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Samenvatting

Het hoofddoel van deze thesis is de studie van de Calabi-Yau (CY) eigenschap van

pointed Hopf algebra’s U(D, λ) van eindig Cartan type en hun overeenkomstige Nichols

algebra’s B(V ).

We gebruiken de homological integral om de rigid dualizing complex van een

pointed Hopf algebra U(D, λ) te berekenen. We geven een nodige en voldoende voor-

waarde voor U(D, λ) om een CY algebra te zijn. CY pointed Hopf algebra’s U(D, λ)

met dimensie lager dan 5 worden geclassificeerd.

Een Nichols algebra B(V ) van eindig Cartan type is een Np-gegradeerde algebra

(p ∈ N), zodat de geassocieerde gegradeerde algebra GrB(V ) een quantum veelterm

algebra is. We verkrijgen de rigid dualizing complex van B(V ) door middel van een

analyse van de relaties met de rigid dualizing complexen van GrB(V ) en U(D, λ). We

geven een nodige en voldoende voorwaarde voor B(V ) om een CY algebra te zijn.

Het blijkt dat de algebra’s U(D, λ) en B(V ) niet gelijktijdig CY algebra’s kunnen

zijn. Zij H een eindig dimensionale Hopf algebra en zij R een braided Hopf algebra in

de category H
HYD van Yetter-Drinfeld modulen. Het verband tussen de CY eigenschap

van R en van R#H wordt besproken. In het geval dat R CY is en H semi-simpel is,

berekenen we de homological integral van R#H en geven we een nodige en voldoende

voorwaarde opdat R#H een CY algebra is. Indien H de groep algebra kΓ van een

eindige groep Γ is en R#kΓ een CY algebra is, geven we een nodige en voldoende

voorwaarde voor R om een CY algebra te zijn, door middel van de rigid dualizing

complex van R te berekenen.

Ten slotte bestuderen we de eigenschappen van een eindig dimensionale pointed
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Hopf algebra u(D, λ, µ). Door gebruik te maken van de Hochschild-Serre spectraal

reeks, beschrijven we de volledige structuur van de Ext algebra van een Nichols algebra

van type A2 in termen van voortbrengers en relaties. Als toepassing bewijzen we dat

pointed Hopf algebra’s u(D, λ, µ) met Dynkin diagrammen van type A, D of E, met

uitzondering van type A1 en A1×A1 met orde NJ > 2 voor minstens één component

J , wild zijn. Ten tweede bestuderen we de CY eigenschap van een eindig dimensionale

Hopf algebra u(D, λ, µ). Dit is onmogelijk een CY algebra. Door een analyse van de

structuur van de Ext algebra, bekomen we dat de bijhorende stable categorie geen

CY categorie is.
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Introduction

The notion of a Calabi-Yau (CY) category has its origin in algebraic geometry. The

bounded derived category of coherent sheaves on a CY manifold has a Serre functor

which is isomorphic to a power of the shift functor. A triangulated category satisfying

this condition was defined to be a CY category by Kontsevich [47]. He used CY

categories to study the homological mirror symmetry.

In this thesis, we follow Ginzburg’s definition of a CY algebra [32] (Definition

1.5.6). This definition is a non-categorical definition, and was inspired by Van den

Bergh’s duality theorem [67]. If A is a CY algebra of dimension d, then the category

Db
fd(A) is a CY category by [44, Lemma 4.1], where Db

fd(A) is the full triangulated

subcategory of the derived category of A consisting of complexes whose homology is

of finite total dimension.

In recent years, CY algebras (categories) have attracted lots of attention. In

the representation theory of finite dimensional algebras, cluster categories are 2-CY

categories. Thus CY categories (algebras) have found their applications in Fomin-

Zelevinsky’s cluster-tilting theory [1], [36], [42], [43] etc.. Besides, CY categories

have been also applied to mathematical physics, notably to String Theory and to the

coformal field theory [24], [48] etc..

In [35], He, Van Oystaeyen and Zhang discussed the CY property of cocommu-

tative Hopf algebras by using the homological integral. A necessary and sufficient

condition for a Noetherian Hopf algebra to be a CY algebra was given there. In ad-

dition, Noetherian cocommutative CY Hopf algebras of dimension not greater than 3

were classified. The notion of a homological integral was introduced by Lu, Wu and

Zhang in order to study infinite dimensional AS-Gorenstein (Definition 1.5.17) Hopf

algebras [53]. It generalizes the notion of an integral of a finite dimensional Hopf

vii



algebra.

CY algebras are closely related to algebras having a rigid dualizing complex (Def-

inition 1.5.10). An algebra A is a CY algebra of dimension d if and only if A is ho-

mologically smooth and has a rigid dualizing complex A[d] (cf. Corollary 1.5.12). In

fact, dualizing complexes are of great interest of their own. The non-commutative ver-

sion of a dualizing complex (Definition 1.5.9) was introduced by Yekutieli in 1990 [74].

Since then it became a useful tool to study homological properties of non-commutative

algebras [37], [38], [75], [77] etc.. Roughly speaking, a dualizing complex is a complex

which induces a duality between certain subcategories of derived categories of modules

(cf. (1.18)). However, dualizing complexes are not unique. To overcome this weak-

ness, Van den Bergh introduced the notion of a rigid dualzing complex in [68], which

is unique up to isomorphism. Brown and Zhang gave the rigid dualizing complex of

an AS-Gorenstein Hopf algebra [20]. Let g be a finite dimensional semisimple Lie

algebra. The rigid dualizing complex of the quantized enveloping algebra Uq(g) was

given by Chemla [23]. It turns out that the algebra Uq(g) is a CY algebra. As far as

we know, there are no literature concerning the CY property or dualizing complexes

of braided Hopf algebras.

A Hopf algebra A is called pointed, if all its simple left or right comodules are

1-dimensional. This is equivalent to saying that the coradical of A is a group algebra.

For example, group algebras, universal enveloping algebras of Lie algebras, and quan-

tized enveloping algebras of finite dimensional semisimple Lie algebras are all pointed

Hopf algebras. For a pointed Hopf algebra A, its coradical filtration is a Hopf algebra

filtration. Let GrA be its associated graded Hopf algebra. Its degree zero part is kΓ,

where Γ is the group of all group-like elements of A. Then there is a Hopf algebra

projection from GrA onto kΓ. By a theorem of Radford [62], GrA is the biproduct

or the bosonization

GrA ∼= R#kΓ,

where R is a braided Hopf algebra in the category of Yetter-Drinfeld modules over

kΓ.

The vector space V consisting of primitive elements of R is a Yetter-Drinfeld

module over kΓ. The algebra B(V ) generated by V is a braided Hopf subalgebra of

R. Its algebra structure and coalgebra structure depend only on the braiding of V .

Now the algebra B(V ) is called the Nichols algebra of V . The structure of a Nichols

algebra first appeared in [60] and was rediscovered independently by several authors
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later [71], [54].

Andruskiewitsch and Schneider made a lot of contribution to the classification

of pointed Hopf algebras. Their method consists of three parts. First, determine

all possible Nichols algebras B(V ), and then determine the structure of all pointed

Hopf algebras A with Γ being the group of group-like elements of A such that GrA ∼=
B(V )#kΓ. Finally, decide which Hopf algebras A are generated by group-like elements

and skew-primitive elements.

The Hopf algebras U(D, λ) constructed in [7] constitute a large class of pointed

Hopf algebras with finite Gelfand-Kirillov dimension, whose group-like elements form

an abelian group. Such a pointed Hopf algebra U(D, λ) is viewed as a generalization of

the quantized enveloping algebra Uq(g), g a finite dimensional semisimple Lie algebra.

The main purpose of this thesis is to study the CY property of the algebras U(D, λ)

and their corresponding Nichols algebras.

Now we formulate our main results. We work over a fixed algebraically closed field

k with characteristic 0. Let Γ be a free abelian group of finite rank,

D(Γ, (gi)16i6θ, (χi)16i6θ, (aij)16i,j6θ)

a generic datum of finite Cartan type for Γ (Definition 1.4.1), and λ a family of

linking parameters for D (Definition 1.4.3). For simplicity, we define qij = χj(gi),

1 6 i, j 6 θ.

Let Φ be the root system of the Cartan matrix (aij), {α1, · · · , αθ} a set of simple

roots, and X the set of connected components of the Dynkin diagram. Let ΦJ ,

J ∈ X , be the root system of the component J . For 1 6 i, j 6 θ, we write i ∼ j

if they belong to the same connected component. Assume that w0 = si1 · · · sip is a

reduced decomposition of the longest element in the Weyl group W as a product of

simple reflections. Then

β1 = αi1 , β2 = si1(αi2), · · · , βp = si1 · · · sip−1
(αip)

are the positive roots. If βi =
∑θ
i=1miαi, then we define

g
βi

= gm1
1 · · · gmθθ and χ

βi
= χm1

1 · · ·χmθθ .

The CY property of U(D, λ) is discussed in Chapter 2. First, we obtain the
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following theorem.

Theorem 1. (Theorem 2.1.5) Let D be a generic datum of finite Cartan type for a

free abelian group Γ of rank s, and λ a family of linking parameters for D.

(1) The rigid dualizing complex of the Hopf algebra A = U(D, λ) is ψA[p + s],

where p is the number of the positive roots and s is the rank of Γ. The algebra

automorphism ψ is defined by ψ(xk) =
∏p
i=1,i6=jk χβi (gk)xk, for all 1 6 k 6 θ,

and ψ(g) = (
∏p
i=1 χβi )(g) for any g ∈ Γ, where each jk is the integer such that

βjk = αk.

(2) The algebra A is CY if and only if
∏p
i=1 χβi = ε and S2

A is an inner automor-

phism.

The proof is based on the homological integral of U(D, λ). Note that the algebra

U(D, λ) is a CY algebra if and only if its associated graded algebra U(D, 0) (with

respect to the coradical filtration) is a CY algebra.

In Section 2.2, we classify CY pointed Hopf algebras U(D, λ) of dimensions less

than 5. It turns out that Uq(sl2) is the only quantized enveloping algebra appearing

in the classification.

Let V be the braided vector space with basis {x1, · · · , xθ} whose braiding is given

by

c(xi ⊗ xj) = qijxj ⊗ xi

for any 1 6 i, j 6 θ. Then the associated graded algebra of U(D, λ) with respect to

the coradical filtration is U(D, 0) ∼= B(V )#kΓ (cf. Theorem 1.4.7).

In Chapter 3 we discuss the Nichols algebra B(V ). It is a braided Hopf algebra.

The general method of computing the rigid dualizing complex of an AS-Gorenstein

Hopf algebra can not be easily modified to suit the case of a braided Hopf algebra. For

the special case of B(V ), we prove that the algebra B(V ) is a connected AS-regular

algebra (Proposition 3.1.5). In addition, it is an Np+1-filtered algebra whose associated

graded algebra GrR is a quantum polynomial algebra (Corollary 3.1.2). Since a

quantum polynomial algebra is a Koszul AS-regular algebra, it is not difficult to

obtain its rigid dualizing complex. When A is an N-filtered algebra whose associated

graded algebra GrA is a connected AS-Gorenstein algebra (Definition 1.5.16), the

relation between the rigid dualizing complex of A and the one of GrA was discussed
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in [68, Prop. 8.2], [76, Prop. 1.1] and [77, Prop. 6.18]. Since these results only work

for an N-filtered algebra, we construct a sequence of algebras

R = R(0), R(1), · · · ,GrR = R(p),

such that each of which is the associated graded algebra of the previous one with

respect to an N-filtration. Furthermore, with the relation between the rigid dualizing

complex of R and the one of U(D, 0) = R#kΓ, we obtain the rigid dualizing complex

of R.

Theorem 2. (Theorem 3.1.9 and Lemma 3.2.1) Let V be a generic braided vector

space of finite Cartan type, and R = B(V ) the Nichols algebra of V . For each 1 6

k 6 θ, let jk be the integer such that βjk = αk.

(1) The rigid dualizing complex is isomorphic to ϕR[p], where ϕ is the algebra au-

tomorphism defined by

ϕ(xk) = (

jk−1∏
i=1

χ−1
k (g

βi
))(

p∏
i=jk+1

χ
βi

(gk))xk =

p∏
i=1,i6=jk

χ
βi

(gk)xk,

for any 1 6 k 6 θ.

(2) The algebra R is a CY algebra if and only if

jk−1∏
i=1

χk(g
βi

) =

p∏
i=jk+1

χ
βi

(gk),

for any 1 6 k 6 θ.

After obtaining the aforementioned theorems, we compare the CY property of a

pointed Hopf algebra U(D, λ) and the corresponding Nichols algebra B(V ) in Section

3.2. It turns out that if one of them is CY, then the other one is not. This leads to

the following question:

Let H be a Hopf algebra, and R a braided Hopf algebra in the category of Yetter-

Drinfeld modules over H. What is the relation between the CY property of R and that

of R#H?

Let R be a Koszul CY algebra (not necessarily a braided Hopf algebra) and H the
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group algebra kΓ, where Γ is a finite group of automorphisms of R. In [72], Wu and

Zhu showed that the smash product R#H is CY if and only if the homological deter-

minant (Definition 4.1.6) of the H-action is trivial. Later, this result was generalized

to the case where R is a p-Koszul CY algebra and H is an involutory CY Hopf algebra

[52]. The authors defined an H-module structure on the Koszul bimodule complex of

R, and they computed the H-module structures on the Hochschild cohomologies. The

homological determinant for graded automorphisms of an AS-Gorenstein algebra was

first defined by Jørgensen and Zhang in order to study the AS-Gorenstein property

of invariant subrings [39]. A Hopf algebra version was introduced later in [46].

Let H be a finite dimensional Hopf algebra and R a Noetherian braided Hopf

algebra in the category H
HYD of Yetter-Drinfeld modules. Inspired by Wu and Zhu’s

work, in Section 4.1, we use the homological determinant of the H-action to describe

the homological integral of R#H. We then give a necessary and sufficient condition

for R#H to be a CY algebra, when R is CY and H is semisimple.

Theorem 3. (Theorem 4.1.11) Let H be a semisimple Hopf algebra and R a Noethe-

rian braided Hopf algebra in the category H
HYD of Yetter-Drinfeld modules. Suppose

that the algebra R is CY of dimension dR. Then R#H is CY if and only if the

homological determinant of R is trivial and the algebra automorphism φ defined by

φ(r#h) = SH(r(−1))(S2
R(r(0)))S2

H(h)

for any r#h ∈ R#H is an inner automorphism.

We can also ask ourselves when R is CY, if R#H is CY? In Section 4.2, we answer

this question when H = kΓ is the group algebra of a finite group. We first construct

a bimodule resolution of R from a projective resolution of k over the algebra R#kΓ.

Based on this, we obtain the rigid dualizing complex of R when R is AS-Gorenstein.

We explain some notations first. We use ∆(r) = r1 ⊗ r2 to denote the comultipli-

cation for a braided Hopf algebra (cf. (1.1)). The algebra R is a Γ-comodule, so R is a

Γ-graded module. Let δ denote the Γ-comodule structure. Then R = ⊕g∈ΓRg, where

Rg = {r ∈ R | δ(r) = g ⊗ r}. If r =
∑
g∈Γ rg with rg ∈ Rg, then δ(r) =

∑
g∈Γ g ⊗ rg.

See Remark 4.2.1 for detail.

Theorem 4. (Theorem 4.2.9) Let Γ be a finite group and R a braided Hopf algebra

xii



in the category Γ
ΓYD of Yetter-Drinfeld modules. Assume that R is an AS-Gorenstein

algebra with injective dimension d. If
∫ l
R
∼= kξR , for some algebra homomorphism

ξR : R → k, then R has a rigid dualizing complex ϕR[d], where ϕ is the algebra

automorphism defined by ϕ(r) =
∑
g∈Γ ξR(r1) hdet(g)g−1(S2

R((r2)g)) for all r ∈ R.

Here hdet denotes the homological determinant of the group action.

Following the foregoing theorem, we obtain the following result, characterizing the

CY property of R when R#kΓ is CY.

Theorem 5. (Theorem 4.2.11) Let Γ be a finite group and R a braided Hopf algebra

in the category Γ
ΓYD of Yetter-Drinfeld modules. Define an algebra automorphism ϕ

of R by

ϕ(r) =
∑
g∈Γ

g−1(S2
R(rg)),

for any r ∈ R. If R#kΓ is a CY algebra, then R is CY if and only if the algebra

automorphism ϕ is an inner automorphism.

The groups of group-like elements of pointed Hopf algebras discussed in Chapter

2 are all infinite. There are CY pointed Hopf algebras with a finite abelian group of

group-like elements. We provide some examples at the end of Chapter 4.

Now we turn to finite dimensional pointed Hopf algebras. Let

D(Γ, (gi)16i6θ, (χi)16i6θ, (aij)16i,j6θ)

be a datum of finite Cartan type such that Γ is a finite abelian group. We assume

that the order χi(qi) = qii is odd for any 1 6 i 6 θ, and that the order of qii is prime

to 3 for all i in a connected component of type G2. Then by equation (1.7), the order

Ni of qii is constant in each component J ∈ X . Denote this common order by NJ .

Let λ be a family of linking parameters for D and µ a family of root vector param-

eters (Definition 1.4.9). The finite dimension Hopf algebra u(D, λ, µ) is a deformation

of the bosonization of a finite dimensional Nichols algebra by kΓ. Andruskiewitsch

and Schneider [8] proved that u(D, λ, µ) is finite dimensional and pointed. Conversely,

if H is a finite dimensional pointed Hopf algebra with an abelian group of grouplike

elements with order not divisible by primes less than 11, then H ∼= u(D, λ, µ) for some

D, λ, µ.
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The homological properties of an algebra R over a field k rely exclusively on the

structure of its Ext algebra Ext∗R(k,k). In two recent papers [29, 61] support varieties

of modules over finite dimensional Hopf algebras were introduced. It turns out that

support varieties are useful tools to study homological properties and representations

of finite dimensional (braided) Hopf algebras. To define and to compute support

varieties over a (braided) Hopf algebra we need first to understand the Ext algebra

of the (braided) Hopf algebra. These motivate us to study the structure of the Ext

algebra of a finite dimensional Nichols algebra. In Chapter 5, we give the full structure

of the Ext algebra of a Nichols algebra of type A2 in terms of generators and relations

(Proposition 5.1.1, Theorem 5.1.11 and Theorem 5.1.12).

Using these structures, we can show that for a finite dimensional pointed Hopf

algebra A of type A2, the support variety of k over A is isomorphic to the variety of

k over the associated graded algebra with respect to the coradical filtration of A. We

then apply the main theorems in Chapter 5 to show that if the components of the

Dynkin diagram of a pointed Hopf algebra u(D, λ, µ) are of type A, D, or E, except

for A1 and A1×A1, and the order NJ > 2 for at least one component, then u(D, λ, µ)

is wild (Proposition 5.2.2).

This thesis mainly discuss the CY property. A finite dimensional CY algebra must

be semisimple. So a finite dimensional algebra u(D, λ, µ) is not a CY algebra. But a

finite dimensional Hopf algebra is Frobenius, so its stable category is a triangulated

category. A natural question now arises: is the stable category of a pointed Hopf

algebra u(D, λ, µ) a CY category? By analyzing the structure of the Ext algebra of

u(D, λ, µ), it turns out that in most cases, the answer to this question is negative.

The details can be found at the end of Section 5.2.
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Notations and conventions

Throughout, k is a fixed algebraically closed field with characteristic 0. All vector

spaces and algebras are assumed to be over k. (−)∗ denotes the functor Homk(−,k).

The unfinished tensor ⊗ means ⊗k.

Without otherwise stated, a Hopf algebra means a Hopf algebra with a bijective

antipode. We use the (sumless) Sweedler’s notation for the comultiplication and

coaction. The comultiplication for a braided Hopf algebra R is denoted by

∆(r) = r1 ⊗ r2.

Let A be a Hopf algebra, and ξ : A→ k an algebra homomorphism. We write [ξ] to

be the winding homomorphism of ξ defined by

[ξ](a) = ξ(a1)a2,

for any a ∈ A.

Given an algebra A, we write Aop for the opposite algebra of A and Ae for the

enveloping algebra A ⊗ Aop of A. For any bimodule mentioned in this thesis, we

assume that k acts centrally on it. Then the category of A-A-bimodules is equivalent

to the category of left (or right) Ae-modules. ModA denotes the category of left

A-modules. We use ModAop to denote the category of right A-modules.

For a left A-module M and an algebra automorphism φ : A → A, φM stands for

the left A-module twisted by the automorphism φ. Similarly, for a right A-module N ,

we have Nφ. Observe that Aφ ∼= φ−1A as A-A-bimodules. Aφ ∼= A as A-A-bimodules

if and only if φ is an inner automorphism.

A Noetherian algebra in this thesis means a left and right Noetherian algebra. If

the injective dimension of AA and AA are both finite, then these two integers are

equal by [78, Lemma A]. We call this common value the injective dimension of A.

The left global dimension and the right global dimension of a Noetherian algebra are

equal [70, Exe. 4.1.1]. When the global dimension is finite, then it is equal to the

injective dimension.

xv





Chapter 1

Preliminaries

In this chapter, we first recall the definitions of a braided Hopf algebra and a Nichols

algebra which are important in the classification theory of pointed Hopf algebras. In

this thesis, we will concentrate ourselves on pointed Hopf algebras of finite Cartan

type. We explain the definition in Section 1.4. At last, we recall the definition and

basic properties of Calabi-Yau algebras.

1.1 Graded and filtered algebras

In this section, we fix some notations of graded algebras and filtered algebras. Let

A = ⊕i∈ZAi be a graded algebra. We denote by GrMod(A) the category of graded left

A-modules with graded homomorphisms of degree 0. Let M = ⊕i∈ZMi be a graded

module, we denote by M(l) the l-th degree shift of M . That is, M(l) = ⊕i∈ZM(l)i

and M(l)i = Mi+l for each i ∈ Z. A module F in GrMod(A) is called graded free,

if there is an index set Λ such that F = ⊕i∈ΛFi and each Fi is a shift of A. For

graded modules M and N , we write HomA(M,N) for the space of all A-module

homomorphisms. Set

HOMA(M,N)k := {f ∈ HomA(M,N)|f(Mi) ⊆ Ni+k},

and

HOMA(M,N) := ⊕k∈ZHOMA(M,N)k.

1



CHAPTER 1. PRELIMINARIES

Let EXTiA(−,−) be the derived functor of HOMA(−,−). If M is finitely gener-

ated, then HomA(M,N) = HOMA(M,N). If A is in addition Noetherian, then

ExtiA(M,N) = EXTiA(M,N) for i > 0.

A Z-filtration on an algebra A is given by an ascending chain of vector subspaces

of A, FA = {FnA | n ∈ Z} such that 1 ∈ F0A and FnAFmA ⊆ Fn+mA, for all

n,m ∈ Z. If there is a filtration FM = {FnM | n ∈ Z} on an A-module M , such

that FnAFmM ⊆ Fn+mM , for all n,m ∈ Z, then M is called a filtered module. A

filtration FM is exhaustive if M = ∪i∈ZFnM . If ∩i∈ZFnM = 0, then FM is called

separated. All filtration considered in this thesis are exhaustive and separated. We

write FiltMod(A) for the category of filtered A-modules and filtered homomorphisms

of degree 0. Shift of filtered modules and filtered free modules can be defined similarly

to the case of graded modules. Let M and N be two filtered A-modules with filtration

FM = {FiM | i ∈ Z} and FN = {FiN | i ∈ Z} respectively. We denote by

HomA(M,N) for the vector space of A-module homomorphisms from M to N . We

define

HOMA(M,N)k := {f ∈ HomA(M,N) | f(FiM) ⊆ Fi+kN}

and

HOMA(M,N) := ∪k∈ZHOMA(M,N)k.

Now the vector space HOMA(M,N) is filtered by Fk HOMA(M,N) = HOMA(M,N)k.

We denote by EXTiA(−,−) the derived functor of HOMA(−,−). Similarly, if M is

finitely generated, then HomA(M,N) = HOMA(M,N). If A is in addition Noethe-

rian, then ExtiA(M,N) = EXTiA(M,N) for i > 0.

Let M be a filtered module with filtration FM . If there exist m1, · · · ,ms ∈ M
and k1, · · · , ks ∈ Z, such that for all i ∈ Z

FiM =

s∑
j=1

(Fi−kjA)mj ,

then FM is called a good filtration on M .

If M is a filtered module with a good filtration FM , then M is finitely generated.

However, the converse is not necessarily true (see [51, Rem. I.5.2] for an example).
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1.2. BRAIDED HOPF ALGEBRAS

1.2 Braided Hopf algebras

1.2.1 Braided tensor categories

In this subsection, we briefly recall the definition of a braided tensor category which

is the appropriate setting for a braided Hopf algebra. For more detail about braided

tensor categories, one refers to [41].

Definition 1.2.1. A tensor category (C ,⊗, I, a, l, r) is a category C equipped with

• a tensor product ⊗ : C × C → C ;

• an object I, called the unit of the tensor category;

• a natural isomorphism a : ⊗(⊗× id) → ⊗(id×⊗), called the associativity con-

straint ;

• a natural isomorphism l : ⊗(I × id) → id, called the left unit constraint with

respect to I;

• a natural isomorphism r : ⊗(id×I) → id, called the right unit constraint with

respect to I;

such that the Pentagon Axiom and the Triangle Axiom are satisfied. That is, the
following two diagrams

(U ⊗ (V ⊗W )) ⊗X

aU,V⊗W,X

��

((U ⊗ V ) ⊗W ) ⊗X
aU,V,W⊗idXoo

aU⊗V,W,X

��
(U ⊗ V ) ⊗ (W ⊗X)

aU,V,W⊗X

��
U ⊗ ((V ⊗W ) ⊗X)

id⊗aV,W,X // U ⊗ (V ⊗ (W ⊗X))

(V ⊗ I) ⊗W
aV,I,W //

rV ⊗idW

��=============== V ⊗ (I ⊗W )

idV ⊗lW

�����������������

V ⊗W

are commutative for all objects U, V,W and X in C .
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CHAPTER 1. PRELIMINARIES

The most fundamental example of a tensor category is given by the category of

vector spaces over a field k. It is equipped with the usual tensor product, the unit

object I is the field k itself.

Let C be a tensor category with a tensor product ⊗ : C × C → C . Denote by

τ : C × C → C × C the flip functor. That is, τ(V,W ) = (W,V ) for any V,W in C .

A commutativity constraint c is a natural isomorphism c : ⊗ → ⊗τ .

Definition 1.2.2. Let (C ,⊗, I, a, l, r) be a tensor category.

(1) A braiding is a commutativity constraint c satisfying the Hexagon Axiom. That
is, the following two diagrams

U ⊗ (V ⊗W )

cU,V⊗W// (V ⊗W ) ⊗ U

aV,W,U

''OOOOOOOOOOO

(U ⊗ V ) ⊗W

aU,V,W

77ooooooooooo

cU,V ⊗idW ''OOOOOOOOOOO V ⊗ (W ⊗ U)

(V ⊗ U) ⊗W
aV,U,W // V ⊗ (U ⊗W )

idV ⊗cU,W

77ooooooooooo

(U ⊗ V ) ⊗W
cU⊗V,W// W ⊗ (U ⊗ V )

a
−1
W,U,V

''OOOOOOOOOOO

U ⊗ (V ⊗W )

a
−1
U,V,W

77ooooooooooo

idU ⊗cV,W ''OOOOOOOOOOO (W ⊗ U) ⊗ V

U ⊗ (W ⊗ V )

a
−1
U,W,V // (U ⊗W ) ⊗ V

cU,W⊗idV

77ooooooooooo

commute for any objects U, V and W in C .

(2) A braided tensor category (C ,⊗, I, a, l, r, c) is a tensor category with a braiding.

As a consequence of the Hexagon Axiom, the following equation holds for any

objects U, V and W in C (we have omitted the associativity morphisms)

(cV,W ⊗ idU )(idV ⊗cU,W )(cU,V ⊗ idW ) = (idW ⊗cU,V )(cU,W ⊗ idV )(idU ⊗cV,W ).

1.2.2 Braided vector spaces and Yetter-Drinfeld modules

Definition 1.2.3. Let V be a vector space and c : V ⊗ V → V ⊗ V a linear isomor-

phism. Then (V, c) is called a braided vector space, if c is a solution of the following

4
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braid equation

(c⊗ id)(id⊗c)(c⊗ id) = (id⊗c)(c⊗ id)(id⊗c).

An easy and important example is a braided vector space of diagonal type. A

braided vector space (V, c) is said to be of diagonal type if there is a basis {xi | i ∈ I}
of V and a family of non-zero scalars qij ∈ k, i, j ∈ I, such that

c(xi ⊗ xj) = qijxj ⊗ xi,

for all i, j ∈ I.

We mainly discuss examples of braided vector spaces related to the notion of a

Yetter-Drinfeld module.

Definition 1.2.4. Let H be a Hopf algebra. A (left-left) Yetter-Drinfeld module

V over H is simultaneously a left H-module and a left H-comodule satisfying the

compatibility condition

δ(h · v) = h1v(−1)Sh3 ⊗ h2 · v(0),

for any v ∈ V , h ∈ H.

We denote by H
HYD the category of Yetter-Drinfeld modules over H with mor-

phisms given by H-linear and H-colinear maps.

The tensor product of two Yetter-Drinfeld modules M and N is again a Yetter-

Drinfeld module with the module and comodule structures given as follows

h(m⊗ n) = h1m⊗ h2n and δ(m⊗ n) = m(−1)n(−1) ⊗m(0) ⊗ n(0),

for any h ∈ H, m ∈ M and n ∈ N . This turns the category of Yetter-Drinfeld

modules HHYD into a braided tensor category.

For any two Yetter-Drinfeld modules M and N , the braiding cM,N : M ⊗ N →
N ⊗M is given by

cM,N (m⊗ n) = m(−1) · n⊗m(0),

for any m ∈M and n ∈ N .

Yetter-Drinfeld modules over a group algebra are important in this thesis. Let Γ

5
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be a group. We abbreviate kΓ
kΓYD to Γ

ΓYD.

A kΓ-comodule V is just a Γ-graded vector space: V = ⊕g∈ΓVg, where Vg = {v ∈
V | δ(v) = g ⊗ v}. From the definition of a Yetter-Drinfeld module, we obtain that

V ∈ Γ
ΓYD if and only if gVh ⊆ Vghg−1 , for all g, h ∈ Γ. In particular, if Γ is abelian,

then a Yetter-Drinfeld module over kΓ is nothing but a Γ-graded Γ-module.

1.2.3 Braided Hopf algebras

We deal in this thesis only with braided Hopf algebras in categories of Yetter-Drinfeld

modules.

Definition 1.2.5. Let H be a Hopf algebra.

(1) An algebra (R,m, u) in H
HYD is an algebra (R,m, u), where m : R ⊗ R → R is

the multiplication, and u : k→ R is the unit, such that R ∈ H
HYD and both m

and u are morphisms in H
HYD.

(2) A coalgebra (R,∆, ε) in H
HYD is a coalgebra (R,∆, ε), where ∆ : R → R ⊗ R

is the comultiplication, and ε : R → k is the counit, such that R ∈HH YD and

both ∆ and ε are morphisms in H
HYD.

Let R and S be two algebras in H
HYD. Then R⊗S is a Yetter-Drinfeld module in

H
HYD, and becomes an algebra in the category H

HYD with the multiplication mR⊗S

defined by

mR⊗S := (mR ⊗mS)(id⊗c⊗ id).

Denote this algebra by R⊗S.

Definition 1.2.6. Let H be a Hopf algebra. A braided bialgebra in H
HYD is a collec-

tion (R,m, u,∆, ε), where

• (R,m, u) is an algebra in H
HYD.

• (R,∆, ε) is a coalgebra in H
HYD.

• ∆ : R→ R⊗R and ε : R→ k are morphisms of algebras.

If in addition, the identity is convolution invertible in End(R), then R is called a

braided Hopf algebra in H
HYD. The inverse of the identity is called the antipode of R.
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1.2. BRAIDED HOPF ALGEBRAS

A graded braided Hopf algebra in H
HYD is a braided Hopf algebra R = ⊕i>0Ri in

H
HYD, such that R is a (positively) graded algebra and a graded coalgebra, with each

Ri a Yetter-Drinfeld module.

In order to distinguish comultiplications of braided Hopf algebras from those of

usual Hopf algebras, we use Sweedler notation with upper indices for braided Hopf

algebras

∆(r) = r1 ⊗ r2. (1.1)

If A is a Hopf algebra, the adjoint representation “ad” is defined by

ad(x)(y) = x1ySA(x2),

for all x, y ∈ A. Similarly, the braided adjoint representation “adc” of a braided Hopf

algebra R in H
HYD is given by

adc(x)(y) = m(m⊗ SR)(id⊗c)(∆R ⊗ id)(x⊗ y), (1.2)

for all x, y ∈ R.

If x is a primitive element, then the braided adjoint representation of x is just

adc(x)(y) = m(id−c)(x⊗ y) := [x, y]c.

[x, y]c is called a braided commutator.

Let H be a Hopf algebra and R a braided Hopf algebra in the category H
HYD.

Then R#H is a usual Hopf algebra with the following structure [62]:

• The multiplication is given by

(r#g)(s#h) := rg1(s)#g2h (1.3)

with unit uR ⊗ uH .

• The comultiplication is given by

∆(r#h) := r1#(r2)(−1)h1 ⊗ (r2)(0)#h2 (1.4)

with counit εR ⊗ εH .
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• The antipode is given by

SR#H(r#h) = (1#SH(r(−1)h))(SR(r(0))#1). (1.5)

The algebra R#H is called the Radford biproduct or bosonization of R by H. R

is a subalgebra of R#H and H is Hopf subalgebra of R#H.

Conversely, let A and H be two Hopf algebras and π : A → H, ι : H → A

Hopf algebra homomorphisms such that πι = idH . In this case the algebra of right

coinvariants with respect to π

R = Acoπ := {a ∈ A | (id⊗π)∆(a) = a⊗ 1},

is a braided Hopf algebra in H
HYD, with the following structure [62]:

• The action of H on R is the restriction of the adjoint action (composed with ι).

• The coaction is (π ⊗ id)∆.

• R is a subalgebra of A.

• The comultiplication is given by

∆R(r) = r1ιSHπ(r2)⊗ r3.

• The antipode is given by

SR(r) = π(r1)SA(r2).

Define a linear map ρ : A→ R by

ρ(a) = a1ιSHπ(a2),

for all a ∈ R.

Theorem 1.2.7. [62] The morphisms Ψ : A→ R#H and Φ : R#H → A defined by

Ψ(a) = ρ(a1)#π(a2) and Φ(r#h) = rι(h)

are mutually inverse isomorphisms of Hopf algebras.
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1.3 Nichols algebras

An important class of braided Hopf algebras generated by primitive elements is formed

by Nichols algebras B(V ) of braided vector spaces V . They appeared first in the paper

[60] of Nichols.

Definition 1.3.1. Let V be a Yetter-Drinfeld module over a Hopf algebra H. A

graded braided Hopf algebra R = ⊕i>0Ri in the category H
HYD is called a Nichols

algebra of V if the following conditions hold:

• R0
∼= k and R1

∼= V .

• R1 = P (R), the primitive elements in R.

• R is generated as an algebra by R1.

We denote the algebra R by B(V ).

Proposition 1.3.2. [5] Given a Yetter-Drinfeld module V , a Nichols algebra of V

exists and is unique up to isomorphism.

Example 1.3.3. Let V be a finite dimensional vector space and τ : V ⊗ V → V ⊗ V
the flip map. The braided vector space (V, τ) can be viewed as a Yetter-Drinfeld

module over any Hopf algebra H with trivial action and trivial coaction. The Nichols

algebra B(V ) is isomorphic to S(V ), the symmetric algebra of V .

In some sense, a Nichols algebra is a generalization of the symmetric algebra of a

vector space where the flip map is replaced by a general braiding.

Example 1.3.4. Let (V, c) be a braided vector space of Hecke type, that is, there is

a scalar q ∈ k such that

(c− q)(c+ 1) = 0.

By [5, Prop. 3.4], if the scalar q is either 1 or not a root of unity, then B(V ) ∼= T (V )/I,

where T (V ) is the tensor algebra of the vector space V , and I is the ideal generated

by Im(c− q).

9
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1.4 Pointed Hopf algebras of finite Cartan type

A Hopf algebra A is called pointed , if all its simple left or right comodules are 1-

dimensional. This is equivalent to saying that the coradical of A is a group algebra.

The coradical filtration {Ai | i > 0} of a Hopf algebra is defined inductively as

follows. A0 is the coradical of A. For each i > 1, define

Ai = ∆−1(A⊗Ai−1 +A0 ⊗A).

If A is a pointed Hopf algebra, then its coradical filtration is a Hopf algebra filtration

(cf. [58, Lemma 5.2.8]). Coradical filtration is important in the classification of

pointed Hopf algebras, more detail can be found in [5], [8] etc.

A large classes of pointed Hopf algebras with an abelian group of group-like ele-

ments consists of the pointed Hopf algebras of finite Cartan type. The corresponding

Nichols algebras provide examples of Nichols algebras of diagonal type.

For a datum of finite Cartan type, we follow the notations in [63] and [8], which

are slightly different from the ones in [7]. We need the following terminology:

• an abelian group Γ;

• a Cartan matrix (aij) ∈ Zθ×θ of finite type, where θ ∈ N;

• a set X of connected components of the Dynkin diagram corresponding to the

Cartan matrix (aij). If 1 6 i, j 6 θ, then i ∼ j means that they belong to the

same connected component;

• elements g1, · · · , gθ ∈ Γ and characters χ1, · · · , χθ ∈ Γ̂ such that

χj(gi)χi(gj) = χi(gi)
aij , χi(gi) 6= 1, for all 1 6 i, j 6 θ. (1.6)

Definition 1.4.1. The collection D(Γ, (gi)16i6θ, (χi)16i6θ, (aij)16i,j6θ) is called a

datum of finite Cartan type for Γ.

For simplicity, we define qij = χj(gi). Then equation (1.6) reads as

qijqji = q
aij
ii , qii 6= 1, for all 1 6 i, j 6 θ. (1.7)

10



1.4. POINTED HOPF ALGEBRAS OF FINITE CARTAN TYPE

A datum D is called generic if qii is not a root of unity for all 1 6 i 6 θ and Γ is

a free abelian group of finite rank (cf. [7]).

Remark 1.4.2. In [63], a generic datum only requires that qii is not root of unity

for each 1 6 i 6 θ. In this thesis, we mainly discuss the algebras constructed in [7].

For convenience, we further assume that Γ is a free abelian group of finite rank.

Given a datum D, we fix a braided vector space defined as follows. Let V be a

Yetter-Drinfeld module over the group algebra kΓ with basis xi ∈ V χigi , 1 6 i 6 θ.

Then V is a braided vector space of diagonal type whose braiding is given by

c(xi ⊗ xj) = qijxj ⊗ xi, 1 6 i, j 6 θ. (1.8)

The braiding is called generic if qii is not a root of unity for all 1 6 i 6 θ.

Since the Cartan matrix is of finite type and

qijqji = q
aij
ii = q

aji
jj , 1 6 i, j 6 θ, (1.9)

there are di ∈ {1, 2, 3}, 1 6 i 6 θ, and qJ ∈ k, J ∈ X , such that

qii = q2di
J , diaij = djaji, (1.10)

for all J ∈ X and i, j ∈ J (cf. [8, Lemma 2.3]). Set

q̂ij =

q
diaij
J i, j ∈ J ;

1 i � j.

Then

qijqji = q̂ij q̂ji, qii = q̂ii,

for all 1 6 i, j 6 θ.

Therefore, when the braiding is generic, it is twist equivalent to a braiding of DJ-

type (Drinfeld-Jimbo type) [7, Sec. 1]. When the group Γ is a finite abelian group,

the braiding is twist equivalent to a braiding of FL-type (Frobenius-Lusztig type) [5,

Defn. 4.5].

Definition 1.4.3. Vertices 1 6 i, j 6 θ are called linkable if i � j, gigj 6= 1 and

χiχj = ε.
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A family of linking parameters for D is a family λ = (λij)16i<j6θ of elements in

k such that the following conditions are satisfied for all 1 6 i < j 6 θ,

if i and j are not linkable then λij = 0.

Lemma 1.4.4. [6, lemma 5.6] Any vertex 1 6 i 6 θ is linkable to at most one vertex.

Let Φ be the root system corresponding to the Cartan matrix (aij) with Π =

{α1, · · · , αθ} a set of fixed simple roots. Let W be the Weyl group of the root system

Φ. We fix a reduced decomposition of the longest element

w0 = si1 · · · sip

of W as a product of simple reflections. Then the positive roots Φ+ are precisely the

followings

β1 = αi1 , β2 = si1(αi2), · · · , βp = si1 · · · sip−1(αip).

If βi =
∑θ
i=1miαi, then we define

g
βi

= gm1
1 · · · gmθθ and χ

βi
= χm1

1 · · ·χmθθ .

Similarly, we write q
βjβi

= χ
βi

(g
βj

).

1.4.1 Hopf algebras U(D, λ)

Definition 1.4.5. Let D be a datum of finite Cartan type for a group Γ, and λ a

family of linking parameters for D. The algebra U(D, λ) is defined to be the quotient

Hopf algebra of the smash product k〈x1, · · · , xθ〉#kΓ modulo the ideal generated by

the following relations

(Serre relations) (adc xi)
1−aij (xj) = 0, 1 6 i, j 6 θ, i 6= j, i ∼ j,

(linking relations) xixj − χj(gi)xjxi = λij(1− gigj), 1 6 i < j 6 θ, i � j,

where adc is the braided adjoint representation (cf. (1.2)).

The comultiplication structure of U(D, λ) is given by

∆(xi) = xi ⊗ 1 + gi ⊗ xi, ∆(g) = g ⊗ g,
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for all 1 6 i 6 θ and g ∈ Γ.

In the rest of this subsection, we assume that the datum D is generic. In this

case, U(D, λ) is the algebra generated by x1, · · · , xθ and y±1
1 , · · · , y±1

s , subject to the

following relations (cf. [7, Sec. 4])

y±1
m y±1

h = y±1
h y±1

m , y±1
m y∓1

m = 1, 1 6 m,h 6 s,

(group action) yhxj = χj(yh)xjyh, 1 6 j 6 θ, 1 6 h 6 s,

(Serre relations) (adc xi)
1−aij (xj) = 0, 1 6 i, j 6 θ, i 6= j, i ∼ j,

(linking relations) xixj − χj(gi)xjxi = λij(1− gigj), 1 6 i < j 6 θ, i � j.

(1.11)

Let V be the braided vector space as defined in (1.8). It can be easily derived from

the proof of [7, Thm. 4.3] that the Nichols algebra B(V ) is the algebra generated by

xi, 1 6 i 6 θ, subject to the relations

adc(xi)
1−aijxj = 0, 1 6 i, j 6 θ, i 6= j.

Root vectors for a quantum group Uq(g) were defined by Lusztig [54]. Up to a non-

zero scalar, each root vector can be expressed as an iterated braided commutator. As

in [6, Sec. 4.1], this definition can be generalized to a pointed Hopf algebra U(D, λ).

For each positive root βi, 1 6 i 6 p, the root vector x
βi

is defined by the same

iterated braided commutator of the elements x1, · · · , xθ, but with respect to the

general braiding.

Remark 1.4.6. If βj = αl, then x
βj

= xl. That is, x1, · · · , xθ are the simple root

vectors.

Theorem 1.4.7. [7,Thm. 4.3] Let D = (Γ, (gi), (χi), (aij)) be a generic datum of

finite Cartan type and λ a family of linking parameters for D. The algebra U(D, λ)

is a pointed Hopf algebra with comultiplication determined by

∆(yh) = yh ⊗ yh, ∆(xi) = xi ⊗ 1 + gi ⊗ xi, 1 6 h 6 s, 1 6 i 6 θ.

Furthermore, U(D, λ) has a PBW-basis given by monomials in the root vectors

{xa1

β1
· · ·xap

βp
g | ai > 0, 1 6 i 6 p and g ∈ Γ}. (1.12)

There is an isomorphism of graded Hopf algebras GrU(D, λ) ∼= B(V )#kΓ ∼= U(D, 0),
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where GrU(D, λ) is the associated graded algebra of U(D, λ) with respect to the corad-

ical filtration. The algebra U(D, λ) has finite Gelfand-Kirillov dimension and is a

domain.

Example 1.4.8. Let D be a datum of finite Cartan type given by

• Γ = 〈y1, y2〉 ∼= Z2, a free abelian group of rank 2;

• the Cartan matrix is of type A2, that is,(
2 −1

−1 2

)
;

• gi = yi, χi(gj) = qaij , 1 6 i, j 6 2, where q ∈ k is not a root of unity.

Then the algebra U(D, 0) is generated by xi, y
±1
i , 1 6 i 6 2, subject to the relations

y±1
m y±1

h = y±1
h y±1

m , y±1
m y∓1

m = 1, 1 6 m,h 6 2,

yixj = qajixjyi, 1 6 i, j 6 2,

x2
1x2 − q−1x1x2x1 − qx1x2x1 + x2x

2
1,

x2
2x1 − q−1x2x1x2 − qx2x1x2 + x1x

2
2.

The element s1s2s1 is the longest element in the Weyl group W and

α1, α1 + α2, α2

are the positive roots. The corresponding root vectors are

x1, x12 = [x1, x2]c = x1x2 − q−1x2x1, x2.

1.4.2 Hopf algebras u(D, λ, µ)

In this subsection, we assume that D is a datum of finite Cartan type for a finite

abelian group Γ such that for all 1 6 i 6 θ,

qii has odd order, and

the order of qii is prime to 3, if i lies in a component G2.
(1.13)

14
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Since qijqji = q
aij
ii , 1 6 i, j 6 θ, the order of qii is constant in each component J of

the Dynkin diagram. Let NJ denote this common order. Let λ be a family of linking

parameters for D. The algebra U(D, λ) is defined in Definition 1.4.5. The root vector

x
βi
∈ U(D, λ) corresponding to the positive root βi, 1 6 i 6 p, can be defined in the

same way as in the generic case.

Definition 1.4.9. Let (µα)α∈Φ+ be a set of scalars, such that for all α ∈ ΦJ , J ∈ X ,

µα = 0 if gNJα = 1 or χNJα 6= ε.

This set of scalars are called root vector parameters.

Definition 1.4.10. The finite dimensional Hopf algebra u(D, λ, µ) is the quotient of

U(D, λ) modulo the ideal generated by

(root vector relations) xNJα − uα(µ), α ∈ Φ+
J , J ∈ X ,

where uα(µ) ∈ kG is defined inductively on Φ+ as in [8, Sec. 4.2].

Let V be the braided vector space as defined in (1.8). It follows from [8, Thm. 5.1]

that the Nichols algebra B(V ) is generated by xi, 1 6 i 6 θ, subject to the relations

(adc xi)
1−aij (xj) = 0, 1 6 i, j 6 θ, i 6= j,

xNJα = 0, α ∈ Φ+
J , J ∈ X .

The following theorem describes the structure of the algebra u(D, λ, µ).

Theorem 1.4.11. [8,Thm. 4.5 and Cor. 5.2] The algebra u(D, λ, µ) is a quotient

Hopf algebra of U(D, λ) with Γ the group of group-like elements. The following ele-

ments form a PBW basis of u(D, λ, µ),

{xa1

β1
· · ·xap

βp
g | 0 6 ai < NJ , βi ∈ Φ+

J , 1 6 i 6 p and g ∈ Γ}. (1.14)

In particular,

dimu(D, λ, µ) = (
∏
J∈X

N
n
J

J )|Γ|,

where n
J

is the number of positive roots in component J . There is an isomorphism

of graded Hopf algebras Gru(D, λ, µ) ∼= B(V )#kΓ ∼= u(D, 0, 0), where Gru(D, λ, µ) is

the associated graded algebra of u(D, λ, µ) with respect to the coradical filtration.

15
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1.5 Calabi-Yau categories and Calabi-Yau algebras

1.5.1 Triangulated categories

Before we explain the concept of a Calabi-Yau category, we briefly recall the definition

a triangulated category. More detailed discussion about triangulated categories can

be found in [31], [34] or [59].

Let C be an additive category with an automorphism T . The functor T is usually

called the shift functor.

A triangle in C is a sixtuple (X,Y, Z, u, v, w), where X, Y and Z are objects in

C and u : X → Y , v : Y → Z and w : Z → T (X) are morphisms in C . A triangle is

usually denoted by the diagram

X
u−→ Y

v−→ Z
w−→ T (X).

A morphism between two triangles

X
u−→ Y

v−→ Z
w−→ T (X)

and

X ′
u′−→ Y ′

v′−→ Z ′
w′−→ T (X ′)

is a triple (f, g, h) with f, g, h morphisms in C such that the following diagram com-

mutes

X
u //

f

��

Y
v //

g

��

Z
w //

h

��

T (X)

T (f)

��
X ′

u′ // Y ′
v′ // Z ′

w′ // T (X ′).

If f , g and h are all isomorphisms, then the morphism (f, g, h) is called an isomor-

phism.

Definition 1.5.1. A triangulated category (C , T, E) (or simply C ) is an additive cate-

gory equipped with the shift functor T and a family of triangles E , called distinguished

triangles, satisfying the following axioms.

(TR1a) Any triangle isomorphic to a distinguished triangle is a distinguished triangle;

16
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(TR1b) Every morphism u : X → Y in C can be embedded into a distinguished triangle

X
u−→ Y

v−→ Z
w−→ T (X);

(TR1c) For any object X in C , the triangle X
idX−−→ X → 0→ T (X) is a distinguished

triangle.

(TR2) (Turning of triangles axiom) If

X
u−→ Y

v−→ Z
w−→ T (X)

is a distinguished triangle, then

Y
v−→ Z

w−→ T (X)
−T (u)−−−−→ T (Y )

is a distinguished triangle.

(TR3) Let

X
u //

f

��

Y
v //

g

��

Z
w // T (X)

T (f)

��
X ′

u′ // Y ′
v′ // Z ′

w′ // T (X ′)

be a diagram where the rows are distinguished triangles and the first square is

commutative. Then there exists a morphism h : Z → Z ′, such that the following

diagram commutes.

X
u //

f

��

Y
v //

g

��

Z
w //

h

���
�
� T (X)

T (f)

��
X ′

u′ // Y ′
v′ // Z ′

w′ // T (X ′).

(TR4) (Octahedral axiom) Let

X
u−→ Y

u′−→ Z ′
u′′−−→ T (X),

X
w−→ Z

w′−→ Y ′
w′′−−→ T (X)

and

Y
v−→ Z

v′−→ X ′
v′′−→ T (Y )

17
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be three distinguished triangles, such that w = vu. Then there exists a commu-

tative diagram

X
u // Y

u′ //

v

��

Z ′
u′′ //

a

���
�
� T (X)

X
w //

u

��

Z
w′ // Y ′

w′′ //

b

���
�
� T (X)

T (u)

��
Y

v //

u′

��

Z
v′ //

w′

��

X ′
v′′ // TY

T (u′)

��
Z ′

a //___ Y ′
b //___ X ′ // TZ ′

where the rows are distinguished triangles.

Let A be an algebra. The derived category D(A) of the abelian category ModA

is a triangulated category. Detailed definition of a derived category can be found,

for example, in [31]. Roughly speaking, D(A) has all complexes of A-modules as its

objects. The morphisms are obtained by formally inverting quasi-isomorphisms. Let

M : · · · →M i diM−−→M i+1 → · · ·

be a complex. The complex TM is a complex such that (TM)i =Mi+1 and diTM =

−di+1
M . Each short exact sequence of complexes

0→M→N → L → 0

canonically determines a standard triangle

M→N → L → T (M).

The distinguished triangles are the ones isomorphic to standard triangles.

We denote by Db(A) the full triangulated subcategory of D(A) consisting of

bounded complexes. In the following, the shift functor T d is denoted by [d].

Definition 1.5.2. Let (C , T, E) and (D , T ′,F) be two triangulated categories. A

triangle functor from C to D is a pair (F, α), where F : C → D is an additive functor

and α : FT → T ′F is a natural isomorphism, such that F maps a distinguished

18
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triangle

X
u−→ Y

v−→ Z
w−→ T (X)

in C to a distinguished triangle

FX
F (u)−−−→ FY

F (v)−−−→ FZ
αXF (w)−−−−−→ T ′F (X)

in D .

Using the turning of triangles axiom, one can obtain that if

X
u−→ Y

v−→ Z
w−→ T (X)

is a distinguished triangle, then

T (X)
Tu−−→ T (Y )

Tv−−→ T (Z)
−Tw−−−→ T 2(X)

is a distinguished triangle. Therefore, (T,−1T 2) is a triangle functor.

Two triangle functors (F, α) and (F ′, α′) are natural isomorphic if there is a natural

isomorphism θ : F → F ′ such that the following diagram commutes for any X ∈ C :

FT (X)

α
X

��

θT (X) // F ′T (X)

α′X
��

T ′F (X)
T ′(θX)// T ′F ′(X).

1.5.2 Calabi-Yau categories

Let C be a k-linear category. It is called Hom-finite if HomC (X,Y ) is finite dimen-

sional for any X and Y in C .

Definition 1.5.3. (cf. [44] and [45]) A right Serre functor for a Hom-finite k-linear

triangulated category (C , T ) is a triangle functor (S, α) : C → C together with

isomorphisms

ζX : HomC (−, SX)→ HomC (X,−)∗ (1.15)

which are natural in X and satisfying the following equations:

ζX ◦ T−1 ◦ (αX)∗ = −(T )∗ ◦ (ζTX) (1.16)
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for any X ∈ C .

A Serre functor is a right Serre functor which is in addition an equivalence.

Remark 1.5.4. The definition of a Serre functor of an additive category can be found

in [19] or [64].

Definition 1.5.3 is equivalent to saying that a Serre functor (S, α) : (C , T )→ (C , T )

is a triangle functor which in addition is an equivalence such that there are natural

isomorphisms

ζX,Y : HomC (X, Y )→ HomC (Y, SX)∗,

for any X, Y ∈ C , and the following diagram anti-commutes

HomC (TY, (ST )(X))

(αX )∗

ttjjjjjjjjjjjjjjjj

ζ∗TX,TY // HomC (TX, TY )∗

(T )∗

��

HomC (TY, (TS)(X))

T−1

**TTTTTTTTTTTTTTTT

HomC (Y, SX)
ζ∗X,Y // HomC (X,Y )∗

. (1.17)

Definition 1.5.5. A d-Calabi-Yau category is a Hom-finite k-linear triangulated

category (C , T ), such that it admits a Serre functor (S, α) and there is a natural

isomorphism of triangle functors

(S, α) ∼= (T d, (−1)d),

for some d ∈ Z. The Calabi-Yau dimension of C is the smallest non-negative integer

d satisfying the above condition.

1.5.3 Calabi-Yau algebras

We follow Ginzburg’s definition of a Calabi-Yau algebra [32].

Definition 1.5.6. An algebra A is called a Calabi-Yau algebra of dimension d if

(i) A is homologically smooth. That is, A has a bounded resolution of finitely

generated projective A-A-bimodules.
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(ii) There are A-A-bimodule isomorphisms

ExtiAe(A,A
e) ∼=

0, i 6= d;

A, i = d.

In the sequel, Calabi-Yau will be abbreviated as CY for short.

Remark 1.5.7. Let A be an algebra. Denote by Db
fd(A) the full triangulated sub-

category of the derived category of A consisting of complexes whose homology is of

finite total dimension. By [44, lemma 4.1], if A is a CY algebra of dimension d, then

the category Db
fd(A) is a d-CY category. Sometimes an algebra A is called a CY

algebra of dimension d if the category Db
fd(A) is a CY category of dimension d (see

e.g. [17]).

Example 1.5.8. We list some examples of CY algebras.

(1) The polynomial algebra k[x1, · · · , xn] with n variables is a CY algebra of di-

mension n.

(2) Any Sridharan enveloping algebra of an n-dimensional abelian Lie algebra is a

CY algebra of dimension n [12, Thm. 6.5].

(3) Let A be the algebra k〈x0, x1, x2, x3〉/I, where the ideal I is generated by the

following relations

x0x1 − x1x0 − α(x2x3 + x3x2), x0x1 + x1x0 − (x2x3 − x3x2),

x0x2 − x2x0 − β(x3x1 + x1x3), x0x2 + x2x0 − (x3x1 − x1x3),

x0x3 − x3x0 − γ(x1x2 + x2x1), x0x3 + x3x0 − (x1x2 − x2x1),

α + β + γ + αβγ = 0 and (α, β, γ) /∈ {(α,−1, 1), (1, β,−1), (−1, 1, γ)}. The

algebra A is a 4-dimensional Sklyanian algebra and a CY algebra of dimension

4 [18, Prop. 7.1].

CY algebras are closely related to rigid dualizing complexes. The non-commutative

version of a dualizing complex was first introduced by Yekutieli.

Definition 1.5.9. [74] (cf. [68, Defn. 6.1]) Assume that A is a (graded) Noetherian

algebra. Then an object R of Db(Ae) (Db(GrMod(Ae)))is called a dualizing complex

(in the graded sense) if it satisfies the following conditions:
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(i) R is of finite injective dimension over A and Aop.

(ii) The cohomology of R is given by bimodules which are finitely generated on

both sides.

(iii) The natural morphisms A → RHomA(R,R) and A → RHomAop(R,R) are

isomorphisms in D(Ae) (D(GrMod(Ae))).

Roughly speaking, a dualizing complex is a complex R ∈ Db(Ae) such that the

functor

RHomA(−,R) : Db
fg(A)→ Db

fg(A
op) (1.18)

is a duality, with adjoint RHomAop(−,R) (cf. [74, Prop. 3.4 and Prop. 3.5]). Here

Db
fg(A) is the full triangulated subcategory of D(A) consisting of bounded complexes

with finitely generated cohomology modules.

In the above definition, the algebra A is a Noetherian algebra. In this case, a

dualizing complex in the graded sense is also a dualizing complex in the usual sense.

Dualizing complexes are not unique up to isomorphism. To overcome this weak-

ness, Van den Bergh introduced the concept of a rigid dualizing complex in [68, Defn.

8.1].

Definition 1.5.10. Let A be a (graded) Noetherian algebra. A dualizing complex

R over A is called rigid (in the graded sense) if

RHomAe(A,AR ⊗RA) ∼= R

in D(Ae) (D(GrMod(Ae))).

Note again that if Ae is Noetherian then the graded version of this definition

implies the ungraded version.

Lemma 1.5.11. (cf.[20,Prop. 4.3] and [68,Prop. 8.4]) Let A be a Noetherian algebra.

Then the following two conditions are equivalent:

(1) A has a rigid dualizing complex R = Aψ[s], where ψ is an algebra automorphism

and s ∈ Z.

(2) A has finite injective dimension d and there is an algebra automorphism φ such
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that

ExtiAe(A,A
e) ∼=

0, i 6= d;

Aφ i = d

as A-A-bimodules.

If one of the two conditions holds, then φψ is an inner automorphism and s = d.

This Lemma 1.5.11 will be frequently used in this thesis. The following corollary

follows directly from Lemma 1.5.11 and the definition of a CY algebra. It gives the

relation between CY algebras and rigid dualizing complexes.

Corollary 1.5.12. Let A be a Noetherian algebra which is homologically smooth.

Then A is a CY algebra of dimension d if and only if A has a rigid dualizing complex

A[d].

Now we take the Koszul complex and the rigid dualizing complex of a quantum

polynomial algebra as an example. They are also preparations for Chapter 2 and

Chapter 3.

Let S be the algebra

k〈x1, x2, · · · , xn | xixj − qijxjxi, 1 6 i < j 6 n〉,

where qij ∈ k.

The algebra S is a quadratic algebra, its quadratic dual S! is isomorphic to

k〈x∗1, x∗2, · · · , x∗n | qijx∗i x∗j + x∗jx
∗
i , 1 6 i < j 6 n〉.

The algebra S! is a Frobenius algebra with the Nakayama automorphism η defined

by

η(x∗i ) = (−1)n−1q1i · · · q(i−1)iq
−1
i(i+1) · · · q

−1
in x

∗
i ,

for all 1 6 i 6 n.

It is easy to see that S is a Koszul algebra. The following complex is the minimal

projective resolution of k over S,

0→ S ⊗ S!∗
n → · · · → S ⊗ S!∗

j

dj−→ S ⊗ S!∗
j−1 → · · · → S ⊗ S!∗

1 → S → k→ 0. (1.19)
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The differentials dj , 1 6 j 6 n, are defined by dj(1⊗a) =
∑n
i=1 xi⊗a ·x∗i , for a ∈ S!∗

j ,

where “·” denotes the right S!-action on S!∗. The complex (1.19) is a quantum version

of the classical Koszul complex of a polynomial algebra.

Lemma 1.5.13. (1) The algebra S is homologically smooth.

(2) The rigid dualizing complex of S is isomorphic to Sζ(−n)[n], where ζ is the

algebra automorphism defined by

ζ(xi) = q1i · · · q(i−1)iq
−1
i(i+1) · · · q

−1
in xi,

for all 1 6 i 6 n.

Proof. The Koszul bimodule complex (cf. [68, Thm. 9.1]) of S is as follows

K : 0→ S⊗S!∗
n ⊗S → · · · → S⊗S!∗

j ⊗S
Dj−−→ S⊗S!∗

j−1⊗S → · · · → S⊗S → 0. (1.20)

The differentials Dj : S ⊗ S!∗
j ⊗ S → S ⊗ S!∗

j−1 ⊗ S, 1 6 j 6 n, are defined by

Dj = dlj + (−1)jdrj , where dlj(1 ⊗ a ⊗ 1) =
∑n
i=1 xi ⊗ a · x∗i ⊗ 1 and drj(1 ⊗ a ⊗ 1) =∑n

i=1 1 ⊗ x∗i · a ⊗ xi, for any 1 ⊗ a ⊗ 1 ∈ S ⊗ S!∗
j ⊗ S. We have that K → S → 0 is

exact. This shows that the algebra S is homologically smooth.

The algebra S! is Frobenius, so S is AS-regular. By [68, Thm. 9.2 and Prop. 8.2],

the rigid dualizing complex of S is isomorphic to Sεn+1φ(−n)[n]. The automorphism

ε is the multiplication by (−1)m on Sm. The automorphism φ satisfies that φ|S1
is

dual to η|S!
1
. So

εn+1φ(xi) = q1i · · · q(i−1)iq
−1
i(i+1) · · · q

−1
in xi,

for all 1 6 i 6 n.

Remark 1.5.14. The algebra S is a connected graded algebra. So Sζ ∼= S as bimod-

ules if and only if ζ = id. Therefore, the algebra S is CY of dimension n if and only

if

q1i · · · q(i−1)iq
−1
i(i+1) · · · q

−1
in = 1

for all 1 6 i 6 n.

The algebra Se is Noetherian. Therefore, the rigid dualizing complex of S in the
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ungraded sense is just Sζ [n]. We also have

ExtiSe(S, S
e) ∼=

0, i 6= n;

ζS, i = n.

For an A-A-bimodule M , the Hochschild homology and cohomology of A with

coefficients inM are defined to be TorA
e

∗ (A,M) and Ext∗Ae(A,M) respectively. Denote

them by HH∗(A,M) and HH∗(A,M). An A-A-bimodule U is said to be invertible if

there exists another A-A-bimodule V , such that

U ⊗A V ∼= V ⊗A U ∼= A

as A-A-bimodule.

In [67], Van den Bergh proved the following duality between Hochschild homology

and cohomology.

Theorem 1.5.15. Assume A is a homologically smooth algebra. If there is an integer

d and an invertible bimodule U such that

ExtiAe(A,A
e) ∼=

0, i 6= d;

U, i = d.

as bimodules, then for any A-A-bimodule M ,

HHi(A,M) = HHd−i(A,U ⊗AM), 0 6 i 6 d.

This theorem is usually called Van den Bergh’s duality theorem.

1.5.4 Calabi-Yau property of Hopf algebras

It turns out that CY algebras are Artin-Schelter algebras. For Hopf algebras, the CY

property can be characterized via homological integrals of Artin-Gorenstein algebras.

Let us recall the definition of an Artin-Schelter Gorenstein (regular) algebra first.

An N-graded algebra A = ⊕i>0Ai is called connected if A0 = k.
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Definition 1.5.16. A connected N-graded algebra A is called Artin-Schelter regular

(AS-regular for short) if the following three conditions hold:

(i) A has finite global dimension d.

(ii) There is some integer l, such that

EXTiA(k, A) ∼=

0, if i 6= d;

k(l) if i = d.

(iii) A has finite Gelfand-Kirillov dimension, that is, there is a positive number c

such that dimAi < cnc for all i ∈ N.

Recall that (-) denotes the degree shift. If a connected graded algebra A satisfies

condition (ii), then A is called Artin-Schelter Gorenstein (AS-Gorenstein for short).

In [20], the notion of an AS-Gorenstein (regular) algebra was defined for a general

augmented algebra.

Definition 1.5.17. (1) Let A be a left Noetherian augmented algebra with a fixed

augmentation map ε : A→ k. A is said to be left AS-Gorenstein, if

(i) injdimAA = d <∞,

(ii) dim ExtiA(Ak,AA) =

0, i 6= d;

1, i = d,

where injdim stands for injective dimension.

A Right AS-Gorenstein algebras can be defined similarly.

(2) An algebra A is said to be AS-Gorenstein if it is both left and right AS-

Gorenstein (relative to the same augmentation map ε).

(3) An AS-Gorenstein algebra A is said to be regular if in addition, the global

dimension of A is finite.

The concept of a homological integral for an AS-Gorenstein Hopf algebra was

introduced by Lu, Wu and Zhang in [53]. It is a generalization of an integral of a

finite dimensional Hopf algebra. In [20], homological integrals were defined for general

AS-Gorenstein algebras.
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Definition 1.5.18. [20] Let A be a left AS-Gorenstein algebra with injdimAA = d.

Then ExtdA(Ak,AA) is a 1-dimensional right A-module. Any non-zero element in

ExtdA(Ak,AA) is called a left homological integral of A. We write
∫ l
A

for ExtdA(Ak,AA).

Similarly, if A is right AS-Gorenstein, any non-zero element in ExtdA(kA, AA) is

called a right homological integral of A. Write
∫ r
A

for ExtdA(kA, AA).∫ l
A

and
∫ r
A

are called left and right homological integral modules of A respectively.

The left integral module
∫ l
A

is a 1-dimensional right A-module. Thus
∫ l
A
∼= kξ for

some algebra homomorphism ξ : A→ k.

Proposition 1.5.19. Let A be a Noetherian augmented algebra such that A is CY

of dimension d. Then A is AS-regular of global dimension d. In addition,
∫ l
A
∼= k as

right A-modules.

Proof. If A is an augmented algebra, then Ak is a finite dimensional module. By [13,

Remark 2.8], A has global dimension d.

It follows from [13, Prop. 2.2] that A admits a projective bimodule resolution

0→ Pd → · · · → P1 → P0 → A→ 0,

where each Pi is finitely generated as an A-A-bimodule. Tensoring with functor ⊗Ak,

we obtain a projective resolution of Ak:

0→ Pd ⊗A k→ · · · → P1 ⊗A k→ P0 ⊗A k→ Ak→ 0.

Since each Pi is finitely generated, the isomorphism

k⊗A HomAe(Pi, A
e) ∼= HomA(Pi ⊗A k, A)

holds in ModAop. Therefore, the complex HomA(P• ⊗A k, A) is isomorphic to the

complex k⊗A HomAe(P•, A
e). The algebra A is CY of dimension d. So the following

A-A-bimodule complex is exact,

0→ HomAe(P0, A
e)→ · · · → HomAe(Pd−1, A

e)→ HomAe(Pd, A
e)→ A→ 0.

Thus the complex k⊗AHomAe(P•, A
e) is exact except at k⊗AHomAe(Pd, A

e), whose
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homology is k. It follows that the isomorphisms

ExtiA(Ak,AA) ∼=

0, i 6= d;

k, i = d

hold in ModAop. Similarly, we have isomorphisms

ExtiA(kA, AA) ∼=

0, i 6= d;

k, i = d

in ModA. We conclude that A is AS-regular and
∫ l
A
∼= k.

Remark 1.5.20. From the proof of Proposition 1.5.19 we can see that if A is a

Noetherian augmented algebra such that

(i) A is homologically smooth, and

(ii) there is an integer d and an algebra automorphism ψ, such that

ExtiAe(A,A
e) ∼=

0, i 6= d;

Aψ, i = d

as A-A-bimodules,

then A is AS-regular of global dimension d. In this case,
∫ l
A
∼= kξ. The algebra homo-

morphism ξ is defined by ξ(a) = ε(ψ(a)) for all a ∈ A, where ε is the augmentation

map of A.

Let A be a Hopf algebra, and ξ : A→ k an algebra homomorphism. We let [ξ] be

the winding homomorphism of ξ defined by

[ξ](a) = ξ(a1)a2,

for all a ∈ A. Then we have the following.

Proposition 1.5.21. [20,Prop. 4.5] Let A be a Noetherian AS-Gorenstein Hopf al-

gebra with injective dimension d. Let
∫ l
A

= kξ, where ξ : A → k is an algebra

homomorphism. Then the rigid dualizing complex of A is [ξ]S2
A
A[d].
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The following theorem characterizes the CY property of Noetherian Hopf algebras.

Theorem 1.5.22. [35,Thm. 2.3] Let A be a Noetherian AS-Gorenstein Hopf algebra.

Then A is CY algebra of dimension d if and only if

(ii) A is AS-regular with global dimension d and
∫ l
A
∼= k as right A-modules.

(ii) S2
A is an inner automorphism of A.
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Chapter 2

Calabi-Yau pointed Hopf

algebras U(D, λ)

Chemla calculated the rigid dualizing complex of the quantized enveloping algebra

Uq(g) of a finite dimensional semisimple Lie algebra g [23]. As a result, Uq(g) is a CY

algebra. A pointed Hopf algebra U(D, λ) is not necessarily a CY algebra. In Section

2.1, we calculate the rigid dualizing complex of a pointed Hopf algebra U(D, λ) and

give a necessarily and sufficient condition for U(D, λ) to be a CY algebra. This result

is also a preparation for computing the rigid dualizing complex of the corresponding

Nichols algebra in Chapter 3. The CY pointed Hopf algebras U(D, λ) of dimensions

less than 5 are classified in Section 2.2.

2.1 Rigid dualizing complexes of pointed Hopf al-

gebras U(D, λ)

In this section we fix a generic datum of finite Cartan type

D(Γ, (gi)16i6θ, (χi)16i6θ, (aij)16i,j6θ)

for Γ and a family of linking parameters λ = (λij)16i<j6θ,i�j for D, where Γ is a free

abelian group of rank s.

31



CHAPTER 2. CALABI-YAU POINTED HOPF ALGEBRAS U(D, λ)

Let {α1, · · · , αθ} be a fixed set of simple roots of the root system corresponding

to the Cartan matrix (aij). We also fix a reduced decomposition w0 = si1 · · · sip of

the longest element w0 in the Weyl group W as a product of simple reflections. Then

β1 = αi1 , β2 = si2(αi1), · · · , βp = si1 · · · sip−1
(αip)

are the positive roots. Let x
βi

, 1 6 i 6 p, be the corresponding root vectors. There

are 1 6 jk 6 p, 1 6 k 6 θ, such that βjk = αk. Then x
βjk

= xk, 1 6 k 6 θ.

The algebra U(D, λ) is defined in Section 1.4. Following from Theorem 1.4.7, the

set

{xa1

β1
· · ·xap

βp
g | ai > 0, 1 6 i 6 p, g ∈ Γ}

forms a PBW basis of the algebra U(D, λ). As in [7], the degrees are defined as follows

deg(xa1

β1
· · ·xap

βp
g) = (a1, · · · , ap,

p∑
i=1

aiht(βi)) ∈ (Z>0)p+1, (2.1)

where ht(βi) is the height of the root βi. That is, if βi =
∑θ
i=1miαi, then ht(βi) =∑θ

i=1mi. In this thesis, we always order the elements in Np+1 as follows

(a1, · · · , ap, ap+1) < (b1, · · · , bp, bp+1) if and only if there is some

1 6 k 6 p+ 1, such that ai = bi for i > k and ak−1 < bk−1.
(2.2)

Given m ∈ Np+1, let FmU(D, λ) be the space spanned by the monomials xa1
β1
· · ·xap

βp
g

such that deg(xa1
β1
· · ·xap

βp
g) 6 m. We claim that this gives an algebra filtration on

U(D, λ).

Lemma 2.1.1. If the root vectors x
βi
, x

βj
belong to the same connected component

and j > i, then

[x
βi
, x

βj
]c =

∑
a∈Np

ρax
a1

β1
· · ·xap

βp
, (2.3)

where ρa ∈ k and ρa 6= 0 only when a = (a1, · · · , ap) satisfies that ak = 0 for k 6 i

and k > j. In particular, the equation (2.3) holds for all root vectors x
βi
, x

βj
with

i < j in U(D, 0).

Proof. This follows from [7, Prop. 2.2] and the classical relations that hold for a

quantum group Uq(g) (see [25, Thm. 9.3] for example). It was actually proved in

Step VI of the proof of Theorem 4.3 in [7].
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Lemma 2.1.2. (1) The filtration defined on the PBW basis is an algebra filtration.

(2) The associated graded algebra GrU(D, λ) is generated by x
βi

, 1 6 i 6 p, and

yh, 1 6 h 6 s, subject to the relations

y±1
h y±1

m = y±1
m y±1

h , y±1
h y∓1

h = 1, 1 6 h,m 6 s,

yhxβi = χ
βi

(yh)x
βi
yh, 1 6 i 6 p, 1 6 h 6 s,

x
βi
x
βj

= χ
βj

(g
βi

)x
βj
x
βi
, 1 6 i < j 6 p.

Proof. This follows from Lemma 2.1.1 and the linking relations.

Note that the associated graded algebra GrU(D, λ) is an Np+1-graded algebra.

Lemma 2.1.3. The Hopf algebra A = U(D, λ) is Noetherian with finite global di-

mension bounded by p+ s.

Proof. The group algebra kΓ is isomorphic to a Laurent polynomial algebra with s

variables. So kΓ is Noetherian of global dimension s. By Lemma 2.1.1, the algebra

GrA ∼= U(D, 0) is an iterated Ore extension of kΓ, where GrA is the associated graded

algebra of A with respect to the coradical filtration (cf. Theorem 1.4.7). Indeed, if

x
β1
, · · · , x

βp
are the root vectors of A, then

GrA ∼= kΓ[x
β1

; τ1, δ1][x
β2

; τ2, δ2] · · · [x
βp

; τp, δp].

For 1 6 j 6 p, τj is an algebra automorphism such that its action on each x
βi

, i < j,

and g ∈ Γ is a scalar multiplication. δj is a τj-derivation such that δj(g) = 0, g ∈ kΓ

and δj(xβi ), i < j, is a linear combination of monomials in x
βi+1

, · · · , x
βj−1

. By [57,

Thm. 1.2.9 and Thm. 7.5.3], we have that GrA is Noetherian of global dimension

less than p + s. Following from [57, Thm. 1.6.9 and Cor. 7.6.18], the algebra A is

Noetherian of global dimension less than p+ s.

Theorem 2.1.4. Let D be a generic datum of finite Cartan type for a group Γ, λ

a family of linking parameters for D, and A the Hopf algebra U(D, λ). Then A is

Noetherian AS-regular of global dimension p + s, where s is the rank of Γ and p is

the number of the positive roots of the Cartan matrix. The left homological integral

module
∫ l
A

of A is isomorphic to kξ, where ξ : A → k is an algebra homomorphism

defined by ξ(g) = (
∏p
i=1 χβi )(g) for all g ∈ Γ and ξ(xi) = 0 for all 1 6 i 6 θ.
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Proof. We first show that

ExtiA(Ak,AA) ∼=

0, i 6= p+ s;

kξ, i = p+ s.

With Lemma 2.1.2 and Lemma 2.1.3, the method in [23, Prop. 3.2.1] for computing

the group Ext∗Uq(g)(Uq(g)k, Uq(g)Uq(g)) also works in the case of U(D, λ). The differ-

ence is that the right A-module structure on Extp+sA (Ak,AA) is not trivial in the case

of U(D, λ). Put C = GrU(D, λ). We also have that ExtiA(Ak,AA) = 0 for i 6= p+ s

and Extp+sC (Ck,CC) ∼= Extp+sA (Ak,AA) as right Γ-modules.

We now give the structure of Ext∗C(Ck,CC). Let B be the following algebra,

k〈x
β1
, · · · , x

βp
| x

βi
x
βj

= χ
βj

(g
βi

)x
βj
x
βi
, 1 6 i < j 6 p〉.

Then C = B#kΓ. We have the following isomorphisms

RHomC(k, C) ∼= RHomC(kΓ⊗kΓ k, C)
∼= RHomkΓ(k,RHomC(kΓ, C))
∼= RHomkΓ(k,kΓ)⊗L

kΓ RHomC(kΓ, C).

Let

0→ B ⊗B!∗
p → · · ·B ⊗B!∗

j → · · · → B ⊗B!∗
1 → B → k→ 0 (2.4)

be the Koszul complex of B (cf. complex (1.19)). It is a projective resolution of k.

Each B!∗
j is a left kΓ-module defined by

[g(β)](x∗βi1
∧ · · · ∧ x∗βij ) = β(g−1(x∗βi1

∧ · · · ∧ x∗βij ))

= β(g−1(x∗βi1
) ∧ · · · ∧ g−1(x∗βij

))

=
∏j
t=1 χβit (g)β(x∗βi1

∧ · · · ∧ x∗βij ).

Thus, each B ⊗B!∗
j is a B#kΓ-module defined by

(c#g) · (b⊗ β) = (c#g)(b)⊗ g(β),

for any b⊗ β ∈ B ⊗B!∗
j and c#g ∈ B#kΓ. It is not difficult to see that the complex

(2.4) is an exact sequence of B#kΓ modules. Tensoring it with kΓ, we obtain the
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following exact sequence of B#kΓ-modules

0→ B ⊗B!∗
p ⊗ kΓ→ · · ·B ⊗B!∗

j ⊗ kΓ→ · · · → B ⊗B!∗
1 ⊗ kΓ→ B ⊗ kΓ→ kΓ→ 0,

where the Γ-action is diagonal. Each B⊗B!∗
t ⊗kΓ is a free B#kΓ-module. Therefore,

we obtain a projective resolution of kΓ over B#kΓ.

The complex

0→ HomC(B⊗kΓ, C)→ HomC(B⊗B!∗
1 ⊗kΓ, C)→ · · · → HomC(B⊗B!∗

p ⊗kΓ, C)→ 0

is isomorphic to the following complex

0→ C → B!
1 ⊗ C → · · · → B!

p−1 ⊗ C
δp−→ B!

p ⊗ C → 0.

This complex is exact except at B!
p⊗C, whose cohomology is isomorphic to B!

p⊗kΓ.

So RHomC(kΓ, C) ∼= B!
p ⊗ kΓ[p]. We have

(x∗
β1
∧ · · · ∧ x∗

βp
)⊗ g = (

p∏
i=1

χ
βi

)(g)g((x∗
β1
∧ · · · ∧ x∗

βp
)⊗ 1),

for all g ∈ Γ. The group Γ is a free abelian group of rank s, so RHomkΓ(k,kΓ) ∼= k[s].

Therefore, we obtain that

RHomkΓ(k,kΓ)⊗L
kΓ RHomC(kΓ, C) ∼= kξ′ [p+ s],

where ξ′ is defined by ξ′(g) = (
∏p
i=1 χβi )(g) for all g ∈ Γ and ξ′(x

βj
) = 0 for all

1 6 j 6 p. That is,

ExtiC(Ck,CC) ∼=

0, i 6= p+ s;

kξ′ , i = p+ s.

Extp+sA (Ak,AA) is a 1-dimensional right A-module. Let m be a basis of the module

Extp+sA (Ak,AA). It follows from the right version of [63, lemma 2.13 (1)] thatm·xi = 0

for all 1 6 i 6 θ. Since Extp+sC (Ck,CC) ∼= Extp+sA (Ak,AA) as right Γ-modules, we

have showed that

ExtiA(Ak,AA) ∼=

0, i 6= p+ s;

kξ, i = p+ s.
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Similarly, we have

dim ExtiA(kA, AA) =

0, i 6= p+ s;

1, i = p+ s.

By Lemma 2.1.3, the algebra A is AS-regular of global dimension p+ s.

Now we can give a necessary and sufficient condition for a pointed Hopf algebra

U(D, λ) to be CY.

Theorem 2.1.5. Let D be a generic datum of finite Cartan type for a group Γ, λ a

family of linking parameters for D and A the Hopf algebra U(D, λ).

(1) The rigid dualizing complex of the Hopf algebra A = U(D, λ) is ψA[p + s],

where ψ is defined by ψ(xk) =
∏p
i=1,i6=jk χβi (gk)xk, for all 1 6 k 6 θ, and

ψ(g) = (
∏p
i=1 χβi )(g) for all g ∈ Γ where each jk, 1 6 k 6 θ, is the integer such

that βjk = αk.

(2) The algebra A is CY if and only if
∏p
i=1 χβi = ε and S2

A is an inner automor-

phism.

Proof. (1) By Proposition 1.5.21 and Theorem 2.1.4, the rigid dualizing complex of

A is isomorphic to [ξ]S2
A
A[p + s], where ξ is the algebra homomorphism defined in

Theorem 2.1.4. It is not difficult to see that

([ξ]S2
A)(g) = (

p∏
i=1

χ
βi

)(g),

for all g ∈ Γ. For 1 6 k 6 θ, we have ∆(xk) = xk⊗1+gk⊗xk and S2
A(xk) = χk(g−1

k )xk.

If jk is the integer such that βjk = αk, then χ
βjk

(gk) = χk(gk). So

([ξ]S2
A)(xk) = χk(g−1

k )[ξ](xk)

= χk(g−1
k )

∏p
i=1 χβi (gk)(xk)

=
∏p
i=1,i6=jk χβi (gk)(xk).

(2) follows from Theorem 2.1.4 and Theorem 1.5.22.

Remark 2.1.6. From Theorem 2.1.5, we can see that for a pointed Hopf algebra

U(D, λ), it is CY if and only if its associated graded algebra U(D, 0) is CY.
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Corollary 2.1.7. Assume that A = U(D, λ). For every A-A-bimodule M , there are

isomorphisms:

HHi(A,M) ∼= HHp+s−i(A, ψ−1M), 0 6 i 6 p+ s, (2.5)

where ψ is the algebra automorphism defined in Theorem 2.1.5.

Proof. This follows from [20, Cor. 5.2] and Theorem 2.1.4.
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2.2 Calabi-Yau pointed Hopf algebras U(D, λ) of low

dimensions

In this section, we assume that k = C. We shall classify CY pointed Hopf algebras

U(D, λ) of dimension less than 5, where D is a generic datum of finite Cartan type

for a group Γ and λ is a family of liking parameters for D.

Remark 2.2.1. Let D(Γ, (gi), (χi), (aij)) be a generic datum of finite Cartan type.

Then χi(gi) are not to be roots of unity for 1 6 i 6 θ. Hence, in the classifica-

tion, we exclude the case where the group is trivial. If the group Γ in a datum

D(Γ, (gi), (χi), (aij)) is trivial, then the algebra U(D, 0) (in this case, U(D, 0) has no

non-trivial lifting) is the universal enveloping algebra U(g), where the Lie algebra g

is generated by xi, 1 6 i 6 θ, subject to the relations

(adxi)
1−aijxj = 0, 1 6 i, j 6 θ, i 6= j.

We have tr(adx) = 0 for all x ∈ g. Therefore, U(g) is CY by [35, Lemma 4.1]. We

list those of dimension less than 5 in the following table.

CY Lie algebra

Case dimension Cartan matrix bases relations

1 1 A1 x

2 2 A1 ×A1 x, y abelian Lie algebra

3 3 A1 ×A1 ×A1 x, y, z abelian Lie algebra

4 3 A2 x, y, z [x, y] = z, [x, z] = [y, z] = 0

5 4 A1 × · · · ×A1 x, y, z, w abelian Lie algebra

6 4 A1 ×A2 x, y, z, w [x, y] = z, [x, z] = [y, z] = 0

[x,w] = [y, w] = [z, w] = 0

7 4 B2 x, y, z, w [x, y] = z, [x, z] = w,

[x,w] = [y, z]

= [y, w] = [z, w] = 0

Remark 2.2.2. The Lie algebra in Case 4 is the Heisenberg algebra. In [35], the au-

thors classified those 3-dimensional Lie algebras whose universal enveloping algebras
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are CY algebras. Beside the algebras in Case 3 and Case 4, the other two Lie algebras

are

• The 3-dimensional simple Lie algebra sl2;

• The Lie algebra g, where g has a basis {x,y,z} such that [x, y] = y, [x, z] = −z
and [y, z] = 0.

Definition 2.2.3. Let

D(Γ, (gi)16i6θ, (χi)16i6θ, (aij)16i,j6θ)

and

D′(Γ′, (g′i)16i6θ′,, (χ
′
i)16i6θ′ , (a

′
ij)16i,j6θ′)

be two generic data of finite Cartan type for groups Γ and Γ′, where Γ and Γ′ are both

free abelian groups of finite rank. Let λ and λ′ be two families of linking parameters

for D and D′ respectively.

The data (D, λ) and (D′, λ′) are said to be isomorphic if θ = θ′, and if there exist

a group isomorphism ϕ : Γ→ Γ′, a permutation σ ∈ Sθ, and elements 0 6= αi ∈ k, for

all 1 6 i 6 θ subject to the following relations:

(1) ϕ(gi) = g′σ(i), for all 1 6 i 6 θ.

(2) χi = χ′σ(i)ϕ, for all 1 6 i 6 θ.

(3) λij =

αiαjλ′σ(i)σ(j), if σ(i) < σ(j)

−αiαjχj(gi)λ′σ(j)σ(i), if σ(i) > σ(j)
,

for all 1 6 i < j 6 θ and i � j.

In this case the triple (ϕ, σ, (αi)) is called an isomorphism from (D, λ) to (D′, λ′).

If (D, λ) and (D′, λ) are isomorphic, then we can deduce that aij = a′σ(i)σ(j) for

all 1 6 i, j 6 θ [7].

The following corollary can be immediately obtained from the definition of iso-

morphic data.
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Corollary 2.2.4. Let D be a generic datum of finite Cartan type formed by (Γ,

(gi), (χi), (aij)). Assume that ϕ : Γ → Γ′ is a group isomorphism and σ is a

permutation in Sθ. Then (D, 0) is isomorphic to (D′, 0), where D′ is formed by

(Γ′, (ϕ(gσ−1(i))), (χσ−1(i)ϕ
−1), (aσ−1(i)σ−1(j))).

Let D be a generic datum of finite Cartan type and λ a family of linking parameters

for D. In the rest of this chapter, we simply call (D, λ) a generic datum of finite Cartan

type. Following from [7], the pointed Hopf algebra U(D, λ) is uniquely determined by

datum (D, λ). Let Isom((D, λ), (D′, λ′)) be the set of all isomorphisms from (D, λ)

to (D′, λ′). Let A,B be two Hopf algebras, we denote by Isom(A,B) the set of all

Hopf algebra isomorphisms from A to B.

Lemma 2.2.5. [7,Thm. 4.5] Let (D, λ) and (D′, λ′) be two generic data of finite Car-

tan type. Then the Hopf algebras U(D, λ) and U(D′, λ′) are isomorphic if and only if

(D, λ) is isomorphic to (D′, λ′). More precisely, let x1, · · · , xθ (resp. x′1, · · · , x′θ)

be the simple root vectors in U(D, λ) (resp. U(D′, λ′)), and let g1, · · · , gθ (resp.

g′1, · · · , g′θ) be the group-like elements in D (resp. D′). Then the map

Isom(U(D, λ), U(D′, λ′))→ Isom((D, λ), (D′, λ′)),

given by φ 7→ (ϕ, σ, (αi)), where ϕ(g) = φ(g), ϕ(gi) = g′σ(i), φ(xi) = αix
′
σ(i), for all

g ∈ Γ, 1 6 i 6 θ, is bijective.

Let (D, λ) be a generic datum of finite Cartan type. By Lemma 1.4.4, any vertex

can be linkable to at most one vertex. That is, for any 1 6 i 6 θ, there is at most one

1 6 j 6 θ, such that i < j and λij 6= 0. Thus it is reasonable to set elements αi ∈ k
as follows:

If there is an integer j, such that i < j and λij 6= 0, then set αi = λij ;

Otherwise set αi = 1.

Define

λ′ij =

1, λij 6= 0;

0, λij = 0.

Then (id, id, (αi)) is an isomorphism from (D, λ) to (D, λ′). Therefore, we can assume

that the family of linking parameters (λij)16i<j6θ are chosen from {0, 1}.

The following lemma is well-known.
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Lemma 2.2.6. If Γ is a free abelian group of rank s, then the algebra kΓ is a CY

algebra of dimension s.

If Γ is a free abelian group of finite rank, we denote by |Γ| the rank of Γ.

Proposition 2.2.7. Let A be the algebra U(D, λ), where (D, λ) is a generic datum

of finite Cartan type for a group Γ. Then

(1) A is CY of dimension 1 if and only if A = kZ.

(2) A is CY of dimension 2 if and only if A = kΓ, where Γ is a free abelian group

of rank 2.

Proof. (1) is clear.

(2) It is sufficient to show that if A is CY of dimension 2, then A is the group

algebra of a free abelian group of rank 2. By Theorem 2.1.4, if the global dimension

of A is 2. Then the following possibilities arise:

(a) |Γ| = 2, A = kΓ is the group algebra of a free abelian group of rank 2;

(b) |Γ| = 1 and the Cartan matrix of A is of type A1.

Let A be a pointed Hopf algebra of type (b) and let the datum

(D, λ) = (Γ, (gi), (χi), (aij), (λij))

be as follows

• Γ = 〈y1〉 ∼= Z;

• g1 = yk1 , for some k ∈ Z;

• χ1 ∈ Γ̂ is defined by χ1(y1) = q, where q is not a root of unity;

• The Cartan matrix is of type A1;

• λ = 0.
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Observe that in this case, the linking parameter must be 0. In addition, there is only

one root vector, that is, the simple root vector x1. Since q 6= 1, we have χ1 6= ε. So

the algebra A is not CY by Theorem 2.1.5.

Therefore, if A is CY, then A is of type (a). Hence, the classification is complete.

Proposition 2.2.8. Let A be the algebra U(D, λ), where (D, λ) is a generic datum

of finite Cartan type for a group Γ. If A is CY of dimension 3, then the group Γ and

the Cartan matrix (aij) are given by one of the following 2 cases.

Case |Γ| Cartan matrix

1 3 Trivial

2 1 A1 ×A1

The non-isomorphic classes of CY algebras in each case are given as follows.

Case 1: The group algebra of a free abelian group of rank 3.

Case 2:

(I) The datum (D, λ) = (Γ, (g1, g2), (χ1, χ2), (aij)16i,j62, λ12) is given as follows:

• Γ = 〈y1〉 ∼= Z;

• g1 = g2 = yk1 for some k ∈ Z+;

• χ1(y1) = q, where q ∈ k is not a root of unity and 0 < |q| < 1, and

χ2 = χ−1
1 ;

• (aij)16i,j62 is the Cartan matrix of type A1 ×A1;

• λ12 = 0.

(II) The datum (D, λ) = (Γ, (g1, g2), (χ1, χ2), (aij)16i,j62, λ12) is given as follows:

• Γ = 〈y1〉 ∼= Z;

• g1 = g2 = yk1 for some k ∈ Z+;

• χ1(y1) = q, where q ∈ k is not a root of unity and 0 < |q| < 1, and

χ2 = χ−1
1 ;
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• (aij)16i,j62 is the Cartan matrix of type A1 ×A1;

• λ12 = 1.

Proof. By Remark 2.1.6, it is sufficient to discuss the graded case and consider the

non-trivial liftings. We first show that the algebras listed in the proposition are all

CY. Case 1 follows from Lemma 2.2.6. Now we discuss Case 2. The root system

of the Cartan matrix of type A1 × A1 has two simple roots, say α1 and α2. They

are also the positive roots. First we have χ1χ2 = ε. Since S2
A(xi) = χi(g

−1
i )xi,

i = 1, 2, g1 = g2 = yk1 , we have S2
A(xi) = y1

−kxiy1
k for i = 1, 2. It is easy to see that

S2
A(y1) = y1. It follows that S2

A is an inner automorphism. Thus the algebras in Case

2 are CY by Theorem 2.1.5.

Now we show that the classification is complete.

If A is of global dimension 3, then the following possibilities for the group Γ and

the Cartan matrix (aij) arise:

(1) |Γ| = 3, A is the group algebra of a free abelian group of rank 3.

(2) |Γ| = 2 and the Cartan matrix of A is of type A1.

(3) |Γ| = 1 and the Cartan matrix of A is of type A1 ×A1.

Similar to the case of global dimension 2, A can not be CY if A is of type (2).

Now, letA be a CY graded algebra of type (3). In this case, we have χ2(g1)χ1(g2) =

1 (cf. equation (1.6)). In addition, we have χ1χ2 = ε by Theorem 2.1.5. It follows

that 1 = χ2(g1)χ1(g2) = χ−1
1 (g1)χ1(g2). Let Γ = 〈y1〉 and g1 = yk1 , g2 = yl1 for some

k, l ∈ Z. Then χ1(yl−k1 ) = 1. Since χ1(y1) is not a root of unity, we have k = l, that

is, g1 = g2 = yk1 . Therefore, A ∼= U(D, 0), where the datum D is given by

• Γ = 〈y1〉 ∼= Z;

• g1 = g2 = yk1 , for some k ∈ Z;

• χ1(y1) = q, where q ∈ k is not a root of unity, and χ2 = χ−1
1 ;

• (aij)16i,j62 is the Cartan matrix of type A1 ×A1.

Let D′ be another datum given by

43



CHAPTER 2. CALABI-YAU POINTED HOPF ALGEBRAS U(D, λ)

• Γ′ = 〈y′1〉 ∼= Z;

• g′1 = g′2 = y′k
′

1 , for some k′ ∈ Z;

• χ′1(y′1) = q′, where q′ ∈ k is not a root of unity, and χ′2 = χ′−1
1 ;

• (a′ij)16i,j62 is the Cartan matrix of type A1 ×A1.

Assume that (D′, 0) is isomorphic to (D, 0) via an isomorphism (ϕ, σ, (αi)). Then ϕ

is a group automorphism such that ϕ(y1) = y′1 or ϕ(y1) = y′−1
1 . Since σ ∈ S2, we

have σ = id or σ = (12). From an easy computation, there are four possibilities for

k′ and q′,

• k′ = k and q′ = q;

• k′ = −k and q′ = q;

• k′ = k and q′ = q−1;

• k′ = −k and q′ = q−1.

This shows that A = U(D, 0) is isomorphic to an algebra in (I) of Case 2. In addition,

every pair (k, q) ∈ Z+×k, such that 0 < |q| < 1 determines a non-isomorphic algebra

in (I) of Case 2. Each algebra in (I) of Case 2 has only one non-trivial lifting, which

is isomorphic to an algebra in (II).

Thus we have completed the classification.

We list all CY Hopf algebras U(D, λ) of dimension 3 in terms of generators and

relations in the following table. Note that in each case q is not a root of unity.

Table 4.1: CY algebras of dimension 3

Case Generators Relations

Case 1 yh, y
−1
h y±1

h y±1
m = y±1

m y±1
h

1 6 h 6 3 y±1
h y∓1

h = 1

1 6 h,m 6 3

Case 2 (I) y±1
1 , x1, x2 y1y

−1
1 = y−1

1 y1 = 1

y1x1 = qx1y1

y1x2 = q−1x2y1, 0 < |q| < 1

x1x2 − q−kx2x1 = 0, k ∈ Z+
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Case 2 (II) y±1
1 , x1, x2 y1y

−1
1 = y−1

1 y1 = 1

y1x1 = qx1y1

y1x2 = q−1x2y1, 0 < |q| < 1

x1x2 − q−kx2x1 = (1− y2k
1 ), k ∈ Z+

Proposition 2.2.9. Let A be the algebra U(D, λ), where (D, λ) is a generic datum

of finite Cartan type for a group Γ. If A is CY of dimension 4, then the group Γ and

the Cartan matrix (aij) are given by one of the following 2 cases.

Case |Γ| Cartan matrix

1 4 Trivial

2 2 A1 ×A1

In each case, the non-isomorphic classes of CY algebras are given as follows.

Case 1: The group algebra of a free abelian group of rank 4.

Case 2:

(I) The datum (D, λ) = (Γ, (g1, g2), (χ1, χ2), (aij)16i,j62, λ12) is given by

• Γ = 〈y1, y2〉 ∼= Z2;

• g1 = g2 = yk1 for some k ∈ Z+;

• – χ1(y1) = q1 , χ1(y2) = q2 , where q1 , q2 ∈ k satisfies that 0 < |q1 | < 1

and q1 is not a root of unity,

– χ2 = χ−1
1 ;

• (aij)16i,j62 is the Cartan matrix of type A1 ×A1;

• λ12 = 0.

(II) The datum (D, λ) = (Γ, (g1, g2), (χ1, χ2), (aij)16i,j62, λ12) is given by

• Γ = 〈y1, y2〉 ∼= Z2;

• g1 = g2 = yk1 for some k ∈ Z+;

• – χ1(y1) = q
1
, χ1(y2) = q

2
, where q

1
, q

2
∈ k satisfies that 0 < |q

1
| < 1

and q
1

is not a root of unity,
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– χ2 = χ−1
1 ;

• (aij)16i,j62 is the Cartan matrix of type A1 ×A1;

• λ12 = 1.

Let A and B be two algebras in Case (I) (or (II)) defined by triples (k, q
1
, q

2
) and

(k′, q′
1
, q′

2
) respectively. They are isomorphic if and only if k = k′, q

1
= q′

1
and there

is some integer b, such that q′
2

= qb
1
q

2
or q′

2
= qb

1
q−1

2
.

(III) The datum (D, λ) = (Γ, (g1, g2), (χ1, χ2), (aij)16i,j62, λ12) is given by

• Γ = 〈y1, y2〉 ∼= Z2;

• g1 = yk1 , g2 = yl2 for some k, l ∈ Z+;

• – χ1(y1) = q, χ1(y2) = q
k
l , where q ∈ k is not a root of unity and

0 < |q| < 1,

– χ2 = χ−1
1 ;

• (aij)16i,j62 is the Cartan matrix of type A1 ×A1;

• λ12 = 0.

(IV) The datum (D, λ) = (Γ, (g1, g2), (χ1, χ2), (aij)16i,j62, λ12) is given by

• Γ = 〈y1, y2〉 ∼= Z2;

• g1 = yk1 , g2 = yl2 for some k, l ∈ Z+;

• – χ1(y1) = q, χ1(y2) = q
k
l , where q ∈ k is not a root of unity and

0 < |q| < 1,

– χ2 = χ−1
1 ;

• (aij)16i,j62 is the Cartan matrix of type A1 ×A1;

• λ12 = 1.

(V) The datum (D, λ) = (Γ, (g1, g2), (χ1, χ2), (aij)16i,j62, λ12) is given by

• Γ = 〈y1, y2〉 ∼= Z2;

• g1 = yk1 , g2 = yl11 y
l2
2 for some k, , l1, l2 ∈ Z+, k 6= l1, 0 < l1 < l2;

• – χ1(y1) = q, χ1(y2) = q
k−l1
l2 , where q ∈ k is not a root of unity and

0 < |q| < 1,

– χ2 = χ−1
1 ;
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• (aij)16i,j62 is the Cartan matrix of type A1 ×A1;

• λ12 = 0.

(VI) The datum (D, λ) = (Γ, (g1, g2), (χ1, χ2), (aij)16i,j62, λ12) is given by

• Γ = 〈y1, y2〉 ∼= Z2;

• g1 = yk1 , g2 = yl11 y
l2
2 for some k, l1, l2 ∈ Z+, k 6= l1 and 0 < l1 < l2;

• – χ1(y1) = q, χ1(y2) = q
k−l1
l2 , where q ∈ k is not a root of unity and

0 < |q| < 1,

– χ2 = χ−1
1 ;

• (aij)16i,j62 is the Cartan matrix of type A1 ×A1;

• λ12 = 1.

Proof. We first show that the algebras listed in the proposition are all CY. That

the algebra in Case 1 is a CY algebra follows from Lemma 2.2.6. In Case 2, we have

χ1χ2 = ε and S2
A is an inner automorphism in each subcase. Indeed, S2

A(xi) = g−1
1 xig1

and S2
A(yi) = g−1

1 yig1 = yi, i = 1, 2. Thus the algebras in Case 2 are CY by Theorem

2.1.5.

Now we show that the classification is complete and the algebras on the list are

non-isomorphic to each other.

If A is of global dimension 4, then the group Γ and the Cartan matrix (aij) must

be one of the following types:

(1) |Γ| = 4 and A is the group algebra of a free abelian group of rank 4.

(2) |Γ| = 3 and the Cartan matrix of A is of type A1.

(3) |Γ| = 2 and the Cartan matrix of A is of type A1 ×A1.

(4) |Γ| = 1 and the Cartan matrix of A is of type A1 ×A1 ×A1.

(5) |Γ| = 1 and the Cartan matrix of A is of type A2.

Let A be a CY algebra of dimension 4. Similar to the case of global dimension 2,

A cannot be of type (2). We claim that A cannot be of type (4) and (5) either.

Assume that A is of type (4), put Γ = 〈y1〉, gi = ymi1 for some 0 6= mi ∈ Z and

χi(y1) = qi for some qi ∈ k, 1 6 i 6 3. Then qij = qmij , for 1 6 i, j 6 3. Because
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each qii is not a root of unity, each qi is not a root of unity either. Since qijqji = 1,

we have

qm2

1
qm1

2
= 1, qm3

1
qm1

3
= 1, qm3

2
qm2

3
= 1.

Then q2m2m3
1

= 1. But q
1

is not a root of unity. So A can not be of type (4).

In case (5), there are 3 positive roots in the root system. They are α1, α2 and

α1 +α2, where α1 and α2 are the simple roots. If A is CY, then χ2
1χ

2
2 = ε by Theorem

2.1.5. So we have q2
11
q2

21
= 1 and q2

12
q2

22
= 1. However, q

21
q

12
= q−1

11
(equation (1.7)).

Thus q2
22

= 1. But q22 is not a root of unity. So A cannot be of type (5) either.

Now to show that the classification is complete, we only need to show that if A is

a CY pointed Hopf algebra of type (3), then A is isomorphic to an algebra in Case

2. Each algebra in (I), (III) and (V) of Case 2 has only one non-trivial lifting, which

is isomorphic to an algebra in (II), (IV) and (VI) respectively. By Remark 2.1.6, it

suffices to show that if A is a graded CY pointed Hopf algebra of type (3), then A is

isomorphic to an algebra in (I), (III) and (V) of Case 2.

Let Γ = 〈y1, y2〉 be a free abelian group of rank 2. We write χ1(y1) = q
1
, χ1(y2) =

q
2

and g1 = yk1
1 yk2

2 , g2 = yl11 y
l2
2 , where χ1(g1) = qk1

1
qk2

2
is not a root of unity, and

k1, k2, l1, l2 ∈ Z. Following Theorem 2.1.5, we have χ1χ2 = ε. So q
21

= ql1
1
ql2

2
and

q
12

= q−k1
1

q−k2
2

. We also have q
12
q

21
= 1 (equation (1.7)). Thus ql1−k1

1
ql2−k2

2
= 1.

Therefore, A ∼= U(D, 0), where the datum D is formed by

• Γ = 〈y1, y2〉 ∼= Z2;

• (aij) is the Cartan matrix of type A1 ×A1;

• g1 = yk1
1 yk2

2 , g2 = yl11 y
l2
2 , k1, k2, l1, l2 ∈ Z;

• χ1(y1) = q1 , χ1(y2) = q2 , where χ1(g1) = qk1
1
qk2

2
is not a root of unity and

ql1−k1
1

ql2−k2
2

= 1, and χ2 = χ−1
1 .

In the above datum D, we may assume that k1 > 0 and k2 = 0. Then q
1

is

not a root of unity. We show that there is a group isomorphism ϕ : Γ → Γ′, where

Γ′ = 〈y′1, y′2〉 is also a free abelian group of rank 2, such that ϕ(yk1
1 yk2

2 ) = y′k1 and

k > 0.

The integers k1 and k2 can not be both equal to 0. If k2 = 0 and k1 > 0, then it

is done. If k2 = 0 and k1 < 0, then ϕ(y1) = y′−1
1 and ϕ(y2) = y′−1

2 defines a desired

isomorphism.
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Similarly, we can obtain a desired isomorphism when k1 = 0 and k2 6= 0.

If k1, k2 6= 0, then there are some k, k̄1, k̄2 ∈ Z, such that k1 = k̄1k, k2 = k̄2k,

k > 0 and (k̄1, k̄2) = 1, that is, k̄1 and k̄2 have no common divisors. We can find

integers a, b such that ak̄1 + bk̄2 = 1. Let ϕ : Γ → Γ′ be the group isomorphism

defined by ϕ(y1) = y′1
a
y′2
−k̄2 and ϕ(y2) = y′1

b
y′2
k̄1 . Then ϕ(yk1

1 yk2
2 ) = y′1

k
and k > 0.

In conclusion, we have proved the claim.

If l2 = 0, then we have ql1−k1
1

= 1. Since q
1

is not a root of unity, we have l1 = k1.

Applying a similar argument to the one in Case 2 of Proposition 2.2.8, we find that

A is isomorphic to an algebra in (I) of Case 2.

Next, we consider the case when l2 6= 0. In case l1 = 0, like what we did for k1 and

k2, we may assume that l2 > 0. If 0 < |q
1
| < 1, then A is isomorphic to an algebra in

(III) of Case 2. Otherwise, the datum (D, 0) is isomorphic to the datum given by

• Γ = 〈y1, y2〉 ∼= Z2;

• g′1 = yl21 , g′2 = yk1
2 , k1, l2 ∈ Z+;

• χ′1(y1) = q
− k1
l2

1 , χ′1(y2) = q−1
1

, χ′2 = χ′−1
1 .

• (aij) is the Cartan matrix of type A1 ×A1;

• λ12 = 0

via the isomorphism (ϕ, (12), α1 = α2 = 1), where ϕ is the algebra automorphism

defined by ϕ(y1) = y2 and ϕ(y2) = y1. So A is isomorphic to an algebra in (III) of

Case 2 as well.

If l1 6= 0 and l2 > 0, then there is an integer c, such that 0 6 l1 + cl2 < l2.

Let Γ′ = 〈y′1, y′2〉 be a free abelian group of rank 2, and ϕ : Γ → Γ′ the group

isomorphism defined by ϕ(y1) = y′1 and ϕ(y2) = y′c1 y
′
2. Then ϕ(yk1

1 ) = y′1
k1 and

ϕ(yl11 y
l2
2 ) = y′1

l1+cl2y′2
l2 .

If l1 6= 0 and l2 < 0, then there are integers l̄1, l̄2, such that l1 = l̄1l, l2 = l̄2l,

l > 0 and (l̄1, l̄2) = 1. So l̄2 < 0. We can find integers a, b such that al̄1 + bl̄2 = 1.

Since for any integer d, (a+ dl̄2)l̄1 + (b− dl̄1)l̄2 = al̄1 + bl̄2 = 1, we may assume that

0 6 a < −l̄2. Let Γ′ = 〈y′1, y′2〉 be a free abelian group of rank 2, and ϕ : Γ → Γ′

be the group isomorphism defined by ϕ(y1) = y′1
a
y′2
−l̄2 and ϕ(y2) = y′1

b
y′2
l̄1 . Then

ϕ(yk1
1 ) = y′1

ak1y′2
−l̄2k1 and ϕ(yl11 y

l2
2 ) = y′1

l
.
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In summary, by Corollary 2.2.4, we may assume that l2 > 0 and 0 6 l1 < l2. If

l1 = 0, then we go back to the case we just discussed. If l1 6= 0 and 0 < |q
1
| < 1, then

A is isomorphic to an algebra in (V). Otherwise, (D, 0) is isomorphic to the datum

given by given by

• Γ = 〈y1, y2〉 ∼= Z2;

• g′1 = yl1, g
′
2 = yak1

1 yk1 l̄2
2 . l̄1, l̄2 ∈ Z+ are the integers such that ll̄1 = l1, ll̄2 = l2,

and (l̄1, l̄2) = 1. a, b ∈ Z are the integers such that al̄1 + bl̄2 = 1 and 0 < a < l̄2.

• χ′1(y1) = q
− k1 l̄2

l2
1 , χ′1(y2) = q

ak1−l
l2

1 , χ′2 = χ′−1
1 .

• (aij) is the Cartan matrix of type A1 ×A1;

• λ12 = 0

via the isomorphism (ϕ, (12), α1 = α2 = 1), where ϕ is the isomorphism defined by

ϕ(y1) = ya1y
l̄2
2 and ϕ(y2) = yb1y

−l̄1
2 . It follows that A is isomorphic to an algebra in

(V) as well.

It is clear that the algebras from different cases and subcases are non-isomorphic

to each other. It is sufficient to show that the algebras in the same subcases in Case

2 are non-isomorphic. Each algebra in (II), (IV) and (VI) is a lifting of an algebra

in (I), (III) and (V) respectively. So it is sufficient to discuss the cases (I), (III) and

(V).

First we discuss the case (I). Let D and D′ be two data given by

• Γ = 〈y1, y2〉 ∼= Z2;

• g1 = g2 = yk1 for some k ∈ Z+;

• χ1(y1) = q1 , χ1(y2) = q2 , where q1 , q2 ∈ k satisfies that 0 < |q1 | < 1 and q1 is

not a root of unity, and χ2 = χ−1
1 ;

• (aij)16i,j62 is the Cartan matrix of type A1 ×A1

and

• Γ = 〈y′1, y′2〉 ∼= Z2;
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• g1 = g2 = yk
′

1 for some k′ ∈ Z+;

• χ1(y1) = q′
1
, χ1(y2) = q′

2
, where q′

1
, q′

2
∈ k satisfies that 0 < |q′

1
| < 1 and q′

1
is

not a root of unity, and χ2 = χ−1
1 ;

• (a′ij)16i,j62 is the Cartan matrix of type A1 ×A1

respectively. Assume that (ϕ, σ, α) is an isomorphism from (D, 0) to (D′, 0). Say

ϕ(y1) = y′1
a
y′2
c

and ϕ(y2) = y′1
b
y′2
d
. Since g1 = g2 and g′1 = g′2, we have ϕ(yk1 ) = y′k

′

1 .

Moreover, k, k′ > 0. So a = 1, c = 0 and d = ±1. Consequently, we have k = k′,

q1 = q′
1
. If σ = id, then q′

2
= q−b

1
q2 . Otherwise, q′

2
= qb

1
q−1

2
. We have identified the

isomorphic algebras in (I).

Similarly, it is direct to show that each triple (k, l, q) ∈ Z+ × Z+ × k such that

0 < |q| < 1 determines a non-isomorphic algebra in (III).

Now we show that the algebras in (V) are non-isomorphic. Let D and D′ be the

data given by

• Γ = 〈y1, y2〉 ∼= Z2;

• g1 = yk1 , g2 = yl11 y
l2
2 such that k, l1, l2 ∈ Z+ and 0 < l1 < l2;

• χ1(y1) = q, where q ∈ k is not a root of unity, 0 < |q| < 1, and χ1(y2) = q
k−l1
l2

and χ2 = χ−1
1 ;

• (aij)16i,j62, the Cartan matrix of type A1 ×A1

and

• Γ′ = 〈y′1, y′2〉 is also a free abelian group of rank 2;

• g′1 = y′1
k′

, g′2 = y′1
l′1y′2

l′2 such that k′, l′1, l
′
2 ∈ Z+ and 0 < l′1 < l′2;

• χ′1(y′1) = q′, where q′ ∈ k is not a root of unity, 0 < |q′| < 1, and χ′1(y′2) = q
′ k
′−l′1
l′2

and χ′2 = χ′1
−1

;

• (aij)16i,j62, the Cartan matrix of type A1 ×A1

respectively. We claim that (D, 0) and (D′, 0) are isomorphic if and only if q = q′,

k = k′, l1 = l′1 and l2 = l′2.
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Assume that (D, 0) is isomorphic to (D′, 0) via an isomorphism (ϕ, σ, α1 = α2 = 1).

Suppose that ϕ(y1) = y′1
a
y′2
c

and ϕ(y2) = y′1
b
y′2
d
, with a, b, c, d ∈ Z.

Either σ = id or σ = (12). If σ = id, then ϕ(gi) = g′i, i = 1, 2. So

y′1
ak
y′2
ck

= y′1
k′

and y′1
al1+bl2y′2

cl1+dl2 = y′1
l′1y′2

l′2 .

Since ϕ is an isomorphism, we have ad−bc = ±1. Because, k, k′, l2, l
′
2 > 0, 0 < l1 < l2

and 0 < l′1 < l′2, it follows that b = c = 0 and a = d = 1. Therefore, k = k′, l1 = l′1,

l2 = l′2, and q = q′. Namely, (D, 0) = (D′, 0)

If σ = (12), then ϕ(gi) = g′3−i, i = 1, 2. This implies that

y′1
ak
y′2
ck

= y′1
l′1y′2

l′2 and y′1
al1+bl2y′2

cl1+dl2 = y′1
k′
.

We can find integers l̄1 and l̄2, such that l1 = l̄1l, l2 = l̄2l, l > 0 and (l̄1, l̄2) = 1.

Since ad − bc = ±1, we have (c, d) = 1. From ck = l′2 > 0 and cl1 + dl2 = 0, it

follows that c = l̄2 and d = −l̄1. If ad− bc = 1, we have

k′ = al1 + bl2 = l(al̄1 + bl̄2) = −l(ad− bc) = −l < 0,

a contradiction!

If ad− bc = −1, we have

q′ = χ′1(y′1) = χ2ϕ
−1(y1) = χ2(yl̄11 y

l̄2
2 ) = q−l̄2

k
l2 .

But l̄2, k, l2 > 0 and 0 < |q|, |q′| < 1. We get a contraction as well. In summary, we

have proved the claim.

Now we list all pointed CY Hopf algebras U(D, λ) of dimension 4 in terms of

generators and relations in the following table. Note that q
1

and q are not roots of

unity.

Table 4.2: CY algebras of dimension 4

Case Generators Relations

Case 1 yh, y
−1
h y±1

h y±1
m = y±1

m y±1
h

1 6 h 6 4 y±1
h y∓1

h = 1

1 6 h,m 6 4
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Case 2 (I) y±1
1 , y±1

2 , x1, x2 y±1
h y±1

m = y±1
m y±1

h

y±1
h y∓1

h = 1

1 6 h,m 6 2

y1x1 = q
1
x1y1, y1x2 = q−1

1
x2y1

y2x1 = q2x1y2, y2x2 = q−1
2
x2y2

0 < |q1 | < 1

x1x2 − q−k1
x2x1 = 0, k ∈ Z+

Case 2 (II) y±1
1 , y±1

2 , x1, x2 y±1
h y±1

m = y±1
m y±1

h

y±1
h y∓1

h = 1

1 6 h,m 6 2

y1x1 = q
1
x1y1, y1x2 = q−1

1
x2y1

y2x1 = q
2
x1y2, y2x2 = q−1

2
x2y2

0 < |q
1
| < 1

x1x2 − q−k1
x2x1 = 1− y2k

1 , k ∈ Z+

Case 2 (III) y±1
1 , y±1

2 , x1, x2 y±1
h y±1

m = y±1
m y±1

h

y±1
h y∓1

h = 1

1 6 h,m 6 2

y1x1 = qx1y1, y1x2 = q−1x2y1

y2x1 = q
k
l x1y2, y2x2 = q−

k
l x2y2

x1x2 − q−kx2x1 = 0

k, l ∈ Z+, 0 < |q| < 1

Case 2 (IV) y±1
1 , y±1

2 , x1, x2 y±1
h y±1

m = y±1
m y±1

h

y±1
h y∓1

h = 1

1 6 h,m 6 2

y1x1 = qx1y1, y1x2 = q−1x2y1

y2x1 = q
k
l x1y2, y2x2 = q−

k
l x2y2

x1x2 − q−kx2x1 = 1− yk1yl2
k, l ∈ Z+, 0 < |q| < 1

Case 2 (V) y±1
1 , y±1

2 , x1, x2 y±1
h y±1

m = y±1
m y±1

h

y±1
h y∓1

h = 1

1 6 h,m 6 2

y1x1 = qx1y1, y1x2 = q−1x2y1

y2x1 = q
k−l1
l2 x1y2, y2x2 = q−

k−l1
l2 x2y2

x1x2 − q−kx2x1 = 0

k, l1, l2 ∈ Z+, 0 < l1 < l2, 0 < |q| < 1
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Case 2 (VI) y±1
1 , y±1

2 , x1, x2 y±1
h y±1

m = y±1
m y±1

h

y±1
h y∓1

h = 1

1 6 h,m 6 2

y1x1 = qx1y1, y1x2 = q−1x2y1

y2x1 = q
k−l1
l2 x1y2, y2x2 = q−

k−l1
l2 x2y2

x1x2 − q−kx2x1 = 1− yk+l1
1 yl22

k, l1, l2 ∈ Z+, 0 < l1 < l2, 0 < |q| < 1

Let g be a semisimple Lie algebra and Uq(g) its quantized enveloping algebra.

By [20, Prop. 6.4], the global dimension of the algebra Uq(g) is the dimension of g.

Thus, if Uq(g) is of global dimension less than 5, then Uq(g) is isomorphic to Uq(sl2),

which is of global dimension 3. That is, among the algebras of the form Uq(g), only

Uq(sl2) appears in the lists of Propositions 2.2.7, 2.2.8 and 2.2.9. The algebra Uq(sl2)

is isomorphic to U(D, λ) with the datum given by

• Γ = 〈g〉, a free abelian group of rank 1;

• The Cartan matrix is of type A1 ×A1;

• g1 = g2 = g;

• χ1(g) = q−2, χ2(g) = q2, where q is not a root of unity;

• λ12 = 1.

It belongs to (II) of Case 2 of Proposition 2.2.8.

The family of pointed Hopf algebras U(D, λ) provide more examples of CY algebras

of higher dimensions. From the classification of CY pointed Hopf algebras U(D, λ) of

dimensions less than 5, we see that the Cartan matrices are either trivial or of type

A1 × · · · × A1. The following example provides a CY pointed Hopf algebra of type

A2 ×A1 of dimension 7.

Example 2.2.10. Let A be U(D, λ) with the datum (D, λ) given by

• Γ = 〈y1, y2, y3〉, a free abelian group of rank 3;
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• The Cartan matrix is  2 −1 0

−1 2 0

0 0 2

 ;

• gi = yi, 1 6 i 6 3;

• χi, 1 6 i 6 3, are given by the following table, where q is not a root of unity.

y1 y2 y3

χ1 q q−2 q4

χ2 q q q−2

χ3 q−4 q2 q−4

• λ = 0

In other words, A is the algebra with generators xi, y
±1
j , 1 6 i, j 6 3, subject to the

relations

y±1
i y±1

j = y±1
j y±1

i , y±1
j y∓1

j = 1, 1 6 i, j 6 3,

yj(xi) = χi(yj)xiyj , 1 6 i, j 6 3,

x2
1x2 − qx1x2x1 − q2x1x2x1 + q3x2x

2
1 = 0,

x2
2x1 − q−2x2x1x2 − q−1x2x1x2 + q−3x1x

2
2 = 0,

x1x3 = x3x1.

The non-trivial liftings of A are also CY.
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Chapter 3

Calabi-Yau Nichols algebras

of finite Cartan type

Let D be a generic datum of finite Cartan type, and λ a family of linking parameters.

In Chapter 2, we calculate the rigid dualizing complex of the algebra U(D, λ). Based

on this result, in Section 3.1, we give the rigid dualizing complex of the corresponding

Nichols algebra B(V ) and characterize its CY property. In Section 3.2, we give the

relation between the CY property of the pointed Hopf algebra U(D, λ) and that of

the Nichols algebra B(V ).

3.1 Rigid dualizing complexes of Nichols algebras

of finite Cartan type

In this section, we fix a generic datum of finite Cartan type

D(Γ, (gi)16i6θ, (χi)16i6θ, (aij)16i,j6θ)

for a group Γ, where Γ is a free abelian group of rank s. Let V be the generic braided

vector space with basis {x1, · · · , xθ} whose braiding is given by

c(xi ⊗ xj) = qijxj ⊗ xi
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for all 1 6 i, j 6 θ, where qij = χj(gi). Recall that the Nichols algebra B(V ) is

generated by xi, 1 6 i 6 θ, subject to the relations

adc(xi)
1−aijxj = 0, 1 6 i, j 6 θ, i 6= j,

where adc is the braided adjoint representation (1.2). Let {α1, · · · , αθ} be a fixed

set of simple roots of the root system corresponding to the Cartan matrix (aij), and

w0 = si1 · · · sip a reduced decomposition of the longest element in the Weyl group W
as a product of simple reflections. Then

β1 = αi1 , β2 = si1(αi2), · · · , βp = si1 · · · sip−1
(αp)

are the positive roots. Assume that x
β1
, · · · , x

βp
are the corresponding root vectors.

For each 1 6 k 6 θ, let 1 6 jk 6 p be the integer such that βjk = αk. Then we have

x
βjk

= xk.

By Theorem 1.4.7, the Nichols algebra B(V ) is a subalgebra of U(D, 0), and the

following monomials in root vectors

{xa1

β1
· · ·xap

βp
| ai > 0, 1 6 i 6 p}

form a PBW basis of the Nichols algebra B(V ). Recall that the degree (cf. (2.1)) of

each PBW basis element is defined by

deg(xa1

β1
· · ·xap

βp
) = (a1, · · · , ap,

∑
aiht(βi)) ∈ (Z>0)p+1,

where ht(βi) is the height of βi.

The following result is a direct consequence of Lemma 2.1.1.

Lemma 3.1.1. In the Nichols algebra B(V ), for j > i, we have

[x
βi
, x

βj
]c =

∑
a∈Np

ρax
a1

β1
· · ·xap

βp
, (3.1)

where ρa ∈ k and ρa 6= 0 only when a = (a1, · · · , ap) satisfies that ak = 0 for k 6 i

and k > j.

Order the PBW basis elements by degree as in (2.2). By Lemma 3.1.1, we obtain

the following corollary.
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Corollary 3.1.2. The Nichols algebra B(V ) is an Np+1-filtered algebra, whose asso-

ciated graded algebra GrB(V ) is isomorphic to the following algebra:

k〈x
β1
, · · · , x

βp
| x

βi
x
βj

= χ
βj

(g
βi

)x
βj
x
βi
, 1 6 i < j 6 p〉,

where x
β1
, · · · , x

βp
are the root vectors of B(V ).

For elements {xa1
β1
· · ·xap

βp
}, where a1, · · · , ap > 0, define

d0(xa1
β1
· · ·xap

βp
) =

∑p
i=1 aiht(βi).

Then R = B(V ) is a graded algebra with grading given by d0. Let R(0) = R. Define

d1(xa1
β1
· · ·xap

βp
) = ap. We obtain an N-filtration on R(0). Let R(1) = GrR(0) be the

associated graded algebra. In a similar way, we define d2(xa1
β1
· · ·xap

βp
) = ap−1 and let

R(2) = GrR(1) be the associated graded algebra. Inductively, we obtain a sequence

of N-filtered algebras R(0), · · · , R(p), such that R(i) = GrR(i−1), for 1 6 i 6 p, and

R(p) = GrR.

The algebra Re has a PBW basis as follows

{xa1

β1
· · ·xap

βp
⊗ xbp

βp
? · · · ? xb1

β1
| a1, · · · , ap, b1, · · · , bp > 0}, (3.2)

where “?” denotes the multiplication inRop. Similarly, define a degree on each element

as
deg(xa1

β1
· · ·xap

βp
⊗ xbp

βp
? · · · ? xb1

β1
)

= (a1 + b1, · · · , ap + bp,
∑

(ai + bi)htβi) ∈ (Z>0)(p+1).

Then Re is an Np+1-filtered algebra whose associated graded algebra Gr(Re) is iso-

morphic to (GrR)e.

In a similar way, we can obtain a sequence of N-filtered algebras (Re)(0), · · · , (Re)(p),

such that (Re)(i) = Gr((Re)(i−1)), for 1 6 i 6 p, and (Re)(p) = GrRe. In fact,

(Re)(i) = (R(i))e, for 0 6 i 6 p.

Lemma 3.1.3. Let R = B(V ) be the Nichols algebra of V . Then the algebra Re is

Noetherian.

Proof. The sequence (Re)(0), · · · , (Re)(p) is a sequence of algebras, each of which is

the associated graded algebra of the previous one with respect to an N-filtration. The

algebra (Re)(p) is isomorphic to (GrR)e, which is Noetherian. By [57, Thm. 1.6.9],
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the algebra Re is Noetherian.

Lemma 3.1.4. The algebra R = B(V ) is homologically smooth.

Proof. Since Re is Noetherian by Lemma 3.1.3 and R is a finitely generated Re-

module, it is sufficient to prove that the projective dimension projdimReR is finite.

The filtration on each (R(i))e, 0 6 i 6 p − 1, is bounded below. In addition, from

the proof of the foregoing Lemma 3.1.3, each (R(i))e is Noetherian for 0 6 i 6 p.

Therefore, (R(i))e is a Zariskian algebra for each 0 6 i 6 p − 1. It is clear that each

R(i), 1 6 i 6 p − 1, viewed as an (R(i))e-module has a good filtration. By [50, Cor.

5.8], we have

projdimRe R = projdim(R(0))e R
(0) 6 projdim(R(1))e R

(1) 6 · · ·
6 projdim(R(p))e R

(p) = projdim(GrR)e GrR.

The algebra GrR is a quantum polynomial algebra of q variables. From the Koszul

bimodule complex of GrR (cf. (1.20)), we obtain that projdim(GrR)e GrR = p. There-

fore, projdimRe R 6 p and R is homologically smooth.

Proposition 3.1.5. Let R = B(V ) be the Nichols algebra of V .

(1) R is AS-regular of global dimension p.

(2) The rigid dualizing complex of R in the graded sense is isomorphic to ϕR(l)[p]

for some integer l and (N)-graded algebra automorphism ϕ of degree 0.

(3) The rigid dualizing complex in the ungraded sense is just ϕR[p].

Proof. Let x
β1
, · · · , x

βp
be the root vectors. By Lemma 3.1.1, the algebra R is an

iterated graded Ore extension of k[x
β1

]. Indeed,

R ∼= k[x
β1

][x
β2

; τ2, δ2] · · · [x
βp

; τp, δp],

where for 2 6 j 6 p, τj is an algebra automorphism such that τj(xβi ) is just a scalar

multiple of x
βi

for i < j, and δj is a τj-derivation such that δj(xβi ), i < j, is a linear

combination of monomials in x
βi+1

, · · · , x
βj−1

. It is well-known that k[x
β1

] is an

AS-regular algebra of dimension 1, and the AS-regularity is preserved under graded

Ore extension. So R is an AS-regular algebra of dimension p. Therefore, the rigid

dualizing complex of R in the graded case is isomorphic to ϕR(l)[p] for some graded
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algebra automorphism ϕ and some l ∈ Z. By Lemma 3.1.3, Re is Noetherian. Thus

the rigid dualizing complex ϕR(l)[p] in the graded case implies the dualizing complex

ϕR[p] in the ungraded case.

We claim that the automorphism ϕ in Proposition 3.1.5 is just a scalar multipli-

cation. We need some preparations to prove this.

If R is a Γ-module algebra, then the algebra Re is also a Γ-module algebra with

the natural action g(r ⊗ s) := g(r)⊗ g(s), for all g ∈ Γ and r, s ∈ R.

Lemma 3.1.6. Let R be a Γ-module algebra, such that k× is the group of units of

R. Assume that U is an Re#kΓ-module, and U ∼= Rφ as Re#kΓ-modules, where φ

is an algebra automorphism.

(1) The algebra automorphism φ preserves the Γ-action.

(2) The Re#kΓ-module structure on U (up to isomorphism) is parameterized by

Hom(Γ,k), the set of group homomorphisms from Γ to k×.

Proof. Fix an isomorphism U ∼= Rφ. Let u ∈ U be the element mapped to 1 ∈ R.

Then U = Ru and we have g(ru) = g(r)g(u) for all r ∈ R and g ∈ Γ. So to determine

the Γ-action on U , we only need to determine g(u) for g ∈ Γ. Since g(u) ∈ U , there

is some rg ∈ R, such that g(u) = rgu. On the other hand, we have

U = g(U) = g(Ru).

So there is some s ∈ R, such that u = g(s)rgu. Since the element u forms an R-basis

of U , the element rg has a left inverse. Similarly, there is some s′ ∈ R, such that

u = rgug(s′). Since U ∼= Rφ as R-R-bimodules, we have

φ(r)u = ur, (3.3)

for any r ∈ R. So u = rgug(s′) = rgφ(g(s′))u. Thus rg has a right inverse as well.

Consequently, rg is a unit in R, and rg ∈ k
×. We also have g(h(u)) = (gh)(u)

for g, h ∈ Γ. That is, rgh = rgrh. Therefore, the Γ-action on U defines a group

homomorphism from Γ to k×.

Suppose that the Γ-action on U is given by a group homomorphism χ : Γ→ k
×.

U is an Re#kΓ-module, this leads to g(rus) = g(r)g(u)g(s), for any r, s ∈ R and
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g ∈ Γ. On one hand, we have

g(φ(r)u) = g(ur)

= g(u)g(r)

= χ(g)ug(r)
(3.3)
= χ(g)φ(g(r))u.

On the other hand, we have

g(φ(r)u) = g(φ(r))g(u)

= χ(g)g(φ(r))u.

So g(φ(r)) = φ(g(r)). That is, the automorphism φ preserves the Γ-action. Conse-

quently, (1) is proved.

Let χ : Γ → k
× be a group homomorphism. Then it is clear that g(ru) :=

χ(g)g(r)u defines a Γ-action on U such that U is an Re#kΓ-module.

Suppose there are two Γ-actions on U such that they are isomorphic. We write

these two actions as g·1(u) = rgu and g·2(u) = sgu. Denote by U1 and U2 the Γ-

modules with these two actions respectively. Let f : U1 → U2 be an Re#kΓ-module

isomorphism. Then f(u) = ru for some unit r ∈ R. Since the set of units of R is k×,

we have r ∈ k×. On one hand, we have

f(g·1(u)) = f(rgu)

= rgru.

On the other hand, we also have

f(g·1(u)) = g·2(f(u))

= g·2(ru)

= rg·2(u)

= sgru.

Therefore, rg = sg, and (2) follows.

If U is an Re#kΓ-module, then we can define an (R#kΓ)e-module U#kΓ. It is

isomorphic to U ⊗ Γ as vector space with bimodule structure given by

(r#h)(u⊗ g) := rh(u)⊗ hg,
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(u⊗ g)(r#h) := ug(r)⊗ gh,

for any r#h ∈ R#H and u⊗ g ∈ U ⊗ Γ.

Lemma 3.1.7. Let R be a Γ-module algebra with k× being the group of units and U

an Re#kΓ-module. Assume that U ∼= Rφ as Re#kΓ-modules, where φ is an algebra

automorphism. If the Γ-action on U is defined by a group homomorphism χ : Γ→ k
×.

Then U#kΓ ∼= (R#kΓ)ψ as (R#kΓ)e-modules, where ψ is the algebra automorphism

defined by ψ(r#g) = χ(g−1)φ(r)#g for any r#g ∈ R#kΓ.

Proof. The homomorphism ψ defined in the lemma is clearly bijective. First we show

that it is an algebra homomorphism. For any r#g, s#h ∈ R#kΓ, we have

ψ((r#g)(s#h)) = ψ(rg(s)#gh)

= χ(h−1g−1)φ(rg(s))#gh

= χ(h−1g−1)φ(r)φ(g(s))#gh

= χ(h−1g−1)φ(r)g(φ(s))#gh

= (φ(r)χ(g−1)#g)(φ(s)χ(h−1)#h)

= ψ(r#g)ψ(s#h).

The forth equation holds since φ preserves the Γ-action by Lemma 3.1.6.

Next we prove that U#kΓ ∼= (R#kΓ)ψ as (R#kΓ)e-modules. Fix an isomorphism

U ∼= Rφ and let u ∈ U be the element mapped to 1 ∈ R. We define a homomorphism

Φ : U#kΓ → (R#kΓ)ψ by Φ(ru ⊗ g) = χ(g−1)r#g. It is easy to see that Φ is an

isomorphism of left R#kΓ-modules. Now we show that it is a right R#kΓ-module

homomorphism. We have

Φ(u(r#g)) = Φ(ur ⊗ g)

= Φ(φ(r)u⊗ g)

= χ(g−1)φ(r)#g

= Φ(u)ψ(r#g)

= Φ(u) · (r#g).

Now we can prove the following lemma.

Lemma 3.1.8. Keep the notations as in Proposition 3.1.5. The actions of ϕ on

generators x1, · · · , xθ are just scalar multiplications.
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Proof. By Proposition 3.1.5 and Lemma 1.5.11, we have R-R-bimodule isomorphisms

ExtiRe(R,R
e) ∼=

0, i 6= p;

Rϕ, i = p.

The group Γ is a free abelian group of rank s, so the algebra kΓ is a CY algebra

of dimension s. Following from [28, Sec. 2], Rϕ is an Re#kΓ-module and there are

(R#kΓ)e-bimodule isomorphisms

Exti(R#kΓ)e(R#kΓ, (R#kΓ)e) ∼=

0, i 6= p+ s;

(Rϕ)#kΓ, i = p+ s.

For the sake of completeness, we sketch the proof here. By Lemma 3.1.4, R is homo-

logically smooth. That is, R has a bimodule projective resolution

0→ Pq → · · · → P1 → P0 → R→ 0, (3.4)

with each Pi finitely generated as an R-R-bimodule.

Ext∗Re(R,R
e) are the cohomologies of the complex HomRe(P•, R

e). The algebra

Re is a Re#kΓ-module defined by

((c⊗ d)#g) · (a⊗ b) = g(a)d⊗ cg(b)

for any a⊗ b ∈ Re and (c⊗ d)#g ∈ Re#kΓ. Then each HomRe(Pi, R
e) is a Re#kΓ

as well:

[((c⊗ d)#g) · f ](x) = ((c⊗ d)#g) · f(x), (3.5)

where (c ⊗ d)#g ∈ Re#kΓ, f ∈ HomRe(Pi, R
e) and x ∈ Pi. Now HomRe(P•, R

e) is

a complex of left Re#kΓ-modules. Thus we obtain that ExtpRe(R,R
e) ∼= Rϕ is an

Re#kΓ-module.

Put A = R#kΓ. Observe that Ae is an Re#kΓ-Ae-bimodule. The left kΓ-module

action is defined by

g · (a#h⊗ b#k) = g(a)gh⊗ b#kg−1, (3.6)

for any a#h ⊗ b#k ∈ Ae and g ∈ Γ. The left Re-action and right Ae-action are
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given by multiplication. Let W be the vector space kΓ ⊗ kΓ. Re ⊗ W is also an

Re#kΓ-Ae-bimodule defined by

((c⊗ d)#g) · (a⊗ b⊗ h⊗ k) = cg(a)⊗ g(b)d⊗ gh⊗ kg−1

and

(a⊗ b⊗ h⊗ k) · (c#h′ ⊗ d#k′) = ah(c)⊗ ((k−1k′−1)d)b⊗ hh′ ⊗ k′k.

It is not difficult to see that the morphism f : Ae → Re ⊗W defined by

f(a#h⊗ b#k) = a⊗ k−1(b)⊗ h⊗ k

is an isomorphism of Re#kΓ-Ae-bimodules.

Let P be a finitely generated projective Re-module. The kΓ-Ae-bimodule struc-

ture of Re⊗W induces a kΓ-Ae-bimodule structure on HomRe(P,R
e⊗W ). We define

a kΓ-Ae-bimodule structure on HomRe(P,R
e)⊗W as follows

g · (f ⊗ h⊗ k) = g · f ⊗ gh⊗ kg−1

and

(f ⊗ h⊗ k) · (c#h′ ⊗ d#k′) = (h(c)⊗ (k−1k′−1)d) · f ⊗ hh′ ⊗ k′k,

where the Re#kΓ-module structure on HomRe(P,R
e) is defined in (3.5). Now the

canonical isomorphism from HomRe(P,R
e) ⊗W to HomRe(P,R

e ⊗W ) is a kΓ-Ae-

bimodule isomorphism.

R admits a resolution like (3.4) with each Pi finitely generated. So

ExtiRe(R,R
e ⊗W ) ∼= ExtiRe(R,R

e)⊗W

as kΓ-Ae-bimodules for all i > 0.

We have Stefan’s spectral sequence [66]

Extm
kΓ(k,ExtnRe(R,A

e))⇒ Extm+n
Ae (A,Ae).
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For m,n > 0, we have

Extm
kΓ(k,ExtnRe(R,A

e)) ∼= Extm
kΓ(k,ExtnRe(R,R

e ⊗W ))
∼= Extm

kΓ(k,ExtnRe(R,R
e)⊗W ).

So Extm
kΓ(k,ExtnRe(R,A

e)) = 0 except that m = s and n = p. Therefore,

Exti(R#kΓ)e(R#kΓ, (R#kΓ)e) = 0

for i 6= p+ s and

Extp+sAe (A,Ae) ∼= Exts
kΓ(k,ExtpRe(R,A

e)).

Let M be a left kΓ-module. One can consider it as a kΓ-kΓ-bimodule Mε with

the trivial right kΓ-module action. The algebra kΓ is a CY algebra of dimension s,

from Van den bergh’s duality theorem ( 1.5.15) we have

Exts
kΓ(k,M) ∼= HHs(kΓ,Mε)

∼= HH0(kΓ,Mε)
∼= TorkΓ

0 (k,M).

(3.7)

Now we have the following isomorphisms of right Ae-modules

Extp+sAe (A,Ae) ∼= Exts
kΓ(k,ExtpRe(R,A

e))
∼= Exts

kΓ(k,ExtpRe(R,R
e)⊗W )

∼= Exts
kΓ(k, Rϕ ⊗W )

∼= TorkΓ
0 (k, Rϕ ⊗W )

∼= k⊗kΓ Rϕ ⊗W.

If we look at the kΓ-Ae-bimodule structure on Rϕ ⊗W carefully, we obtain that

k⊗kΓ Rϕ ⊗W ∼= Rϕ#kΓ

as right Ae-modules.

Since the connected graded algebra R is a domain by Theorem 1.4.7, the group of

units of R is k×. Following Lemma 3.1.6 and 3.1.7, we have (Rϕ)#kΓ ∼= (R#kΓ)ψ̄,

where ψ̄ is the algebra automorphism defined by ψ̄(r#g) = ϕ(r)χ(g−1) for some

algebra homomorphism χ : Γ→ k.

On the other hand, we have A = R#kΓ ∼= U(D, 0), and A-A-bimodule isomor-
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phisms

ExtiAe(A,A
e) ∼=

0, i 6= p+ s;

Aψ, i = p+ s,

where ψ is the algebra automorphism defined in Theorem 2.1.5.

Therefore, we have A-A-bimodule isomorphisms Aψ̄
∼= Aψ. That is, ψ̄ and ψ

differ only by an inner automorphism. By Theorem 1.4.7, the graded algebra A is

a domain, the invertible elements of A are in kΓ. The actions of ψ and the group

actions on generators x1, · · · , xθ are just scalar multiplications. Thus the actions of

ψ̄ on x1, · · · , xθ are also scalar multiplications. Since ψ̄(xi) = ϕ(xi) for all 1 6 i 6 θ,

we get our desired result.

We are ready to prove the main theorem of this section.

Theorem 3.1.9. Let V be a generic braided vector space of finite Cartan type, and

R = B(V ) the Nichols algebra of V . For each 1 6 k 6 θ, let jk be the integer such

that βjk = αk.

(1) The rigid dualizing complex is isomorphic to ϕR[p], where ϕ is the algebra au-

tomorphism defined by

ϕ(xk) = ((

jk−1∏
i=1

χ−1
k (g

βi
))(

p∏
i=jk+1

χ
βi

(gk))xk,

for all 1 6 k 6 θ.

(2) The algebra R is a CY algebra if and only if

jk−1∏
i=1

χk(g
βi

) =

p∏
i=jk+1

χ
βi

(gk),

for all 1 6 k 6 θ.

Proof. (1) Note that GrR is isomorphic to the following quantum polynomial algebra:

k〈x
β1
, · · · , x

βp
| x

βi
x
βj

= χ
βj

(g
βi

)x
βj
x
βi
, 1 6 i < j 6 p〉.

By Lemma 1.5.13, GrR has a rigid dualizing complex ζ̄GrR[p](∼= GrRζ̄−1 [p]), where
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ζ̄ is defined by

ζ̄(x
βk

) = χ−1
βk

(g
β1

) · · ·χ−1
k (g

βk−1
)χ

βk+1
(g
βk

) · · ·χ
βp

(g
βk

)x
βk
,

for all 1 6 k 6 p.

On the other hand, it follows from Proposition 3.1.5 and Lemma 3.1.8 that R has

a rigid dualizing complex ϕR, where ϕ is an algebra automorphism such that for each

1 6 k 6 θ, ϕ(xk) is a scalar multiple of xk. Assume that ϕ(xk) = lkxk, with lk ∈ k.

Let R(0), · · · , R(p) be the sequence of algebras defined after Corollary 3.1.2. By

Lemma 3.1.1, applying a similar argument as in the proof of Proposition 3.1.5, we

obtain that each R(i), 0 6 i 6 p, is an iterated Ore extension of the polynomial algebra

k[x]. Thus each of them is AS-regular. It follows from [76, Prop. 1.1] that each R(i),

1 6 i 6 p, has a rigid dualizing complex ϕ(i)(R(i))[p], where ϕ(i) = Grϕ(i−1) and

ϕ(0) = ϕ. Since for each 1 6 k 6 θ, ϕ(xk) = lkxk, we have ϕ(p)(xk) = lkxk. Because

R(p) = GrR, there is a bimodule isomorphism ϕ(p)(R(p)) ∼= ζ̄(GrR). We obtain that

ϕ(p) = ζ̄, as R is connected. Therefore, for each 1 6 k 6 θ,

lkxk = ζ̄(xk) = (

jk−1∏
i=1

χ−1
k (g

βi
))(

p∏
i=jk+1

χ
βi

(gk))xk,

where jk is the integer such that βjk = αk.

Now we conclude that ϕ(xk) = (
∏jk−1
i=1 χ−1

k (g
βi

))(
∏p
i=jk+1 χβi (gk))xk, for each

1 6 k 6 θ.

(2) The algebra R is homologically smooth by Lemma 3.1.4. It follows from

Corollary 1.5.12 that R is CY if and only if R ∼= ϕR as bimodules. That is, R is CY

if and only if ϕ = id. Hence (2) follows from (1).

Example 3.1.10. Let D(Γ, (gi), (χi), (aij)) be a generic datum such that the Cartan

matrix is of type A2. This defines a braided vecter space V . Let {x1, x2} be a basis

of V . The braiding of V is given by

c(xi ⊗ xj) = χj(gi)xj ⊗ xi, i, j = 1, 2.

The Nichols algebra R = B(V ) of V is generated by x1 and x2 subject to the relations

x2
1x2 − q12

x1x2x1 − q11
q

12
x1x2x1 + q

11
q2

12
x2x

2
1 = 0,
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x2
2x1 − q21x2x1x2 − q22q21x2x1x2 + q22q

2
21
x1x

2
2 = 0,

where qij = χj(gi). The element s1s2s1 is the longest element in the Weyl group W.

Let α1 and α2 be the two simple roots. Then the positive roots are as follows

β1 = α1, β2 = α1 + α2, β3 = α2.

By Theorem 3.1.9, the algebra R is CY if and only if

χ
β2

(g1)χ
β3

(g1) = (χ1χ
2
2)(g1) = 1

and

χ2(g
β1

)χ2(g
β2

) = χ2(g2
1g2) = 1.

That is, q
11
q2

12
= q

22
q2

12
= 1. By equation (1.6), we have q−1

11
= q−1

22
= q

12
q

21
.

Now we conclude that the algebra R is CY if and only if there is some q ∈ k×,

which is not root of unity such that

q11 = q22 = q2 and q12 = q21 = q−1.

In other words, the braiding is of DJ-type. Then the algebra R is an AS-regular

algebra of type A (see [9] for terminology). This coincides with Proposition 5.4 in

[13].

Example 3.1.11. Let R be a Nichols algebra of type B2. That is, R is generated by

x1 and x2 subject to the relations

x3
1x2 − q12

x2
1x2x1 − q11

q
12
x2

1x2x1 + q
11
q2

12
x1x2x

2
1

−q2
11
q

12
(x2

1x2x1 − q12
x1x2x

2
1 − q11

q
12
x1x2x

2
1 + q

11
q2

12
x2x

3
1) = 0

,

x2
2x1 − q21x2x1x2 − q22q21x2x1x2 + q22q

2
21
x1x

2
2 = 0,

where qij ∈ k for 1 6 i, j 6 2 and q
12
q

21
= q−2

11
= q−1

22
. Applying a similar argument,

we obtain that R is CY if and only if there is some q ∈ k×, which is not a root of

unity, such that

q11 = q, q12 = q−1, q21 = q−1 and q22 = q2.
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3.2 Relation with pointed Hopf algebras

We keep the notations as in Section 3.1. Let λ be a family of linking parameters for

D and A the algebra U(D, λ). In this subsection, we discuss the relation between the

CY property of the algebra U(D, λ) and that of the corresponding Nichols algebra

B(V ). It turns out that if one of them is CY, then the other one is not.

Lemma 3.2.1. For each 1 6 k 6 θ, we have

p∏
i=1,i6=jk

χ
βi

(gk) = (

jk−1∏
i=1

χ−1
k (g

βi
))(

p∏
i=jk+1

χ
βi

(gk)).

Proof. Let ω0 = si1 · · · sip be the fixed reduced decomposition of the longest element

ω0 in the Weyl group. It is clear that ω−1
0 is also of maximal length. By Lemma 3.11

in [40], for each 1 6 k 6 θ, there exists 1 6 t 6 p, such that

sksi1 · · · sit−1
= si1 · · · sit .

That is, ω0 = sksi1 · · · sit−1
sit+1

· · · sip . Set

β′1 = αk, β′2 = sk(αi1), · · · , β′p = sksi1 · · · sit−1sit+1 · · · sip−1(αip).

Applying a similar argument as in the proof of Theorem 3.1.9, we conclude that the

rigid dualizing complex of the algebra R = B(V ) is isomorphic to ϕ′R[p]. The algebra

automorphism ϕ′ is defined by

ϕ′(xl) = (

j′l−1∏
i=1

χ−1
l (gβ′i))(

p∏
i=j′l+1

χβ′i(gl))xl,

for each 1 6 l 6 θ, where j′l , 1 6 l 6 θ, are the integers such that β′j′l
= αl. In

particular, we have

ϕ′(xk) = (

p∏
i=2

χβ′i(gk))xk.

The rigid duallizing complex is unique up to isomorphism, so ϕ′R ∼= ϕR as R-R-

bimodules, where ϕ is the algebra automorphism defined in Theorem 3.1.9. Since the

graded algebra R is connected, we have ϕ′ = ϕ. In particular, ϕ′(xk) = ϕ(xk), that
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is,
p∏
i=2

χβ′i(gk) = (

jk−1∏
i=1

χ−1
k (g

βi
))(

p∏
i=jk+1

χ
βi

(gk)).

Both β1, · · · , βp and β′1, · · · , β′p are enumerations of positive roots. We have αk =

β′1 = βjk . Therefore,
p∏
i=2

χβ′i(gk) =

p∏
i=1,i6=jk

χ
βi

(gk).

It follows that

(

jk−1∏
i=1

χ−1
k (g

βi
))(

p∏
i=jk+1

χ
βi

(gk)) =

p∏
i=1,i6=jk

χ
βi

(gk).

Proposition 3.2.2. If A = U(D, λ) is a CY algebra, then the rigid dualizing complex

of the Nichols algebra R = B(V ) is isomorphic to ϕR[p], where ϕ is defined by ϕ(xk) =

χ−1
k (gk)xk, for all 1 6 k 6 θ.

Proof. By Theorem 3.1.9, the rigid dualizing complex of R is isomorphic to ϕR[p],

where ϕ is defined by

ϕ(xk) = (

jk−1∏
i=1

χ−1
k (g

βi
))(

p∏
i=jk+1

χ
βi

(gk))xk,

for all 1 6 k 6 θ. If A is a CY algebra, then
∏p
i=1 χβi = ε by Theorem 2.1.5.

Therefore, for 1 6 k 6 θ,

(
∏jk−1
i=1 χ−1

k (g
βi

))(
∏p
i=jk+1 χβi (gk)) =

∏p
i=1,i6=jk χβi (gk)

= χ−1
k (gk),

where the first equation follows from Lemma 3.2.1. Now ϕ(xk) = χ−1
k (gk)xk for all

1 6 k 6 θ. Thus we have completed the proof.

Since χk(gk) 6= 1 for all 1 6 k 6 θ, the algebra R = B(V ) is not CY, if A = U(D, λ)

is a CY algebra.

Proposition 3.2.3. If the Nichols algebra R = B(V ) is a CY algebra, then the rigid

dualizing complex of A = U(D, λ) is isomorphic to ψA[p + s], where ψ is defined by
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ψ(xk) = xk for all 1 6 k 6 θ and ψ(g) =
∏p
i=1 χβi (g) for all g ∈ Γ.

Proof. If the algebra R is CY, by Theorem 3.1.9 and Lemma 3.2.1, for each 1 6 k 6 θ,

we have
p∏

i=1,i6=jk

χ
βi

(gk) = (

jk−1∏
i=1

χ−1
k (g

βi
))(

p∏
i=jk+1

χ
βi

(gk)) = 1.

Now the statement follows from Theorem 2.1.5.

With the assumption of Proposition 3.2.3, for all 1 6 k 6 θ, we have

ψ(gk) =

p∏
i=1

χ
βi

(gk) = χk(gk)gk 6= gk.

Since the invertible elements of A are in kΓ and Γ is an abelian group, ψ can not be

an inner automorphism. So the algebra A is not CY.

Example 3.2.4. Let R be the algebra in Example 3.1.10. Assume that Γ = 〈y1, y2〉 ∼=
Z2, and gi = yi, i = 1, 2. The characters χ1 and χ2 are given by the following table,

y1 y2

χ1 q2 q−1

χ2 q−1 q2

where q is not a root of unity.

The algebra R is a CY algebra. But the algebra A = R#kΓ is not. The rigid

dualizing complex of A is isomorphic to ψA[5], where ψ is defined by ψ(xi) = xi and

ψ(yi) = q2yi for i = 1, 2.

Example 3.2.5. Let A be the algebra in Example 2.2.10. It is a CY algebra. How-

ever, its corresponding Nichols algebra R is not CY. Its rigid dualizing complex is

isomorphic to ϕR[7], where ϕ is defined by ϕ(x1) = q−1x1, ϕ(x2) = q−1x2 and

ϕ(x3) = q4x3.

Example 3.2.6. Let A be an algebra with generators y±1
1 , y±1

2 , x1 and x2 subject

to the relations

y±1
h y∓1

h = 1, 1 6 h,m 6 2,

y1x1 = qx1y1, y1x2 = q−1x2y1,

y2x1 = q
k
l x1y2, y2x2 = q−

k
l x2y2,
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x1x2 − q−kx2x1 = 1− yk1yl2,

where k, l ∈ Z+ and 0 < |q| < 1 is not a root of unity.

By Proposition 2.2.9 (cf. Table 4.2 in Section 2.2), the algebra A is a CY algebra

of dimension 4. Let R be the corresponding Nichols algebra of A. The rigid dualizing

complex of R is isomorphic to ϕR[2], where ϕ is defined by ϕ(x1) = q−kx1 and

ϕ(x2) = qkx2.
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Chapter 4

Rigid dualizing complexes of

braided Hopf algebras over

finite group algebras

Let V be a vector space of dimension d and Γ a finite subgroup of GLd(k). The skew

group algebra S(V )#kΓ is a CY algebra if and only if Γ ⊆ SLd(k), where S(V ) is

the symmetric algebra of V ([28, Page 427] or [36, Thm. 3.14]). Let R be a Koszul

CY algebra and H the group algebra kΓ, where Γ is a finite group of automorphisms

of R. In [72], Wu and Zhu showed that the smash product R#H is CY if and only if

the homological determinant (Definition 4.1.6) of the H-action is trivial. Later, this

result was generalized to the case where R is a p-Koszul CY algebra and H is an

involutory CY Hopf algebra [52].

We mentioned in Example 1.3.3 that the algebra S(V ) can be viewed as a braided

Hopf algebra. Let H be a finite dimensional Hopf algebra and R a braided Hopf alge-

bra in the category H
HYD. Those aforementioned examples motivated us to discuss the

relation between the CY property of R and that of R#H. Inspired by Wu and Zhu’s

work, in Section 4.1, we use the homological determinant of the H-action to describe

the homological integral of R#H. We then give a necessary and sufficient condition

for R#H to be a CY algebra, in case R is CY and H is semisimple. Conversely, if

R#H is a CY algebra, when R is a CY algebra? In Section 4.2, we will answer this
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question in case H is the group algebra kΓ, where Γ is a finite group. In fact, we

show that an AS-Gorenstein braided Hopf algebra in the category of Yetter-Drinfeld

modules over a finite group algebra has a rigid dualizing complex.

The groups of group-like elements of pointed Hopf algebras discussed in Chapter

2 are all infinite. At the end of this chapter, we show that there are CY pointed Hopf

algebras with a finite abelian group of group-like elements.

In this chapter, unless otherwise stated, k is a just fixed field.

4.1 Calabi-Yau property under Hopf actions

Let H be a Hopf algebra and R a braided Hopf algebra in the category H
HYD. For

h ∈ H and r ∈ R, We write h(r) for h acting on r. It is an element in R. On the

other hand, we write hr for h multiplying with r. It is an element in R#H. For a

left R#H-module M , the vector space M ⊗H is a left R#H-module defined by

(r#h) · (m⊗ g) := (r#h1)m⊗ h2g,

for all r#h ∈ R#H and m⊗ g ∈M ⊗H. Denote this R#H-module by M#H.

Let M and N be two R#H-modules. Then there is a natural left H-module

structure on HomR(M,N) given by the adjoint action

(h ⇀ f)(m) := h2f(S−1
H (h1)m),

for all h ∈ H, f ∈ HomR(M,N) and m ∈M .

Lemma 4.1.1. Let M be a left R#H-module. Then HomR(M,R) ⊗ H is an H-

R#H-bimodule, where the left H-module structure is defined by

h · (f ⊗ g) := h1 ⇀ f ⊗ h2g

and the right R#H-module structure is defined by

(f ⊗ g) · (r#h) := fg1(r)⊗ g2h,

for all f ∈ HomR(M,R), g, h ∈ H and r ∈ R.
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Proof. First we show that for all h ∈ H, f ∈ HomR(M,R) and r ∈ R

(h1 ⇀ f)h2(r) = h ⇀ (fr). (4.1)

For m ∈M , we have

[(h1 ⇀ f)h2(r)](m) = (h1 ⇀ f)(m)h2(r)

= h2(f(S−1
H (h1)m))h3(r)

= h2(f(S−1
H (h1)m)r)

= h2((fr)(S−1
H (h1)m))

= [h ⇀ (fr)](m).

Now we check that for all f ⊗ g ∈ HomR(M,R) ⊗ H, h ∈ H and r#k ∈ R#H,

(h · (f ⊗ g)) · (r#k) = h · ((f ⊗ g) · (r#k)). We have

(h · (f ⊗ g)) · (r#k) = (h1 ⇀ f ⊗ h2g) · (r#k)

= (h1 ⇀ f)(h2g1)(r)⊗ h3g2k.

and
h · ((f ⊗ g) · (r#k)) = h ⇀ (fg1(r)⊗ g2k)

= h1 ⇀ (fg1(r))⊗ h2g2k
(4.1)
= (h1 ⇀ f)(h2g1)(r)⊗ h3g2k.

Let M be an R#H-module. There is a natural right R#H-module structure on

HomR#H(M#H,R#H). It is also a left H-module defined by

(h · f)(m⊗ g) := f(m⊗ gh), (4.2)

for all h ∈ H, f ∈ HomR#H(M#H,R#H) andm⊗g ∈M⊗H. Then HomR#H(M#H,R#H)

is an H-R#H-bimodule.

Proposition 4.1.2. Let P be an R#H-module, which is finitely generated projective

as an R-module. Then

HomR(P,R)⊗H ∼= HomR#H(P#H,R#H)

as H-R#H-bimodules.
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Proof. Let

ψ : HomR(P,R)⊗H → HomR#H(P#H,R#H)

be the homomorphism defined by

[ψ(f ⊗ h)](p⊗ g) = (g1 ⇀ f)(p)#g2h

= g2(f(S−1
H (g1)p))#g3h,

for all f ⊗ h ∈ HomR(P,R)⊗H and p⊗ g ∈ P#H.

We claim that the image of ψ is contained in HomR#H(P#H,R#H). For any

f ⊗ h ∈ HomR(P,R)⊗H, r#k ∈ R#H and p⊗ g ∈ P#H, on one hand, we have

[ψ(f ⊗ h)]((r#k)(p⊗ g)) = [ψ(f ⊗ h)]((r#k1)p⊗ k2g))

= (k3g2)(f(S−1
H (k2g1)((r#k1)p)))#k4g3h

= (k2g3)(f(((S−1
H (k1g2))(r))S−1

H (g1)p))#k3g4h.

On the other hand,

(r#k)[ψ(f ⊗ h)](p⊗ g) = (r#k)(g2(f(S−1
H (g1)p))#g3h)

= r(k1g2)(f(S−1
H (g1)p))#k2g3h

= (k2g3)(S−1
H (k1g2)(r)f(S−1

H (g1)p))#k2g3h

= (k2g3)(f(((S−1
H (k1g2))(r))S−1

H (g1)p))#k3g4h.

Now we show that ψ is an H-R#H-bimodule homomorphism. We have

[ψ((f ⊗ h)(r#k))](p⊗ g) = [ψ(fh1(r)⊗ h2k))](p⊗ g)

= g2([fh1(r)](S−1
H (g1)p))⊗ g3h2k

= g2(f(S−1
H (g1)p))(g3h1)(r)⊗ g4h2k

= (g2(f(S−1
H (g1)p))⊗ g3h)(r#k)

= [ψ(f ⊗ h)(r#k)](p⊗ g)

and
[ψ(k(f ⊗ h))](p⊗ g) = [ψ(k1 ⇀ f ⊗ k2h)](p⊗ g)

= g2((k1 ⇀ f)(S−1
H (g1)p))#g3k2h

= (g2k2)(f(S−1
H (k1)S−1

H (g1)p))#g3k3h

= ((g1k1) ⇀ f)(p)⊗ g2k2h

= [ψ(f ⊗ h)](p⊗ gk)

= [k · ψ(f ⊗ h)](p⊗ g).
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So HomR(P,R) ⊗ H ∼= HomR#H(P#H,R#H) as H-R#H-bimodules when P is

finitely generated projective as an R-module.

Proposition 4.1.3. Let H be a finite dimensional Hopf algebra and R a Noetherian

braided Hopf algebra in the category H
HYD. Then

ExtiR#H(H,R#H) ∼= ExtiR(k, R)⊗H

as H-R#H-bimodules for all i > 0.

Proof. Since R is Noetherian and H is finite dimensional, R#H is also Noetherian.

Then R#Hk admits a projective resolution

· · · → Pn → · · · → P1 → P0 → k→ 0

such that each Pn is a finitely generated R#H-module. Because H is finite dimen-

sional, each Pn is also finitely generated as an R-module. Tensoring with H, we obtain

a projective resolution of H over R#H

· · · → Pn#H → · · · → P1#H → P0#H → H → 0.

Applying the functor HomR#H(−, R#H) to this complex, we obtain the following

complex

0→ HomR#H(P0#H,R#H)→ HomR#H(P1#H,R#H)→ · · · (4.3)

→ HomR#H(Pn#H,R#H)→ · · · .

This is a complex of H-R#H-bimodules, where the left H-module structure is defined

as in (4.2). By Lemma 4.1.1 and Proposition 4.1.2, one can check that it is isomorphic

to the following complex of H-R#H-bimodules,

0→ HomR(P0, R)⊗H → HomR(P1, R)⊗H · · · (4.4)

→ HomR(Pn, R)⊗H → · · · .

After taking cohomologies of complex (4.3) and complex (4.4), we arrive at isomor-
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phisms of H-R#H-bimodules

ExtiR#H(H,R#H) ∼= ExtiR(k, R)⊗H

for all i > 0.

The algebra R can be viewed as an augmented right H-module algebra through

the right H-action: r · h := S−1
H (h) · r, for all r ∈ R and h ∈ H. The algebra H#R

can be defined in a similar way. The multiplication is given by

(h#s)(k#r) := hk2#(s · k1)r = hk2#(S−1
H (k1)(s))r,

for all h#s and k#r ∈ H#R. The homomorphism ϕ : R#H → H#R defined by

ϕ(r#k) = k2#S−1
H (k1)(r)

is an algebra isomorphism with its inverse ψ : H#R→ R#H defined by

ψ(k#r) = k1(r)#k2.

In addition, ϕ is compatible with the augmentation maps of R#H and H#R respec-

tively. Now right R#H-modules can be treated as H#R-modules. Let M and N be

two H#R-modules, then HomR(M,N) is a right H-module defined by

(f ↼ h)(m) := f(mSH(h1))h2,

for all h ∈ H, f ∈ HomR(M,N) and m ∈M .

Similar to the left case, we have the following proposition.

Proposition 4.1.4. Let H be a finite dimensional Hopf algebra and R a Noetherian

braided Hopf algebra in the category H
HYD. Then

ExtiR#H(HR#H , R#HR#H) ∼= H ⊗ ExtiR(kR, RR)

as R#H-H-bimodules for all i > 0.

Lemma 4.1.5. Let H be a Hopf algebra and R an H-module algebra. If the left global

dimensions of R and H are dR and dH respectively, then the left global dimension of

A = R#H is not greater than dR + dH .
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Proof. Let M and N be two A-modules. We have

HomA(M,N) ∼= HomH(k,HomR(M,N)),

that is, the functor HomA(M,−) factors through as follows

ModA
HomR(M,−) //

HomA(M,−) %%JJJJJJJJJ ModH

HomH(k,−)yysssssssss

Modk

.

To apply the Grothendieck spectral sequence (see e.g. [70, Sec. 5.8]), we need to show

that if N is an injective A-module, then ExtqH(k,HomR(M,N)) = 0 for all q > 1.

Let

· · · → Pi → Pi−1 → · · · → P1 → P0 → k→ 0

be a projective resolution of k over H. Ext∗H(k,HomR(M,N)) are the cohomologies

of the complex HomH(P•,HomR(M,N)). There are the following isomorphisms

HomH(P•,HomR(M,N)) ∼= HomH(k,Homk(P•,HomR(M,N)))
∼= HomH(k,HomR(P• ⊗M,N))
∼= HomR#H(P• ⊗M,N).

Let Pi be a projective module in the complex P•. Note that the R#H-module struc-

ture on Pi ⊗M is given by

(r#h) · (p⊗ h) = h2 ⊗ rh1m,

for all r#h ∈ R#H and p⊗m ∈ Pi⊗M . The complex P• is exact except at P0. Since

the functors HomR#H(−, N) and−⊗M are exact, the complex HomH(P•,HomR(M,N))

is also exact except at HomH(P0,HomR(M,N)). It follows that

ExtqH(k,HomR(M,N)) = 0

for all q > 1.

Now we have

ExtqH(k,ExtpR(M,N))⇒ Extp+qR#H(M,N).

81



CHAPTER 4. RIGID DUALIZING COMPLEXES OF BRAIDED HOPF
ALGEBRAS OVER FINITE GROUP ALGEBRAS

Because the left global dimensions of R and H are dR and dH , ExtiR#H(M,N) = 0

for all i > dR + dH . Therefore, the left global dimension of R#H is not greater than

dR + dH .

The homological determinant for graded automorphisms of an AS-Gorenstein alge-

bra was defined by Jørgensen and Zhang [39]. A Hopf algebra version was introduced

later in [46]. The homological determinant was used to study the AS-Gorenstein

property of invariant subrings.

Definition 4.1.6. (cf. [52], [46]) Let R be an AS-Gorenstein algebra of injective

dimension d. There is a leftH-action on ExtdR(k, R) induced by the leftH-action onR.

Let e be a non-zero element in ExtdR(k, R). Then there is an algebra homomorphism

η : H → k satisfying h · e = η(h)e for all h ∈ H.

(i) The composite map ηSH : H → k is called the homological determinant of the

H-action on R, and it is denoted by hdet (or more precisely hdetR).

(ii) The homological determinant hdetR is said to be trivial if hdetR = εH , where

εH is the counit of the Hopf algebra H.

Let H be an involutory CY Hopf algebra and R a p-Koszul CY algebra which is a

left H-module algebra. As we mentioned in the introduction of this chapter, in [52],

Wu and Zhu used the homological determinant of the H-action to characterize the

CY property of R#H. They defined an H-module structure on the Koszul bimodule

complex of R and computed the H-module structures on the Hochschild cohomologies.

Then they proved that R#H is CY if and only if the homological determinant is

trivial. If H is not involutory or R is not a p-Koszul algebra, then is R#H still a CY

algebra when the homological determinant is trivial?

We discuss the question when R is a braided Hopf algebra in the category H
HYD,

where H is a finite dimensional Hopf algebra. We use the homological determinant

to discuss the homological integral and the rigid dualizing complex of the algebra

A = R#H. We then give a necessary and sufficient condition for A to be a CY

algebra. The result we obtained is slightly different from what was obtained by Wu

and Zhu. We first need the following lemma.

Lemma 4.1.7. Let H be a Hopf algebra, and R a braided Hopf algebra in the category
H
HYD. Then

S2
R#H(r) = SH(r(−1))(S2

R(r(0))),
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for any r ∈ R.

Proof. Set A = R#H. By equation (1.5), for any r ∈ R,

SA(r) = (1#SH(r(−1)))(SR(r(0))#1).

Therefore,

S2
A(r) = SA((1#SH(r(−1)))(SR(r(0))#1))

= SA(SR(r(0))#1)SA(1#SH(r(−1)))

= (1#SH(SR(r(0))(−1)))(SR(SR(r(0))(0))#1)(1#S2
H(r(−1)))

= (1#SH(r(0)(−1)))(S2
R(r(0)(0))#1)(1#S2

H(r(−1)))

= (1#SH(r(−1)2))(S2
R(r(0))#1)(1#S2

H(r(−1)1))

= SH(r(−1)3)(S2
R(r(0)))#SH(r(−1)2)S2

H(r(−1)1)

= SH(r(−1)2)(S2
R(r(0)))#SH(ε(r(−1)1))

= SH(r(−1))(S2
R(r(0))).

Proposition 4.1.8. Let H be a semisimple Hopf algebra and R a braided Hopf algebra

in the category H
HYD. If R is an AS-regular algebra of global dimension dR, then

A = R#H is also AS-regular of global dimension dR.

In this case, if
∫ l
R

= kξR and
∫ l
H

= kξH , where ξR : R → k and ξH : H → k are

algebra homomorphisms, then
∫ l
A

= kξ, where ξ : A→ k is defined by

ξ(r#h) = ξR(r) hdet(h1)ξH(h2),

for all r#h ∈ R#H. The rigid dualizing complex of A is isomorphic to ψA[dR], where

ψ is the algebra automorphism [ξ]S2
A. To be more precise, ψ is defined by

ψ(r#h) = ξR(r1) hdet((r2)(−1)1h1)SH((r2)(−1)2)(S2
R((r2)(0)))#S2

H(h2),

for all r#h ∈ R#H.

Proof. Let P• → H → 0 be a projective A-module resolution of H with each Pi

finitely generated. Since H is semisimple, k is projective as an H-module. It follows

that k ⊗H P• → k → 0 is a projective A-module resolution of k. Now the following
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isomorphism of complexes holds:

HomA(k⊗H P•, A) ∼= HomH(k,HomA(P•, A)).

The fact that the trivial module k is a finitely generated projective H-module implies

that
ExtiA(k, A) ∼= HomH(k,ExtiA(H,A))

∼= HomH(k, H)⊗H ExtiA(H,A)
(4.5)

for all i > 0. Following Proposition 4.1.3, we have
∫ l
A
∼=
∫ l
H
⊗H

∫ l
R
⊗H and

dim ExtiA(k,AA) =

0, i 6= dR;

1, i = dR.

Let e be a non-zero element in
∫ l
R

and h a non-zero element in
∫ l
H

. Let η : H → k be

an algebra homomorphism such that h · e = η(h)e for all h ∈ H. Then the following

equations hold

(h⊗ e⊗ 1) · (r#h) = ξR(r)h⊗ e⊗ h
= ξR(r)h⊗ ε(h1)e⊗ h2

= ξR(r)h⊗ η(SH(h1))η(h2)e⊗ h3

= ξR(r)η(SH(h1))h⊗ h2 · (e⊗ 1)

= ξR(r)η(SH(h1))ε(h2)h⊗ e⊗ 1

= ξR(r) hdet(h)h⊗ e⊗ 1.

This implies that
∫ l
A
∼= kξ, where ξ is the algebra homomorphism defined in the

proposition. Similarly, by Proposition 4.1.4, we have

dim ExtiA(k, AA) =

0, i 6= dR,

1, i = dR.

Because H is finite dimensional and R is Noetherian, the algebra A is Noetherian

as well. Therefore, the left and right global dimensions of A are equal. Since H is

semisimple, the global dimension of H is 0. Now it follows from Lemma 4.1.5 that the

global dimension of A is dR. In conclusion, we have proved that A is an AS-regular

algebra.
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By Proposition 1.5.21, the rigid dualizing complex of A is isomorphic to [ξ]S2
A
A[dR].

For any r#h ∈ R#H, we have

[ξ]S2
A(r#h)

(a)
= S2

A[ξ](r#h)
(b)
= ξ(r1#(r2)(−1)h1)S2

A((r2)(0)#h2)

= ξR(r1) hdet((r2)(−1)h1)S2
A((r2)(0))#S2

H(h2)
(c)
= ξR(r1) hdet((r2)(−1)h1)SH((r2)(0)(−1))(S2

R((r2)(0)(0)))#S2
H(h2)

= ξR(r1) hdet((r2)(−1)1h1)SH((r2)(−1)2)(S2
R((r2)(0)))#S2

H(h2).

Equations (a), (b) and (c) follow from [20, Lemma 2.5], Equation (1.4) and Lemma

4.1.7 respectively. Thus the proof is completed.

Remark 4.1.9. Since ξ is an algebra homomorphism, the following equation holds

ξR(r) hdet(h) = ξR(h1(r)) hdet(h2).

Remark 4.1.10. We show how
∫ r
R#H

looks like. Let e′ be a non-zero element in

ExtdR(k, R). There is an algebra homomorphism η′ : H → k satisfying e′ · h =

η′(h)e′ for all h ∈ H. Applying a similar argument as in the proof of Proposition

4.1.8, we have that if
∫ r
R

= ξ′R
k, then

∫ r
A

= ξ′k, where ξ′ is defined by ξ′(r#h) =

ξ′R(S−1
H (h1)(r))η′(SH(h2)) for all r#h ∈ R#H.

Now we give the main theorem of this section.

Theorem 4.1.11. Let H be a semisimple Hopf algebra and R a Noetherian braided

Hopf algebra in the category H
HYD. Suppose that the algebra R is CY of dimension

dR. Then R#H is CY if and only if the homological determinant of R is trivial and

the algebra automorphism φ defined by

φ(r#h) = SH(r(−1))(S2
R(r(0)))S2

H(h)

for all r#h ∈ R#H is an inner automorphism.

Proof. From Proposition 1.5.19, we have that R is AS-regular with
∫ l
R
∼= k. In

addition, since H is semisimple, the algebra H is unimodular. Thus
∫ l
H

= k. Set

A = R#H. By Proposition 4.1.8, we obtain that A is AS-regular with
∫ l
A
∼= kξ, where

ξ is the algebra homomorphism defined by ξ(r#h) = ε(r) hdet(h) for all r#h ∈ R#H.

Then following from Proposition 1.5.22, the algebra A is CY if and only if ξ = ε and
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S2
A is an inner automorphism. On one hand, ξ = εH if and only if hdet = εH . On the

other hand, by Lemma 4.1.7, we have S2
A(r#h) = SH(r(−1))(S2

R(r(0)))S2
H(h), for any

r#h ∈ R#H.

Remark 4.1.12. In [52] it is proved that if R is p-Koszul CY and H is involutory,

then R#H is CY if and only if the homological determinant is trivial. Thus in

Theorem 4.1.11, if the braided Hopf algebra R is p-Koszul, then we have that the

homological determinant is trivial implies that the automorphism φ is inner. In the

following Example 4.1.13, we see that the automorphism φ can be expressed via the

homological determinant of the H-action.

Example 4.1.13. Let

D(Γ, (gi)16i6θ, (χi)16i6θ, (aij)16i,j6θ)

be a datum of finite Cartan type, where Γ is a finite abelian group and (aij) is of type

A1 × · · · × A1. Assume that V is a braided vector space with a basis {x1, · · · , xθ}
whose braiding is given by

c(xi ⊗ xj) = qijxj ⊗ xi, 1 6 i, j 6 θ,

where qij = χj(gi).

Let R be the following algebra:

k〈x1, · · · , xθ | xixj = qijxjxi, 1 6 i < j 6 θ〉.

It is easy to see that R is a Koszul braided Hopf algebra in the category Γ
ΓYD. Assume

that K is the Koszul complex (cf. complex (1.19))

0→ R⊗R!∗
θ → · · ·R⊗R!∗

j

dj−→ R⊗R!∗
j−1 · · · → R⊗R!∗

1 → R.

Then we have that K → Rk → 0 is a projective resolution of k. Each R!∗
j is a left

kΓ-module with module structure defined by

[g(β)](x∗i1 ∧ · · · ∧ x
∗
ij

) = β(g−1(x∗i1 ∧ · · · ∧ x
∗
ij

))

= β(g−1(x∗i1) ∧ · · · ∧ g−1(x∗ij ))

= (
∏j
t=1 χit(g))β(x∗i1 ∧ · · · ∧ x

∗
ij

),
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where β ∈ S!∗
j . Thus each R ⊗ R!∗

j is a left kΓ-module. It is not difficult to see that

the differentials in the Koszul complex are also left Γ-module homomorphisms. By

[23, Prop. 5.0.7], we have that
∫ l
R
∼= R!∗

θ . Therefore, hdet(g) =
∏θ
i=1 χi(g

−1) for all

g ∈ Γ.

If for each 1 6 i 6 θ, q1i · · · q(i−1)i = qi(i+1) · · · qiθ, then the algebra R is a CY

algebra by Remark 1.5.14. In this case,

hdet(gj) =
∏θ
i=1 χi(g

−1
j )

= (
∏j−1
i=1 χi(g

−1
j ))χj(g

−1
j )(

∏θ
k=j+1 χk(g−1

j ))

= (
∏j−1
i=1 qij)χj(g

−1
j )(

∏θ
k=j+1 q

−1
jk )

= χj(g
−1
j ).

The algebra automorphism φ given in Theorem 4.1.11 is defined by

φ(xj) = χj(g
−1
j )xj = hdet(gj)xj

for all 1 6 j 6 θ and φ(g) = g for all g ∈ Γ. However, χj(gj) 6= 1 for all 1 6 j 6 θ.

The algebra R#kΓ is not a CY algebra.

Example 4.1.14. Let g be a finite dimensional Lie algebra, and U(g) the universal

enveloping algebra of g. Assume that there is a group homomorphism ν : Γ →
AutLie(g), where AutLie(g) is the group of Lie algebra automorphisms of g. Then it

is known that U(g)#kΓ is a cocommutative Hopf algebra.

It is proved in [35, Cor. 3.6] that the smash product U(g)#kΓ is CY if and only

if U(g) is CY and Im(ν) ⊆ SL(g).

Let d be the dimension of g. By [35, Lemma 3.1], we have
∫ l
U(g)

∼= ∧dg∗ as left

Γ-modules, where the left Γ-action on g∗ is defined by (g · α)(x) = α(g−1x) for all

g ∈ Γ, α ∈ g∗ and x ∈ g, and Γ acts on ∧dg∗ diagonally. Let {x1, · · · , xd} be a basis

of g. Then

g(x∗1 ∧ · · · ∧ x∗d) = det(ν(g−1))(x∗1 ∧ · · · ∧ x∗d),

for all g ∈ Γ. So hdet(g) = det(ν(g)). That is, if Im(ν) ⊆ SL(g), then the homological

determinant is trivial. The algebra U(g) is a braided Hopf algebra in the category
Γ
ΓYD with trivial coaction. So the automorphism φ defined in Theorem 4.1.11 is the

identity. Therefore, if U(g) is a CY algebra and Im(ν) ⊆ SL(g), by Theorem 4.1.11,

the algebra U(g)#kΓ is a CY algebra. This coincides with the result mentioned

before.
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4.2 Rigid dualizing complexes of braided Hopf al-

gebras over finite group algebras

Before giving the main results of this section, we need some preparations first.

Let A be a Hopf algebra. By [61, Appendix, Lemma 11], A can be viewed as a

subalgebra of Ae via the algebra homomorphism ρ : A→ Ae defined by

ρ(a) = a1 ⊗ S(a2). (4.6)

Then Ae is a right A-module via this embedding. We denote this right A-module

by R(Ae). Actually, R(Ae) is an Ae-A-bimodule. Similarly, Ae is also an A-Ae-

bimodule, where the left A-module is induced from the homomorphism ρ. Denote

this bimodule by L(Ae).

In this section, we further assume the characteristic of the base field k is 0. From

now on, let Γ be a finite group and R a braided Hopf algebra in the category Γ
ΓYD

with Γ-coaction δ. The bosonization A = R#kΓ is a usual Hopf algebra [62]. Let D

be the subalgebra of Ae generated by the elements of the form (r#g)⊗ (s#g−1) with

r, s ∈ R and g ∈ Γ.

Remark 4.2.1. Since R is a Γ-comodule, it is a Γ-graded module: R = ⊕g∈ΓRg,

where Rg = {r ∈ R | δ(r) = g ⊗ r}. Therefore, for any r ∈ R, it can be written as

r =
∑
g∈Γ rg with rg ∈ Rg. Then δ(r) =

∑
g∈Γ g ⊗ rg.

Lemma 4.2.2. The subalgebra D is a left (resp. right) A-submodule of L(Ae) (resp.

R(Ae)).

Proof. For any r#h ∈ A, by equations (1.4) and (1.5), we have

∆(r#h) =
∑
g∈Γ

r1#gh⊗ (r2)g#h

and

SA(r#h) =
∑
g∈Γ

h−1g−1SR(rg).

Any element in D can be written as a linear combination of elements of the form
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s#k ⊗ t#k−1 ∈ D with s, t ∈ R and k ∈ Γ.

(r#h) · (s#k ⊗ t#k−1)

=
∑
g∈Γ(r1#gh)(s#k)⊗ (t#k−1)SA((r2)g#h)

=
∑
g∈Γ(r1#gh)(s#k)⊗ (t#k−1)h−1g−1SR((r2)g)

=
∑
g∈Γ(r1(gh)(s)#ghk)⊗ (t(k−1h−1g−1)(SR((r2)g))#k

−1h−1g−1)

∈ D .

This shows that D is a left A-submodule of L(Ae). Similarly, D is also a right A-

submodule of R(Ae).

The following lemma is known, we include it for completeness.

Lemma 4.2.3. (1) Both L(Ae) and R(Ae) are free as A-modules.

(2) R(Ae) ⊗A k ∼= A as left Ae-modules and this isomorphism restricts to a left

Re-isomorphism D ⊗A k ∼= R.

(3) If ξ : A→ k is an algebra homomorphism, then there is an isomorphism kξ ⊗A
L(Ae) ∼= A[ξ]S2

A
of right Ae-modules and the isomorphism restricts to a right

Re-isomorphism kξ ⊗A D ∼= R([ξ]S2
A)|R .

Proof. (1) was proved in [20, Lemma 2.2]. The module L(Ae) defined in that paper

is isomorphic to R(Ae) as right A-modules. It was proved that ϕ : AA ⊗ Aop →
R(Ae) defined by ϕ(a ⊗ b) = a1 ⊗ b ? SA(a2) is an isomorphism, where ? denotes

the multiplication in Aop. The right A-module structure on AA ⊗ Aop is defined by

(a ⊗ b) · c = ac ⊗ b for all a, b and c ∈ A. Similarly, L(Ae) ∼= AA ⊗ Aop as free left

A-module.

(2) R(Ae) ⊗A k ∼= A as left Ae-modules is [61, Appendix, Lemma 11]. The

homomorphism ψ : R(Ae)⊗Ak→ A given by ψ(a⊗b⊗1) = ab is an Ae-isomorphism.

It is clear that ψ restricts to an isomorphism from D ⊗A k to R.

(3) It was proved in [20, Lemma 4.5] that kξ ⊗A L(Ae) ∼= A[ξ]S2
A

as right Ae-

modules. Here we give another proof. We construct the the isomorphism explicitly.

Define a homomorphism Φ : kξ⊗AL(Ae)→ A[ξ]S2
A

by Φ(1⊗a⊗b) = ξ(a1)bS2
A(a2) and

a homomorphism Ψ : A[ξ]S2
A
→ kξ⊗AAe by Ψ(a) = 1⊗1⊗a. Note that [ξ]S2 = S2[ξ]
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holds by Lemma 2.5 in [20]. For any x, a, b ∈ A, we have

Φ(1⊗ x1a⊗ bS(x2)) = ξ(x1)ξ(a1)bS(x3)S2(x2)S2(a2)

= ξ(x1)ξ(a1)bS(ε(x2))S2(a2)

= ξ(x)ξ(a1)bS2(a2)

= ξ(x)Φ(1⊗ a⊗ b).

This shows that Φ is well defined. Similar calculations show that Φ and Ψ are right

Ae-module homomorphisms and they are inverse to each other.

It is straightforward to check that the isomorphism kξ⊗AL(Ae) ∼= A[ξ]S2
A

restricts

to the isomorphism kξ ⊗A D ∼= R([ξ]S2
A)|R .

Lemma 4.2.4. HomRe(D , Re) ∼= D as A-Re-bimodules.

Proof. The algebra D is an A-Re-bimodule. Note that the A-module structure is

induced from the homomorphism ρ defined in (4.6). On the other hand, the A-Re-

bimodule structure on HomRe(D , Re) is induced from the right A-module structure

on D and the right Re-module structure on Re. We have r#g = (1#g)(g−1(r)#1)

for any r#g ∈ R#kΓ. Therefore, an element in D can be expressed of the form∑
g∈Γ(1#g−1)(rg#1) ⊗ sg#g with rg, sg ∈ R. For simplicity, we write an element

(1#g)(r#1) with r ∈ R and g ∈ Γ as gr. Let Ψ : D → HomRe(D , Re) be a homo-

morphism defined by

[Ψ(
∑
g∈Γ

g−1rg ⊗ (sg#g))](h⊗ h−1) = rh ⊗ sh,

for
∑
g∈Γ g

−1rg⊗sg#g ∈ D , h ∈ Γ. Next define a homomorphism Φ : HomRe(D , Re)→
D by

Φ(f) =
∑
g∈Γ

(g−1 ⊗ g)f(g ⊗ g−1)

for f ∈ HomRe(D , Re). It is clear that Φ is a right Re-homomorphism. On the other

hand, we have

Φ((r#h)f) =
∑
g∈Γ(g−1 ⊗ g)((r#h)f)(g ⊗ g−1)

=
∑
g∈Γ

∑
k∈Γ(g−1 ⊗ g)f(g(r1#k)h⊗ SA((r2)k#h)g−1)

=
∑
g∈Γ

∑
k∈Γ(g−1 ⊗ g)f(g(r1#k)h⊗ h−1k−1SR((r2)k)g−1)

=
∑
g∈Γ

∑
k∈Γ(g−1 ⊗ g)f(g(r1)#gkh⊗ h−1k−1g−1g(SR((r2)k)))
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and

(r#h)Φ(f)

= (
∑
k∈Γ r1#kh⊗ h−1k−1SR(r2k))

∑
g∈Γ(g−1 ⊗ g)f(g ⊗ g−1)

=
∑
k∈Γ

∑
g∈Γ(r1#khg−1 ⊗ gh−1k−1SR((r2)k))f(g ⊗ g−1)

=
∑
k∈Γ

∑
g∈Γ(khg−1(gh−1k−1)(r1)⊗ (gh−1k−1)SR((r2)k)gh−1k−1)f(g ⊗ g−1)

=
∑
k∈Γ

∑
g∈Γ(khg−1 ⊗ gh−1k−1)f((gh−1k−1)(r1)#g ⊗ g−1(gh−1k−1)(SR((r2)k)))

=
∑
g∈Γ

∑
k∈Γ(g−1 ⊗ g)f(g(r1)#gkh⊗ h−1k−1g−1g(SR((r2)k))).

So Φ is an A-Re-bimodule homomorphism. It is clear that Φ and Ψ are inverse to

each other. Thus Φ is an isomorphism.

Lemma 4.2.5. Let Γ be a finite group and R a braided Hopf algebra in the category
Γ
ΓYD. If A = R#kΓ is AS-Gorenstein with

∫ l
A
∼= kξ, where ξ : A → k is an algebra

homomorphism, then we have R-R-bimodule isomorphisms

ExtiRe(R,R
e) ∼=

0, i 6= d;

R([ξ]S2
A)|R , i = d.

Proof. We have the following isomorphisms,

ExtiRe(R,R
e) ∼= ExtiRe(D ⊗A k, Re)
∼= ExtiA(Ak,HomRe(D , Re))
∼= ExtiA(Ak,D)
∼= ExtiA(Ak, A)⊗A D

∼=

0, i 6= d;

kξ ⊗A D ∼= R([ξ]S2
A)|R , i = d.

The first, third and last isomorphism follow from Lemma 4.2.3, Lemma 4.2.4 and

Lemma 4.2.3 respectively. The fourth isomorphism follows from the fact that D is

left A-projective. This is because Ae is free as a left A-module by Lemma 4.2.3 and

Ae is a direct sum of finite copies of D . Indeed, Ae ∼= ⊕h∈ΓDh, where Dh is the left

A-submodule of Ae generated by elements of the form (r#gh)⊗(s#g−1) with r, s ∈ R
and g ∈ Γ. Moreover, for every h ∈ Γ, Dh is isomorphic to D as a left A-module.

Lemma 4.2.6. If the global dimension of A = R#kΓ is finite and R is Noethrian,

then R is homologically smooth.

Proof. By assumption, the algebra A is Noetherian, and Ak has a finite projective
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resolution

0→ Pd → Pd−1 → · · · → P1 → P0 → k→ 0,

such that each Pi, 0 6 i 6 d, is a finitely generated projective A-module. By a similar

argument to the one in the proof of Lemma 4.2.5, we have that D is projective as a

right A-module. Therefore, the functor D⊗A− is exact. We obtain an exact sequence

0→ D ⊗A Pd → D ⊗A Pd−1 → · · · → D ⊗A P1 → D ⊗A P0 → D ⊗A k→ 0. (4.7)

D is projective as left Re-module and D⊗Ak ∼= R as left Re-modules (Lemma 4.2.3).

So the complex (4.7) is a projective bimodule resolution of R. Because each Pi is a

finitely generated A-module and Γ is a finite group, each D⊗APi is a finitely generated

left Re-module. Therefore, we conclude that R is homologically smooth.

The homological integral of the skew group algebra R#kΓ was discussed by He,

Van Oystaeyen and Zhang in [35]. Based on their work, here we use the homological

determinant of the group action to describe the homological integral of R#kΓ.

Lemma 4.2.7. Let Γ be a finite group and R a braided Hopf algebra in the category
Γ
ΓYD. If R is an AS-Gorenstein algebra with injective dimension d and

∫ l
R
∼= kξR ,

where ξR : R → k is an algebra homomorphism, then the algebra A = R#kΓ is AS-

Gorenstein with injective dimension d as well, and
∫ l
A
∼= kξ, where ξ : A → k is the

algebra homomorphism defined by ξ(r#h) = ξR(r) hdet(h) for any r#h ∈ R#kΓ.

Proof. By [35, Prop. 1.1 and 1.3], we have that A = R#kΓ is AS-Gorenstein of

injective dimension d,
∫ l
R

is a 1-dimensional left Γ-module, and as right A-modules:∫ l
A
∼= (
∫ l
R
⊗kΓ)Γ,

where the right A-module structure on
∫ l
R
⊗kΓ is defined by

(e⊗ g) · (r#h) = e(g(r))⊗ gh,

for g ∈ kΓ, r#h ∈ R#kΓ and e ∈
∫ l
R

, and the left Γ-action on
∫ l
R
⊗kΓ is diagonal.

Let e be a basis of
∫ l
R

. It can be checked directly that the element
∑
g∈Γ g(e) ⊗ g

is a basis of (
∫ l
R

#kΓ)Γ. Let η : kΓ → k be an algebra homomorphism such that
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h · e = η(h)e for all h ∈ Γ. For any r#h ∈ R#kΓ, we have

(
∑
g∈Γ g(e)#g)(r#h) =

∑
g∈Γ g(e)g(r)#gh

=
∑
g∈Γ g(er)#gh

= ξR(r)
∑
g∈Γ g(e)#gh

= ξR(r)η(h−1)
∑
g∈Γ (gh)(e)#gh

= ξR(r)η(h−1)
∑
g∈Γ g(e)#g

= ξR(r) hdet(h)
∑
g∈Γ g(e)#g

= ξ(r#h)
∑
g∈Γ g(e)#g.

It implies that
∫ l
A
∼= kξ.

There is also a connection between the AS-regularity of R and R#kΓ.

Proposition 4.2.8. Let Γ be a finite group and R a braided Hopf algebra in the

category Γ
ΓYD. Then R is AS-regular if and only if A = R#kΓ is AS-regular.

Proof. Assume thatR is AS-regular. By Lemma 4.2.7, the algebraA is AS-Gorenstein.

To show that A is AS-regular, it suffices to show that the global dimension of A is

finite. Since the global dimension of R is finite, there is a finite projective resolution

of k over R,

0→ Pd → Pd−1 → · · ·P1 → P0 → k→ 0.

Note that A is projective as a right R-module. Tensoring this resolution with A⊗R−,

we obtain an exact sequence

0→ A⊗R Pd → A⊗R Pd−1 → · · ·A⊗R P1 → A⊗R P0 → A⊗R k→ 0.

It is clear that each A⊗RPi is projective. This shows that the projective dimension of

A⊗R k is finite. But Ak is a direct summand of A⊗R k as an A-module ([11, Lemma

III.4.8]). So the projective dimension of Ak is finite. Since A is a Hopf algebra, the

global dimension of A is finite.

Conversely, if A is AS-regular, then R is AS-regular by Lemma 4.2.5, Lemma 4.2.6

and Remark 1.5.20.

We give the rigid dualzing complex of an AS-Gorenstein braided Hopf algebra in

the following theorem.

Theorem 4.2.9. Let Γ be a finite group and R a braided Hopf algebra in the category
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Γ
ΓYD. Assume that R is an AS-Gorenstein algebra with injective dimension d. If∫ l
R
∼= kξR , for some algebra homomorphism ξR : R→ k, then R has a rigid dualizing

complex ϕR[d], where ϕ is the algebra automorphism defined by

ϕ(r) =
∑
g∈Γ

ξR(r1) hdet(g)g−1(S2
R((r2)g)),

for any r ∈ R.

Proof. Put A = R#kΓ. It follows from Lemma 4.2.7 that A is AS-Gorenstein with∫ l
A
∼= kξ, where ξ : A→ k is the algebra homomorphism defined by

ξ(r#h) = ξR(r) hdet(h)

for any r#h ∈ R#kΓ. By Lemma 4.2.5, there are R-R-bimodule isomorphisms

ExtiRe(R,R
e) ∼=

0, i 6= d;

R([ξ]S2
A)|R , i = d.

For any r ∈ R,

[ξ]S2
A(r) =

∑
g∈Γ ξ(r

1#g)S2
A((r2)g)

=
∑
g∈Γ ξR(r1) hdet(g)S2

A((r2)g)

=
∑
g∈Γ ξR(r1) hdet(g)g−1(S2

R((r2)g)).

Now the theorem follows from Lemma 1.5.11.

Remark 4.2.10. The algebra A = R#kΓ has a rigid dualizing complex [ξ]S2
A
A[d]

(Proposition 1.5.21). Observe that the algebra automorphism ϕ given in Theorem

4.2.9 is just the restriction of [ξ]S2
A on R.

Now we can characterize the CY property of R in case R#kΓ is CY.

Theorem 4.2.11. Let Γ be a finite group and R a braided Hopf algebra in the category
Γ
ΓYD. Define an algebra automorphism ϕ of R by

ϕ(r) =
∑
g∈Γ

g−1(S2
R(rg)),
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for any r ∈ R. If R#kΓ is a CY algebra, then R is CY if and only if the algebra

automorphism ϕ is an inner automorphism.

Proof. Assume that A = R#kΓ is a CY algebra of dimension d. By Proposition

1.5.19, A is AS-regular of global dimension d and
∫ l
A
∼= k. It follows from Lemma

4.2.6 that R is homologically smooth.

Since
∫ l
A
∼= k, by Lemma 4.2.5 there are R-R-bimodule isomorphisms

ExtiRe(R,R
e) ∼=

0, i 6= d;

RS2
A|R , i = d.

Following Remark 1.5.20, we obtain that R is AS-regular. Suppose
∫ l
R
∼= kξR for

some algebra homomorphism ξR : R → k. Then by Lemma 4.2.7,
∫ l
A
∼= kξ, where

ξ : A → k is defined by ξ(r#h) = ξR(r) hdet(h) for any r#h ∈ R#kΓ. But
∫ l
A
∼= k.

Therefore, ξR = εR and hdet = εH . It follows from Theorem 4.2.9 that the rigid

dualizing complex of R is isomorphic to ϕR[d], where ϕ is defined by

ϕ(r) =
∑
g∈Γ ξR(r1) hdet(g)g−1(S2

R((r2)g))

=
∑
g∈Γ g

−1(S2
R(rg))

for any r ∈ R. Now the theorem follows from Corollary 1.5.12.

Corollary 4.2.12. Let Γ be a finite group and R a braided Hopf algebra in the category
Γ
ΓYD. Assume that R is an AS-regular algebra. Then the following two conditions are

equivalent:

(1) Both R and R#kΓ are CY algebras.

(2) These three conditions are satisfied:

(i)
∫ l
R
∼= k;

(ii) The homological determinant of the group action is trivial;

(iii) The algebra automorphism ϕ defined by

ϕ(r) =
∑
g∈Γ

g−1(S2
R(rg))

for all r ∈ R is an inner automorphism.
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Proof. (1) ⇒ (2) Since R is a CY algebra, by Proposition 1.5.19 we have
∫ l
R
∼= k.

Because both R and R#kΓ are CY, (ii) and (iii) are satisfied by Theorem 4.1.11 and

Theorem 4.2.11.

(2)⇒ (1) Since R is AS-regular, R#kΓ is AS-regular by Proposition 4.2.8. Then

R is homologically smooth (Lemma 4.2.6). By Theorem 4.2.9, if the three conditions

in (2) are satisfied, then the rigid dualizing complex of R is isomorphic to R[d], where

d is the injective dimension of R. So R is a CY algebra. That the algebra R#kΓ is

a CY algebra follows from Theorem 4.1.11.

Example 4.2.13. Let us use the notations in Example 4.1.14. Assume that Γ is

a finite group, g is a finite dimensional Γ-module Lie algebra, and there is a group

homomorphism ν : Γ → AutLie(g). In Example 4.1.14, we use Theorem 4.1.11 to

obtain that if U(g) is a CY algebra and Im(ν) ⊆ SL(g) then U(g)#kΓ is a CY

algebra. Now by Theorem 4.2.11, if U(g)#kΓ is a CY algebra, then U(g) is a CY

algebra as well. This is because U(g) is a braided Hopf algebra in Γ
ΓYD with trivial

coaction, the algebra automorphism ϕ in Theorem 4.2.11 is the identity.

By [20, Prop. 6.3], we have that
∫ l
U(g)

= kξ, where ξ(x) = tr(ad(x)) for all x ∈ g.

We calculate in Example 4.1.14 that hdet(g) = det(ν(g)) for g ∈ Γ. Therefore, both

U(g) and U(g)#kΓ are CY algebras if and only if tr(ad(x)) = 0 for all x ∈ g and

Im(ν) ⊆ SL(g). This coincides with Corollary 3.5 and Lemma 4.1 in [35].

Let

D(Γ, (gi)16i6θ, (χi)16i6θ, (aij)16i,j6θ)

be a datum of finite Cartan type for a finite abelian group Γ. Let {α1, · · · , αθ} be

a set of simple roots of the root system corresponding to the Cartan matrix (aij).

Assume that w0 = si1 · · · sip is a reduced decomposition of the longest element in the

Weyl group as a product of simple reflections. Then the positive roots are as follows

β1 = αi1 , · · · , βp = si1 · · · sip−1(αip).

Let λ be a family of linking parameters for D.

Applying [8, Thm. 3.3] and a similar argument as in the proof of Theorem 2.1.4,

we obtain that A = U(D, λ) is AS-regular of global dimension p and
∫ l
A

= kξ, where

ξ is the algebra homomorphism defined by ξ(g) = (
∏p
i=1 χβi )(g), for all g ∈ Γ and

ξ(xi) = 0 for all 1 6 i 6 θ. In addition, A has a rigid dualizing complex [ξ]S2
A
A[p].
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By Proposition 1.5.22, A is CY if and only if
∏p
i=1 χβi = ε and S2

A is an inner

automorphism.

Let R be the algebra generated by x1, · · · , xθ subject to the relations

(adc xi)
1−aij (xj) = 0, 1 6 i, j 6 θ, i 6= j.

Then U(D, 0) = R#kΓ. By Lemma 4.2.6 and Lemma 4.2.5, we have that R is

homologically smooth, and that it has a rigid dualizing complex ϕR[p], where ϕ is

the restriction of [ξ]S2
A on R. That is, ϕ is defined by ϕ(xk) =

∏p
i=1,i6=jk χβi (gk)(xk),

1 6 k 6 θ, where each 1 6 jk 6 p is the integer such that βjk = αk. Therefore, R is

CY if and only if
∏p
i=1,i6=jk χβi (gk) = 1 for each 1 6 k 6 θ.

One may compare these results with Theorem 2.1.5, Theorem 3.1.9 and Lemma

3.2.1.

Now we give two examples of CY pointed Hopf algebra with a finite group of

group-like elements.

Example 4.2.14. Let A be U(D, λ) with the datum (D, λ) given by

• Γ = 〈y1, y2〉 ∼= Z2 × Z2;

• The Cartan matrix is of type A2;

• gi = yi, 1 6 i 6 2;

• χi, 1 6 i 6 2, are given by the following table.

y1 y2

χ1 −1 1

χ2 −1 −1

• λ = 0

The algebra A is a CY algebra of dimension 3.

Let R be the algebra generated by x1 and x2 subject to relations

x2
1x2 − x2x

2
1 = 0 and x2

2x1 − x1x
2
2 = 0.

Then A = R#kΓ. The rigid dualizing complex of R is ϕR[3], where ϕ = − id.
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Remark 4.2.15. From the proof of Proposition 2.2.9, we can see that if A = U(D, λ)

is a CY algebra and D is a generic datum, then D cannot be of type A2.

Example 4.2.16. Let A be U(D, λ) with the datum (D, λ) given by

• Γ = 〈y1, y2〉 ∼= Zn × Zn;

• The Cartan matrix is of type A1 ×A1;

• gi = yi, i = 1, 2;

• χ1(yi) = q, χ2(yi) = q−1, i = 1, 2, where q ∈ k is an n-th root of unity;

• λ = 1.

The algebra A is a CY algebra of dimension 2.

Let R be the algebra k〈x1, x2 | x1x2 = q−1x2x1〉. Then A = R#kΓ. The rigid

dualizing complex ofR is ϕR[3], where ϕ is defined by ϕ(x1) = q−1x1 and ϕ(x2) = qx2.
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Chapter 5

Ext algebras of Nichols

algebras of type A2

As shown in previous chapters, the homological properties of an algebra R over a

field k rely exclusively on the structure of its Ext algebra Ext∗R(k,k). In two recent

papers [29, 61] support varieties of modules over Hopf algebras are introduced. It

turns out that support varieties are useful tools to study homological properties and

representations of finite dimensional (braided) Hopf algebras. To define and to com-

pute support varieties we need first to understand the Ext algebra of the (braided)

Hopf algebra. These motivate us to study the structure of the Ext algebra of a finite

dimensional Nichols algebra. As a first attempt to explore the structure of the Ext

algebras for further study, we give the full structure of the Ext algebra of a Nichols

algebra of type A2 in terms of generators and relations in this chapter. Using this

struture, we can show that for a pointed Hopf algebra A of type A2, the support va-

riety of k over A is isomorphic to the variety of k over the associated graded algebra

with respect to a certain filtration of A. Then we apply our main results to show that

if the components of the Dynkin diagram of a pointed Hopf algebra u(D, λ, µ) are of

type A, D, or E, except for A1 and A1 × A1, and the order NJ > 2 for at least one

component, then u(D, λ, µ) is wild.

A finite dimensional CY algebra must be semisimple. So a finite dimensional

algebra u(D, λ, µ) is not a CY algebra. But a finite dimensional Hopf algebra is

Frobenius. So its stable category is a triangulated category. A natural question
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arises: is the stable category of a pointed Hopf algebra u(D, λ, µ) a CY category? We

discuss this question at the end of Section 5.2. It turns out that in most cases, the

answer to this question is negative.

5.1 Structures of Ext algebras

Let

D(Γ, (gi)16i6θ, (χi)16i6θ, (aij)16i,j6θ)

be a datum of finite Cartan type for a finite abelian group Γ. Assume that for

1 6 i 6 θ, χi(gi) has odd order and the order of χi(gi) is prime to 3, if i lies in a

component G2.

Let {α1, · · · , αθ} be a fix set of simple roots of the root system corresponding to

the Cartan matrix (aij). Assume that w0 = si1 · · · sip is a reduced decomposition of

the longest element w0 in the Weyl group W as a product of simple reflections. Then

β1 = αi1 , β2 = si2(αi1), · · · , βp = si1 · · · sip−1
(αip)

are the positive roots. Let x
βi

, 1 6 i 6 p, be the corresponding root vectors.

Let V be the braided vector space with basis {x1, · · · , xθ} whose braiding is given

by

c(xi ⊗ xj) = qijxj ⊗ xi

for 1 6 i, j 6 θ, where qij = χj(gi).

Recall that the Nichols algebra B(V ) is generated by xi, 1 6 i 6 θ, subject to the

relations

(adc xi)
1−aij (xj) = 0, 1 6 i, j 6 θ, i 6= j,

xNJα = 0, α ∈ Φ+
J , J ∈ X ,

where X is the set of connected components of the Dynkin diagram, NJ is the common

order of qii with i ∈ J , and Φ+
J is set of positive roots of the component J (Section

1.4.2).

The following set

{xa1

β1
· · ·xap

βp
| 1 6 ai < NJ , βi ∈ Φ+

J , 1 6 i 6 p}

100



5.1. STRUCTURES OF EXT ALGEBRAS

forms a PBW basis of the Nichols algebra B(V ) (Theorem 1.4.11). Define a degree

on each element as

deg xa1

β1
· · ·xap

βp
= (a1, · · · , ap,

∑
aiht(βi)) ∈ Np+1,

where ht(βi) is the height of the positive root βi (cf. [55, Sec. 2]).

Lemma 3.1.1 also holds in the case when the group Γ is finite. Therefore, if we

order PBW basis elements by degree as in (2.2), we obtain a filtration on the Nichols

algebra B(V ). The associated graded algebra GrB(V ) is generated by the root vectors

x
βi

, 1 6 i 6 p, subject to the relations

[x
βi
, x

βj
]c = 0, for all i < j;

xNJ
βi

= 0, βi ∈ Φ+
J , 1 6 i 6 p.

It is clear that each Nichols algebra can be written as a twisted tensor product of

a set of Nichols algebras, such that each of them satisfies that the Dynkin diagram

associated to the Cartan matrix is connected. In [14], the authors showed that the

Ext algebra of a twisted tensor algebra is essentially the twisted tensor algebra of the

Ext algebras. Therefore, we only need to discuss the case where the Dynkin diagram

is connected. Now we calculate the Ext algebra of a Nichols algebra of type A2.

Let N be an integer, and let q be a primitive root of 1 of order N . Let qij ,

1 6 i, j 6 2 be roots of 1, such that

q
11

= q
22

= q, q
12
q

21
= q−1.

Let V be a 2-dimensional vector space with basis x1 and x2, whose braiding is

given by

c(xi ⊗ xj) = qijxj ⊗ xi, 1 6 i, j 6 2.

Then V is a braided vector space of type A2.
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5.1.1 Case N = 2

As discussed in [4], the Nichols algebra R = B(V ) is isomorphic to the algebra gener-

ated by x1 and x2, with relations

x1x2x1x2 + x2x1x2x1 = 0, x2
1 = x2

2 = 0.

The dimension of R is 8.

Its Ext algebra can be calculated directly via the minimal projective resolution of

k.

Throughout in this chapter, for an algebra R, we write elements in the free module

Rn, n > 1, as row vectors. A morphism f : Rm → Rn is described by an m×n matrix.

Proposition 5.1.1. Let R = B(V ) be the algebra mentioned before, then the algebra

Ext∗R(k,k) is generated by a1, a2 and b with deg a1 = deg a2 = 1 and deg b = 2,

subject to the relations

a2a1 = a1a2 = 0, a1b = ba1, a2b = ba2.

Proof. We claim that the following complex is the minimal projective resolution of k.

· · ·Pn
dn−→ Pn−1 → · · ·P2

d2−→ P1
d1−→ P0 → k, (5.1)

where Pn = Rn+1 and dn is defined as

dn =


x1

x2x1x2 x1
· · ·

x2x1x2 x1
x2 x1x2x1

· · ·
x2 x1x2x1

x2

,
when n is odd and

dn =


x1

x2x1x2 x1
· · ·

x2x1x2 x1
x2x1x2 x1x2x1

x2 x1x2x1
· · ·

x2 x1x2x1
x2

,
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when n is even. Especially, d1 =
(

x1
x2

)
. It is routine to check that (5.1) is indeed a

complex. Now we use induction to prove the exactness. It is clear that the minimal

projective resolution starts as

R3 d2−→ R2 d1−→ R→ k→ 0,

where d1 =

(
x1

x2

)
and d2 =

 x1

x2x1x2 x1x2x1

x2

. Assume that the complex (5.1)

is exact up to Pn. If n is odd, then

dim(Ker dn)

= (1 + dimP1 + dimP3 + · · ·dimPn)− (dimP0 + dimP2 + · · ·dimPn−1)

= 4n+ 5.

Since the dimension of R is small, we can calculate the dimension of the submodule

Im dn+1 of Pn directly, it is also 4n + 5. Then the complex is exact at Pn+1. If n is

even, by a similar discussion, we can also conclude that the complex is exact at Pn+1,

in this case dim(Ker dn) = 4n + 7. We have that Im di ⊆ radPi−1 for each i > 0.

Therefore, the complex (5.1) is the minimal projective resolution of k. Since k is a

simple module, we have

HomR(Pn,k) ∼= ExtnR(k,k) (5.2)

as vector spaces for each n > 0. Let a1,a2 ∈ HomR(P1,k) be the functions dual to

(1, 0) and (0, 1) respectively and b ∈ HomR(P2,k) be the function dual to (0, 1, 0).

Let fi, gi and hi be the morphisms described by the following matrices:

f1 =
(

1

0

)
, f2 =

(
1 0

0 x2x1
0 0

)
, f3 =

(
1 0 0

0 1 0

0 0 0

0 0 0

)
,

g1 =
(

0

1

)
, g2 =

(
0 0

x1x2 0

0 1

)
, g3 =

(
0 0 0

0 0 0

0 1 0

0 0 1

)
,

h2 =

(
0

1

0

)
, h3 =

(
0 0

1 0

0 1

0 0

)
.
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Then we have the following commutative diagrams:

P3
d3 //

f3

��

P2
d2 //

f2

��

P1
d1 //

f1

��   AAAAAAAA P0
// k

P2
d2 // P1

d1 // P0
// k

,

P3
d3 //

g3

��

P2
d2 //

g2

��

P1
d1 //

g1

��   AAAAAAAA P0
// k

P2
d2 // P1

d1 // P0
// k

,

P3
d3 //

h3

��

P2
d2 //

h2

��   AAAAAAAA P1
d1 // P0

// k

P1
d2 // P0

d1 // k

.

These commutative diagrams show that the relation listed in the proposition hold.

Let U be the algebra generated by a1, a2 and b subject to the relations listed in

the proposition. When n is odd, Un has a basis

{an1 , an−2
1 b, · · · , a1b

n−1
2 , a2b

n−1
2 , · · · , an−2

2 b, an2}

and when n is even, Un has a basis

{an1 , an−2
1 b, · · · , a1b

n
2−1, b

n
2 , a2b

n
2−1, · · · , an−2

2 b, an2}.

They are functions dual to (1, 0 · · · , 0), · · · , (0, · · · , 0, 1) respectively in the projective

resolution (5.1). We have

dimUn = n+ 1

= dim HomR(Pn/(radPn),k)

= dim HomR(Pn,k)

= dim ExtnR(k,k),

where the last equation follows from equation (5.2). So we have Ext∗R(k,k) = U ,

which completes the proof of the proposition.
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5.1.2 Case N > 3

In this case, the Nichols algebra R = B(V ) is the algebra generated by x1 and x2

subject to the relations

x2
1x2 − (q

12
+ q

12
q

11
)x1x2x1 + q2

12
q

22
x2x

2
1 = 0,

x2
2x1 − (q

21
+ q

21
q

22
)x2x1x2 + q2

21
q

22
x2x

2
1 = 0,

xN1 = xN2 = (x1x2 − q12x2x1)N = 0.

The dimension of R is N3.

In the rest of this chapter, we set y = x1x2 − q12x2x1. From the above relations,

we obtain that

q
21
x1y − yx1 = 0, x2y − q21

yx2 = 0.

Let α1 and α2 be the two simple roots. The element α1α2α1 is a reduced decom-

position of the longest element in the Weyl group W and {α1, α1 + α2, α2} are the

positive roots. The corresponding root vectors are just x1, y and x2. So the set

{xa1
1 ya2xa3

2 , 0 6 ai < N, i = 1, 2, 3}

forms a PBW basis of R. The graded algebra GrR corresponding to R is isomorphic

to the algebra generated by x1, y and x2 subject to the relations

x1y = q−1
21
yx1, x1x2 = q

12
x2x1, yx2 = q−1

21
x2y,

xN1 = yN = xN2 = 0.

We first show that the algebra Ext∗R(k,k) is generated in degree 1 and 2.

Let S be the subalgebra of R generated by x1 and y. To be more precise, it is

isomorphic to the algebra generated by x1 and y subject to the relations

yx1 = q21x1y, xN1 = yN = 0.

The subalgebra S is a normal subalgebra of R (we refer to [33, Appendix] for

the definition of normal subalgebras). Now set R = R/(RS+), where S+ is the
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augmentation ideal of S. That is, R = k[x2]/(xN2 ). We use the Hochschild-Serre

spectral sequence (cf. [33])

Epq2 = Extp
R

(k,ExtqS(k,k)) =⇒ Extp+qR (k,k) (5.3)

to calculate the Ext algebra of R. We show that E2 = E∞.

The spectral sequence is constructed as follows. Let

· · · → Q1 → Q0 → k→ 0

and

· · · → P1 → P0 → k→ 0

be free resolutions of Rk and Rk respectively. There is a natural R-module action on

HomS(Pq,k) for q > 0. We form a double complex

Epq0 = HomR(Qp,HomS(Pq,k)).

By taking the vertical homology and then the horizontal homology, we have

Epq1 = HomR(Qp,ExtqS(k,k))

and

Epq2 = Extp
R

(k,ExtqS(k,k)).

Now we construct a free resolution of k over R, which is a filtered complex. The

corresponding graded complex is the minimal projective resolution of k over GrR.

We need some preparation to obtain a projective resolution of Rk. The following

lemma is known, see for instance [8] and references therein.

Lemma 5.1.2. Both the sets

{xa3
2 ya2xa1

1 } and {xa1
1 ya2xa3

2 },

0 6 ai < N, i = 1, 2, 3 form bases of the algebra R.

Let σ, τ : N→ N be the functions defined by
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σ(a) =

1, if a is odd;

N − 1, if a is even

and

τ(a) =

a−1
2 N + 1, if a is odd;

a
2N, if a is even.

Lemma 5.1.3. The element y is a right divisor of [x
σ(a1)
1 , x

σ(a3)
2 ].

(1) If a1, a3 > 0 are odd, then

δ̃2(Φ(a1, a2, a3)) = −q−
a2
2 N

21
Φ(a1 − 1, a2 + 1, a3 − 1).

(2) If a1 > 0 is odd and a3 > 0 is even, then

δ̃2(Φ(a1, a2, a3))

= q
(N−1)

a1−1
2

N
12 q

−(N−1)
a2
2
N

21 qq−(N−2)
21

q
a1−1

2
N

21 xN−2
2 Φ(a1 − 1, a2 + 1, a3 − 1).

(3) If a1 > 0 is even and a3 > 0 is odd, then

δ̃2(Φ(a1, a2, a3)) = q−
a2
2 N

21
xN−2

1 Φ(a1 − 1, a2 + 1, a3 − 1).

(4) If a1, a3 > 0 are even, then

δ̃2(Φ(a1, a2, a3))

= −q(N−1)(
a1−2

2
N+1)

12 q
−(N−1)

a2
2
N

21 q
a1−2

2
N+1

21

(k1x
N−2
1 xN−2

2 + · · ·+ kN−2y
N−3x1x2 + kN−1y

N−2)Φ(a1, a2, a3)

= −q(N−1)(
a1−2

2
N+1)

12 q
−(N−1)

a2
2
N

21 q
a1−2

2
N+1

21

(l1x
N−2
2 xN−2

1 + · · ·+ lN−2y
N−3x2x1 + lN−1y

N−2)Φ(a1, a2, a3),

where

[xN−1
1 , xN−1

2 ]c = k1yx
N−2
1 xN−2

2 + · · ·+ kN−2y
N−2x1x2 + kN−1y

N−1

= l1yx
N−2
2 xN−2

1 + · · ·+ lN−2y
N−2x2x1 + lN−1y

N−1,

with ki, li ∈ k, 1 6 i 6 N − 1.

107



CHAPTER 5. EXT ALGEBRAS OF NICHOLS ALGEBRAS OF TYPE A2

Proof. (1) is easy to see. (2) and (3) follow from the following two equations,

[xN−1
1 , x2]c = (1 + q−1 + · · ·+ q−N+1)xN−2

1 y = −qxN−2
1 y

and

[x1, x
N−1
2 ]c = (1 + q−1 + · · ·+ q−N+1)yxN−2

2 = −qyxN−2
2 = −qq2−N

21
xN−2

2 y.

For (4), by Lemma 5.1.2 below, both {xa1
1 ya2xa3

2 } and {xa3
2 ya2xa1

1 }, 0 6 ai < N ,

i = 1, 2, 3, are bases of R. Using an easy induction, we can see that [xN−1
1 , xN−1

2 ]c

can be expressed as

[xN−1
1 , xN−1

2 ]c = xN−1
1 xN−1

2 − q(N−1)2

12
xN−1

2 xN−1
1

= k1yx
N−2
1 xN−2

2 + · · ·+ kN−2y
N−2x1x2 + kN−1y

N−1

= l1yx
N−2
2 xN−2

1 + · · ·+ lN−2y
N−2x2x1 + lN−1y

N−1,

with ki, li ∈ k, 1 6 i 6 N − 1. Observe that y commutes with xt1x
t
2 and xt2x

t
1 for

t > 0. Then the result follows.

Let

P• : · · · → Pn
∂n−→ Pn−1 · · · → P1 → P0 (5.4)

be a complex of free R-modules constructed as follows. For each triple (a1, a2, a3), let

Φ(a1, a2, a3) be a free generator for Pn, with n = a1 + a2 + a3. Set

Pn = ⊕a1+a2+a3=nRΦ(a1, a2, a3)(−τ(a1),−τ(a2),−τ(a3),−τ(a1)− 2τ(a2)− τ(a3)).

Here, (-,-,-,-) denotes the degree shift. The differentials are defined by

∂(Φ(a1, a2, a3)) =

(δ1 + δ2 + δ3)(Φ(a1, a2, a3)), if a2 is odd;

(δ1 + δ2 + δ̃2 + δ3)(Φ(a1, a2, a3)), if a2 is even.

The maps δi, 1 6 i 6 3 and δ̃2 are defined as follows.

Put

δ1(Φ(a1, a2, a3)) = x
σ(a1)
1 Φ(a1 − 1, a2, a3), if a1 > 0;

δ2(Φ(a1, a2, a3)) = (−1)a1q−σ(a2)τ(a1)
21

yσ(a2)Φ(a1, a2 − 1, a3), if a2 > 0;

δ3(Φ(a1, a2, a3)) = (−1)a1+a2qσ(a3)τ(a1)
12

q−σ(a3)τ(a2)
21

x
σ(a3)
2 Φ(a1, a2, a3 − 1), if a3 > 0;

δ̃2(Φ(a1, a2, a3)) = DΦ(a1 − 1, a2 + 1, a3 − 1), if a1, a3 > 0, a2 is even,
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where D is an element in R such that

Dy = −qτ(a1−1)
21

qσ(a3)τ(a1−1)
12

q−σ(a3)τ(a2)
21

[x
σ(a1)
1 , x

σ(a3)
2 ]c.

The existence of such element D will be explained in Lemma 5.1.3. For i = 1, 2, 3, if

ai = 0, set δi(Φ(a1, a2, a3)) = 0. If a1 = 0 or a3 = 0, set δ̃2(Φ(a1, a2, a3)) = 0.

Proposition 5.1.4. The complex (5.4) is a projective resolution of k over R, the

corresponding graded complex is the minimal projective resolution of k over GrR.

Proof. It is routine to check that (5.4) is indeed a complex. We see it in Appendix

5.3.1. The differentials preserve the filtration and the corresponding graded complex

is just the minimal projective resolution of k over GrR as constructed in [55, Sec. 4].

Since the filtration is finite, the complex P• is exact by [16, Chapter 2, Lemma 3.13].

Therefore, P• is a free resolution of k over R.

In the following, we will forget the shifting on the modules in the complex (5.4).

It is clear that it is still a projective resolution of k over R. The only difference is

that the differentials are not of degree 0. We denote this complex by P• as well.

Proposition 5.1.5. Let R = B(V ) be the Nichols algebra of V . The Ext algebra

Ext∗R(k,k) of R is generated in degree 1 and 2.

Proof Applying HomR(−,k) to the complex (10), we obtain the complex HomR(P•,k).

The Ext algebra Ext∗R(k,k) is the cohomology of the complex HomR(P•,k). Let

ξi ∈ HomR(P2,k) be the function dual to Φ(0, · · · , 2, · · · , 0) (the 2 in the i-th place)

and ηi ∈ HomR(P1,k) be the function dual to Φ(0, · · · , 1, · · · , 0) (the 1 in the i-th

place). Denote by ξi and ηi the corresponding elements in H2(R,k) and H1(R,k),

respectively. In order to show the relations among them, by abuse of notation, we

define chain maps ξi : Pn → Pn−2 and ηi : Pn → Pn−1 by

ξ1(Φ(a1, a2, a3)) = q
−Nτ(a2)
21 q

Nτ(a3)
12 Φ(a1 − 2, a2, a3);

ξ2(Φ(a1, a2, a3)) = q
−Nτ(a3)
21 Φ(a1, a2 − 2, a3);

ξ3(Φ(a1, a2, a3)) = Φ(a1, a2, a3 − 2);
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η1(Φ(a1, a2, a3)) =



(−1)a2+a3q
−τ(a2)
21 q

τ(a3)
12 x

σ(a1)−1
1 Φ(a1 − 1, a2, a3)

+Y1Φ(a1 − 1, a2 + 1, a3 − 1),

if a1, a2 is even and a3 > 0;

(−1)a2+a3q
−τ(a2)
21 q

τ(a3)
12 x

σ(a1)−1
1 Φ(a1 − 1, a2, a3),

Otherwise;

η2(Φ(a1, a2, a3)) = (−1)a3q
−(σ(a2)−1)τ(a1)
21 q

−τ(a3)
21 yσ(a2)−1Φ(a1, a2 − 1, a3);

η3(Φ(a1, a2, a3)) =



(−1)a3q
−(σ(a2)−1)τ(a1)
21 q

−τ(a3)
21 yσ(a2)−1Φ(a1, a2, a3 − 1)

+Y2Φ(a1 − 1, a2 + 1, a3 − 1),

if a2, a3 is even and a1 > 0;

(−1)a3q
−(σ(a2)−1)τ(a1)
21 q

−τ(a3)
21 yσ(a2)−1Φ(a1, a2, a3 − 1),

Otherwise,

where Y1 and Y2 are the elements in R such that

Y1y = (−1)a3+1q
σ(a2+1)τ(a1−1)
21 q

−(σ(a3)+1)τ(a2)
21 q

τ(a3−1)
12 q

σ(a3)τ(a1−1)
12 q

σ(a3)
12 [xN−2

1 , x
σ(a3)
2 ]c

and

Y2y = (−1)a1+1q
σ(a2+1)τ(a1−1)
21 q

−(σ(a3)−1)τ(a2)
21 q

(σ(a3)−1)τ(a1−1)
12 [x

σ(a1)
1 , xN−2

2 ].

Notice that the functions dual to the generators Φ(0, · · · , 0, 1, 0, · · · , 0) of Pn form a basis of

HomR(Pn,k). Thus, with these maps, we obtain that the Ext algebra is generated in degree

1 and 2.

It is well-known that the following complex is the minimal projective resolution of k over

R = k[x2]/(xN2 ).

Q• : · · · → R
xN−1

2−−−−→ R
x2−→ R

xN−1
2−−−−→ R

x2−→ R→ k.

Therefore, we have

Epq0 = HomR(Qp,HomS(Pq,k))

= HomS(⊕a1+a2+a3=qRΦ(a1, a2, a3),k)

= ⊕a1+a2+a3=qRΦ(a1, a2, a3),

since HomS(R,k) ∼= R. The double complex reads as follows
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· · · · · ·

•
x2 //

OO

•
xN−1

2 //

OO

•
x2 //

OO

•
xN−1

2 //

OO

•
x2 //

OO

· · ·

•
x2 //

OO

•
xN−1

2 //

OO

•
x2 //

OO

•
xN−1

2 //

OO

•
x2 //

OO

· · ·

•
x2 //

OO

•
xN−1

2 //

OO

•
x2 //

OO

•
xN−1

2 //

OO

•
x2 //

OO

· · ·

• //x2 //

OO

•
xN−1

2 //

OO

•
x2 //

OO

•
xN−1

2 //

OO

•
x2 //

OO

The vertical differentials are induced from the differentials of the complex (5.4).

By taking the vertical homology, we have Epq1 = HomR(Qp,ExtqS(k,k)). Following from

[55], the algebra Ext∗S(k,k) is generated by u1, uy, w1 and wy, where deg u1 = deg uy = 2

and degw1 = degwy = 1, subject to the relations

wyw1 = −q21w1wy, w2
1 = w2

y = 0,

wyu1 = qN
21
u1wy, w1u1 = u1w1, wyuy = uywy, w1uy = q−N

21
uyw1,

uyu1 = qN
2

21
u1uy.

We use the notations ui and wi in place of the notations ξi and ηi used there. Note that

w2
1 = w2

y = 0 holds since we assume that the characteristic of the field k is 0. It should also

be noticed that the Ext algebra in [55] is the opposite algebra here.

As described in the appendix of [33], there is an action of R on Ext∗S(k,k) given by

x2(uy) = x2(u1) = 0, x2(wy) = w1, and x2(w1) = 0.

This action is a derivation on Ext∗S(k,k). That is, x2(uw) = x2(u)w + ux2(w) for u,w ∈
Ext∗S(k,k).

The following lemma gives a basis of Extp
R

(k,ExtqS(k,k)).

Lemma 5.1.6. As a vector space, Extp
R

(k,ExtqS(k,k)) has a basis as follows


ui1u

j
yw1, 2(i+ j) + 1 = q, q is odd and p is even;

ui1u
j
ywy, 2(i+ j) + 1 = q, q is odd and p is odd;

ui1u
j
y(w1wy)k, k = 0, 1 and 2(i+ j) + 2k = q, q is even.

Proof. Let E = Ext∗S(k,k). The lemma follows directly from the following facts:

111



CHAPTER 5. EXT ALGEBRAS OF NICHOLS ALGEBRAS OF TYPE A2

(i) If q is odd, then {ui1ujyw1|i, j > 0, 2(i + j) + 1 = q} forms a basis of x2E
q and

{e ∈ Eq|x2e = 0}.

(ii) If q is even, then x2E
q = 0.

(iii) xN−1
2 E = 0.

Proposition 5.1.7. The spectral sequence

Ep,q2 = Extp
R

(k,ExtqS(k,k)) =⇒ Extp+qR (k,k)

satisfies E2 = E∞.

Proof. The elements ui1u
j
ywy and ui1u

j
yw1 are represented by

xN−2
2 Φ(2i+ 1, 2j, 0) + q−(j+1)

12
xN−1

2 Φ(2i, 2j + 1, 0)

and

xN−1
2 Φ(2i+ 1, 2j, 0),

while ui1u
j
y and ui1u

j
yw1wy are represented by

xN−1
2 Φ(2i, 2j, 0) and xN−1

2 Φ(2i+ 1, 2j + 1, 0)

in E0. In other words, all the elements in E0 representing the elements in E2 are mapped

to 0 under the horizontal differentials. We conclude that E2 = E∞.

We now can determine the dimension of Ext∗R(k,k). This dimension depends on the

parity of n.

Corollary 5.1.8. We have

dim ExtnR(k,k) =

 3n2+8n+5
8

, if n is odd;

3n2+10n+8
8

, if n is even.

Proof. Set En = ⊕p+q=nEpq2 = ⊕p+q=n Extp
R

(k,ExtqS(k,k)). By Lemma 5.1.6, we can
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illustrate the dimensions of Epq2 with the following table:

· · · · · ·

4 4 4 4 4 4 · · ·

7 7 7 7 7 7 · · ·

3 3 3 3 3 3 · · ·

5 5 5 5 5 5 · · ·

2 2 2 2 2 2 · · ·

3 3 3 3 3 3 · · ·

1 1 1 1 1 1 · · ·

1 1 1 1 1 1 · · · .

Therefore, when n is odd,

dimEn = (1 + 2 + · · ·+ n+1
2

+ 1 + 3 + · · ·+ n)

= 3n2+8n+5
8

.

When n is even,

dimEn = (1 + 2 + · · ·+ n
2

+ 1 + 3 + · · ·+ n+ 1)

= 3n2+10n+8
8

.

By Proposition 5.1.7, we have E2 = E∞, so dim ExtnR(k,k) = dimEn. This completes the

proof.

Now we give the first segment of the minimal projective resolution of a Nichols algebra

of type A2.

The algebra R is a local algebra. Thus projective R-modules are free. Let

Rn4 → Rn3 → Rn2 → Rn1 → Rn0 → k→ 0

be the first segment of the minimal projective resolution. Since k is a simple module, we

have
dim ExtiR(k,k) = dim HomR(Rni ,k)

= dim HomR((R/(radR))ni ,k)

= ni.
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From the computation of the dimensions of Ext∗R(k,k) in Corollary 5.1.8, we can see that

the minimal projective resolution begins as

R12 → R7 → R5 → R2 → R→ k→ 0.

We give the differentials in the following proposition.

As in the construction of δ̃2 in §5.1.2, let D be the element in R such that Dy =

[xN−1
1 , xN−1

2 ]c.

Proposition 5.1.9. Let R be a Nichols algebra of A2 type. The following sequence provides

the first segment of the minimal projective resolution of k over R,

R12 d4−→ R7 d3−→ R5 d2−→ R2 d1−→ R→ k→ 0, (5.5)

where the differentials are given by the following matrices:

d1 =

(
x1

x2

)
,

d2 =


xN−1

1 0

−(q12 + qq12)x1x2 + qq2
12
x2x1 x2

1

−q12y
N−1x2 yN−1x1

x2
2 qq2

21
x1x2 − (q21 + qq21)x2x1

0 xN−1
2

,

d3 =



x1 0 0 0 0

qN
12
x2 xN−2

1 0 0 0

0 0 x2 q12q
N−1
21

yN−1 0

0 x2 0 x1 0

0 −q1−N
21

yN−1 x1 0 0

0 0 0 qN
12
xN−2

2 x1

0 0 0 0 x2


,

d4 =

(
A1 A2

A3 A4

)
,
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where

A1 =


x
N−1
1 0 0 0

−(q1+N
12

+ qq1+N
12

)x1x2 + qq2+N
12

x2x1 x2
1 0 0

−q1+N
12

yN−1x2 yN−1x1 0 0

qN
12
x2
2 qq2

21
x1x2 − (q

21
+ qq

21
)x2x1 0 qN

21
x
N−1
1

0 x
N−1
2 0 −q−N

2+2N
12

D

 ,

A2 =


0 0 0

0 0 0

q−N
2+N

12
x
N−1
1 0 0

0 0 0

0 q−N
2+N

12
x
N−1
1 0

,

A3 =


0 0 x2

1 −q−1qN
12
yN−1x1

0 0 yN−1x1 0

0 0 qq2
21
x1x2 − (q

21
+ qq

21
)x2x1 qN−1

21
yN−1x2

0 0 0 q2N
12

x
N−1
2

0 0 qN
2

12
x
N−1
2 0

0 0 0 0

0 0 0 0

,

A4 =


−(q12 + qq12 )x1x2 + qq2

12
x2x1 0 0

−q
12
yN−1x2 0 0

x2
2 0 0

0 −(q
12

+ qq
12

)x1x2 + qq2
12
x2x1 x2

1

0 −q
12
yN−1x2 yN−1x1

0 x2
2 qq2

21
x1x2 − (q

21
+ qq

21
)x2x1

0 0 x
N−1
2

.

Proof. It is routine to check that (5.5) is indeed a complex. But we need to mention that

the following two equations hold

Dx1 − xN−1
1 xN−2

2 = 0,

xN−1
2 xN−2

1 − q−N
2+2N

12
Dx2 = 0.

These equations follow from Lemma 5.1.2 and the equations

[xN−1
1 , xN−1

2 ]cx1 = yxN−1
1 xN−2

2 ,

[xN−1
1 , xN−1

2 ]cx2 = qN
2−2N

12
yxN−1

2 xN−2
1 .

The complex (5.5) is homotopically equivalent to the first segment of the resolution P•

(without shifting) constructed in Section 2. Therefore, it is exact.

Remark 5.1.10. In [56, Theorem 6.1.3], the authors give a set of linearly independent

2-cocycles on R, indexed by the positive roots. In the resolution (5.5), the functions dual
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to (1, 0, 0, 0, 0), (0, 0, 1, 0, 0) and (0, 0, 0, 0, 1) are just those 2-cocycles, corresponding to the

positive roots α1, α1 + α2 and α2 respectively.

Now we give our main theorems about the structure of the Ext algebra of a Nichols

algebra of type A2.

Theorem 5.1.11. Let R be a Nichols algebra of type A2 with N = 3, then Ext∗R(k,k) is

generated by ai, bi, ci, i = 1, 2 and by with

deg ai = 1, deg bi = deg by = deg ci = 2,

subject to the relations

a2
1 = a2

2 = 0, a1a2 = a2a1 = 0,

a1b1 = b1a1, a1by = q3
12
bya1, a1b2 = q3

12
b2a1,

a1c1 = q2q12c1a1, a1c2 = qq2
12
c2a1,

q3
12
a2b1 = b1a2, q3

12
a2by = bya2, a2b2 = b2a2,

a2c1 = qq2
21
c1a2, q2q12a2c2 = c2a2,

q2q12a2b1 = a1c1, a1b2 = q2q12a2c2, c1a2 = c2a1,

b1c2 = q6
12
c21, q6

12
b2c1 = c22, b1b2 = q3

12
c1c2, c1c2 = q3

12
c2c1,

b1by = q9
12
byb1, b1b2 = q9

12
b2b1, byb2 = q9

12
b2by,

q3
12
c1b1 = b1c1, c1by = q3

12
byc1, c1b2 = q6

12
b2c1,

q6
12
c2b1 = b1c2, q3

12
c2by = byc2, c2b2 = q3

12
b2c2.

Theorem 5.1.12. Let R be a Nichols algebra of type A2 with N > 3, then Ext∗R(k,k) is

generated by ai, bi and ci, i = 1, 2 and by with

deg ai = 1, deg bi = deg by = deg ci = 2,

subject to the relations

a2
1 = a2

2 = 0, a1a2 = a2a1 = 0,

a1b1 = b1a1, a1by = qN
12
bya1, a1b2 = qN

12
b2a1,

qN
12
a2b1 = b1a2, qN

12
a2by = bya2, a2b2 = b2a2,

a1c2 = qq2
12
c2a1, a2c1 = qq2

21
c1a2,

a1c1 = c1a1 = c2a2 = a2c2 = 0, c1a2 = c2a1,

c21 = c22 = c1c2 = c2c1 = 0,

b1by = qN
2

12
byb1, b1b2 = qN

2

12
b2b1, byb2 = qN

2

12
b2by,
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qN
12
c1b1 = b1c1, c1by = qN

12
byc1, c1b2 = q2N

12
b2c1,

q2N
12

c2b1 = b1c2, qN
12
c2by = byc2, c2b2 = qN

12
b2c2.

Proof of Theorems 5.1.11 and 5.1.12 We prove Theorem 5.1.11. Theorem 5.1.12 can

be proved similarly. Consider the minimal resolution (5.5) showed in Proposition 5.1.9, we

have Ext1
R(k,k) = HomR(R2,k) and Ext2

R(k,k) = HomR(R5,k), since k is a simple mod-

ule. Let a1, a2 ∈ Ext1
R(k,k) be the functions dual to (1, 0) and (0, 1) respectively. Let

b1, c1, by, c2, b2 ∈ Ext2
R(k,k) be the functions dual to (1, 0, 0, 0, 0),· · · , (0, 0, 0, 0, 1) respec-

tively. The relations listed in the theorem can be verified by constructing suitable commu-

tative diagrams, we do this in Appendix 5.3.2. Let U be an algebra generated by b1, by,

b2 and ai, ci, i = 1, 2, subject to the relations listed in the theorem. Then any element in

U can be written as a linear combination of elements of the form bb11 bb2y bb32 aaii , bb11 b
by
y bb22 ccii

and bb11 b
by
y bb22 c1a2, with b1, b2, b3 > 0, ai, ci ∈ {0, 1}, i = 1, 2.

By Proposition 5.1.5, the algebra Ext∗R(k,k) is a quotient of U . When n is odd,

dimUn = (n−1
2

+ 2)(n−1
2

+ 1) + 1
2
(n−1

2
)(n−1

2
+ 1)

= 3n2+8n+5
8

.

When n is even,

dimUn = (n
2

)(n
2

+ 1) + 1
2
(n

2
+ 1)(n

2
+ 2)

= 3n2+10n+8
8

.

It follows from Corollary 5.1.8 that dimUn = dim ExtnR(k,k), for all n > 0, so U =

Ext∗R(k,k), which completes the proof of the theorem.

Remark 5.1.13. In [55, Thm 5.4], the authors showed that the Ext algebra of a Nichols

algebra of finite Cartan type is braided commutative. This coincides with the results we

obtain in Theorems 5.1.11 and 5.1.12.

In [2], the author raised a question of when the Ext algebra of a Nichols algebra is still

a Nichols algebra. In general, the answer is negative.

Proposition 5.1.14. The Ext algebra of a Nichols algebra of type A2, with natural grading,

is not a Nichols algebra.

Proof. We consider the case N = 2 first. Denote the Ext algebra by E. From Proposition

5.1.1, E is generated by a1, a2 and b subject to the relations

a2a1 = a1a2 = 0, a1b = ba1, a2b = ba2.

If E is a Nichols algebra with respect to some braided vector space V , then a1, a2 and b

should form a basis of V . This is because as an algebra, a Nichols algebra B(V ) is generated
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by elements in V . With relation a2a1 = a1a2, a1b = ba1 and a2b = ba2, the vector space V

is of diagonal type. This contradicts the relations a2a1 = a1a2 = 0. Therefore, E is not a

Nichols algebra. By a similar argument, we can conclude that when N > 3, the Ext algebra

is not a Nichols algebra either.

However, we have the following positive result.

Proposition 5.1.15. Let R be a Nichols algebra of type A2 with N > 3. Then Ext∗R(k,k)/N
is a Nichols algebra of diagonal type, where N is the ideal generated by nilpotent elements.

Proof. From the proof of Theorem 5.1.12, the elements bb11 bb2y bb32 aaii , bb11 b
by
y bb22 ccii and bb11 b

by
y bb22 c1a2,

with b1, b2, b3 > 0, ai, ci ∈ {0, 1}, i = 1, 2 form a basis of Ext∗R(k,k). With the relations

listed in that theorem, the elements bb11 bb2y bb32 ai, bb11 b
by
y bb22 ci and bb11 b

by
y bb22 c1a2 are nilpo-

tent. However, linear combination of elements bb11 bb2y bb32 are not nilpotent. Then the algebra

Ext∗R(k,k)/N is generated by b1, by and b2 subject to the relations

b1by = qN
2

12
byb1, b1b2 = qN

2

12
b2b1, byb2 = qN

2

12
b2by.

It is obvious that it is a Nichols algebra of diagonal type with Cartan matrix of type A1 ×
A1 ×A1.
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5.2 Applications

Before we give some applications of Theorem 5.1.11 and Theorem 5.1.12 in Section 5.1,

we recall the definitions of complexities and varieties. We follow the definitions and the

notations in [29]. Let A be a finite dimensional Hopf algebra and

H∗(A,k) := Ext∗A(k,k).

The vector space H∗(A,k) is an associative graded algebra under the Yoneda product. The

subalgebra Hev(A,k) of H∗(A,k) is defined as

Hev(A,k) = ⊕∞n=0 H2n(A,k).

The algebra Hev(A,k) is commutative, since H∗(A,k) is graded commutative. In the follow-

ing, we say that a Hopf algebra A satisfies the assumption (fg) if the following conditions

hold:

(fg1) The algebra Hev(A,k) is finitely generated;

(fg2) The Hev(A,k)-module Ext∗A(M,N) is finitely generated for any two finite dimensional

A-modules M and N .

Under the assumption (fg), the variety VA(M,N) for A-modules M and N is defined as

VA(M,N) := MaxSpec(Hev(A,k)/I(M,N)),

where I(M,N) is the annihilator of the action of Hev(A,k) on Ext∗A(M,N). It is an homo-

geneous ideal of Hev(A,k). The support variety of M is defined as

VA(M) = VA(M,M).

For a graded vector space V • = ⊕n∈Z,n>0V
n, the growth rate γ(V •) is defined as

γ(V •) = min{c ∈ Z, c > 0 | ∃b ∈ R, such that dimV n 6 bnc−1, for all n > 0}.

Let M be an A-module and

P• : · · · → P1 → P0 →M → 0

the minimal projective resolution of M . Then the growth rate γ(P•) is said to be the

complexity cxA(M) of M .

By [55, Thm. 6.3] a finite dimensional pointed Hopf algebra u(D, λ, µ) satisfies the

assumption (fg). The following corollary is a direct consequence of Theorems 5.1.11 and
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5.1.12.

Corollary 5.2.1. Let A = u(D, 0, µ) be a pointed Hopf algebra of type A2 with N > 3 and

R = B(V ) the corresponding Nichols algebra. Then

cxR(k) = cxA(k) = 3.

In addition, VA(k) ∼= V(GrR)#G(k).

Proof. For the Nichols algebra R, the complexity

cxR(k) = γ(Ext∗R(k,k)) = 3

follows directly from Proposition 5.1.8 or Theorems 5.1.11 and 5.1.12. By [55, Lemma 6.1],

H∗(u(D, 0, µ),k) ∼= H∗(u(D, 0, 0),k). In addition, we have Ext∗u(D,0,0)(k,k) ∼= Ext∗R(k,k)G.

Observe that for each positive root α, some power of bα is invariant under the group action.

Indeed, from the discussion in Section 6 in [56], each bα (denoted by fα there) can be

expressed as a function R+×R+ → k. Then we see that bMαα is Γ-invariant, where Mα is the

integer such that χMαα = ε. Hence, γ(H∗(u(D, 0, 0),k) = 3, which implies that cxA(k) = 3.

With the relations in Theorems 5.1.11 and 5.1.12, we see that

VA(k) ∼= MaxSpec(k[bm1
1 , b

my
y , bm2

2 ]),

where m1, my and m2 are the least integers such that bm1
1 , b

my
y , bm2

2 ∈ H∗(u(D, 0, 0),k).

That is, VA(k) is isomorphic to the maximal spectrum of the polynomial algebra k[y1, y2, y3].

By [55, Thm. 4.1] VGrR#G(k) is also isomorphic to the maximal spectrum of k[y1, y2, y3].

So VA(k) ∼= VGrR#G(k).

Now we give an easy application of Theorems 5.1.11 and 5.1.12 . We show that a large

class of finite dimensional pointed Hopf algebras of finite Cartan type are wild.

Proposition 5.2.2. Let A = u(D, λ, µ) be a pointed Hopf algebra with Dynkin diagrams of

type A, D, or E, except for A1 and A1×A1 with the order NJ > 2 for at least one component

J . Then A is wild.

Proof. In view of [29, Thm. 3.1], we only need to prove that cxA(k) > 3. Using [55, Lemma

6.1] again, we have cxA(k) = cxu(D,λ,0)(k). However, u(D, λ, 0) contains a Hopf subalgebra

B which is of type A2 with the order N > 3. Thus cxu(D,λ,0)(k) > cxB(k) > 3 by [29, Prop

2.1].

A finite dimensional CY algebra is semisimple. Indeed, if R is a finite dimensional CY

algebra of dimension d, then by [13, Prop. 2.3], ExtdR(R,R)∗ ∼= HomR(R,R). Thus we

have d = 0. So the global dimension of R is 0 ([13, Rem. 2.8]). Therefore, the finite
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dimensional algebras u(D, λ, µ) are not CY algebras. However, a finite dimensional Hopf

algebra A is a Frobenius algebra. Let modA be the full subcategory of ModA consisting of

finitely generated A-modules. Then modA is a Frobenius category and its stable category

modA is a triangulated category with the shift functor Ω−1, where Ω is the syzygy functor.

The objects of the category modA are modules in modA. For X, Y ∈ modA, the set of

morphisms from X to Y is HomA(X,Y )/I(X,Y ), where

I(X,Y ) = {f ∈ HomA(X,Y ) | f factor through an injective module}.

We refer to [34] for a detailed discussion about stable categories and Frobenius categories.

Now we wonder whether the stable category of a pointed Hopf algebra u(D, λ, µ) is a CY

category. Let A be a Frobenius algebra. By Auslander-Reiten formula (cf. [10, Thm. 2.13]

or [11, Cor. IV.4.4]), there are natural isomorphisms

HomA(X,Y ) ∼= Ext1
A(Y, τX)∗,

for any X,Y ∈ modA, where τ is the Auslander-Reiten translate. Therefore, the category

modA has a Serre functor τΩ−1. By [11, Prop. IV.3.7], this functor is isomorphic to

the functor νΩ, where ν is the Nakayama functor of the category modA. That is, ν =

A∗ ⊗A − ∼= HomA(−, A)∗. Let η be a Nakayama automorphism of A. That is, η is an

algebra automorphism such that A∗ ∼= Aη as A-A-bimodules. Thus ν ∼= Aη ⊗A −. If modA

is a CY category of dimension d, then there is a natural isomorphism ν ∼= Ω−d−1. The order

of a Nakayama automorphism of a finite dimensional Hopf algebra is finite [30, Lemma 1.5].

Therefore, there is some integer n such that Ωn ∼= id. Now we obtain that if modA is a CY

category, then cxA(k) = 1.

Let A = u(D, λ, µ) be a finite dimensional pointed Hopf algebra of finite Cartan type. If

the datum (D, λ, µ) satisfies one of the following conditions:

• the Cartan matrix is neither of type A1 nor of type A1 ×A1;

• the Cartan matrix is of type A1 ×A1 and λ = 0,

then u(D, λ, 0) contains a subalgebra B, such that B = u(D′, 0, 0), where the Cartan matrix

in D′ is of type A1 × A1. By [55, Thm. 4.1], after applying a similar argument as in the

proof of Corollary 5.2.1, we obtain that cxB(k) = 2. So

cxA(k) = cxu(D,λ,0) > cxB(k) = 2.

Therefore, modA is not a CY category.

If the Cartan matrix is of type A1, then the non-simple blocks of A are isomorphic to
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the algebras of the form kQ/I, where Q is the following quiver,

1

���������
moo

2

��

m − 1

ddHHHHHHHHH

OO

k // k + 1

and I is the ideal generated by all paths of length N such that N divides m [49]. The stable

category of kQ/I is not a CY category by [22, Thm. 6.1] (cf. [15] and [26]). So modA is

not a CY category.

If the Cartan matrix is of type A1 ×A1 and the linking parameters are non-zero, we do

not know how to calculate the complexity of k. But we can obtain the complexity in one

special case. Assume that A is the small quantum group uq(sl2), that is, A is generated by

E, F and K subject to the relations

Kp = 1, Ep = F p = 0,

KE = q2EK, KF = q−2FK, EF − FE =
K −K−1

q − q−1
,

where p is an odd integer and q is a p-th primitive root of 1. Then by [73, Thm. 3.3.2], the

non-simple blocks of A are isomorphic to kQ/I, where Q is the following quiver,

1

y ))
x //

2

y
ii xoo

and I is the ideal generated by x2 − y2 = 0 and xy = yx = 0. From a direct computation,

we have that cxA(k) = 2. So modA is not a CY category.

In summary, except the algebra u(D, λ, µ) of type A1×A1 with nonzero linking parame-

ters, we have proved that the stable category of u(D, λ, µ) in other cases is not a CY category.

This leads us to conjecture that the stable category of u(D, λ, µ) is not a CY category for

any D, λ and µ.
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5.3 Appendix

5.3.1

In this subsection, we verify that the complex (5.4) in §5.1.2 is indeed a complex.

The following equations follow directly from Lemma 5.1.3.

Dy =


yD, if a1, a3 are both even or both odd;

q−N+2
21

yD, if a1 even and a3 is odd;

qN−2
21

yD, if a1 odd and a3 is even.

(5.6)

It is clear that δ2
i = 0 for i = 1, 2, 3. So if a2 is odd,

∂2(Φ(a1, a2, a3)) = ((δ3δ1 + δ1δ3 + δ̃2δ2) + (δ2δ3 + δ3δ2) + (δ1δ2 + δ2δ1))Φ(a1, a2, a3).

Put
A = (δ3δ1 + δ1δ3 + δ̃2δ2)Φ(a1, a2, a3),

B = (δ2δ3 + δ3δ2)Φ(a1, a2, a3),

C = (δ1δ2 + δ2δ1)Φ(a1, a2, a3).

We show that A = B = C = 0.

A = (δ3δ1 + δ1δ3 + δ̃2δ2)Φ(a1, a2, a3)

= ((−1)a1−1+a2qσ(a3)τ(a1−1)
12

q−σ(a3)τ(a2)
21

[x
σ(a1)
1 , x

σ(a3)
2 ]c

+(−1)a1q−τ(a1)
21

yD)Φ(a1 − 1, a2, a3 − 1),

where D satisfies Dy = −qτ(a1−1)
21

qσ(a3)τ(a1−1)
12

q−σ(a3)τ(a2−1)
21

[x
σ(a1)
1 , x

σ(a3)
2 ]c. That is,

qσ(a3)τ(a1−1)
12

q−σ(a3)τ(a2−1)
21

[x
σ(a1)
1 , x

σ(a3)
2 ]c + q−τ(a1−1)

21
Dy = 0.

Hence,

qσ(a3)τ(a1−1)
12

q−σ(a3)τ(a2)
21

[x
σ(a1)
1 , x

σ(a3)
2 ]c + q−σ(a3)

21
q−τ(a1−1)

21
Dy = 0.

By equation (5.6), we have q−σ(a3)
21

q−τ(a1−1)
21

Dy = q−τ(a1)
21

yD. So

A = ((−1)a1−1+a2qσ(a3)τ(a1−1)
12

q−σ(a3)τ(a2)
21

[x
σ(a1)
1 , x

σ(a3)
2 ]c

+(−1)a1q−τ(a1)
21

yD)Φ(a1 − 1, a2, a3 − 1)

= 0.
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The equations B = 0 and C = 0 can be verified directly. For example,

B = (δ2δ3 + δ3δ2)(Φ(a1, a2, a3))

= ((−1)a1q−σ(a2)τ(a1)
21

yσ(a2)(−1)a1+a2−1qσ(a3)τ(a1)
12

q−σ(a3)τ(a2−1)
21

x
σ(a3)
2

+(−1)a1+a2qσ(a3)τ(a1)
12

q−σ(a3)τ(a2)
21

x
σ(a3)
2 (−1)a1q−σ(a2)τ(a1)

21
yσ(a2))

Φ(a1, a2 − 1, a3 − 1)

= 0,

since τ(a2 − 1) + σ(a2) = τ(a2).

If a2 is even, then

∂2(Φ(a1, a2, a3)) = ((δ1δ3 + δ3δ1 + δ2δ̃2) + (δ1δ2 + δ2δ1) + (δ3δ2 + δ2δ3)

+(δ̃2δ1 + δ1δ̃2) + (δ̃2δ3 + δ3δ̃2))Φ(a1, a2, a3).

The equation (δ1δ3 + δ3δ1 + δ2δ̃2)Φ(a1, a2, a3) = 0 follows directly from the definition of δ̃2.

As in the case in which a2 is odd,

(δ2δ3 + δ3δ2)Φ(a1, a2, a3) = 0 and (δ1δ2 + δ2δ1)Φ(a1, a2, a3) = 0

can be also verified via a straightforward computation. Now, we show that (δ̃2δ1+δ1δ̃2)Φ(a1, a2, a3) =

0 case by case, using Lemma 5.1.3.

Case (i) a1 and a3 are both odd,

(δ̃2δ1 + δ1δ̃2)Φ(a1, a2, a3)

= (x1(q
− a2

2
21 xN−2

1 )− q−
a2
2

21 xN−1
1 )Φ(a1 − 2, a2 + 1, a3)

= 0.

Case (ii) a1 is odd and a3 is even,

(δ̃2δ1 + δ1δ̃2)Φ(a1, a2, a3)

= (x1(−q(N−1)(
a1−3

2
N+1)

12 q
−(N−1)

a2
2
N

21 q
a1−3

2
N+1

21 )(k1x
N−2
1 xN−2

2 + · · ·
+kN−2y

N−3x1x2 + kN−1y
N−2)

+q
(N−1)

a1−1
2

N
12 q

−(N−1)
a2
2
N

21 qq−(N−2)
21

q
a1−1

2
N

21 xN−2
2 xN−1

1 )Φ(a1 − 2, a2 + 1, a3)

= q
(N−1)

a1−1
2

N
12 q

−(N−1)
a2
2
N

21 qq−(N−2)
21

q
a1−1

2
N

21

(−q−N
2+2N

12
x1(k1x

N−2
1 xN−2

2 + · · ·+ kN−2y
N−3x1x2 + kN−1y

N−2)

+xN−2
2 xN−1

1 )Φ(a1 − 2, a2 + 1, a3)

= 0,

since q−N
2+2N

12
x1[xN−1

1 , xN−1
2 ]c = xN−2

2 xN−1
1 y.
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Case (iii) a1 is even and a3 is odd,

(δ̃2δ1 + δ1δ̃2)Φ(a1, a2, a3)

= −q−
a2
2
N

21 xN−1
1 + q

− a2
2
N

21 xN−1
1 Φ(a1 − 2, a2 + 1, a3)

= 0.

Case (iv) a1 and a3 are both even,

(δ̃2d1 + d1d̃2)Φ(a1, a2, a3)

= xN−1
1 (q

(N−1)
a1−2

2
N

12 q
−(N−1)

a2
2
N

21 qq−(N−2)
21

q
a1−2

2
N

21 xN−2
2 )

+(−q(N−1)(
a1−2

2
N+1)

12 q
−(N−1)

a2
2
N

21 q
a1−2

2
N+1

21 )(k1x
N−2
1 xN−2

2 + · · ·
+kN−2y

N−3x1x2 + kN−1y
N−2)x1Φ(a1 − 2, a2 + 1, a3)

= (q
(N−1)(

a1−2
2

N+1)
12 q

−(N−1)
a2
2
N

21 q
a1−2

2
N+1

21 )(xN−1
1 xN−2

2

−(k1x
N−2
1 xN−2

2 + · · ·+ kN−2y
N−3x1x2 + kN−1y

N−2)x1)Φ(a1 − 2, a2 + 1, a3)

= 0,

since [xN−1
1 , xN−1

2 ]cx1 = yxN−1
1 xN−2

2 .

Similarly, we can prove that (δ̃2δ3 + δ3δ̃2)Φ(a1, a2, a3) = 0.

In conclusion, we have ∂2 = 0.

5.3.2

In this subsection, we give the necessary commutative diagrams to check the relations in

Theorems 5.1.11 and 5.1.12.

Set

X1 = q−(N−1)(N−3)
12

xN−3
1 xN−3

2 + k1yx
N−4
1 xN−4

2 + · · ·+ kN−3y
N−3,

where ki ∈ k, 1 6 i 6 N − 3, such that xN−1
2 xN−3

1 = X1x
2
2, and

X2 = q(N−3)(N−1)
12

xN−3
2 xN−3

1 + l1yx
N−4
2 xN−4

1 + l2y
2xN−5

2 xN−5
1 + · · ·+ lN−3y

N−3,

where li ∈ k, 1 6 i 6 N − 3, such that xN−1
1 xN−3

2 = X2x
2
1.

Let f i1, f i2 , f i3 and gj1, gj2 , gj3, 1 6 i 6 5 and j = 1, 2 be the morphisms described by the

following matrices:

f i1 is the 5× 1 matrix with 1 in the i-th position and 0 elsewhere,
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f1
2 =


1 0

0 qN
12

0 0

0 0

0 0

0 0

0 0

, f2
2 =


0 0

x
N−3
1 0

0 0

0 1

q
12
q1−N
21

yN−2x2 −q1−N
21

yN−2x1

0 0

0 0

,

f3
2 =


0 0

0 0

0 1

0 0

1 0

0 0

0 0

, f4
2 =


0 0

0 0

−q2
12
qN−1
21

yN−2x2 q
12
qN−1
21

yN−2x1

1 0

0 0

0 qN
12
x
N−3
2

0 0

, f5
2 =


0 0

0 0

0 0

0 0

0 0

1 0

0 1

,

f1
3 =



1 0 0 0 0

0 qN
12

0 0 0

0 0 qN
12

0 0

0 0 0 qN
12

0

0 0 0 0 qN
12

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


, f3

3 =



0 0 0 0 0

0 0 0 0 0

q−N
2+N

12
0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 qN
2

12
0 0 0 0 0

0 0 0 0 0


,

f2
3 =



0 0 0 0 0

1 0 0 0 0

q−1
21

yN−2x2 0 0 0 0

0 q−N
12

x
N−3
1 0 0 0

0 0 0 X1 0

0 q1−N
21

q2
12
yN−2x2 qN

12
0 0

0 0 0 0 0

0 0 0 q
12
qN−3
21

yN−2x2 0

0 0 0 0 q2N
12

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


,

f4
3 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

q−N
12

0 0 0 0

0 q−N
2+2N

12
X2 0 0 0

0 q
12
q−N+3
21

yN−2x1 0 0 0

0 0 0 0 0

0 0 qN
21

qN−1
21

yN−2x1 0

0 0 0 q2N
12

x
N−3
2 0

0 0 0 0 q−N+1
21

q2
12
yN−2x1

0 0 0 0 qN
12

0 0 0 0 0


,
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f5
3 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

q−N
2+N

12
0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


,

g1
1 =

(
1

0

)
, g2

1 =
(

0

1

)
,

g1
2 =


x
N−2
1 0

qq2
12
x2 (−q

12
− qq

12
)x1

0 −q
12
yN−1

0 x2
0 0

, g1
3 =


1 0 0 0 0

0 (−q
12
− qq

12
)x
N−3
1 0 0 0

0 0 0 0 0

0 0 0 qq2
12

0

0 0 qN
12

0 0

0 0 0 0 qN
12

0 0 0 0 0

,

g2
2 =


0 0

x1 0

yN−1 0

(−q21 − qq21 )x2 qq2
21
x1

0 x
N−2
2

, g2
3 =


0 0 0 0 0

1 0 0 0 0

0 0 qN
21

0 0

0 qq2
21

0 0 0

0 0 0 0 0

0 0 0 qN
12

(−q21 − qq21 )x
N−3
2 0

0 0 0 0 1

.

Then we have the following commutative diagrams

R12 //

fi3

��

R7 //

fi2

��

R5

fi1

��

//

  BBBBBBBB R2 // R

R5 // R2 // R // k

, (5.7)

R7 //

gi3

��

R5

gi2

��

// R2

gi1

��

//

  @@@@@@@@ R // k

R5 // R2 // R // k

. (5.8)

It is also routine to check the commutativity of the diagrams (5.7) and (5.8). But we

need to mention that the following equations hold

X1(qq2
21
x1x2 − (q21 + qq21)x2x1) = −q−N

2+2N
12

D,
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X2(qq2
12
x2x1 − (q12 + qq12)x1x2) = −D,

which follow from Lemma 5.1.2 and the following two equations

q−N
2+2N

12
Dx2 = xN−1

2 xN−2
1

= X1x
2
2x1

= X1(−qq2
21
x1x2 + (q21 + qq21)x2x1)x2,

Dx1 = xN−1
1 xN−2

2

= X2x
2
1x2

= X2(−qq2
12
x2x1 + (q12 + qq12)x1x2)x1.
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[4] N. Andruskiewitsch and S. Dăscălescu, On Finite Quantum Groups at -1, Algebr. Rep-

resent. Theory 8 (2005), no. 1, 11-34.

[5] N. Andruskiewitsch and H.-J. Schneider, Pointed Hopf algebras, New Directions in Hopf

Algebras, MSRI Publications 43, 1-68, Cambridge Univ. Press, 2002.

[6] N. Andruskiewitsch and H.-J. Schneider, Finite quantum groups over abelian groups of

prime exponent, Ann. Sci. Ec. Norm. Super. 35 (2002), 1-26.

[7] N. Andruskiewitsch and H.-J. Schneider, A characterization of quantum groups, J. Reine

Angew. Math. 577 (2004), 81-104.

[8] N. Andruskiewitsch and H.-J. Schneider, On the classification of finite-dimensional

pointed Hopf algebras, Ann. Math. 171 (2010), 375-417.

[9] M. Artin and W. Schelter, Graded Algebras of Global Dimension 3, Adv. Math. 66

(1987), 171-216.
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