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Samenvatting 

In 1933 ontwikkelde I. Schur een methode om een eindige groep C te onderzoeken 

die werkt op een verzameling O zodanig dat C een deelgroep H bevat die strikt tran

sitief werkt op n. Zijn originele idee bestond erin om als "punten" geen willekeurige 

objecten of getallen van 1 tot n te nemen, maar groepelementen. H. Wielandt heeft 

deze methode van Schur voorgesteld op de meest eenvoudige manier door het be

grip groepalgebra over (Jj te gebruiken. Het idee is om aan bovenstaande situatie 

een actie van G op H te associeren, zodanig dat H op zichzelf werkt door linkse 

vermenigvuldiging. Beschouw clan de stabilisator L in C van het neutraal element 

en laat L werken op H. De sommen van de banen, beschouwd in de groepring<J:H, 

brengen een deelmodule van (Jj H voort, welke in dit geval wel degelijk een ring is; 

deze algebra wordt een Schuralgebra genoemd (deze wordt uitvoeriger besproken in 

1.2.9). 

Gebruikmakend van bovenstaande methode heeft men het volgende resultaat • G 

is dubbel transitief als en slechts als de geassocieerde Schuralgebra "triviaaJ" is, zie 

[Wie2, Theorem 24.11] 

Meer algemeen heeft H. Wielandt een Schuralgebra gedefinieerd als een deelalgebra 

van de groepring (EC ( C eindige groep) die geassocieerd is aan een bepaalde partitie 

van G, zie [Wie2 , Definition 23.1]. Een Schuralgebra over(]) is steeds halfeenvoudig, 

zie [Wie1 , p386, footnote] . Dit laa.tste probleem werd onderzocht door F. RoesJex 

voor Schuralgebra's over een willekeurig veld, zie [R, Satz l]. De studie van karakters 

van Schuralgebra.'s werd aangevat door 0. Tamaschke en F. Roesler, zie [T1] en [R]. 

In [T2] beschouwt de auteur Schuralgebra's over(!/ in de context van categorieen. 

Het hoofddoel van deze thesis is de studie van onontbindbare modulen en karak

ters voor Schuralgebra's over een commutatieve ring R. Een Schuralgebra kan, 

ruwweg gesproken, gedefinieerd worden als een deelalgebra van een groepring RC 

geassocieerd aan een zekere partit ie van G ( G eindige groep) , zie l. 2. In het eerste 

hoofdstuk beschrijven we twee belangrijke klassen van Schuralgebra's : dubbeJe 



nevenklassen algebra's (en hun veralgemeningen) en fixringen van zekere automor

fismengroepen. 

In het tweede hoofdstuk ontwikkelen we een karaktertheorie voor Schuralgebra's. 

We tonen aan dat Schuralgebra's Frobeniusalgebra's zijn (onder een zekere voor

waarde) . Daarom behandelen we het probleem in de meer algemene context van 

Frobeniusalgebra's over commutatieve ringen. In 2.1 verzamelen we algemeenheden 

over Frobeniusalgebra's en we geven een criterium voor de separabiliteit van een 

Frobeniusa.lgebra. Dan bestuderen we symmetrische functies op Frobeniusalgebra's 

en we tonen aan <lat, onder zekere voorwaarden, deze functies warden voortgebracht 

door karakters. We drukken primitieve centrale idempotenten van een Frobeniusal

gebra A uit in termen van karakters en we ontwikkelen orthogonaliteitsrelaties voor 

karakters op A. In het geval van Schuralgebra's introduceren we klassefuncties en 

we onderzoeken wanneer de verzameling van klassefuncties samenvalt met de verza

meling van symmetrische functies. Deze laatste studie geeft feitel ijk een analyse van 

het centrum van een Schuralgebra. Tenslotte berekenen we ook het karakter van 

een geinduceerd moduul tussen twee Schuralgebra's. 

In bet derde hoofdstuk bestuderen we dubbele nevenklassen algebra's en hun ver

algemeningen. We beschouwen de algemene situatie van Heckealgebra's : stel A 

een R-algebra en E: een idempotent ( =/= 0) in A , dan wordt E:AE: een Heckealgebra in 

A genoemd. In 3.1 bepalen we de primitieve centrale idempotenten van sAc: en we 

onderzoeken het verband tussen onontbindbare modulen over sAs en onontbindbare 

modulen over A. In 3.2 wordt de corresponderende karaktertheorie beschreven. We 

tonen ook aan <lat een connected ring R een splitsingsring is voor E:AE: indien hij een 

splitsingsring is voor A. 

In hoofdst uk 4 belichten we Schuralgebra's die fixringen zijn van bepaalde auto

morfismengroepen. We bestuderen hier het verband tussen onontbindbare modulen 

over een R-algebra A en over de fixring Ali , waarbij H --> Autn(A) een groepho

momorfisme is. In het geval van Schuralgebra's kunnen we de corresponderende 

karaktertheorie ontwikkelen. 

Als speciaal geval wordt beschouwd: u: H ---+ Aut(G) met u,.(g) = hgh- 1 waarbij H 

een deelgroep is van een eindige groep G. De fixring van RG geassocieerd aan deze 
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actie is ook de centralisator van RH in RG; hierdoor kunnen we deze Sdmralgebra 

S ook bestuderen in het kader van centralisators waardoor meer relaties gevonden 

worden tussen de onontbindbare modulen over RH, RG en S, zie 5. Dit probleem 

wordt algemener opgevat. We beschouwen de centralisator S van B in A, ,.11aarbij 

B een deelalgebra is van een algebra A (in een separabele context) en we geven re

laties tussen onQiltbindbare modulen over A, B en S , zie 5.2. In 5.4 passen we deze 

algemene resultaten toe op de centralisator S van R *<> H in de getwiste groepring 

R *<> G (H < G) en we ontwikkelen de corresponderende karaktertheorie. (Hiervoor 

wordt een expliciete R-basis van S geconstrueerd, zie 5.3). 

Tenslotte herzien we de theorie van Clifford voor normale deelgroepen en Wt) be

lichten <lat de karaktertheorie in 5.4 kan beschouwd warden als een veralgemening 

van de tbeorie van Clifford voor niet-normale deelgroepen. 

Sommige resultaten worden ge"illustreerd door middel van twee eenvoudige voor

beelden op het einde van dit hoofdstuk. 
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Introduction 

In 1933 I. Schur developed a method to investigate a finite group G acting on a 

set D such that G contains a subgroup H acting strictly transitively on 0. His 

fundamental idea consisted in taking as "points" not arbitrary objects or numbers 

from 1 ton, but group elements. H. Wielandt has presented Schur's method in the 

most simple way by using the concept of a group algebra over (J;. The idea is to 

associate to the above situation an action of G on H , such that H acts on itself by 

left multiplication. Then consider the stabilizer L in G of the neutral element, and 

let L act on H. The sums of the orbits, considered in the group ring(J;H, generate a 

submodule of<CH, which in this case is actually a ring; this algebra is called a Schur 

algebra (which is discussed in 1.2.9). 

Using this method, one has : G is doubly transitive if and only if the associated 

Schur algebra is "trivial" , see [Wie2, Theorem 24.11]. 

More generally, H. Wielandt has defined a Schur algebra as a subalgebra of the 

group ring (J;G (G finite group) associated to a suitable partition of G, see (Wie2, 

Definition 2.3.1]. A Schur algebra over (J; is semisimple, see (W·ie 1, p386, footnote]. 

This latter problem is investigated by F. Roesler for a Schur algebra over an arbi

trary field, see [R, Satz l ]. The investigation of the characters of a Schur algebra 

was set up by 0. Tamaschke and F. Roesler, see [Ti] and [R]. In [T2], the author 

started to study Schur algebras over (J; in a categorical context. 

Our main objective is to study indecomposable modules and trace functions for 

Schur algebras over a commutative ring R. Roughly speaking, a Schur algebra is a 

subalgebra of a group ring RC associated to a suitable partit ion of G ( G a fini te 

group), see 1.2. In the first chapter we describe two important classes of Schur al

gebras : double coset algebras (and their generalizations) and fixed rings of certain 

automorphism groups. 

In the second chapter, we develop a character theory for Schur algebras. We show 

that Schur algebras are Frobenius algebras (under a suitable condit ion). Therefore 
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we set up this problem in the more general context of Frobenius algebras over com

mutative rings. Some generalities on Frobenius algebras are collected in 2.1 and we 

give a criterion for the separability of a Frobenius algebra. We then study symmetric 

functions on Frobenius R-algebras and we show that, under certain conditions, they 

are generated over R by trace functions. We express primitive central idempotents 

of a Frobenius algebra A in terms of trace functions and we derive orthogonality 

relations for trace functions on A. In the case of Schur algebras we introduce class 

functions and we investigate when the set of class functions coincides with the set 

of symmetric functions. In fact, this latter study yields an analysis of t he center of 

a Schur algebra. We also calculate the trace function of induced modules between 

two Schur algebras. 

In chapter 3 we concentrate on double coset algebras and their generalizations. How

ever, we consider the more general situation of Hecke algebras : if A is an R-algebra 

and e a nonzero idempotent of A, then eAe is called a Hecke algebra in A. In 3.1 

we determine the primitive central idempotents of eAE and we investigate the re

lationship between indecomposable modules over t:Ae and indecomposable modules 

over A. In 3. 2 we describe the corresponding character theory. We also prove that 

a connected ring R is a splitting ring for 6A€ whenever it is a splitting ring for A. 

In chapter 4 we focus on Schur algebras which are fixed rings of certain automor

phism groups. In fact, we study the relationship between indecomposable modules 

over an R-algebra A and indecomposable modules over the fixed ring AH, where 

H ---+ Autn(A) is a group homomorphism. In the case of Schur algebras we develop 

the corresponding character theory. 

As a special case we consider the following situation : a : H ---+ Aut( C) with 

ah(g) = hgh- 1 where H is a subgroup of a finite group C. The fixed ring of RC 

associated to this action is also the centralizer of RH in RC; this allows us to study 

this Schur algebra S in the framework of centralizers, which gives more relations 

between indecomposable modules over RH, RG and S, see 5. T he problem is set up 

more general. We consider the centralizer S of B in A, where B is a subalgebra of 

an algebra A (in a separable context) and we give relations between indecomposable 

modules over A, B and S , see 5.2. In 5.4 we apply these general results on the 
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centralizer S of R *a- H in the twisted group ring R *a G (H < G) and we develop 

the corresponding character theory (we construct an explicit R-basis for S, see 5.3). 

Finally we review Clifford theory on normal subgroups and we see that the character 

theory in 5.4 can be viewed as a generalization of Clifford theory for non normal 

subgroups. 

To end thls chapter, we work out two easy examples to illustrate some of the results 

of the foregoing sections. 
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Chapter 1 

Preliminaries and the definition 

of a Schur algebra over a ring 

1.1 Preliminaries 

Throughout R is a commutative ring. A ring is said to be connected if O and 

1 are the only idempotent elements. We begin with some useful facts about inde

composable modules. 

Let A be an R-algebra and suppose that R is connected. We first remark 

that any left A-module, which is finitely generated and projective over R, is a finite 

direct sum of indecomposable left A-modules (use ranl<n). However this decompo

sition is not necessarily unique. We shall give conditions (for a separable algebra) 

in order that the above decomposition into indecomposable modules is unique. 

Now assume that A is finitely generated and projective as an R-module. Then 

there exist primitive central orthogonal nonzero idempotents e1, ... , eq in A such 

that 1 = e1 + ... + eq (use rankn). Moreover, each central nonzero idempotent of A 

is uniquely a swn of some e; . 

Let V be a left A-module, then V = e1 V EB . . . EB eq V in A-mod. If V is an 

indecomposable left A-module, then there is a unique i such that e; V =f O (in fact 

e;v = v for all v E V) , and we say that V lies over e; . 

Further, if any two indecomposable left A-modules, being finitely generated pro

ject ive as R-modules and lying over the same e;, are isomorphic as A-modules, 
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then any left A-module V, which is finitely generated projective as R-module, is 

uniquely expressible as a finite direct sum of indecomposable left A-modules ( up 

to isomorphism). Indeed, each nonzero e;V is the direct sum of all indecompos

able left A-modules lying over e.; and appearing in the decomposit ion of V , and 

use rankn(e; V). The above remark also holds if we replace projectivity over R by 

projectivity over A. 

We now consider situations where the latter condition on indecomposable left A

modules is satisfied. 

From now on we assume that A is finitely generated projective as an R-module 

and that A is a separable R-algebra, see (DM-/]. Then a left A-module is finitely 

generated projective as an R-module if and only if it is fini tely generated projective 

as an A-module, use [DM-I, p48]. Furthermore we have the following result based 

on [DM, Theorem l] : 

1.1.1 Proposition. Let R be semilocal and let A be a separable R-algebra, which is 

finitely generated and projective as R -module. Then any two indecomposable, finitely 

generated projective left A-modules lying over the same primitive central idempotent 

of A are isomorphic as A-modules. 

Proof. First we observe that A is semilocal too, that is A /radA is a left (and 

right) Artinian ring, where radA denotes the Jacobson radical. Indeed, since A is 

finitely generated over R , we have (radR)A C radA, whence A/radA is a finitely 

generated R/radR-module. Since R/radR is an Artinian ring, A / radA is a left (and 

right) Artinian ring. 

Further, since A is separable over R, it is separable over its center Z(A). Moreover 

Z(A) is semilocal too. For, since A is semilocal, A has only a finite number of max

imal ideals. But then there are only finitely many maximal ideals in Z(A), because 

A is separable over Z(A) , and so Z(A) must be semilocal. 

Now we may apply [Div!, Theorem 1] and we obtain that any two indecomposable 

finitely generated projective left A-modules lying over the same primitive central 

idempotents of A are A-isomorphic. D 
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Note also that a separable R-algebra A, where R is a field, is classically separable 

and the dimension of A over R is finite [DM-J, p50]. In this case A is a semisimple 

ring. Recall that for any semisimple ring E, £-modules are projective over E, and 

indecomposable E-modules are simple (and conversely). In this case there is, up 

to isomorphic, only one simple £-module lying over a primitive central idempotent 

of E. 

Next, a commutative extension L of R is said to be a splitting ring for A over 

R if L ®RA 3c EndL(P1) EB ... EndL(Pt) as £-algebras where P1 , ... , Pi are fini tely 

generated project,ive faithful £-modules. 

We now assume that R itself ( which is connected) is a splitting ring for A ( or A is 

split separable over R); that is, A ~ EndR(M1 ) EB ... EB Endn(Mq) as R-algebras, 

M1, ••• , Mq being finitely generated projective (faithful) R-modules. Recall that 

finitely generated projective nonzero modules over connected commutative rings are 

always faithful, see [DM-I, p8]. Note also t,hat the center of A is a free R-module 

of rank q. 

Obviously Mi can be viewed as a left A-module by setting ( cp1, ... , cpq) · m = 'Pi(m), 

where m E M; and 'PJ E EndR(MJ)- Since R is connected, each Mi is an indecom

posable left A-module, and they are not isomorphic as such. Now assume that M; 

lies over the primitive central idempotent e; of A. If finitely generated projective 

R-modules are free, for example, when R is semilocal or a principal ideal domain, 

then M; is, up to isomorphism, the only indecomposable finitely generated projec

tive le~ A-module lying over e;; see [Nrv.02 , Proposition 1.8]. 

Note also that any semisimple CC-algebra is split separable over CC. 

We now list some results on modules over split separable R-algebras. We need 

the following version of Frobenius reciprocity. 

1.1.2 Note. Let B c A be R-aJgebras with lA EB. Let V be a left B-module and 

W a left A-module. Then Hom8 (V, W) ~ HomA(A ®a V, W) as R-modules. 

Indeed , it is easily seen that Homa(V,W)-+ HomA(A ®a V,W): cp 1-+ '1/J, with 
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7./J(a ® v) = acp(v) for a EA, v E V , is an isomorphism of R-modules. 

1.1.3 Proposition. Let A be an R-algebra and B a subalgebra of A with lA E B . 

Suppose R is connected, R is a splitting ring for B, and finitely generated projective 

R -modules are free. Let N, 1·esp. M, be an indecomposable left B-module, resp. 

A-module, which is finitely generated projective over R. 

(1) Let V be a left B-module which is finitely generated projective over R, and let k 

be the multiplicity of N in a decomposition of V into indecomposable B-modules. If 

k =I- 0, then H om8 (N, V) and H om8 (V, N) are free R-modules of rank k . Other

wise they are zero. 

(2) Let B be isomorphic to EndR(N1) EB . . . EB EndR(Ni), N; being finitely generated 

projective R-modules. Let V be a left B-module which is finitely generated projective 

as an R-module; thus V ~ Nf' EB ... EB Nt't as left B-modules. Then End8 (V) is a 
t 

free R-module of rank I: k;. 
i=l 

(3) Suppose R is also splitting ring for A. Then the multiplicity of N in M, viewed 

as B-module, is equal to the multiplicity of M in A @8 N (multiplicity in a decom

position into indecomposables). 

Proof. (1) Let V = £ 1 EB ... EB Ln be a decomposition of V into indecompos-
n 

able left B-modules L;. Now Hom8 (N, V) ~ EB H om8 (N, L;) as R-modules. If 
i= l 

L, is not isomorphic to N in B-mod, then, by our hypotheses, L; and N lie over 

distinct primitive central idempotents of B, whence Hom 8 (N, L;) = 0. Moreover 

Hom 8 (N, N) = RI, see [Nrv.0 2 , 1.7]. 

(2) Let V = L 1 EB ... EB Ln be a decomposition of V into indecomposable left B

modules L;. 
n 

Consider the map f : EndR(V) -> EB HomR(L;,Lj) : cp ,_, (cpij); with cp;j E 
i,j=l 

Homu(L,, L i) given by cp;1(v;) = 7rjcp(v;), where v; E L; and 1ri is the projection 

of V onto L1 . Clearly f is an R-module isomorphism and it is easily seen that 

cp E Enda(V) if and only if cp;1 E Hom8 (Li , L1) for all i and j . 

For each pair of modules £1, £1 with L; isomorphic to Li in B-mod, we choose a 

B-module isomorphism 7./Ji.i : L; -> Li. We will show that the n2-tuples having a 
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morphism 'lj;ij at one place and zeros elsewhere form an R-basis for J(End8 (V)), and 

then by the assumptions on Rand B the a.5sertion is proved. Clearly these n 2-tuples 

are linearly independent over R. For, if r E R with r'lj;,j = 0, then rLj = 0. But 

since R is connected, L1 is a faithful R-module and thus r = 0. So it remitins to 

show that they generate f(End 8 (V)). Let {!1 , ... , ft} be the set of primitive central 

nonzero idempotents of.Band assume that N; lies over j;. Let cp E End8 (V), hence 

'Pi} E EndB(L;, Li) for all i and j. First consider a pair (i, j) for which L; is not 

isomorphic to Li in B-mod and assume that L; lies over fk· Then by our hypotheses 

fkLj = 0 and we have for any v E L; that 'Pij(v) = <p;i(Jkv) = fkcp;j(v) = 0, hence 

t.O;j = 0. Next, let ( i, j) be a pair for which L; is isomorphic to Li in B-mod. Then 

~·;-:/o'Pij E Hom8 (L;, L;). But L; ~ Nk in B-mod, whence EndB(L;) ~ End8 (Nk) 

as R-algebras. Now End8 (Nk) coincides with the center of EndR(Nk) and thus 

Enda(Nk) = RI. Therefore there is an r E R such that 1/J;/01.p;j = r I , hence 

'Pij = T'lpij· 

(3) Clearly A © 8 N is projective over A and R. Combine assertion (1) and Note 

1.1.2 D 

Furthermore, we recall the following basic facts about idempotents. 

Remarks. Let R be connected and let A be an R-algebra which is finitely generated 

and projective as an R-module. 

(i) For each nonzero idempotent a of A , Aa is a finitely generated projective R

module. Use A= Aa EB A(l - a). 

(ii) Each nonzero idempotent a of A is a sum of primitive orthogonal idempotents 

of A. Use (i) and rankn(Aa). 

(iii) Let E. f O be a primitive idempotent of A. First note that Ac is an indecom

posable left A-module. So there is a unique primitive central nonzero idempotent 

e in A such that eE. /c O; in this case eE. = E.. Further, e is expressible as a sum 

of primitive orthogonal idempotents of A in such a way that one of the terms is E.. 

Indeed, e = E. - (e - c) with E. and e - E. orthogonal idempotents. 

Ne},_-t, we give some basic facts about trace functions. Let A be an R-algebra 

and Va left A-module which is finitely generated projective over R. Let { v1, . .. , 't.:n} C 
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V, {cp1,···,'Pn} C Homn(V,R) be an R-dual basis for V. The trace function 

( or character) from A to R afforded by V , notation tv, is defined as follows : 
n 

tv(a) = L cp;(av;), for all a E A. It is easily seen that tv does not depend on 
i=l 

the choice of the dual basis. Further, tv(xy) = tv(yx) for all x, y E A and if R 

is connected, then tv( l ) = rankn(V)ln, see [Nrv.02 , 2.5] . We need the following 

result. 

q 
1.1.4 Lemma. Suppose R connected and A ~ EB Endn(Mi) as R-algebras, where 

i == l 

M; are finitely generated projective R-modules. Let {e1 , .. . , eq} be the set of prim-

itive central orthogonal idempotents of A, and assume that M; lies over e;. Then 

tAe, = (ranknM;)tM, on A (Ae; viewed as left A-module}. 

Proof. Write M( instead of HomR(M;, R). Since M; is a finit ely generated pro

jective R-module, we know that Mt ©RM; ~ Endn(M;) as left Endn(M;)-modules, 

where the left Endn(M;)-module structure on M; ©n M; is induced by t hat on 

M;. Clearly A e; ~ Endn(M;) as R-algebras and thus A.e; ~ Mt ©n M; as left A

modules. Moreover, Mt is finitely generated and projective over R. This implies 

that tAe, = tM;( l )tM, = (ranknMt)tM, = (ranknM;)tM, on A , see [N2-v.02 , Lem-

mas 2.2 and 2.5]. D 

To conclude this section, let us focus on group rings and twisted group rings. 

Let G be a finite group and consider the group ring RG. As R-module, RG is freely 

generated by symbols {'u9 ; g E G}. Recall that in case IGl- 1 E R, RG is separable 

over R. Further, suppose R is connected and jGj - 1 E R. Let m be the exponent of 

G and let 7) be a primit ive m-th root of unity. T hen R[iJ] is a splitting ring for RG, 

see [SJ . Since an extension of a splitting ring is a splitting ring, we see that R[7J] is 

also a splitting ring for RH, where H is a subgroup of G. 

We now recall some facts about twisted group rings. Let G be a finite group 

and a a 2-cocycle in Z2 (G, U(R)), where U(R) is the group of units in Rand C acts 

trivially on R. Thus a: G x G-, U(R) satisfies : a(x, y)a(xy , z) = a(x, yz)a (y, z) 
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for all x, y, z E G. The corresponding twisted group ring will be denoted by R *a G. 

As R-module R *a G is freely generated by symbols { u9 lg E G} and multiplication 

is defined by : (aux) · (buy) = a(x, y)afruxy for a, b E R, x, y E G. In case a= 1, we 

get the group ring RG. 

One can check that for any x E G , a(x, e) = a(e, e) = a(e, x) and a(x, x-1
) = 

a(x-1,x), e being the neutral element of G. So a(e,e)- 1ue is the unit element of 

R *a G. Moreover, there is a 2-cocycle /3 equivalent to a such that /3(e, e) = l. 

In [N1-v.Oi] a-regular elements of G were studied . An element g E G is 

a-regular if a(g,x) = a(x,g) for all x E C(g) = {y E G,yg = gy}. Obviously, an 

a-regular element will be /3-regular for every 2-cocycle fJ equivalent to a . 

Furthermore, if g is a-regular, then g-L is a-regular too and xgx- 1 is a-regular for 

all x E G, cf. [Nrv.01 , Proposition 2.1]. To a one associates a map fa: G x G ---t 

U(R) : (x,g)-. a(x,g)a- 1(xgx- 1,x). Clearly, ux·u9 (ux)-1 = J0 (x,g)1Lxgx -' for all 

x,g E G. 

Recall from [Ni-v.01, Proposition 2.3] that there is always a 2-cocycle /3 equivalent 

to a satisfying /3(e,e) = 1 and f13(x , g) = 1 for all /3-regular g and all x in G. An 

a-regular class or a -ray class is a class of conjugated elements of G consisting of 

a-regular elements. Obviously an a-ray class will be a /3-ray class for every 2-cocycle 

fJ equivalent to a. We recall from [N1-v.01 , Theorem 2.4]. 

1.1.5 Proposition. Assume that f 0 (x , g) = 1 for all a-regular g E G and all 

x E G. Then the a-ray class sums forrn an R -basis for the center of R *a G in the 

following cases : 

(i) a = 1, (ii) R is a domain, (iii) R is connected and IGl-1 E R. 

From [Nrv .0 2 , Proposition 3.3] we retain the following result on trace functions. 

1.1.6 Proposition. Let V be a left R *a G-module that is finitely generated and 

projective as an R-module. 

(1) Suppose that a has been modified such that f 0 (x,g) 1 for a-regular g and 
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arbitrary x in G, then we have tv ( u9 ) = tv ( Uxgx-,) for all a-regular g and all 

XE G. 

(2) If R is either a domain, or a connected ring such that IGl-1 E R , then tv(u9 ) = 0 

for each non Ct-regular g in G. 

For later use, we also mention the following lemma on trace functions. 

1.1. 7 Lemma. Let V be a left R *a G-module which is fin itely generated projective 

over R. Then for any a E R *a G we have : 

L tv(au; 1 )u9 = L tv(1L;1)u9a = L tv(u; 1 )au9 . 

gEG gEG gEG 

Proof. Write a = I: rkuk with rk E R. Then 
kEG 

L tv(au;1)u9 
gEG 

= LL r,;iv(uku; 1)u9ui;1uk 
kEG gEG 

= LL rktv((u9k-it 1)u9 k-,uk 
kEGgEG 

L L rktv(u;; 1 )u,,·uk 
kEG xEG 

= L tv(u;, 1)uxa. 
xEG 

Further, tv(au;1
) = tv(u;1a) and, just as above, we obtain that I: tv(u; 1a)u9 = 

gEG 

L tv(u;1)a·u9 . D 
gEG 

To end, recall that in case IGl-1 E R, R *a G is separable over R. Further, one 

can construct a splitting ring for R *a G in a "similar way" as for RG. In [N1-v.01, 

Lemma 3.1 and Theorem 3.3], the authors established the following result for twisted 

group rings. 

1.1.8 Theorem. Suppose R is connected and IGl-1 E R. For a given 2-cocycle 

n: one may construct a normal separable commutative extension L of R which is a 

free R -module of .finite rank and a connected ring such that L is a splitting ring for 
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R *a Gover R. 

Clearly if R is semilocal, then L is semilocal too. Furthermore, the splitting ring 

L for R *u G constructed in [N1-'v.Oi] is also a splitting ring for R *o H, where H 

is a subgroup of G. Indeed, in the same way we may construct a splitting ring L' 

for R *a H and it is easily seen that L' C L. Finally, note that for any connected 

splitting ring L of R *a G, the number of factors in the decomposition of L *a G 

equals the number of a-regular classes in G, cf. [N1-v.01 , Corollary 2.5]. 

1.2 Definition Schur algebra and examples 

Throughout this section R is a commutative ring and G is a finite group. 

1.2.1 Definition. Let {Eg;g E G} be a partition of G such that E;1 = Eg-1. 

Denote by G0 a set of representatives of the distinct Eg- Now put Sg = E u" in 
xEE9 

RG. If S = EB Rsg is a subalgebra of RG with unit element ls , then Sis said to 
gEGo 

be a Schur algebra in RG. 

1.2.2 Remark. Keep the notation of 1.2.1 and suppose that S = EB Rsg is a 
gEGo 

subalgebra of RC with unit element. Then the following statement need not hold : 

Vg,h E G : E9 Eh = UEk for some k E G (*) 
k 

However, if char(R) = D, then property(*) follows from the ring structure of S. An 

example of a Schur algebra for which property(*) does not hold is given in 1.2.13. 

Of course, if Ee= {e}, then Se= l s . Furthermore: 

1.2.3 Lemma. Let E9 , s9 be as in 1. 2. 1. 

(1) Suppose for all g, h E G we have E9Eh = U Ek (some k E G ). Then Ee is a 
k 

subgroup of G and s.s9 = s9 se = IEels9 for all g E G. 

(2) Suppose that S = EB Rs9 is a subalgebra of RG with unit element l s. Then 
gEGo 

!Eel is invertible in R. Moreover, if IE9 1IR =IO and IEgllR is not a zero divisor in 

R for each g E G, then ls= IEel- 1se. 
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Prvof. ( 1) We shall prove that xE9 C E9 for all x E Ee. But t hen equality must 

hold, because lxE9 1 = IE9 !. Analogously E9x = E9 , and the assertions follow. Now 

take y E E9 and put h = xy. Then E11 E9-, n Ee -=I- ¢, and thus by our hypot hesis 

Ee c E11Ey-1. T herefore E1i = E 9 . 

(2) Write l s = L r9s9 with r 9 E R, and let e E G0 . Then St = I: rqSgSt for all 
gEGo gEGo 

t E G. Comparing coefficients of ·ue , we obtain 1 = IEelre and O = JE9"r9 for all 

g E Go\ { e}. The result now follows. 0 

We also mention the following elementary fact. 

1.2.4 Lemma. (1) The map e : RG ~ RG : E r9 u9 ........ L r 9uy-i is an anti-
gEG gEG 

isomorphism and 606 = I . 

(2) If S is a Schur algebra in RG , then B(S) = S. 

We may consider the following com ponentwise multiplication on RG. Let 

a, a' E RG, a = I: r 9u 9 and a' = L r~u9 with r9 , r~ E R. Then we define 
gEG gEG 

a * a' = I: r9r~u9 . Note that RG, * is a commutative R-algebra with I: u9 as unit 
gEG gEG 

element. Evidently, every Schur algebra in RG is closed under this mult iplication 

and contains I: u9 . On the other hand , we have : 
gEG 

1.2.5 Proposition. S1ippose R is a field. 

(1) Let S be an R-submodule of RG. If S is closed under the multiplication* and 

I: u9 E S, then there is a partition { E9 ; g E G} of G such that S = EB Rs9 , where 
g EG gEGo 

s9 = I: Ux and Go denotes a set of representatives of the distinct E9 . 
o:EE9 

(2) Let S be an R-subalgebra of RG w'ith unit element. If S satisfies the conditions 

in (1) and B(S) C S, then S is a Schur algebra in RC. 

Proof. (l ) We consider t he R-algebra S, *· There exist orthogonal primitive nonzero 

idempotents in S, *, say e1 , . . . , em, such that I: u9 = e1 + . . . + em· Clearly, 
gEG 

{ u9 ; g E G} is the set of primitive idempotents of RG, * and t hus we have e 1 = 

u91 + ... + 'u9t and so on. By the above remarks we obtain a partition of G, namely 

E91 = {gi, . .. , 9t}, etc. 
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Next, t he multiplication * makes Rug into a left S-module. Since dimn(Ru9 ) = 1, 

Ru9 is a simple S-module. So RG is a semisimple left S-module and thus S, * is 
a semisimple ring. But then S *sg ~ Rug as S-modules (sg 1 = e1) . Consequently 

dimR(S*sg) = 1, and thus Rsg C S*Sg must be an equality. 

(2) Let B be as above. Clearly, B : RG, * -+ RG, * is an isomorphism of R-algebras 

and BoB = I. Since B(S) C S, it follows that B(s9 ) = sg-1 is a primitive idempotent 

of S, *· This proves our assertion. D 

We now describe two important classes of Schur algebras . 

1.2.6 Double coset algebras Let H be a subgroup of G. Suppose that JHJ-1 E R 

and consider the idempotent c = IHJ-1 I:: u11 in RG. Then cRGc is a. Schur 
hEH 

algebra, called a double coset algebra. Indeed, H x H acts on G as follows : 

((h,k),g) ,_. hgk - 1 , h,k EH, g E G, and (HgH )-L = Hg- 1H. Furthermore, 

IH gHJ is invertible in R and I:: u,, = JH gHJw9c. 
xEHgH 

Clearly the partition {HgH;g E G} satisfies the property(*) of Remark 1.2.2. 

The following generalizes the above situation : 

1.2. 7 Proposition. Let S be a Schur algebra in RG with associated partition 

{E9 ;g E G}. Let H be a sttbgroup of G such that JHl-1 E R and consider the 

idempotent c = JHJ - 1 I:: u,.. If c E S and JE9 Jln # 0 for all g E G, then t:Sc 
hEH 

is a Schur algebra in RG with partition {HEgH ; g E G}. Moreover we have 

m lHJ- 2 JH EgHJ l R = JEglln with m E IN. 

Proof. Put s9 = L u,, and let G0 denote a set of representatives of the clis
xEE9 

t 
tinct E9 . Now let g E G0 . Clearly, c:s9c: = I:: n;JHx;HJ- 1Hx;H with n; E IN, where 

i=l ~~ 

xi E E9 are representatives of the distinct HxH , x E E9 , and Hx;H = L Uy, 
yEl-lx;H 

Note that n 1 + ... + nt = JEaJ. So t here is some n; such that n; l R -=/= 0, because 

JE9 Jl R-=/= 0. Since EE S, we have also E:SgE = L risi with rt ER (ri = mtJ H l- 2ln 
tEGo 

with mi E IN). 

Comparing these expressions for c:s9 c, we obtain n; JH xiHJ-1 l R = r9 for i = 1, ... , £, 
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whence also r t= r 9 or rt= 0. Moreover r 9 =I= 0. Consequently, r::s9 r:: = r 9 H E9 H with 

H E9 H = I: Uy. We also deduce that r::s9r:: = r 9 I: Sk for some k E G0 , and we 
--- ~~H k 

conclude that H E 9H = I: sk· Therefore H E 9H E Sn ERGr::, and t his intersection 
--- k --~ 

is equal to r::Sr::. 

Next, the above discussion shows that for each g E G0 , H E9H = U Ek for some 
k 

k E G0 . Using this, it is easily seen that sets of the form H E9H coincide or are 

disjoint. Moreover (HE9 H)-1 = HEg-1H. 

Finally, since rii + ... + nt = IE9 1 and n;IHx;Hj- 11R = r9 , we have jHE9 Hjr9 = 

jE9 lln, completing the proof. D 

1.2.8 Remarks (1) Proposition 1.2.7 remains valid if we replace the condition 

IE9 ll R =I= 0 by the following condition : for any g, h E G, E9 E1i = U Et for some 
l 

e E G. In this case, it follows at once from the hypotheses that H E9 H = U Ek for 
k 

some k E G. 

(2) If the partition {E9 } associated to S satisfies the property(*) of Remark 1.2.2, 

then so does the partition { H E9H} associated to r::Sr::. 

(3) T he case where r:: is in the center of S is discussed in 2.4. 

In chapter 3, we study these algebras in a more general context. Namely, let A 

be an R-algebra and € a nonzero idempotent of A. We shall be concerned with the 

algebra r::Ar::, which is called a Hecke algebra in A. 

1.2.9 The Schur algebra of Schur and Wie landt We give a description of the 

Schur algebra in [Wie2-Chapter IV]. Let H be a subgroup of a finite group G. Let 

u : G--.... S(H) be a homomorphism of groups and suppose that uk(h) = kh for all 

k , h E H. P ut L = Stab(e). 

Take g E G and h EH, then u,,(e) = hand u9 (h) = u9(u,.(e)) = u9,,(e) . Thus for 

any x EH, x = ux(e) and x = (19 (h) if and only if ghL = xL(*). 

Consider the restriction u: L--.... S(H); let E,. denote the orbit of this action. Note 

that Ee = {e}. Clearly, for x E H , x E Eh if and only if LxL = LhL, use(*) . So 

Eh= LhLnH. Consequently, E,. - , = Lh- 1LnH = (LhL)-1 n H = (E1i)- 1
. We also 

observe that LgL = L(l9 (e)L for any g E G. Let H0 denote a set of representatives 
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of the distinct E1i. Put sh= I: u,, in RH with R =a:. Then S = EB R sh equals 
ff~ ~~ 

the centralizer in RH of the element I: ue, see [Wie2, Theorem 24.6]. It follows 
eEL 

t hat S is a Schur algebra in RH. 

Put E = !Ll-1 I: ue. Then it is easily verified that 'I/; : S----+ cRGE: s-, £Sf:.= sf:. is 
lEL 

an isomorphism of R-algebras. 

1.2.10 Fixed rings of automorphism groups Let G and H be finite groups 

and let a- : H-> Aut(G) be a homomorphism of groups. The orbits 

E9 = {a-h(g) I h E H} , g E G, form a partition of G; E; 1 = Ea-' and Ee= {e}. 

Observe that this partition satisfies property ( *) of Remark 1.2.2. 

Each a-1i extends to an R-algebra isomorphism of RG (again denoted by a1i) as 

follows: a1i(Z:r9u9 ) = Z:r9·uc,,.(g) , with g E G and r9 ER. Furthermore, 
g g 

a: H-, AutR(RG) : h t--t a1i is a homomorphism of groups. 

Consider the fixed ring RGH = {a ERG I 'efh EH: a-1t(a) = a}; we have: 

1.2.11 Lemma. Keep the above notation, put s9 = I: Ux in RG, and let Go 
xEE9 

denote a set of representatives of the distinct E9 . Then RGH = EB Rs0 , i.e. RGH 
gEGo 

is a Schur algebra in RG. 

Proof. Clearly s9 E RGH . Conversely, let I: r9u9 E RGH, r9 E R. Then for 
gEG 

each h E H we have I: r 9u9 = Z: r 9 u",.(g), whence rc,,.(g) = r 9 (for nonzero r 9 ). 
gEG gEG 

The result follows at once. D 

In chapter 4 we focus on fixed rings of automorphism groups for arbitrary R

algebras A. 

1.2.12 Special case Let H be any subgroup of G. Then a-: H-, Aut G : h-, a,., 

with a-,.(g) = hgh- 1 for all g E G is a homomorphism of groups . The orbits of this 

action are called subclasses of H in G and the fixed ring S = RGH is called the 

subclass algebra of H in RG. This a.lgebra has been studied when R = a:, see :KJ, 

[Tr]. It is clear that S is also t he centralizer of RH in RG. This allows us to study 

the subclass algebra in the general context of centralizers, see chapter 5. Moreover, 
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by using the subclass algebra S of H in RG, we shall develop a generalized Clifford 

theory. 

1.2.13 Remark An example of a Schur algebra for which property ( *) of Remark 

1.2.2 does not hold is given in [A-vd.B-v.O, example 2.7]. Namely, take R = 7£2 , 

G = 7£3 x 7£3 and consider the partition 

E(o,o) = {(O, 0), (0, 1), (0, 2), (1, 0) , (2, O)}, 

E(1,1J = {(1, 1), (1, 2), (2, 1), (2, 2)} . 

It is easily verified that S = Rs(o.o) EB Rs(l,l) is a subalgebra of RG and l s = S (o,o) 

Note that E(o,o) is not a subgroup of G. As a consequence, property ( *) does not 

hold, use 1.2.3 (1). 

1.2.14 Note Let S be a Schur algebra in RG with associated partition {E9 ;g E 

G}. Assume R is connected, IGJ- 1 E R, and consider the idempotent c: = 1a1-1 I: u9 . 
gEG 

Clearly c: E S and s9s = IE9 Jc: = ss9 , with s9 = I: 1.Lx- Now Ss = Rs is an inde-
xEE9 

composable left S-module, and thus c: is a primitive idempotent of S. Moreover s is 

an element of the center of S. Furthermore, ts,(s9 ) = IE9 llR. Of course, the above 

holds for S = RG. 
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Chapter 2 

Character theory for Schur 

algebras 

In this chapter we focus on the character theory for Schur algebras. However, 

we shall discuss this problem in the more general context of Frobenius algebras. 

In the first section, we collect some results on Frobenius algebras over rings. In 

the second section we study the symmetric functions on Frobenius algebras and we 

develop orthogonality relations. In the case of Schur algebras, we introduce class 

functions and we analyze when the center of a Schur algebra is a Schur algebra (see 

section 3). 

To end, we calculate (under suitable conditions) the trace function of an induced 

module between two Schur algebras. 

2.1 Frobenius algebras 

Throughout, R is a commutative ring and A is a faithful R-algebra which is 

a finitely generated free R-module. Let Z(A) denote the center of A. Recall that 

A* = Homn(A, R) is a left A-module under the operation : (a.f)(x) = f(xa) for 

a, x E A, f E A*. 

2.1.1 Remarks. An R-bilinear form on A is called associative if b(xy, v) = b(x, yv) 

for all x, y, v E A. As is well known, there is a one-to-one correspondence between 

associative R-bilinear forms b: Ax A-> Rand (left) A-linear maps /3: A -> A* , 

given by b(x, y) = /3(y)(x), x, y E A. 
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On the other hand, an A-linear map /3 : A -> A* is completely determined by 

.8(1) = r, and the above correspondence yields b(x, y) = r(xy), x, y EA. 

2.1.2 Lemma. Let b be an associative R-bilinear form on A, let f3 : A -> A* be 

the corresponding left A-linear map and r = /3(1). The following statements are 

equivalent : 

(1) There are R-bases {a1 , . .. ,a,,}, {b1, ... , bn} in A such that b(a;, bj) form an in

vertible matrix. 

(2) For each R-basis { a 1, ..• , an} of A there exists an R-basis {b1, ••• , bn} of A with 

b(a;, bJ) = 8ij· 

(3) /3 is an isomorphism. 

(4) For every f EA* there is a unique a EA such that f = a.r. 

Proof. (3)::::} (2): Let {cp1 , ... ,cpn} CA* be the dual basis of {a1 , ... ,an}- If 

f3 : A-> A* is an isomorphism, then there is an R-basis {b1 , .. . ,bn} in A such that 

f3(bj) = <fJJ· So b(a;, bj) = f3(b1 )(a,) = 8;j 

(2) => (1) : This is obvious. 

(1) => (3) : Again let { c,o1o} be the dual basis of {ak} - Since (b(a;, bJ));1 is the matrix 

of f3 with respect to the bases { bk} and { rpk}, it follows that /3 is bijective. 

(3) <=> ( 4) : This is obvious. D 

Definition : A bilinear form satisfying property (2) in Lemma 2.1.2 is said to be 

nonsingular, and {ad, {bk} in (2) are called dual bases with respect to b. The 

R-algebra A is called a Frobenius algebra if there exists a nonsingular associative 

R-bilinear form on A. 

Remarks. (1) Of course A* is also a right A-module and a one-to-one correspondence 

between associative R-bilinear forms b on A and right A-linear maps /31 
: A -> A* is 

given by b(x, y) = f]'(x)(y), x, y E A. The analogue of Lemma 2.1.2 holds. 

(2) A nonsingular bilinear form is nondegenerate. When R is a field, t he converse 

is true. 
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Furthermore we have : 

2.1.3 Lemma. Let b be a nonsingular associative R-bilinear form on A with dual 

bases { a1, . .. , an}, {b1 , ... , bn}, and let /3 : A -+ A• be the corresponding left A-
n 

linear map. Then 13-1 : A*-> A is given by 13- 1(!) = L. f (a;)bi. 
i= l 

Proof. We have /3(L. f(a;)b;)(ai) = b(aj, 'E f(a;)b;) = f(aj)· D 
i i 

Recall that f EA* is said to be symmetric if f(xy) = f(yx) for all x,y EA. 

The set of all symmetric functions f E A* will be denoted by Sym(A, R). The A

module structure on A* makes S:rm(A, R) into a Z(A)-module, where Z(A) denotes 

the center of A. 

Furthermore, we say that A is a symmetric Frobenius algebra if there exists a non

singular associative R-bilinear form on A which is symmetric. 

2.1.4 Proposition. Let b be a nonsingular symmetric associative R-bilinear form 

on A, and let .(3 : A -+ A* be the corresponding left A-linear map. Then /3 induces 

an isomorphism of Z(A)-modules between Z(A) and Sym(A, R). 

Proof. Let 7 = /3(1); 7 is symmetric. Obviously, if a E Z(A), then /3(a) = a.r 

is symmetric. Now let f E Sym(A, R), hence f = a.r for some a E A. From 

f(yx) = f(xy) it follows that, r(yxa) = r(xya) = r(yax), for all x, y EA. Therefore 

xa.r = ax.r, whence xa = a x, for all x EA. D 

The following lemma gives the relation between two bilinear forms, one of 

which is nonsingular . 

2.1.5 Lemma. Let b and b' be associative bilinear R-forms on A and suppose that 

b is nonsingular, then : 

(1) There is a unique u E A such that b'(x, y) = b(x , y·u) for all x, y EA. 

(2) b' is nonsingular if and only if 11. is invertible in A. 

In this case : if {ad, {bk} are dual bases in A with respect to b, then { ak}, { bk·u- 1
} 
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are dual bases with respect to b'. 

(3) If b is symmetric, then b' is symmetric if and only if u is a central element of 

A. 

Proof Let /3 resp. /3' denote the left A-linear maps from A to A• associated to 

b resp. b'. 

(1) Since b is nonsingular there is a unique u E A such that /3'(1) = u · ,6(1) see 

Lemma 2.1.2. By remark 2. 1.1, we get the assertion in (1). 

(2) If b' is nonsingular, then there is also a unique u EA such that ,6(1) = u · /3'(1). 

So /3(1) = V'l.l · /3(1), whence vu= l. Similarly we get uv = l. Conversely, suppose u 

is invertible in A, then /3'(1) is also a free generator of A· viewed as a left A-module. 

By Lemma 2.1.2, we then conclude that b' is nonsingular. 

(3) As ,B'(l) = u · /3(1), the result follows from Proposition 2.1.4. 

2.1.6 Examples. 1. Let G be a finite group and consider the twisted group ring 

R *<> G with R-basis {u9 lg E G}. Consider the R-linear map T : R *a G - R : 

I: r9 u9 f--t re· It is clear that T defines a symmetric associative R-bilinear form on 
g EG 

R*a G with dual bases {u9 1 g E G}, {a(g,g- 1t 1u9 -,I g E G} . 

2. Let G be a finite group, let { E 9 ; g E G} be a partition of G such that E-;- 1 = E9 -,, 

and let Go denote a set of representatives of the distinct E9 . Put s9 = L U x in 
xEE9 

RC and suppose that S = EB Rs9 is a Schur algebra in RG. 
gEGo 

Now consider T : S - R : L r9 s9 - re . If each IE9 1 is invertible in R, t hen T 
g EGo 

defines a symmetric associative R-bilinear form on S with dual bases {s9 1 g E G0 } , 

{IE91-tsrJI g E Go}-

3. Let M = M,,1 (R) EB ... EB Mnq(R) be a direct sum of matrix algebras. We set 

Et) = (0, ... , 0, E;j , 0, ... , 0) E M with E;i at the k-th place, and the matrix EiJ 

has ij-entry equal to 1 and zeros elsewhere. 
(J 

Consider the R-linear map tr : M - R: (B1, ... , Bq) - I: trace (B,). It is clear 
i=l 

that tr defines a symmetric associative R-bilinear form on M with dual bases { Eif l} 

and {E]~)}. 

4. If A is a finite dimensional semisimple R-algebra, R being a field, then A is a 

symmetric Frobenius R-a.lgebra, see [C-R, Proposition 9.8]. 
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Let b be a nonsingular associative R-bilinear form on A with dual bases 
n 

{a1, ... ,an} and {b1 , .. . , bn} - We put z = zb = I: a;bi; this element has the follow
i=l 

ing properties : 

2.1.7 Lemma. (1) Let tA denote the trace function from A to R afforded by A 

viewed as left A-module. Then tA(x) = b(x, z) for all x EA. 

(2) z is independent of the choice of the dual bases for b. 
n 

(3) If b is symmetric, then z is central and in this case z = L b;a;. 
i=l 

Proof. Let /3 be associated to b as in 2.1.1. 

(1) The R-dual basis in N of {ak} is given by {f](bk)}. Let x EA, then tA(x) = 
n n n 
L f3(b;)(xa;) = I: b(xa;, b;) = I: b(x, a;b;) = b(x, z) . 
i=l i=l i=l 

(2) The statement tA(x) = b(x, z) for all x EA is equivalent to tA = z · ,8(1), and 

(2) follows. 

(3) Follows from (1), (2) and Proposition 2.1.4. D 

2.1.8 Remark. (1) Let b' be another nonsingular associative R-bilinear form on A. 

Then by Lemma 2.1.5(2), there is an invertible element u EA such that zb = zb•u. 

(2) Since tA = z · /3(1), we have that tA is a free generator of A* viewed as left 

A-module if and only if z is invertible in A, see Lemma 2.1.5(2). 

Keep the above notation . We now introduce the Z(A)-linear map ( :A-+ A: 
n 

x -+ I: b;xa; . We prove : 
i=l 

2.1.9 Proposition. (1) ((x) is independent of the choice of the dual bases and 

((A) is independent of the choice of the nonsingular associative bilinear form. 

(2) ((A) is an ideal of Z(A), the center of A. 

(3) If b is symmetric, then ((xy) = ((yx) fo r all x, y EA and ((1) = z. 

Proof. (l) Let {a:}, {b:} be another pair of dual bases with respect to b. If C 

and D are the matrices expressing {a:} in terms of {a;} and {bD in terms of {b;} 
n n 

respectively, then ct D = In- Thus also net= In and this yields L b'.xa~ = L b,.'Ea; 
i= l i=cl 
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for all x EA. 

Finally, from Lemma 2.1.5(2) it follows that ((A) is independent of the choice of 

the bilinear form b. 

(2) For each y EA, we have : 
n n 

aiy = L rijaj implies yb; = L TjibJ, r;i E R 
j = l j=l 

Using these relations, we see that ((A) is contained in the center of A . It is also 

clear that ((A) is an ideal of the center. 

(3) As bis symmetric, {b;}, {a;} are dual bases with respect to b, i.e. b(b;,aj) = D;j· 
n 

Then by (1) , ((xy) = I: ai(xy)b; . 
i= l 

Using the relations(*) in (2) , we obtain ((xy) = ((yx). D 

In the last part of this section we give a necessary and sufficient condition 

for a Frobenius R-algebra to be separable over R and we investigate the invertibility 

of z. 

2.1.10 Proposition. If A is a Frobenius R-algebra such that 1 E ((A), then A is 

a separable R-algebra. 

Proof. Keep the above notation. By our assumption, there is an element c E A 
n. 

such that I: b;ca; = 1. Combining this relation with the relations ( *) in the proof of 
i= l 

n 
Proposition 2.1.9(2) , we see that I: bic®a; E A 0R A 0 is a separability idempotent 

i=l 

for A, cf. [DM-l,p40]. o 

2.1.11 Remark. Let A be a symmetric Frobenius R-algebra. If b is symmetric 

and z = -£: a;b; is invert ible in A, then ((z- 1) = 1, whence A is separable over R. 
i= l 

In order to prove the converse of 2. 1.10 we have to investigate the symmetric Frobe

nius algebra in 2.1.6(3) . 

Moreover, in this case there is a criterion for the invertibility of the element z. 

2.1.12 Lemma. Let A ~ Mn, (R)EB .. . EB Mnq(R), an R-algebras. Let b be any non

singular associative R-bilinear form on A with dual bases { a 1, . .. , an}, { b1 , . .. , bn} 
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in A. Then: 
n 

(1) The center of A coincides with ( (A)= {I: bixa;lx EA}. 
i=l 

Tl, 

(2) Zb = I: a; b; is invertible in A if and only if n1 , ... , nq are invertible in R. 
i=l 

Proof. Put M = M,.., (R) EB . .. EB Mnq(R) and, as in 2.1.6(3) consider the map 
q (k) (k) (k) 

tr . If we set c = I: E u , then we get I: I: Eji cE;j = 1. Furthermore, we have 
k= l k i,j 

Ztr = I: I: EtJ'.) EJ<7J = (n1 In,, ... , nql,..). 
k ilj I ':t 

Note also that b induces a nonsingular associative R-bilinear form b on M . We now 

prove the statements. 

(1) This follows from Proposition 2.1.9(1). 

(2) According to Remark 2.1.8(1), we can find on invertible e1ement u E M such 

t hat Zi; = ZtrU. So Zi; is invertible if and only if Ztr is invertible in M and the asser-

tion follows. D 

Remark. In the special ca5e M = M3 (.tZ3 ) we have z = 0. Thus 1 E ip(A) or 

separability doesn't imply the invertibility of z. 

We are now in a position to prove the converse of 2.1.10, more precisely : 

2.1.13 Proposition. Let A be a Frobenius R-algebra which is separable over R. 

Let b be an associative R -bilinear form on A with dual bases { a1 , ... , an}, { b1, •. • , bn}. 

Then: 

(1) ((A) is equal to the center Z(A) of A. 
n 

(2) If R is a field of characteristic zero, then z = I: a;b; invertible in A. 
i= l 

n 
Proof. Recall that ((a) = I: b,aa; for any a E A. 

i=l 

(1) Step 1. Suppose that R = K is a field. Then the algebraic closure I< of K is a 

splitting field for I< ®KA. Obviously, the form b can be extended to an associative 

K-bilinear form b on K ®K A with dual K-bases {l ® a;}, {l 0 b;}. By Lemma 
- n 

2. 1.12 there is an element x E K ©KA such that I: (1 0 b;)x( l © a;) = l. This gives 
i=l 

a system of n linear equations with coefficients in K , having a solution in K". But 
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then these equations must have a solution in K" and therefore 1 E ((A). 

Step 2. Let now R be an arbitrary commutative ring. First note t hat the separabi

lity of A implies that Z(A) is a direct summand of A as R-module, see [DM-I.p.51 

and p.55]. Hence Z(A) is finitely generated as R-module, and thus Z(A) is integral 

over R. 

We now suppose that 1 f/. ((A). Then the ideal ((A) is contained in some maximal 

ideal M of Z(A). Since Z(A) is integral over R, m = M n R is a maximal ideaJ 

of R. [Co p.424]. Now, A/mA is a separable R/m-algebra. For a E A, we set 

a= a+ mA. The form b defines an associative R/m-bilinear form b, on A/mA as 

follows: b(x, 'fl)= b(x, y) +m for all x, y E A. Clearly {a;} , {bi} are dual R /m-bases 

with respect to b. By the first part of the proof, there is an element x E A such that 
n 

1 - L bixa; E mA, whence 1 E AM. But AM n Z(A) = M, since A is separable. 
i = I 

Consequently, 1 EM, a contradiction, and thus 1 E ((A). 

(2) As in (1), reduce to the case of an algebraically closed field and apply Lemma 

2. 1.12(2). D 

Remarks (1) Keep the hypotheses of 2.1.13 and suppose that A is commutative. 

Then z is invertible in A. 

(2) Consider t he twisted group ring R *o G of 2.1.6(1). In this case z = IGlue, and 

it is easily seen that z is invertible if and only if 1 E ((R *o G). So we recover that 

R *o G is separable over R if and only if IGI ln is invertible in R. 

2.1.14 Corollary. Let S be a Schur algebra in RG with associated partition {E9 } , 

g E Go. Assume IGl-1 E Rand IE9 1-1 E R , then Z(S) = { L IE91-1s9ssg-1 ls ES}. 
gEGo 

Proof. By the hypotheses, S is separable over R , use [A-vdB-v.O, Proposition 4. 1] . 

Now use 2.1.13(1). 

To conclude, we give a criterion for the invertibility of z in terms of sepa

rability. Again let b be a nonsingular associative R-bilinear form on A and let z , ( 

be as before. 

We shall need the Z(A)-module ker(. Clearly ker( is independent of the choice of 
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the dual for b and, in case b is symmetric, ker( is also independent of the choice of 

the nonsingular symmetric form, see 2.1.5. 

2.1.15 Proposition. Keep the above notation and assumptions and suppose that 

b is symmetric. Then the following statements are equivalent : 

(1) z is invertible in A. 

(2) A is separable over R and A= ker( EB Z(A). 

Proof. Note that ((c) = zc for all c E Z(A). 

(1) * (2) : Clearly ((z-1
) = 1, hence ((A)= Z(A) and A is separable over R, see 

2.1.10. For each x EA, we write x = (x - ((z-1x)) + ((z- 1x), and then it is easily 

checked that A= ker( EB ((A). 

(2) * (1) : By the separability, we have 1 = ((x) for some x E A. There exist 

elements Y1 E ker(, Y2 E Z(A) such that x = Y1 +Y2· Thus 1 = ((Y2) = zy2 . D 

2.2 Symmetric functions on Frobenius algebras-orthogonality 

relations 

Let R, A and Z(A) be as in section 1, and write Sym(A, R) for the set of all 

symmetric functions f E A*. If A is a symmetric Frobenius R-algebra, then there 

is an isomorphism of Z(A)-modules between Z(A) and Sym(A, R), see 2.1.4. 

Now, we show that , under certain conditions, symmetric functions are deter

mined by their values on the center. Again let A be a Frobenius algebra, let b be a 

nonsingular associative R-bilinear form on A with dual bases {a;}, {b;}, and Jet ( , 

z be as in section 1. 

2.2.1 Proposition. Assume that b is symmetric and that z is invertible in A. 

Given f E A*, the following conditions are equivalent : 

(1) f E Sym(A, R). 

(2} f(x) = f((( z- 1x) ) f or all x EA. 

(3) ker(, C kerf. 
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Proof. (1) => (2): We have f(((z- 1x)) = f(Z,b;z- 1xa; ) = f('I:,a;b;z- 1x) = f (x) . 
i i 

(2) ::::;,- (3) : Note that ((z- 1x) = z-\(x) . 

(3) ::::;,- (1) : For all x,y EA, we have ((xy) = ((yx), hence xy-yx E ker ( C ker f. 

D 

2.2.2 Proposition. Let b, (, z be as before and assume that b is symmetric. Then 

n ker f C ker(, where f ranges over all elements of Sym(A, R). If z is invertible 
f 

in A, then we get an equality. 

Proof. Let, E A* be associated to bas in 2.1.1. Let x E A be such that f(x) = 0 

for all f E Sym(A, R). Then by Proposition 2.1.4, r(xc) = 0 for all c E Z(A) . For 

each y EA, we now have ,(y((x)) = r(I:,yb;xa;) = r('I:,a;yb;x) = r(((y)x) = 0 
i i 

using Proposition 2. 1.9. Thus ((x)., = 0, whence ((x) = 0. 

In case z is invertible, we may apply Proposition 2.2.1 and we obtain an equality. D 

For trace functions the result of 2.2. 1(2) can be put into another form. 

2 .2 .3 Proposit ion. Let b, (, z be as before and assume that b is symmetric. Sup

pose R is connected and R is a splitting ring for Z(A). Further, let {e1 , . . . ,eq} be 

the set of primitive central idempotents of A. Let now M be a left A-moditle, which 

is finitely generated projective over R, and assume that ekM = 0 for k i j . Then 

we have for all x E A : 

(1) tM(x)zei = rankR(M)((x) ei = t,11(((x))ei 

(2) t,11(z)tM(x) = rankR(M)tu(((x)) 

q 
Proof. (1) By hypothesis, Z(A) = Re1 EB ... EB Req. We may write z = I:, .\;e; and 

i=l 
q 

((x ) = Z, ~t;e; . Clearly, tM(((x)) = rankR(M)µi . On the other hand, t 111 (((x)) = 
i = l 

11 

t 111 ( I:, b;xa;) = t111 (zx) = .\it,11(x). The formula then follows. 
i=l 

(2) Apply tM to the formula in (1). D 

We now show t hat, under certain conditions, Sym(A, R) has an R-basis con

sisting of characters and we derive orthogonality relations for characters. Again let 
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A be a Frobenius R-algebra, let b be a nonsingular associative R-bilinear form on A 
n 

with dual bases {a1 , .. . , an}, {b1 , ... , bn}, and put z = I: a;b; . Moreover we assume 
i= l 

that b is symmetric, although some results can be proved without this assumption 

(see 2.2. 7(2)) . 

Further , suppose that R is connected and let { e1 , . .. , eq} be the set of primitive 

central nonzero idempotents of A. Let now M1, ... , Mq be nonzero left A-modules 

which are finitely generated and projective over R , and assume that ekMi = 0 for 

k # i . Note that an indecomposable A-module P lies over exactly one e; . Finally, 

we let rank stand for rankn, and we recall that tM, denotes the trace function from 

A to R afforded by M;. 

2.2.4 Theorem. Keep the above hypotheses and notation. 

(1) If R is a splitting ring for the center, that is, Z(A) = Re1 EB ... EB Req, then 

n 

rank(Mj)ei = b(ei,ei) 2..:)M;(a;)bi 
i=l 

n 

tM;(z)ei = rank(Aej) 'f)M;(a;)b; 
i=l 

n 
(2) For j # k we have L tM1 (a;)tMk(b;) = 0. 

i=l 

(3) Let Li be any nonzero left A-module which is finitely generated projective over 

R and has the property that ekLi = 0 fork # j (special case : Li = Mi). If R is a 

splitting ring for Z(A), then 

n 

b(ej, ei) L tM; (a,)tLj (b;) = rank(Mi )mnk(Li)ln. 
i=l 

(4) With assumptions as in (3) we have 

(5) If mnk(M;)ln # 0 and mnk(M;) l n is not a zero divisor in R for i = 1, . .. , q, 

then tM, , . . . , t.w" are linearly independent over R. 

(6) If Risa splitting ring for Z(A ) and mnk(M;) l n is invertible in R Jori= l , . .. , q, 

then tM,, ... , t.w,, form an R-basis of Sym(A , R). 

(7) We have 
n 

ze1 = LtAej(a;)b;. 
i= l 
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{8} If R is a splitting ring for Z(A) and z is inveT'tible in A, then tAep ... , tAeq form 

an R -basis of Sym(A, R) ( Ae; viewed as left A-module}. 

Proof Let T E A" be a.c,sociated to b as in 2.1.1. For each tM, there is a unique 
n 

Cj EA such that tM = c1.T. By Lemma 2.1.3, ci = L tM.(a;)b;. 
' i=l J 

Further, it is easily seen that ek.tM; = 0 for k =I- j. Consequently (ekci).T = 0, 

whence ekci = 0 for k =/= j. Therefore c1 E Aei. 

(1) Since bis symmetric, Cj E Z(A), see Proposition 2.1.4. Thus Cj = r1e; with 

ri E R. We now have tM,(l) = r(cj) = rir(ei) and tM, (l) = rank(Mi)lR- T hen 

rank(Mi)ei = T(ei)cJ and we obtain the first formula. 
q 

Further, we know that tA = z.T. Using the fact that tA = L tAe, on A , it is easily 
i= I 

seen that tAeJ = e1 .tA (we view A and Ae; as left A-modules). We thus obtain 
q 

tAe; = (ejz).T. Since b is symmetric, z is central and thus z = E .A;e; with A; E R. 
i=l 

Therefore tAe; = (.X1e1 ).r. As a consequence, we have rank(Ae1)1R = AjT(e1) . 

On the other hand, tM,(z) = rank(MJ).X1. We now have tM,(z)e1 = rank(Mi)>.iei = 

Ajr( ei )ci = rank(Ae1 )ci and this gives the second formula. 
n 

(2) Apply tMk, k =/= j , to the expression Cj = L tM1(a;)b;. 
i=l 

(3) Apply tL, to the first formula in (1). 

( 4) There is a unique cl E A such that t L; = S. T, and cl = rJei with r; E R. 

Moreover, rank(Li)lR = r;T(e1 ). 

Let Cj, ri be as above. Then we have ci.tL1 = cJ.tM, and thus r1tL, = r1tMJ' Multi

plying by T(e1), we obtain the formula in (4). 
q 

(5) Suppose that L µ;tM, = 0 withµ; ER. Then Lµ,tM,(ek) = 0 fork= 1, ... ,q. 
i=l i 

We get rank(Mk)µk = 0, whence JLk = 0 for k = l , .. . , q. 

(6) As before, we have tM; = (r1ei).r with r1 ER. The invertibility of rank(Mj) in 

R implies the invertibility ofr1 in R, because rank(M;)lR = r1r(e1) . Now, e1 , ... , eq 

form an R-basis of Z(A), and thus also r 1e1, .. . ,rqeq. By Proposition 2.1.4, it fol

lows that tM,, ... , tM. form an R-basis of Sym(A, R). 

(7) As in the proof of (1), tAeJ = (zei).T. The assertion follows from Proposition 

2.1.3. 
q 

(8) We have z = L .Xiei with A; E R and t Ae; = (.X;ej) -T. Since z is invertible 
i= l 
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in A, each A; is invertible in R. We now proceed as in (6) in order to show that 

tAe 1 , ••• , tAeq form an R-basis of Sym(A, R). D 

2.2.5 Remarks. Keep the hypotheses and notation of Theorem 2.2.4 and assume 

that R is a splitting ring for Z(A). 

1. From the proof of 2.2.4 we retain that ra.nk(Mi)lR = rjb(ej, ei) with ri E R. 
q 

Further , z = L ,\;e; with>.; E Rand tAe = (>.jej).T, in particular rank(Aei) l n = 
i=l ' 

,\ib(ej, e1). 

2. If b(e;, e;) is invertible in R for i = 1, . . . , q, then b: Z(A) x Z(A)-. R is nonsin

gular. The converse also holds. 

As before, let b be a nonsingular symmetric associative R-bilinear form on 
n 

A wit h dual bases {a1 , .. . , an}, {b1, ... , bn}, and put z = I: a;bi. Suppose that R is 
i=l 

connected and let { e1, . . . , eq} be the set of primitive central nonzero idempotents of 

A. We now assume that A 3:'. Endn(P1 ) EB . .. EB Endn (Pq) as R-algebras, P1 , ... , Pq 

being finitely generated projective R-modules. 

Observe t hat Z(A) = Re1 EB ... EB Re,1• We recall that each P; is an indecomposable 

left A-module under the operation (<p1, ... , <,Oq),p = <p;(p), p E P; and <p1 E Endn(Pj), 

and we may assume that P; lies over e;. 

Further, from the proof of Lemma 1.1.4 we retain that t Ae
1 

= rank(Pi)tP; on A, in 

particular ra.nk(Aej) = (rankPj)2, 

Clearly we may apply Theorem 2.2.4 to tp, . Moreover the following holds true. 

2.2.6 Proposition. Keep the above hypotheses and notation. Then 

(1) We have 
n 

ze1 = L rank(P1)tP;(a;)b; 
i= l 

" 
tp1(z) = L rank(Pj)tP;(a;)tp1 (b;) 

i= l 

(2) z is invertible in A if and only if all rank(Pi) l R are invertible in R. Moreover, 

rank(Pi) l n is i.nvertible in R if and only if tpi (z) is invertible in R. 

Proof. (1) We have tAe; = rank(P1)tP;· The first formula now follows from Theorem 
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2.2.4(7). Applying tp
1

, we obtain the second formula. 

(2) Let T E A* be associated to b. There is a unique Cj E A such that tp
1 

= Cj .T 

and Cj E Aej. Then tAe
1 

= rank(Pj)tp
1 

= rank(Pj)Cj.T. On the other hand, 

we know that tAe1 = (zej).T, see 2.2.4. Therefore ze1 = rank(P1)c1 and thus 

z = (I:rank(Pj)e1)(I:c1). So the invertibility of z implies that all rank(Pj) are 
j j 

q 
invertible in R. To prove the converse, we write z = I: >.;e; with Ai E R and we 

i = l 

observe t hat (rankPj)21R = rank(Aej)ln = >.jb(e1, e1), see 2.2.5. 

The last statement follows from t p
1 

( z) = rank ( P1) >..1 and the preceding formula. D 

2.2.7 Remarks. (1) The case where Risa field of characteristic O and A is split 

separable over R was already treated in [C-R, T heorem 9.17] 

(2) We do not need the assumption that the nonsingular associat ive R-bilinear form 

bis symmetric in the proofs of 2.2.4(2), (5), (7) and 2.2.6(1) and in the first part of 

the proof of 2.2.6(2) (the invertibility of z implies that all rank(P1) are invertible in 

R) . 

(3) Using 2.1.8(1), the result in 2.2.6(2) can be sharpened as follows. Suppose A is 

a symmetric Ftobenius R-algebra but the form b is not necessarily symmetric and 

suppose all rankn(P;) are invertible in R, then zb is invert ible in A. Compare wit h 

2.1.12. 

(4) From the proof of 2.2.6(2) we may deduce the following result. If zx = 0 implies 

x = 0 for all x E Z(A), then, for each i, rankn(P;)ln -=/- 0 and rankn(P;)ln is 

not a zero divisor in R. For a symmetric form b, the converse holds and the above 

property for rankn(P;)IR is equivalent to the analogous property for tp1(z). 

(5) Keep the hypotheses of 2.2.6 and assume that z is invertible in A. Combining 
n 

2.2.3(1) and 2.2.6, ((x)e1 = tp (x) I; tp .(a;)b, for all x EA. 
1 

i=I 
1 

Recall that a Schur algebra in RG (with associated partition {E9 ; g E G}) 

is a symmetric Frobenius R-algebra, whenever IE9 I is invertible in R for all g E G 

(sec 2.1.6(2)). 

So we may apply 2.2.4 and 2.2.6. For (twisted) group rings we have : 
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2.2.8 Corollary Let R be connected and let G be a finite group with jGj-1 E R . 

Suppose that R *a G ~ Endn(Pi) EB ... EB Endn(Pq) as R-algebra, Pi, ... , Pq being 

finitely generated projective R-modulus. Let { e1 , ... , eq} be the set of primitive cen

tral nonzero idempotents of R *a G are assume P; lies over ei. Then : 

(1) All rankn(P;) are invertible in R. 
1 

(2) I: ( _1)tp1(u9)tpJug-1) = DjkjGja(e,e) 
gEG Cl'. g, g 

1 1 
(3) ei = jGj ( ) ranknPi L ( _1) tp, (·u9-1 )u9 a e,e gEG a g,g 
(4) tp1, ... , tpq form an R -basis of Sym(R *a G, R). 

Proof. Put A = R *a G. As in example 2.1.6(1), we take the (symmetric) form 

associated to T : A-> R: I: r9u9 -> re. In this case {u9 }, {a(g,g-1
)-

1uy-1}, 
gEG 

g E G, are dual bases and z =!Glue= jGja(e,e)l A. Now apply 2.2.4 and 2.2.6. 

D 

2.2 .9 Note. Let b be a nonsingular associative R-bilinear form on A with dual 

bases { a1 , ... , an}, {b1 , . .. , bn } , and let /3: A-> A * be associated to bas in 2.1.1. 

(1) Since f3 is bijective, /3 induces a ring structure on A*. Explicitly, let ip, 'lf; E A'; 

<p = f3(s) , 'If;= f3(t) . Then 'P x 1/; = f3(st) . 

Now let A= R *a G with bilinear form associated tor: A -> R: I: r9u 9 ;-, re , as 
gE G .. 

in example 2.1.6(1). By Lemma 2.1.3, we have 

st = L 'P x 1/;(uk- 1) a(k,k-1
)-

1uk· 
k EG 

On the other hand, 

But 

st= L L ip(ug-1 )'!j; (uh-' )a(g, g-1 )-1a(h, h-1 t 1a(g, h)·u91., 

gEG h EG 

a(h, 1i.-1 
)-

1a(g, g- 1 t 1a(g, h)a(gh, (gh)- 1
) = a(h, h- l r 1a(h, (ghf1

) 

= a(e,e)a(h- L,g- 1
)-

1
. 

Consequently, 

st = L L ip( Uy-1 )1/J(uk-1 9)a(e, e)a(k-1 g, g- 1 
)-

1a(k, k-1 
) -

1uk. 
kEG gEG 
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So we obtain 

cp x 'lf;(uk) = L cp(u9-,)'lf;(uk9 )a(e, e)a(kg,g-1
)-

1
. 

gEG 

(2) The map f3 also induces an R-bilinear form b* on A*. Explicitly, let <p, 'If; E A'; 

cp = (J(s), ¢ = f3(t). Then b*(<p, 'If;)= b(s, t). Now let b be symmetric. Then we may 
n 

writes= I;i.p(b;)a; and t ="E,'lf;(ai)bi. Consequently, b*(i.p,'lj;) = "E, ip(b;)¢(a;). 
i j i=l 

The formulas in 2.2.4(2)-(3) and in 2.2.6(1) can be rewritten using the R-bilinear 

form b*. The basis in 2.2.4(6) and 2.2.4(8) is orthogonal relative to b*. 

( 3) We also have the following multiplication on A•. For :p, ¢ E A•, define cp * 'If;( a;) = 

i.p(a;)¢(a;) and extend by linearity. On the other hand, we may consider the following 
n II 

componentwise multiplication on A. Let s, t E A, write s = "E, r;b;, t = I: r~b; with 
i=l i=l 

II 

r;, r; E R, and sets* t = "E, 1-;r~b;. Then (J(s * t) = (J(s ) * (J(t), as is easily checked. 
i=l 

2.3 C lass functions on Schur algebras 

Throughout this section, R is a commutative ring, G is a finite group, and 

{E9 ; g E G} is a partition of G such that E-;1 = Eg-1 and 1£9 1 is invertible in R . 

Put s9 = I: Ux in RG, s9 = jE9 l-1 s9 and let G0 denote a set of representatives of 
xEE9 

the distinct E9 . We assume t hat S = EB Rs9 is a subalgebra with unit element, 
gEGo 

i.e. S is a Schur algebra in RG. Note that Se.= ls , see 1.2.3(2). 

Recall that r : S-+ R : "E, r9 s9 ....... re defines a symmetric associative R-bilinear 
gEGo 

form b on S with dual bases {3g}, {sg-1}. As in section 1, let z = I: s9 sg-i and 
gEGo 

( : S -+ Z(S) : s ....... "E, s9 ss9 -i . Again, Z(S) denotes the center of S. 
gEGo 

2.3.1 Definition. We define an equivalence relation on G as follows : g "' h if 

and only if f (s9) = J (sh) for all f E Sym(S, R). In this case we say that g and h 

are S-conjugated (see also 2.3.12) . 

2.3.2 Proposition. Let g, h E G. If g "' h, then ((s9 ) = ((s1i) . In case z 1,s 

invertible in S, the converse holds true. 

Proof. The result follows from Proposition 2.2.2. D 
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2.3.3 Remark. Suppose R is connected and S ~ Endn(Pi) EB ... EB Endn(Pq) as 

R-algebras, P1, ... , Pq being finitely generated projective R-modules, and suppose 

that z is invertible in S. Then g ,..._, h if and only if tp, (s9 ) = tp, ( sh) for i = 1, ... , q, 

see Theorem 2.2.4(6) and Proposition 2.2.6(2). 

2.3.4 Lemma. Let g, h E G. If g ,..._, h, then g-1 ,..._, h-1 . 

Proof. Let f E Sym(S, R). Take the map(): RG-> RG: E r9u9 i----+ E r9ug-, and 
gEG gEG 

consider the restriction to S. By Lemma 1.2.4, Jo 8 E Sym(S, R). Since g ,..._, h, we 

have (Jo 8)(sq) = (Jo 8)(sh)- The statement follows at once. D 

For the remainder of this section, we fix the following notation. For g E G, set 

Kg = {h E GI g ,..._, h}. Obviously {Kg; g E G} is a partition of G and by Lemma 

2.3.4, K 9-, = K;1 . Put Vg = L ·u,, and let G1 denote a set of representatives of 
cr;EKg 

the distinct K9. 

We observe that K 9 = Eg U .. . U Ei , in particular Vg E S . Furthermore, K e = Ee. 

Indeed, T(se) = IEeJ-1ln and T(sk) = 0 fork¢ Ee. 

2.3.5 Definition. Let f E s•. We say t hat J is a class function on S if g ,..._, h in 

G implies that f (s9 ) = f (sh) - The set of all class functions forms an R-submodule 

of S*, denoted by Cf(S, R). Clearly Sym(S, R) c Cf(S, R). 

2.3.6 Proposition. (1) Z(S) C EB Rv9 . 
gEG, 

{2) Z(S) = EB Rv9 if and only if Sym(S, R) = CJ(S,R). 
gEG, 

Proof. Consider the left S-linear map /3 : S -. S* associated to 7 as in 2.1. 1. 

We know that f3 is bijective and f3(Z(S)) = Sym(S,R) , by Proposition 2.1.4. It 

suffices to show that f3(EBRv9) = Cf(S, R). We have f3(v9)(sk) = T(skvg) = 1 for 

k E Ky-1 and T(skv9) = 0 for k ¢ Kr'· Hence /3($Rvg) C C J(S, R) . For the 

reverse inclusion, use Lemma 2.1.3. D 
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At the end of this section we give an example to show that t he inclusion 

in 2.3.6(1) need not t.o be an equality. Our next objective is t o analyze the equality 

Z(S) = EBRv9 . We begin with a few remarks. 

2 .3.7 Remarks. 1. If s9 E Z(S), then 1(9 = E 9 by 2.3.6(1). 

2. It is easily verified that ((v9 ) = IK9 \((s9). In particular, if v9 E Z (S), then 

zv9 = \K9 l((s9 ). 

3. If v9 E Z(S) and z is invertible in S, then IK9 I is invertible in R. Indeed, 

v9 = \K9 l((s9 )z-1 = \K9 I I: rkvk with rk 'E R , whence 1 = \K9 \r9 . 
kEG1 

2.3.8 Proposition. Suppose that z is invertible in S. Then Z(S) = EB Rv9 
gEG1 

if and only if distinct ((sk) are linearly independent over R. 

Proof. By Proposition 2.3.2, ((s'g), g E C 1, are all distinct ((s1). Suppose that 

((Sg), g E C 1, are linearly independent over R. Let j E C J(S, R). It suffices to 

show that f is symmetric, see Proposition 2.3.6. Let x ES be such that ((x) = 0 and 

write x = I: rksk, rk ER. So O = ((x) = I: ( I: rk)((.sg) with J (g) = C0 nK9 , 
kEGo gEG1 kEJ(g) 

whence I: rk = 0. It follows that f(x) = 0 and thus f is symmetric, see Propo
keJ(g) 

sition 2.2.1. 

For the converse, use Remarks 2.3.7 (2) and (3). D 

As in section 1.2.5, we may consider the following componentwise multipli

cation on RC. Let a, a' E RC, a= I: r9u9 and a'= I: r~u9 with r9 , r~ ER. Then 
gEG gEG 

we define a* a'= I: r9r~u9 . Of course Sis closed under this multiplication. 
gEG 

2.3.9 Proposition. Suppose that R is a domain. If Z(S) is closed nnder the 

above componentwise multiplication, then Z(S) = EB Rv9 • 
gE G1 

Proof. l. We first assume that R is a field. Note that I: 'Ug = I: s9 E Z ( RC) n S , 
gEG gEGo 

hence I: u9 E Z(S). Then by Proposition 1.2.5, there is a partition {Fk ; k EC} of 
geG 
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G such that Z(S) = EB Rwk with wk = L Ux. Since Z(S) C EB Rv9, each wk is 
% ~~ ~~ 

a sum of certain v9 . Fix wk; say wk= v91 + .. . + v9m, g; E G1 . We now prove that 

m = l. 

Let f E Sym(S, R). By 2.1.3 and 2.1.4, c = L fCsg-1)s9 E Z(S), and c = 
gEGo 

L f (s9 -1 )v9 . But c * wk = rwk for some r E R. Therefore f (s
9
-i) = ... = 

gEG1 I 

f(s
9

;;..') = r . From this it follows that 91 '"" g;, i = 1, ... , m. Consequently, m = 1 

and wk= v91 . Then, using L wk= I: v9 , we obtain Z(S) = EB Rv9. 
Wk gEG1 9EG1 

2. Now let R be a domain with field of quotients L. Consider the Schur algebra 

S = EB Ls9 in LG. We observe that Z(S) = Z(S) n S. Then it is easily verified 
gEGo 

that Z(S) is closed under componentwise multiplication in LG. Further, g , h E G 

are S-conjugated if and only if they are S-conjugated. In order to prove this, one 

needs the following remarks. A map f E Sym(S, R) can be extended to a map 

J E Sym(S, L) by setting]( L f.9 s9 ) = I: f.9 f(s9 ), f.9 E L. On the other hand, 
gEGo gEGo 

let cp E Sym(S, L). Then there exists r E R such that rcp(s9 ) E R for all g E Go, 

and ripls E Sym(S, R). The above discussion yields the equality Z(S) = EB Lv9 . 
gEG1 

Consequently, v9 E Z(S) n S = Z(S), as desired. D 

2 .3.10 Rem ark. To the above defined componentwise multiplication on RG there 

corresponds a multiplication on (RG)*, see 2.2.9(3). Namely, let cp, 'I/; E (RG)*, then 

'P *'l/J(u9- i) = (()(Uy-1)·t/J(u9- 1), or equivalently, 'P*'l/J(u9) = r.p (u9)'l/;(u9 ) for allg E G. 

In the case where Z(S) = ffiRv9 we can derive the second orthogonality rela-

tions. 

2.3 .11 Proposition. Suppose R is connected and S ~ EndR(P1) ffi .. . ffi EndR(Pq) 

as R-algebras, P1, ... , Pq being .finitely genemted projective R -modules, and suppose 

that z is invertible in S. If Z(S) = EB Rv9 , then for g, h E G 1 we have 
gEG1 

q 

L 1Khlrank(P;)tpi(z)-1tp;(Sg)tp.(sh-l) = Ogh · 
i= l 
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Proof. Note that IG1 I= q. By 2.2.4 and 2.2.6, 

L rank(P;)tp,(zt1tp;(:5g)tpj(sg-1) = f>ij. 
gEGo 

This gives 

L rank(P;)tP.(z) - 1tp, (s9)tP;(v9- , ) = O;i 
gEG1 

and t pj(vg-1) = jK9 jtpj(sg-1). We can write this relation as AB= I; A, B being 

q x q matrices. Then BA= I , which implies the desired formula. D 

2.3.12 Note. We discuss the case where S = RG. Here, g, h E G are RG

conjugated if and only if h = tgr1 for some t E G. Indeed, suppose that f(u9) = 

f(uh) for all f E Sym(RG, R). In other words, r(u9c) = r(uhc) for all c E Z(R G) , 

see 2.1.4. Let s denote the sum in RG of all distinct conjugates kg- 1 k- 1 , k E G. 

Clearly, s E Z(RG) and r(u9 s) = 1. Consequently, r(u11s) = 1, whence tg- 1r 1 = 

h- 1 for some t E G. The converse is obvious. 

With notation as before, we have v9 E Z(RG) and Z(RG) = EB Rv9 . Moreover, 
gEG1 

Let H be a subgroup of G and consider the centralizer S of RH in RG 

(see 1.2.12) . If g1 and g2 are S-conjugated, then they are RC-conjugated, use 

Z(RG) c Z(S) . 

Let us now focus on the case where S is a double coset algebra. So let H 

be a subgroup of G with !Hl -l E R, put E = IHl-1 I: uh and consider S = c:RGc:, 
hEH 

see also 1.2.6. 

Let Z(S) and 7 be as before, and put s9 = IHgHl-1 I: Ux , for 9 E G. 
xElfgli 

For HG-conjugacy we now set Ck= {tkr 1
1 t E G} and wk= I: ux, with k E G. 

xECk 

2.3.13 Proposition. Consider S = c:RGE and let 91,92 E G. 

(1) If g 1 and g2 are S-conju9ated, then 
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for any RC-conjugacy class Ck· 

(2) If R is connected and Risa splitting ring for RC, then the converse of (1) holds. 

Proof. Note that. g1 anrl g2 are S-conjngat.erl if and only if T(s91 r:) = T(s92 c) for 

all c E Z(S) , see 2.1.4. 

(1) Clearly €Wk E Z(S). Further, T(Sg€Wk) = T(sgwk) = /H gHJ - 1/H gH n Ck- 1 /lR. 

The assertion now follows. 

(2) It suffices to show that €Wk, k EC, generate Z(S) as R-module. Let {e i, ... ,eq} 

be the set of primitive central nonzero idempotents of RC, and let eei i O for 
m 

i = 1, ... , m. Take a E Z(S). By Theorem 3.1.5(1) - (3), we have a= Z:::: rite; with 
i= l 

ri ER. Moreover, ei = Z:::: r~wk with r~ ER. D 

We conclude this section with a concrete example of the above situation, based 

on [Da.J. This example shows that the inclusion in 2.3.6(1) need not to be an equality. 

Example. Consider in CL3(;z3 ) the matrices 

Let C =< a, b, d >. We have the following relations : a3 = b3 = I , d2 = I , da = a2 d 

and db = b2d. Further, c = bab- 1a- 1
, c3 = I and c commutes with a, b, d. So each 

element of C can be expressed as ai!Jldkct with i, j, e = 0, 1, 2 and k = O, 1. 

We need the following RC-conjugacy classes : 

Let H =< d >. We require : 

HaH = {a , ad , da, a2
} 

H acH { ac, da2c, dac, a2c} 

H ac2 H { ac2
, dac2

, da2c2, a 2c2
}. 
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1 . 
Now put c = 2(u, +ud) in<EG and consider S = c(<l'G)E:. Let g E Ka, where Ka is 

the S-conjugacy class of a. By Proposition 2.3.13, HgH n Ca f ¢. Consequently, 

HgH = HaH or HgH = HacH or HgH = Hac2 H. Since HaHnCd f ¢, we may 

exclude the last two possibilities ( use 2.3.13). So we obtain Ka = H aH . However, 

HaH = I: Ux does not commute with HbH, and thus HaH 1 Z(S) . 
xEHa/-1 

2.4 Trace functions of induced modules 

Throughout this section, R is a commutative ring, G is a finite group and 

H is a subgroup of G. Let S be a Schur algebra in RG with associated partit ion 

{E9 ; g E G} and let B be a Schur algebra in RH with partition {Fh; h EH}. Fur

ther, let G0 , resp. H0, denote a set of representatives of the distinct E9 , resp. F11• 

Put s9 = L Ux and b,. = L 'Ux, 
xEEg xEF1, 

2.4.1 Definition. The Schur algebra B is called a Schur subalgebra of S if for 

each h EH we have Fh = UE9 , for some g E G. 

For the remainder of this section, we assume that B is a Schur subalgebra 

of S. We also assume /E9/-1 E R and /Fh/- 1 E R for all g E G, h E H. We set 

s9 = /E9 / -
1s9 , analogously bh. 

2.4.2 De finition. Let J E HomR(B, R). We define J E HomR(S, R) as follows : 

f(s9 ) = 0 if g 1 H and J(ag ) = f (bg) if g E H, and extend by linearity. 

We observe that JIB = f. 

Under certain conditions, we shall derive a formula for the t race function of 

an induced module. We set zs = I: s9 s
9
-, and zB = I: b1,b1i-1. 

gEGo hEHo 

2.4.3 Proposition. Assume that Fe = Ee and that zs is invertible in S . Sup

pose R is connected and finitely generated projective R-mod'ules are free. Further, 
q p 

suppose S ~ EB EndR(Mi) and B ~ EB EndR(N;) as R -algebras, where Mi , N; are 
J=l i=I 
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.finitely generated projective R-modules. Set N;8 = S ®s N;. Then 

where ( : S -. Z(S) : x 1-, ~ 3gxs9 -,. 
gEGo 

Proof. Recall that N; is an indecomposable left B-module (similar remark for Mi). 

From 2.2.7(4) , we have for any x ES 

q 

((x) = :EtM;(x)( L tM;(Sg-1)sg) -
j=l gEGo 

Applying t ~; to this expression yields 

tN,(((x)) = ttM,(x) ( L tM;(sy-,)tN,(b9 )) 

j = l gEGonH 

ttM1(x) ( L tM1 (b9 -,)tN1 (b9 ) ) . 

j=l gEHo 

By the hypothesis on R, we have Mila~ EB N;ki as left B-modules, where cki E IN. 
k 

Thus tM = "2:,ckitNk on B. Using the orthogonality relations 2.2.4(2) and 2.2.6(1) , 
} k 

we then obtain 

q 

rankn(N;)tN1 (((x)) = L tM;(x )e;,jtN,(za) . 
j=l 

By t,he hypothesis on R, we can apply a version of Frobenius reciprocity, see [l.1.3(3)] . 
q 

This gives tNs = ~ c;JtM., which completes the proof. D 
• j=l ] 

2.4.4 Remarks. (1) The derived formula generalizes the result of [R-satz 10]. 

(2) If we take x = Se in the preceding formula, then we get tN;(z8 )rankR(N/) = 

rankn(N;)tN.(zs)-

2.4.5 Example. Let S = RG and B = RH. In this case we have zs = IGlue and 

zs = IHlue. With hypotheses and notation as in 2.4.3 (in paJ·ticular IGI- L E R), we 

now obtain 

IH ltNs(u,,) = tN;(L u9 ,,9 - ,), for XE G 
' g EG 
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(use also 2.2.6(2)). Of course, this formula can be proved without any assumption. 

(N being a left RH-module, which is finitely generated and projective over R) , see 

5.5.6. 

We prove 

2.4.6 l;'roposition. Keep the hypotheses and notation of 2.4.3. If rankR(N;) = 
s -rankR(N, ), then tNs = tN, on S . . 

Proof. Write N instead of N;. From the hypotheses and 1.1.3(3) it follows that 

Ns is an indecomposable left S-module. 

Let {e1, . . . , eq}, resp. {Ji, ... , fp}, be the set of primitive central nonzero idempo

tents of S , resp. B. Assume N lies over f; and Ns lies over ei . Then we deduce 

that f; = ei. Indeed, we may write f, as a sum of orthogonal primitive idempotents 

of B, say f, = µ1 + ... + µr. Since N ~ Bt-tk in B-mod for k : 1 ... r , Ns ~ Sµk 

in S-mod. T hus each µk is a primitive idempotent of S and eiµk = µ1c. Now 

ej = ei fi + ej(l - h) = µ1 + ... + µr + ej(l - f;). But r = rankK(N) = rankR(N8 ) 

and thus ej(l - f;) = 0. 

From Proposition 2.2.6(1), it follows that 

and 

tNs(zs )ei = (rankRN)2 L tNs(sg-1 )s9 
gEGo 

Moreover, since zs is invertible in S, rankR(N) = rankR(N8 ) is invertible in R, 

whence tN(z8 ) is invertible in R (see 2.2.6(2)). 

Expressing the equality ej = f;, we then obtain that tNs (3g) = 0 for g ff_ H and 

tNs(zs)tN(b9 ) = tN(zs)tNs(s9 ) for g E H. 

In particular tNs(zs )rankR(N) = tN( za)rankR(N8 ) (take g = e), whence tNs(zs ) = 

lN(z8 ). We conclude that t,vs = tN on S. 0 

Remark. Let H be a subgroup of a finite group G. Let S denote the central

izer of RH in RC and Pis an indecomposable S-module. In example 5.6.1 one has 
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ranknP = rankR(RG ®s P) for some P . 

Let H be a normal subgroup of G. In 5.5.8(3) sufficient conditions are found to have 

ranknP = rankn(RG ®s P) . 
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Chapter 3 

Hecke algebras 

Throughout R is a commutative ring. Let G be a finite group and let H 

be a subgroup of G. Suppose that IHl- 1 E R and consider the idempotent eH = 

IHl - 1 I: uh in RC. Then eHRGeH is a Schur algebra, called a double coset algebra 
hEH 

(see 1.2.6). More generally, let S be a Schur algebra in RG with associated partition 

{E
9

}. If His a subgroup of G such that IHl - 1 ER and His a union of some E9 , 

then, under suitable conditions, the algebra eHSeu is a Schur algebra in RG with 

associated partition {HE9 H} (see Proposition 1.2.7) . We shall discuss relations 

between RG and ecRGeH and between Sand eHSeH in a more general context. 

Until further notice, A denotes an R-algebra and t: a nonzero idempotent in 

A. The algebra t:At: is called a Hecke algebra in A. 

In the first section we investigate the relationship between indecomposable modules 

over t:Ac and indecomposable A-modules. In the second section we focus on the 

character theory. 

3.1 Indecomposable modules over Hecke algebras 

Note that (EndA(Ac:)) 0 -> t:At: : 'lj; -> 'l/J(t:) is an isomorphism of R-algebras. 

Further, if A is finitely generated and projective as R-module, then so in t:At:. 

3.1.1 Proposition. Suppose that A is fin itely generated and projective as R

module and suppose that t:At: is a faithful R-algebra {this follows whenever R is 

connected) . If A is separable over R, then so is t:Ac. 
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Proof Clearly Ac: is a finitely generated projective faithful R-module, whence 

EndR(Ac:) is a central separable R-algebra. Further, observe that EndA (Ac:) is the 

centralizer of T(A) in Endn(Ac:) where T(A) is the algebra consisting of all left 

multiplications by elements of A. Since T(A) is separable over R, it follows from 

[DM-I, Theorem 4.3] that EndA(Ac:) is separable over Rand so is c:Ac:. D 

In particular, if IGI is invertible in R, then every double coset algebra in RG is 

separable over R. From [C-R, 6.3] we may deduce : 

3.1.2 Proposition. Let P be the category of all finitely generated projective left 

c:-Ac:-modules and let C = C(A.s) be the category of all left A-modules which are iso

morphic to A-direct summands of (Ac:r for some m . Then the functors 

Ac: ®eM - : P--+ C and HomA(AE, -) : C-> P, denoted by F1 resp. F2, define an 

equivalence of categories between P and C. Consequently, indecomposable modules 

in P correspond to indecomposable modules in C under F1 and F2 . 

It is clear that HomA(Ac:, M) is a right EndA(AE)-module, hence it is a left EAE

module (M being a left A-module). Moreover, HomA(Ai::, M) --+ c:M : if; t-t 1/;(E) is 

an isomorphism of left c:Ac:-modules. 

Further, if O i= M E C(Ac: ), then M is a finitely generated projective left A-module 

and .sM i= 0. We now focus on central idempotents. 

3.1.3 Remarks. Suppose that R is connected and that A is finitely generated and 

projective as R-module. Let {e1 , ... , eq}, resp. {d1 , .. . ,dm}, be t he set of primitive 

central nonzero idempotents of A, resp. c:AE. 

l. Each nonzero Ee; is uniquely expressible as a sum of d/s and each di appears in 

one and only one of the nonzero Ee;. 

2. Let P E P be indecomposable (notation as in 3.1. 2). Then Ac: ® 0 A E P lies over e1 

if and only if Ee; =J O and P lies over some di appearing in the decomposition of Ee;. 

3. We may write dj as a sum of orthogonal primitive nonzero idempotents of c: Ac:, 

say dj = ry1 + ... + 'T/k (use rankR), It is clear that t:AETJ, is an indecomposable 

module in P lying over dj. 
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3.1.4 Proposition. Let R, A and {e1 , ... , eq} be as in 3.1.3. Suppose that any 

two indecomposable finitely generated projective left A-modules lying over the same 

e; are isomorphic as A-modules, then : 

(1) The nonzero ce; are precisely the distinct primitive central idempotents of cAE. 

(2) Any two indecomposable finitely generated projective left €Ac-modules lying over 

the same nonzero E:ei are isomorphic as €Ac-modules. 

(3) Let M be an indecomposable finitely generated projective left A-module lying over 

e;. Then cM =/ 0 if and only if E:e; -=I- 0, and this is equivalent to ME C(Ac). 

Proof. The result follows readily from 3.1.2 and 3.1.3 D 

3.1.5 Theorem. Let R, A and {e1 , ... , eq} be as in 3.1 .3 Suppose A~ Endn(M, )(f} 

... EB EndR(Mq) as R-algebra, M; being finitely generated projective R-modules, and 

assume that M; lies over e;. Then : 

(1) The nonzero ce; are the primitive central idempotents of cAE:. 

(2) EMi f O if and only if Eei =/ 0, and this is equivalent to M, E C(Ac). 

(3) Each nonzero EM; is an indecomposable left EAE:-module and EA€~ EB Endn(cM;) 
i 

as R-algebras, where the sum is taken over the nonzero EM;. 

Proof. Recall that each M; is an indecomposable left A-module under the oper

ation (cpi, . .. , cpq) · m = cp;(m), m EM; and 'Pi E EndR(M1). 

It is easily seen that each nonzero dv[i is a finitely generated projective R-module. 

Further, since A is separable over R, projectivity over R is equivalent to projectivity 

over A. The same remark holds for cAc. 

(a) Obviously cM; f O yields Ee; -=I- 0. Now assume c:e; -#- 0. Let {d1 , . .. , dm} be 

as in 3.1.3; then Ee; is a sum of d/s. Consider an indecomposable module P E 'P 

which lies over some di, appearing in the decomposition of ce; . We know that 

Aei ~ Endn(M;), and Ac 0cA£ P is a unitary left Ae;-module. Therefore there is 

an R-module L such that A c 0eA.- P ~ L 0n M, as left A ( or Ae;)-modules, see e.g. 

[DM-I,p.19]. Then P ~ L 0 R. c:M; as left cAc-modules. Consequently, cM; =/ 0 and 

djEM; i- 0. 

(b) Assume c:M; -=/- 0. We observe that E:!Vl; E P. Thus Ac 0.-AE c: M; E C(Ac) and 
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it is a unitary left Ae;-module. But then there is a finitely generated projective 

R-module N such that Ac: 0.:M sM; ~ N 0n M; as left A (or Ae;)-modules, see e.g. 

[DM-I, p.19 and 23]. Consequently, cM, ~ N 0n t:M, as left cAc-modules. This 

implies that rankn(cM;) = rankn(N)rankn(cM;), whence rankR(N) = 1. Therefore 

EndR(N) =RI~ R, see e.g. [DM-I, p.32]. Since we are dealing with equivalent cat

egories, we have EndA(N0RM;) ~ EndR(N) and EndA(At:0.:A.:cM;) ~ EndEA., (cM;) 

as R-algebras, see e.g. (DM-I, p. 17]. We conclude that EndeA.:(cM;) =RI~ R. In 

particular, c:M, is an indecomposable left c:Ac-module, see [C-R, 6.4]. 

(c) Since each nonzero c.M, is indecomposable, it follows from (a) that each nonzero 

ce; is a primitive central idempotent of c:Ac:. Let c:M; i= 0. Since End0 Ae ;cM;) = RI, 

we then obtain c:Ace; ~ EndR(t:M;) as R-algebras, see [N2-v.02, 1. 7] (the isomor

phism associates to rnce; the left multiplication by rnce;) . Now, N ©R c:M; ~ 

t:M; ~ R 0ncM; as left cAc-modules, and thus N ~ R (N as in (b)) . Consequently, 

M; ~ Ac 0eAe cM; E C(Ac) , completing t he proof. D 

Remark. Keep the hypotheses of 3. 1.5 and suppose that finitely generated pro

jective R-modules are free. Then rankR(cM;) is equal to the mult iplicity of M; in 

the decomposition of Ac into indecomposable left A-modules, see 1.1.3(1). 

Note. If E is a semisimple ring and ca nonzero idempotent of E, then it is known 

that t:Ec is semisimple too. In this case, indecomposable modules over E and cEc 

are simple modules, and modules are projective. 

The results in Proposition 3.1.4 remain true. 

We now focus on the case where c E Z(A), the center of A. This is equivalent 

to cAc is an ideal of A, as is easily checked. Let A, R, { e1, ... , eq} be as in 3.1.3. 

In this case, c: is uniquely a sum of distinct primitive central idempotents of A , say 

c = e 1 + ... + et with t ::; q. So cAc = Ae1 EB . .. EB Ae: and e1, ... , ei are precisely 

the primitive central idempotents of cAc. A left t:Ac:-module W becomes a left 

A-module by setting : a.w = ac:w, a E A, w E Wand we have at once : 

3.1.6 Proposition. Let EE Z (A) , then: 
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(1) If W is an indecomposable left €Ac-module, then it is also an indecomposable 

left A-module. Conversely, if M is an indecomposable left A-module such that 

cM -f 0, then cm = m for alle m E M and M is an indecomposable left 

c:Ac-morfole. 

(2) If W is a finitely generated projective left €Ac -module, then W is finitely gen

erated and projective as A-module. If M is an fin itely generated projective 

left A -module and c:M =f 0, then cM is finitely generated and projective as 

€Ac- module. 

Proof. Straightforward. D 

3.1.7 Example Let H be a subgroup of a finite group G and assume JH)- 1 E R. 

Then eH = IHJ- 1 L uh E Z(RG) if and only if His a normal subgroup of G. 
hEH 

Note that in this case eHRGeH is isomorphic to R[G/ HJ. 

3.2 Trace functions on cAc 

Throughout this section Risa connected commutative ring, A is an R-algebra 

which is finitely generated projective as R-module, and c is a nonzero idempotent of 

A. Let Z( A ) denote the center of A. Further, let {e1 , . . . , eq} be the set of primitive 

central nonzero idempotents of A. We first discuss t he relationship between trace 

functions on A and on E:AE:. 

Let M be a left A-module such that eM =/= 0. If M is finitely generated projective 

over R, then so is cM. More precisely, if f; E Homn(M, R), m, E M is an R-dual 

basis for M , then {J;IEM } , {E:mi} is an R-dual basis for cM. Using R-dual bases 

for Mand cM. we obtain t,M(cxc) = tM(cxE) = tM(xc) for all x EA, in particular 

tM(t:) = rankn(cM) ln. Furthermore : 
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3.2.1 Proposition. Suppose that R is a splitting ring f or Z (A). Let M be a left 

A-module which is finitely generated projective over R, and assume M lies over only 

one primitive central idempotent. Suppose t:M :/= 0, then : 

rankn(t:M)tM(x) = rankn(M)t.,M(t:x t: ) for all x E Z(A) . 

Proof. Assume M lies over ek, By hypothesis, Z(A) = Re1 EB . .. EB Req, and thus 
q 

x = I: riei with ri E R. We have tM(x) = rankn(M)rk and tM(X€ ) = r • ..tM(t:) . 
j = l 

From this the assertion follows. D 

3.2.2 Note. Keep the hypotheses of 3.2.1. In addition, suppose that A is a sym

metric Frobenius R-algebra and let b be a symmetric associative bilinear form on A 
n 

with dual bases {a1 , ... , a,n}, {b1, . .. ,bn}, Putz= I: a;b; . Combining 2.1.19 and 
i =cl 

3.2. 1, we then obtain : 

for all x E A. 

3.2. 3 Corollary. Let A = R *o: G where G is a finite group such that JGJ -1 E R 

and suppose that R is a splitting ring for A. Let M be an indecomposable left A

module which is finitely generated projective over R and assume t: M :/= 0. Further, 

modify a as in 1.1.8. Put K9 = {ygy- 1
J y E G} and v9 = I: Ux withg E G. Then 

x EK 9 

for any a -G-regular g E G we have : 

Proof. By 1.1.6(1) we have JK9 ltM (u9 ) = tM (v9 ) . As v9 E Z(R *o: G), see 1.1.5, we 

may apply proof 3.2.l. D 

In the case where £ E Z( A), we have the following. Let M be a left A

module which is finitely generated projective over R and assume that M lies over 

only one primitive central idempotent . Let t:M :/= 0, then cm= m for all m E M 

and tM(x) = tM(t:xc:) for all x E A. Furthermore : 
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3.2.4 Proposition. Suppose that R is a splitting ring for A and that finitely gen

erated projective R-modules are free. Let M1, . .. , Mq be a basic set of indecomposable 

left A-modules which are finitely generated projective over R and let EM; =J O for 

i = 1, ... , t. For p,ach i, 1 :S i :S t , s1tppose that either 

(i) rankR(EM;) = rankR(M1) or 

(ii) tM;(x) = tM;(ExE) for all XE A. 

Then EE Z(A) . 

Proof. Let 1 :Si :St and let M; lie over e1. Suppose (1 - E)e; =J 0. Using ranks, we 

may write €e;, resp. (1-E )e;, as a sum of orthogonal primitive nonzero idempotents 

of A , say Ee;= 771+ ... +771 and (1-E)e; = µ1 + .. . +µk. Obviously e; = Ee;+(l - €)e; 

and 178 µj = 0 for s = 1, ... , l, j = 1, . .. , k. 

Case (i). The assumptions on R imply that (l + k)rankR(M;) = rankR(Ae;) = 

(ranknMJ2 , whence l +k = rankR(M;). Clearly 771, ... , 771 are also primitive idempo

tents of EA£ and using Theorem 3.1.5, we deduce, just as above, that l = rankR(dv!;). 
t 

Consequently, (1 - E)e; = 0 or ee; = e; . It follows that E = E Ee; E Z(A). 
i=l 

Case (ii). For j = 1, ... , k , we have tM.(µi) = tM;(µjE) = 0. Now by [Nrv.02 , 

1.7], µjAµj ~ EndA(Aµi) 0 = RI as R-algebra, whence µjAµi = Rµj. Therefore 

tM;(Aµj) = 0. As Ae; ~ Mn,(R), we know that the restriction of tM, to Ae; is 

nondegenerate (see 2.1.6.(3)). So µi = 0 and thus (1 - E)e; = 0. Consequently, 

EE Z(A). D 

In chapter 2, we have developed a character theory for Frobenius algebras, 

in particular for Schur algebras. When A is a twisted group ring we may express 

primitive central idempotents of EAE in terms of trace functions as follows : 

3.2 .5 Proposition. Let A = R *a G where G is a finite group such that IGl-1 E 

R . Snpposf'. R *a G ~ Endn(M1) EB ... EB EndR(Mq) as R-algebra, M1 , ... , Mq be

ing finitely generated projective R-modules. Assume that M; lies over e; and that 

EM; =JO for i = 1, . .. , t. Then for l :S i,j :St we have : 

(1) Ee,= IGl;(e,e) rankR(M;) L a(g,~-i/cM,(Wg-iE)W9E 
gEG 
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(2) L <>(g,~-') t cM; (w9- ,c: )tsM ; (w9e) = 8iilGlrankn(c:M;)(rankRM;)-1a ( e, e) 
g EG 

Note that we may apply Theorem 3.1.5 

Proof By example 2.2.8 (3), e; = -101 
1
( l ranknMi I: ~( 1 

_ 1)tM.(u9- , )u9. 
o e ,e gEG a g,g 

Using Lemma 1.1.7 and the fact that t M, (uy- i c: ) = t . M,(euy-1c:), we obtain (1). 

The second assertion follows by applying tcM; to the expression for ee;. D 

3.2.6 Note. Keep the above hypotheses. As in the proof of 3.2.5 we derive : 

E:ek = IGl;(e,e) rankR(Mk) L a(g,~ -1 ) tM.(Ug-1e)u9 
gEG 

for k = 1, .. . , q. 

Note that eMk -:/- 0 if and only if eek-:/- 0. Let now e = I: r9u9 wit h r9 E R. Then 
gEG 

t 
it is easily seen that jGja(e, e)re = I:: rankn(M;) rankR (eM;)ln. 

i= l 

To conclude we turn to the double coset algebra. Let G be a fini te group, 

Ha subgroup of G with jHj - 1 ER and A = RG. Let e = !Hl-1 I: u,. and consider 
hEH 

the double coset algebra eAe. 

For any g E G, jHgHj is invertible in Rand jHgH jeu9e = HgH, where HgH = 

I: 'Ux , see 1.2.6. 
xE lfgH 

The distinct H gH form an R-basis for eAe. If we apply Proposit ion 3.2.5, then we 

obtain : 

3.2.7 Proposition. K eep the hypotheses and notation of 3 .2.5 (with a= 1) . Let 

{gi, ... , 9m} be a full set of double coset representatives for H in G. Then for 

We observe that eAc: is a symmetric Frobenius R-algebra. More precisely, let 
m 

gi, . .. , gm be as above and _q1 = e. Then T : c:Ae -+ R : I:: r k H gk H t-t r 1 defines a 
k= l --
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symmetric associative R-bilinear form on ch: with dual R-bases { a1; = H g1;H} and 

{ bk = I H :1.H\ Hg; 1 H}. So we may apply the results in chapter 2, in particular 

Proposition 2.2.6. 

Now, keep the hypotheses and notation of 3.2.7. Comparing 3.2.7(1) and 2.2.6(1) 

we see that 

m 
with z = L akbk and cMi /= 0. 

k=l 

55 



56 



Chapter 4 

Fixed algebras of automorphism 

groups 

In this chapter we study modules and characters over Schur algebras which 

are fixed rings of automorphism groups. 

4.1 Indecomposable modules over fixed algebras 

As in 1.2.10, R is a commutative ring, G and H are finite groups and a : H -, 

Aut(C) is a homomorphism of groups. The orbits Eg = {a,.(g) I h E H}, g EC, 

form a partition of G; E;1 = Eg-1 and Ee= {e}. Each ah extends to an R-algebra 

isomorphism of RC (again denoted by a,.) as follows: ah(I: r9u 9) = I: r9ua1,(g), with 
g g 

g E C and r g E R. Furthermore, 

a : H -, AutR(RG) : h - a1i is a homomorphism of groups. 

Consider the fix.ed ring RGH = {a E RC I Vh EH : ah(a) = a}; we have : 

4 .1.1 Lemma Keep the above notation, put sg = I: u,,, in RC, and let G0 denote 
xEE9 

a set of representatives of the distinct E9 . Then RGH = EB Rs9 , i.e. RGH w a 
gEGo 

Schur algebra in RC. 

Proof. See 1.2.11. 

4.1.2 Example Let G be a cyclic finite group and consider the action of Aut(G) 

on G. 
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Let g E G be an element of order d. Then the orbit O(g) of g consists of all elements 

of G having order d, in particular #O(g) = cp(d), where cp is the Euler function. 

Evidently, 'l/J(g) has order d for any 'ljJ E Aut( G). Now let a E G be an element 

of order d. Let #G = P? .. -PI', p; being prime and r; E .llV\{O}. We know that 

G = S1S2 .. . St, where S; is the Sylow p,-subgroup of G. We write 9 = g192 ... 91_ 

and a = a1a2 . . . at, 9;, a; E S;. Then order (9;) = order (a;) = p~', 0 ::;: k, ::;: r; . 

Since S; is cyclic, < 9; >=< a; >, whence a;= 91(\ 0 < m; < l · and m; relatively 

prime to p7; . But then m; is relatively prime to P?. So 1/J; : S; ---+ S; : x; i--+ .1;t' is an 

automorphism of S;. Now consider 'ljJ: G---+ G with 1/J(x) = 'l/J1(x i) . . . 1/Jt(Xt), where 

X; ES; and x = x 1x2 ... x1. Then 1/J E Aut(G) and 'lf;(9) = a. 

We discuss the problem in a more general context. We recall a few facts 

about fixed rings of automorphism groups. Throughout A is an R-algebra, H a 

finite group and a: H---+ AutR (A) a homomorphism of groups. 

For any a E A, denote by O(a) the orbit {ah(a) I h EH} and set s(a) = I:: x. 
xEO(a) 

Clearly, AH = {a EA I 'vh EH: a1,(a) = a } is an R-subalgebra of A containing l A. 

Moreover, for any a EA we have s(a) E AH as well as I:: ah(a) E AH. 
hEH 

Further, the associated skew group ring is denoted by A* H. As a left A-module 

A * H is freely generated by symbols { w1iJh E H} and mult iplication is defined by 

(awh) · (bwk) = aa1,(b)w1ik for all a, b E A, h, k E H. Of course A* H is also an 

R-algebra, where the R-module structure is inherited from A. 

If IHl - 1 E R, then we may consider the idempotent eH = IHl- 1 L w1, in A * H. 
l>E H 

From [M, Lemma 2.1] we retain: 

4.1.3 Lemma Assume IH l-1 E R. Then eH(A * H) eH = AHeH, and AHeH is 

isomorphic to AH as R -al9ebra. 

Proof. Set£= eH, and observe that (awe)v = av for all a EA, ·u EA* H . 

For a E A and k E H we have c:(awk) = IH l- 1 I: a,,(a)whk· But w1t: = t: . Therefore 
hEH 

c:(awk)E. = IHl-t I: a1,(a)c:, and this shows that €(A* H) E. C AHt:. On the other 
hEH 

hand, a= IHl- t I:: a1,(a) for all a E AH, and the equality follows. 
hEH 

Using the expressions given above, it is easily verified that A11 ---+ AH c : a i--+ ac is 
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an isomorphism of R-algebras. D 

We may use the preceding lemma to prove : 

4.1.4 Proposition Let A, H, a be as before and assume IHl-1 ER. 

(1) If A is finitely generated and projective as R-module, then so is AH. 

(2) Suppose that A is finitely generated projective and faithful as R-module. If A is 

separable over R , then so is AH. 

(3) If A is a semisimple ring, then AH is semisimple too. 

Proof. (1) Let { a1 , . .. , an } C A, { cp1, ... , Ci?n} C HomR(A, R) be a dual basis for A. 

Then it is easily checked that {IHl- 1 I: ah(ai )}, {'Pi lAH} is a dual basis for AH. 
hETf 

m 
(2) Let I: Xi© Yi E A ©n A0 be a separability idempotent for A. Then it is easily 

i= l 
m 

verified that IHl- 1 I: I: (ah(x;)w,. ©y;w,.-1) is a separability idempotent for A* H. 
hEH i=l 

So A* H is separable over R. Moreover, A* H is finitely generated projective as 

R-module. We now apply Lemma 4.1.3 and Proposition 3.1.l. 

(3) See [Mo-Theorem 1.15]. D 

Let us return to the case where A = RG and H acts on G. Then A* H 

is isomorphic to R(G Xa H) as R-algebra, where G Xa H is the semidirect product 

of G and H (i.e. (g1, h1) · (92, h2) = (g1a,., (92), h1h2) for g; E G, hi E H). The 

isomorphism maps u9w,. EA* H onto (9, h) for any g E G, h E H. 

In case IHl-1 E: R, t he algebra RGH is isomorphic to a double coset algebra in 

R(G Xa H), see Lemma 4.1.3. Furthermore we have : 

4.1.5 Proposition (1) If IHI and IGI are invertible in R , then RGH is separable 

over R. 

(2) Suppose R is connected, and IHI and IGI are invertible 'in R. If R is a sphtting 

ring for R( G x" H) , then R is a svlitting ring for RGH. 

In particular, let rn be the exponent of G Xa fl and T/ a primitive m-th mot of unity, 

then R[rJ] is a splitting ring for RGH . 
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Proof (1) We know that JGJ- 1 E R implies that RG is separable over R, and 

we may apply 4.1.4(2). 

(2) The first statement follows from Lemma 4.1.3 and Proposition 3.1.5. The second 

part follows from [SJ . D 

Next we deal with indecomposable modules. Connections between RGH

modules and R( G Xu H)-modules are given by the theory of double coset algebras, 

developed chapter 3. We now investigate the relationship between indecomposable 

RGH-modules and indecomposable RC-modules. We return to the general situation 

where A is an R-algebra, Ha finite group and a: H-. Autn(A) a homomorphism 

of groups. We require the following definition. 

4.1.6 Definition Let M be a left A-module and let h E H. We obtain a left 

A-module h M as follows : consider the underlying abelian group of M and let A act 

on it by setting aom = ai;1(a)m for all a E A, m E M. 

Observe that the induced R-module structure on "M coincides with that on M and 

hM ~ w,.A ©AM as left A-modules. 

4 .1.7 Remarks 1. Let M, N be left A-modules and let h, k EH. Then k("M) = 

kh M as A-modules, and HomA(" M,h N) = HomA(M, N). 

2. Let M be a left A-module which is finitely generated and projective over R. For 

the trace functions we get : thM(a) = tM(a;;1(a)) for all a EA, h EH. 

3. 1f M is an indecomposable, resp. a finitely generated projective, left A-module, 

then so is "M for all h E H. In particular, if m; E M, Ji E HomA(M, A) is an 

A-dual basis for M. Then m;, ahof; is an A-dual basis for "M. 

4. Suppose that R is connected and that A is finitely generated and projective as R

module. Let { e1 , . .. , eq}, resp. { d1 , .. . , drn}, be the set of primitive central nonzero 

idempotents of A, resp. AH ( use rankR). Then H acts on { e1 , .. . , eg} by a . Again, 

let s(e;) denote the sum of the idempotents in the orbit of e;. Each s(e;) is uniquely 

expressible as a sum of d/s, and each di appears in one and only one of the s(e;). 

Note also that dj appears in s(e;) if and only if dje; f 0. 

5. Let R , A, e;, dj be as in ( 4), and let M be an indecomposable left A-module 
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lying over ei. We observe that hM lies over ah(e;), h EH. 

Further, it is clear that d1e; = 0 implies diM = 0. Moreover, if M is finitely 

generated projective over A and if any two indecomposable finitely generated pro

jective left A-modules lying over the same primitive central idempotent are iso

morphic as A-modules, then the converse is true. Indeed, suppose diM = 0 and 

write e; = T/i + ... + T/t, T/k being primitive idempotents of A. Then diAT/k = 0 for 

k = 1, ... , t, whence die;= 0. 

Note also that MIAH is the direct sum of the nonzero d1M. 

4.1.8 Theorem Suppose that R is connected and that A is finitely generated and 

projective as R-module. Let P be an indecomposable left AH -module, and let e be a 

primitive central idempotent of A such that e(A ®Alf P) =J 0. Set W = e(A ®Alf P) 

and F = {h EH I ah(e) = e}. Then 
r 

(1) A ®AH P ';:! EB h, W as left A-modules, where { h1, ... , hr} is a set of left coset 
i=l 

representatives of F in H. 

Moreover F = {h EH I hW ';:! W as A-modules}. 

(2) If P is finitely generated and projective over AH, then we may write A @AH P = 

Nii$ ... $ M. where each M; is an indecomposable left A-module. In this case W 

is the direct sum of all M; lying over e. 

Proof. (1) Let { e = e1 , ... , ei} be the set of all primitive central idempotents of A for 

which ej(A ®AH P) f 0, and set W1 = e1(A 0 AH P) . Then A @AH P = W1 $ ... $ Wi 

(W = W1) . 

Further, let d denote the primitive central idempotent of AH for which dP =J 0. Then 

ei(A ®AH P) f O implies ejd -=f. 0. By Remark 4. 1.7(4), it follows that e1, •.• , et be

long to the same orbit (of the action of H). 

Now let h EH. We observe that A ®Au P -+ h(A®A11 P ) : I: a; ®p; .-. L O'i: 1 (a;) ®p; 
i i 

is an isomorphism of left A-modules. Thus O'h(e)(A®Alf P) ~ O'h(e)a"(A ®Ai1 P) = 

hW =JO as A-modules. This yields uh(e) = ei for some .i E {l , ... , t}. 

Moreover we obtain Wi ~ "W. Furthermore, if a,.(e) = e, then W ~ "W. The 

converse follows from the fact that eH/ = lV and <Th(e)o"W = hW. 

(2) It is clear that A ®Au P is nonzero, finitely generated and projective over A, 
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hence also over R, and use rankR, D 

4.1.9 Remark (1) From the proof of Theorem 4. 1.8 it follows that e(A@AH P) =/. 0 

if and only if A @AH P =/. 0 anded=/= 0. 

(2) Theorem 4.1.8 remains true if Pis a left A8 -module which lies over only one 

primitive central idempotent of AH. 

As an immediate consequence of 4.1.8, we obtain : 

4.1.10 Corollary Keep the hypotheses and notation of Theorem 4.1.8(2), and 

.mppose that any two indecomposable finitely generated projective left A-modules ly

ing over the same primitive central idempotent are isomorphic as A-modules. 
r 

Then A @AH P ~ EB(h;M)k as A-modules, where M is an indecomposable finitely 
i= I 

generated projective left A-module lying over e and k E IN. Moreover uh (e) = e if 

and only if "M ~ M . 

Note. In case A is a semisimple ring (then AH is semisimple too), the statement 

in Corollary 4.1.10 remains true for a simple AH-module Panda simple A-module 

M. 

Let Inn(A) denote the group of inner automorphisms of A As a special case we 

now obtain: 

4.1.11 Corollary Suppose that u(H) C Inn(A). Then we have A @AH P = W in 

Theorem 4,1 .8, and we have A ® A11 P ~ Mk in Corollary 4.1.10. 

Note. Suppose that u(H) C Inn(A). Let U denote the group of invertible ele

ments of A and consider j : U---; Inn(A) : u 1--+ Ju with iu(a) = uau - 1 for all a EA. 

Take the subgroup L = j- 1(a(H)) of U and restrict j to L. Then AH= AL and AL 

is the centralizer in A of the R-subalgebra generated by L. 
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4.2 Trace functions 

We return to Schur algebras. So let G, H be finite groups, let O" : H -+ Aut(G) 

be a homomorphism of groups. Again, for any g E G, put E9 = {uh(g)lh EH} and 

s9 = E Ux. Then RG1"1 = EB Rs9 where G0 denotes a set of representatives of 
xEE9 gEGo 

the distinct E9 . Suppose R is connected and let { e1 , . .. , eq }, resp. { d 1, . .. , dm}, be 

the set of primitive central nonzero idempotents of RG, resp. RGH. 

Under suitable conditions, the module relations in 4.1 .10 and 4.1.11 can be 

translated into relations between trace functions on RG and on RGH. Suppose 

finitely generated projective R-modules are free , 1c1- 1 E Rand Risa splitting ring 

for RG and for RG11 (see e.g. 4.1.5(2)). Thus RG ~ Endn(M1) EB . .. EB EndR(Mq) 

and RGH ~ Endn(P1) EB ... EB Endn(Pm) as R-algebras, where the M ; and Pi are 

finitely generated projective R-modules. Assume that M; lies over e, and Pi over 

di. Combining Corollary 4. 1.10, Proposition 2.4.3 and 4.1.7(2) we obtain for any 

g E G: 

r -
(1) ktp (z) L tM,(U17- 1( )) = rankn(Pi)tp ( L Uxgx-,) with k, r , he as in 4.1.10, 

, l = l ht 9 , x EG 

lp; as in 2.4.2 and z = L jE9 l-1 s9 s9-, . 
gEGo 

If Pi lies over dj, then M; lies over e; with e;di =fa 0, see 4.1.9(1). Moreover, 

by t he hypotheses, e,d; =fa O if and only if di M; =fa O ( as in 4.1. 7 ( 5)) . 

If z is invertible in RGH, then using relation (1) for g = e and using 2.2.6(2) , the 

relation (1) can be rewritten as : 

Now suppose a(H) C InnG. Then in the relation (1) we have r = 1, h1 = e and 

Z(RG) C RGH. As a consequence: 

(3) ktp;(z )tM,(u9 ) = rankn(P1)tP; ( L Uxgx - ,) . 
xEG 

In this case we have for each di a unique ei such that e;di =I 0. 

If z is invertible in RG 11 , then the relation (3) can be rewritten as : 

(4) IGlrankn(Pj )tM, ('u9) = rankn(M;)tpj ( L ux9x- ,). We shall obtain this formula 
xEG 

in 5.4.10(*) in a different context. 
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We now express primitive central idempotents of ROH in terms of trace func-

tions . 

4.2 .1 Proposition Assume R connected, 101-1 E R and IHl-1 E R . Suppose 
q 

that RO ~ EB Endn(M;) as R -algebras, M; being a finitely generated projective R-
-i=l 

module, and assume that M; lies over e;. Consider a primitive central idempotent 

d = dj of ROif, and let e; be such that e;d i= 0. Then : 

IFld = IH IIOl- 1mnkn(M;) L IE9 l-1tdMi(sy- ,)s9 
gEGo 

with F = { h E Hluh(e;) = e;} . Moreover, dM; i= 0. 

Proof. By 2.2.8, e; = 101-1 rankR(M;) I: tM,(uy-,)u9 . Then, applying 1.1.7, 
gEG 

e;d = IOl - 1rankn(M;) I: tM;(ug-,d)u9 . The same formula holds for u1i (e;) and 
gEG 

"M;, h E H . Then adding up these results, and using 4.1. 7(2) and s(e;)d = d, we 

obtain : 

IFld = /HI IOl - 1 rankR(M;) L /E9l-1t M, (s9-, d)u9. 
gEG 

4 .2 .2 N ote Suppose that any two indecomposable finitely generated projective 

left ROH-modules lying over the same primitive central idempotent d of RGH are 

isomorphic as ROH-modules (This follows for example when R is semilocal and 

101-1, IH /- l ER) . 

Let P be an indecomposable left , finitely generated projective ROH-module lying 

over d, then dM; ~ P" as left ROH-modules, n E IN , 

in chapter 2 we have developed a character theory for Frobenius algebras, in par

ticular for ROH( IH l- 1 E R) . Comparing the expressions of Proposition 4.2.1 and 

Proposition 2.2.6(1) we obtain : 

4.2.3 Corollary Keep the notation and hypotheses of 4 .2 .1. In addition, suppose 

that finitely generated projective R-modules are free and that R is a splitting ring for 
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RGH (see e.g. 4,1.5(2)). Let P be an indecomposable finitely generated projective left 

RGH -module lying over d. Then dM; ~ pn as RGH-modules and nrankR(M;)zd = 

IHl- 1 IFI IG lrankR(P)d , with M; , F as in 4.2.1 and z = ~ IE9 l-1s9 - is9 . 
gEGo 

4.2.4 Remark If (]'(H) C Inn(G) , then F =Hin 4.2.1 and 4.2.3. In this case, we 

may get more information about d, P and n, see 5.2.5- 5.2.6- 5.2.8- 5.2.13(1) - 5.4.4. 

To conclude, we observe that in the case dH) C lnn(G), RGH is always 

a centralizer of a group algebra RK in RG. 

More precisely, consider i : G - Inn(G) : g .---. i 9 with i9 (x) = gxg- 1 for all x E G. 

In this case, we take the subgroup K = i-1 ((]'(H)) of G and we restrict i tot K . 

Extending to automorphisms of RG, we get RGH = RGK. Now , for any subgroup 

K of G and homomorphism i: K - Inn(G) , we see that RGK is the centralizer of 

RK in RG. Further results on modules and t race functions over centralizers can be 

found in chapter 5. 
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Chapter 5 

Centralizers 

Let R be a commutative ring, G a finite group and H < G. Then er : H--> 

Aut(G) : h --> (Jh, with CTh(g) = hgh-1, is a homomorphism of groups. The orbits 

E9 = {hgh-1 lhE H}arecalledsubclassesofHinG. Thesubclasssumss9 = E ttx 
xEE9 

form an R-basis for the fixed ring S = RGH (see 1.2.11), which is called the subclass 

algebra of H in RG. In chapter 4 we studied modules and characters over Schur 

algebras, which are fixed rings of automorphism groups. 

But the subclass algebra Sis also the centralizer of RH in RG. 

In this chapter we develop more relations between indecomposable modules over 

RG, RH and S. However we shall consider the more general context of centralizers 

in separable algebras (see sections 1-2). 

In sections 3 and 4 we apply the results on centralizers to the twisted group rings 

R *a H and R *u G with H < G and we develop a generalized Clifford theory. In 

section 5 we focus on the situation where H <JG. 

5.1 The rank of a centralizer 

Let B be a subalgebra of an R-algebra A. Under certain conditions, we will 

develop a formula relating the rank of the centralizer of B in A to the restriction 

to B of indecomposable left A-modules. Of course, the result can be applied to the 

case where A = RG and B = RH, G being a finite group and H < G. Here the rank 

is equal to the number of subclasses. The latter extends a result of E.P. "Wigner, see 

[W]. 

Now, let R be a connected commutative ring, and suppose that finitely gene-
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rated projective R-modules are free. This occurs for example when R isa semilocal 

connected ring or a principal ideal domain. Further, A will be an R-algebra and B 

a subalgebra of A with lA EB and we suppose that R isa splitting ring for A and 

B, that is, A~ EndR(M1)ffi ... ffi EndR(Ms) and B ~ EndR(Ni)ffi ... ffiEndR(Nt), 

where M; and N; are finitely generated projective R-modules. Recall that M; is 

an indecomposable left A-module under the operation (;p1, .. . , 'Ps)m = ;p;(m); ana

logously N;. By our hypotheses, each Mj, viewed as a left B-module, is uniquely 

expressible as a finite direct sum of N;'s, see [1.1.] and C;j denotes the multiplicity 

of N; in this decomposition of Mi . Note that C;J may be equal to 0. 

5.1.1 Rem ark . Keep the above notation and hypotheses. Then for each N; there 

is some Mi such that N; occurs in the decomposition into indecomposable left B

modules of Mi. Indeed , assume that N; lies over the primitive central idempotent 

f; of B. Since A = Af; ffi A( l - f;), Af; is a finitely generated projective R-module, 

and thus Af; is isomorphic in A-mod to a finite direct sum of Mk 's . Therefore there 

is some Mi such that J. Mj =/- 0 and the statement follows. 

Let S denote the centralizer of Bin A, i. e. S = {a E AJVb EB: ab= ba}. We 

now prove that Sis a free R-module of finite rank and we give an expression for the 

rank. 

5 .1.2 P roposit ion. Keep the above notation and hypotheses. Let V be a finitely 

generated projective R-module and T : A -+ EndR(V) an R-algebra morphism. 

As a left A-module V is isomorphic to a direct sum of Mi's and we suppose that 

M1, .. . , Mq occur in the decomposition (up to renumbering). Then the centralizer of 
q t 

T(B) in T(A) is a free R-module of rank L L (c;J)2. 
j=l i = l 

Proof. Let Ti : A -+ EndR(Mi) be the R-algebra morphism corresponding to 

the left A-module structure of Mj, i.e. Ti(a)(m) = am for all m E Mj. Consider 
q 

f: T(A)-+ EB Ti(A): T(a) i-t (T1(a), ... , Tq(a)). 
j=l 

From V ~ Mf' ffi ... ffi Mt• in A-mod it easily follows that f is well-defined and 

that f is injective. We now show that J is surjective. Let { e1, . .. , es} be the set of 
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primitive central nonzero idempotents of A and assume that Mi lies over ei . Con

sider (T1(a1), ... , Tq(aq)) with a1 , ... , aq EA. Setting a= a 1e1 + ... + aqeq , we have 

Ti(a) = I'j(aiei) = Ti(aj) for each j . Also it is clear that f is an R-algebra mor

phism. Now it is easy to check that. f induces an R-algebra isomorphism between 
q 

the centralizer of T(B) in T(A) and EB Ci where Ci is the centralizer of T1(B) in 
j=l 

Ti(A). But since Risa splitting ring for A, we have Tj(A) = EndR(Mi) for each j 

and thus Ci = End8 (Mj) for each j. Then we apply Proposition 1.1.3(2). D 

5.1.3 Corollary. With hypotheses as before, the centralizer S of B in A is iso

morphic to End8 (M1 ) EB ... EB EndB(Ms) as R-algebra and it is a free R-module of 
s t 

rank I: I: ( c;1 )2. 
j=l i=l 

Proof. Consider the left regular representation of A, that is, T : A ~ EndR(A) 

given by T(a)(x) = ax for all x E A. It is easy to see that each Mj, j = 1, ... , s, 

occurs in the decomposition of A into indecomposable left A-modules. Then the 

statement follows from Proposition 5.1.2 and its proof. D 

If A and B are group rings, the Corollary 5.1.3 yields : 

5.1.4 Proposition. Let R be as before. Let G be a finite gro·up wi th jCj-1 E R, 

let H be a subgroup of C and suppose that R is a splitting ring for RC and RH. 

Hirther, let M,, ... , Ms, resp. N1 , .•. , Ni, be a basic set of indecomposable left RC

modules, resp. RH -modules, which are finitely generated and projective over R , and 

let c;1 be the m1iltiplicity of N; in M j . 
s t 

Then I: I: (c;1)2 = number of subclasses. 
j = l i= l 

Proof. This result is a consequence of 5.1.3 and 1.2.11. 

5.1.5 Remark. Let R be any connected commutative ring and let C be a finite 

group such that jCj-1 E R. If m = exp(C) and 1J is a primitive m-the root of unity, 

then R [17] is a splitting ring for the group ring R C over R , see [SJ . Since an extension 

of a splitting ring is a splitt ing ring, we see that R[17] is also a splitting ring for RH, 
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where His a subgroup of G. 

To conclude this section, we mention the following result. 

5.1.6 Proposition. Let R be a commutative ring, let A be a separable R-algebra 

and let B be a separable R-subalgebra of A containing l A. Then the centralizer S of 

B in A is separable over R. Moreover, the centralizer of S in A is equal to Z(A)B, 

Z(A) being the center of A. 

Proof. Consider f : Z(A) ©RB -+ Z(A)B : I: a; © b; -+ L a;b;. Clearly f is a 
i i 

surjective R-algebra homomorphism, hence Z(A)B 9E (Z(A) ©R B)/ker J. 

Using [D.M-I, 1.7 p.44 and 1.11 p.46] we obtain that Z(A)B is separable over Z( A ). 

Since A is separable over Z(A), [DM-1, 3.8 p.55], we can use [D.M-I, 4.3 p .57] to 

conclude that the centralizer of Z(A)B in A is separable over Z(A ). Clearly the 

centralizer of Z(A)B in A is equal to S. Since Z(A) is separable over R, we deduce 

that S is separable over R, see [D.M-I, 3.8 p.55 and 1.12 p.46]. 

The rest of the statement follows from [D.M-I, 4.3] D 

5.2 Indecomposable modules over centralizers 

Let B be a subalgebra of an R-algebra A. Our objective is to investigate 

the relations between indecomposable modules over A, B and t he centralizer of B 

in A. Of course, the results can be applied to the case where A and B are group rings. 

Throughout this section, R is a connected commutative r ing and we sup

pose that, finitely generated projective R-modules are free. Further, A will be 

an R-algebra and B a subalgebra of A with l A E B and we suppose that R 

is a splitting ring for A and B , that is, A ~ EndR(M1) EB ... EB EndR(M8 ) and 

B ~ Endn(N1 ) EB ... EB EndR(Ni), where the M; and N; are finitely generated pro

jective R-modules. Let { e1, •.. , e5 } respectively {!1 , . . . , ft} be the set of primitive 

central nonzero idempotents of A respectively B and assume that M; lies over e; 

and N, over k Each Mj, viewed as a left B-module, is uniquely expressible as a 
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finite direct sum of N;'s and C;j denotes the multiplicity of N; in this decomposition 

of Mj. Finally, S denotes the centralizer of Bin A. From 5.1.6 and 5.1.3 we know 

that S is a separable R-algebra and a free R-module of finite rank. 

Now each Hom 8 (N; , Mj) is a left S-module under the operation (s · <p)(n) = 

s(<p(n)) for s ES, <p E Homa(N;, Mi) , n EN; . 

5.2.1 Remarks. (1) The above left S-module structure arises from the follow

ing: Hom8 (N;, Mi) is a left End8 (Mj)-module by composition of maps and so it 

is a left S-module by the algebra isomorphism given in 5.1.3. 

(2) Let c be a primitive idempotent of B such that cf; # 0, then by our hypotheses 

N; ~ Be as left B-modules. 

Further, Hom8 (Bc, Mj)-+ Elvfj: <p f-4 <p(c) is an S-module isomorphism. 

5.2.2 Proposition. If Gi = 0, then Hom8 (Ni, Mj) = 0. Otherwise, Hom8 (N;, Mj) 

is a free R-module of rank C;j. 

Proof. This statement follows from Proposition 1.1. 3 ( 1). 

We now concentrate on the relation bet.ween Homa(N;, Mj) and primitive 

central idempotents. Later on we shall make use of these facts. 

5.2.3 Remark. First note that the centers of A and B are contained in the center 

of S. Since f 1 , . . . , ft belong to the center of S, we know that each f; is uniquely 

expressible as a sum of distinct primitive central idempotents of S. Moreover, since 

i11 the rings considered primitive central idempotents are orthogonal and their sum 

equals 1, we have that each primitive central nonzero idempotent of S appears in 

one and only one of the f;'s. 

A similar observation holds for e1 , ... , es . 

5.2.4 Lemma. Let d be a primitive central nonzero idempotent of S. Then 
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dHoms(Ni, M1 ) =I= 0 if and only if d appears in the decomposition off; and e1 

(into primitive central idempotents of S ). In particular, by 5.2.3, there is exactly 

one Hom8 (N; , M1) such that dHom8 (N;, MJ =I= 0. 

Proof. If dHom8 (N;,Mj) =/= 0, then there exists cp E Hom8 (N;,Mj) , n E N; 

such that dcp(n) =/. 0. Now dcp(n) = dcp(fin) = df,.cp(n), whence df; =/= 0, and 

dcp(n) = deicp(n) implies dei =I= 0. Consequently, d occurs inf; and ej . 

Conversely, assume that d appears in the decomposition off; and ei. Write ej as a 

sum of primitive orthogonal idempotents of A. Since dei =I= 0, we have dr, =/= 0 for 

some primitive idempotent 77 of A appeari1ig in this decomposition. Next we express 

f; as a sum of primitive orthogonal idempotents of B, and df;T] = dri =I- 0 implies 

dcTJ =I= 0 for some primitive idempotent c of B appearing in the decomposition of 

f;. Therefore dsAri f 0. But by our hypotheses we have Bs ~ N; in B-mod and 

Ar, f::' M1 in A-mod and, using Remark 5.2.1 we get Hom8 (Ni, M1) ~ EAT] in S-

mod. Thus dHom8 (N;, Mj) f Oas required. D 

5.2.5 Corollary. (1) Horna(N, , Mj) =I= 0 if and only if f;e1 =I= 0. 

(2) The nonzero Hom 8 (N;, Mi) are not isomorphic as left S -modules. 

(3) If the nonzero H oma(N;, M1) are indecomposable left S -modules, then the nonzero 

f;ej are precisely the distinct primitive central idempotents of S. Moreover Hom8 (N;, Mj ) 

lies over fi eJ. 

Proof. Put P;1 = Homa(N; , M1) . Let cp E ?;1; then f;eicp = cp and fk eccp = 0 

if k # i or e # j. 

(1) By the above observation, P;1 f O implies J;e1 =I= 0. Conversely, if f ;ej f 0, then 

f; e1 is a sum of primitive central idempotents d of S. By Lemma 5.2.4, dPij f 0, 

whence P;1 =I- 0. 

(2) Follows from the above observation. 

(3) Let f;ej =I= 0. Then using Lemma 5.2.4 and the fact that Hom8 (Ni, Mj) is inde

composable, we see that the decompositions off; and e1 into primitive central idem

potents of S have one and only one element d in common, and thus f;ej = d. D 
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Our next objective is to investigate when the H om8 (N;, Mi) are indecompos

able left S-modules. 

First we consider the case where we know that Risa splitting ring for S. For exam

ple, let R be a connected commutative ring, let C be a finite group with 1c1-1 ER, 

let H < C and consider A = RC and B = RH. Then the centralizer S of RH in RC 

is the fixed ring RCH of RC under the action r7: H-. Aut C with r7h(g) = hgh-1
. 

Now let m be the exponent of C x" H and let 1J be a primitive m-th root of unity, 

then T = R[ry] is a splitting ring for S (see Proposition 4.1.5(2)). Note that T is 

also a splitting ring for RC and RH. 

5.2.6 Proposition. If Risa splitting ring for S, then the nonzero Homs(N;, Mi) 

are indecomposable left S -modules, and they are, up to isomorphism, the only inde

composable S-modules which are finitely generated projective. 

Proof. Let S ~ Endn(Vi) EB . .. EB EndR(Vq) as algebra, Vk being finitely gener

ated projective R-modules. Consider a nonzero Homs(Ni, Mi). Let dk, 1 S k Sn, 

be the primitive central nonzero idempotents of S for which dkHom8 (N; , lvlj) f. 0. 

Assume that Vi lies over dk, 1 s k Sn. Then Hom 8 (N;,Mi) ~ Vt 1 EB ... EB v,;nn 
as left S-modules (mk E IN) , see (1.1). As a consequence, c;i = m1 rankR(Vi) .. . + 
mnrankR(Vn) - Thus 

Now for each primitive central nonzero idempotent d of S, there is one and only 

one nonzero Homs(Nk, Me) such that dHoms(Nk, Me) f. 0, see Lemma 5.2.4. On 
s t 

the other hand, Corollary 5.1.3 states that rankn(S) = ~ ~ cfj, and rankn(S) = 
j=l i = l 

(rankVi)2 + ... + (rankVq) 2 . Combining these facts , we conclude that we have an 

equality in ( * ). 

But this implies n = 1 an<l m 1 = 1. The statement is now clear. D 

Remark. When R = (!} , A = RC and B = RH, Proposition 5.2.6 can be ap

plied ( use 5.1.6). In this case the irreducible modules of S are constructed in a 

different way by J. Karlof, see [K]. 
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We now consider another situation in the S-modules Hom8 (N;, M j) are indecom

posable. 

5.2 .7. Theorem. If R is a semilocal ring or a principal ideal domain, then each 

nonzero HomB(N; , Jvli) is an indecomposable left S-module. 

Proof. We write H oms(N;, Mi) as a finite direct sum of indecomposable left S

modules. Let dk, 1 s; k s; n, be the primitive central nonzero idempotents of 

S for which dkHom 8 (N;, Mj) i= 0 and choose for each k an indecomposable left 

S-module Vic lying over d , and appearing in the decomposition of Hom8 (N;, Mi). 

Note that each Vk is a finitely generated projective R-module. We first prove that 

rankR(Sdk) s; (rankR(Vi.))2 for each k. 

Let us write d, V instead of dk, Vi, and rank instead of rankR. Since S is sepa

rable and projective over R, the R-algebra morphism T : S -+ EndR (V), asso

ciating to x E S the left multiplication by x in End(V), restricts to an injective 

R-algebra morphism T : Sd -+ EndR(V) mapping d to the identity, see [Nz-v.02 , 

Proposition 1.6]. So when R is a principal ideal domain, it follows at once that 

rank(Sd) s; (rankV)2 =rankEndR(V). 

We now suppose that R is semilocal. 

Express d as a sum of primitive orthogonal nonzero idempotents of S, say d = 

t: 1 + ... + cm· Since S is separable over R and R is semilocal, it follows from 

Proposition 1.1.1 that St:; ~ Vin S-mod, hence we have rank(Sd) = mrankV. lt 

thus suffices to show that m s;rankV. First observe that V is, up to isomorphism, 

the only indecomposable left Endn(V)-module, which is finitely generated and pro

jective over R (under the operation : ip.v = ip(v) for all 'P E Endn(V), v E V). 

T herefore the number of primitive orthogonal nonzero idempotents of EndR(V) ap

pearing in a decomposition of the identity must be equal to rank V . But I = T( d) = 

T(t:i) + ... + T( t:m) and T(t:1) , ... , T(t:m) are orthogonal nonzero idempotents of 

Endn(V) . Consequently, m s;rankV, as desired. 

So, using the fact that rankR(Homa(N;, M i))= C;j , we obtain the following iuequal-
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ities : 

rank(Sd1) + ... + rank(Sdn) S (rankVi)2 + ... + (rankVn)2 :S c;j (*) 

Now for each primitive central nonzero idempotent d of S there is one and only 

one Homs(Nk, Me) such that dHoms(Nk, Mt) =I= 0, see Lemma 5.2.4. On the other 
s t 

hand, Corollary 5.1.3 states that rankn(S) = L I: (c;1)2. Combining these facts, 
j=l i=l 

we conclude that we have equalit ies in (* ). 

But (rankVi)2+ .. +(rankVn)2 = cr1 = (rankHomB(N;, Mi))2 implies that Homs(Ni, Mi) 

must be an indecomposable left S-module, which completes the proof. D 

5.2 .8 Remark Hypotheses as in 5.2.7. For later use, we deduce from 5.2.5(3) and 

the proofofTheorem 5.2.7 the following: if Homs(N;, Mi) f= 0, then rankn(Sf;ej ) = 

Moreover, for semilocal rings we have : 

5.2.9 Proposition. If R is semilocal, then R is a splitting ring for S over R. 

Proof. Let d be a primitive central nonzero idempotent of Sand let V = H oms(N;, Mj) 

lie over d (d = f;ei). By [N2-v .02 , Proposition 1.6 and Corollary 1.7], the left 

S -module structure of V induces an injective R-algebra homomorphism T : Sd -. 

Endn(V) mapping d to the identity, and Twill be surjective if and only if Ends(V) = 

RI11 . Express d as a sum of primitive orthogonal nonzero idempotents of S and let 

£ denote one of these terms. Since R is semilocal, we have V ~ Sc in S-mod, see 

Proposition 1.1. l. 

We fast show that the nonzero idempotent T(c) is primitive in Endn(V). Let m de

note the number of terms in the decomposition of d, then rankR(Sd) = mrankn(V) , 

because R is semilocal. But by Remark 5.2.8 rankn(Sd) = c;i and Cij =rankn(V), 

hence m =rankn(V) . Now, if T(c.) is not primitive in Endn(V), then we can show 

that m < rankR(V), as in the proof of Theorem 5.2. 7 and this gives a contradiction. 

So T(E.) is primitive. 

We now prove that Ends(V) = RI. We recall that V ~ Sc in S-mod and we observe 

that Ends(Sc.) -. £Sc : ¢ i-. ¢(c.) is an isomorphism of R-modules. So we have to 
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show that sSE = &. View Vas indecomposable left Endn(V)-module (under the 

operation: ¢.v = ¢(v)) and set E = EndR(V) . We know that V ~ ET(s) in E-mod 

and, just as above, we have that Ende(V) ~ T(s)ET(e) in R-mod, mapping I at 

T(s). But Ende(V), being the center of Endn(V), is equal to RI. Therefore we 

obtain T(eSe) c RT(e), whence E:Se = & and this completes the proof. D 

5.2.10 Note . If R is semilocal, then the nonzero Hom8 (N;, Mj) are, up to isomor

phism , the only indecomposable left S-modules that are finitely generated projective. 

Next, let us discuss the relationship between the centralizer S and certain 

Hecke algebras. 

5.2.11 Proposition. Suppose that R is a splitting ring for S {this follows whenever 

R is semilocal) . Let E: be a primitive nonzero idempotent of B such that f;e =/= 0. 

Then Sf; -. eAe : sf; H c:se is an isomorphism of R-algebras. 

Proof. Since f; e =J. 0, N; 9! Be: as left B-rnodules. Further, Hom8 (N; , Mi) 9! eMi 

as left. S -modules, see 5.2.1(2). Now consider j such that sMi =/= 0. The latter is 

equivalent to f;ej # 0 and Sf;ej ~ EndR(eMi) as R-algebras, where the isomor

phism associates to sf;ei the left multiplication by sf;ei; see 5.2.5 and 5.2.6. On the 

other hand, eMj # 0 equivalent to €ej =/= 0 and eAeei ~ Endn(cMj) as R-algebras, 

where t he isomorphism associates to weei the left multiplication by wse1; see 3. 1.5. 

Consequently, Sf;= tf) S f;ej ~ tf)EndR(eMj) 9! eAe where the sum is t aken over 
j j 

the nonzero eMj . Since sf;eis = E:ssej , the above isomorphisms send sf; to €Se, 

completing the proof. D 

Remark. Let R be any connected commutative ring. Take A = RG, B = RH, 

H < G with IHl- 1 ER and consider e = IHl- 1 L uh. T hen e is a primitive idem
he; H 

potent of B and e is an element of Z(B), thus e = f ; for some i . In this case, it is 

obvious that eAe is a two-sided ideal in S . 
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vVe now investigate the relations between indecomposable modules over A, 

Band S . Put P;i = Homa(N;, M1) and let rank stand for rankR. 

5. 2 .12 Theorem. ( 1) We have Mi ~ (f) P;?nkN, as left S -modules, where the 
t 

sum is taken over those i for which C;j ,j:. 0. 

(2) If R is a splitting ring for S and c;i =I 0, then A ©s P;J 3" M?nkN, and 

(A ©a N;) ©s P;J ~ Mi as left A-modules, where A ©8 N; is made into a right 

S-module by: (a ©n)s = as 0 n for a EA, n EN;, s ES. 

(3) If Risa splitting ring for S and C;J =/ 0, then Homs(P;J,Mi) 3" N; as left 

B-modu:es, where (b · cp)(p) = b(cp(p)) for b = B, cp E Homs(P;j, Mi), p E P;J-

Proof. (1) Let i be such that C;j ,j:. 0. Write f; as a sum of primitive orthogo

nal nonzero idempotents of B, say f; = E. 1 + ... +Ek. By the hypotheses, N; ~ Bee 

in B-mod for f = l , ... , k and k = rankR(N;). Now f ;M1 = c1M1 EB ... EB EkMi and 

ceMJ ~ P;i in S-mod for P. = 1, ... , k. Moreover, f;Mi ,j:. 0 if and if C;J -f 0, and 

M1 = (I) f;M1. 
i 

(2) The first statement follows from (1) and Proposition 1.1.3(3). We now prove the 

second statement. 

Let E. be a primitive idempotent of B with fie: =I= 0. Then N; ~ BE. as left B-modules 

and P;J ~ c:M1 as left S-modules, see 5.2.1(2). 

Since c;1 =/= 0, we have P;i =I= 0 and thus Mi E C(Ac: ), which is the category of all left 

A-modules which are isomorphic to A-direct summands of (Ac:r for some m E IN, 

see 3.1.5(2). Therefore, M1 ~ Ac:0,A,c:M1 as left A-modules, see 3.1.2. Since Risa 

splitting ring for S, Proposition 5.2.11 yields E.AE. ~ SJ;, and thus Mi~ Ac ©s P,1 

as left A-modules. 

Clearly, A ©8 Be -> Ac: : a 0 c -> ac is an (A, S) bimodule isomorphism, where 

the right S-module structure of A ©a B F: is given by : (a 0 F:)s = as 0 E. for a EA, 

s E S . So we obtain that M1 ~ (A ©a N;) ©s P;1 as left A-modules. 

(3) From (1), 1.1.3(1) and 5.2.6 Homs(P;J, M1) is a free R-module with rank equal 

to rankn(N;). Moreover feHoms(P;1, Mi) =I= 0 if and only if f = i, and the assertion 

follows. D 
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5 .2.13 Remarks. (1) Recall that R is a splitting ring for S whenever R is a 

semilocal ring (see 5.2.9). 

(2) In the case that R is not a splitting ring for S we still have : 

(a) If cij # 0, then we have A ®s Hom8 (Ni, Mi)~ M} as left A-modules. Indeed, 

it is easy to check that V = A ®s Hom8 (N;, MJ) is nonzero and finitely generated 

projective over A, whence over R. Moreover eeV # 0 if and only if R, = j. (compare 

with 4.1.11) 

(b) Note that (A ®s N;) ®s HomB(Nk , Mi)# 0 implies that k = i and C;j # 0. 

A last relation between the modules over A , B and S is given as follows : 

5.2.14 Proposition. Let Z(A), resp. Z(B) denote the center of A , resp. B. 

If C;J '/, 0, then : 

(l) M~i ~ prankM; 
J I] 

(2) Ncii ~ pr:ankN; 
• t) 

as Z(A)-modules. 

as Z(B)-modules. 

Proof. ( 1) It is clear that ekPij '/, 0 if and only if k = j . So the restriction of 

Pij to Z(A) is a finite sum of indecomposable Z(A)-modules lying over ei. By the 

hypotheses, Z(A)ei = Rei ~ R and Z(A)ei is, up to isomorphism, the only inde

composable Z(A)-module which is finitely generated projective as R-module and 

lies over ej. Therefore P;j ~ (Z(A)eJ)e as Z(A)-module, and comparing ranks with 

respect to R, we obtain I!= c,j· 

Similarly, we may show that M1 ~ (Z(A)ei)rankMj as Z(A)-modules and the asser

tion (1) follows. 

(2) Obviously fkP,j '/, 0 if and only if k = i. We now proceed as in (1). D 
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5 .3 Centralizers in twisted group rings 

The results of the preceding sections can be applied to the centralizer of RH 

in RC (H < G), as we have seen. In this section we concentrate on centralizers 

in twisted group rings, more precisely, on the centralizer S of R *a H in R *a G 

(H < G). Our main objective is to construct an R-basis for S. Therefore we intro

duce a-H-regular elements in G. 

Throughout R is a commutative ring and G is a finite group. Let a be a 

2-cocycle and consider the twisted group ring R *a G, with R-basis { u9 ; g E G}. 

In section 1.1 we have summarized some basic facts about a-regular elements, 

studied in [N1-v.Oi]. We now consider a-H regular elements, with H < G. 

5.3.1 Definition. Let H be a subgroup of G. An element g E G is said to be 

a-H-regular if a(g,x) = a(x,g) for all x E CH(g) = {y E Hjgy = yg}. Clearly, an 

o-H-regular element will be {3-H-regulru: for every 2-cocycle {J equivalent to a. Note 

that g E G is a-H-regular if and only if u9ux = UxYg in R *a G for all x E CR(g) . 

In case H = G, we get the definition of a-regular elements. 

5.3.2 Lemma. Let g E G be a-H-regular, then : 

(1) g- 1 is an a-H-regular element. 

(2) hgh- 1 is a -H-regular for all h E H. 

(3) If H <1 G , then ygy-1 is a-H-regular for ally E G. 

Proof. The proof is entirely similar to the proof of [Nrv.01, 2.1). D 

If g is a -H-regular, then E9 = {hgh- 1 jh EH} is said to be an a-H-regular subclass 

and s9 = I: Ux is called an a-H-regular subclass sum in R *a G. In case H = G, 
xEE9 

we speak of a-regular classes or a -ray classes, cf. [N1-v.Oi] . 

Further, to a we associate a map la : Gx G-, U(R) : (x, g) 1-+ a(x, g)o- 1(xgx - 1
, x), 

see also 1.1. In R*a G we have for all x,g E G: ·u,,;'u9(u:i,) - 1 = fa(x,g)uxgx- 1. 

We now need [N1-v.0 1, Lemma 2.2] in a slightly more general form. 
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5.3.3 Lemma. Let g E G be a-H-regular. Then for x,y E H, xgx-1 = ygy- 1 

entails J0 (x,g) = fa:(Y,9)-

Prnof. The proof is entirely similar to the proof of [N1-v.01 , 2.2], where H = 
G. o. 

Using 5.3.3, we prove the following lemma which generalizes [N1-v.01,2.3J . 

5.3.4 Lemma. Given a E Z 2 (G, U(R)) and H < G, then there is a 2-cocycle 

/3 equivalent to a satisfying fJ(e,e) = 1 and f13(x, g) = 1 for all (J-G -regular g E G 

and all x E G as well as for all /3-H -regular g E G and all x E H. 

Proof. First replace a by an equivalent 2-cocycle , rnch that ,(e, e) = l. Con

jugation by elements of G gives an equivalence relation on the set of a-G-regular 

elements, and in every class we choose an element Si- Furthermore, conjugation by 

elements of H defines an equivalence relation on the set consisting of elements which 

are a-H-regular but not a -G-regular, and we choose an element ti in each of these 

classes. 

We now define a mapµ: G--> U(R) as follows : 

µ(g) = lr(Y, s;) if g is a-G-regular and g = ys;y- 1 wit h y E G, 

µ(g) = J,(h, ti) if g is a-H-regular but not a-G-regular and g = htih- 1 with h EH, 

µ(g) = 1 if g is not a-H-regular. 

By Lemma 5.3.3, Ji is well-defined. Put (J(a,b) = ,(a,b)µ(a)µ(b)µ(abt 1 for all 

a, b E G . To show that /3 satisfies the required properties, we proceed as in the 

proof of [N1-v.01, 2.3] . Clearly /J(e, e) = 1 because µ(e) = l. 

We now consider a /3-H-regular element g E G which is not /3-G-regular. Since g 

is also a-H-regular but not a-G-regular we have g = htih- 1 for some ti and some 

h EH. For any x E H, we calculate : 

ff3(x , g) /3(x, g){J- 1 (.1:gx- 1
, x) 

= µ(g)µ(xgx - 1 t 11'(x, g),, - 1(xgx- 1
, x) 
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Further in R *,. G we have : 

UxhUt, ( Uxh)-l 

U:r;UJ,Ut, (uht
1 

( Ux)- 1 

Uxf,.(h, ti)u9(u,1J-1 

= f1 (h, ti)f,.(x , g)uxgx-' 

So we obtain that f 1 (xh, tj) = J,.(h, t1 )f,.(x, g), whence f13(x, g) = 1. 

Note that if g ia ,6-G-regular and x E G, then g = ys;y- 1 for some S; and some 

y E G and, as above, one deduces that ff3(x, g) = 1. D 

Next, we consider the centralizer S of R *<> H in R *<> G, where H < G. 

We prove : 

5.3.5 Proposition. Assume that f 0 (h, g) = 1 for all a.-H -regular g E G and all 

h E H (see 5. 3.4). Then the a-H-regular subclass sums s9 form an R-basis for 

the centralizer S in the fallowing cases : (i) a = 1, (ii) R is a domain, (iii) R is 

connected and \GJ-1 E R. 

Proof. The proof is similar to the proof of [N1-v.01 , 2.4], where H = G. 

a) As before, for any a.-H-regular g, let E9 = {hgh- 1\h E H} and put s9 = L u,, 
xEE9 

in R *<> G. Then, for any h E H , we have: 

Uhs9(uht
1 = L !a(h, x)uhxh-1 = s9 

xEE9 

and thus s9 E S. 

Moreover, it is clear that the distinct a -H-regular subclass sums are linearly inde

pendent over R. 

b) Let now w E S, w = L r 9u9 in R *g G with r9 E R. For any h E H, 
gEG 

uhw(u1i)-1 = w leads to : 

L r 9J0 (h, g)u1i91i-1 = L r 9 u9 
gEG gEG 

If r9 =I 0, then we will show that g is a:-H-regular. 

For any h E CH(g) we get r 9 f 0 (h, g) = r 9 by comparing the coefficients of u 9 on both 
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sides of ( *). If R is a domain, then fa ( h, g) = 1 follows and thus g is 0:-H-regular. 

We now suppose that R is connected and that 1c1-1 ER; say ICI = n. 

We first show that J0 (h,g)" = l. Define a mapµ: C _, U(R) by µ(x) = 11 a (t ,x). 
t EG 

Then it is easily verified that µ(x)µ(y) = µ(xy)a(x, Yt for all x , y EC. This entails 

J0 (x,yt = µ(y)µ(xyx- 1)-1
. Consequent ly, f 0 (x , y)" = 1 if xy = yx. 

Fix h E CH(g) and put a = f 0 (h,g); hence an= 1 and r9 a = r9 . It is clear that 

e = n - 1(1 + a + ... + a11
-

1
) is an idempotent of R and so e is either O or l.If 

e = 0, then O = r9 e = n - 1nr9 = r9 , a contradiction. Therefore e = 1. But then 

n = 1 +a ... + a"- 1 and thus n(l - a) = 1 - an = 0, whence a = l. This proves 

that g is a-H-regular. 

Finally we will show that w is an R-linear combination of a-H-regular subclass 

sums. If u 9 has nonzero coefficients r 9 in the decomposition of w, then it follows 

from (*)that, for any h EH, uhgh- , appears in the decomposition of w wit h nonzero 

coefficient r9 fa(h,g) . Moreover g is a-H-regular and thus J0 (h,g) = 1 by the as

sumption on a, which completes the proof. 

To conclude, note that the preceding discussion also proves the assertion in case 

a= l. D 

Remark. If H = G, then Sis the center of R*aG and Proposit ion 5.3.5 states t hat 

the center is freely generated as an R-module by the o:-regular class sums (under 

the hypotheses of 5.3.5) ; see also [N1-v.01, Theorem 2.4] . 

Using 5.1 we now give a formula relating the number of a-H-regular subclasses 

to the restriction to R *a H of the indecomposable left R *a C-modules (H < G). 

Combining the results of 5.1.3, 5.3.4 and 5.3.5, we obtain: 

5.3.6 Proposition. Let R be connected and suppose that finitely generated pro

j ective R-modules are free. Let G be a finit e group with ICJ- 1 E R and H a s-ubgroup 

of G. Consider a 2-cocycle a and suppose that R is a splitting ring for R *a G and 

R *a H. Further, let Jvl1, . .. , Ms, resp. Ni, . . . , Nt , be a basic set of indecomposable 

left R *a G-modules, resp. R *a H -modules, which are finitely generated and projec-
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s t 
tive over R , and let C;j be the multiplicity of N; in Mi. Then L L ( e;,1 )

2 = number 
1=1 i=l 

of a-H -regular subclasses. 

Remark. If we consider group rings, i.e. a = l, then 5.3.5 states that the subclass 

sums form an R-basis for the centralizer of RH in RG (H < G), as we already know 

(1.2.11). Moreover, in the case of group rings, 5.3.6 gives 5.1.4. 

Of course, the results of section 5.2 can be applied to the centralizer of R *a H 

in R *a G, see also example 5.6.2. 

Recall from 1.1 (in particular 1.1.8) that one can construct a nice splitting ring for 

R *a G, which is also a splitting ring for R *a H. Note that a : H-> AutR(R *a G) : 

h-, ah, with a9(w) = uhw(uht1 is a homomorphism of groups (w E R *a G). The 

fixed ring of this automorphism group is given by the centralizer of R*a Hin R*a G. 

5.4 Projective group representation and centralizers: char

acter theory 

Consider the centralizer S of R *a Hin R *o G(H < G) . In this section we ex

press primitive central idempotents of Sin terms of trace functions in two different 

ways. We also derive orthogonality relations for trace functions on S. Furthermore 

we give formulas which relate the trace functions of indecomposable modules over 

R *a G, R *a Hand S. 

Throughout this section R is a commutative ring and G is a finite group. Let 

a be a 2-cocycle, let H be a subgroup of G and let S be the centralizer of R *a H 

in R *o G. Of course a may be trivial. If a /: 1, then we assume that a has been 

modified as in Lemma 5.3.4. 

Further, for any n-H-regular element g E G, we set E9 = {hgh-tlh E H} and 

s9 = L Ux in R *o G. Let Go denote a set of representatives for the distinct n -H-
xEE9 

regular subclasses E9 . 

First we show that, under suitable conditions, Sis a symmetric Frobenius R-algebra. 

We need the fol1owing lemma. 
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5.4.1. Lemma. We have o:(g, g- 1) = o:(xgx- 1
, xg- 1 x- 1

) f or all o:-G-regular g E G 

and all x E G as well as for all a-H-regular g E G and all x E H. 

Proof. The proof for an a-G-regular g E G and x E G is in [N2-v.02, Lemma 

3.2] . The proof for an o:-H-regular g E G and x E H is similar. Namely, from the 

2-cocycle conditions we get : for all g, x E G 

1. o:(x,g)o:(xg,g-1
) = o:(x,e)o:(g,g-1

) 

2. o:(xgx- 1, xg-1x - 1 )o:( e, x g) = a(xgx-1
, x )o:(xg- 1x-1

, xg) 

Now we restrict to x E H and an o:-H-regular g E G. T hen a:(x, g) = a(xgx- 1
, x) 

by the assumption on a. Since g- 1 is o:-H-regular too, we also have: o:(x, g- 1
) = 

o:(xg-1x - 1 , x ). If we combine this latter result with the cocycle equality 

o:(xg- 1x - 1 , xg) a:(x, g- 1
) = a:(xg- 1x - 1

, x )o:(xg, g-1 ) , then we obtain t hat o: (xg- 1x-1, xg) = 

cx(xg, g- 1 ) . If we substitute these equalities in (1), then we get : 

o:(x, e )o:(g, g- 1) = o:(xgx-1 , x )a(xg- 1x-1, xg) 

\;) o:(xgx- 1, xg-1x- 1)0:(e, xg) 

whence o:(g, g- 1 ) = o:(xgx- 1, xg- 1x-1) D 

5.4.2. Proposition. Suppose \G\-1 E R, and suppose that either R is connected 

or o: = 1. Then the R -linear map T : S ----> R : Z:r9 s9 ----> re (r9 E R) defines 

a nonsingular associative R-bilinear form on S with dual bases { s9 \g E Go} and 

{\E9 \ - 10:(g,g- 1)-
1sg- 1\g E Go}-

Proof. Combine Proposition 5.3.5 and 5.4.1. D 

From now on (except for 5.4.6), we assume that R is connected and that finitely 

generated projective R-modules are free. Moreover suppose \G j-1 E Rand suppose 

that R isa splitting for R *a G and R *o H . Let M1, . . . , Ms, resp. Ni, .. . , Ni, be a 

basic set of indecomposable left R *o G-modules, resp. R *o H-modules, which are 

finit ely generated and projective over R. Each Mj , viewed as a left R *u H-module, 

is uniquely expressible as a finite direct sum of N/s, and Cij denotes the multiplicity 
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of N; in this decomposition of Mi . Further, let { e1 , ... , es} resp. {J1, . .. , Ji} be the 

set of primitive central nonzero idempotents of R *a G resp. R *a H, and assume 

that M; lies over e; and N, over k Finally, put P;i = HomR•oH(N;, M1). If c;1 = 0, 

then P;i = O; otherwise P;i is a left S-module and a free R-module of rank c;i (see 

5.2.2). Moreover, P;i # 0 if and only if f;ei # 0 (see 5.2.5). 

5.4.3. Note. If the nonzero P;i are indecomposable left S-modules, then by 5.2.5 

the nonzero f ;ei are precisely the distinct primitive central idempotents of S and 

P;j lies over f;ej. 

If R is also a splitting ring for S (this follows whenever R is semilocal) , then by 

5.2.6 the nonzero P;i are indecomposable left S-modules. We also refer to Theorem 

5.2.7. 

Using the character theory of Frobenius algebras (section 2.2), we can ex

press primitive central idempotents of S in terms of trace functions and we have 

orthogonality relations for trace functions on S, more precisely : 

5.4.4. Proposition. Keep the above hypotheses and notation, and suppose that 
1 

R is a splitting ring for S. Put z = Z::: IE I ( _1)s9 sg-1 . Then: 
gEGo 9 a g, g 

( 1) For nonzero P;i 1 

(2) For nonzero P ;j and Pkl , 

z::: IE la(gg- l)t pij (sg )tpkt (Sg- •) = 0 
gEGo 9 ' 

whenever (i, j) # (k, l ) 

C;; ~ IE la(~g-t) t P,; (s9 )tp,j (s9-1) = t p,j(z ) 
g EG o 9 ' 

(3) z is invertible in S if and only if all nonzero C;j are invertible in R , and for any 

e;i # 0, the invertibility of e;,1 in R is equivalent to the invertibility of t p,,(z) 

in R . 
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Proof. Apply 2.2.4-2.2.6 to the bilinear form associated to T : S -+ R: I: r9 s9 1-+ 

gEGo 

re. D 

5.4.5. Note. Keep the hypotheses of 5.4.4. 

(1) If IGj! is invertible in R, then all nonzero ciJ are invertible in R and thus z is 

invertible in S. Indeed, this is a direct consequence of Cii :::; rankK(Mi) :::; IGJ. 
(2) If H <I G, then all nonzero cii are invertible in R (this is shown in 5.5.8 (1)) and 

thus z is invertible in S. 

5.4.6. Corollary. We only suppose that either a = 1 or R is connected (o. has 

been modified). If either JGI! is invertible in R or H :::1 G and IGJ - 1 E R, then 

z = I: IE 
1 

/ -1,s9 s9 -1 is invertible in S. 
gEGo 9 0 g,g 

Proof Note that JGI is invertible in R. 

(i) Suppose that R = K is a field. Then the algebraic closure K of K is a 

splitting field for K *a G and K *a H , because IGl-1 E K. In view of 5.3.5, 

S = { :I: >..9 s9',>.9 E K} is the centralizer of K *a H in K *a G . 
gEGo 

Since the hypotheses of 5.4.4 are satisfied for K, K *a H, K *a G and S, we 

may apply Note 5.4.5, and we obtain that z is invertible in S . This gives 

a system of n linear equations with coefficients in K, having a solution in 

"J<1(n = !Go[). But then these equations must have a solution in K", and 

therefore z is invertible in S. 

(i i) Let now R be arbitrary. First note that Sis separable over R, because IGJ-1 E 

R (see 5.1.6). Suppose 1 rf. Z(S)z, where Z(S) is the center of S. We now 

proceed as in 2.1.13(1) in order to obtain a contradiction. More precisely, the 

ideal Z(S)z is contained in some maximal ideal M of Z(S). Since Z(S) is 

integral over R , m = M n R is a maximal ideal of R . 

Now we need the following result. Define a: G x G-+ U(R/m) by a(x, y) = 

o(x, y) + m. Then g E G is a-H-regular if and only if g is o.-H-regular. To 

show this, let g be a-H-regular, h E CH(g) and pu t a = a.(h, g)a.(g, h)- 1 . 

Thus we have a - 1 E m. We know that ak = 1, where IGI = k, see the 
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proof of 5.3.5. So€ = k- 1(1 +a+ ... + ak-l) is an idempotent of R and 

thus € is either O or l. If € = 0, then a - 1 E m implies that klR E m, a 

cont radiction. Therefore€= l. But then k(l -a) = 1-ak = 0, whence a = 1, 

proving that g is a -H-regular. The converse is obvious. As a consequence, 

a is modified as in 5.3.4. The centralizer of R/m *a H in R/m *a G is given 

by { ~ r9 s9 jr9 E R/ m} (see 5.3.5), which is isomorphic to the R /m-algebra 
gEGo 

S/mS. By (i), there is an element x E S such that 1 - xz E mS, whence 

1 E SM. But SM n Z(S) = M, since S is separable over R. Consequently 

1 E M , a contradiction, and thus 1 E Z(S)z. D 

We now give another description of primitive central idempotents of S in terms 

of characters. But this formula depends not only on S, but also on R*0 G and R*0 H. 

5.4. 7. Proposition. Keep the hypotheses and notation of the discussion following 

5.4. 2. Then for nonzero P;,i and Ae, 

Proof. (1) By Corollary 2.2.8.(3), ei = IGl-1rankR(Mj) I:: ~ 1 
_ )tM (u9-i)u9 . Ap-

gEG er g,g , 

plying Lemma 1.1. 7 yields 

Clearly, if g is not a -H-regular, then the coefficient of u9 in the above decomposition 

must be zero, see 5.3.5. For an a-H-regular g and any h E H, we have tM
1
(f;ug-i) = 

tM,(Jiuhg-'h· •) and thus tM,(J(ug-1) = ii.itMJ(Jisg-1) . So, by using Lemma 5.4. 1 

But tM, (f;s9- ,) = rankR(N;)tp;1(sg-,), because of Theorem 5.2.12(1) and the fact 

t hat tpk
1
(sg- , /;) = 0 whenever k =I- i and tp,;(s9-if;) = tp,

1
(sg- 1). Assertion (1) 

follows. 
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(2) Apply tp.e to the expression for f;eJ and use 2.2.8(1). D 

5.4.8 Remarks. (1) In addition, suppose that R is a splitting ring for S. Put 
1 

z = I: IE I ( _1) s9 sy-1. Comparing Propositions 5.4.4(1) and 5.4.7(1) , we 
gEGo 9 a g,g 

obtain for nonzero P;J : IGl e;J f;eJ = rankn(N;)rankR(Mj)zf;e1 . Moreover, from 

the preceding equality it follows that rankR(N;)rankn(Mj)tP,J(z) = IGlc;jIR, for 

nonzero P;i . 

(2) Compare with 4.2.1 and 4.2.3 (in the case of group rings). 

We next derive formulas which relate the trace functions tMj, tN;, tpw 

We shall use the following notation : for any g E G, K9 = {ygy- 1 ly E G} and 

Vg = I; u.,. 
xEK9 

5.4.9 Proposition. We keep the hypotheses of the discussion following 5.4.2. Let

ting c;J -f= 0, we have : 

(1) C;JtM,(u9 ) = JK9 l- 1rankRMitP1;(v9 ) for any n-G-regular g E G . 

{2} C;jtN,(uh) = IE1iJ - 1rankRN;tp,;(sh) for any o.-H-regular h EH. 

Proof Use Proposition 5.2.14 and 1.1.6(1). D 

5.4.10 Proposition. Keep the hypotheses of the discussion following 5.4.2 and 

let C;J i 0. Then fo r each o.-G-regular g E G we have : 

C;jtM;('ug) = 1c1-1
rankRMJ [c;j(rankRN;f1 L tN,(Uxgx-1) + tP,; ( L Uxgx-l ) ] 

xEJ xEG\J 

where J = {x E Glxgx- 1 EH}. 

Moreover, t P,; ( I: 11xg:c 1) = I: I Exgx-' 1- 1t P;; ( Sxgr-1 ) . 
xEG\J :tEG\J 

Proof. We first note that rankn(N;) is invertible in R by 2.2.8(1) . Fur ther, for 

any algebra A , Z(A) denotes the center of A. 

For any k E H , we have u1;:( I: Uxgx-1 )(uk)- 1 = I: Ukxg(kx)- , , because xgx- 1 is o.-G-
xEJ xEJ 

regular, whence I: Uxgx- ' E Z(R * a H) . On the other hand I: Uxgx-' E Z(R *a G) 
xEJ XEG 
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and thus I: ·uxgx-' E Z(S). Now, tMi(u9 ) = IGl-1tM;( I: Uxgx-,) because g is 
xEG\J xEG 

a-G-regular. Then, applying Proposition 5.2.14, we obtain : 

C;jtMi(ug) = 1a1- 1rankRMjtP,; (z:: Uxgx-,) (*) 
xEG 

= 1a1-
1
rankR-Nlj [tp,j (z= Uxgx-1) + tp,; ( L Uxgx-1) l 

xEJ :r.EG\J 

= 1a1-1ranknMj [C;j(rankRNi)-1 L tN,(Uxgx-1) + tp,j ( L Uxgx-,)] 
xEJ xEG\J 

Finally, as I: Uxgx-1 ES, we have that I: 'Uxgx-i = I: 1Exgx-il-1sxgx-i. 
xEG\J xEG\J xEG\J 

5.4.11 Remarks. (1) Assume H <JG. If g is an a-G-regular element in H, then 

J = Gin 5.4.10. Moreover, if H <JG, then a nonzero C;j is invertible in R, as we will 

show in 5.5.8(1). 

(2) Let a = 1 and suppose that R is a splitting ring for S, then we have that 

MJ°nkRNi ~ RC ®s P;1 as left RG-modules, see Theorem 5.2.12(2) (e;1 ¥- 0). We 

may apply the theory of trace functions of induced modules, see 2.4 and in partic

ular 4.2. Then, in case I: IE9 l- 1s9 s9 -, is invertible in S, we obtain formula(*) of 
gEGo 

5.4.10. 

(3) Note also that tM;(x) = I:(rankRNi)tP,;(x) for all x ES, where the sum is tal<en 
' over those i for which P;j f 0, see 5.2.12(1). So (ranknNi)tP,;(x) = tM;(xf;) for 

x E S and nonzero P;j. 

(4) For the case that a= l, g E H and R = (]} , the formula of Proposition 5.4.10 

was derived by J. Karlof in a different way, see [K, Corollary 3.6]. 

5.5 Review of Clifford's theorem for normal subgroups 

In case the group G has a normal subgroup H, the analysis of indecomposable 

modules over R *a Gin terms of indecomposable modules over R *a H is easier . In 

this section we review Clifford's theorem for normal subgroups. The original version 

deals with simple modules over group rings; see e.g. [C-R, p259], but here we are 

concerned with indecomposable modules over twisted group rings. 

Throughout this section, R is a commutative ring and G is a finite group. 
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Let a be a 2-cocycle and consider the twisted group ring R *<> G with R-basis 

{ u9 ; g E G}. Of course a may be trivial. 

We first require some preliminary remarks. 

5 .5.1 Remarks. Let H be a normal subgroup of G and set B = R *a H. 

1. Let N be a left B-module, let g E G and form u9B ©s N = u9 ® N. Clearly any 

element of this product is uniquely expressible as u9 ~ n , n E N, and u9 ® N 2='. N 

as R-modules. Since H <1 G, there is a left B-module on u9 ® N, to be explicit, for 

any h E H, n E N : U1t(u9 ® n) = u 9(u9 )-1uhug ® n = u 9 ® f 0 (g- 1, h)u9 - 11i9n (!0 

as in 5.3). Further, if N is an indecomposable left B-module, then so is u9 ® N and 

conversely. If N is a B-subrnodule of MIH for some left R *a G-module M , t hen u9N 

is also a B-submodule of M1H, and ·u9 N ----+ ·u9 ® N : u9n ----+ u9 ®n is an isomorphism 

of B-modules. (Afiy = M1R,
0

H ). 

2. Keep t he above notation. If N is finitely generated and projective over R with 

dual basis {n 1, ... , nk} C N , {<p1 , ... ,<pk} C Homn(N,R) , then {u9 ®n;},{cp;}, 

with 'Pi : u9 ® N----+ R: u9 ® n----+ <pi(n), is a dual basis for u9 ® N. Using this, we 

have for any h EH : tu
9
0N(111i) = f 0 (g- 1

, h)tN(ug-'hg)-

3. Let f be a primitive central idempotent of R *a H. Then it is easily verified that, 

for any g E G, u9 f(u9 )-
1 is also a primitive central idempotent of R *<> H. 

5.5.2 Proposition Suppose R is connected. Let H be a normal subgroup of G 

and let M be an indecomposable left R *<> G-module. Let f be any primitive central 

idempotent of R*aH such that f M =/=- 0. Set W = f M and F = {g E G lu9 W = W}. 

Then the following hold : 

r 
(1) M1H = EB u9, W where {g1 , .. . , gr} is a set of left cos et representatives of F in 

i=l 

G. Moreover, F = {g E Glu9 f(u9 ) -
1 = !}. 

(2) M ~ R *<> G ®R• QF W as left R *a G-module, and W is an indecomposable left 

R *<> F -module. 

Pmof. (1) Let {! = ft , ... , f m} be the set of all primitive central idempotents in 

R*0 H for which f i M f. 0, and set Wj = fiM (W = W1). Then M = W1 EB ... E!) W.,,. 

Given g E G and W1 , we show that u9 Wi = Wk for some k E {1, ... , m} . We have 
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u9 Wj = ·u9f1(u9 )-1u9 M = u9 J)u9 ) - 1M. Now u9!J(u9 ) -
1 is a primitive central 

idempotent of R *a H which doesn't annihilate M . Therefore u9 fJ(u9)- 1 = fk for 

some k and u9WJ = fkM = Wk· In fact , multiplication by u9 defines an action of 

C on {W1 , . .. , Wm}- Consider the distinct G-orbits and let T1 , ... , T,, denote the 

direct sums of their elements. 

We have M = W1 EB . .. EB Wm = T1 EB . . . EB Tn. It is easy to see that each Ti is an 

R *a G-submodule of M. But M is indecomposable, hence M = T1 = EB u9 ; W1 . 
i=] 

Finally, since u 9W = u 9 f(u9t 1 M, u9 W = W if and only if 'u9 f('u9 ) -
1 = f. 

(2) Let {g1, ... , 9r} be as in (1). Obviously R*a G is a free right R*0 F-module with 

basis { u91 , .. . , u9, }. Therefore any element of R *a G © R•.,,F W is uniquely express-
r 

ible as L u9, © w; with W; E W. Using (1), it then follows that R *a G © W -. 
i = I R•,,F 

r r 
M: L u9 , © w; 1--+ L u9,w; is an isomorphism of left R *a G-modules. 

i=l i=l 

Furthermore, since R *a G ® Wis an indecomposable R *o G-module, W will be 
R+,,F 

an indecomposable left R *a F-module. D 

5.5.3. Note. If M is a left R *a G-module which is finitely generated projec

t ive as R-module, then we may write MIH = L1 EB .. . EB Lq where each L; is an 

indecomposable left R *a H -module. In this case W is the direct sum of all L1 lying 

over f. 

5.5.4. Proposition. K eep the notation and hypotheses of 5.5.2 . and let M be 

finitely generated projective over R . In addition, suppose that any two indecompos

able left R *a H -modules, which are finit ely generated projective over R and lie over 

the same primitive central idempotent of R *o H , are isomorphic as R *a H -modules. 

Let N be an indecomposable left R *a H -module lying over f and being finitely gen

erated projective over R. Then we have : 
r 

MIH Sc! .EB('Ug; ® R•,,H N)k as left R *a H-modules, k E IN , where {g, , .. . ,gr} is a set 
t= l 

of left cos et representatives of F in G, and F = {g E G I u9 ©N ~ N in R*0 H -mod} . 

Proof. By the hypotheses, W Sc! Nk as R *a H-modules and u 9W = W if and 

only if u9 © N Sc! N in R *a H -mod. We now apply 5.5.2. D 
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Remarks : (1) As in 5.5.3, consider a decomposition of M1H into indecomposable 

R *a H-modules and take some Li. Then in 5.5.4, we may choose N to be L;. 

(2) The additional hypotheses in 5.5.4 is satisfied if IHl - 1 E R and if either R is 

semilocal or R is a splitting ring for R *a H and finitely generated projective R

modules are free. 

5.5.5 Corollary. With the notation and hypotheses as in 5.5.4 we have : 

ranknM = k[G: F]ranknN. 

Proof. Follows from Proposition 5.5.4 and the fact that u9i ® N ~ N as R-modules. 

Next, we focus on the corresponding relations for trace funct ions. We need t he 

following fact about trace functions of induced modules. 

5.5.6 Note. Let K be an arbitrary subgrnup of G. Let V be a left R *o. K-module 

which is finitely generated projective over R and set vc = R *o. G ®n•a.K V. Let 

{g1 , ••• , 9m} be a set of left coset representatives of K in G. Obviously R *o. G 

is a free right R *o. K -module with basis { u91 , ... , 'Ug,.. }. Therefore any element 
m 

of V is uniquely expressible as I: u9 , ® W; with w; E V. So if { v1, ... , v1} C V, 
i= l 

{<p1 , ... , <p1} C HomR(V, R) is an R-dual basis for V , then {u9, 0 vi } , {vJ;j}, with 

. G . m · · G 'I/J;1 . V _. R. ~ u9, ® W; - cp1(w;), 1s an R-dual basis for V . 
i=l 

Define lv as follows: tv(us) = tv(us) if s E K and tN(u.) = 0 if s ff. K . Using our 

dual bases, it is now easily checked that 

m 

tvc(u9 ) = "2:,J0 (g; 1 ,g)tv('u
91
-,

9
m) 

i=l 

for any g E G 

If we modify a: such that f 0 (x, g) = 1 for all o:-G-regular g E G and x E G, t hen : 

1Kltvc(u9 ) = L lv(u,,- Lgx) for any o:-G-regular g E G. 
xEG 

Furthermore, vc Sc' V"' as R-modules. In particular , when R is connected, we have : 
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5.5.7 Corollary. Assume that a has been modified such that fa(x,g) 1 .for 

all a-G-regular g E G and all x E G. 

(J) Keep the hypotheses and notation of 5.5.2 and let M be finitely generated 

projective over R. Then for any a-G-regular g E G we have: 

r 

= I:tw(u9:-1 99J 
i=l ' 

= L tw(Ux-'gx) 
xEG 

where tw(uy) = tw(Uy) if y E F and tw(uy) = 0 if y ./: F. 

(2) With the hypotheses and notation of 5.5.4, we have for an a-G-regular h E H: 

r 

t M(u,.) k LtN(u
9

:-i,.9.) 
i=l i 

IFltM(u,.) = k L tN(Ux-'hx) 
xEG 

Proof (1) Apply Note 5.5.6. to Proposition 5.5.2. (2). 

(2) Since H <JG, x- 1hx E H c F for all x E G. Further, by the hypotheses, W ~ Nk 

as R *a H-modules. We now apply (1). D 

5.5.8 Remarks In the sections 3 and 4 we considered the following situation. Let 

H be an arbitrary subgroup of G. Let R be connected and suppose that finitely 

generated projective R-modules are free. Further suppose IGl- 1 E R, R *a G ~ 

EndR(M1) EB ... EB Endn(Ms) and R *a H ~ Endn(N1) EB ... EB Endn(Nt) , M1 and Ni 

being finitely generated projective R-modules. Each Mj, viewed as a left R *a H

module, is uniquely expressible as a finite sum of N;'s and C;j denotes the multiplicity 

of N, in this decomposition of Mi. We now asume that His a normal subgroup of 

G. Note that the hypotheses of 5.5.4. are satisfied. 

Then: (1) All C;j are invertible in R . Indeed, by 2.2.8. (1), rankn(Mj) is invertible 

in R, and use 5.5.5. 

(2) We see that 5.5.7. (2) is a special case of formula 5.4.10. Use (1) and 5.5.5. 

(3) If ranknN; == 1 and F = G, then for any C;j =I- 0 we have : C;j = ranknPii = 

rankn(R*aG®sP;i) where P;i = Homn.0 H(N;, M1). Combine 5.2.2, 5.2.12(2) and 

5.5.5. 

93 



To conclude, note that Theorem 5.2.12 and Proposition 5.4.9. may be use

ful for normal subgroup, for example when F = G in 5.5 .2. Compare with [C-R, 

T heorem 11.20] (Clifford) . 

5.6 Examples 

In this section we work out two easy examples to illustrate some of the results of 

the foregoing sections. Throughout R denotes the field of the complex numbers a:. 
We consider the dihedral group D 6 of order 12. The group D6 is generated by a and 

b such that a6 = e; b- 1ab-1 = a- 1 ; b2 = e. 

The conjugacy classes are : 

Ce= {e}; 

Ca3 = {a3
} ; 

C = {a a5
} · a , , Caz={a2,a4} 

Cab = { ab, a3 b, a5b} 

We consider the subgroup H = { e, b} ( which is not normal). The subclasses of 

Hin Gare: 

Ee= {e}; 

Eb= {b}; 

E = {a a5
} · a , , E 2 = {a2 a4}· a , , 

Eab = {ab,a5b}; 

Note that each conjugacy class is a union of subclasses. 

5 .6.1 The simple left modules of RD6 

Eaa = {a3
} ; 

Ea3b = {a3b} 

We construct these simple left modules out of the simple left modules of RH and 

the simple left modules of the centralizer S of RH in RG. An R-basis of S is given 

by the subclass-sums. 

As IGl -1 ER and R is algebraically closed, Risa splitting field for RG, RH. 
6 

Put RC ~ EB EndR(Mj) where each Mi denotes a vector space over a:. Then 
j=l 
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6 
12 = L dim2 Mj· This latter equality entails that (up to renumbering) dim M1 = 

j=l 

dimM2 = 2 and dimM; = 1 for i = 3, ... ,6. 

2 
Put RH ~ EB Endn(N;) where each N; denotes a vector space over rr. Then 

i=l 
2 2 

2 = E dim N;. Thus dimN, = 1 for i = 1,2. Of course the RH-modules N; 
i=l 

are known. 

Using Proposition 5.2.9. and Note 5.2.10, we have S 9i: EB Endn(P;j) where 
c;J#O 

P;j = HomnH(N; ,Mj)· Moreover, dimP;i = C;j = multiplicity of Ni. in the de-
6 2 

composition of Mi, viewed as left RH-module (5.2.2) . Now dimS = 8 = L L ct 
j =l i=l 

and this sum has at least 6 nonzero terms (MilRH j 0). So there is a basic set of 

8 non-isomorphic simple left S-modules, each of dimension 1, which occur into the 

splitting of S . A basic set of non-isomorphic simple left S-modules is given by the 

table below. Note that each Pk ~ (I' as vector space. 

Pi A P3 P4 Ps 

Sa· l -1 -1 2 2 1 

Sa3 · l 1 1 1 1 -1 

Sb· 1 1 -1 1 -1 1 

tpk (z) 6 6 12 12 6 

The element z = L IE9 1-1 s9 sy-i = 8se + 2sa, . 
gEGo 

p6 P1 Ps 

1 -2 -2 

-1 -1 -1 

-1 1 -1 

6 12 12 

Remark. To construct these simple left S-modules, we made use of some rela-

vVe now construct a basic set of non-isomorphic simple left RC-modules. 

As dim N; = 1 for i = 1, 2, RC ©s P;j ~ Mi for each Pii j 0, (see 5.2.12(2) ). More

over, dimMi·tp;j(z) = 12 (use 2.4.4(2)). Thus dim(RC ®sPk) = 2 fork= 1, 2,5,6. 

As a consequence the S-modules Pk with k = 1, 2, 5, 6 may occur in the decomposi

tions of the simple left RC-modules of dimension 2, viewed as left S-modules (see 

5.2.12 (1)). 
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For j = 1, 2 : Mi ~ P11 EB P21 in S-mod. Moreover, M; ~ P;i ~ ?:Ji as Z(RC)

modules (see 5.2. 14). 

Thus lM;(ua+u0 s) = 2tp,;(sa) = 2tp21 (sa). We now set M1 ~ Pi EB P2, M2 ~ Ps EB P6 

as left S-modules. 

From here we determine the RC-module structure on M; , .i = 1, 2 as follows. As 

dim M; = 2, we set M; ~ (C ffi (C as vector spaces. 

Put ub(l, 0) = (0, l); ub(O, 1) = (1, O); u0 (l, 0) = (.e:i, 0) and u0 (0, 1) = (0, E:i) where 

.e: is a primitive 6-th of unity and i, j E IN. 

For the simple RC-module M1 we have : tM, ( u0 ) = tM1 ( U0 6) = -1. Thus ,e:i + ,e:i = 

.e:5i+£5i = -1 which means that i = 2 and j = 4 (or i = 4 and j = 2). For the simple 

RC-module M2 we become: tM2 (u0 ) = tM2 (u0s) = l. Thus ,e:i + ,e:i = .e:5i + e5i = 1 

which leads to i = 1 and j = 5 ( or i = 5 and j = 1). 

The construction of the simple RC modules of dimension 1 is rather easy. 
1 

For .i = 3, . .. , 6 : M; ~ P;i as left S-modules. Thus tM, ( u 0 ) = 2tM; ( u 0 + u0 s) = 
1 

2tp,,(sa) and tM;(ub) = tp;;(sb)-

We set in S-mod M3 ~ ?3; M4 ~ ?4; M5 ~ P7 and M5 ~ Ps. A basic set of simple 

RC-modules of dimension 1 is given by the following table. 

M3 M4 Ms M5 

Ua · 1 1 1 -1 -1 

Ub ·l 1 -1 1 -1 

5.6.2 The simple modules of a twisted group ring R *o D6 

Let a be the 2-cocycle defined as a : D6 x D6 --> (C0 : a(ai, aibk) = l and 

a(aib, a.Jbk) = ,e:i where c. denotes a primitive 6-th root if unity. First remark that 

the a-C-regular subclasses in C are : 

Ce= {e}; 

For H = { e, b}, the a-H- regular subclasses in G are : 
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Ee= {e}; 

Eb= {b} ; 

E = {a a5
}· a , , E 2 = {a2 a4

}· a , , 

Eab = {ab, a5b}. 

We first define a 2-cocycle /3 equivalent to a satisfying the conditions of Lemma 

5.3.4. We proceed as in this latter lemma. Note that a( e, e) = 1. Define µ : G -; (C0 

as follows: 

µ(e) = 1; µ(a)= 1; µ(a·5) = c; µ(a2
) = 1; µ(a4

) = c2
. 

µ(b) = l ; µ(a 2b) = 1; µ(a4b) = c2; µ(ab)= l; µ(a5b) = € . 

µ(a3
) = 1; ;t(a3b) = l. 

Now put (3(x, y) = a(x, y)µ(x)µ(y)µ(xyt 1 for all x, y E G. The (3-G-regular sub

class sums form an R-basis for Z(R */3 G) and the (3-H-regular subclass sums form 

an R-basis for the centralizer S of R */3 H in R *fJ G (see 5.3.5). 

As 1c1- 1 E R and R is algebraically closed, R is a splitting field for R */3 H and 
3 

R * /3 G. Put R * /3 G ~ EB EndR (Mi) where each Mi denotes a vector space over (C. 
j = l 

Clearly, dim Mi = 2 for j : 1, 2, 3. 
2 

Put R *f3 H ~ EB EndR(Ni) where each Ni is a vector space over (C of dimension 1. 
i= l 

Of course, the R *a H-modules N; are known. 

Using Proposition 5.2.9 and Note 5.2.10, we have S ~ EB EndR(P;1) where P;j = 
C.j;o!O 

HomR•/J H(N; , Mi) . Moreover, dim P,1 = C;j = multiplicity of N; in the decomposi-

tion of M1, viewed as left R */3 H-module (see 5.2.2). 
3 2 

Now dim S = 6 = L L cf1 and this sum has at least 3 nonzero terms (Mi\n. 11 =I= 0) . 
j = l i= l /J 

Moreover, Mj ~ EB P;j in S-mod (see 5.2 .12(1)). Thus each nonzero c;1 = l. A 
C.J ;o!O 

basic set of 6 non-isomorphic simple left S-modules is given by the following table. 

Note that A ~ (C for k : 1, ... , 6. 

P1 P2 ?3 P1 Ps p6 

Sa · 1 l+c -(1 + c) 0 l +c -(1 + c) 0 

Sb· 1 1 1 1 -1 -1 -1 

€ denotes a primitive 6-th of unity. 
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Remark. To construct these simple left S-modules, we made use of some relations 

in S e.g. Sab = SaSbj Sa2b = Sa2Sbj Sa2 = (sa)2 
- 2cse; (sa)

3 = 3ESai (sb) 2 = Se-

We now construct a basic set of non-isomorphic simple left R */3 G-modules. 

For j = 1, 2, 3: Mi~ PiiffJP2i, in S-mod (see 5.2.12(1) ). Moreover, Mi~ P/1 f::! P:]1 

as Z(R*/3 G)-modules (see 5.2.14). T hus tM;(ua +u0 s) = 2tp11 (sa) = 2tp2;(s 0 ). We 

now set M1 ~ Pi EB ?4 , M2 ~ P2 EB Ps, M3 ~ A ffJ P6 as left S-modules. 

From here we determine the R *fJ G-module structure on Mj, j = 1, 2, 3 as fol

lows. As dim Mi = 2, we set M.i ~ (]) (fJ (J) as vector spaces. Put ub(l , 0) = (0, l ); 

ub(O, 1) = (1, O); ua( l , 0) = (ci, 0) and u 0 (0, 1) = (0, c:j) where E: is a primitive 6-tr. 

of unity and i, j E IN. 

For the simple R *f3 G-module M1 we have: tM, (ua) = tM, (uas) = tp.(sa) = 1 + E: . 

Thus .::i + c:i = c: , c:5i + c: . c:5i = l + c: which means that i = 0 and j = l ( or i = 1 

and j = 0). 

For the simple R*fJG-module M2 we become: tM2 (ua) = tM2 (u0 s) = t p2 (sa) = - 1-c:. 

Thus .::i + c:i = c: - c:5i + c: - c:5i = - 1 - c: which means that i = 3 and j = 4 ( or i = 4 

and j = 3). Note that Uas = w~ in R *fJ G. 

To construct the simple left R */3 G-module M3 , we express that saM3 = 0. This 

yields the following : (c:i, 0) + (c: · c:5i, 0) = (0, 0) and (0, c:i) + (0, E · c:5J) = (0, 0) . Note 

that uas = rn~ in R *fJ G). Now i = 2 and j = 5 (or i = 5 and j = 2) . 
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