yy Umv =1, 1<m,h <2,
Yily; = qajixjyia 1 < 7”] < 27
2 -1 2
T1T2 — ¢ T1T2x1 — qT1T2T1 + T2X7,

2 -1 2
T3x1 —q "TXT2X1T2 — qT2T1T2 + T1T5.

The element s15257 is the longest element in the Weyl group W and
a1, a1+ o, 02
are the positive roots. The corresponding root vectors are

-1
1, Ti12 = [xl,JSQ]c =T1T2 —q T2T1, T2.

1.4.2 Hopf algebras u(D, \, 1)

In this subsection, we assume that D is a datum of finite Cartan type for a finite

abelian group I' such that for all 1 <7 < 6,

qi; has odd order, and (1.13)
the order of ¢;; is prime to 3, if 4 lies in a component Gs. '

14
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Since ¢;jq;: = q;7, 1 < 4,7 < 0, the order of g;; is constant in each component J of
the Dynkin diagram. Let N; denote this common order. Let A be a family of linking
parameters for D. The algebra U(D, \) is defined in Deﬁnitionm The root vector

Ty € U(D, \) corresponding to the positive root 5;, 1 < i < p, can be defined in the

same way as in the generic case.

Definition 1.4.9. Let (14)qce+ be a set of scalars, such that for all « € @5, J € X,
o =0 ifgév"zlorxiv";ﬁa.

This set of scalars are called root vector parameters.
Definition 1.4.10. The finite dimensional Hopf algebra u(D, A, i) is the quotient of
U(D, \) modulo the ideal generated by

N

(root vector relations) x T — uq(p), aedt, Jex,

where uq (1) € kG is defined inductively on @ as in [8 Sec. 4.2].

Let V be the braided vector space as defined in (|1.8). It follows from [§, Thm. 5.1]
that the Nichols algebra B(V) is generated by x;, 1 < 7 < 0, subject to the relations

(adcxl)l a”( )—0 1< <0, i #7j,
7 =0, acdh, Jex.

The following theorem describes the structure of the algebra u(D, A, u).

Theorem 1.4.11. [8 Thm. 4.5 and Cor. 5.2] The algebra u(D,\, 1) is a quotient
Hopf algebra of U(D, \) with T the group of group-like elements. The following ele-
ments form a PBW basis of u(D, \, u),

{xgll...wg;g|0<ai<NJ, Biedt, 1<i<pandgeT}. (1.14)

In particular,

dimu(D, A\, u) = (] N;9)IT,
Jex

where n, is the number of positive roots in component J. There is an isomorphism
of graded Hopf algebras Gru(D, A, u) = B(V)#kI =2 u(D,0,0), where Gru(D, \, u) is
the associated graded algebra of u(D, \, p) with respect to the coradical filtration.

15
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1.5 Calabi-Yau categories and Calabi-Yau algebras

1.5.1 Triangulated categories

Before we explain the concept of a Calabi-Yau category, we briefly recall the definition
a triangulated category. More detailed discussion about triangulated categories can
be found in [31], [34] or [59)].

Let € be an additive category with an automorphism 7'. The functor T is usually
called the shift functor.

A triangle in € is a sixtuple (X,Y, Z, u,v,w), where X, Y and Z are objects in
€andu: X —>Y, v:Y - Zand w: Z — T(X) are morphisms in €. A triangle is
usually denoted by the diagram

X5y 5725 717X).

A morphism between two triangles

u v w

X =Y —>7Z—>TX)

and
X Dy %72 51X

is a triple (f, g, h) with f, g, h morphisms in ¥ such that the following diagram com-

mutes

X! y! 7 —=T(X").

If f, g and h are all isomorphisms, then the morphism (f,g,h) is called an isomor-
phism.

Definition 1.5.1. A triangulated category (€,T,E) (or simply %) is an additive cate-
gory equipped with the shift functor 7" and a family of triangles &, called distinguished

triangles, satisfying the following axioms.

(TR1a) Any triangle isomorphic to a distinguished triangle is a distinguished triangle;

16
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(TR1b) Every morphism u : X — Y in % can be embedded into a distinguished triangle
X5Y 3575 T(X);
(TR1c) For any object X in &, the triangle X xe X 50— T(X) is a distinguished

triangle.
(TR2) (Turning of triangles aziom) If
X5y 5725 717(X)
is a distinguished triangle, then

Y %7z 2 opx) 2,

T(Y)
is a distinguished triangle.

(TR3) Let

X/ Y’ 7 —=T(X')

be a diagram where the rows are distinguished triangles and the first square is

commutative. Then there exists a morphism h : Z — Z’, such that the following

diagram commutes.

Xty Y- 7 Y T(X)
|
lf J/g I h iT(f)
u' 1)/ \V w’
X' Yy’ A T(X").

(TR4) (Octahedral aziom) Let

and



CHAPTER 1. PRELIMINARIES

be three distinguished triangles, such that w = vu. Then there exists a commu-

tative diagram

X >y —tsz7 —T(X)
|
-
w w/ \V w//
X VA Yy’ T(X)
|
lu |b lT(u)
v U/ V ’U”
Y VA X/ TY

where the rows are distinguished triangles.

Let A be an algebra. The derived category D(A) of the abelian category Mod A
is a triangulated category. Detailed definition of a derived category can be found,
for example, in [31]. Roughly speaking, D(A) has all complexes of A-modules as its

objects. The morphisms are obtained by formally inverting quasi-isomorphisms. Let
. dt )
Moo= ME 22 M

be a complex. The complex TM is a complex such that (TM)* = M and df., =
—di{;l. Each short exact sequence of complexes

0->M—->N—-L—-0
canonically determines a standard triangle
M= N = L—-TM).

The distinguished triangles are the ones isomorphic to standard triangles.
We denote by DP(A) the full triangulated subcategory of D(A) consisting of
bounded complexes. In the following, the shift functor 7¢ is denoted by [d].

Definition 1.5.2. Let (¢,T.,€) and (2,7, F) be two triangulated categories. A
triangle functor from € to & is a pair (F, «), where F': € — & is an additive functor
and « : FT — T'F is a natural isomorphism, such that F' maps a distinguished
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triangle
X =Y —>Z—>TX)

in € to a distinguished triangle

F(u)

F(v) ax F(w)

FX FY FZ T'F(X)

in 9.
Using the turning of triangles axiom, one can obtain that if
X—->Y—=>Z7Z—=TX)

is a distinguished triangle, then

—Tw
—_—

T(X) 25 1Y) 1% 7(2) T2(X)

is a distinguished triangle. Therefore, (T, —172) is a triangle functor.

Two triangle functors (F, ) and (F”, ') are natural isomorphic if there is a natural

isomorphism 6 : F' — F’ such that the following diagram commutes for any X € ¢:

01 (x)

FT(X) —% FIT(X)

Xx i ia/x
T'(0x)

T'F(X) —=T'F'(X).

1.5.2 Calabi-Yau categories

Let € be a k-linear category. It is called Hom-finite if Hom¢ (X,Y") is finite dimen-
sional for any X and Y in ¥.

Definition 1.5.3. (cf. [44] and [45]) A right Serre functor for a Hom-finite k-linear
triangulated category (¢,T) is a triangle functor (S,a) : € — € together with
isomorphisms

CX :HOmg(—,SX) —>HOm<g(X,—)* (115)

which are natural in X and satisfying the following equations:
Cx 0T o (ax). = —(T)" o (¢rx) (1.16)
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for any X € ¥.

A Serre functor is a right Serre functor which is in addition an equivalence.

Remark 1.5.4. The definition of a Serre functor of an additive category can be found
in [19] or [64].

Definition [I.5.3]is equivalent to saying that a Serre functor (S, a) : (¢,T) — (¢, T)
is a triangle functor which in addition is an equivalence such that there are natural
isomorphisms

Cxy: Homg (X, Y)— Home(Y, SX)*,

for any X, Y € ¥, and the following diagram anti-commutes

-
Home (TY, (ST)(X)) ——> Hom (TX,TY)* .  (1.17)
Home (TY, (T'S)(X)) ()
71

*

¢
Home (Y, SX) —— > Home (X,Y)*

Definition 1.5.5. A d-Calabi-Yau category is a Hom-finite k-linear triangulated
category (%, T), such that it admits a Serre functor (S,«) and there is a natural

isomorphism of triangle functors
(S’ O‘) = (Tdv (_1)d)a

for some d € Z. The Calabi-Yau dimension of % is the smallest non-negative integer

d satisfying the above condition.

1.5.3 Calabi-Yau algebras
We follow Ginzburg’s definition of a Calabi-Yau algebra [32].

Definition 1.5.6. An algebra A is called a Calabi- Yau algebra of dimension d if

(i) A is homologically smooth. That is, A has a bounded resolution of finitely

generated projective A-A-bimodules.
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(ii) There are A-A-bimodule isomorphisms

0, 1i#d;
A, i=d.

Ext’. (A, A°) =

In the sequel, Calabi-Yau will be abbreviated as CY for short.

Remark 1.5.7. Let A be an algebra. Denote by Dg’cd(A) the full triangulated sub-
category of the derived category of A consisting of complexes whose homology is of
finite total dimension. By [44] lemma 4.1], if A is a CY algebra of dimension d, then
the category Diid(A) is a d-CY category. Sometimes an algebra A is called a CY
algebra of dimension d if the category Di’f 4(A) is a CY category of dimension d (see
e.g. [I7)).

Example 1.5.8. We list some examples of CY algebras.

(1) The polynomial algebra k[xy,--- ,x,] with n variables is a CY algebra of di-

mension n.

(2) Any Sridharan enveloping algebra of an n-dimensional abelian Lie algebra is a
CY algebra of dimension n [I2, Thm. 6.5].

(3) Let A be the algebra k(zg, z1,22,23)/I, where the ideal I is generated by the
following relations

Tox1 — T1%0 — T2y + T3L2), Tox1 + T1Lo — (T223 — T3T2),
Loy — Taxo — B(xsxr + T123), ToT2 + Taxo — (T3x1 — T123),

Toxr3 — T3x0 — V(X102 + T2x1), ToTz + T3x0 — (T1T2 — ToT1),

o+ B + Y + O(ﬂ’)/ = 0 and (aaﬁ77) §é {(Oé, _17 1)v (1567 _l)a (_17 1a’7)} The
algebra A is a 4-dimensional Sklyanian algebra and a CY algebra of dimension

4 [18, Prop. 7.1].
CY algebras are closely related to rigid dualizing complexes. The non-commutative
version of a dualizing complex was first introduced by Yekutieli.

Definition 1.5.9. [74] (cf. [68, Defn. 6.1]) Assume that A is a (graded) Noetherian
algebra. Then an object Z of D*(A¢) (D*(GrMod(A¢)))is called a dualizing complex
(in the graded sense) if it satisfies the following conditions:
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(i) £ is of finite injective dimension over A and A°P.

(ii) The cohomology of # is given by bimodules which are finitely generated on
both sides.

(iii) The natural morphisms A — RHomy (%, #) and A — RHomyor (%, %) are
isomorphisms in D(A¢) (D(GrMod(A®))).

Roughly speaking, a dualizing complex is a complex Z € D’(A¢) such that the
functor
RHomy (—, %) : D},(A) — D}, (A?) (1.18)

is a duality, with adjoint RHom ger (—, %) (cf. [74, Prop. 3.4 and Prop. 3.5]). Here
D? g(A) is the full triangulated subcategory of D(A) consisting of bounded complexes

with finitely generated cohomology modules.

In the above definition, the algebra A is a Noetherian algebra. In this case, a

dualizing complex in the graded sense is also a dualizing complex in the usual sense.

Dualizing complexes are not unique up to isomorphism. To overcome this weak-
ness, Van den Bergh introduced the concept of a rigid dualizing complex in [68, Defn.
8.1].

Definition 1.5.10. Let A be a (graded) Noetherian algebra. A dualizing complex
Z over A is called rigid (in the graded sense) if

RHom 4 (A,A% ®%A) >

in D(A®) (D(GrMod(A°))).

Note again that if A¢ is Noetherian then the graded version of this definition
implies the ungraded version.

Lemma 1.5.11. (cf.[20, Prop. 4.3] and [68, Prop. 8.4]) Let A be a Noetherian algebra.

Then the following two conditions are equivalent:

1) A has a rigid dualizing complex Z = Ayls|, where 1 is an algebra automorphism
P
and s € 7.

(2) A has finite injective dimension d and there is an algebra automorphism ¢ such
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that

Ext’y. (A, A¢) =
as A-A-bimodules.

If one of the two conditions holds, then ¢ is an inner automorphism and s = d.

This Lemma [1.5.11] will be frequently used in this thesis. The following corollary
follows directly from Lemma [1.5.11] and the definition of a CY algebra. It gives the
relation between CY algebras and rigid dualizing complexes.

Corollary 1.5.12. Let A be a Noetherian algebra which is homologically smooth.
Then A is a CY algebra of dimension d if and only if A has a rigid dualizing complex
Ald].

Now we take the Koszul complex and the rigid dualizing complex of a quantum
polynomial algebra as an example. They are also preparations for Chapter [2] and

Chapter
Let S be the algebra

k{zi, 29, -,z | Tix; — qijzjzi, 1 < i< j < n,

where ¢;; € k.

The algebra S is a quadratic algebra, its quadratic dual S' is isomorphic to

* * * * % * ok . .
k(z], 25, 2y, | qjaie; + xjzi, 1 <i<j<n).

The algebra S' is a Frobenius algebra with the Nakayama automorphism 7 defined
by

* 1 _*

n(ay) = (=1)"""qu- - Q(i—l)iqi_(i1+1) i T
forall 1 <7< n.

It is easy to see that S is a Koszul algebra. The following complex is the minimal

projective resolution of k over .5,
05 S@Sr =588 Lsas » 5908 55 5k-0. (119)
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The differentials d;, 1 < j < n, are defined by d;(1®a) = > 1, 2;®a-z}, fora € S;*,
where “.” denotes the right S'-action on S**. The complex (1.19)) is a quantum version
of the classical Koszul complex of a polynomial algebra.

Lemma 1.5.13. (1) The algebra S is homologically smooth.

(2) The rigid dualizing complex of S is isomorphic to S¢(—n)[n], where ¢ is the
algebra automorphism defined by

C(wi) = qui--- Q(i—l)iqi_(il+1) e q;LIxi7

for all1 <i < n.

Proof. The Koszul bimodule complex (cf. [68, Thm. 9.1]) of S is as follows
K:0— 825508 - — SaSFas 2 SaS 1 ®8 = - — §@5 — 0. (1.20)

The differentials D; : S ® S}* RS = S® S;-*_l ® S, 1 < j < n, are defined by
Dj =d:+ (—=1)7dj, where d;(1®a®1) =Y 2, ®a-z;®land dj(1Qa®1) =
S l®a;-a®r, forany 10 a®1e S® S @S5, We have that K — S — 0 is
exact. This shows that the algebra S is homologically smooth.

The algebra S' is Frobenius, so S is AS-regular. By [68, Thm. 9.2 and Prop. 8.2,
the rigid dualizing complex of S is isomorphic to Sent1,(—n)[n]. The automorphism
€ is the multiplication by (—1)™ on S,,. The automorphism ¢ satisfies that ¢|g, is
dual to n[g:. So

" rp(ai) = qui-- Q(i—l)z‘q;(ilﬂ) g,

forall 1 <i<n. O

Remark 1.5.14. The algebra S is a connected graded algebra. So S = S as bimod-
ules if and only if ( = id. Therefore, the algebra S is CY of dimension n if and only
if

qri- - Q(i—l)iqi_(il+1) gt =1
forall 1 <7< n.

The algebra S€¢ is Noetherian. Therefore, the rigid dualizing complex of .S in the
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ungraded sense is just S¢[n]. We also have

For an A-A-bimodule M, the Hochschild homology and cohomology of A with
coefficients in M are defined to be Tor” (A, M) and Ext’. (A, M) respectively. Denote
them by HH, (A, M) and HH"(A, M). An A-A-bimodule U is said to be invertible if
there exists another A-A-bimodule V', such that

UQa V2V UX=A

as A-A-bimodule.

In [67], Van den Bergh proved the following duality between Hochschild homology
and cohomology.

Theorem 1.5.15. Assume A is a homologically smooth algebra. If there is an integer

d and an invertible bimodule U such that

0, i#d;
U, i=d.

Ext’y. (A, A°)
as bimodules, then for any A-A-bimodule M,
HH'(A, M) = HHy_;(A,U®4 M), 0<i<d.

This theorem is usually called Van den Bergh’s duality theorem.

1.5.4 Calabi-Yau property of Hopf algebras

It turns out that CY algebras are Artin-Schelter algebras. For Hopf algebras, the CY
property can be characterized via homological integrals of Artin-Gorenstein algebras.

Let us recall the definition of an Artin-Schelter Gorenstein (regular) algebra first.

An N-graded algebra A = @;>0A4; is called connected if Ay = k.
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Definition 1.5.16. A connected N-graded algebra A is called Artin-Schelter reqular
(AS-regular for short) if the following three conditions hold:

(i) A has finite global dimension d.

(ii) There is some integer [, such that

0, if 7 # d;

EXTY (k, A) =
k(1) ifi=d.

(iii) A has finite Gelfand-Kirillov dimension, that is, there is a positive number ¢
such that dim A; < ¢n for all 4 € N.

Recall that (-) denotes the degree shift. If a connected graded algebra A satisfies
condition (ii), then A is called Artin-Schelter Gorenstein (AS-Gorenstein for short).

In [20], the notion of an AS-Gorenstein (regular) algebra was defined for a general
augmented algebra.

Definition 1.5.17. (1) Let A be a left Noetherian augmented algebra with a fixed
augmentation map € : A — k. A is said to be left AS-Gorenstein, if

(i) injdim 4 A = d < oo,

(ii) dimExt’(ak, 44) =

where injdim stands for injective dimension.
A Right AS-Gorenstein algebras can be defined similarly.

(2) An algebra A is said to be AS-Gorenstein if it is both left and right AS-
Gorenstein (relative to the same augmentation map ¢).

(3) An AS-Gorenstein algebra A is said to be regular if in addition, the global
dimension of A is finite.

The concept of a homological integral for an AS-Gorenstein Hopf algebra was
introduced by Lu, Wu and Zhang in [53]. It is a generalization of an integral of a
finite dimensional Hopf algebra. In [20], homological integrals were defined for general
AS-Gorenstein algebras.
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Definition 1.5.18. [20] Let A be a left AS-Gorenstein algebra with injdim 4 A = d.
Then Extj( ak, 4A) is a 1-dimensional right A-module. Any non-zero element in
Ext% (4k, 4A) is called a left homological integral of A. We write fi for Ext% (4k, 4 A).

Similarly, if A is right AS-Gorenstein, any non-zero element in Ext‘fl(lk A,A4) is
called a right homological integral of A. Write fg for Extfg(]kA,AA).

fi‘ and j:z are called left and right homological integral modules of A respectively.

The left integral module f,fx is a 1-dimensional right A-module. Thus fj‘ = ke for

some algebra homomorphism £ : A — k.

Proposition 1.5.19. Let A be a Noetherian augmented algebra such that A is CY
of dimension d. Then A is AS-reqular of global dimension d. In addition, fi >k as
right A-modules.

Proof. If A is an augmented algebra, then 4k is a finite dimensional module. By [I3]
Remark 2.8], A has global dimension d.

It follows from [I3], Prop. 2.2] that A admits a projective bimodule resolution
0—>Py—- =P —FP—A—0,

where each P; is finitely generated as an A-A-bimodule. Tensoring with functor ® sk,

we obtain a projective resolution of 4k:
0=>PiRsak—- >P sk —>P sk — 4k —0.
Since each P; is finitely generated, the isomorphism
k ®4 Homye(P;, A°) =2 Homa(P; ®4 k, A)

holds in ModA°P. Therefore, the complex Homs(Ps ®4 k, A) is isomorphic to the
complex k ® 4 Hom 4 (P,, A¢). The algebra A is CY of dimension d. So the following
A-A-bimodule complex is exact,

0 — Hom e (Py, A°) — -+ — Homye (Py—_1, A°) — Hom ge (Py, A®) — A — 0.
Thus the complex k® 4 Hom 4. (P,, A¢) is exact except at k® 4 Hom 4e (P, A®), whose
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homology is k. It follows that the isomorphisms

0, i#d,;

k, i=d

1%

EXtZ(Aﬂg AA)

hold in ModA°P. Similarly, we have isomorphisms

; 0, i#d;
Exty (ka, Aq) & i
k, i=d
in ModA. We conclude that A is AS-regular and fi = k. O

Remark 1.5.20. From the proof of Proposition [I.5.19] we can see that if A is a

Noetherian augmented algebra such that

(i) A is homologically smooth, and
(ii) there is an integer d and an algebra automorphism ¢, such that

0, 1 # d;

Exty. (A, A°) =
4 Ay, i=d

as A-A-bimodules,

then A is AS-regular of global dimension d. In this case, fi = k¢. The algebra homo-
morphism £ is defined by {(a) = e(¢(a)) for all a € A, where ¢ is the augmentation
map of A.

Let A be a Hopf algebra, and £ : A — k an algebra homomorphism. We let [¢] be
the winding homomorphism of ¢ defined by

[€](a) = &(ar)as,
for all @ € A. Then we have the following.

Proposition 1.5.21. [20, Prop. 4.5] Let A be a Noetherian AS-Gorenstein Hopf al-
gebra with injective dimension d. Let fi = ke, where £ : A — k is an algebra
homomorphism. Then the rigid dualizing complex of A is (€52 Ald].
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The following theorem characterizes the CY property of Noetherian Hopf algebras.

Theorem 1.5.22. [35, Thm. 2.3] Let A be a Noetherian AS-Gorenstein Hopf algebra.
Then A is CY algebra of dimension d if and only if

(i) A is AS-regqular with global dimension d and fjl = k as right A-modules.

ii) S% is an inner automorphism of A.
A
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Chapter 2

Calabi-Yau pointed Hopf
algebras U(D, \)

Chemla calculated the rigid dualizing complex of the quantized enveloping algebra
Uy(g) of a finite dimensional semisimple Lie algebra g [23]. As a result, U,(g) is a CY
algebra. A pointed Hopf algebra U(D, \) is not necessarily a CY algebra. In Section
m we calculate the rigid dualizing complex of a pointed Hopf algebra U(D, \) and
give a necessarily and sufficient condition for U(D, \) to be a CY algebra. This result
is also a preparation for computing the rigid dualizing complex of the corresponding
Nichols algebra in Chapter [3l The CY pointed Hopf algebras U(D, A) of dimensions
less than 5 are classified in Section 2.2

2.1 Rigid dualizing complexes of pointed Hopf al-
gebras U(D, \)

In this section we fix a generic datum of finite Cartan type

D(T, (9i)1<i<o, (Xi)1<i<o, (@ij)1<ij<0)

for I" and a family of linking parameters A = (X\i;)1<i<j<6,ixj for D, where I is a free

abelian group of rank s.
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Let {a1, - ,ap} be a fixed set of simple roots of the root system corresponding
to the Cartan matrix (a;;). We also fix a reduced decomposition wg = s;, ---s;, of
the longest element wq in the Weyl group W as a product of simple reflections. Then

B = Qi B2 = 81'2(012'1)7"' 7Bp = Siy "'Sip,l(aip)

are the positive roots. Let z, , 1 < i < p, be the corresponding root vectors. There

By
are 1 < ji < p, 1 <k <0, such that §8;, = . Thenxﬂj =x, 1 <k <6.
k
The algebra U(D, \) is defined in Section Following from Theorem the
set

{all - atrgla;i >0,1<i<pgel}

forms a PBW basis of the algebra U(D, A). Asin [7], the degrees are defined as follows
P
deg(3! - 2% g) = (a1, Jap, »_a;ht(B;)) € (Z70)F, (2.1)
i=1

where ht(5;) is the height of the root ;. That is, if 8; = Zle m;q;, then ht(8;) =

Zle m;. In this thesis, we always order the elements in NP*! ag follows

(a1, -+ ,ap,apt1) < (b1, -+ ,bp,bpy1) if and only if there is some (2.2)

1<k<p—+1, such that a; = b; for i > k and ax_1 < by_1. '
Given m € NP*L let F,,,U(D, \) be the space spanned by the monomials 95(;11 e xgpg
such that deg(xgi ~-xirg) < m. We claim that this gives an algebra filtration on
U(D,\).

Lemma 2.1.1. If the root vectors z, ,x, belong to the same connected component

Bj
and j > 1, then

e = 3 purty -t 29
acNP
where pg € k and pg # 0 only when a = (a1, ,ap) satisfies that ap, = 0 for k <4

and k > j. In particular, the equation holds for all root vectors Ty Ty with
i<jinU(D,O0).

Proof. This follows from [7, Prop. 2.2] and the classical relations that hold for a
quantum group U,(g) (see [25, Thm. 9.3] for example). It was actually proved in
Step VI of the proof of Theorem 4.3 in [7]. O
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Lemma 2.1.2. (1) The filtration defined on the PBW basis is an algebra filtration.

(2) The associated graded algebra GrU(D, \) is generated by x, , 1 < i < p, and
yn, 1 < h < s, subject to the relations

+1, +1 +1, +1 +1 1
yh ym :ymyh7 yh y]:-l::]'7 1<h7m<8u

YnTs, = Xy, (Yn)Ts,yn, 1<i<p, 1<h<s,

Ty Ty = X, (gﬁi)xﬁjxﬂi, 1<i<ji<p.

Proof. This follows from Lemma [2.1.1] and the linking relations. O

Note that the associated graded algebra GrU (D, \) is an NP*!-graded algebra.

Lemma 2.1.3. The Hopf algebra A = U(D, \) is Noetherian with finite global di-
mension bounded by p + s.

Proof. The group algebra kI is isomorphic to a Laurent polynomial algebra with s
variables. So kI' is Noetherian of global dimension s. By Lemma [2.1.1] the algebra
Gr A =2 U(D,0) is an iterated Ore extension of kI', where Gr A is the associated graded
algebra of A with respect to the coradical filtration (cf. Theorem . Indeed, if

x ...7:1;

by are the root vectors of A, then

Bp
GrA = ﬂ{F[xBl;Tl,él][zﬁ2;Tg,52} e [xBP;Tp,ép].

For 1 < j < p, 7; is an algebra automorphism such that its action on each z, , i < j,
and g € I is a scalar multiplication. J; is a 7;-derivation such that ¢;(g) =0, g € kI’
and d;(z, ), i < j, is a linear combination of monomials in Tp Ty - By Loy}
Thm. 1.2.9 and Thm. 7.5.3], we have that Gr A is Noetherian of global dimension
less than p 4+ s. Following from [57, Thm. 1.6.9 and Cor. 7.6.18], the algebra A is

Noetherian of global dimension less than p + s. O

Theorem 2.1.4. Let D be a generic datum of finite Cartan type for a group T', A
a family of linking parameters for D, and A the Hopf algebra U(D,\). Then A is
Noetherian AS-regular of global dimension p + s, where s is the rank of I' and p is
the number of the positive roots of the Cartan matriz. The left homological integral
module ffll of A is isomorphic to k¢, where § : A — k is an algebra homomorphism
defined by &(9) = (TTH-, X5, )(9) for all g €T and §(z;) =0 for all 1 <i < 0.

33



CHAPTER 2. CALABI-YAU POINTED HOPF ALGEBRAS U(D, \)

Proof. We first show that

0, i#p+s;
ke, i=p+s.

Ext’y(ak, 4A4) =

With Lemma and Lemma the method in [23] Prop. 3.2.1] for computing
the group Exty, (o) (v, (0)k; v,(5)Uq(9)) also works in the case of U(D, A). The differ-
ence is that the right A-module structure on Ext?"*( 4]k, 4A) is not trivial in the case
of U(D, \). Put C' = GrU(D, \). We also have that Ext’(ak, 44) =0 for i # p + s
and Ext?™*(ck, c0) = Ext?*(4k, 4A) as right [-modules.

We now give the structure of Exte(ck, ¢C). Let B be the following algebra,

k(w, - STy |x5imﬁj :Xﬂj(gﬂi)mﬁj%i,l <i<j<p).

Then C' = B#kI'. We have the following isomorphisms

RHOmc(ﬂ{, C) = RHomc(]kF Qur k, C)
= RHOmk[‘(ﬂ{, RHOmc(]kF, C))
~ RHomgr(k, kI') @£ RHome (KT, C).
Let
0—+B®By = BB~ >B@B"=+B -k—0 (2.4)

be the Koszul complex of B (cf. complex (1.19))). It is a projective resolution of k.
Each B is a left kI'-module defined by

o) (@, A naf ) = Bla~Hah, A Aag, )
— 5(g*1(x;,il) A NgTH @, )
= Itz xs, (9)B(xh, Ao Aaj, ).

"]

Thus, each B ® B;-* is a B#kI'-module defined by

(c#tg) - (b® B) = (c#9)(b) ® 9(B),

forany b® 8 € B® B;-* and c#g € B#KkI'. It is not difficult to see that the complex
(2.4) is an exact sequence of B#KkI modules. Tensoring it with kI', we obtain the
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following exact sequence of B#kI-modules
0+ B®By®Kl — - BB @kl - --- - BBy @ kI' - BQKI' — kI' - 0,
where the I'-action is diagonal. Each B ®B,!5* ®RKI is a free B#kI-module. Therefore,

we obtain a projective resolution of kI'" over B#KI.

The complex
0 — Home (B&KT, C) — Home (BRBy* @I, C) — - - - — Home (BB QKT C) — 0
is isomorphic to the following complex
O%C’%B!l@C%~~~AB;_1®05—‘°>B;®C%0.

This complex is exact except at B;D ® C', whose cohomology is isomorphic to BZI) QKkI.
So RHom¢ (kI', C) = B, @ kI'[p]. We have

p
(@5, Aenat )@ g = ([T @el@s, A nat o),
i=1

for all g € T'. The group I' is a free abelian group of rank s, so RHomyr (k, kI") 2 k[s].

Therefore, we obtain that
RHomyr(k, kI') @£ RHome (KT, C) = ke [p + s,

where & is defined by &'(g) = ([]i_; x,,)(g) for all g € T' and E’(zﬁi) = 0 for all
1 <7 <p. That is,
. 0, 1 + s;
EthC(CJk, cC) = 7P
]kg/, i1 =p+s.

Ext?"®(ak, 4A) is a 1-dimensional right A-module. Let 1m be a basis of the module
Ext}"®(ak, 4A). Tt follows from the right version of [63} lemma 2.13 (1)] that m-z; = 0
for all 1 < i < 0. Since Ext2™(ck, cC) = Ext’ *(ak, 44) as right T-modules, we
have showed that
0, i#p+ts;
ke, i=p+s.

EthA(A]k, AA) X
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Similarly, we have

: 0, i#p+s;
dim Extly (ka, A4) = i#pts
1, 1=p+s.
By Lemma [2.1.3] the algebra A is AS-regular of global dimension p + s. O

Now we can give a necessary and sufficient condition for a pointed Hopf algebra
U(D, \) to be CY.

Theorem 2.1.5. Let D be a generic datum of finite Cartan type for a group I', X a
family of linking parameters for D and A the Hopf algebra U(D, \).

(1) The rigid dualizing complex of the Hopf algebra A = U(D,\) is ,A[p + ],
where 1 is defined by Y(xg) = Hle’i#k Xg, (9K)Tk, for all 1 < k < 0, and
P(g) = ([T, Xs,)(9) for all g € T where each ji, 1 <k < 0, is the integer such
that Bj, = a.

(2) The algebra A is CY if and only if [T%_, X, =€ and 8% is an inner automor-
phism.

Proof. (1) By Proposition [1.5.21] and Theorem the rigid dualizing complex of
A is isomorphic to (€182 Alp + s|, where ¢ is the algebra homomorphism defined in

Theorem 2.1.4l It is not difficult to see that

p

(€129 = (I I x.,

i
i=1

)(9),

forallg € T'. For 1 < k < 0, we have A(xy,) = 2,®14gx @z and 8% (zx) = Xk(gk_l)xk.
If ji, is the integer such that 3, = ag, then x, (gx) = xx(gx). So
Gk

(€S (k) = xulgy DIE)(r)
= xk(gx ) T x5, (90) (k)
= Hf:l,i;éjk. X, (9x)(zk).
(2) follows from Theorem and Theorem O

Remark 2.1.6. From Theorem we can see that for a pointed Hopf algebra
U(D, A), it is CY if and only if its associated graded algebra U(D,0) is CY.
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2.1. RIGID DUALIZING COMPLEXES OF POINTED HOPF ALGEBRAS
U(D,\)

Corollary 2.1.7. Assume that A = U (D, \). For every A-A-bimodule M, there are

1somorphisms:
HH (A, M) = HH, (A, y-1 M), 0<i<p+s, (2.5)
where 1 is the algebra automorphism defined in Theorem[2.1.5

Proof. This follows from [20, Cor. 5.2] and Theorem O
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2.2 Calabi-Yau pointed Hopf algebras U(D, \) of low

dimensions

In this section, we assume that k = C. We shall classify CY pointed Hopf algebras
U(D, ) of dimension less than 5, where D is a generic datum of finite Cartan type
for a group I' and A is a family of liking parameters for D.

Remark 2.2.1. Let D(T', (9;), (xi), (ai;)) be a generic datum of finite Cartan type.
Then x;(g;) are not to be roots of unity for 1 < ¢ < 6. Hence, in the classifica-
tion, we exclude the case where the group is trivial. If the group I' in a datum
DT, (g:), (x4), (ai;)) is trivial, then the algebra U(D,0) (in this case, U(D,0) has no
non-trivial lifting) is the universal enveloping algebra U(g), where the Lie algebra g

is generated by x;, 1 < i < 0, subject to the relations
(adz;) "z, =0, 1<4,5<0, i

We have tr(adz) = 0 for all € g. Therefore, U(g) is CY by [35, Lemma 4.1]. We
list those of dimension less than 5 in the following table.

CY Lie algebra
Case | dimension | Cartan matrix bases relations
1 1 Ay T
2 2 Ay X Ay T,y abelian Lie algebra
3 3 Ap x A1 x A4 T,Y, 2 abelian Lie algebra
4 3 Ay x,y,z | [yl ==z]z,2 =y,2] =0
5 4 Ay X - X Ay | 2y, z,w abelian Lie algebra
6 4 Ay x Ag Y, zw | [r,y] =2z, 2] =[y,2] =0
[z, w] = [y, w] = [z,w] =0
7 4 By T, Y, 2, W [z,y] = 2, [z, 2] = w,
[z,w] = [y, 2]
= [y, w] = [z,w] =0

Remark 2.2.2. The Lie algebra in Case 4 is the Heisenberg algebra. In [35], the au-

thors classified those 3-dimensional Lie algebras whose universal enveloping algebras
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are CY algebras. Beside the algebras in Case 3 and Case 4, the other two Lie algebras

are

e The 3-dimensional simple Lie algebra slo;
e The Lie algebra g, where g has a basis {x,y,z} such that [z,y] =y, [z, 2] = —=

and [y, z] = 0.
Definition 2.2.3. Let
D(F, (gi)lgig(ﬁ (Xi)lgige, (aij)lgi,jge)
and
DI, (9i)1<i<or, (Xi)1<i<ors (ag)1<i <o)

be two generic data of finite Cartan type for groups I and IV, where " and I are both
free abelian groups of finite rank. Let A and A be two families of linking parameters

for D and D’ respectively.

The data (D, \) and (D', \') are said to be isomorphic if § = ¢’, and if there exist
a group isomorphism ¢ : I' = IV, a permutation o € Sy, and elements 0 # «; € k, for

all 1 < < 0 subject to the following relations:

(1) ¢(gi) = g3y, for all 1 <i < 0.

(2) Xi = X, forall 1 <i < 6.

(3) Ayj = GGG ()5 () if o(i) < J(j)’
=060 X; (90N, (jyo(iy: I 0(i) >0 ())

forall 1 <i<j<6@andioj.

In this case the triple (¢, 0, («;)) is called an isomorphism from (D, \) to (D, \).

If (D, ) and (D', \) are isomorphic, then we can deduce that a;; = a’g(i)a(j) for
all 1 <i,5 <0 [1].
The following corollary can be immediately obtained from the definition of iso-

morphic data.
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Corollary 2.2.4. Let D be a generic datum of finite Cartan type formed by (T,
(9:), (Xi), (aiz)). Assume that ¢ : T' — I' is a group isomorphism and o is a
permutation in Sg. Then (D,0) is isomorphic to (D’,0), where D’ is formed by
T (0(9o-1()))s Xo-10)2™ 1), (@o=1(1)0-1(5)))-

Let D be a generic datum of finite Cartan type and A a family of linking parameters
for D. In the rest of this chapter, we simply call (D, \) a generic datum of finite Cartan
type. Following from [7], the pointed Hopf algebra U (D, A) is uniquely determined by
datum (D, ). Let Isom((D, ), (D’,\)) be the set of all isomorphisms from (D, \)
to (D', \). Let A, B be two Hopf algebras, we denote by Isom(A, B) the set of all

Hopf algebra isomorphisms from A to B.

Lemma 2.2.5. [7, Thm. 4.5] Let (D, \) and (D', X') be two generic data of finite Car-
tan type. Then the Hopf algebras U(D, ) and U(D’', N') are isomorphic if and only if
(D, \) is isomorphic to (D', X'). More precisely, let x1,--- ,xq (resp. x7,---,xp)
be the simple root vectors in U(D,\) (resp. U(D',N')), and let g1, - ,g90 (resp.
gi.- -, gp) be the group-like elements in D (resp. D’). Then the map

Isom(U(D,\),U(D', X)) — Isom((D, \), (D', X)),

given by & — (p,0, (), where p(g) = ¢(g), v(g;) = g(’,(i), o(xz;) = aix;(i), for all
gel', 1<1i<0, is bijective.

Let (D, A) be a generic datum of finite Cartan type. By Lemma any vertex
can be linkable to at most one vertex. That is, for any 1 < i < 0, there is at most one
1 < j <0, such that ¢ < j and \;; # 0. Thus it is reasonable to set elements o; € k
as follows:

If there is an integer j, such that ¢ < j and A;; 7# 0, then set a; = Ayj;
Otherwise set a; = 1.
Define
Vo L, Aij #0;
ij
0, Ay =0.
Then (id, id, («;)) is an isomorphism from (D, \) to (D, \'). Therefore, we can assume

that the family of linking parameters (\;;)1<i<j<o are chosen from {0,1}.

The following lemma is well-known.
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Lemma 2.2.6. If ' is a free abelian group of rank s, then the algebra KI' is a CY

algebra of dimension s.

If T is a free abelian group of finite rank, we denote by |T'| the rank of T

Proposition 2.2.7. Let A be the algebra U(D, \), where (D, ) is a generic datum
of finite Cartan type for a group I'. Then

(1) A is CY of dimension 1 if and only if A =KZ.

(2) Ais CY of dimension 2 if and only if A =KL, where ' is a free abelian group
of rank 2.

Proof. (1) is clear.

(2) It is sufficient to show that if A is CY of dimension 2, then A is the group
algebra of a free abelian group of rank 2. By Theorem if the global dimension
of A is 2. Then the following possibilities arise:

(a) |T'| =2, A =XKkI is the group algebra of a free abelian group of rank 2;
(b) |T'| =1 and the Cartan matrix of A is of type A;.
Let A be a pointed Hopf algebra of type (b) and let the datum
(Da A) = (F7 (gz)v (X’i)a (aij)a (AZJ))
be as follows
o I'=(y) =7

g1 = y¥, for some k € Z;

X1 € T is defined by x1(y1) = g, where ¢ is not a root of unity;

The Cartan matrix is of type Az;
e A=0.
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Observe that in this case, the linking parameter must be 0. In addition, there is only
one root vector, that is, the simple root vector x;. Since q # 1, we have x1 # . So
the algebra A is not CY by Theorem

Therefore, if A is CY, then A is of type (a). Hence, the classification is complete.
O

Proposition 2.2.8. Let A be the algebra U(D, \), where (D, \) is a generic datum
of finite Cartan type for a group T'. If A is CY of dimension 3, then the group I' and

the Cartan matric (a;;) are given by one of the following 2 cases.

Case |I'| Cartan matric
1 3 Trivial
2 1 A1 X A1

The non-isomorphic classes of CY algebras in each case are given as follows.
Case 1: The group algebra of a free abelian group of rank 3.

Case 2:

(I) The datum (D, ) = (T, (g1, 92), (X1, X2), (¢ij)1<i,j<2, Ai2) 15 given as follows:
o [' = <y1> > 7
o g1 =g =yt for some k € Z+;
e x1(y1) = q, where ¢ € k is not a root of unity and 0 < |q| < 1, and
Xe = X1
o (aij)i<ij<2 is the Cartan matric of type A x Aq;
o )\12 =0.
(II) The datum (D, \) = (T, (g1, 92), (X1, X2), (@ij)1<ij<2: M2) s given as follows:
o ['= <y1> = ZI‘
o g1 =gy =1yt for some k € Z+;
e x1(y1) = ¢, where ¢ € k is not a root of unity and 0 < |q| < 1, and
-1
X2 = X1 ;s
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o (a;j)i<i,j<2 is the Cartan matriz of type A1 x Ay;

e Mo =1.
Proof. By Remark it is sufficient to discuss the graded case and consider the
non-trivial liftings. We first show that the algebras listed in the proposition are all
CY. Case 1 follows from Lemma Now we discuss Case 2. The root system
of the Cartan matrix of type A; x A; has two simple roots, say a; and as. They
are also the positive roots. First we have xi1x2 = e. Since 8%(x;) = Xi(gi_l)mi,
i=1,2, g1 = go = yt, we have S4(z;) = y1 Fa;y1* for i = 1,2. It is easy to see that
8% (y1) = y1. It follows that S% is an inner automorphism. Thus the algebras in Case
2 are CY by Theorem [2.1.5]

Now we show that the classification is complete.

If A is of global dimension 3, then the following possibilities for the group I" and

the Cartan matrix (a;;) arise:

(1) || =3, A is the group algebra of a free abelian group of rank 3.
(2) || =2 and the Cartan matrix of A is of type A;.

(3) IT'| =1 and the Cartan matrix of A is of type A; x A;.

Similar to the case of global dimension 2, A can not be CY if A is of type (2).

Now, let A be a CY graded algebra of type (3). In this case, we have x2(g1)x1(g92) =
1 (cf. equation (1.6)). In addition, we have x1x2 = € by Theorem It follows

that 1 = x2(g1)x1(92) = X7 (91)x1(g2)- Let T = (y1) and g1 = yf, go =y} for some
k,l € Z. Then Xl(yll_k) = 1. Since x1(y1) is not a root of unity, we have k = [, that
is, g1 = go = y¥. Therefore, A= U(D,0), where the datum D is given by

o I'=(y) =7

e g1 = go = yf, for some k € Z;

e x1(y1) = g, where ¢ € k is not a root of unity, and x2 = Xfl;
e (aij)1<i,j<2 is the Cartan matrix of type A; x Aj.

Let D’ be another datum given by
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o I'=(y) =%;
o gi =g, =y¥, for some k' € Z;
e X\ (¥}) = ¢, where ¢ € k is not a root of unity, and x4 = x| *;

) (a;j)lgi’jgg is the Cartan matrix of type A; x Aj.

Assume that (D’,0) is isomorphic to (D,0) via an isomorphism (¢, o, (a;)). Then ¢
is a group automorphism such that ¢(y1) =y} or ¢(y1) = v} . Since o € Sy, we
have o = id or ¢ = (12). From an easy computation, there are four possibilities for
k' and ¢/,

e k'=Fkand ¢ = q;

e k'=—k and ¢ = q;
e k' =kand ¢ =q%;

o k'=—kandq =q¢ .

This shows that A = U(D,0) is isomorphic to an algebra in (I) of Case 2. In addition,
every pair (k,q) € Z™ x k, such that 0 < |g| < 1 determines a non-isomorphic algebra
in (I) of Case 2. Each algebra in (I) of Case 2 has only one non-trivial lifting, which

is isomorphic to an algebra in (II).
Thus we have completed the classification. O

We list all CY Hopf algebras U(D, A) of dimension 3 in terms of generators and

relations in the following table. Note that in each case ¢ is not a root of unity.

Table 4.1: CY algebras of dimension 3

Case Generators Relations
Case 1 Yn, yiyEt =yt
1<h<3 vty =1
1<hm<3
I1 B
Case 2 (I) i, 21,22 iy =y =1

Yi1T1 = qriy1
yize = q 'aayr, 0 < gl <1
T1xe — q *xox1 =0, k€ ZT
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Case 2 (I)  yi' 21,20 iy =yt =1
Y11 = qT1Y1
Y1Te = ¢ raoyr, 0 < lg| <1

129 — ¢ Fwoxy = (1 —y2F), k€ Z*

Proposition 2.2.9. Let A be the algebra U(D, \), where (D, ) is a generic datum
of finite Cartan type for a group T'. If A is C'Y of dimension /4, then the group I' and

the Cartan matriz (a;;) are given by one of the following 2 cases.

Case |I'| Cartan matriz
1 4 Trivial
2 2 A x Ay

In each case, the non-isomorphic classes of CY algebras are given as follows.
Case 1: The group algebra of a free abelian group of rank 4.

Case 2:

(I) The datum (D, ) = (T', (91, 92), (X1, X2), (aij)1<i,j<2, M12) is given by
o I'= <y1711/2> = Z2;
o g1 =go =yt for some k € ZF;

e — xi(y1) = q,, x1(y2) = q,, where q,,q, € k satisfies that 0 < |q,| < 1
and q, is not a root of unity,

—Xe=X1
o (aij)i<i,j<2 is the Cartan matric of type A x Aq;
L] )\12 =0.

(II) The datum (D, \) = (T, (g1, 92), (X1, X2) (@ij)1<i <2, A12) @8 given by

o I'= <y17y2> = ZZ;‘
o g1 = g2 =yt for some k € ZF;

b - Xl(yl) =4y Xl(yQ) =45 where 959 €k satisﬁes that 0 < |q1| <1
and q, is not a root of unity,

45



CHAPTER 2. CALABI-YAU POINTED HOPF ALGEBRAS U (D, \)

- X2 = xfl;
e (a;j)i<i j<2 is the Cartan matriz of type Ay X Ay;

[ ] )\12:1.

Let A and B be two algebras in Case (I) (or (II)) defined by triples (k,q,,q,) and

(K',q!,q)) respectively. They are isomorphic if and only if k = k', q, = ¢/ and there

18 some integer b, such that q; = qi’q2 or q; = qi’qgl,

(III) The datum (D, X) = (T, (91, 92), (X1, X2), (@ij)1<i,j<2, AM12) is given by

o ['= <y17y2> ~ ZQ;
o g1 =yF, g2 =1y, for some k,1 € Z*F;

k
7

e —xi(y1) = ¢, xa(y2) = ¢, where ¢ € k is not a root of unity and

0<lql <1,
- X2 = Xfl;
o (a;j)i<i,j<2 is the Cartan matric of type A1 x Ay;

e A2 =0.
(1V) The datum (D, \) = (T, (91, 92), (x1, X2); (@ij)1<i j<2, AM12) is given by

o I'=(y1,y2) 2%
o g1 =yt go =yb for some k,1 € ZT;

k
1

e — xi(y1) = q, x1(y2) = qt, where ¢ € k is not a root of unity and

0<lql <1,
—X2=X1
o (aij)i<ij<2 is the Cartan matric of type A1 x Aq;

L4 /\12 =1.
(V) The datum (D, A) = (', (91, 92), (X1, X2), (@ij)1<i,j<2, M12) is given by

o [ = <y17y2> o~ ZQ;
e g1 =yt g2 = yily? for some k, , l1,ls €Z1T, k#11, 0 <y <ly;

k=l

e — xi1(y1) = ¢, x1(y2) = ¢ =, where q¢ € k is not a root of unity and
0<lgl<1,

- X2 fol;
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o (a;j)i<i,j<2 is the Cartan matriz of type A1 x Ay;

L )\12 =0.
(VI) The datum (D, ) = (T, (91, 92), (x1, X2) (@ij)1<i,j<2, M12) s given by

o I'= <y17?/2> = ZQ;
o g =yF g = ylllyé2 for some k,l1,lo €ZT, k#11 and 0 <1y <lo;

e —xi(y1) = q, xaly2) = q%, where q € k is not a root of unity and
0<lgl <1,
— X2 =X s
o (aij)i<ij<2 is the Cartan matric of type A x Aq;
e Mo =1.

Proof. We first show that the algebras listed in the proposition are all CY. That
the algebra in Case 1 is a CY algebra follows from Lemma [2:2.6] In Case 2, we have
X1X2 = € and 8% is an inner automorphism in each subcase. Indeed, 8% () = g7 'zig1
and 8% (y;) = gflyigl = y;, © = 1,2. Thus the algebras in Case 2 are CY by Theorem
2. 1.9

Now we show that the classification is complete and the algebras on the list are

non-isomorphic to each other.

If A is of global dimension 4, then the group I' and the Cartan matrix (a;;) must
be one of the following types:

1) |T'| =4 and A is the group algebra of a free abelian group of rank 4.

2) |I'| = 3 and the Cartan matrix of A is of type A;.

(

(

(3) || = 2 and the Cartan matrix of A is of type A; x A;.

(4) II'| =1 and the Cartan matrix of A is of type A; x A; X A;.
(

5) |T'| =1 and the Cartan matrix of A is of type A,.

Let A be a CY algebra of dimension 4. Similar to the case of global dimension 2,
A cannot be of type (2). We claim that A cannot be of type (4) and (5) either.

Assume that A is of type (4), put I' = (y1), ¢; = y{** for some 0 # m; € Z and
Xi(y1) = g; for some ¢; € k, 1 < i < 3. Then ¢;; = ¢*, for 1 <i,j < 3. Because
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each g¢;; is not a root of unity, each ¢; is not a root of unity either. Since g;;q;; = 1,
we have

m2

7

my mi1 __

q, 1, ¢"q, 1, ¢"q" =1
Then quZm?’ = 1. But ¢, is not a root of unity. So A can not be of type (4).

In case (5), there are 3 positive roots in the root system. They are aj, as and
a1+ ag, where a; and ay are the simple roots. If A is CY, then y3x3 = € by Theorem

So we have ¢ ¢2 =1 and ¢2 ¢2, = 1. However, ¢,,q,, = q;;" (equation (1.7)).
Thus qf2 = 1. But g,, is not a root of unity. So A cannot be of type (5) either.

Now to show that the classification is complete, we only need to show that if A is
a CY pointed Hopf algebra of type (3), then A is isomorphic to an algebra in Case
2. Each algebra in (I), (III) and (V) of Case 2 has only one non-trivial lifting, which
is isomorphic to an algebra in (II), (IV) and (VI) respectively. By Remark it
suffices to show that if A is a graded CY pointed Hopf algebra of type (3), then A is
isomorphic to an algebra in (I), (III) and (V) of Case 2.

Let T = (y1, y2) be a free abelian group of rank 2. We write x1(y1) = ¢,, x1(y2) =
q, and g1 = y’flyf"’, go = ylllyéz, where x1(q1) = qfquz is not a root of unity, and
ki,k2,l1,lo € Z. Following Theorem we have x1x2 = €. So q,, = qfl in and
Qy, = ql_qu;’”. We also have ¢,,q,, = 1 (equation ) Thus qil_quér’“? =1
Therefore, A = U(D,0), where the datum D is formed by

o ' = (y1,y2) = 7Z%
e (ai;) is the Cartan matrix of type A x Aj;

® g1 = ylfly§27 g2 = yily?a k17k25l17l2 € Za

e x1(y1) = ¢q,, x1(y2) = ¢q,, where x1(g1) = qfquz is not a root of unity and

qil_quiz—kz =1, and x2 = Xfl'

In the above datum D, we may assume that k; > 0 and k2 = 0. Then g, is
not a root of unity. We show that there is a group isomorphism ¢ : I' — I, where
I = (y,,ub) is also a free abelian group of rank 2, such that ¢(y¥'y52) = y/¥ and

k> 0.

The integers k1 and ko can not be both equal to 0. If k5 = 0 and k; > 0, then it
is done. If ky = 0 and k1 < 0, then o(y;) = %, " and @(y2) = y4 ' defines a desired

isomorphism.
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Similarly, we can obtain a desired isomorphism when k; = 0 and k5 # 0.

If k1,ky # 0, then there are some k, ki, ko € Z, such that k; = kik, ko = kok,
k > 0 and (ki,k2) = 1, that is, k; and ky have no common divisors. We can find
integers a,b such that aI::17+ bky = 1. Let ¢ : ' = T" be the group isomorphism
defined by (y1) =}y and ¢(y2) = ¥4 y5"". Then @(y}'y5?) = y{* and & > 0.
In conclusion, we have proved the claim.

If I; = 0, then we have qflfkl = 1. Since g, is not a root of unity, we have l; = k.
Applying a similar argument to the one in Case 2 of Proposition we find that

A is isomorphic to an algebra in (I) of Case 2.

Next, we consider the case when Iy # 0. In case [; = 0, like what we did for k; and
ko, we may assume that lo > 0. If 0 < |g,| < 1, then A is isomorphic to an algebra in
(ITI) of Case 2. Otherwise, the datum (D, 0) is isomorphic to the datum given by

o T'=(y1,y0) = 7%

gy =y, gh =5 ki lo € ZH;

k1

e Xily1)=a *, Xi(p) =q L xb=x17"

(ai;) is the Cartan matrix of type Ay x Aj;

via the isomorphism (p, (12),; = as = 1), where ¢ is the algebra automorphism
defined by ¢(y1) = y2 and ¢(y2) = y1. So A is isomorphic to an algebra in (III) of
Case 2 as well.

If 1 # 0 and lo > 0, then there is an integer ¢, such that 0 < Iy + cly < Io.
Let TV = (yi,y%) be a free abelian group of rank 2, and ¢ : ' — I the group

isomorphism defined by ¢(y1) = ¥, and p(y2) = yiy,. Then p(y*) = yi* and

11 1 l1+cl l
eyl ye) =y Py

If I; # 0 and Iy < 0, then there are integers Iy, lo, such that I; = I1l, ly = lsl,
I >0and (I1,I2) = 1. Soly < 0. We can find integers a, b such that al; + bly = 1.
Since for any integer d, (a + dl3)l; + (b — dly)lz = aly + bly = 1, we may assume that
0<a< —ly. Let I = (y},v5) be a free abelian group of rank 2, and ¢ : ' — T”

ra g —la

be the group isomorphism defined by ¢(y1) = y1“y5 * and p(y2) = yibyéil. Then

—lsk l
M and o(yi'yR) =yl .

s aky

e(yr) = yi " b
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In summary, by Corollary we may assume that Ip > 0 and 0 < 17 < lo. If
I = 0, then we go back to the case we just discussed. If I; # 0 and 0 < |g,| < 1, then
A is isomorphic to an algebra in (V). Otherwise, (D, 0) is isomorphic to the datum
given by given by

o T'=(y1,y2) = 7%

ak1

o gl =ul,gh= Y1 y];‘l_2. l1,ly € ZF are the integers such that I} = Iy, lly = s,
and (I1,l3) = 1. a,b € Z are the integers such that al; +bly =1 and 0 < a < 5.

_kilo aky—1

e Xily)=a ?  Xi(yp)=aq¢ " T

s Xa = X1

(ai;) is the Cartan matrix of type Ay x Aj;

A2 =0

via the isomorphism (¢, (12), a1 =y = 1), where ¢ is the isomorphism defined by
ey1) = y‘fyé? and p(y2) = yll’yz_ll. It follows that A is isomorphic to an algebra in
(V) as well.

It is clear that the algebras from different cases and subcases are non-isomorphic
to each other. It is sufficient to show that the algebras in the same subcases in Case
2 are non-isomorphic. Each algebra in (II), (IV) and (VI) is a lifting of an algebra
in (I), (III) and (V) respectively. So it is sufficient to discuss the cases (I), (III) and
(V).

First we discuss the case (I). Let D and D’ be two data given by

o I'=(y1,y2) ¥ 7%

e g1 = go =yt for some k € Z7;

x1(y1) = q,, x1(y2) = ¢,, where q,,q, € k satisfies that 0 < |¢,| < 1 and ¢, is

not a root of unity, and yo = Xfl;

o (aij)1<i,j<2 is the Cartan matrix of type A; x Ay
and

o I'=(y},yh) = 7%
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o g1 =go =yl for some k' € Z;

e x1(y1) = ¢}, x1(y2) = ¢, where ¢/, ¢, € k satisfies that 0 < |¢/| < 1 and ¢/ is

not a root of unity, and yo = Xfl;

) (a;j)lgi’jgg is the Cartan matrix of type A; X A

respectively. Assume that (¢,0,«) is an isomorphism from (D,0) to (D’,0). Say

boyd ) ;
e(y1) = y1"ys" and @(y2) = y1 y5". Since g1 = g and g = gb, we have (yf) = yi*.
Moreover, k, k' > 0. Soa =1, ¢ = 0 and d = +1. Consequently, we have k = £/,
q, = ¢,. If 0 =1id, then ¢, = quqQ. Otherwise, ¢, = qfq;l. We have identified the

isomorphic algebras in (I).

Similarly, it is direct to show that each triple (k,l,q) € Z* x Z* x k such that
0 < |¢| < 1 determines a non-isomorphic algebra in (IIT).

Now we show that the algebras in (V) are non-isomorphic. Let D and D’ be the
data given by

o I'= (y1,y2) 2 7%

o g1 =1¥, go=ylyl? such that k11,1, € Z+ and 0 < Iy < ly;

k—1
e x1(y1) = g, where g € k is not a root of unity, 0 < |q| < 1, and x1(y2) = ¢ En
and xa = X7 ';
e (aij)1<i,j<2, the Cartan matrix of type A; x A,
and
o IV = (y},y5) is also a free abelian group of rank 2;
o gt =v1", gb = y"yb" such that k.15, 15 € Z* and 0 < I} < j;
K —1]

7
Iy

e x| (y}) = ¢, where ¢’ € kisnot aroot of unity, 0 < |¢'| < 1, and x} (%) = ¢
and X5 = Xi 3

o (aij)1<i,j<2, the Cartan matrix of type Ay x A4,

respectively. We claim that (D,0) and (D’,0) are isomorphic if and only if ¢ = ¢/,
k=K, 1, =1 and Iy = 15.
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Assume that (D, 0) is isomorphic to (D', 0) via an isomorphism (¢, 0, a1 = ag = 1).
Suppose that ¢(y1) = ¥, “y5" and (ya2) =y "v*, with a,b,c,d € Z.

Either 0 =id or 0 = (12). If o = id, then ¢(g;) =g}, i = 1,2. So

yak jck /k)/ yali+bly ycli+dls /l/ /l/
Yy vy =Yy andy Ya =y 'Y °.

Since ¢ is an isomorphism, we have ad—bc = £1. Because, k, k', 12,15 > 0,0 <13 < s
and 0 < I} < 1}, it follows that b = ¢ = 0 and a = d = 1. Therefore, k = k', l; =1},
lo =15, and ¢ = ¢’. Namely, (D,0) = (D’,0)

If o = (12), then ¢(g;) = g5_;, ¢ = 1,2. This implies that

rak jck /l' /l/ yaly+bly ycli+dls /}C/
Y Y2 =y 'yp? and yy Ya =Yy -

We can find integers [; and Iy, such that I; = [1, Iy = l5l, [ > 0 and (l},l}) =1.
Since ad — be = +1, we have (¢,d) = 1. From ck =15 > 0 and ¢ly + dly = 0, it
follows that ¢ = I and d = —I;. If ad — bc = 1, we have

kK = ali + bly = l(ail + b[g) = —l(ad — bC) =-1<0,

a contradiction!
If ad — bc = —1, we have

/ [1 ZQ

7 =xX10h) = x290 1) = x2 (U1 v5) = ¢

Lk
But Iy, k,lo > 0 and 0 < |g, |¢'| < 1. We get a contraction as well. In summary, we

have proved the claim. O

Now we list all pointed CY Hopf algebras U(D, A) of dimension 4 in terms of
generators and relations in the following table. Note that ¢, and ¢ are not roots of
unity.

Table 4.2: CY algebras of dimension 4

Case Generators Relations
Case 1 Yn vy =yttt
1<h<4 gyt =1
1<hm<4
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Case 2 (I)

+1 | +1 1, +1 _ 41, +1
Y1 Y2 21,22 yh Ym = Ym yh

urun =1
1<hm<2
Y1T1 = ¢, T1Y1, Y1T2 = q;1$2y1
Y2Z1 = G, T1Y2, Y22 = q;1$2y2
0<lg|<1
T1To — q:kl'gl'l =0,keZ"

Case 2 (II)

*1  +1 1, +1 _ , +1, *1
Y1 Y3 ,T1,22 Yn Ym = Ym Yn

yp =1
1<hm<2
Y1T1 = ¢, T1Y1, Y1T2 = Qflﬂfzyl
Y21 = G, T1Y2, Y22 = q;lxng
0<lg|<1
x1T0 — q Pwowy =1 —yiF k€ LT

Case 2 (III)

*1  +1 +1, 11 _  +1, F1
Y1 Yz 21,22 Yn Ym = Ym Yp

yp =1
1<hm<2
Y1T1 = qr1y1, Y122 = ¢ ' Tay
Yo2x1 = q%xly% Yoo = q*%a@yz
T122 — q Faga =0
kJdeZt,0<|q <1

Case 2 (IV)

+1 | +1 1, +1 _ , +1,+1
yl 7y2 y L1, T2 yh ym _ym yh

yp =1
1<hm<2
Y1T1 = qTIyL, Y172 = ¢ Ty
Y21 = (ﬁfﬂly% Yoo = Kf%@yz
z122 — ¢ Faowy = 1 — yfy)
kJeZt,0<|q <1

Case 2 (V)

+1 | +1 +1, +£1 _ , +1,,+1
yl ’y2 , L1, T2 yh ym _ym yh

yy =1
1<hm<2
1

Y121 = qT1Y1, Y122 = q¢ ~T2Y1
k—ly k=l

Y2T1 =q 2 T1Yo, Yoo =q 2 Talp
Tz —qF
kyi,lo €ZT,0<1 <1y, 0< gl <1

ToX1 = 0
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Case 2 (VI)  yil,yst, o1, 20 yilysl = yhlyt

un 'yt =1

1<hm<2
1

Y121 = qT1Y1, Y12 = q ~T2Y1
k—ly k—ly
YoX1 =q '2 T1Y2, Yoo =q 2 X2y
—k k+ly 1
1T — q "wox1 = 1 —y " My

kil €7+, 0< 1 <1s, 0< |q| < 1

Let g be a semisimple Lie algebra and U,(g) its quantized enveloping algebra.
By [20, Prop. 6.4], the global dimension of the algebra U,(g) is the dimension of g.
Thus, if U,(g) is of global dimension less than 5, then U,(g) is isomorphic to Uy (sl2),
which is of global dimension 3. That is, among the algebras of the form U,(g), only
U,(sl2) appears in the lists of Propositions[2.2.7] [2.2.8 and [2.2.9] The algebra U, (sl2)
is isomorphic to U(D, A) with the datum given by

e I' = (g), a free abelian group of rank 1;

e The Cartan matrix is of type A; x Aj;

® g1 =92=9;

2

e x1(9) = q72, x2(9) = ¢, where ¢ is not a root of unity;

o Ao =1.

It belongs to (II) of Case 2 of Proposition [2.2.8]

The family of pointed Hopf algebras U (D, \) provide more examples of CY algebras
of higher dimensions. From the classification of CY pointed Hopf algebras U (D, A) of
dimensions less than 5, we see that the Cartan matrices are either trivial or of type
Ay x --- x Ay. The following example provides a CY pointed Hopf algebra of type
Ay x A of dimension 7.

Example 2.2.10. Let A be U(D, \) with the datum (D, \) given by

e I' = (y1,y2,93), a free abelian group of rank 3;
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The Cartan matrix is

9i = ¥i, 1 <1< 3;

Xi, 1 <1 < 3, are given by the following table, where ¢ is not a root of unity.

Y1 Y2 Y3
xi| a |a?| ¢
x2 | ¢ | g |q?
xs|at| & |q*

e A=0

In other words, A is the algebra with generators z;, yjj-ﬂ, 1 < 7,5 < 3, subject to the

~
relations

vty =0y T =1 1<,5 <3,

y; (i) = xi(y;)wiyj, 1<i,7<3,
2 2 3.2
T{To — qT1T2T1 — ¢ T1T2T1 + ¢ xox] = 0,
2 -2 -1 -3, 2
ToT1 —q “Xpl1%2 — ¢ Tar1x2 +q Txxy =0,

13 = IT3x1.

The non-trivial liftings of A are also CY.
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Chapter 3

Calabi-Yau Nichols algebras
of finite Cartan type

Let D be a generic datum of finite Cartan type, and A a family of linking parameters.
In Chapter |2, we calculate the rigid dualizing complex of the algebra U(D, ). Based
on this result, in Section [3.1} we give the rigid dualizing complex of the corresponding
Nichols algebra B(V') and characterize its CY property. In Section we give the
relation between the CY property of the pointed Hopf algebra U(D,\) and that of
the Nichols algebra B(V).

3.1 Rigid dualizing complexes of Nichols algebras
of finite Cartan type

In this section, we fix a generic datum of finite Cartan type

D(T', (9i)1<i<o, (Xi)1<i<o, (ij)i<ii<o)

for a group I', where I is a free abelian group of rank s. Let V' be the generic braided

vector space with basis {x1,-- ,z9} whose braiding is given by
o(x; ® T5) = 475 ® T

57



CHAPTER 3. CALABI-YAU NICHOLS ALGEBRAS OF FINITE CARTAN
TYPE

for all 1 < ¢,j < 6, where ¢;; = x;(9:). Recall that the Nichols algebra B(V) is
generated by x;, 1 < i < 6, subject to the relations

adc(lvi)lfaijjpj = 0, 1 § 'L,] < 07 7 7é j’

where ad. is the braided adjoint representation (1.2)). Let {a1,---, g} be a fixed
set of simple roots of the root system corresponding to the Cartan matrix (a;;), and
wo = 8;, -+ 8;, a reduced decomposition of the longest element in the Weyl group W

as a product of simple reflections. Then

B = iy, Ba = si, (iy), - Bp = Sy -+ 81,4 ()

are the positive roots. Assume that Ty ,coe T, are the corresponding root vectors.

For each 1 < k <0, let 1 < ji < p be the integer such that §;, = oy. Then we have
xﬁjk = Xk-
By Theorem [1.4.7] the Nichols algebra B(V') is a subalgebra of U(D,0), and the

following monomials in root vectors

{I.al_..xg’;’ |a120,1<2<]3}

B1

form a PBW basis of the Nichols algebra B(V). Recall that the degree (cf. (2.1))) of
each PBW basis element is defined by

deg(gc‘;l1 . m‘;i) = (a1, - ,ap72aiht(ﬂi)) € (z70)r+,

where ht(3;) is the height of §;.

The following result is a direct consequence of Lemma [2.1.1

Lemma 3.1.1. In the Nichols algebra B(V), for j > i, we have

[, 25, ]c = > patl -2, (3.1)
aceNP
where pg € k and po # 0 only when a = (a1, ,ap) satisfies that a = 0 for k < i

and k > 7.

Order the PBW basis elements by degree as in (2.2). By Lemma we obtain

the following corollary.
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Corollary 3.1.2. The Nichols algebra B(V) is an NP*!_filtered algebra, whose asso-
ciated graded algebra GrB(V') is isomorphic to the following algebra:

Ik(xﬂp... . | Ty T =X, (gBi)xﬁjxﬁi, 1<i<y<p),
where x, .-+ ,x, are the root vectors of B(V).
For elements {z% --- 2%}, where a1, - ,a, > 0, define
B1 Bp p

do(ag! - xfr) = 2oy aiht(By)-

B1

Then R = B(V) is a graded algebra with grading given by dy. Let R(®) = R. Define
d1($§1 x;‘ﬁ) = a,. We obtain an N-filtration on R("). Let R®) = Gr R(Y) be the
associated graded algebra. In a similar way, we define do (xgi e xzi) = ap—1 and let
R® = GrRM be the associated graded algebra. Inductively, we obtain a sequence
of N-filtered algebras R(®,...  R®) such that R = Gr RO~ for 1 < i < p, and

R = GrR.

The algebra R has a PBW basis as follows

b b
{x‘;ll :z:gﬁ Qzr *eexw) | a1, ,ap, b1, ,b, >0}, (3.2)
where “x” denotes the multiplication in R°P. Similarly, define a degree on each element

as
ar ... pap bp 4 ... b1
deg(aﬁﬁ1 zgr ®xﬁp * L)

= (a1 + b17 s, Gy bp, Z(al + bz)htﬁb) c (Z>O)(p+1).

Then R¢ is an NP1 filtered algebra whose associated graded algebra Gr(R°¢) is iso-
morphic to (GrR)e.

In a similar way, we can obtain a sequence of N-filtered algebras (R¢)(®), ...  (R®)(®)
such that (R°)® = Gr((R®)(—Y), for 1 < i < p, and (R*)® = GrR®. In fact,
(R*)® = (RM)e, for 0 <i < p.

Lemma 3.1.3. Let R = B(V) be the Nichols algebra of V. Then the algebra R is

Noetherian.

Proof. The sequence (R°)® ... (R®)() is a sequence of algebras, each of which is
the associated graded algebra of the previous one with respect to an N-filtration. The
algebra (R¢)) is isomorphic to (GrR)¢, which is Noetherian. By [57, Thm. 1.6.9],
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the algebra R® is Noetherian. O

Lemma 3.1.4. The algebra R = B(V') is homologically smooth.

Proof. Since R¢ is Noetherian by Lemma and R is a finitely generated R°-
module, it is sufficient to prove that the projective dimension projdim ge R is finite.
The filtration on each (R®¥)¢, 0 < i < p — 1, is bounded below. In addition, from
the proof of the foregoing Lemma each (R")¢ is Noetherian for 0 < i < p.
Therefore, (R(i))e is a Zariskian algebra for each 0 < ¢ < p — 1. It is clear that each
RW 1< i< p—1, viewed as an (R®¥)*-module has a good filtration. By [50, Cor.
5.8], we have

projdimp. R = projdim g R®) < projdim gy R < -
< projdimpe)ye R®) = projdim g, gy GrR.

The algebra GrR is a quantum polynomial algebra of ¢ variables. From the Koszul
bimodule complex of GrR (cf. (1.20)), we obtain that projdim g, g)e GrR = p. There-
fore, projdimp. R < p and R is homologically smooth. O

Proposition 3.1.5. Let R = B(V') be the Nichols algebra of V.

(1) R is AS-regular of global dimension p.

(2) The rigid dualizing complex of R in the graded sense is isomorphic to ,R(l)[p]
for some integer | and (N)-graded algebra automorphism ¢ of degree 0.

(3) The rigid dualizing complex in the ungraded sense is just ,R[p].
Proof. Let z, ,--- Ty be the root vectors. By Lemma the algebra R is an
iterated graded Ore extension of k[z, |. Indeed,

R= ]k['rﬁl][xﬁz ) 72762} T [xgp;Tpv 51)}7

where for 2 < j < p, 7; is an algebra automorphism such that 7;(« ﬁi) is just a scalar

multiple of z, for i < j, and d; is a 7;-derivation such that d;(z, ), i < j, is a linear

i

combination of monomials in z, ,---,z It is well-known that klz, | is an

Bit+1 Bj—1
AS-regular algebra of dimension 1, and the AS-regularity is preserved under graded
Ore extension. So R is an AS-regular algebra of dimension p. Therefore, the rigid

dualizing complex of R in the graded case is isomorphic to ,R(l)[p] for some graded
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algebra automorphism ¢ and some [ € Z. By Lemma R¢ is Noetherian. Thus
the rigid dualizing complex , R()[p] in the graded case implies the dualizing complex
o R[p] in the ungraded case. O

We claim that the automorphism ¢ in Proposition [3.1.9]is just a scalar multipli-

cation. We need some preparations to prove this.

If R is a I'-module algebra, then the algebra R€ is also a ['-module algebra with
the natural action g(r ® s) := g(r) ® g(s), for all g € T and r, s € R.

Lemma 3.1.6. Let R be a I'-module algebra, such that k* is the group of units of
R. Assume that U is an R°#kI-module, and U = Ry as R°#KkI'-modules, where ¢

18 an algebra automorphism.

(1) The algebra automorphism ¢ preserves the T'-action.

(2) The R°#KkT-module structure on U (up to isomorphism) is parameterized by
Hom(T', k), the set of group homomorphisms from T' to k*.

Proof. Fix an isomorphism U = R,. Let u € U be the element mapped to 1 € R.
Then U = Ru and we have g(ru) = g(r)g(u) for all r € R and g € T'. So to determine
the T-action on U, we only need to determine g(u) for g € T'. Since g(u) € U, there

is some r, € R, such that g(u) = ryu. On the other hand, we have
U =g(U) = g(Ru).

So there is some s € R, such that u = g(s)ryu. Since the element u forms an R-basis
of U, the element 7, has a left inverse. Similarly, there is some s’ € R, such that

u=rgug(s’). Since U = Ry as R-R-bimodules, we have
o(r)u = ur, (3.3)

for any r € R. So u = ryug(s’) = r¢é(g(s’))u. Thus ry has a right inverse as well.
Consequently, 7, is a unit in R, and r, € k*. We also have g(h(u)) = (gh)(u)
for g,h € I'. That is, 74, = r¢rs. Therefore, the I'-action on U defines a group

homomorphism from I' to k*.

Suppose that the I'-action on U is given by a group homomorphism x : I' — k*.
U is an R°#kI-module, this leads to g(rus) = g(r)g(u)g(s), for any r,s € R and
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g € T'. On one hand, we have

g((r)u) g(ur)
= gwg(r)
= x(g)ug(r)
B (9)o(g(r)u

On the other hand, we have

g(o(rju) = g(o(r))g(u)
= x(9)g(o(r))u.

So g(¢(r)) = ¢(g(r)). That is, the automorphism ¢ preserves the I'-action. Conse-
quently, (1) is proved.

Let x : ' = k* be a group homomorphism. Then it is clear that g(ru) :=
X(9)g(r)u defines a I'-action on U such that U is an R°#kI-module.

Suppose there are two I'-actions on U such that they are isomorphic. We write
these two actions as g''(u) = ryu and ¢g?(u) = syu. Denote by U; and Us the I'-
modules with these two actions respectively. Let f : U; — Us be an R*#kI-module
isomorphism. Then f(u) = ru for some unit r € R. Since the set of units of R is k*,

we have r € k*. On one hand, we have

flgt() = flrgu)

On the other hand, we also have

flgt@w) = g*(f(u)
= g7(ru)
= rg*(u)
SgTU.
Therefore, 4 = s4, and (2) follows. O

If U is an R°#kIl-module, then we can define an (R#kI")¢-module U#KT. It is

isomorphic to U ® I' as vector space with bimodule structure given by
(r#h)(u ® g) := rh(u) ® hg,
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(u®g)(r#h) := ug(r) © gh,
for any r#h € R#H andu® g U ®T.

Lemma 3.1.7. Let R be a I'-module algebra with k* being the group of units and U
an Re#KkI'-module. Assume that U =2 Ry as R°#kI'-modules, where ¢ is an algebra
automorphism. If the T'-action on U is defined by a group homomorphism x : I' — k*.
Then U#KD = (R#KT)y, as (R#KL)°-modules, where 1 is the algebra automorphism
defined by (r#g) = x(g~")¢(r)#g for any r#g € R#KT.

Proof. The homomorphism v defined in the lemma is clearly bijective. First we show

that it is an algebra homomorphism. For any r#g, s#h € R#kI', we have

V((r#g)(s#h)) = (rg(s)#gh)
= x(h7'g He(rg(s))#gh
= x(h7 g7 Ho(r)e(g(s))#gh
= x(h7 g H)o(r)g(d(s))#gh
= (o(r)x(g7H#9)(d(s)x(h~")#h)
= Y(r#g)Y(s#h)

The forth equation holds since ¢ preserves the I'-action by Lemma [3.1.6

Next we prove that U#KT" = (R#KkI),, as (R#kI)®-modules. Fix an isomorphism
U = Ry and let u € U be the element mapped to 1 € R. We define a homomorphism
® : U#KD — (R#KD), by ®(ru ® g) = x(g~')r#g. It is easy to see that ® is an
isomorphism of left R#kI'-modules. Now we show that it is a right R#kI'-module

homomorphism. We have

O(u(ritg)) = @

Now we can prove the following lemma.

Lemma 3.1.8. Keep the notations as in Proposition [3.1.5 The actions of ¢ on
generators x1,--- ,xg are just scalar multiplications.
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Proof. By Proposition and Lemma |1.5.11] we have R-R-bimodule isomorphisms

0, i#p;
R,, i=p.

Exth. (R, R%) =

The group I is a free abelian group of rank s, so the algebra kI' is a CY algebra
of dimension s. Following from [28, Sec. 2], R, is an R°#kI-module and there are
(R#KT)¢-bimodule isomorphisms

0, 1#p+s;

Ext! o (R#KT, (R#KT)°) =
(FAKD) (R)#KD, i=p+s.

For the sake of completeness, we sketch the proof here. By Lemma R is homo-

logically smooth. That is, R has a bimodule projective resolution
0—-PFP,— =P —FP—-R—0, (3.4)

with each P; finitely generated as an R-R-bimodule.
Exthe (R, R°) are the cohomologies of the complex Hompge(P,, R¢). The algebra
R¢ is a R°#kI-module defined by

((c@d)#g) - (a®b) = g(a)d © cg(b)

for any a ® b € R® and (¢ ® d)#g € R°#KkI. Then each Hompge (P;, R®) is a R¢#KkT
as well:

[((c@ d)#g) - fl(x) = ((c @ d)#g) - f(x), (3-5)

where (¢ ® d)#g € R°#KkT, f € Hompge(P;, R®) and z € P;. Now Hompge(P,, R°) is
a complex of left R°#kI-modules. Thus we obtain that Ext}.(R, R°) = R, is an
R¢#KkI'-module.

Put A = R#KkI'. Observe that A€ is an R°#kI[-A°-bimodule. The left kI'-module
action is defined by

g (a#th ® b#k) = g(a)gh @ b#kg ™", (3.6)

for any a#h ® b#k € A° and g € I'. The left R¢-action and right A¢-action are
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given by multiplication. Let W be the vector space kI' ® kI'. R® ® W is also an
R¢#kI-A¢-bimodule defined by

(c@d)#g) (a®@b@h®@ k) = cgla) ® g(b)d ® gh @ kg™*
and
(a@b@h@EK) - (c#h @ d#k') = ah(c) @ (KK~ Hd)b @ hh @ K'k.
It is not difficult to see that the morphism f : A° — R® ® W defined by
fla#h @ b#k) =axk ' b)@h @k

is an isomorphism of R¢#KkI-A¢-bimodules.

Let P be a finitely generated projective R°-module. The kI'-A¢-bimodule struc-
ture of R®®@W induces a kI'-A°-bimodule structure on Hompge (P, R°@W). We define
a kI'-A°-bimodule structure on Hompge (P, R°) @ W as follows

g (feohek)=g - f@gh®ky™"

and

(fRh@K)- (c#h @ d#E) = (h(c) @ (k'K "1d) - f @ hh' @ k'K,

where the R¢#kI-module structure on Hompge (P, R¢) is defined in (3.5). Now the
canonical isomorphism from Hompge (P, R¢) ® W to Hompge (P, R ® W) is a kI[-A°-
bimodule isomorphism.

R admits a resolution like (3.4) with each P; finitely generated. So
Exth. (R, R® ® W) = Exth. (R, R) @ W

as kI'-A¢-bimodules for all ¢ > 0.

We have Stefan’s spectral sequence [66]

Extyr(k, Ext. (R, A%)) = Ext'{" (A, A°).
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For m,n > 0, we have

2

Extip(k, Exthe (R, A%)) = Extpr(k, Exthe (R, R° @ W))
Extip(k, Ext'te (R, R¢) @ W).

Il

So Exty(k, Extge (R, A%)) = 0 except that m = s and n = p. Therefore,
Ext{ gypr)e (R#KL, (R#KD)) = 0

for i # p + s and
Ext’"®(4, A°) = Extjp(k, Exth. (R, A9)).

Let M be a left kI'-module. One can consider it as a kI'-kI'-bimodule M. with
the trivial right kI['-module action. The algebra kI" is a CY algebra of dimension s,
from Van den bergh’s duality theorem ([1.5.15)) we have

Extip(k, M) = HH*(kT, M,)
HH, (KT, M.) (3.7)
Tork™ (k, M).

1%

1%

Now we have the following isomorphisms of right A¢-modules

I

Ext4!°(A, A°) Extir(k, Exth. (R, A°))
Extyp(k, Exth. (R, R°) @ W)
Extip(k, R, ® W)

Torg" (k, R, @ W)

k ®ur R, @ W.

1

1%

1R

If we look at the kI'-A°-bimodule structure on R, ® W carefully, we obtain that
k ®xr R, @ W = R, #kI’

as right A°-modules.

Since the connected graded algebra R is a domain by Theorem [[.4.7] the group of

units of R is k*. Following Lemma and [3.1.7) we have (R, )#kI" = (R#KT),
where v is the algebra automorphism defined by o (r#g) = p(r)x(¢~") for some

algebra homomorphism x : I' — k.

On the other hand, we have A = R#kI' = U(D,0), and A-A-bimodule isomor-
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phisms

) 0, i + s;

Ext’. (4, A®) = 7P
Ay, i=p+s,

where 9 is the algebra automorphism defined in Theorem

Therefore, we have A-A-bimodule isomorphisms A; = Ay. That is, ¢ and
differ only by an inner automorphism. By Theorem the graded algebra A is
a domain, the invertible elements of A are in kI'. The actions of ¢ and the group

actions on generators zi,- -,y are just scalar multiplications. Thus the actions of
Y on xy,--- ,x¢ are also scalar multiplications. Since 1 (x;) = ¢(x;) for all 1 <4 < 6,
we get our desired result. O

We are ready to prove the main theorem of this section.

Theorem 3.1.9. Let V be a generic braided vector space of finite Cartan type, and
R = B(V) the Nichols algebra of V. For each 1 < k < 0, let ji be the integer such
that Bj, = au.

(1) The rigid dualizing complex is isomorphic to ,R[p|, where ¢ is the algebra au-
tomorphism defined by
Je—1 P
elan) = ((]] x "o DC TT X, (90))z,
i=1 i=jn+1
forall1 <k <80.
(2) The algebra R is a CY algebra if and only if
Jr—1 P
I xetes) = TI x.. (9,
i=1 i=jr+1

forall1 <k <0.

Proof. (1) Note that GrR is isomorphic to the following quantum polynomial algebra:

k(z, - T, |x5ixﬁj =X, (gﬁi)xﬁj:cﬁi, 1<i<y<p).

By Lemma[1.5.13] GrR has a rigid dualizing complex :GrR[p](= GrRz-1[p]), where
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¢ is defined by

—1 —1
Clxs ) =x, (95) X 9oy IXapry (95,) Xs, (95, )75,

forall 1 <k <p.

On the other hand, it follows from Proposition and Lemma that R has
a rigid dualizing complex , I?, where ¢ is an algebra automorphism such that for each

1<k <0, p(xx) is a scalar multiple of xf. Assume that p(zy) = lgxy, with I € k.

Let R© ... R® be the sequence of algebras defined after Corollary By
Lemma [3.1.1] applying a similar argument as in the proof of Proposition we
obtain that each R, 0 < i < p, is an iterated Ore extension of the polynomial algebra
k[x]. Thus each of them is AS-regular. It follows from [76, Prop. 1.1] that each R(*),
1 < ¢ < p, has a rigid dualizing complex ) (R)[p], where () = Grp(=1 and
00 = . Since for each 1 < k < 6, o(zk) = lkxk, we have @) (zx) = lxxy. Because
R() = GrR, there is a bimodule isomorphism o® (R(p)) = E(GER). We obtain that
©® =, as R is connected. Therefore, for each 1 < k < 6,

Jr—1

P
ek = Claw) = ([T " 9o ))C TT %6, (98) 2k
i=1 i=jr+1
where jj, is the integer such that 5;, = ay.
Now we conclude that ¢(xr) = ( 351 X;l(gﬁi))(nf:jk“rl X, (g9x))xk, for each
1<k<0.

(2) The algebra R is homologically smooth by Lemma It follows from
Corollary |1.5.12| that R is CY if and only if R = ,R as bimodules. That is, R is CY
if and only if ¢ = id. Hence (2) follows from (1). O

Example 3.1.10. Let D(T', (¢;), (xi), (ai;)) be a generic datum such that the Cartan
matrix is of type Ay. This defines a braided vecter space V. Let {x1,x2} be a basis
of V. The braiding of V is given by

clw; @xj) = x(9)x; @y, 1,5 =1,2.
The Nichols algebra R = B(V') of V is generated by x; and x5 subject to the relations

2 2 2
T1T2 — (1, T122T1 — G111, 210271 + q,,49,,T2L1 = 0,
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1‘%1‘1 — 5y T2T1X2 — G555, T2T122 + Qqu;xlxg =0,
where ¢;; = x;j(g;). The element s15251 is the longest element in the Weyl group W.

Let ay and as be the two simple roots. Then the positive roots are as follows

B1=a1, B2a=ai+a B3=as.

By Theorem [3.1.9] the algebra R is CY if and only if

X, (91)X5, (91) = (xax3)(g1) = 1

and
X2(95,)x2(95,) = x2(9792) = 1.
That is, ¢,,¢%, = ¢,,¢%, = 1. By equation (1.6), we have ¢_' = ¢_;! = ¢,,4,,.
Now we conclude that the algebra R is CY if and only if there is some ¢ € k*,

which is not root of unity such that

4y, = 4o = q2 and 4y = 4y = q71~

In other words, the braiding is of DJ-type. Then the algebra R is an AS-regular
algebra of type A (see [9] for terminology). This coincides with Proposition 5.4 in
[3].

Example 3.1.11. Let R be a Nichols algebra of type By. That is, R is generated by

1 and x5 subject to the relations

3 2 2 2 2
T{T2 — G, TIT2T1 — Gy, ¢,, TTT2T1 + 4,19,,712277

2 2 2 2 2 3\ ’
—q7 @ (X121 — q, 012227 — ¢, ¢, 712227 + ¢, ¢, x227) = 0

2 2 2 __
THT1 = Gy T2T1T2 — Gy5 (s, T2T1T2 + 43,4,, T1Ly = 0,

where ¢;; € k for 1 <i,j < 2 and ¢,,¢,, = ¢q;;> = ¢,'. Applying a similar argument,
we obtain that R is CY if and only if there is some ¢ € k>, which is not a root of
unity, such that

4 =¢ ¢, =9¢ ' ¢, =¢ " andgq,, =¢°.
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3.2 Relation with pointed Hopf algebras

We keep the notations as in Section Let X\ be a family of linking parameters for
D and A the algebra U(D, A). In this subsection, we discuss the relation between the
CY property of the algebra U(D, \) and that of the corresponding Nichols algebra
B(V). It turns out that if one of them is CY, then the other one is not.

Lemma 3.2.1. For each 1 < k < 0, we have

Jr—1

I x.(o0) = (I] xe' @ DC TT xs, (9))-
i=1

i=1,i%j i=jn+1

Proof. Let wo = s;, - -+ 54, be the fixed reduced decomposition of the longest element
wo in the Weyl group. It is clear that wy !is also of maximal length. By Lemma 3.11
in [40], for each 1 < k < 0, there exists 1 < ¢t < p, such that

Sksil “.sit—l = Sil . "Sit'

That is, wo = skSi, = Si,_y Sipyy *** Si,- Set

Bi = Qg, ﬁé = Sk(ai1)3 T 76;) = SkSiy " Sip_1 Sty .Sip—l(aip)'

Applying a similar argument as in the proof of Theorem we conclude that the
rigid dualizing complex of the algebra R = B(V') is isomorphic to o R[p]. The algebra
automorphism ¢’ is defined by
=1 p
o' () = (] xi "9 I xer(o0)z,
i=1

i=j]+1

for each 1 < I < 0, where j/, 1 <1 < 0, are the integers such that ﬁ;.l, = q;. In

particular, we have
P
@' (zr) = (H XB; (9r)) k-
i=2

The rigid duallizing complex is unique up to isomorphism, so R = ,R as R-R-
bimodules, where ¢ is the algebra automorphism defined in Theorem Since the
graded algebra R is connected, we have ¢’ = . In particular, ¢'(zx) = p(zx), that
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is,

Je—1 P
Hm ) H Xe ) C T X, (98)
i=jr+1
Both By,--+,B, and f1,---, B, are enumerations of positive roots. We have oy, =

B1 = Bj,. Therefore,
P P
ITxeo) = ] xs, (90)-
i=2 i=1,i#jk

It follows that

Jr—1

(H X];l(g;31 H ng gk H Xﬁz gk
=1

i=jr+1 i=1,i#jk
O

Proposition 3.2.2. If A=U(D, \) is a CY algebra, then the rigid dualizing complex
of the Nichols algebra R = B(V) is isomorphic to ,R[p|, where ¢ is defined by p(xy) =
Xz (gr) Tk, for all1 < k<6,

Proof. By Theorem the rigid dualizing complex of R is isomorphic to ,R[p],
where ¢ is defined by

Je—1

Z(H X5 (95))( H X, (9k))Tk,

i=jk+1

for all 1 < k < 6. If Ais a CY algebra, then []7_, Xs, = € by Theorem m
Therefore, for 1 < k < 6,

(Hik11Xk (ggi))(n€:jk+1X5i(gk)) = f“;éjk Xsl(gk)
= i (gw);

where the first equation follows from Lemma Now ¢(z1) = x5 ' (gr)xx for all
1 < k < 0. Thus we have completed the proof. O

Since xx(gr) # 1 forall 1 < k < 0, the algebra R = B(V) isnot CY,if A = U(D, \)
is a CY algebra.

Proposition 3.2.3. If the Nichols algebra R = B(V') is a CY algebra, then the rigid
dualizing complex of A = U(D, \) is isomorphic to A[p + s|, where ¥ is defined by
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Y(xg) = ap for all 1 <k <0 and ¢(g) = [17_, x,, (9) for allg € T.

Proof. If the algebra R is CY, by Theorem and Lemma foreach 1 <k <90,

we have

Jr—1 P
H X, (9x) H Xe g ) C T X, (90) = 1.
i=1,i#jx i=jr+1
Now the statement follows from Theorem [2.1.5 O

With the assumption of Proposition [3.2:3] for all 1 < k < 6, we have

k) = Hxﬁi (9x) = xx(9K) 9K # k-

Since the invertible elements of A are in kI" and I' is an abelian group, % can not be

an inner automorphism. So the algebra A is not CY.

Example 3.2.4. Let R be the algebra in Example|3.1.10, Assume that T' = (y;,y2) &
72, and g; = y;, 9 = 1,2. The characters 1 and y» are given by the following table,

Y1 Y2
xi| & |q!t
x2 |at| ¢

where ¢ is not a root of unity.

The algebra R is a CY algebra. But the algebra A = R#KkI is not. The rigid
dualizing complex of A is isomorphic to ,A[5], where ¢ is defined by ¢(z;) = z; and
Y(y) = q*y; for i = 1,2.

Example 3.2.5. Let A be the algebra in Example [2.2.10} It is a CY algebra. How-

ever, its corresponding Nichols algebra R is not CY. Its rigid dualizing complex is

~lzy and

isomorphic to ,R[7], where ¢ is defined by ¢(z1) = ¢ ‘1, p(z2) = ¢
p(x3) = q*xs.

Example 3.2.6. Let A be an algebra with generators ylﬂ, ijﬂ7 x1 and x4 subject
to the relations
va'yi =1, 1<hm<2,

YIT1 = qT1Y1, YiTa =q Ty,
k _k
Y21 = ¢l x1Y2, Y22 =q ' X2Y2,
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x129 — ¢ Fxamy = 1 — yiuh,
where k,1 € Z* and 0 < |q| < 1 is not a root of unity.

By Proposition m (cf. Table 4.2 in Section , the algebra A is a CY algebra
of dimension 4. Let R be the corresponding Nichols algebra of A. The rigid dualizing

k

complex of R is isomorphic to ,R[2], where ¢ is defined by ¢(z1) = ¢ "z; and

o(z2) = ¢ xa.
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Chapter 4

Rigid dualizing complexes of
braided Hopf algebras over

finite group algebras

Let V be a vector space of dimension d and I a finite subgroup of GL4(k). The skew
group algebra S(V)#KkI is a CY algebra if and only if I' C SLg(k), where S(V) is
the symmetric algebra of V' ([28, Page 427] or [36, Thm. 3.14]). Let R be a Koszul
CY algebra and H the group algebra kI', where T is a finite group of automorphisms
of R. In [72], Wu and Zhu showed that the smash product R#H is CY if and only if
the homological determinant (Definition of the H-action is trivial. Later, this
result was generalized to the case where R is a p-Koszul CY algebra and H is an
involutory CY Hopf algebra [52].

We mentioned in Example that the algebra S(V') can be viewed as a braided
Hopf algebra. Let H be a finite dimensional Hopf algebra and R a braided Hopf alge-
bra in the category £YD. Those aforementioned examples motivated us to discuss the
relation between the CY property of R and that of R#H. Inspired by Wu and Zhu’s
work, in Section [4.1] we use the homological determinant of the H-action to describe
the homological integral of R#H. We then give a necessary and sufficient condition
for R#H to be a CY algebra, in case R is CY and H is semisimple. Conversely, if
R#H is a CY algebra, when R is a CY algebra? In Section we will answer this
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question in case H is the group algebra KkI', where I' is a finite group. In fact, we
show that an AS-Gorenstein braided Hopf algebra in the category of Yetter-Drinfeld
modules over a finite group algebra has a rigid dualizing complex.

The groups of group-like elements of pointed Hopf algebras discussed in Chapter
are all infinite. At the end of this chapter, we show that there are CY pointed Hopf

algebras with a finite abelian group of group-like elements.

In this chapter, unless otherwise stated, k is a just fixed field.

4.1 Calabi-Yau property under Hopf actions

Let H be a Hopf algebra and R a braided Hopf algebra in the category #£YD. For
h € H and r € R, We write h(r) for h acting on r. It is an element in R. On the
other hand, we write Ar for h multiplying with r. It is an element in R#H. For a
left R# H-module M, the vector space M ® H is a left R# H-module defined by

(r#h) - (m @ g) == (r#h1)m ® hag,

for all r#h € R#H and m ® g € M ® H. Denote this R#H-module by M#H.

Let M and N be two R#H-modules. Then there is a natural left H-module
structure on Hompg (M, N) given by the adjoint action

(h = f)(m) == hof (S (h1)m),
for all h € H, f € Hompr(M,N) and m € M.

Lemma 4.1.1. Let M be a left R#H-module. Then Homg(M,R) ® H is an H-
R4 H-bimodule, where the left H-module structure is defined by

h-(f®g):=h— f®hayg
and the right R#H -module structure is defined by
(f @ g) - (r#h) := fo1(r) © gah,
for all f € Homg(M,R), g,h € H and r € R.
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Proof. First we show that for all h € H, f € Homg(M,R) and r € R
(hy = fha(r) = h — (fr). (4.1)
For m € M, we have

[(he = Hha(r)](m) = (ha = f)(m)ha(r)

Now we check that for all f ® g € Homg(M,R) ® H, h € H and r#k € R#H,
(h-(f®g))- (r#k) =h-((f®g)- (r#k)). We have

(h-(f®9) (r#k) = (h1 — f® hag) - (r#k)
(h1 = f)(h2g1)(r) ® h3gak.

and
h — (fg1(r) ® g2k)
hy — (f91(r)) @ hagak

(h1 = f)(h2g1)(r) ® hagak.

h-((f ©g)- (r#k))

]
= 0

(4.1)

O

Let M be an R#H-module. There is a natural right R# H-module structure on
Hompuy(M#H, R#H). It is also a left H-module defined by

(h- f)(m@g):= f(m&gh), (4.2)

forallh € H, f € Homppy(M#H, R#H) and m®g € M®H. Then Hompyy (M#H, R#H)
is an H-R+# H-bimodule.

Proposition 4.1.2. Let P be an R#H-module, which is finitely generated projective

as an R-module. Then
HomR(P, R) R H= HOIHR#H(P#H, R#H)
as H-R# H -bimodules.
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Proof. Let
¢ :Homp(P,R) ® H — Hompyny (P#H, R#H)

be the homomorphism defined by

[W(f @h)](p®g) (g1 — )(p)#9g2h

= 02(f(S5' (91)p))#gsh,

for all f ® h € Homg(P,R) ® H and p® g € P#H.

We claim that the image of ¢ is contained in Hompuy (P#H, R#H). For any
f®heHomgr(P,R)® H, r#k € R#H and p ® g € P#H, on one hand, we have

[W(f @ h)]((r#k)(p @ g)) [W(f @ h)]((r#k1)p @ kag))
(k3g2)(f(Si;" (k2g1) ((r#k1)p))) #kagsh

(kags) (f((Sg' (k192))(r)Sg" (91)p)) #ksgah.

On the other hand,

r#R(feM(p©g) = (r#k)(92(f(Sy' (91)p))#gsh)
= r(kig2)(f(Sy' (g )p))#kzggh
= (kags)( Hl(kng)(T)f( (g )))#kzgzh
= (kag3)(f(((Sy' (k192))(r))Sg" (91)p))#k3gah.

Now we show that 1 is an H-R# H-bimodule homomorphism. We have

) ® hak))(p ® g)
g2([Fha(M)(S5 (91)p)) © gshak
Q(f(SHl(gl)p))(QBhl)(T) ® gahok
92(f(Si" (91)p)) ® gsh) (r#k)
Y(f @ h)(r#k)](p® g)

[W((f @ h)(r#k)](p® g) [ (fha(r
(

(9
[v

and
[ (k(f @ h)l(p©9) [(kr — f @ k2h)](p © 9)
g2((kr = )(S5' (91)p))#9skah
(92k2)(( Y(k1)Sy (91)p) #gsksh
((g1k1) — f)( ) @ gakah
[ (f @ h)](p® gk)
[ -

Y(feh)peg).
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So Homp(P,R) ® H = Hompyup(P#H, R#H) as H-R#H-bimodules when P is

finitely generated projective as an R-module. O

Proposition 4.1.3. Let H be a finite dimensional Hopf algebra and R a Noetherian
braided Hopf algebra in the category fIyD. Then

Exthy ; (H, R#H) = Ext}y(k, R) ® H

as H-R# H-bimodules for all i > 0.

Proof. Since R is Noetherian and H is finite dimensional, R# H is also Noetherian.

Then rygk admits a projective resolution
=P P—>P—>k—0

such that each P, is a finitely generated R# H-module. Because H is finite dimen-
sional, each P, is also finitely generated as an R-module. Tensoring with H, we obtain

a projective resolution of H over R#H
o> Py#H — - — Pi#H = Py#H — H — 0.

Applying the functor Hompyp(—, R#H) to this complex, we obtain the following

complex
0— HOIHR#H(P(]#H, R#H) — HOII]R#H(Pﬁé‘é]‘f7 R#H) — e (43)

— HOHlR#H(Pn#H, R#H) — .

This is a complex of H-R# H-bimodules, where the left H-module structure is defined

asin (4.2). By Lemma and Proposition [4.1.2] one can check that it is isomorphic
to the following complex of H-R# H-bimodules,

0 — Hompg(Py, R) ® H — Homp (P, R)® H - -- (4.4)

— Hompg(P,,R)®@ H— ---.

After taking cohomologies of complex (4.3) and complex (4.4), we arrive at isomor-
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phisms of H-R# H-bimodules
Extly (H, R#H) = Extly(k, R) ® H

for all 7 > 0. O

The algebra R can be viewed as an augmented right H-module algebra through
the right H-action: r - h := Sg'(h) -7, for all » € R and h € H. The algebra H#R

can be defined in a similar way. The multiplication is given by
(h#ts)(k#r) := hka# (s - k1)r = hka#(Sg (k1)(s))r,
for all h#s and k#r € H#R. The homomorphism ¢ : R#H — H#R defined by
p(r#tk) = kot Sy (k) (7)
is an algebra isomorphism with its inverse v : H#R — R#H defined by
P(k#r) = ki (r)#ks.

In addition, ¢ is compatible with the augmentation maps of R#H and H#R respec-
tively. Now right R# H-modules can be treated as H# R-modules. Let M and N be
two H# R-modules, then Homg (M, N) is a right H-module defined by

(f = h)(m) == f(mSu(h1))hs,

for all h € H, f € Hompr(M,N) and m € M.

Similar to the left case, we have the following proposition.

Proposition 4.1.4. Let H be a finite dimensional Hopf algebra and R a Noetherian
braided Hopf algebra in the category LYD. Then

Extpup(Hrpm R#Hpyp) = H @ Exty(kg, Rr)
as R#H-H-bimodules for all i > 0.

Lemma 4.1.5. Let H be a Hopf algebra and R an H-module algebra. If the left global
dimensions of R and H are dp and dg respectively, then the left global dimension of
A = R#H is not greater than dr + dp.
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Proof. Let M and N be two A-modules. We have
Homy (M, N) =2 Hompy (k, Hompg(M, N)),

that is, the functor Hom 4 (M, —) factors through as follows

Homp (M,—
ModA o) ModH .
HomAm /@k,)
Modk

To apply the Grothendieck spectral sequence (see e.g. [70, Sec. 5.8]), we need to show
that if N is an injective A-module, then Ext% (k, Homg (M, N)) =0 for all ¢ > 1.

Let
o= PP 4= =P =P —=-k—=0

be a projective resolution of k over H. Exty (k, Homg(M, N)) are the cohomologies
of the complex Hompy (P,, Hompg (M, N)). There are the following isomorphisms

Hom s (Pe, Hompg(M, N))

Il

Hom g (k, Homy (P,, Homp (M, N)))
HomH(Ik, HomR(P. ® M, N))
HOIIIR#H(P. QR M, N)

1R

Let P; be a projective module in the complex P,. Note that the R# H-module struc-
ture on P; ® M is given by

(r#th) - (p®@h) = hy @ rhym,

for all r#h € R#H and p@m € P;® M. The complex P, is exact except at Py. Since
the functors Hompg g (—, N) and —®M are exact, the complex Homp (P, Hompg(M, N))
is also exact except at Hompy (Py, Homg(M, N)). It follows that

Ext}; (k, Homp(M,N)) =0

for all ¢ > 1.

Now we have
Exty, (k, Exth, (M, N)) = Extf.7, (M, N).
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Because the left global dimensions of R and H are dr and dg, Extlé#H(M7 N)=0
for all i > dg + dy. Therefore, the left global dimension of R#H is not greater than
dr +dg. ]

The homological determinant for graded automorphisms of an AS-Gorenstein alge-
bra was defined by Jgrgensen and Zhang [39]. A Hopf algebra version was introduced
later in [46]. The homological determinant was used to study the AS-Gorenstein

property of invariant subrings.

Definition 4.1.6. (cf. [52], [46]) Let R be an AS-Gorenstein algebra of injective
dimension d. There is a left H-action on Ext%(k, R) induced by the left H-action on R.
Let e be a non-zero element in Ext%(]k, R). Then there is an algebra homomorphism
n: H — k satisfying h - e = n(h)e for all h € H.

(i) The composite map nSy : H — k is called the homological determinant of the
H-action on R, and it is denoted by hdet (or more precisely hdetg).

(ii) The homological determinant hdetp is said to be trivial if hdetp = ep, where
ep is the counit of the Hopf algebra H.

Let H be an involutory CY Hopf algebra and R a p-Koszul CY algebra which is a
left H-module algebra. As we mentioned in the introduction of this chapter, in [52],
Wu and Zhu used the homological determinant of the H-action to characterize the
CY property of R#H. They defined an H-module structure on the Koszul bimodule
complex of R and computed the H-module structures on the Hochschild cohomologies.
Then they proved that R#H is CY if and only if the homological determinant is
trivial. If H is not involutory or R is not a p-Koszul algebra, then is R#H still a CY
algebra when the homological determinant is trivial?

We discuss the question when R is a braided Hopf algebra in the category £YD,
where H is a finite dimensional Hopf algebra. We use the homological determinant
to discuss the homological integral and the rigid dualizing complex of the algebra
A = R#H. We then give a necessary and sufficient condition for A to be a CY
algebra. The result we obtained is slightly different from what was obtained by Wu
and Zhu. We first need the following lemma.

Lemma 4.1.7. Let H be a Hopf algebra, and R a braided Hopf algebra in the category
gyD. Then

812%#11(7") = SH(T(—1))(512%(7“(0))),
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for any r € R.

Proof. Set A= R#H. By equation (1.5)), for any r € R,

Sa(r) = (1#Su(r~1)))(Sr(r©))#1)-
Therefore,

Si(r) = Sa((1#Su(r—1)))(Sr(r@))#1))
= Sa(Sr(r)#1)Sa(1#Su(r-1)))
= (1#Su(Sr(r©) =) (Sr(Sr(r©0))0)) #1) (1#SF (r_1)))
= (1#Su(roy 1)))(312%(7"(0)(0))#1)(1#51%1(7”(—1)))
= (1#Su(r1)2))(SE(ro)#1) 1#SE (r(—1)1))
= SH( 1)3)( R(T(o)))#SH(T( 1)2)5?{(7”(—1)1)
= Su(r1)2)(SE(r©)#Su(e(r—1)1))
= Su(rc1)(Salro))-

O

Proposition 4.1.8. Let H be a semisimple Hopf algebra and R a braided Hopf algebra
in the category BYD. If R is an AS-regular algebra of global dimension dg, then
A = R#H is also AS-regular of global dimension dg.

In this case, iffll% = ke, and fi] = ke,,, where g : R — k and £y - H — k are
algebra homomorphisms, then fi = ke, where §: A — k is defined by

§(r#h) = Er(r) hdet(h1)Em (ha),

for all r#h € R#H. The rigid dualizing complex of A is isomorphic to ,A[dRg], where
1 is the algebra automorphism [£]S%. To be more precise, v is defined by

P(r#h) = Er(r') hdet((r?) —1)1h1)Su ((r*) (—1)2) (SR((r*)(0))) #SH (h2),

for all r#h € R#H.

Proof. Let P, - H — 0 be a projective A-module resolution of H with each P;
finitely generated. Since H is semisimple, k is projective as an H-module. It follows
that k @ g P, — k — 0 is a projective A-module resolution of k. Now the following
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isomorphism of complexes holds:
HomA(]k ®y P., A) = HOInH(Ik, HomA(P., A))

The fact that the trivial module k is a finitely generated projective H-module implies
that . ,
ExtYy(k,A) = Hompg(k,Exty(H,A))

, 4.5
Hompy (k, H) ® g Ext’y (H, A) (4.5)

1%

for all i > 0. Following Proposition we have fi = fIl{ " fll% ®H and

0, 1 7& dRa
1

dim Ext (k, 4A) = '
, 1= dR.

Let e be a non-zero element in | 112 and h a non-zero element in | ;I Let n: H — k be
an algebra homomorphism such that h - e = n(h)e for all h € H. Then the following

equations hold

(hee®l) - (r#h) = &r(rheed®h
= (r(r)h®e(hi)e® hsy
= &{r(rh@n(Su(h))n(h)e @ hs
= Cr(r)n(Su(h1))h@hy - (e®1)
= ER(r) (SH(hl)) (hg)h@(—)@l
= ¢r(r)hdet(h)h®@e® 1.

This implies that fj‘ = k¢, where £ is the algebra homomorphism defined in the
proposition. Similarly, by Proposition we have

0, i+#dg,
1

dim Ext (k, A4) =
, i=dg.

Because H is finite dimensional and R is Noetherian, the algebra A is Noetherian
as well. Therefore, the left and right global dimensions of A are equal. Since H is
semisimple, the global dimension of H is 0. Now it follows from Lemma[£.1.5] that the
global dimension of A is dg. In conclusion, we have proved that A is an AS-regular

algebra.
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By Proposition|1.5.21} the rigid dualizing complex of A is isomorphic to ¢ 52 AldRg].
For any r#h € R#H, we have

[€]SA (r#h)
@ S3E)r#h)
© 0 h)SA () 0 #h2)
= &r(r')hdet((r*)(1)h1)SA((r?)(0))#S7 (h2)
D ea(r!) hdet((r2) - 1yh) S (%) 0)(-1)) (SE((12) 0y 0))) #S i (h2)
= &r(rt) hdet((r*)(—1)1h1)Su (%) (- 1)2) (SR () 0))) #S71 (h2).

™~

Equations (a), (b) and (c) follow from [20, Lemma 2.5], Equation (1.4) and Lemma
respectively. Thus the proof is completed. O

Remark 4.1.9. Since ¢ is an algebra homomorphism, the following equation holds
Er(r)hdet(h) = Er(hi(r)) hdet(hs).

Remark 4.1.10. We show how | 1; S looks like. Let e’ be a non-zero element in
Ext%(k, R). There is an algebra homomorphism 7’ : H — k satisfying ' - h =
n'(h)e’ for all h € H. Applying a similar argument as in the proof of Proposition
we have that if [ = ¢k, then [4 = ¢k, where ¢ is defined by &' (r#h) =
En(Si (1) ()0 (Sw(h)) for all r#h € R#H.

Now we give the main theorem of this section.

Theorem 4.1.11. Let H be a semisimple Hopf algebra and R a Noetherian braided
Hopf algebra in the category YD. Suppose that the algebra R is CY of dimension
dr. Then R#H is CY if and only if the homological determinant of R is trivial and
the algebra automorphism ¢ defined by

d(r#th) = Su(r(—1))(Sk(r()))SH(h)

for all r#h € R#H is an inner automorphism.

Proof. From Proposition we have that R is AS-regular with || 1; = k. In
addition, since H is semisimple, the algebra H is unimodular. Thus |, fq = k. Set
A= R#H. By Proposition we obtain that A is AS-regular with fi = k¢, where
¢ is the algebra homomorphism defined by &(r#h) = (r) hdet(h) for all r#h € R#H.
Then following from Proposition the algebra A is CY if and only if £ =& and
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87 is an inner automorphism. On one hand, £ = ey if and only if hdet = e. On the
other hand, by Lemma we have 8% (r#h) = Sp(r(—1))(Sh(7(0)))SH (h), for any
r#h € R#H. O

Remark 4.1.12. In [52] it is proved that if R is p-Koszul CY and H is involutory,
then R#H is CY if and only if the homological determinant is trivial. Thus in
Theorem if the braided Hopf algebra R is p-Koszul, then we have that the
homological determinant is trivial implies that the automorphism ¢ is inner. In the
following Example we see that the automorphism ¢ can be expressed via the
homological determinant of the H-action.

Example 4.1.13. Let

D(T', (9:)1<i<os (Xi)1<i<o, (@ij)1<i,j<6)

be a datum of finite Cartan type, where I is a finite abelian group and (a;;) is of type
Ay x --- x Ay, Assume that V is a braided vector space with a basis {z1, - ,zs}

whose braiding is given by
C(.’l?i X acj) = qijT; & x4, 1<4,5< 0,

where ¢;; = x;(gi)-
Let R be the following algebra:

]k<.731, RRIRI i7"} ‘ TiTj = Q35T T4, 1< <j < 9>

It is easy to see that R is a Koszul braided Hopf algebra in the category LYD. Assume
that IC is the Koszul complex (cf. complex (1.19))

0> R&Ry » - RORY % RORY,---— R® Ry — R.

Then we have that  — gk — 0 is a projective resolution of k. Each R}* is a left
kI'-module with module structure defined by

lg(B)] (i, A---naf) =
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where § € SJ'* Thus each R ® R!j* is a left kI'-module. It is not difficult to see that
the differentials in the Koszul complex are also left I'-module homomorphisms. By
[23, Prop. 5.0.7], we have that fll% =~ RY. Therefore, hdet(g) = Hle xi(g™1) for all
gel.

If for each 1 <4 < 0, qui-+*qu—1)i = i(i+1) " ** ¢y, then the algebra R is a CY
algebra by Remark In this case,

hdet(g;) = TTi—; xilg; ")

(TEZ1 xilg; x5 (95 ) Ty xk(957)
(TEZ) 46)x5 (95 ) (i1 452

= xi9;1):

The algebra automorphism ¢ given in Theorem [4.1.11]is defined by
¢(z;) = x;(g; " )w; = hdet(g;)z;

for all 1 < j < 0 and ¢(g) = ¢ for all g € I'. However, x;(g;) # 1 for all 1 < j < 6.
The algebra R#KI is not a CY algebra.

Example 4.1.14. Let g be a finite dimensional Lie algebra, and U(g) the universal
enveloping algebra of g. Assume that there is a group homomorphism v : T' —
Autrie(g), where Autr;.(g) is the group of Lie algebra automorphisms of g. Then it
is known that U(g)#KkI" is a cocommutative Hopf algebra.

It is proved in [35] Cor. 3.6] that the smash product U(g)#kI" is CY if and only
if U(g) is CY and Im(v) C SL(g).

Let d be the dimension of g. By [35, Lemma 3.1], we have fz,(g) =~ Alg* as left
I-modules, where the left I-action on g* is defined by (g - a)(z) = a(g~'x) for all
geT, acgand z € g, and I acts on Ag* diagonally. Let {z1,--- ,74} be a basis
of g. Then

9@} A Ax) = det(v(g ) (& A AT,

for all g € I'. So hdet(g) = det(v(g)). That is, if Im(r) C SL(g), then the homological
determinant is trivial. The algebra U(g) is a braided Hopf algebra in the category
LYD with trivial coaction. So the automorphism ¢ defined in Theorem is the
identity. Therefore, if U(g) is a CY algebra and Im(v) C SL(g), by Theorem
the algebra U(g)#kI is a CY algebra. This coincides with the result mentioned
before.
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4.2 Rigid dualizing complexes of braided Hopf al-

gebras over finite group algebras

Before giving the main results of this section, we need some preparations first.

Let A be a Hopf algebra. By [61, Appendix, Lemma 11], A can be viewed as a
subalgebra of A€ via the algebra homomorphism p: A — A€ defined by

pla) = a1 @ S(ag). (4.6)

Then A€ is a right A-module via this embedding. We denote this right A-module
by R(A°). Actually, R(A°) is an A°-A-bimodule. Similarly, A¢ is also an A-A°-
bimodule, where the left A-module is induced from the homomorphism p. Denote
this bimodule by L£(A°).

In this section, we further assume the characteristic of the base field k is 0. From
now on, let I' be a finite group and R a braided Hopf algebra in the category LYD
with I-coaction §. The bosonization A = R#KI is a usual Hopf algebra [62]. Let 2
be the subalgebra of A¢ generated by the elements of the form (r#g) ® (s#¢~1) with
r,s € Rand g €T

Remark 4.2.1. Since R is a I'-comodule, it is a I'-graded module: R = ®g4erRy,
where R, = {r € R | 6(r) = g ® r}. Therefore, for any r € R, it can be written as
r= EQEF rg with 7y € Ry. Then §(r) = derg Qry.

Lemma 4.2.2. The subalgebra 2 is a left (resp. right) A-submodule of L(A®) (resp.
R(A®)).

Proof. For any r#h € A, by equations (1.4)) and (1.5)), we have

A(rd#th) = rl#gh @ (r?)g#h

gel

and

Sa(r#h) =Y h7lg7 Sr(ry).

gel’

Any element in & can be written as a linear combination of elements of the form
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sH#Hk@t#k™1 € 2 with s,t € Rand k € T.

(r#h) - (s#tk ® t#k~1)

D ger(ri#tgh) (s#k) @ (t##k~)Sa((r 2) #h)
Dger(ri#gh)(s#k) @ (t#k~ )h 97 Sr((r?)g)

qur( H(gh)(s)#ghk) @ (t(k™ h™ g™ )(Sr((r?)e))#k ™ h ™ g™")

S

This shows that 2 is a left A-submodule of £(A¢). Similarly, 2 is also a right A-
submodule of R(A®). O

The following lemma is known, we include it for completeness.

Lemma 4.2.3. (1) Both L(A®) and R(A®) are free as A-modules.

(2) R(A°) @4 k = A as left A°-modules and this isomorphism restricts to a left
R¢-isomorphism 9 @ 4 k = R.

(8) If € : A — k is an algebra homomorphism, then there is an isomorphism ke ® 4
L(A%) = Aysz of right A°-modules and the isomorphism restricts to a right
Re-isomorphism ke @4 7 = R(jg)s2)| -

Proof. (1) was proved in [20, Lemma 2.2]. The module L(A®) defined in that paper
is isomorphic to R(A€) as right A-modules. It was proved that ¢ : A4 ® AP —
R(A°) defined by ¢(a ® b) = a1 ® bx Sa(az) is an isomorphism, where x denotes
the multiplication in A°P. The right A-module structure on A4 ® AP is defined by
(a®b)-c=ac®bfor all a, b and ¢ € A. Similarly, L(A®) = 4A ® A as free left
A-module.

(2) R(A°) ®4 k = A as left A°~modules is [61, Appendix, Lemma 11]. The
homomorphism 9 : R(A¢)®4k — A given by ¥(a®b®1) = ab is an A®-isomorphism.
It is clear that v restricts to an isomorphism from 2 ®4 k to R.

(3) It was proved in [20, Lemma 4.5] that ke ®a L£(A°) = Ajgsz as right A°-
modules. Here we give another proof. We construct the the isomorphism explicitly.
Define a homomorphism @ : ke @4 £(A°) = Ajgsz by ®(10a®b) = £(a1)bS?%(az) and
a homomorphism ¥ : Ajgs2 — ke ®4 A° by ¥(a) = 1®1®a. Note that [€]S? = S?[¢]
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holds by Lemma 2.5 in [20]. For any z,a,b € A, we have

P(1® 210 @ bS(z2)) &(x1)&(a1)bS (23)S? (2)S?(az)
= &(21)€(a1)bS(e(22))S?(az)
= &(2)&(a1)bS?(a2)
{(@)P(1®a®b).

This shows that ® is well defined. Similar calculations show that ® and ¥ are right

A¢-module homomorphisms and they are inverse to each other.

It is straightforward to check that the isomorphism ke ®4 £(A¢) = A s2 restricts
to the iSOHlOI‘phiSIn ]kg Ra 9 = R([E]SiHR' O

Lemma 4.2.4. Homp:(Z, R°) = 2 as A-R°-bimodules.

Proof. The algebra 2 is an A-R°-bimodule. Note that the A-module structure is
induced from the homomorphism p defined in . On the other hand, the A-R°-
bimodule structure on Hompge (2, R°) is induced from the right A-module structure
on 2 and the right R°-module structure on R®. We have r#g = (1#g)(g~1(r)#1)
for any r#g € R#KkI. Therefore, an element in & can be expressed of the form
der(l#g_l)(rg#l) ® s9#¢ with 79,59 € R. For simplicity, we write an element
(1#g)(r#1) with r € Rand g € T as gr. Let ¥ : 92 — Hompg(Z, R¢) be a homo-
morphism defined by

W g '@ (s‘#g)(heh™) =" as",

gel

for der g r92s9#g € Z,h € T. Next define a homomorphism ® : Hompge (2, R¢) —
2 by
o(f)=> (' @9flg@g™)
gel’
for f € Hompge (2, R?). It is clear that @ is a right R°-homomorphism. On the other
hand, we have

D((r#th)f) = Yerle'® )((T#h)f)( ®g7")

= e Zwer(97 @ 9) f(g(ri#k)h @ Sa((r*)u#h)g™)

= Yger Zrer(d ®g) (g(r'#k)h @ h™ k™~ 1SR(( g™t
ZgEFZkeF( ® 9)f(g(r')#gkh @ h™ 'k~ g7 g(Sr((r*)k)))
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and

(r#h)®(f)
= (Cper#kh @b~ kT ISRr(r21) X per (9 @ 9) f(g@ g7 )
Sker Zger (T #khg Tt @ ghT kT SR((P)k) flg® g7 ")
Zkengep(khg”(gh "ETH () @ (ghT R TD)SR((P)r)ghT R flg@ g7
Seer Zger(khg™t @ gh kKT F((gh™ ' k1) (rh)#g @ g7 Hgh ™ k) (Sr((1%)k)))
= Yger Lrer(97 ©@ 9)f(g(r)#gkh © BT KT g7 g(Sr((7%)K)))-

So ® is an A-R¢-bimodule homomorphism. It is clear that ® and ¥ are inverse to
each other. Thus @ is an isomorphism. O

Lemma 4.2.5. Let I" be a finite group and R a braided Hopf algebra in the category
LYD. If A= R#KL is AS-Gorenstein with ffl = ke, where § : A — k is an algebra
homomorphism, then we have R-R-bimodule isomorphisms

) 0, i #d,;
Exthe (R, R®) & 7

Rigsz)n, 1=

Proof. We have the following isomorphisms,

Exth.(R,R°) = Exth.(2®4k, R°)
=~ ExtYy(ak, Hompg: (2, R%))

1%

Extfﬁl(A]k, P)
EXt;(AIk, A) QA D

0, i #d;
ke ®4 7= Rigsyinr 1= d-

1

The first, third and last isomorphism follow from Lemma [£.2:3] Lemma [£.2.4] and
Lemma [4.2.3] respectively. The fourth isomorphism follows from the fact that 2 is
left A-projective. This is because A€ is free as a left A-module by Lemma [4.2.3| and
A€ is a direct sum of finite copies of 2. Indeed, A°¢ = @pcr 2", where 2" is the left
A-submodule of A¢ generated by elements of the form (r#gh)® (s#g~!) withr,s € R
and g € I. Moreover, for every h € ', 2" is isomorphic to Z as a left A-module. [

Lemma 4.2.6. If the global dimension of A = R#KID is finite and R is Noethrian,
then R is homologically smooth.

Proof. By assumption, the algebra A is Noetherian, and sk has a finite projective
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resolution
0—-Py—Py1—--—>P—>Fh—->k—=0,

such that each P;, 0 < i < d, is a finitely generated projective A-module. By a similar
argument to the one in the proof of Lemma [4.2.5] we have that Z is projective as a

right A-module. Therefore, the functor 2 ® 4 — is exact. We obtain an exact sequence
05> 92RAP; > 2R4Pi1 = —>24PL > 24Py — P24k —0. (4.7)

2 is projective as left R°-module and 2 ® 4k = R as left R®-modules (Lemma.
So the complex is a projective bimodule resolution of R. Because each P; is a
finitely generated A-module and I is a finite group, each Z® 4 P; is a finitely generated
left R®-module. Therefore, we conclude that R is homologically smooth. O

The homological integral of the skew group algebra R#KkI' was discussed by He,
Van Oystaeyen and Zhang in [35]. Based on their work, here we use the homological

determinant of the group action to describe the homological integral of R#KkI".

Lemma 4.2.7. Let T" be a finite group and R a braided Hopf algebra in the category
LYD. If R is an AS-Gorenstein algebra with injective dimension d and fé = Kkeps
where g : R — k is an algebra homomorphism, then the algebra A = R#KD is AS-
Gorenstein with injective dimension d as well, and fxi = ke, where £ : A — k is the
algebra homomorphism defined by £(r#h) = Eg(r) hdet(h) for any r#h € R#KL.

Proof. By [35, Prop. 1.1 and 1.3], we have that A = R#KkI is AS-Gorenstein of

injective dimension d, [ }lz is a 1-dimensional left I-module, and as right A-modules:
U gl
fA = (fR ®H{P)F7
where the right A-module structure on f }l% ®RKI" is defined by
(e®g) - (r#h) = e(g(r)) © gh,

for g € kI, r#h € R#kI and e € le:p and the left I'-action on fll% ®KkI is diagonal.
Let e be a basis of fé It can be checked directly that the element > . g(e) ® g

is a basis of (fll% #KI)'. Let n : kI' — k be an algebra homomorphism such that

92



4.2. RIGID DUALIZING COMPLEXES OF BRAIDED HOPF ALGEBRAS
OVER FINITE GROUP ALGEBRAS

h-e=mn(h)e for all h € T'. For any r#h € R#KI', we have

(Xger 9(@)#g)(r#th) = >erg(e)g(r)#gh

= der g(er)#gh
= &r(r) Xgery(e)#gh
= Er(r)n(h™") Xyer (gh)(e)#gh
= Er(rn(h™") X ,crg(e)#g
= &r(r)hdet(h) - cr g(e)#g
= L(r#h) Y er 9(e)#y.
It implies that f,fx =~ k. O

There is also a connection between the AS-regularity of R and R#kI .

Proposition 4.2.8. Let T" be a finite group and R a braided Hopf algebra in the
category LYD. Then R is AS-regular if and only if A = R#KI is AS-regular.

Proof. Assume that R is AS-regular. By Lemma[f.2.7] the algebra A is AS-Gorenstein.
To show that A is AS-regular, it suffices to show that the global dimension of A is
finite. Since the global dimension of R is finite, there is a finite projective resolution
of k over R,

0->Pi—Py1—--P—>FP—>k—=0.

Note that A is projective as a right R-module. Tensoring this resolution with A®pg —,
we obtain an exact sequence

0> AQRrP; >ARr Py 1— - ARr Pl > Ar Py > A®rk — 0.

It is clear that each A® g P; is projective. This shows that the projective dimension of
A®pk is finite. But gk is a direct summand of A®prk as an A-module ([I1, Lemma
I11.4.8]). So the projective dimension of gk is finite. Since A is a Hopf algebra, the
global dimension of A is finite.

Conversely, if A is AS-regular, then R is AS-regular by Lemma Lemma
and Remark [L5.201 O

We give the rigid dualzing complex of an AS-Gorenstein braided Hopf algebra in

the following theorem.

Theorem 4.2.9. Let T be a finite group and R a braided Hopf algebra in the category
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LYD. Assume that R is an AS-Gorenstein algebra with injective dimension d. If
fll% = ke¢p, for some algebra homomorphism &g : R — k, then R has a rigid dualizing
complez ,R[d], where ¢ is the algebra automorphism defined by

= 3" €a(r") hdet(g)g ™~ (S((r2),)),

ger

for any r € R.

Proof. Put A = R#KI. It follows from Lemma that A is AS-Gorenstein with
fi = ke, where £ : A — k is the algebra homomorphism defined by

{(r#h) = {r(r) hdet(h)
for any r#h € R#kI. By Lemma there are R-R-bimodule isomorphisms

0, 1 # d;
Rgs2yps 1=

Ext%. (R, R®) =

For any r € R,

[€ISA(r) = X,er &' #9)S3((r?)y)
= Y ger ér(rt) hdet(g)S3((r?)y)
= Y ger ér(rt) hdet(g)g ™ (SR((17)g))-
Now the theorem follows from Lemma [[.5.11] O

Remark 4.2.10. The algebra A = R#KkI' has a rigid dualizing complex ¢ 52 A[d]
(Proposition [1.5.21)). Observe that the algebra automorphism ¢ given in Theorem

is just the restriction of [¢]S% on R.

Now we can characterize the CY property of R in case R#kI is CY.

Theorem 4.2.11. Let T be a finite group and R a braided Hopf algebra in the category
LYD. Define an algebra automorphism ¢ of R by

=D 97 (Sk(ry)

ger
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for any r € R. If R#KID is a CY algebra, then R is CY if and only if the algebra
automorphism @ is an inner automorphism.

Proof. Assume that A = R#KI" is a CY algebra of dimension d. By Proposition
1.5.19) A is AS-regular of global dimension d and fi‘ = k. It follows from Lemma
that R is homologically smooth.

Since f,fx =~ k, by Lemma there are R-R-bimodule isomorphisms

0, i #£d,;
Rs2

Exthe (R, R®) =

Following Remark we obtain that R is AS-regular. Suppose | }l% = ke, for
some algebra homomorphism g : R — k. Then by Lemma fi‘ = k¢, where
& : A — kis defined by {(r#h) = &r(r) hdet(h) for any r#h € R#kI". But fj‘ ~ k.
Therefore, £ = eg and hdet = eg. It follows from Theorem that the rigid
dualizing complex of R is isomorphic to ,,R[d|, where ¢ is defined by

p(r) = X ,erér(r')hdet(g)g~ (SE((r?),))
= Egerg_l(slz%(rg))

for any r € R. Now the theorem follows from Corollary O

Corollary 4.2.12. LetT be a finite group and R a braided Hopf algebra in the category
LYD. Assume that R is an AS-reqular algebra. Then the following two conditions are
equivalent:

(1) Both R and R#KT are CY algebras.
(2) These three conditions are satisfied:
Ol o
(i) [p =Kk
(i) The homological determinant of the group action is trivial;

(iii) The algebra automorphism ¢ defined by

p(r) = 97 (Sk(ry))

gel

for all v € R is an inner automorphism.
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Proof. (1) = (2) Since R is a CY algebra, by Proposition [1.5.19 we have fll% ~ k.
Because both R and R#KT" are CY, (ii) and (iii) are satisfied by Theorem [4.1.11{and
Theorem L2111

(2) = (1) Since R is AS-regular, R#KI[" is AS-regular by Proposition Then
R is homologically smooth (Lemma. By Theorem if the three conditions
in (2) are satisfied, then the rigid dualizing complex of R is isomorphic to R[d], where
d is the injective dimension of R. So R is a CY algebra. That the algebra R#KkI is
a CY algebra follows from Theorem 4.1.11 O

Example 4.2.13. Let us use the notations in Example Assume that T is
a finite group, g is a finite dimensional I'-module Lie algebra, and there is a group
homomorphism v : I' — Autr(g). In Example we use Theorem to
obtain that if U(g) is a CY algebra and Im(v) C SL(g) then U(g)#k[ is a CY
algebra. Now by Theorem if U(g)#kI is a CY algebra, then U(g) is a CY
algebra as well. This is because U(g) is a braided Hopf algebra in LYD with trivial
coaction, the algebra automorphism ¢ in Theorem is the identity.

By [20, Prop. 6.3], we have that fé,(g) = ke, where {(z) = tr(ad(z)) for all z € g.
We calculate in Example that hdet(g) = det(v(g)) for g € I. Therefore, both
U(g) and U(g)#KkI' are CY algebras if and only if tr(ad(xz)) = 0 for all x € g and
Im(v) € SL(g). This coincides with Corollary 3.5 and Lemma 4.1 in [35].

Let
D(T, (9:)1<i<0, (Xi)1<i<o, (@ij)1<i j<6)
be a datum of finite Cartan type for a finite abelian group I'. Let {1, - ,ap} be
a set of simple roots of the root system corresponding to the Cartan matrix (a;;).

Assume that wg = s, - - si, is a reduced decomposition of the longest element in the

Weyl group as a product of simple reflections. Then the positive roots are as follows

Br =i, By =85y 80, (i)

Let A be a family of linking parameters for D.

Applying [8, Thm. 3.3] and a similar argument as in the proof of Theorem
we obtain that A = U(D, A) is AS-regular of global dimension p and f,fl = k¢, where
¢ is the algebra homomorphism defined by £(g) = ([T}, Xs,)(g), for all g € I' and
§(z;) = 0 for all 1 <i < 0. In addition, A has a rigid dualizing complex (¢s2 A[p].
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By Proposition [1.5.22] A is CY if and only if []%_, Xs, = € and 8% is an inner

automorphism.

Let R be the algebra generated by 1, - ,z¢ subject to the relations
(adc xi)l_aij (.’E]) =0,1<14,7< 97 i 7& J

Then U(D,0) = R#KLI. By Lemma and Lemma we have that R is
homologically smooth, and that it has a rigid dualizing complex ,R[p], where ¢ is
the restriction of [¢]S% on R. That is, ¢ is defined by ¢(zy) = Hf:l,i;éjk X, (95) (k)
1 <k <0, where each 1 < jj < p is the integer such that 3;, = ai. Therefore, R is
CY if and only if Hf:l,i;éjk X5, (gk) =1 for each 1 <k < 0.

One may compare these results with Theorem [2.1.5] Theorem [3.1.9) and Lemma
B211

Now we give two examples of CY pointed Hopf algebra with a finite group of

group-like elements.

Example 4.2.14. Let A be U(D, A) with the datum (D, \) given by

o I'=(y1,y2) = Za X ZLy;
e The Cartan matrix is of type As;
® gi=VYi, 1 <1<

e \;, 1 <i< 2, are given by the following table.

Yi | Y2
x1|—1| 1
X2 | -1 | -1

e A=0

The algebra A is a CY algebra of dimension 3.

Let R be the algebra generated by x1 and x5 subject to relations
23ry — xox? = 0 and 23z, — 2125 = 0.
Then A = R#kI'. The rigid dualizing complex of R is , R[3], where ¢ = —id.
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Remark 4.2.15. From the proof of Proposition we can see that if A =U(D, )
is a CY algebra and D is a generic datum, then D cannot be of type As.

Example 4.2.16. Let A be U(D, A\) with the datum (D, \) given by

o ['= <y17y2> = Zn X er
e The Cartan matrix is of type A; x Aj;

b gl:yHZ:laQa

o 1(¥:) =q, x2(y;) = ¢, i = 1,2, where q € k is an n-th root of unity;

o \=1.

The algebra A is a CY algebra of dimension 2.

Let R be the algebra k(z1,22 | 7122 = ¢ 'aom1). Then A = R#KkI. The rigid

1

dualizing complex of R is , R[3], where ¢ is defined by p(x1) = ¢~ 21 and p(x2) = qza.
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Chapter 5

Ext algebras of Nichols
algebras of type A-

As shown in previous chapters, the homological properties of an algebra R over a
field k rely exclusively on the structure of its Ext algebra Ext}(k, k). In two recent
papers [29], 61] support varieties of modules over Hopf algebras are introduced. It
turns out that support varieties are useful tools to study homological properties and
representations of finite dimensional (braided) Hopf algebras. To define and to com-
pute support varieties we need first to understand the Ext algebra of the (braided)
Hopf algebra. These motivate us to study the structure of the Ext algebra of a finite
dimensional Nichols algebra. As a first attempt to explore the structure of the Ext
algebras for further study, we give the full structure of the Ext algebra of a Nichols
algebra of type As in terms of generators and relations in this chapter. Using this
struture, we can show that for a pointed Hopf algebra A of type As, the support va-
riety of k over A is isomorphic to the variety of k over the associated graded algebra
with respect to a certain filtration of A. Then we apply our main results to show that
if the components of the Dynkin diagram of a pointed Hopf algebra u(D, A, 1) are of
type A, D, or E, except for A; and A; x Ay, and the order N; > 2 for at least one
component, then u(D, A, p) is wild.

A finite dimensional CY algebra must be semisimple. So a finite dimensional
algebra u(D, A\, ) is not a CY algebra. But a finite dimensional Hopf algebra is

Frobenius. So its stable category is a triangulated category. A natural question
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arises: is the stable category of a pointed Hopf algebra u(D, A, ) a CY category? We
discuss this question at the end of Section It turns out that in most cases, the

answer to this question is negative.

5.1 Structures of Ext algebras

Let

D(T, (gi)1<i<o, (Xi)1<i<o, (@ij)1<i <o)

be a datum of finite Cartan type for a finite abelian group I'. Assume that for
1 <4 <0, xi(g:) has odd order and the order of x;(g;) is prime to 3, if ¢ lies in a

component Gs.

Let {aq, -+ ,ag} be a fix set of simple roots of the root system corresponding to
the Cartan matrix (a;;). Assume that wg = s;, ---s;, is a reduced decomposition of

the longest element wq in the Weyl group W as a product of simple reflections. Then
B =iy, B2=si(qi), By =si i, ()

are the positive roots. Let x 5 LS 1L p, be the corresponding root vectors.

Let V be the braided vector space with basis {z1,- - , 29} whose braiding is given
by
c(xi X xj) = @i ® x;
for 1 < 14,5 < 6, where g;; = x;(9:)-

Recall that the Nichols algebra B(V) is generated by x;, 1 < ¢ < 6, subject to the
relations
(ade i)'~ (2;) = 0, 1<4,j <0, i#j,

27 =0, a€d®l, Jea,

where X is the set of connected components of the Dynkin diagram, Ny is the common
order of g;; with ¢ € J, and <I>}' is set of positive roots of the component J (Section
1.4.2)).

The following set

{xgi~-~lef|1<ai<NJ, Bie®h, 1<i<p}
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forms a PBW basis of the Nichols algebra B(V) (Theorem [1.4.11)). Define a degree

on each element as
deg ! - zgz = (a1, - ,ap, Z a;ht(B;)) € NPT

where ht(3;) is the height of the positive root 3; (cf. [53, Sec. 2]).

Lemma also holds in the case when the group I is finite. Therefore, if we
order PBW basis elements by degree as in (2.2]), we obtain a filtration on the Nichols
algebra B(V'). The associated graded algebra GrB(V) is generated by the root vectors

z, , 1 <7< p, subject to the relations

Bi?

(2,2, ]c =0, foralli<j;

xi\f’:o, Biedh, 1<i<p.

It is clear that each Nichols algebra can be written as a twisted tensor product of
a set of Nichols algebras, such that each of them satisfies that the Dynkin diagram
associated to the Cartan matrix is connected. In [I4], the authors showed that the
Ext algebra of a twisted tensor algebra is essentially the twisted tensor algebra of the
Ext algebras. Therefore, we only need to discuss the case where the Dynkin diagram
is connected. Now we calculate the Ext algebra of a Nichols algebra of type As.

Let N be an integer, and let ¢ be a primitive root of 1 of order N. Let g,
1 < 4,7 <2 be roots of 1, such that

—1
qll = q22 = q7 q12q21 = q :

Let V be a 2-dimensional vector space with basis ;1 and x9, whose braiding is
given by
C(J?i (2] l‘j) = q;;x; Q x4, 1<4,5 <2.

Then V is a braided vector space of type As.
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5.1.1 Case N =2

As discussed in [4], the Nichols algebra R = B(V) is isomorphic to the algebra gener-

ated by x1 and x5, with relations
— 2 _ .2
T1T2T1T2 + Tax12221 = 0, o] = x5 = 0.

The dimension of R is 8.

Its Ext algebra can be calculated directly via the minimal projective resolution of
k.

Throughout in this chapter, for an algebra R, we write elements in the free module

R™ n > 1, as row vectors. A morphism f : R™ — R™ is described by an m X n matrix.

Proposition 5.1.1. Let R = B(V) be the algebra mentioned before, then the algebra
Exty(k,k) is generated by ai, az and b with dega; = degas = 1 and degb = 2,

subject to the relations

asa; = ajag =0, a;b=bay, axb = bas.

Proof. We claim that the following complex is the minimal projective resolution of k.
dn da di
Py =P,y Pp—= P — Py =k, (5.1)

where P, = R"t! and d,, is defined as

z1
ToxT] T @]

d. = zawiTy T
n zy wpmomp ’

zg T]TQL]
r2

when n is odd and

z1
zaTiTy T
zozyxo z1
dn = zgT1T T T2 5

xg T]TQL]

£ T1TQT]
2
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when n is even. Especially, dy = ( s ) It is routine to check that 1] is indeed a
complex. Now we use induction to prove the exactness. It is clear that the minimal

projective resolution starts as
R E RIS R k0,

T1

. ) and do = | x2z172 T17271 |. Assume that the complex (|5.1))

where d; =
T2
T2

is exact up to P,. If n is odd, then

dim(Ker d,)
(1+dim P, +dim Ps + ---dim P,,) — (dim Py 4+ dim P> + - - - dim P,,—1)
= 4n+5.

Since the dimension of R is small, we can calculate the dimension of the submodule
Imd, 1 of P, directly, it is also 4n + 5. Then the complex is exact at P,y1. If n is
even, by a similar discussion, we can also conclude that the complex is exact at P, 41,
in this case dim(Kerd,) = 4n + 7. We have that Imd; C rad P,_; for each i > 0.
Therefore, the complex (5.1]) is the minimal projective resolution of k. Since k is a

simple module, we have

Homp(P,, k) = Exty(k, k) (5.2)

as vector spaces for each n > 0. Let a;,a00 € Hompg(Py, k) be the functions dual to
(1,0) and (0, 1) respectively and b € Hompg (P, k) be the function dual to (0,1, 0).

Let f;, g; and h; be the morphisms described by the following matrices:

flz(;)v fz(:‘; wz}l>7 f3< >>

o oo~
©cor o
oo oo

Q
—
|
—
—
~—
Q
%)

I
N
8
o ©
[V
= o o
N—
Q@

By
Il
N
[=eleiNe}
o = 0O o

o = o o
= o o o
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Then we have the following commutative diagrams:

ds do dy

P3 P2 Pl PO k ’
f3 i fa i f1 \L \

p-—2.p M. p Kk

Ps ds P a2 Py @ Py k,
gs i g2 i g1 \L \

p-—2.p M. p k

P p, 2. p . p k.

SN

Pp——PF——k
These commutative diagrams show that the relation listed in the proposition hold.

Let U be the algebra generated by a;, as and b subject to the relations listed in
the proposition. When n is odd, U,, has a basis

n n—2 n-1 n-1 n—2 n
{u17a1 ba"'aalb 2 aaQb 2 PR ¢ 3> b7a2}
and when n is even, U, has a basis
n .n—2 2—-1 2 2-1 n—2 n
{a},a]7"b, -+ ,a16271,b2 jazb2 7" .-+ Jal” “b,al}.

They are functions dual to (1,0---,0), ---, (0,---,0,1) respectively in the projective
resolution (5.1). We have

dimU, = n-+1
= dimHompg(P,/(rad P,), k)
= dimHompg(P,, k)
dim Ext's (k, k),

where the last equation follows from equation (5.2). So we have Extp(k, k) = U,
which completes the proof of the proposition. O
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5.1.2 Case N >3

In this case, the Nichols algebra R = B(V) is the algebra generated by z; and x»

subject to the relations
2 2 2 _
12 — (qu + q12q11)l‘1.’132.1‘1 + q,,45,T2%7 = 0,

(E%ZL’l - (q21 + q21q22)x2x1x2 + qglqzszx% = Oa
o =2l = (129 — q,x0m1)Y = 0.
The dimension of R is N3.

In the rest of this chapter, we set y = x122 — q,,2221. From the above relations,
we obtain that

Gy 1y — Y21 = 0, T2y — g, yx2 = 0.

Let a7 and asg be the two simple roots. The element ajasa; is a reduced decom-
position of the longest element in the Weyl group W and {a;, a1 + ag,as} are the

positive roots. The corresponding root vectors are just z1, y and z2. So the set
{z{'y*?25®, 0 < a; < N,i=1,2,3}

forms a PBW basis of R. The graded algebra GrR corresponding to R is isomorphic
to the algebra generated by x1,y and x2 subject to the relations

—1 —1
Y =4q,, yri, T1T2 = (4,,X2x1, Yr2 =4, T2Y,

We first show that the algebra Ext}y(k, k) is generated in degree 1 and 2.

Let S be the subalgebra of R generated by z; and y. To be more precise, it is

isomorphic to the algebra generated by z; and y subject to the relations

yr1 =g, 71y, 7 =y =0.

The subalgebra S is a normal subalgebra of R (we refer to |33, Appendix] for
the definition of normal subalgebras). Now set R = R/(RST), where ST is the
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augmentation ideal of S. That is, R = k[za]/(z}). We use the Hochschild-Serre
spectral sequence (cf. [33])

B3 = Ext?(k, Ext?(k, k) = Extly(k, k) (5.3)

to calculate the Ext algebra of R. We show that Fy = E,.

The spectral sequence is constructed as follows. Let
= Q> Qo—k—0

and
o> P> Py —>k—0

be free resolutions of gk and rk respectively. There is a natural R-module action on

Homg (P, k) for ¢ > 0. We form a double complex
Ef? = Homz(Q)p, Homg (P, k)).
By taking the vertical homology and then the horizontal homology, we have
EY? = Homp(Q,, Extf (k, k))

and
EY = Ext%(lk, Extf(k, k)).

Now we construct a free resolution of k over R, which is a filtered complex. The

corresponding graded complex is the minimal projective resolution of k over GrR.

We need some preparation to obtain a projective resolution of gk. The following

lemma is known, see for instance [§] and references therein.
Lemma 5.1.2. Both the sets
{agoy et} and {ayagt),

0<a; < N,i=1,2,3 form bases of the algebra R.

Let 0,7 : N — N be the functions defined by
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1, if a is odd;

N —1, ifaiseven

and
‘LT_lN +1, ifais odd,;

sN, if a is even.

Lemma 5.1.3. The element y is a right divisor of [z‘f(al) xg(GB)].

)

(1) If a1,a3 > 0 are odd, then

ba(®(a1, az,a3)) = —g;, ¥ N @(ar — Lz +1,a5 1),

(2) If a; > 0 is odd and a3 > 0 is even, then

Sg(@(al, az, a3))

N-1DXUIN (N—1)R2N _y_o) AN
= qg2 )7 Q21( ) qqzl(N 2)(]212 xé\’ 2@(a1_17a2+1:a3_1)~

(3) If ay > 0 is even and az > 0 is odd, then

52(¢(a1,a2,a3)) = q;%N:chzq)(al —1l,as+1,a3 — 1).

(4) If a1,a3 > 0 are even, then

52(® (a1, az, as))
(N-D)(U72N41) —(N-1)B@RN 2N
= —(Qi2 q21 421
(ki 22 2 4 -+ kv oy Paias + kv 1y ) ®(a1, a2, a3)
_qg\ffl)(‘”;ZN+1)q;(N—1)%Nq;%2N+1

(had eV =2 4+ 2y Baox + Ino1yY )P (a1, a2, az),

= kwyay Czy 4+ knooyN Prime + kyoyN !
N-1

= lLyxy “zy P+ 4 InoayN Pagxy + vy
with k;,l; € ]k,l <1<N-—-1.
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Proof. (1) is easy to see. (2) and (3) follow from the following two equations,

Y N aoe= 1 +g 4+ g Vel Py = —qal 2y
and
1,20 o= +g 4+ g VT yal 2 = —qya) 72 = —q¢® Ny Py

For (4), by Lemma below, both {z{'y**z5*} and {z3°y*z7'}, 0 < a; < N,
i = 1,2,3, are bases of R. Using an easy induction, we can see that [a:ivfl,xév*l]c

can be expressed as

N—-1 _N-1 _ N—-1,_N-1 N-1)?,.N—1,N—-1
[r7 L, mp e = oy x _qu Vay T
N—2 N-2 N-2 N-1
= kwyxy Tzy T4 kv_oy” TPmixe + En_1y

llywéV_Qxf[—z 4+ Iy Pary + Iy

with k;,l; € k, 1 < i < N — 1. Observe that y commutes with 2!z} and zba! for
t > 0. Then the result follows. O

Let
P.:--~%Pn6—">Pn—1"'%P1%P0 (5.4)

be a complex of free R-modules constructed as follows. For each triple (a1, as,as), let
®(aq,as,a3) be a free generator for P,, with n = a; 4+ as + ag. Set

Pr = @aytas+ag=nLt®(a1, a2, a3)(—7(a1), —7(az), —7(as), —7(a1) — 27(az) — 7(asz)).
Here, (-,-,-,-) denotes the degree shift. The differentials are defined by

(51 + 00 + 53)(@((11, as, ag)), if as is Odd;
(61 + 02 + 5o + 03)(®(a1,az2,as3)), if as is even.

8(‘1)((11, az, ag)) = {

The maps d;, 1 < i < 3 and &, are defined as follows.

Put
51(® (a1, az,as)) mcl"<a1)<1>(a1 —1,a2,a3), ifai >0;
02(®(a1,a2,a3)) = (—1)“1q;"<“2)7(“1)y“(“2)¢(a1, a2 —1,a3), if a2 > 0;
33(®(a1,az2,a3)) = (—1)‘“*“2q;’;%)T(‘“>q2’1"(“3)f(“2)mg(a3)<1>(a1, as,asz — 1), if az > 0;
52(¢(al,a2,a3)) D®(a1 — 1,a2 + 1,a3 — 1), if a1,a3 > 0,a2 is even,
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where D is an element in R such that

Dy = _q;(al71)q(172(a3)7'(a171)q;a(a3)7(a2) [xtlf(m)7 xg(as)] .
The existence of such element D will be explained in Lemma Fori=1,2,3, if
a; =0, set 6;(P(ay,a2,a3)) =0. If a3 =0 or a3 =0, set 52(@((117(127(13)) =0.

Proposition 5.1.4. The complex is a projective resolution of k over R, the

corresponding graded complex is the minimal projective resolution of k over GrR.

Proof. Tt is routine to check that is indeed a complex. We see it in Appendix
The differentials preserve the filtration and the corresponding graded complex
is just the minimal projective resolution of k over GrR as constructed in [55 Sec. 4].
Since the filtration is finite, the complex P, is exact by [16, Chapter 2, Lemma 3.13].
Therefore, P, is a free resolution of k over R. O

In the following, we will forget the shifting on the modules in the complex (5.4).
It is clear that it is still a projective resolution of k over R. The only difference is
that the differentials are not of degree 0. We denote this complex by P, as well.

Proposition 5.1.5. Let R = B(V) be the Nichols algebra of V.. The Ext algebra
Exty(k, k) of R is generated in degree 1 and 2.

Proof Applying Hompg(—, k) to the complex (10), we obtain the complex Hompg (P,, k).
The Ext algebra Extp(k, k) is the cohomology of the complex Homp(P,, k). Let
& € Homp(Ps, k) be the function dual to ®(0,---,2,---,0) (the 2 in the i-th place)
and 7n; € Hompg(P1,k) be the function dual to ®(0,---,1,---,0) (the 1 in the i-th
place). Denote by & and 7; the corresponding elements in H*(R,k) and H'(R, k),
respectively. In order to show the relations among them, by abuse of notation, we
define chain maps &; : P, = P,_o and 7; : P, — P,_1 by

€1(®(ar, az, az)) = g1 g p(

ai —2,a2,a3);
&2(®(a1,02,03)) = 31" " "V (a1, a3 — 2, a3);
§3(®(ar,az,a3)) = (a1, az,az — 2);
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(_1)a2+03q;17<a2)qﬁ(aa)xflf(ﬂl)*lq)(al —1,as,as)
+Y1<I>(a1 —1l,a2+ 1,a3 — 1),
N1 (®(a1,az,a3)) = if a1, as is even and a3 > 0;

(—1)eztes gy 2 gTie) " P (ay — 1, a2, a3),

Otherwise;

n2(®(a1,a2,a3)) = (—1)"2 g5, 7D T g0y 020D (0 0y — 1, a5);

(_1)a3q2—1(5(a2)—1)7'(a1)qng(as)ya(ag)—l(I)(al’ as, a3 — 1)
—|—Y2‘I‘(CL1 — 1,(12 —+ 17 as — 1),

n3(® (a1, az,a3)) = if a2, as is even and a1 > 0;

(_1)113(12—1(‘7(612)_1)7'(‘11)q2—17'(613)yo(az)fl@.(al7 as,as — 1)7

Otherwise,

where Y7 and Y5 are the elements in R such that

a o(as+1)7(a1—1) —(o(az)+1)7(a 7(az—1) o(az)m(a1—1) o(a N— o(a
Yly:(—l) 3+1q21(2 )T (a1 )q2l((3) )(2)q12(3 )q12( 3)7 (a1 )q12( 3)[x1 27x2( 3)]C

and
o 17T —-1) —(o —-1)7 o —-1)7 -1 o N—
Yay = (_1)a1+1q21(a2+ )7 (a1 )q21( (ag)—1) (a2)q£2(a3) )7 (a1 )[ml(al)7 z 2}.
Notice that the functions dual to the generators ®(0,---,0,1,0,---,0) of P, form a basis of

Hompg (P, k). Thus, with these maps, we obtain that the Ext algebra is generated in degree
1 and 2. O

It is well-known that the following complex is the minimal projective resolution of k over
R = k[za]/(2).

Qe:-—>R——> R—-R——R-—R-—k

Therefore, we have

EN? Homz(Qp, Homg( Py, k))
HomS(EBal +a2+a3:qR®(a17 az, a3)’ ]k)

Da;+as +a3=qR(I>(al ; A2, (13),

since Homg(R, k) 2 R. The double complex reads as follows
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N—1¢ ¢N—1
2 o 3 To z2
—_— 0 —> 0 —> 0 —> 0 —> - -

9 'Mc;v*lﬁ 9 4\x§’714\ xo
—> 0 —>0 —>0 —>0 — -

9 ,ﬁzé\lflﬁ 9 ¢z§,714\ zo
—S> 0 —>0—>0—>0— ..

o To ,ﬁzgflﬁ To ¢zé\’71¢ To

The vertical differentials are induced from the differentials of the complex ([5.4)).

By taking the vertical homology, we have EY? = Homy(Qp, Ext(k, k)). Following from
[55], the algebra Extg(k, k) is generated by ui, uy, to1 and w,, where degu; = degu, = 2
and degw; = degt, = 1, subject to the relations

2 2
W0y = —@q,, 1010y, W07 =W, = 07

N —N
o, U = q21u1t’0y, U] = UL, tOyly = Uylly, Wily = g, Uytog,

N2
Uyt = q21 Ugly.

We use the notations u; and t; in place of the notations &; and 7; used there. Note that
w3 = mi = 0 holds since we assume that the characteristic of the field k is 0. It should also

be noticed that the Ext algebra in [55] is the opposite algebra here.

As described in the appendix of [33], there is an action of R on Ext%(k, k) given by
Iz(uy) = 3,’2(Ll1) =0, a‘:z(l’vy) =1y, and Iz(m1) =0.

This action is a derivation on Extg(k, k). That is, z2(utv) = z2(u)to + uzs(to) for u,to €
Exts(k, k).

The following lemma gives a basis of Ext? (k, Ext% (k, k)).

Lemma 5.1.6. As a vector space, Ext%(]k,Extg(k k)) has a basis as follows

uiu{,mh 2(t+3)+1=gq, q is odd and p is even;
TERTER 2(i+7)+1=gq, q 15 odd and p is odd,
uju (wiry)*, k=0,1 and 2(i + j) + 2k = q, q is even.

Proof. Let E = Extg(k, k). The lemma follows directly from the following facts:
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(i) If g is odd, then {uiultii,j > 0,2(i + j) + 1 = ¢} forms a basis of z2E? and
{e € E¥|zze = 0}.

(ii) If g is even, then z2 E? = 0.

(iil) 3 'E = 0. O

Proposition 5.1.7. The spectral sequence
ED? = Ext?(k, Ext} (k, k) = Exth(k, k)

satisfies Fa = Foo.

Proof. The elements uiu@my and uﬁuiml are represented by
e 20(2i +1,24,0) + q,0 Y T 0(2i, 25 + 1,0)

and
zy T (20 + 1,25,0),

while u’iu{, and uiuimlmy are represented by
oy ' ®(2i,25,0) and 25 " '®(2i 4+ 1,25 + 1,0)

in Ey. In other words, all the elements in Ey representing the elements in F2 are mapped
to 0 under the horizontal differentials. We conclude that Fy = F. O

We now can determine the dimension of Extf(k,k). This dimension depends on the

parity of n.

Corollary 5.1.8. We have

2 . .
W, if n is odd;

dim Ext(k,l) = q 5
8n+10n+8.

if n is even.

Proof. Set E™ = @®ptq=nE}? = Spiq=—n ExtZ(k, Ext§(k,k)). By Lemma we can

112



5.1. STRUCTURES OF EXT ALGEBRAS

illustrate the dimensions of E¥? with the following table:

= — = — W — N — Ul — W — =1 —
ot
ot
ot
ot
t

l—1—1—1—1—"-

Therefore, when n is odd,

dmE" = (142+4--+21 4143+ +n)
3n248n+45
S .
When n is even,
dmE" = (1424 - +24143+--+n+1)
3n%+10n+8
2 .

By Proposition [5.1.7] we have E; = E, so dim Ext%(k,k) = dim E™. This completes the
proof. O

Now we give the first segment of the minimal projective resolution of a Nichols algebra

of type As.

The algebra R is a local algebra. Thus projective R-modules are free. Let
R*"—-R” R? 3R"—-SR"°—>k—0

be the first segment of the minimal projective resolution. Since k is a simple module, we

have )
dim Exty(k,k) = dimHomg(R™, k)

dim Hompg((R/(rad R))™, k)

= ni.
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From the computation of the dimensions of Extx(k, k) in Corollary [5.1.8] we can see that

the minimal projective resolution begins as
R? R - R - R - R—-k—0.

We give the differentials in the following proposition.

As in the construction of &> in §5.1.2) let D be the element in R such that Dy =

EARE

Proposition 5.1.9. Let R be a Nichols algebra of As type. The following sequence provides
the first segment of the minimal projective resolution of k over R,
RZ Y BT B RS2 R U R k0, (5.5)

where the differentials are given by the following matrices:

N-1

Ty 0
—(q1z + 9912) 7172 + G5, T211 z?
d2 = g,y s yN :
:C% qqgl T1T2 — (Q21 + q(hl)x?xl
0 xévfl
T 0 0 0 0
an s N2 0 0 0
0 0 T2 gy 'YVt 0
d3 = 0 X2 0 T 0 5
0 —a Yyt m 0 0
0 0 0 qNxy 2 z1
0 0 0 0 T2
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where
Ei\’_l 0 0 0
7(qi;N + qq}"' )iz + qqf;'Nwzrl $% 0 0
A = 7(11;rNny1w2 yN—1q, N o 7
N-1
‘?f;“ﬂg 9a3 @122 = (49 +adp; )22y 0 quxl
N-—1 __—N242N5H
0 L) 0 q12 D
0 0 0
0 0 0
2
_ —N24N, N-1 o o
Ay = P 1 y
0 0
2
—N24N_N-1
0 0
912
0o o z? ﬂfqu;yN*l”
0o o yN=1a, 0
2 ) N-1,N—1
0 0 qqy @rey — (dp1 +99p;)222] 0212NyN 112
Az = 0o o , 0 aiN g ,
N2 N-1
0 0 q12 To 0
0o o 0 0
0o o0 0 0
—(ay9 + q412)111f21+ qqu zow] 0 0
—q10Y° T T2 0 0
x3 0 0
Ay = 0 —(a15 +aay5)z122 + qqu EPES «3
0 7q12y1;/7122 R yN =1z
0 z3 a3, w1w2 — (;1\,21 + 4ap; )z2w]
0 0 zy

Proof. Tt is routine to check that (5.5) is indeed a complex. But we need to mention that
the following two equations hold

- N—1_N-2
Dxy—27 "z =0,

N—-1 N-2 —N242N—
Ty T -4, Dz = 0.

These equations follow from Lemma and the equations

N-1 N-1 _ N-1_N-2
[z7 72 " emr =y T an

N—-1 _N-1 _ N?-2N_ N—-1_N-2
[11 y Lo }c9327q12 Yyry Iy .

The complex (5.5) is homotopically equivalent to the first segment of the resolution P,

(without shifting) constructed in Section 2. Therefore, it is exact. O

Remark 5.1.10. In [56, Theorem 6.1.3], the authors give a set of linearly independent
2-cocycles on R, indexed by the positive roots. In the resolution , the functions dual
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to (1,0,0,0,0), (0,0,1,0,0) and (0,0,0,0,1) are just those 2-cocycles, corresponding to the

positive roots a1, a1 + a2 and ag respectively.

Now we give our main theorems about the structure of the Ext algebra of a Nichols

algebra of type Aa.

Theorem 5.1.11. Let R be a Nichols algebra of type A with N = 3, then Extk(k, k) is
generated by a;, b;, ¢;, i = 1,2 and by with

dega; =1, degb; =degb, =degc; =2,

subject to the relations
uf = ag =0, ajax =aga =0,
aiby =biay, a1by = qf2bya17 aibe = qibgal,
arc1 =g qy,c101, aica = g, c2ai,
qf’zazbl =biaq, qf’zazby = byaz, azxbz = baay,
az¢y = qq;claz, q2q12 22 = €202,
0’20201 = arc1, arbs = ¢°q 0202, €102 = ca0,
bico = q?ch, q?zbgq =3, biby = qf2C1C2, C1c = quczcl,
bib, = Q?zbybh b1bs = q?25251, byby = q?2bgby,
qf2qb1 =bic1, ¢1by = qf’zbych c1be = q?252C1,
q0,e2b1 = bica, ¢’ caby = byca, c2bo = ¢, baca.
Theorem 5.1.12. Let R be a Nichols algebra of type A with N > 3, then Extk(k, k) is
generated by a;, b; and ¢;, ¢ = 1,2 and by, with
dega; =1, degb; =degb, =degc; =2,

subject to the relations
2 2
a; =a; =0, ajaz = aza; =0,
N N
aiby = biar, aby =q,,bya1, a1bs = q,,b2a1,
N N
q12a261 = biaq, q12a26y = byaz, axby = 62a27
2 2
a2 = (]q12C2(Cl17 a2¢1 = qq21 10z,
a1 = c101 = ca02 = agce = 0, cra2 = c2aq,
2 2
€p = €y = €102 = €201 = 07

2 2 2
bi1by :qu\; byb1, b1b2 :qi\; bab1, byba :qi\é baby,
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N N 2N
¢ypc1b1 =bic, by =g, byc1, c1be =g, baci,

2N N N
q,5 by = [31C2, q12c2by = byCQ, cobo = qlzbgtg.

Proof of Theorems [5.1.11] and |5.1.194 We prove Theorem [5.1.11} Theorem [5.1.12| can
be proved similarly. Consider the minimal resolution showed in Proposition we
have Ext}k(k, k) = Homg(R?,k) and Ext%(k, k) = Homg(R®, k), since k is a simple mod-
ule. Let ai,a2 € Extk(k, k) be the functions dual to (1,0) and (0,1) respectively. Let
b1, c1, by, c2,b2 € Extk(k,k) be the functions dual to (1,0,0,0,0), -, (0,0,0,0,1) respec-
tively. The relations listed in the theorem can be verified by constructing suitable commu-
tative diagrams, we do this in Appendix Let U be an algebra generated by by, by,

bo and a;, ¢;, @ = 1,2, subject to the relations listed in the theorem. Then any element in

. . o b bg a; pbipbypbs c;
U can be written as a linear combination of elements of the form b} b52b5%a?, b1 b, bo2 ¢S’

and [111)1 bzyb?tlaz, with b1, b2, b3 > 0, ai, ¢; € {O, 1}, i =1,2.

By Proposition [5.1.5] the algebra Ext%(k, k) is a quotient of U. When n is odd,

dimU, = (3 + (330 + 1)+ 3(37)(35 + 1)
—  3n°48n4s5
Snts
When n is even,
dmU, = ($)(5+D+35(53+1)(5+2)
3n’410n+8

8
It follows from Corollary that dimU, = dimExty(k,k), for all n > 0, so U =
Ext%(k, k), which completes the proof of the theorem. O

Remark 5.1.13. In [55] Thm 5.4], the authors showed that the Ext algebra of a Nichols

algebra of finite Cartan type is braided commutative. This coincides with the results we

obtain in Theorems [F.1.11l and 5.1.12

In [2], the author raised a question of when the Ext algebra of a Nichols algebra is still

a Nichols algebra. In general, the answer is negative.

Proposition 5.1.14. The Ext algebra of a Nichols algebra of type As, with natural grading,

is not a Nichols algebra.

Proof. We consider the case N = 2 first. Denote the Ext algebra by E. From Proposition
E is generated by a1, az and b subject to the relations

aza; = ajaz — 0, aib = ba1, azb = bas.

If E is a Nichols algebra with respect to some braided vector space V', then a1, az and b

should form a basis of V. This is because as an algebra, a Nichols algebra B(V) is generated
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by elements in V. With relation aza; = ajaz, a16 = ba; and azb = bas, the vector space V'
is of diagonal type. This contradicts the relations asa; = ajaz = 0. Therefore, E is not a
Nichols algebra. By a similar argument, we can conclude that when N > 3, the Ext algebra
is not a Nichols algebra either. (I

However, we have the following positive result.

Proposition 5.1.15. Let R be a Nichols algebra of type As with N > 3. Then Extf(k,k)/N
is a Nichols algebra of diagonal type, where N is the ideal generated by nilpotent elements.

Proof. From the proof of Theorem|5.1.12} the elements b2 b52b52 aft, 62" byY b5 ¢5* and bY! by 052 c1az,

with b1, b2, b3 > 0, a;, ¢; € {0,1}, i = 1,2 form a basis of Extf(k,k). With the relations
listed in that theorem, the elements b}! bl2 b5%a;, bO bzy b52¢; and b2 b;ybg%lag are nilpo-
tent. However, linear combination of elements b?l bZQ bg?’ are not nilpotent. Then the algebra
Extf(k,k)/N is generated by b1, b, and bs subject to the relations

2 2 2
016, = gy bybi, bibo =gl babi, bybs =gy baby.

It is obvious that it is a Nichols algebra of diagonal type with Cartan matrix of type A; x
A1 X Al. O
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5.2 Applications

Before we give some applications of Theorem [5.1.11] and Theorem [5.1.12] in Section [5-1}
we recall the definitions of complexities and varieties. We follow the definitions and the

notations in [29]. Let A be a finite dimensional Hopf algebra and
H*(A, k) := Ext}(k, k).

The vector space H*(A, k) is an associative graded algebra under the Yoneda product. The
subalgebra H®”(A, k) of H*(A, k) is defined as

Hev (A7 ]k) = EB'?10:0 H2n (A7 ]k)

The algebra H®" (A, k) is commutative, since H* (A, k) is graded commutative. In the follow-
ing, we say that a Hopf algebra A satisfies the assumption (fg) if the following conditions
hold:

(fgl) The algebra H®"(A, k) is finitely generated;
(fg2) The H®”(A, k)-module Ext’ (M, N) is finitely generated for any two finite dimensional
A-modules M and N.

Under the assumption (fg), the variety Va(M, N) for A-modules M and N is defined as
Va(M, N) := MaxSpec(H®" (A, k)/I(M, N)),

where I(M, N) is the annihilator of the action of H*"(A, k) on Ext} (M, N). It is an homo-
geneous ideal of H*V(A, k). The support variety of M is defined as

Va(M) = Va(M, M).

For a graded vector space V*® = @nez,n>0V", the growth rate v(V*) is defined as
¥(V*) = min{c € Z,c > 0| 3b € R,such that dim V" < bn°"", for all n > 0}.
Let M be an A-module and
Pe: - —>P—-P—>M-—0

the minimal projective resolution of M. Then the growth rate v(P.) is said to be the
complexity cxa(M) of M.

By [55, Thm. 6.3] a finite dimensional pointed Hopf algebra u(D, A, 1) satisfies the
assumption (fg). The following corollary is a direct consequence of Theorems [5.1.11] and
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o. 1. 12

Corollary 5.2.1. Let A = u(D,0, 1) be a pointed Hopf algebra of type Az with N > 3 and
R = B(V) the corresponding Nichols algebra. Then

cxr(k) = cxa(k) = 3.

In addition, Va(k) = Vigrryza (k).

Proof. For the Nichols algebra R, the complexity
cxp(k) = y(Extr(k, k)) =3

follows directly from Proposition or Theorems and By [55, Lemma 6.1],
H*(w(D, 0, 1), k) = H*(u(D,0,0),k). In addition, we have Exty, p ;o) (k, k) = Extr(k, k)©.
Observe that for each positive root «, some power of b, is invariant under the group action.
Indeed, from the discussion in Section 6 in [56], each b, (denoted by f, there) can be
expressed as a function R x RT™ — k. Then we see that b2« is I-invariant, where M, is the
integer such that y2e = e. Hence, v(H*(u(D,0,0),k) = 3, which implies that cxa (k) = 3.
With the relations in Theorems and we see that

Va (k) 2 MaxSpec(k[b}™", by, b3"2]),

where m1, m, and mz are the least integers such that b}"', by, b5'> € H*(u(D,0,0),k).
That is, Va (k) is isomorphic to the maximal spectrum of the polynomial algebra k[y1, y2, ys].
By [B5, Thm. 4.1] Verr#c(k) is also isomorphic to the maximal spectrum of k[yi, y2, ys].
So VA(]k) =~ VGrR#G(]k)~ O

Now we give an easy application of Theorems [5.1.11] and [5.1.12]. We show that a large

class of finite dimensional pointed Hopf algebras of finite Cartan type are wild.

Proposition 5.2.2. Let A = u(D, \, 1) be a pointed Hopf algebra with Dynkin diagrams of
type A, D, or E, except for A1 and A1 X A1 with the order Ny > 2 for at least one component
J. Then A is wild.

Proof. In view of [29] Thm. 3.1], we only need to prove that cxa(k) > 3. Using [55, Lemma
6.1] again, we have cxa(k) = cxy(p,»,0)(k). However, u(D, X, 0) contains a Hopf subalgebra
B which is of type Az with the order N > 3. Thus cxy(p,x,0)(k) > cxp(k) > 3 by [29, Prop
2.1]. O

A finite dimensional CY algebra is semisimple. Indeed, if R is a finite dimensional CY
algebra of dimension d, then by [I3, Prop. 2.3], Ext%(R, R)* = Homg(R,R). Thus we
have d = 0. So the global dimension of R is 0 ([I3, Rem. 2.8]). Therefore, the finite
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dimensional algebras u(D, A, i) are not CY algebras. However, a finite dimensional Hopf
algebra A is a Frobenius algebra. Let modA be the full subcategory of ModA consisting of
finitely generated A-modules. Then modA is a Frobenius category and its stable category
modA is a triangulated category with the shift functor Q7', where Q is the syzygy functor.

The objects of the category modA are modules in modA. For X, Y € modA, the set of
morphisms from X to Y is Homa(X,Y)/Z(X,Y), where

I(X,Y) = {f € Homa(X,Y) | f factor through an injective module}.

We refer to [34] for a detailed discussion about stable categories and Frobenius categories.

Now we wonder whether the stable category of a pointed Hopf algebra w(D, A, 1) is a CY
category. Let A be a Frobenius algebra. By Auslander-Reiten formula (cf. [I0, Thm. 2.13]

or [I1}, Cor. IV.4.4]), there are natural isomorphisms
Hom , (X,Y) = Exth (Y, 7X)*,

for any X,Y € modA, where 7 is the Auslander-Reiten translate. Therefore, the category
modA has a Serre functor 7Q~!. By [II, Prop. IV.3.7], this functor is isomorphic to
the functor v, where v is the Nakayama functor of the category modA. That is, v =
A" ®4 — = Homa(—,A)*. Let n be a Nakayama automorphism of A. That is, n is an
algebra automorphism such that A* = A, as A-A-bimodules. Thus v = A, ®4 —. If modA
is a CY category of dimension d, then there is a natural isomorphism v 2 Q~4~1. The order
of a Nakayama automorphism of a finite dimensional Hopf algebra is finite [30, Lemma 1.5].
Therefore, there is some integer n such that Q2" = id. Now we obtain that if modA is a CY

category, then cxa (k) = 1.

Let A = u(D, \, u) be a finite dimensional pointed Hopf algebra of finite Cartan type. If
the datum (D, A, u) satisfies one of the following conditions:

e the Cartan matrix is neither of type A; nor of type A1 x Aj;

e the Cartan matrix is of type A; X A1 and A =0,

then u(D, \,0) contains a subalgebra B, such that B = u(D’,0,0), where the Cartan matrix
in D' is of type A1 X A;. By [55, Thm. 4.1], after applying a similar argument as in the
proof of Corollary [5.2.1] we obtain that cxg(k) = 2. So

cxa (k) = cxy(p,r,0) = cxp(k) = 2.

Therefore, modA is not a CY category.

If the Cartan matrix is of type Ai, then the non-simple blocks of A are isomorphic to

121



CHAPTER 5. EXT ALGEBRAS OF NICHOLS ALGEBRAS OF TYPE A,

the algebras of the form kQ/I, where Q is the following quiver,

k—>k+1

and I is the ideal generated by all paths of length N such that N divides m [49]. The stable
category of kQ/I is not a CY category by [22] Thm. 6.1] (cf. [I5] and [26]). So modA is
not a CY category.

If the Cartan matrix is of type A1 x A; and the linking parameters are non-zero, we do
not know how to calculate the complexity of k. But we can obtain the complexity in one
special case. Assume that A is the small quantum group uq(sl2), that is, A is generated by
E, F and K subject to the relations

KP =1, EP = F" =0,

K—-K™*
qg—q 1’
where p is an odd integer and ¢ is a p-th primitive root of 1. Then by [(3, Thm. 3.3.2], the

KE =¢’EK, KF =q *FK, EF — FE =

non-simple blocks of A are isomorphic to k@Q/I, where Q is the following quiver,

/y\
LT 2
<=

S—y

1

and I is the ideal generated by z? — y?> = 0 and 2y = yz = 0. From a direct computation,
we have that cx4(k) = 2. So modA is not a CY category.

In summary, except the algebra u(D, A, u) of type A1 x A1 with nonzero linking parame-
ters, we have proved that the stable category of u(D, A, p) in other cases is not a CY category.
This leads us to conjecture that the stable category of u(D, A, 1) is not a CY category for
any D, A and p.
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5.3 Appendix

5.3.1

In this subsection, we verify that the complex (5.4) in §5.1.2|is indeed a complex.

The following equations follow directly from Lemma [5.1.3

yD, if a1, as are both even or both odd;
Dy =4 ¢;;"*?yD, if a1 even and a3 is odd; (5.6)
qﬁ_QyD, if a1 odd and a3 is even.

It is clear that 62 = 0 for ¢ = 1,2,3. So if ap is odd,

82(¢‘(a17a27 a3)) = ((6351 + 0163 + 8252) + (5253 + 5352) + (5152 + 5251))@(&1, ag,ag).

Put .
A = ((53(51 + 0103 +5252)<D(a1,a2,a3),
B = (52(53 —‘y—((5362)@(@1,0,2,CL3)7
Cc = ((51(52 +5251)<I>(a1,a2,a3).

We show that A= B =C =0.

A = (5351 + 0103 +52(52)q>(a1,a2,a3)
((_1)a1 —1+a2q102(a3)7—(a1—1)q2—10(a3)7—(a2) [:Etlf(tu)7 mg(ag)]c

+(~=1)* ¢, “VyD)®(ar — 1,a2,a5 — 1),

where D satisfies Dy = fq;(‘”_1)q§’2<“3)7(”1_l)q;"(a?’)T(“?_l)[affml),:cg('l?’)]c. That is,

qv(ag)r(al—1)q—0(a3)7(a2—1)[xclr(a1)7 xg(aa)]c + q;T(al_l)Dy —-0.

12 21

Hence,
o(agz)T(a1—1) —o(az)7(a o(a o(a —o(a, —7(a;—1
q12( 3) ( 1 )q21 < 3) ( 2)[‘,131( 1)7‘%2( 3)]C q21 ( 3)q21 ( 1 )Dy — O

By equation l) we have q;l"(“i”)q;;(“lfl)Dy = q;lﬂal)yD. So

A

((71)0,1—1+a2q172(a3)-r(a1—1)q2—10(a3)7—(a2) [xir(al)’ mg(ag)]c

(1) g5, “VyD)®(a1 — 1, a2,a5 — 1)
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The equations B = 0 and C = 0 can be verified directly. For example,

B

(0203 + 6302)(P(a1, az, a3))
((_1)a1q;IU(M)T(al)yU(az) (_1)111 +a2*1q;72(a3)7(01)q2*10(a3)7'(a2*Umg(as)

+(_1)a1+a2qldz(as)T(al)qz—la(as)f(%)xg(%)(_1)a1q;la(az)T(al)yU(%))
<I>(a1,a2 — 1,CL3 — 1)
- 0,

since T(az — 1) + o(az2) = 7(a2).

If a2 is even, then

82(¢'(a1, az,a3)) = ((0193 + 6301 + 5252) + (0102 + 0201) + (9302 + 9203)
+(0201 + d102) + (9203 + 6302)) P (a1, az, as).

The equation (8103 + 3301 + 0202)® (a1, az, az) = 0 follows directly from the definition of &y.

As in the case in which a2 is odd,
(5253 =+ 5352)‘1’(&1, az, a3) =0 and (5152 =+ 6251)@(611, CLQ,(I3) =0

can be also verified via a straightforward computation. Now, we show that (628, +68102)®(a1, a2, as) =
0 case by case, using Lemma [5.1.3]

Case (i) a1 and ag are both odd,

(5251 + 5152)‘1‘(@,&2, as)
_ a2 _22
(71(gas ? Jii\]72) —qn’ xfril)q)(al —2,a2 +1,a3)
= 0.

Case (ii) a1 is odd and as is even,

(5251 + 5152)'1)(&1, az, a3)

N-1)(U=3N4+1) —(N—1)2N 13N _ _
(ml(fq; s - )Q21( e Qo1 ® * )(klmi\, 237? 2+"'

+hn_oyN Baize + knv_1yY )
(N-D)HZIN (N-1)R N (y_g) %L

1

N N-—2 N-1

+qi2 g21 995, Qo1 Ty Xy )q)(al —2,a2 +1, a3)
(N-DX LN (N—1)2 N g iy
= Q12 2 q21 2 qq21(N 2)(]212
2 _ _ 9 _
(=g TNz (kay P2) P+ 4 kvoayY Paize + kvoay™ ?)

4+ 2NN d(ag — 2,02 + 1, a3)
= 0,

N242N N-1 N71] N—2 N-1

since ¢, zilzy L xy e =y Cxy Y.
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Case (iii) a1 is even and as is odd,

(5251 + (5152)(1)(@176'23 a3)
_A2 N —22N N_
= —Qx’ xi\/ ! + gy ? xf[ 1(1)(0‘1 — 2,02+ 1,a3)
0.

Case (iv) a1 and a3 are both even,

(52d1 + d1d2)q>(a17 az,as)

1, (N—D)®LZ2N (N-1)22N 2N
= xi\l 1(%2 2 g21 2 21(N 2)(]21 xé\] 2)
(N—1)(L=2N+1) —(N-1)2N 2=2N4
+(*Q12 2 q21 gy )(kl v é\[ 2+

+hn_oyN Brize + Evo1yY ")z ®(ar — 2,02 + 1, a3)

Za a a1—-2
(N=1)(H7=N+1) —(N-1D)RN =N+, N1 N-2
= ( 12 21 q21 )(xl Lo

— (koY 2 P 4+ vy Paiae + kvoay™ ) an)®(ar — 2,02 + 1, a3)

= 07
: N-1 _N-— N-1_N-2
since [z 71 2 " Yewy = ya ¥ tal 2.

Similarly, we can prove that (6283 + 302)® (a1, az,as) = 0.

In conclusion, we have 8% =

5.3.2

In this subsection, we give the necessary commutative diagrams to check the relations in

Theorems B 111 and B.1.12

Set
X, —q1_z(N 1)(N—3) B L TG S I TR Ny b
where k; € k, 1 <i < N — 3, such that xN ! f[ 3 = X122, and
Xy = (N B)(N-1),, N-8,N-38 | 1 Nt N—0 | 1 2N -5,N=5 L in a3

where [; € k, 1 <17 < N — 3, such that a:N L N 3 = X,2?.

Let fi, fs, fi and g{, gg , gg, 1 <i<5andj=1,2 be the morphisms described by the

following matrices:

fiis the 5 x 1 matrix with 1 in the i-th position and 0 elsewhere,
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0
0
0
0
4= NZ+N
- 12
p=|
0
0
0
0
0
0
1 (1
g1 =1\ o
wﬁiz 0
1 91,72 (Zd1p — a935)e1 1
92 = 0 —aqyN Tt y 93 =
0 T
0 0
0 0
2 N 0 2
92 = vVt ° 93 =
(=g —qa99)®2 9q; =1
—2
0 zo

OCoOoOrRrOOO O ©OO0O0O0

© 0 o oo o kR

© oo o oroO

0o o
0o o
0o o0
0o 0
0o 0
0o o
0o o0
0o o
0o o
10
0o 1
0 0
( 0

1

(—qq9

Q

_
VIV

=

o oo

o o o

Then we have the following commutative diagrams

HOO0OO0OO0OO0OO0O O ©O0 OO

R12 R? R5

féi f%i ffi \
R® R? R
R R’ R?

95 J{ 9} l gt l \
R® R? R

0 0 0 0
—qq;9)eN 73 o 0 0
0 0 0 0
2
0 0 ad3, 0 ,
0 qi\; 0 0
N
0 0 0 aly,
0 0 0 0
0 0 0
0 0 0
N
931 0 0
0 0 0
0 0 0
0 ‘?{\;(*‘721 — 449, )1573 0
0 0 1
R? R, (5.7)
k
R k. (5.8)
k

It is also routine to check the commutativity of the diagrams (5.7) and (5.8). But we

need to mention that the following equations hold

X1(qg2, 2172 — (@, + 4y )T271) =

1

27

N2
—4,

+2Nﬁ’
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XZ(QQfngml — (12 + 94y5)T172) = _57
which follow from Lemmal[5.1.2] and the following two equations

—N?242NP _ N—-1,_N-2
4,5 Dxy = zy "z
= Xizim

= X1(—q@, z172 + (qo + 4051 )T2w1)T2,

Ewl = wjlv_lmév_Q
Xgﬁacg
= Xo(—q@,2m1 + (¢ + qq,,)T172)T1.
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