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1 
Introduction 

1.1 Preamble and scope of this work 

Longitudinal studies consist of observing the evolution of one or several 
quantities through time on one or several units. Such settings often arise 
in practice in a wide range of fields. For example, in economy, one could 
observe the evolution with time of wage indices in different countries, and 
try to understand how other recorded variables such as the current lead­
ing politic party, the unemployment rate, the power of Labor Unions, etc., 
influence the response. 

In animal ecology, the inventory of some animal population in different 
areas of a wood could be observed over several years, and explained in 
terms of dynamic elements such as the season, the number of predators, 
the severity of the preceding winter, in addition to more static explanatory 
variables such as the geography of the area (light or dark area, type of soil) , 
the proximity of human paths, etc. 

Human and veterinary medicine are other subjects where longitudinal 
data arise. One example, that will be treated in Ch. 2, studies the effect of 
different types of diets on several blood variables observed on two groups 
of four adult Beagle dogs. These variables include the level of o-amino-N 
{mg/1), urea (mg/1), glucose (mg/I) , insulin (g/1), cholesterol (g/1), non 
esterified fatty acid (µEq/1) and triglycerides (g/l), observed at irregularly 
spaced time points on a six hour period after feeding. The latter response 
profiles - or plots of the triglyceride response against time - for the four 
types of diets considered, are given on Figures 2.1, 2.2 , 2.3 and 2.4. One 
can see that the animals were observed at unequally spaced times and that 
the response is bounded below by zero. In addition to time and the type of 
diet administered, the sex of the animal is another variable that might help 
to explain the variability in the data. One further example in veterinary 
medicine is presented in Section 3.1, where the respiratory rate of calves 
is observed over time under different doses of a receptor blocker. The 
corresponding count profiles are plotted for six calves in Figures 3.1 and 
3.2. The drug administration lasted for 30 minutes, explaining the drop in 
the response after that time. One question of interest was to develop an 
equation for the respiratory rate profile taking the drug dose into account. 
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Experimental biology is still another subject where longitudinal data are 
commonly gathered. In Ch. 3, we shall study the evolution of the sizes of 
Paramecium aurelium colonies on a twenty day period (see Fig. 3.3). One 
equation, common to the three series, modelling the number of individuals 
in each colony at any time, was desired. The stabilization of the colony size 
around day 10 may be one major concern when developing a suitable model 
for these data. 

In this work, all the treated examples will be related to biological and 
biomedical problems. However this does not mean that the scope of the lon­
gitudinal models that we shall present in the coming chapters, is restricted 
to these sciences. The technical problems in longitudinal data modelling in 
other areas, such as economy, are identical. The choice of the above two 
particular subjects to illustrate our findings, was simply due to our close 
collaboration with researchers in these fields. 

In order to define clearly the scope and the goal of this work, we now 
briefly review the main steps in the development of a longitudinal study: 

(1) First a suitable experimental design is set up to answer the question 
at hand. This problem is extremely complex because any sensible es­
timation of things like the sample size required to detect any covariate 
effect, should be based on a model. Of course such a model might 
not be available before the experiment is performed, and, hence, rough 
approximations based on distributions like the normal are often used. 
Such guidelines can be found in the literature (Diggle et al., 1994, 
Ch. 2) . They should be used with caution. Note that we have not 
considered the problem in our framework. Likelihood based methods 
for deriving sample size formulas in a longitudinal data setting could 
mimic what Lindsey (1995b, pp. 88-91) suggested in an independence 
context. One has just to remember the decomposition of the likelihood 
as a product of conditionally independent random variables. 

(2) When analysing longitudinal data, the first thing to do is generally 
to plot the data against time and the covariates. This is usually 
extremely instructive. It will give a first idea about the important 
explanatory variables and about the shape of the response profile. 
It might also put the focus on sometimes unsuspected results at the 
basis of a scientific discovery. Indeed even after a well-written pro­
tocol, where all the questions of interest (together with the statistical 
techniques required to answer these) have been described, surprises 
cannot be avoided, and the analyst should be ready to deal with such 
situations. Note that these discoveries might completely invalidate 
what has been carefully prescribed in the protocol. This subject wilJ 
not be developed in this work. The reader is referred to Diggle et 
al. (1994, Ch. 3) and the references at the end of the corresponding 
chapter for a description of the possible ways of exploring longitudinal 
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data. 

(3) The nature of the data should help to select a set of sensible candid­
ate distributions for describing the stochastic mechanism underlying 
our statistical model. For example, in the case of the heart beat fre­
quency data, one could choose the Poisson distribution or the negative 
binomial if overdispersion is likely to arise. If one wants to analyse 
triglyceride records, distributions, like the gamma, Weibull, or more 
generally the generalized gamma, all excluding negative values, are 
sensible choices. This set of distributions should be sufficiently large 
to be able to assess the sensitivity of the conclusions to the stochastic 
component. It could be specified in the protocol (Lindsey and Jones, 
1995). 

(4) Using the step 2 hints, express some location parameter as a function 
of the explanatory variables. This can be done in the same way as 
with models assuming independence. If, for example, one chooses 
a member of the exponential family, then one could just view the 
canonical parameter as a linear combination of the regressors (if this 
is judged sensible). Of course non-linear models should be used if the 
main data features are better described in such a way. An underlying 
biological theory should be at the basis of the statistica1 model each 
time this is found possible. Non-linear models are then more likely to 
appear. 
One could further model some scale or shape parameter, allowing, for 
example, different types of distributions in different strata of the data. 

(5) Inferences can then be made. We have restricted our approach to con­
ditional models for which likelihood methods are readily usable {see 
Equation ( 1.1)). The reason for that choice will be explained further 
in Section 1.4. However, we shall also present the fundamental ideas 
of the marginal model school {see Section 1.6) where approximate 
methods based on asymptotic arguments of the resulting parameter 
estimators are often used. 

(6) Now that the model has been built, we should enquire about its ad­
equacy. Residuals constitute an important tool for assessing the qual­
ity of a fit. Deviance residuals are easy to compute with likelihood 
methods. Influential observations as well as model lack of fit can be 
pointed out. We shall not discuss this aspect of data modelling in the 
present work, although its importance cannot be ignored in the build­
ing of any statistical description . However note that the arguments 
used to develop the tools (Davison and Gigli, 1989; Davison and Tsai, 
1992) commonly used in procedures assuming data independence , are 
also applicable in the context of our research where the likelihood is 
factored as the product of conditionally independent terms. 

Our work will focus on points 3, 4 and 5. We shall restrict our attention 
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to non-normal data. 
Our first contribution (see Ch. 2) is devoted to the development of mod­

els - the generalized autoregressive models or GARM - for irregularly 
sampled profiles of non-negative data under different distributional assum p­
tions (Lambert, 1996c) . The starting point of this paper is the set of dog 
triglyceride profiles observed under four different diets, that were provided 
by the veterinary team of the University of Liege Nutrition Department. 
The main challenges with that data set were: 

• to release the too restrictive normality hypothesis in another way 
than just taking the log of the response to be able to use standard 
statistical packages. A large family of non-negative random variable 
distributions, the generalized gamma family, including the exponen­
tial, gamma, Weibull and log-normal as well-known members, will be 
used as the stochastic component of the model. 

• to cope with the irregular sampling procedure where, as very often in 
veterinary studies, the animal is more frequently observed at the start 
of the study. Note also, that because of the possibly noncomplying 
behaviour of animals, some measurements often cannot be performed 
at the planned time (simply e.g. because the animal was moving, or 
some other nonexperimented animal required urgent care). Therefore 
the statistician has to deal with incomplete series of data, where, 
it is hoped, the missing data mechanism is not informative. More 
adequate methods (see Section 1.7.5) have to be used if that condition 
is not met. We strongly believe that a detailed discussion with the 
experimenter should bring the necessary light on the problem. 

• to compute estimates of the parameters involved in the stochastic and 
systematic parts of the model. For that use, given that all our methods 
were likelihood based , we foUnd the procedure Proc OPTMUM in 
GAUSS (which is now available on UNIX platforms) together with 
the programming facilities of that software incomparably efficient 1 . 

Note that we invariably used the AIC (Akaike, 1973) to compare the per­
formances of possibly non-nested models. That method is most adapted in 
a model selection context (Lindsey, 1994). 

Our second concern was to develop methods for analysing discrete lon­
gitudinal data (see Ch. 3). We propose a model for series of overdispersed 
counts measured at unequally-spaced time points (Lambert, 1996a). This 
model is an extension of the discrete time Harvey and Fernandes {1989) 
(see also Ord et al., 1993) gamma-Poisson model in an empirical Bayesian 
setting. 

1 We could not imagine the state of our work at this time if we only had access to 
a FORTRAN compiler. We strongly encourage people unsatisfied with their everyday 
statistical package, or researchers wanting to try their own undocumented statis tical 
discovery, to use this efficient tool. 
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It has been further refined in Lambert (1996b) , yielding a more robust 
model. The data set of interest, describing the growth of three colonies of 
Paramecium aurelium in a nutritive medium (Gause, 1934; Diggle, 1990) , 
clearly shows a non-linear pattern: the colony size seems to stabilize after 
about ten days, thereby indicating the need for a non-linear systematic part 
for the model. A generalized form of the logistic growth curve (Nelder , 
1961 and 1962) further developed by Heitjan (1991a and b) and including 
the Mitscherlich, Gompertz, logistic and exponential forms as well-known 
members, was used to allow for that asymptotic behaviour. 

Using the same kind of empirical Bayesian method to model binary or 
binomial data turned out to be technically more difficult. An approxima­
tion to the posterior density in the beta-binomial model is required to keep 
working with beta distributions. We did this by using a beta approximation 
with the same mode and Fisher information at that point as the exact pos­
terior. But the complexity and the quasi-likelihood aspect of the procedure 
convinced us not to proceed further. That might be the subject of further 
research. 

This deceiving conclusion led us to further develop the generalized autore­
gression model to deal with binary, binomial, multinomial (see Section 4.1) 
and count data series observed in continuous time. All these models have 
been applied to data sets from the literature and seem to give encouraging 
results (Lambert , 1995d). Note that, when the distributions are restricted 
to the exponential family and the regression parameters appear in a linear 
way in the description of the location parameter of these GARMs, the IWLS 
algorithm, available in most statistical packages, can be used to make in­
ferences about most of the parameters, except for the shape, scale and two 
autoregression parameters for which a grid of values has to be considered 
(see Section 4.2). In our work, we just used a non-linear optimizer on that 
small set of unknowns, with, at each step, an estimation of the linear para­
meters using the IWLS algorithm. We shall show that a transformation of 
the classical design matrix is all that is required, together with the compu­
tation of an offset. That means that the interested reader just could write 
a GLIM or S-PLUS macro for modelling series of non-normal longitudinal 
data. Of course, other methods have to be used outside the exponential 
family, or when non-linear systematic parts are desired in the model. No­
tice that no major assumption has been made about the stochastic element 
of the model, thereby showing the wide applicability of the GARM. 

Finally, we concluded our research by looking at methods suitable for 
making predictions using the GARM (see Section 4.3) . The usual likeli­
hood based prediction method, the predictive likelihood by Fisher (1959, 
pp. 128- 133), appears not to be satisfactory because the profile predictive 
likelihood (where the observation to come plays the role of the parameter 
of interest) just assumes that the 'nuisance' parameters are fixed at their 
MLEs. Therefore we decided to enquire about methods allowing for the 
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randomness of the conditioning elements. Intuitively, these should yield 
wider (predictive) likelihood intervals. The only computable method out­
side the exponential family that we could find, is described in Butler (1986, 
Rejoinder). We have considered it to predict the behaviour of an artificially 
truncated series of the Paramecium aurelium data set described above (see 
Section 3.1). Note that we have used a polynomial model instead of the gen­
eralized logistic growth curve that has been advocated in Lambert (1996b) 
to be able to use the GLM rewriting of the GARM in the particular case of 
a negative binomial distribution with fixed overdispersion parameter . This 
highly simplified the computational implications of the procedure, which, 
in non-linear settings, requires a lot of patience, while still being usable. 

1.2 Rationale for using conditional methods 

As already mentioned in the last section, conditioning will be our tool of pre­
dilection when developing models for longitudinal data. Hence that might 
be the source of a biased exposure which should largely be balanced by the 
abundant literature on marginal models. However we shall try to convince 
the reader that our choice is a sensible one and not only the consequence of 
some dogmatism. 

Statistics, whatever the refinement of the methods involved, is usually 
just an elaborate way of comparing means or proportions in different strata 
of a population. When, say, a clinical trial is set up to assess the efficacy of a 
given treatment in raising the white blood cell count (or CD4 level) of AIDS 
patients, we expect to improve the health state of each individual on the 
active treatment arm. Therefore building a statistical model that puts the 
subject at the centre of the study instead of some sample averaged quantity 
that does not take the patient specificity ( defined by as much personal 
information as possible on each studied unit such as its individual history 
of the illness) into account , seems to be the most important goal in any 
study of the data structure. We do not think that people will care about 
an average positive treatment effect on the proportion of people with an 
improved health state, if, individually, this is not followed by the same kind 
of prospect for each treated patient . That apparently aberrant conclusion 
can arise if a suitable conditioning is not done on the important patient 
specificities. 

But before giving an example of such a paradox, let us point out the 
specificity of longitudinal studies as far as randomization is concerned. If 
the data considered are representative of some larger population, which is 
generally ensured by random sampling, then the marginal average obtained 
from a model should tell us something about that population as a group. 
However, randomization only ensures that variable values at the moment of 
sample selection are 'representative', or, in other words, that both the ob­
served and unobserved variables which have an influence on the response , 
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are reasonably balanced among the different treatment branches, say. Un­
fortunately, as soon as repeated measurements are collected, any time­
varying covariates of individual subjects are no longer randomized , even 
if both observed and unobserved influential factors were suitably spread 
among treatments. This unbalance can become more and more marked as 
time goes by. Because of this, successive responses become conditional on 
the previous patient history and not just on the variable values at random­
ization . 

A marginal model which ignores such time-varying covariates can pro­
duce conclusions which , although correct for a population average, might 
not be valid at the patient level, thereby giving rise to the announced para­
dox. As a simple fictitious example, consider a trial to compare placebo to 
treatment with a binary outcome. The favourable marginal results of the 
repeated measures might be summarized as 

Treatment 
Placebo 
Active 

Recover 
No Yes 
200 200 
160 240 

Total 
400 
400 

Recovery 
rate 
50% 
60% 

We conclude that, in the population as a whole, the active treatment should 
be adopted. 

Now let us condition on one of the time-varying covariates which the 
marginal model ignores: the number of infections over the period of col­
lecting the repeated measures. The summary table for these same data is 
now 

One infection Several infections 
Recover Recovery Recover Recovery 

Treatment No Yes Total rate No Yes Total rate 
Placebo 20 80 100 80% 180 120 300 40% 
Active 90 210 300 70% 70 30 100 30% 

Within each of these two groups, active treatment is worse. Note how 
realistic this example is: patients under placebo have more infections and 
these with more infections have a lower recovery rate. 

This is just a simple example of Simpson's (1951) paradox which il­
lustrates one of the inherent dangers of any marginal modelling. But the 
conclusion obtained using the marginal table, is not as wrong as it seems 
to be, as the following argument tends to show. Assuming that the patients 
were randomized to the two treatment branches, we can see that the active 
treatment is estimated to prevent the occurrence of more than one infection 
in 75% of the randomized units, against 25% for the placebo group. Because 
the probability to recover is largely improved when the patient has not had 
more than one infection, whatever the treatment branch considered, the 
active treatment is marginally more efficient than the the placebo, although 
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this last treatment is conditionally preferable. What the conditional ana­
lysis brings in addition to the marginal approach, is a deeper understanding 
of the biological mechanism which generates the data. In the present case, 
it suggests that predicting the number of infections that a patient is likely 
to have further in time, would be interesting information in order to decide 
to assign or not a patient to the active treatment. Indeed, the population 
under study seems to be made up of three types of individuals: 

(1) frail patients, who, even under the active treatment, will be subject to 
several infections. They represent 25% of the population under study. 
For these people, the placebo would be preferable. Note that speaking 
of 'population' in a clinical trial, is rather dangerous, because the 
individuals involved in such trials, are not a random sample from the 
larger population that we actually aim to study. Only the treatment 
assignment is random. 

(2) robust patients, who, even on the placebo branch, will not suffer from 
more than one infection . They represent 25% of the sample under 
study. 

(3) the other 50% of the sample, who should be treated on the act­
ive branch, to prevent them from suffering from several infections, 
thereby improving their chance of recovery. 

The third group is the only one where the treatment is of interest. Some 
kind of surrogate marker would then be useful to determine if a patient 
belongs to this last category ( which is half way between the two extreme 
ones). Note that, even if such an indicator is not available, a possible policy 
would be to give the treatment to all the patients, and, as information on 
their number of infections is gathered, decide or not to continue the treat­
ment. The probability to recover for treated patients observed to have 
several infections during the course of the treatment ( and hence switching 
to the placebo branch), would then probably be between 30 and 40%. Con­
sequently, the marginal recovery rate resulting from this policy would lie 
between 60 and 62.5%, which is a bit better than a blind application of 
the active treatment, as recommended by the marginal analysis. Of course, 
this kind of hypothesis would require testing on new data. Another possible 
(but more hazardous) way to improve that rate, would be to stop giving 
the active treatment to patients with only one infection, when their state is 
judged (by some criteria to be defined) to be stable from an infection point 
of view. The recovery rate for these patients would then lie between 70 and 
80%, if the end of the treatment does not lead to a second infection. Note 
that this elaborate way to treat patients only concerns the patients in the 
two extreme categories, namely frail and robust individuals. 

From this rather subtle discussion , we hope that the reader is more aware 
of the possible unfortunate consequences of a blind use of marginal models 
to analyse longitudinal data. Conditional models, by trying to understand 
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the data generating mechanism, can suggest other ways of interpreting the 
data, which, in situations similar to above, have practical consequences on 
the treatment policy. 

A technical argument for using conditional inference is the 'easy' com­
putation of the likelihood function once the dependence on previous patient 
history has been suitably specified. Indeed, if we denote by y, the n; obser­
vations {y;1 , ... , y; .. .} on unit i ( i = 1, . .. , J) made at times { t;i, ... , tin;}, 
then one can factor the likelihood function as 

n; 

L(Y1,···,Y1) = Ilf(y,tl/3;,v) Ilf(Yijl/3; ,v; F;j-) (I.I) 
j=2 

where 

• f( .) denotes the chosen density (or probability function in the discrete 
case) for the response. 

• /3; stands for a vector of regression parameters. There is, of course, 
associated with each unit and at any time point , a vector of explan­
atory variables, say z,j , that could indicate the treatment branch to 
which a patient was affected, his age, his blood pressure, etc. , and 
anything that can be thought to have an incidence on the response 
variable under study. 

• v stands for nuisance parameters such as scale, shape, or autoregres­
sion parameters. It could also include a parameter indexing several 
possible choices among the elements of a family of stochastic compon­
ents (Lambert, 1996c). 

• .1",j- denotes the history of the unit up to time t,j , except its response 
at that time point. Hence it can include past responses , past and 
present regressor values, etc., and anything in the process history 
that can be thought of interest to model the response. 

Note that one usually makes the assumption that the dependence on the 
past history of the subject can be limited to a small number of past time 
points (Markov assumption). 

1.3 Characteristics of longitudinal data 

Two types of dependence appear in longitudinal data. Firstly, data observed 
on the same unit tend to show more consistency than data across units. For 
example, when recording the heart beat frequency profile of patients in a 
clinical trial (say) , the records of a young and active patient will naturally be 
less variable than a mixture of these records with those of their seventy year 
old neighbours. The homogeneity among data from the same unit is most 
often easily detectable with biological data when the response is plotted 
against time. This phenomenon - also called heterogeneity or frailty in a 
survival context - is often responsible for most of the observed variability 
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in longitudinal data. It can be accounted for using random effects models, 
or even more elaborate, random coefficients models (see Section 1.5). 

Secondly, observations made close in time on the same unit will tend to 
be more closely related than those made at more distant time points. This 
serial association is particularly clear in the above example where heart beat 
frequencies tend to evolve in a smooth way with time. This is mainly due to 
the inertia of biological variables. Note that some variables, such as the level 
of luteinizing hormone in the blood, exhibit occasional large increases in 
value. However the behaviour of such pulsatile quantities can be modelled 
stochastically (Diggle and Zeger, 1989). This is rather important because, 
once that the pulses have been modelled, the notion of inertia is still sensible, 
Serial association can be modelled by working on either the systematic part, 
or directly one some higher order component of the model structure such 
as the covariance matrix in the normal multivariate distribution. The two 
approaches are equivalent in this latter setting. Sections 1.4 and 1.6 will 
expose the main techniques used to this end in the literature. 

Modelling heterogeneity and serial association are usually the extra ef­
fort required with respect to the well-known analysis of independent data. 
In the next section, we review some key conditional models from the literat­
ure, which have been used to account for one or both of these two features. 

1.4 Some key conditional models 

1.4.1 NORMAL AUTOREGRESSION MODELS 

We shall first start with the normal distribution, which , in longitudinal 
data, as in many other statistical areas, has been the subject of extreme 
attention . The main reasons for this are its remarkably simple properties 
and the easy implementation of its estimates using least squares arguments. 
For example, the marginal and conditional distributions of the elements of 
a multivariate normal (MVN) random vector are both normal. In addition 
to this, the specification of the mean vector and of the covariance matrix 
completely defines the distribution of a MVN vector. This is of course an 
important element when the modelling of the dependence between successive 
observations in a longitudinal study is of interest. 

Normal autoregression models are probably the most well-known con­
ditional models. As a first step in the building of these models, suppose 
that the mean response µ;j is expressed as a linear combination of explan­
atory variables and past responses, thereby modelling the serial association 
mentioned in Section 1.3. If, for example, a first order Markov process is 
assumed, we have the autoregressive process of order one 

(1.2) 
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Extension to higher order models is easy. The response is then assumed to 
be influenced not only by the last state of the process , but also by events 
further in the past. That helps to assess if first order dependence is a 
reasonable hypothesis. Note that the contribution of the first observations 
on which we condition is fundamental to start the recursive implementation 
of the conditional means. They are often given a stationary distribution, 
because, with these observations, there is no way to condition on the past. 
When we have an autoregressive process of order two, we 'lose', for each 
series, the first two observations. Hence a high order dependence quickly 
becomes unrealistic with short series of data. 

Using Equation ( 1.1), and under the hypothesis that the model is an 
acceptable approximation to reality, we see that the data can just be treated 
as independent normal elements with a mean defined conditionally on past 
events. That makes the use of traditional regression software a convenient 
choice for estimating the model parameters. Note that the influence of the 
explanatory variable can be introduced in a more complex way, using for 
example non-linear systematic parts motivated by theoretical arguments . 

Another refinement of the model, yielding the well-known autoregres­
sion model of order one, or AR(l) , is to express the mean response as its 
regression part plus a correction proportional to the last raw residual : 

(1.3) 

The autoregression element now corrects for the sequences of residuals with 
identical signs resulting from a 'naive' independence model. Indeed a typical 
consequence of serial association is the inertia of the unmodelled part of 
the data. In other words, an observation that tends to be above (below) 
the curve defined by z'fi3; at one time, tends to be followed by one with 
the same characteristic. But that refinement has its cost. Indeed, we do 
not have a linear model anymore because the regression and autoregression 
parameters now appear multiplicatively. Therefore i terative methods have 
to be used with, at each step, the regression parameters estimated at the 
last updated value of p. 

Finally note that, because the correction implied by the autoregression 
term with respect to the systematic part in Equation (1.3) is a quantity tak­
ing values in a neighbourhood of zero, omitting it will be acceptable with 
the first observations for which 'no past' is available. Hence the marginal 
contribution of these first observations can be included in the likelihood, 
thereby allowing the computation of the likelihood on the whole data set . 
That means that the deviances2 of models of different orders are now com­
parable. Hence a model selection using for example the AIC is now possible. 

2 There exist diffe rent definitions for the deviance in the literature. Here, the deviance 
will stand for -2 log Likelihood. 
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But note that assuming the same regression parameters to describe the dis­
tribution of the first data as that of the other ones, imposes stationarity. 

We cannot close this section without speaking about inter-unit hetero­
geneity, which is often an important source of variability in the data. Two 
units with apparently exactly the same characteristics can respond at com­
pletely different levels. However , the response profiles for such subjects may 
often be assumed to be parallel, which seems to be a reasonable hypothesis 
in most practical situations, as can be seen from a plot of the response 
against time. One explanation for that apparently incoherent behaviour is 
that a large set of variables, either unknown to the experimenter, or too 
large to be recorded , has a combined influence on the response. This is 
particularly true with biological and economical processes where an exper­
iment is only partially under control. Patients involved in a clinical trial 
do not constitute a batch of homozygotic rats! Hence the complex mixture 
of uncontrolled influences could drown the treatment effect if the inter-unit 
variability is not taken into account . In contrast, laboratory experiments 
in physics are usually under full control, which means that any departure 
from the theoretical model is often just a measurement error. In these very 
particular situations random effects are unnecessary. 

Because the uncontrolled variability between units usually results from 
the additive influence of multiple quantities on the response, it is often 
modelled as a N ( 0, ui) normal random variable U;. Different combinations 
between random effects and serial association terms are then possible to 
construct a model: 

(1) the naive 'independence' model ignoring inter-unit variability and 
serial association. Note that, even with longitudinal data, this model 
might turn out to be sensible (cfr. laboratory experiments in physics, 
cross-over trials with a long washout period or with few observations 
per individual, etc.). 

(2) the pure random effects model, for unit i , 

for which 

~; = var(Y;) = 
( 

u
2 + ui u& . . . ui ) 

2 2 + 2 2 uu u uu · · · uu 
. . . . . . . . . 

u& ub .. . u2 + ub 

(1.4) 

where u2 is the intra-unit variance. Therefore we can see that ob­
servations on the same unit are correlated with pairwise correlation 
u& / ( u2 + u&) independently of the time separating the data. 

(3) the pure 'serial association ' or autoregression models described in 
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Equations (1.2) and ( 1.3) with possible extensions to a higher order 
dependence. The correlation matrix for the vector of observations 
made on unit i is, for an AR(l), 

1 p p2 ... pn; 

p 1 p ... pn,-1 

corr(Y;) = p2 p 1 (1.5) 

Because O < p < I, we conclude that the correlation between any 
two observations made on the same unit only depends on the time lag 
between them and is decreasing in an exponential way with it. 

( 4) a mixing of models 1 and 2, taking both heterogeneity between units 
and serial association within units into account: 

or 

µ,j = z&/3; + P(Yi,j -1 - zL_ 1/3,) + u; 

with possible extensions to a higher order dependence. 

Of course, we make the assumption that observations from different units 
are independent, i.e. 

corr (Y; , Y k) = 0 

for different values of i and k. The pure measurement error model could also 
be 'mixed' with the above models, if the measurement process is suspected 
to add a component of variation to the data (Diggle et al., 1994, Ch. 5) , as 
when simultaneous samples are taken on the same unit. 

We shall show in Section 1.6 how to derive analogous models using 
marginal arguments. 

Note that, until now, we have assumed that we had no missing data. 
Things can become very complicated if 'holes ' occur in the data set. Indeed , 
with autocorrelation models, we cannot condition on something that we 
have not been able to observe. One way out of this problem is to build a 
model in continuous time instead of the regular time spacing that has been 
assumed. However , if the reason for one datum to be missing is related 
to its unknown value , then the last procedure is not satisfactory anymore. 
Special techniques have to be used that explicitly model the missing data 
mechanism. The literature on the subject is now rapidly growing. We refer 
the reader to these papers for more information (see Section 1.7.5). 
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Throughout this work, we shall assume that missing data are missing at 
random, i.e. the probability for these data to be missing is not related to 
their unobserved values. 

In the next section, we shall see how to extend autoregression models to 
deal with non-normal data. 

1.4.2 NON-NORMAL AUTOREGRESSION MODELS 

As in the normal case, the idea underlying autoregression models is to 
express some location parameter µ;j as a function of covariates and past 
responses. Of course the chosen function must fulfil some conditions to 
avoid, for example, having a negative value modelled for the mean of a 
counting process. One way to solve this problem, is to work with a function 
of µ;j taking values on the real line. For example, if the probability of 
success is the parameter of interest in successive Bernoui11i trials, then one 
could choose to model the logit of that probability as a linear function of 
the covariates and of past responses. More generally, using the generalized 
linear model vocabulary, if g(.) denotes the link function, then a non-normal 
(linear) autoregression model of order P would be of the form 

p 

g(µ;j) = ~&/3; + L PpYi,j-p (1.6) 
p=l 

Here the value of the current location parameter is expressed as a linear 
combination of the P last responses. The effect of these past responses on 
the state is measured by the parameters Pp. Most of the time, the further the 
past response, the lesser influence it has on the current state of the process. 
Therefore we expect the parameter estimates Pp to be a decreasing function 
of p. 

Of course conditioning on, say, two past responses, is impossible at the 
first two observation times. Hence their contributions cannot be included 
in the likelihood function. Remember that this last function can easily 
be computed using a conditioning argument similar to the one used to 
construct Equation (1.1). 

In practice, we restrict conditioning to only a few past observations 
precisely to reduce the incidence of the last problem. Of course, it is par­
ticularly acute with experiments recording a lot of short series of data in 
order to control the inter-unit variability. Assessing the order of an autore­
gression model is not an easy task because deviances computed on different 
order autoregression models will not be based on the same number of ob­
servations. 

Note that it is not clear if conditioning should be done on the past 
responses or on some transformation of them. For example , one might feel 
more comfortable with the expression 
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p 

g(µ;j) = z'f;/3; + LPp9(Yi,i-p) {l. 7} 
p::l 

although the last quantity in that equation is not always defined. For ex­
ample, the log of a zero count will often arise in a Poisson model with the 
log link. 

An alternative approach, giving a more satisfactory answer to the prob­
lem of the autoregression order, expresses the transformed location para­
meter as a function of the covariates and past residuals: 

p 

g(µ;j) = Zij/3; + L Pp [g(Yi,j-p) - zL-p/3;] (1.8) 
p::l 

The definition of the residual is obviously arbitrary. Here, as in the last 
model, some quantities might be undefined for particular values of the re­
sponse. Consider now an autoregression model of order two. For the first 
observation , no past residuals can be computed. Because residuals are 
quantities that vary around zero when the systematic part of the model is 
properly defined, dropping the residual correction, or in other words, setting 
it equal to zero, will just express the fact that the only available information 
on the process before the first observation, is the value of the covariates. For 
the second observation, only one residual can be computed, the one related 
to the lag two observation before being set to zero. From the third observa­
tion time on, the process is completely defined and can correct for the model 
insufficiencies . In summary, a 'classical' type of model is assumed when no 
past history is available, and corrections are added to that quantity when 
the model is observed to under or over-estimate the past data. The import­
ant advance in this setting, compared to the usual autoregression models, 
is the possibility to compare models of different autoregression orders, be­
cause the same number of observations enters the likelihood. Of course the 
order of the autoregression will be limited by the size of the series. But this 
is not a technical limitation anymore. 

Non-normal autoregression models will be extended to deal will continu­
ous time longitudinal data in Chapter 2. 

There exist alternative methods to model series of normal data in con­
tinuous time. One of these, based on state-space models and the I( alman 
filter, allows to derive the likelihood in both a flexible and numerically con­
venient manner. This is the subject of the next section . 

1.4.3 THE DYNAMIC LINEAR MODEL AND THE KALMAN FILTER 

What follows summarizes the main ideas of the paper by Jones and Boadi­
Boateng (1991} who use the Kalman fi lter to model unequally-spaced (nor­
mal} longitudinal data. Related references include Jones and Ackerson 
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(1990) and Jones (1993). The starting point is the Laird and Ware (1982) 
marginal model for the vector of observations made through time on unit i: 

( 1.9) 

with 

var(Y;I,;) = u 2I;; 

"Y; - Nr1 (0, u 2r) 

As usual, the vector /3 stands for the regression parameters related to the 
covariates in the design matrix X; . The parameters in the r; x 1 vector "Y; 
are assumed to be random. We have already justified the need for a random 
intercept to model inter-unit variability. We just do as if our patients 
were drawn at random from a larger population. Similar arguments have 
led to random coefficient models (see Section 1.5) involving other random 
parameters such as the slope of a line in a linear model. For example, in 
an experiment studying the evolution of rat weights under two different 
treatments, one might feel the necessity to assume that the growth rate of 
rats with time is varying randomly across the population. This is precisely 
the type of thing that the above equation is modelling. It can be easily 
shown that the corresponding deviance is 

(1.10) 

The classical methods of estimation would directly derive the score vector 
and set it equal to zero to obtain equations to find the MLEs. This is not 
without problems when the number ni of data recorded on patient i is large. 
Indeed the above procedure requires the computation of matrix inverses of 
size equal to n;. 

Note that we have not yet discussed the problem of serial association 
modelling . Basically, in a marginal context, this can be done by giving 
some structure to the variance u2 I;; of the observation random vector. For 
example, if an autoregression of order one is desired, then one can set I;; 
equal to the matrix in Equation ( 1.5). That would add one more parameter 
to the deviance function. An algorithm to perform non-linear optimization 
would then be required with, at each step of the process , the other linear 
parameters estimated using non-iterative methods. Concretely, the value of 
/3 and u 2 maximizing Equation {1.10) respectively are 
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{1.ll) 

and 

where 

:Etot,i = zirzr + :Ei 

Replacing the above estimated parameters by their values in the deviance 
function , we finally get the profile deviance 

{1.12) 

which is a sole function of p if Equation ( 1.5), defining an AR{ 1) structure, 
used to model serial association. That last parameter is precisely the one 
for which a non-linear optimizer is required. 

With long time series, the above procedure is numerically very demand­
ing. Therefore we shall present an alternative method based on the Kalman 
filter that computes the parameter estimates and the likelihood function re­
cursively. We shall use the convenient notation €;j to describe the residual 
part ( innovation in econometrics) of the model. According to our above 
assumption, it is normally distributed with mean zero and variance u2 . 

Autocorrelation in a discrete time setting can be defined , similarly to 
Equation {1.3), by relating €ij to its value at the previous observation time: 

(1.13) 

where again :Fi ,i-l denotes the history of subject i up to the last observation 
time. More generally, when observat ions are sampled at irregularly spaced 
time points, or when missing {completely) at random data arise in a discrete 
time setting, one can define a continuous AR{l) which assumes that two 
observations made on the same subject Atij(= t;i - t; ,j -i) units of time 
apart are correlated by a quantity of ((Atij) = e - ptl.t,;. Equation {1.13) 
then becomes 

(1.14) 

The expression 

€ii - E( €;i l:Fii-) {1.15) 
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is the difference between the residual observed at time t;j and its 'expected' 
(or modal) value. The 'imprecision ' of that prediction is estimated by the 
conditional variance of the last expression: 

Note that it grows away from zero as the time lag between the two obser­
vations increases. 

Consider now the state vector 

[~~-· ] (}ij = , 

where, as explained above, f.;j models the residual part of the response that 
is not explained by either the systematic part or the random effects. Given 
the AR(l) structure of the latter random variable (and Equation (1.14) in 
particular), one can easily show that the prediction for the state vector at 
time t ;j given its past history is 

(1.16) 

where Ir, denotes the r; x r; identity matrix. Given that the random effects 
are not evolving with time, but just vary from one individual to the other, 
we do not predict any systematic change to them. Of course, our knowledge 
about them will evolve, becoming more and more precise as we accumulate 
observations on each unit. 

The conditional covariance matrix of the state vector is 

(1,2) ( l E:\j-llj-1( Llt;j) 

0 (2 ,2) 
i,j-llj-1 

(1.17) 

Note that the state vector is initialized to zero, whereas the initial condi­
tional variance is chosen to be 

? [ 1 0] 6; ,110 = er Or 

Consider now the innovation vector 

ei = [ zl_; Yii] - [ 1 z?;] O;,jjj - l 

The conditional covariance of that row vector is given by 
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. . . _ e <1,1) e <1,2) . . r 8 (2,2) .. 
v,,31J-1 - i ,jlj-1 + 2 i,jlj-1Z1J + Z;j i,jlj-lz'J 

Once the observation at time t;j is available, the state vector and its variance 
matrix can be updated using, for example, Bayes theorem , yielding 

where 

\Jl,·
3
· = 1 [e};i1J_1 + e};12}_ 1z;j] 

0 (2,1) 
8

(2,2i 
V;,1·13· - 1 - · ., . 1 + - · ., . 1Zi3· 1,J J- 1,J J-

The quantities (1/v;,jij-l)e;je& and log(vi,jjj-i) are cumulated at each 
step of the recursion, yielding respectively a matrix and a scalar. The matrix 
contains Li Xf :E;;,; ;X; completed by the column vector L; Xf :E;;,! ;Y; , 

' I 

required to compute~ from Equation (1.11). The scalar can be used to 
compute the deviance, as justified by a factorization of the likelihood similar 
to Equation ( 1.1), 

The Kalman filter technique is easy to compute for a linear normal 
model. It is typically dynamic, in the sense that, as soon as one new obser­
vation is available, the new MLEs for the parameters of interest can simply 
be computed (in one iteration) through an update of the old parameter es­
timate. A short review of the literature on related subjects is proposed in 
Section l. 7 .2 . 

The dynamic linear model {DLM) makes the assumption that the data 
are normally distributed. In the same manner as in an independence set­
ting, where the generalized linear model transposes the ideas underlying the 
normal linear regression to a non-normal context, it would be interesting 
to build a model generalizing the DLM. Dynamic generalized linear models 
are a possible answer to this problem. 

1.4.4 DYNAMIC GENERALIZED LINEAR MODELS 

Dynamic generalized linear models (DGLM) extend the normal dynamic 
linear model, presented in section 1.4.3, to deal with distributions in the 
exponential family. One main contribution to the subject is due to West , 
Harrison and Migon (1985) in a forecasting context. We refer to Section 
1. 7 .2 for further references. 

Unfortunately, the original paper assumed that only one time series was 
available. Therefore we shall drop the index i in the following lines. Gen­
eralizations of this approach to deal with multiple series will be the subject 
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of the coming chapters. But note that the West et al. {1985) approach can 
be applied when several units are available if no parameter is common to 
any two times series. 

Denote by 

{1.18) 

an exponential dispersion family distribution for the response at time tj. 
Consider the linear model 

(1.19) 

for the location parameter µj. Note that ¢ is just a scale parameter such 
as the variance in a normal setting. The basic idea is to assume that the 
regression parameters are allowed to vary with time in a dynamic way. 
That kind of assumption is fundamental in economic contexts where a static 
model is neither convenient, nor realistic. Indeed, when studying economic 
indices, quick changes of behaviour are likely to arise at any time, making 
the current model obsolete to the current trend in the data. 

One way to get these desirable properties is to give to all the regression 
parameters a distribution that is updated with time as new observations 
become available. This is precisely a task for which the Bayesian alternative 
(if you are frequentist or Fisherian) is more than tempting. To enable 
closed forms for both the marginal distribution of the response and for the 
posterior of the parameters, a conjugate prior will be preferred to any other 
arbitrary choice. Instead of directly working with a multivariate prior for 
/3 j, a uni variate prior for T}j will be chosen. Denote this last prior by 

p( T}j IFj -1) = c( O'j, {j) exp [ Ojjj-lf7j - {jlj - 1 a( T}j)] 

- CP(aili-1, {m-1) (1.20) 

Suppose now that the first two moments of the regression parameter evolve 
according to the relations 

E(/3jl.1"i-d = .Bm-1 = Gi/3i-llj-1 

var(/3j l.1"i-d = eili-1 = Gj6j-1jj-1GJ + Bj 

(1.21) 

(1.22) 

These expressions just result from a stochastic relation predicting the future 
regression parameters as a linear combination of their past values plus some 
random noise to indicate our ignorance of what will happen to them in the 
future. For example, if one wants to build a linear expression in time , then 
Equation (1.21) could be chosen to be 

(1.23) 
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with f3oj and (31 j respectively denoting the intercept and the slope of the 
regression at time tj. The linear regression in time is then obtained by 
setting 

:z:;=(10) 

in Equation (1.19) . Similar state-space equations can be built to define 
seasonal components for example. The choice of the matrix B j in Equa­
tion {1.22) is of course totally arbitrary, as are the initial moments of the 
regression parameters. But the influence of a vague prior distribution , as 
the one resulting from a large B 1 matrix, will quickly become negligible as 
observations become available. 

Of course, defining relations between subsequent values of the first two 
moments of the regression parameter will not remain without influence on 
the distribution of 'f/j , particularly on the coefficients aili-l and {jlj-l in 
Equation {1.20) . Indeed , from Equations {1.19) and (1.20), we conclude 
that 

E[1JilFj-1] = z]Gi/3i-lli-i 

var[1Jjl.1"j-1] = z;(Gj0j-ljj-iGJ + B j )Zj 

which clearly will put constraints on O'jlj-l and {jjj-1· 

The response conditional distribution in Equation (1.18) can be rewrit­
ten as Pr(yj l7Ji, ¢, Fj-1) to stress the dependence of the regression para­
meters on past responses. As soon as the observation at time tj becomes 
available, the posterior distribution of 1}j can be computed using Bayes 
theorem 

p( 'f/j I Fi) ex p( 1Ji 1¢, Fj-1) Pr(yj 111i, ¢, Fj-1) 

,..., CP(ajlj-1 + <PYi,{ili-1 + ¢) (1.24) 

As predicted , the posterior distribution for 1}j has a closed analytic form 
and is still in the conjugate family. The main problem will be to compute 
the posterior distribution of f3j while taking Equation (1.24) into account. 
Note that Bayes theorem cannot simply be used, because we only have 
made assumptions on the first two moments of /3j , leaving its distribution 
undefined. West et al. (1985) overcome this problem by using the quadratic 
risk function 

(1.25) 

Their first assumption is that the posterior mean /3jjj-i of /3j is a linear 
function of 1}j, as suggested by Equation (1.19). Injecting this linear ex­
pression into the risk function, and determining the corresponding linear 
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coefficients by minimizing that quantity, we finally get the posterior mo­
ments 

{3jlj = f3jlj-1 + ej1j-1Xj {E [g(r,j)IFj] - E [g(11i)IFj-1]} /var [g(11i)IFj-1] 

var(f3j1Fj) = ejlj-1 -em-1XjxJem-1 

{1 - var (g( l'}j) IFj] /var [g( T/j) IF1-1]} /var [g( T/i) IF1-1] 

by using the relation 

Note that Equation (1 .25) really provides the posterior moments, because it 
can easily be shown that /3 i is conditionally independent of Yi given ( 1/i IF1). 

The recursion is now completely defined. The only thing still required 
is the likelihood. The total likelihood can be decomposed as the product of 
the conditional ( or predictive) distributions 

A grid of values can be considered to determine the value of </J maxim­
izing the likelihood. More systematically, a gamma prior distribution can 
be given to ¢. We refer the interested reader to the original paper for more 
information. 

Other authors have tried to generalize the dynamic linear model to deal 
with discrete data. The next section is devoted to one of these alternatives 
in discrete time. It will further be generalized, in Ch. 3, to model count 
data in continuous time. 

1.4.5 OTHER APPLICATIONS OF THE KALMAN FILTER: MODELS FOR 
COUNT DATA 

Harvey and Fernandes (1989) , and later Ord et al. (1993) , have proposed 
alternative methods for modelling series of count, binary and multinomial 
data. Basically, parameters, such as the mean or the proportion of successes 
in Bernouilli trials, are given a conjugate distribution that is updated using 
Bayes theorem as observations become available. Explanatory variables can 
be introduced , but the corresponding regression coefficients are assumed to 
be fixed. Thus this method is essentially comparable with the West et al. 
(1985) DGLM, although, here, no quasi-likelihood argument is required. 
This is at the cost of non-stochastic slope or seasonal components. However 
that last restriction should not be considered as a handicap because very 
often, data do not contain enough information to support non-fixed effects 
for parameters other than the intercept. As in the last section, they assume 
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that only one series is observed and that time is discrete, extensions to 
multiple units and continuous time being the subject of the coming chapters 
(see also Lindsey, 1993, pp. 58- 60, 206-209 and Lindsey and Lambert, 
1995). 

Suppose that Yj is Poisson distributed with mean µj and that the mean 
is given a conjugate gamma distribution: 

From the prior distribution of µj-l , we should build a predictive dis­
tribution for time tj that expresses the loss of information between the 
times tj-1 and t1 . One way to ensure this is to make the predictive mean 
Kjlj-i/Vjjj-1 equal to its previous (filtered) value and the predictive vari­
ance Kjjj-i/v]11 _1 larger than its last filtered estimation. Setting 

Kjlj-1 = WICj-llj-1 

Vjlj-1 = WVj-llj-1 

with O < w < 1 gives these properties. Note that the matrix B 1 in Equation 
(1.22) in the West et al. (1985) approach plays a role similar to w. Here 
we do not have a matrix, because, as mentioned at the start of this section, 
the regression parameters are assumed to be non-stochastic. 

The prior distribution can be updated as soon as a new observation is 
available. The corresponding posterior is still a gamma with parameters 

Kjjj = "'ili-1 + Yj 

Vjlj = Vjlj-1 + 1 
(1.26) 

As usual, the influence of the first prior distribution on the final results can 
be made negligible by taking Ko1o and v0 1o close to zero, yielding a flat prior 
(because of its large variance) . 

The distribution of Yj conditional on its past history can be obtained 
by integrating out the mean parameter 

Pr(y11Fj-1) = 100 

Pr(y1 iµj ,F1_i)p(µ1IF1-i) dµ1 

f{,cjlj-1 + Y;) v"'ili-1 (l + v · . ) -(icilf-1 +Y;) 
f(yj + l)f(,cm-1) iii-I 111-1 

giving a negative binomial distribution . 
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The likelihood can then be computed by multiplying ( over j) these condi­
tional distributions altogether. The unknown parameter in this last quant­
ity is w which can be estimated by minimizing the corresponding deviance 
(using a non-linear optimizer or by considering a grid of values for w). 

One way to introduce explanatory variables into the model is to work 
with a mean µ5, instead of µj, with distribution 

( 'I,,..·) -u ·i ·µ' .exp(-z'f{3) , 11:;jj-l p µj .r 3 ex e 1 1 , , µj 

Equations (1.26) then become 

I I + 
"jli = "ili-1 Yi 

viii= vili -l + exp(x; {3) 

Harvey and Fernandes (1989) also show how to deal with binomial and 
multinomial distributions. In the first case, they use a conjugate beta prior 
for the proportion of successes, yielding a beta-binomial compound distri­
bution. Again , choosing a conjugate prior ensures that analytic solutions 
for posteriors and marginals result from the iterative process. In the second 
situation, a Dirichlet prior, generalizing the beta distribution to deal with 
multiple proportions, is chosen. The resulting compound distribution is the 
Dirichlet multinomial. 

The DGLM can further be generalized to deal with a vector of observa­
tions. This is the subject of the next section. 

1.4.6 THE MULTIVARIATE DYNAMIC GENERALIZED LINEAR MODEL 

Generalizing the West et al. (1985) and the Harvey and Fernandes {1989) 
models to deal with multivariate data is rather complex, and traditional 
methods require the repeated computation of multidimensional integrals. 
An interesting answer to that problem was proposed by Fahrmeir (1992) 
who introduces a family of multivariate dynamic generalized linear models 
to analyse series of observations in the exponential family. 

Using the same notation as in the previous sections, consider the condi­
tional exponential density of the multivariate response Y j at the /h obser­
vation time 

together with the multivariate generalized linear model 

where 17 j is the natural parameter expressed as a function µj . The re­
gressors in Xj can include any type of explanatory variable, including past 
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responses. The (normally distributed) regression parameters f3j are as­
sumed to evolve according to the transition equations 

E(/3jl.1"j-1) = Gif3i-tli-1 
var(/3jl.1"j-1) = 0jjj-I = Gj0j-Iij-1GJ +Bj 

(1.27) 

The posterior density of f3j can be computed using Bayes theorem. Un­
fortunately compounding of an exponential family distribution with a nor­
mal multivariate density usually does not give a closed analytic form for the 
posterior, unless the data are normally distributed. Therefore heavy numer­
ical integration procedures are required. As an alternative, Fahrmeir (1992) 
proposes to estimate /3jlj by its posterior mode. Choosing to work with pos­
terior modes instead of posterior means avoids the repeated computation 
of multidimensional numerical integrals. Hence the posterior log-likelihood 

t [log Pr(yk l/3k, Fk-1) - ~(.Bk - .Bklk-1f var(.Bk IFk-1)-1 

k=I 

(.Bk - f3klk-d] - i (.Bo - f301of var(/3ol.1"o)-1 (.Bo - .8010) 

has to be maximized. An approximate iterative solution to the above max­
imization problem can be derived using a simplified version of the Fisher 
scoring algorithm. The stepwise procedure can be summarized in three 
steps: 

(1) The prediction step given by Equation (1.27) with arbitrary initial 
values for {3010 and 0 010-

(2) The correction step 

with 

(3) The smoother step 

f3k-Ijt = f3k-ljk-I + 0k-llk-1Gl 0;1L1 (.Bklt - f3klk-1) 
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fh-11t = E)k-llk-1 + E)k-llk-1GI0;1L1 

(eklt - eklk-1) 0;1L 1Gk0k-1lk-1 

for values of k in {t, ... , l}. 

The smoother step cannot be used if the above model is aimed to compute 
predictions. Indeed parameters at a given time are corrected using (future) 
information that is not yet known at that time. Actually, everything works 
as if we had a 'multiple pass' Kalman filter. This is not unacceptable 
because maximum likelihood estimates are computed in order to fit the 
whole data set in the most acceptable way. The shape of the fitted curve at 
the beginning of the process depends on the values observed further ahead 
in time to avoid too important a lack of fit at future time points. 

The choice of the initial conditions can be optimized using the EM al­
gorithm (Anderson and Hinde, 1988) . 

Distributions outside the exponential family can be used to model non­
normal longitudinal data. Flexible alternatives in continuous time are con­
sidered in Ch. 2 and in the next section. 

1.4.7 EXPONENTIAL DISPERSION MODELS 

J0rgensen (1987) introduces exponential dispersion models which are a mul­
tivariate generalization of generalized linear models. One basic character­
istic property of these models is their interpretation in terms of stochastic 
processes with stationary and independent increments (J0rgensen, 1992) , 
as will be shown below. 

Consider the density 

(1.28) 

for the vector Y of responses where a(.\ , y) is a normalizing constant and 
K.{9) is the cumulant function. The parameter u 2 = 1/ .\ is called the 
dispersz'on pammeter. The moment generating function is 

The mean response is thusµ= T(9) , where T(9) = 8K/89, and the vari­
ance function 

a2"' I V(µ) = -T-ao ae o=T-1 (µ) 

The distribution defined by Equation (1.28) will be denoted by ED(µ, u 2). 

An important property of exponential dispersion models is their closed 
form under convolution of densities with identical means. Consider the 
random variables Y; "'ED(µ,, u 2 /w;) (i = 1 ... ). Then we have 
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Hence the property also holds for the well-known normal, gamma and in­
verse Gaussian distributions which are examples of exponential dispersion 
distributions. 

Similar things can be done with discrete random variables. Consider 
the family of discrete exponential dispersion models 

denoted by Y ,.._, ED*(,\, 8), where the components of the response can only 
take values in a discrete set. It can easily be shown that Y / ,\ ,.._, ED(µ, o-2 ), 

with the same notation as above. Hence the mean and the variance functions 
related to Y are respectively given by m =,\µand ,\V(µ) and we also have 
the convolution property 

Therefore, any stochastic process {Y(t) : pt EA} where 

Y(t) ,__ED*(,\= pt, B) 

Y(O) = 0 

with A denoting the set of possible values for ,\, can be seen as the sum of 
independent increments 

When,\= IR+, the process is infinitely divisible, and can be considered in 
continuous time. 

Univariate (discrete) exponential dispersion models are characterized 
by their variance function V(µ) . These include the well-known families 
ED(P>(µ , o-2

) of distributions with a power variance function V(µ) = µP , 
including the Poisson (p = 1), the gamma (p = 2) , the normal, the inverse 
Gaussian and some stable distributions. An interesting property of these 
distributions is that they are closed under scale transformations: 

for any positive constant c. Note also the form of their cumulant generating 
function 

{ 

e6 (p = 1) 
,c(O) = - log(-0) (p = 2) 

- p~2 (p:/: 1, 2) 
(1.29) 
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Asymptotic properties of the MLEs of /3 (where µ = µ(/3)) and of the 
deviance 

can be derived when either the sample size is large or the dispersion para­
meter u 2 tends to be small ( small dispersion asymptotic theory). These 
can be used to infer about the parameters of interest when the dispersion 
parameter is known. When .X = l/u2 is not known, the estimate based on 
the modified profile likelihood 

can be used jointly with the asymptotic properties to build appropriate 
F-tests. 

A new dispersion model can be derived from two given dispersion mod­
els EDi and ED2. Suppose that the distributions of Y~>.) = Y;/ >. (i = 1, 2) 
are given by 

Y~>.) IY~>.) ,.., ED~ (>.r + y~>.)T q, 6i) 

Y~>.),.., ED;(>.,6;) 

Then it can be shown that the joint density of (Y 1 , Y 2 ) is of the form 

f(Y1 , Y2i>., 61, 62) = a(>., Y 1, Y2)exp{>.[yf 61 + y{ 62 - 11:12(61 , 62)]} 

(1.30) 

where 

62 = 6; - q11:1(6i) 

11:12(61 , 62) = r11:1(61) + 11:2 (62 + q11:1(61)) 

The joint distribution in Equation (1.30), denoted by 

is still an exponential dispersion model called the combination of ED1 and 
ED2 . The (marginal) resulting means for Y 1 and Y 2 are respectively 
µ 1 = T1(61)(r + µIq) and µ 2 = T2(6;) . The marginal distribution or 
mixture distribution of Y 1 , which is still an exponential dispersion model, 
is denoted by 
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Similar results also hold with discrete exponential dispersion models. 
Exponential dispersion models can be used together with this last tech­

nique to analyse longitudinal data. Consider , as a first example, an autore­
gressive model of order one with gamma distributions: 

Y1 "'ED<2l(µ1, 17
2

) 

Y;IY;-1 "'ED<2 l(µ:Yi-1q, 17
2 (Y;-1q)- 1) i = 2 ... n 

Taking a log-linear model, log(µ;) = zT {3, for the marginal means, one can 
show that the successive conditional means are given by 

log(µi) = z'f {3 

log(µ:Yi-1q) = log(y;_i) + (z; - z;-1f {3 i = 2 . . . n 

Another example is provided by the exponential dispersion linear growth 
model in J!/Srgensen et al. (1994b), 

Xo "' EDi ( r1 1 
( o:/ 17), 11) 

AX;"' ED';(r1-
1 (J3/>.),>.At;) 

Y;IX; "'ED;(r21{1/o), oX;) 

from which we conclude that 

E(Xo) = o:, Var(Xo) = 11Vi(o:/17) 
E(AX;) = /3At;, Var(AX;) = >.At;Vi(/3/>.) 
E(Y;IX;) = X; , Var(Y;IX;) = oX;\!i(l/o) 

(1.31) 

The response conditional mean is thus linear in time with intercept o: and 
slope /3. 

These two examples illustrate the generality of the exponential disper­
sion family framework together with the availability of results in continuous 
time. 

We now propose to treat heterogeneity more systematically, although it 
was already accounted for in several of the above models. 

1.5 Random effects models 

In this section, we propose to review the main ideas underlying random 
effects models. The need for random effects was already mentioned in 
Section 1.3 where heterogeneity was described as one of the main sources 
of variability in biological data. Neglecting this feature in a model can lead 
to inexact statements on the effect of covariates on the response. Inter­
unit variability is usually easily detectable when the observed response is 
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plotted against time, where profiles related to different units have parallel 
evolutions. 

Suppose that the location parameter under study is first modelled as a 
function of the covariates 

The ideal solution to the heterogeneity problem would be to have a different 
intercept >., for each unit, thereby allowing for the parallelism between pro­
files. The number of parameters would thus be growing with the number of 
units under observation. Estimating these parameters is not a problem when 
the observed series are large, but directly maximizing the likelihood with 
short series can yield inconsistent estimates for the parameters of interest. 
Different alternatives have been proposed to deal with these intercepts. Of 
course the estimates of these parameters are usually not of direct interest 
to the modeller. They are just a convenient way to take the inter-unit 
variability into account. Hence eliminating these nuisance parameters is 
desirable. 

When a sufficient statistic T; for >.; is available, conditioning on it 
provides a conditional likelihood with which inference on the remaining 
parameters can be done. Exponential family distributions, where >.; ap­
pears linearly in a linear expression describing the canonical parameter, 
provide such a statistic. The Rasch model (Rasch, 1960) is an example. 

Unfortunately, things are not always as simple. Using a probit model 
instead of a logistic means that the model does not provide a sufficient 
statistic for ,\; anymore. In these situations, alternative methods have to 
be used. One usually assumes that the units under observation form a 
random sample from a larger population that we want to study. Giving a 
distribution h( .16) to>.; is then a possible way to model this. The traditional 
choice for the compounding distribution is the normal. When the response 
is also normally distributed, the marginal distribution 

J h(>.;16) lJf(Yii lB;j , >.;)d>.; 
J 

{1.32) 

of the vector ofresponses on unit i , obtained by integrating out the random 
effect, is multivariate normal with a covariance matrix similar to the one in 
Equation (1.4) . With a non-normal distribution for the response, an analyt­
ical form for the marginal distribution is usually not available. Numerical 
integration or alternative methods such as the EM algorithm (Anderson and 
Hinde, 1988) with generalized linear models, have to be used to compute 
the marginal density of the response. 

Another convenient approach in the exponential family is to consider 
the conjugate distribution {Diaconis and Ylvisaker , 1979) for the random 
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effect instead of the normal. Closed analytic forms for Equation (1.32) can 
then be obtained under special circumstances. But the method fails with, 
for example, the logistic model, when explanatory variables are included in 
the systematic part. 

As already mentioned, heterogeneity is the result of unobserved and 
thus uncontrolled characteristics distinguishing apparently identical units . 
The complexity of biological mechanisms, the cost of data collection, and 
the need for a simple model are some causes of the problem. Denote by 
Xj (j = 0, 1, ... ) the variables influencing the response and assume that 
only xo is observed. Let c(xo, x1 , ... ) be the function relating the location 
parameter of the response distribution to the covariates. Locally, the loc­
ation parameter can be approximated by a linear function of the observed 
explanatory variable xo: 

) ( ) 
8c(xo,x1, ... ), 

r,=g(µ =cO,x1, ... + a Xo 
Xo xo=O 

= /3o(x1, ... ) + /31(x1, ... )xo 

The regression parameters are function of the unobserved explanatory vari­
ables which therefore vary from one unit to the other. That mathematical 
derivation can easily be extended to several known covariates. 

If the chosen sample is the result of a random allocation of patients 
to the different treatment branches in a clinical trial , then we expect the 
unknown covariates x1 , ... to be 'fairly' distributed among the different 
strata. Extending the random intercept model to a more general framework 
where all the regression coefficients are given a distribution can then be 
justified, yielding the random coefficient model (Lindsey, 1993, pp. 52-53). 
This motivates the Laird and Ware {1982) model (see Section 1.4.3). 

1.6 Marginal models 

Although this work will focus on the development of conditional models, 
we now give a short review of marginal models for longitudinal data. Note 
that we shall not give a complete review and that the length of this sec­
tion, compared to the one related to conditional models, might mislead the 
reader about the relative importance of these two subjects in the literature. 
However, because our approach will essentially be based on conditional ar­
guments, we have preferred mainly to devote the introduction to related 
materials. 

Another way of tackling longitudinal data is to focus attention on popu­
lation averaged effects rather than subject specific effects . We have already 
given a word of caution on this in Section 1.2, mainly based on Simpson's 
paradox. Basically, quantities such as the marginal expectation of the re­
sponse are directly modelled as a function of the explanatory variables , 



38 INTRODUCTION 

and this separately from the association among the measurements made 
on the same unit. The popular tool for producing estimates of the regres­
sion parameters in marginal models is the generalized estimating equations 
(GEE) approach (Liang and Zeger, 1986; Zeger and Liang, 1986; Prentice, 
1988; Zeger, Liang and Albert, 1988). The starting point of that method­
ology is that, in general, ignoring serial association and using a standard 
analysis assuming independence yields underestimated standard errors for 
time-stationary effects and overestimated s.e.'s for time-varying effects. For 
exponential family distributions, we know that the score equations for the 
regression parameters in an independence model are 

N N T '°' 8/; '°'(aµ;) -1 )( ) ~ o/3 = ~ fJ/3 var (Y; Y; - /J,; = 0 (1.33) 

where 

Y; = (Y;1, ... , Yin,f 
var(Y;) = diag [var(Y;1), ... , var(Y;n,)] ( 1.34) 

The idea would be to generalize these equations to deal with dependent 
data. Because the independence is expressed through the diagonal form 
of var(Y;), one way to loosen this assumption would be to put non-zero 
off-diagonal elements in the covariance matrix in Equation {1.34). Unfor­
tunately the resulting score Equation (1.33) cannot be integrated back to a 
proper likelihood function in most situations (McCullagh and Nelder, 1989, 
2nd Ed., Section 9.3.2). Therefore no proper probability model really un­
derlies the GEE. That means that comparing the performances of two such 
'models' is impossible by likelihood or AJC. 

In practice, the covariance matrix is replaced by a working covariance 
matrix of the form 

where 

D; = diag [var(Y;i), . .. , var(Y;n,)] 

and .R; (a) is a parameterized working correlation matrix. There are many 
different ways to define this matrix: 

• R;(a) = In, assumes that the data are independent. 
• [R;(a)]1k = a for j =p k, is the equivalent of a random intercept 

model assuming a constant correlation between observations made on 
the same unit. 
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• [R;(o:)tk = alt;-tkl is the equivalent of an autoregression model 
where the correlation between any two observations made on the same 
unit is (exponentially) decreasing with the time lag between them. 

Of course using a correlation matrix puts constraints on the sample estimate 
of it . Mainly, the resulting estimate has to be positive definite, which might 
be an important technical problem. Some authors (Lipsitz et al., 1991) use 
the more appropriate odds ratio as a measure of association between binary 
responses instead of the correlation matrix. 

Further estimating equations are required to estimate the vector o: in 
the working correlation matrix. Let ri,jk be an estimate of the correlation 
Pi ,jk between the observations at time t;j and t;k on unit i. Then a possible 
set of extra estimating equations (one for each component of o:) for the 
correlation matrix is 

U(o:) = t 8p~~f R;(o:)-1 [r; - P;(o:)) 
•=1 

(1.35) 

where P; is a n;(n; -1) column vector containing all the elements of the up­
per right off-diagonal elements of the correlation matrix R; ( o:), r; denoting 
the corresponding set of estimates. The consistent solution (a, /3) to Equa­
tions (1.33) and (1.35) can be used to estimate the asymptotic variance of 
.B by 

[LI ( aµ"; )T - -l ( aµ"; )]-1 - var(Y·) -
i=l 8/P ' 8/P 

This estimate might be inconsistent if the working correlation matrix is 
misspecified. Liang and Zeger (1986) propose a robust estimate of var(j3) 
which is consistent even when the correlation matrix is not the ' right ' one. 
This is of course also true for the regression parameter estimator, a good 
specification of the systematic part µ; (,8) being the only requirement. Wald 
tests can then be performed to assess the need for a given explanatory 
variable. These tests rely on the asymptotic normality of the estimates, 
which, with small sample sizes, might lead to unrealistic conclusions. 

However, Crowder (1995) proposed a simple example where consistency 
does not hold , showing that a problem exists in the method. There could 
be 'no general asymptotic theory supporting existence and consistency of 
(a, /3)'. 

The advantage of the GEE method is its extreme simplicity. It can 
be used to estimate any regression parameter in a marginal ( exponential 
family) model. Moreover the association between observations on the same 
unit can be specified through a single correlation matrix. The form of that 
matrix is not really important because asymptotically consistent estimators 
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for both the regression parameters and their covariance matrix are still 
available when it is misspecified. It can easily cope with observations in 
continuous time. 

From our point of view, simplicity is not necessarily a good argument 
to choose a method of analysis. Going from the general conclusion that, 
say, some treatment increases the proportion of recoveries, to the more sub­
ject specific claim (which, to a patient, is the only statement of interest) 
that there is an improvement in the health of a given patient under that 
treatment, is to us a dangerous step that probably misunderstands the com­
plex links between the random variables in a marginal longitudinal model. 
Moreover, focusing the approach on the estimating step rather than on the 
modelling task, is rather artificial. Remember that the GEEs are generally 
not the score equations of a likelihood function. Finally, the associated tests 
rely on the normality of the estimators, which is not always a sensible as­
sumption, as many examples from the log-linear methodology tend to show 
(Lindsey, 1995a). 

However, there exist a few marginal methods for which a likelihood is 
available. An example of this is given in Molenberghs and Lesaffre (1994), 
where a full likelihood approach is used to analyse ordinal categorical re­
sponses based on an extension of the Plackett distribution. The chosen 
measure of association is the global cross-ratio. A second example is given 
by Becker and Balagtas (1993) who propose a marginal model to analyse 
two-period binary cross-over data. 

Marginal and conditional methods are equivalent when the data are nor­
mal. The Laird and Ware (1982) model presented in Section 1.4.3 can be 
both analysed using conditional (the Kalman filter) and marginal argu­
ments, leading to the same solution. Note that the GEE correspond to a 
proper likelihood function in the normal case. This is not surprising, be­
cause the normal distribution only requires the specification of the system­
atic part and of the ( mean independent) covariance matrix to be completely 
defined. 

1. 7 Further reading 

This section aims to review a selected subset of recent papers on longitud­
inal data analysis (LDA) that was used to write this chapter, and to give 
the reader some complementary information on the subject. This review 
is not meant to be comprehensive. An extended bibliography on repeated 
measurements up to 1993 can be found in Lindsey (1993). Finally note 
that the three books by Diggle et al. (1994), Fahrmeir and Tutz (1994) and 
Lindsey (1993) introduce the reader to multiple aspects oflongitudinal data 
analysis. 



FURTHER READING 41 

1.7.1 AUTOREGRESSION MODELS 

Continuous response Diggle and Zeger (1989) model the level oflutein­
izing hormone in the blood , which typically exhibits sudden increases named 
pulses. A normal autoregressive model of order one plus a gamma distrib­
uted pulse occurring with a probability defined in terms of the process 
history, is used to describe the hormone evolution measured in discrete 
time. 

Schmid et al. (1994) allows for measurement error on both the covariates 
and the response in an autoregressive model. 0 LS and maximum likelihood 
estimates are compared in a simulation study. 

Heitjan {1991b) relates an immunologic outcome variable to the level of 
drug received by patients in a clinical trial using a normal AR( 1) model 
with a patient random effect. The mean of the non-linear response is mod­
elled using the generalized logistic function which is defined in terms of 
biologically meaningful parameters. 

Glasbey (1979) proposes a model for growth using a first-order normal 
autoregression with a non-linear mean. Different transformations of the 
response are considered. See Glasbey (1980) for a higher order model. 

Discrete data Albert et al. (1994) model the number of (gadolinium en­
hanced) brain lesions detected using magnetic resonance imaging, to com­
pare the activity of multiple sclerosis in treated and placebo patients. They 
first use an ('observation driven') Poisson autoregression model where, 
in addition to the usual seasonal components, serial association is mod­
elled by conditioning on past residuals. They also propose an alternative 
('parameter driven ') approach where the probabilities ofrelapse (or increas­
ing count) and remission ( or decreasing count), defined by comparing the 
present count with the one at the previous observation time, are modelled 
using a latent Markov chain, which introduces autocorrelation. These two 
constructions are compared using the AIC. 

Francis (1994) models longitudinal count data observed in continuous 
time using non-linear growth curves. Past transformed observations enter 
the systematic part through regression parameters multiplied by quantities 
exponentially decreasing to zero with the time elapsed since the correspond­
ing datum was observed. 

Korn and Whittemore (1979) analyse series of binary data indicating 
if the panelist under observation had respiratory problems on each day of 
an approximately eight-month study. They use logistic regression models 
with a patient random effect, where (in addition to covariates) conditioning 
is made on the previous day 's outcome to take into account of the higher 
risk of asthma on the days following an attack. Note that the inference 
procedure used is approximate: the regression parameters are evaluated 
separately for each unit and some kind of average of these estimates is 
considered to yield the required parameter values. Cox and Snell (1970 , 
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pp. 96-102), Lindsey (1993, Ch. 6), Muenz and Rubinstein (1985), Slud 
and Kedem (1994), Zeger, Liang and Self (1985) also use Markov chains to 
model dependence in series of binary outcomes. 

Keenan (1982) relates series of binary data to an underlying normal 
model for continuous and correlated longitudinal data. 

Albert (1994) proposes a Markov model to analyse sequences of ordinal 
data from a relapsing-remitting disease. The transition probabilities are 
decomposed as the product of two conditional probabilities with a biologic­
ally interpretable parameterization. The method is illustrated on a data set 
describing the effects of an experimental allergic encephalomyelitis on mice 
randomized to placebo or treatment. The observations were made daily on 
a forty day period and were recorded on a five level scale describing the 
severity of the disease symptoms. 

Muenz et al. (1985) use Markov chains to study the psychological impact 
of breast cancer. 

Gottschau (1992) models multivariate series of binary data using Markov 
chains and shows under what conditions analysing the aggregated number of 
individuals occupying a given state under the hypothesis of exchangeability 
can simplify the analysis. Methods for testing exchangeability and the con­
ditional independence of the present responses given the past observations 
are developed . 

Gottschau (1994) proposes other models for analysing the same kind of 
data. The case where each individual is exposed to a common risk factor 
between time t - l and time t is considered. Conditional independence 
cannot be retained anymore and the Rasch model with a parameter com­
mon to all the individuals at time t is introduced. This parameter is then 
given a distribution and the likelihood obtained by conditioning on the total 
number of individuals occupying a given state, is used to infer about the 
within-group parameters. A separate analysis of the evolution of the total 
number of alike responses can then be made independently of the within­
group analysis, thanks to the likelihood factorization . It is also shown how 
to introduce extra explanatory variables. Both the log-linear and logistic 
models can be used to estimate the parameters. A practical example study­
ing the occurrence of bacteria in milk samples from each of the four teats 
of dairy cows is treated. The adequacy of the different models in Gottschau 
(1992 and 1994) is then assessed. 

Exponential family Lindsey (1993, pp. 54-56) and Li (1994) show how 
to condition on past residuals in a GLM setting. 

Shephard (1994) considers autoregression models in an exponential fam­
ily setting where the a Taylor series expansion of the link transformed last 
response is used as regressor in the systematic part. That avoids problems 
such as the log of a zero observation in a Poisson model. 
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In a quasi-likelihood approach, Zeger and Qaqish (1988) consider a class 
of Markov models in which the conditional mean and variance given the past 
are explicit functions of past outcomes. It is illustrated with the analysis 
of interspike times for motor cortex neurons of a monkey using a gamma 
quasi-likelihood 'model ' . 

Miscellaneous Stanek et al. {1989) give a word of caution on misspecified 
forms for the functional relationship between time p-nd the response, that 
can lead to false conclusions when assessing the need for some covariates 
in a model. 

Some further references on autoregressive models include Rosner et al. 
(1985 , 1988) in an epidemiological context. Their models can deal with 
missing data and continuous time. 

1.7.2 DYNAMIC MODELS 

Introductory papers to dynamic (generalized) linear models are proposed 
by Meinhold and Singpurwalla (1983) , Diderrich (1985) and Bolstad (1986). 

Discrete data Bolstad (1995) models count processes using a multipro­
cess dynamic Poisson model. The goal of the author is to build a model 
that quickly reacts to real parameter change while being insensitive to out­
liers. The mean parameter is assumed to be gamma distributed . The last 
posterior distribution for that mean is modified in three possible ways , to 
be used as a prior at the next observation time. First, if the observation 
to come is not an outlier, then the predictive distribution of the mean at 
time t is set equal to the last posterior at time t - l. Second, if the next 
observation indicates a real change in the data pattern, then the predictive 
variance is set to three times the last posterior variance while leaving the 
predictive mean equal to the posterior mean. Finally, if the observation is 
an outlier, then the predictive moments are transformed in the same way 
as in the second case, but the prior is not updated using Bayes theorem 
(as in the first two situations) to give a new posterior. The status of the 
observation to come is measured using a three-state probability distribu­
tion. That index distribution is updated as soon as a new observation is 
available. The conditional ( on the index value at times t and t - 1) posterior 
distribution of the mean is computed using Bayes theorem. The depend­
ence on the index value at the previous time point can be eliminated by 
computing the corresponding marginal. This involves the weighted sum of 
three gamma distributed random variables. The resulting marginal can be 
approximated ( or condensed') in an optimal way using the gamma distri bu­
tion at the minimum Kullbeck-Liebler distance of the mixture. This way 
of estimating the new gamma parameters is compared with the traditional 
identification procedure of the first two moments of the desired gamma and 
of the mixture using simulations . The Kullbeck-Liebler distance method 
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seems to give substantial improvement. The paper does not consider the 
influence of explanatory variables on the response, though it seems easy to 
introduce. 

J¢rgensen et al. (1994a) use a Poisson model with a latent gamma pro­
cess to model the number of emergency room visits due to four types of 
respiratory diseases. The latent process location parameter is expressed in 
terms of long-term covariates which are explanatory variables thought to 
have a cumulated effect on people's health. This inertia in the effects of 
these covariates is allowed precisely because they enter into the structure of 
the state vector. On the other hand, short-term covariates enter the model 
directly through the observation location parameter. Hence they have an 
immediate and temporary effect on the risk of respiratory disease. The 
model is able to cope with multivariate series of counts and to induce cor­
relation among data in different series through the common latent process. 
Further details about the model setting and the estimation of the parameters 
are given in Jf/Srgensen et al. (1995). 

Ord et al. (1993) give more details on the models presented in Harvey 
and Fernandes (1989). An approximation to the posterior in the beta­
binomial model involving covariates is also proposed. 

Grunwald et al. (1993) propose the Dirichlet distribution to model series 
of 'continuous' (i.e. only known as percentages) proportions. This distri­
bution is reparameterized to separate the effects of location and dispersion 
parameters. A conjugate prior distribution is then given to the location 
parameter vector. The loss of information between two time points is 
expressed by taking as prior distribution at time t + 1, the distribution 
obtained by setting the posterior at time t to some power in [O , lJ. The 
resulting mode is unchanged , but the dispersion is enlarged. Updating is 
done in the usual way using Bayes theorem. Grunwald et al. (1993) also 
show how to introduce covariates. The choice of the conjugate distribution 
as a prior provides a closed form for the likelihood that can be used to make 
inferences. 

Gamerman (1992) uses the Kalman filter to make inference on point 
processes where the intensity rate is allowed to depend on covariates and 
on the history of the process. 

Exponential family Schnatter (1992) approximates the posterior mo­
ments of the regression parameters in a non-Gaussian DGLM using Gauss­
Hermite numerical integration together with the approximate formulae for 
the posterior mode and information in Fahrmeir (1992). 

Singh and Roberts (1992) propose, in discrete time, a dynamic version of 
the generalized linear model for multiple series of possibly non-normal data. 
The underlying idea is to generalize the state space linear model for normal 
data in the same manner as the generalization of the linear (normal) model to 
the generalized linear model. In the independence case, the WLS algorithm 
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for normal data was applied iteratively to the linearized approximation of 
the linear predictor, a first-order Taylor expansion of Tl = g(µ) about µ. 
In the dynamic case, Singh and Roberts (1992) iteratively use the normal 
Kalman filter on the approximation of the linear predictor. They make the 
assumption that the number of observations available at each time point is 
sufficiently large to support the linearization Zj of g(µj) . The variance of 
Zj is estimated by 

d.,, · d17 · 
( ) ( )

T 

dµf var(Yj jµj) dµJ 

evaluated at its (independence) GLM estimate. This accounts for the re­
lation existing between the mean and the variance in non-normal models. 
This last idea is similar to what Zehnwirth (1988) did . Finally, the meth­
odology is illustrated on series of epidemiological count data. 

Refined Kalman filtering Zehnwirth (1988) shows how to adapt the 
normal Kalman filter to deal with a state dependent observation variance. 

Gordon and Smith (1993) robustify the updating equation in the linear 
Kalman filter by preventing the updated location parameter from going too 
quickly to the likelihood mode, but instead staying at a reasonable distance 
from the prior mode when an extreme observation arises. 

Meinhold and Singpurwalla (1989) show how to robustify the normal 
Kalman filter. They adopt the point of view that observations deviating 
markedly from their predictions should be given less weight to compute 
the posterior. The underlying belief is that the prior distribution has been 
carefully chosen and is not simply a technical requirement to make Bayesian 
inference. Therefore they really want the predictive prior distribution to be 
close to the computed posterior. Hence one must avoid having the posterior 
defined as a compromise between the prior and the likelihood. This can be 
done by replacing the normal distribution by one with a wider variety of 
possible tails. Meinhold and Singpurwalla (1989) have chosen to work with 
a Student-t distribution. 

Kitagawa (1987) has developed a model for data that occasionally show 
jumps after a period of smooth and gradual change. In these situations, 
a linear Gaussian model with a small variance cannot cope with jumps, 
whereas one with a large variance can produce unjustified peaks. Distri­
butions with thicker tails, such as stable distributions ( with the Cauchy 
density as a well-known member) , would obviously be more adapted. This 
kind of distributions can be used in an empirical Bayesian approach sim­
ilar to what has been done in the Kalman filter derivation. The basic idea 
is to approximate probability densities by piecewise linear functions and 
to make inferences using these approximations. Of course that method is 
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numerically very demanding. The examples presented in the original pa­
per, which are based on the Pearson family of distributions, only involve 
one parameter for which filtering is of interest. Extension to parameter 
vectors is theoretically easy, but the computation burden quickly becomes 
problematic. 

Komaki (1993) describes pulses arising in endocrinological data in a dif­
ferent way than Diggle and Zeger (1989) . The dynamics of the luteinizing 
hormone is decomposed into two parts: a linearly (exponentially) rising 
and an exponentially decreasing phases. Each part is modelled in continu­
ous time using a stochastic differential equation. Actually the sampling 
procedure works in discrete time, but the resulting fifteen minute intervals 
are further (artificially) divided into ten parts. This allows smooth model 
transition between two hormone production phases. Two different logistic 
models are used to predict the start and the end of the hormone rising. 
Modelling the termination probability of the rising mode separately allows 
variability in the heights of the pulses, as observed in practice. The likeli­
hood is then evaluated using the usual factorization in conditional settings. 
The procedure is essentially numerical and relies on the Kitagawa (1987) 
approximation to densities using piecewise linear functions. 

Miscellaneous Jones and Ackerson (1990) model serial correlation in 
normal longitudinal data using continuous time autoregressive moving av­
erages. In addition to the usual marginal approach, they propose to use the 
Kalman filter to compute the likelihood. 

Recursive residuals and model diagnostic tools for normal and non­
normal state-space models are developed in Schnatter ( 1994). The recurs­
ive residuals are defined as the predictive probability of observing a value 
for the response smaller or equal to its actual value, and this conditional 
on past outcomes. If the data were approximately generated by the model 
considered, then these residuals, called the P-scores, should be uniformly 
distributed on [O , 1) . The corresponding normal P-scoreth quantile, called 
the transformed P-score, can be used instead for model checking. It coin­
cides with the recursive residual (which is the Pearson residual computed 
from the first two moments of the predictive distribution) in the normal 
case. An approximation to the P-score is derived using a Gauss-Hermite 
integration where the mixing distribution of the state vector is assumed 
to be normally distributed. Indices for bias, dispersion, skewness and tail 
are used to check the distribution of the transformed P-scores. Note that 
the predictive distribution used to compute the P-scores, is invariant under 
invertible data transformations. 

Fahrmeir and Tutz (1994b) suggest a dynamic model for analysing 
paired comparisons made over time. The model is also suitable for ordinal 
responses 
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Gordon and Smith (1990) develop a framework for monitoring medical 
times series. Their goal is to detect dynamically any level or trend change 
in the observed time series. Four possible states are considered: the series 
can be stable, its level may change, the slope can also be modified, and 
finally a transient unusual value could be observed. Distinguishing among 
these four situations is important in practice, where, for example, clinicians 
have to anticipate possible physiological changes. Conditionally on this 
state, a dynamic linear model is used to model the data evolution. The 
variance of the state vector can further be given a gamma distribution. 
The different parameter distributions are updated using Bayes theorem. 
Integrating out the state of the observation yields a mixture. The resulting 
form is approximated to avoid complex numerical work. It is shown that 
the proposed approximation minimizes the Kullback-Liebler distances for 
the normal and gamma mixtures. 

Smith and Miller (1986) propose a non-Gaussian state-space model in 
order to predict records. A record is a maxima ( or minima) of some ob­
served random variable. Some time points do not necessarily give a record. 
In such situations we only know that the best performance at that time is 
lower (or greater) that the last record, thereby yielding a censored observa­
tion. 

1. 7.3 RANDOM EFFECTS MODELS 

Anderson and Hinde (1988) propose to use the EM algorithm to estimate 
the parameters in GLMs with random effects. 

Fahrmeir and Tutz (1994, Ch. 7) estimate the parameters in a random 
effects model using different methods, among which a technique based on 
posterior modes. 

Schall (1991) gives a simple algorithm to compute the estimates of the 
fixed effects, the random effects and the dispersion parameters in a general­
ized linear model with random effects. This algorithm approximately yields 
the MLEs or restricted MLEs. The distribution of the random effects does 
not need to be multivariate normal: it only has to be in the exponential 
family. 

Stiratelli et al. (1984) propose an empirical Bayes method for estimating 
normal random effects in serially correlated binary responses. An approx­
imation based on the mode of the random effects posterior distribution is 
used, because of the intractability of exact methods. 

Davies (1987) shows that misspecification of the compounding distribu­
tion in random effects models can lead to seriously misleading estimates 
for the observed covariate effects. This problem only seems to be ser ious 
when the assumed underlying compound distribution highly differs from the 
true one. Therefore, when nothing can be said about the unknown mixing 
component, Davies (1987) proposes to use a non-parametric mass point 
distribution which assigns a discrete set of unknown possible values for the 



48 INTRODUCTION 

unobserved covariate with a relative weight to be estimated. Such mass 
points are added to the 'naive' non-random model until the corresponding 
deviance stabilizes. Simulations tend to support the idea that the flexibility 
of the mixing distribution does not yield conservative tests for the effect 
of the observed covariates. Note also that the resulting marginal distribu­
tion has an easy to handle analytic form which is no longer the result of 
restrictive assumptions on the model structure. 

With binary data, Conaway {1990) suggests using the log-log link to­
gether with a log-gamma distribution for the random intercept, instead of 
the traditional logistic model with a normal latent distribution. This avoids 
the evaluation of integrals by numerical methods because an analytic mar­
ginal is available. The log-gamma distribution can take a wide variety of 
shapes, including the normal bell as a limiting case. Serial association extra 
to the random effect can be defined using autoregression. Explanatory vari­
ables can also be introduced. The latent distribution can be chosen to be 
some transform of a beta, while keeping a tractable form for the marginal. 

McDonald {1994) uses an additive random effect on the logit scale to 
model heterogeneity between series of binary outcomes. The random effect 
is assumed to take only a fixed number of values that are estimated from 
the data. 

Thall (1988) models the number of events occurring in time intervals 
delimited by the observations times, using a Poisson distribution with a 
gamma mixing component to allow for heterogeneity. Alternative nonpara­
metric methods are used in Thall and Lachin {1988). 

1. 7.4 MARGINAL MODELS 

GEE based methods Prentice (1988) discusses a method that allows the 
analysis of correlated binary data with unit specific covariates. A logistic 
regression, with an intercept allowed to depend on the responses of the 
other units in the same block , is used to derive the joint distribution of the 
responses in the block. Estimation of the parameters by maximization of 
the joint likelihood is possible for a pair or triplet of responses, but the 
problem quickly becomes computationally infeasible. In these situations, 
Prentice (1988) recommends the use of the GEE. 

Fitzmaurice and Lipsitz (1995) analyse series of binary responses meas­
ured in continuous time using serial odds ratios for measuring association , 
instead of the less adapted ( and constrained by marginals) correlation mat­
rix. Basically, the odds ratio related to two binary responses observed at 
consecutive time points, is modelled as a quantity decaying exponentially 
with time. The correlation matrix related to the vector of observations on 
any given unit, can then easily be derived from that model because an ex­
pression relating correlations and odds ratios in binary data is available. 
Estimation of the regression parameters can then be made using the GEE. 
They recommend the use of the GEEs proposed by Carey et al. (1993). 
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Zeger et al. (1985) model binary longitudinal data using a marginal lo­
gistic regression where a constant dependence between any two observations 
is specified using correlation. Serial association can also be modelled using 
Markov chains. 

Thall and Vail (1990) describes a family of covariance models for series 
of count data modelled using quasi-likelihood arguments. Generalized es­
timating equations are used to evaluate both the covariate and variance­
covariance parameters. 

Zeger (1988) presents a marginal regression model for analysing time 
series of counts. Correlation between observations from the same series is 
introduced using an unobservable process added to the linear predictor in a 
log-linear model. The parameters are estimated using a procedure similar 
to the GEE. Campbell (1994) uses this model to investigate the relationship 
between the sudden infant death syndrome and the environmental temper­
ature. 

Zeger et al. (1988) compare subject specific and population averaged 
approaches in the estimation of regression parameters. This is done in a 
longitudinal study of the incidence of mothers smoking status on the risk 
of respiratory disease for their children. The parameters are estimated in 
both approaches using the GEE. 

Paik {1992) models variance heterogeneity using an extension of the 
GEE procedure (Liang and Zeger, 1986) . 

Other methods Azzalini (1994) explains how to build a Markov chain 
model based on transitional probabilities, where the covariates only enter 
the process mean , independently of the serial association parameter. 

Lipsitz et al. (1992) describe a three stage estimator for the regression 
parameters in a marginal logistic model for series of binary outcomes. The 
first stage makes the assumption that the data are independent. Given 
these estimates, residuals are computed and used to estimate the correla­
tion matrix for the vector of observations made on the same unit. In the 
third and last stage, generalized least squares estimating equations based 
on the second step correlation matrix are used to yield the final parameter 
estimates. 

Zhao and Prentice (1990) model serial association in series of binary 
data in terms of correlations and conditional odd-ratios. 

Fitzmaurice and Laird (1993) model this type of data using likelihood 
methods based on a multivariate binary model with unknown normalizing 
constant. A logistic marginal regression is used to model the influence 
of explanatory variables on the response. Association between any two 
responses on the same unit is expressed in terms of a conditional odds ratios. 
The estimation of the parameters is made with an iterative proportional 
fitting procedure together with the Fisher scoring algorithm, despite the 



50 INTRODUCTION 

unknown normalizing constant required to estimate joint probabilities for 
each unit . Higher-way association can be incorporated. 

In the same context, Stiratelli, Laird and Ware (1984) consider a general 
logistic linear mixed model. 

Lipsitz et al. (1995) use a joint marginal distribution to derive the prob­
ability of a least one ' success' in a set of repeated binary events. The 
parameters in this model are estimated by the MLEs when the number of 
observations per unit is moderate. When this number is large, they pro­
pose to use either a 'one-step' MLE, or a moment-based method close to 
the GEE approach. 

In a review paper, Fitzmaurice et al. (1993) compare likelihood based 
approaches with non-likelihood approaches. They essentially focus on the 
analysis of series of binary outcomes. 

Wei and Stram (1988) use quasi-likelihood methods to study the mar­
ginal distribution of response variables observed repeatedly. 

Stukel (1993) compares the Zeger and Liang (1986) model with the 
gamma-Poisson model in the analysis of the longitudinal count data. Simu­
lations with an underlying process consistent with a Poisson, show that the 
gamma-Poisson model is more efficient than the Zeger and Liang model, 
probably thanks to its ability to deal with heterogeneity. When the process 
is non-Poisson, and under non-negligible heterogeneity, the gamma-Poisson 
process is more efficient with fixed covariates. The situation is reversed 
under mild heterogeneity. 

An early paper on multivariate categorical data obtained from repeated 
measurements is Koch et al. (1977) who propose different hypotheses of 
possible interest with the corresponding test statistics. 

Agresti (1989) surveys models for repeated ordered categorical data. 
These models essentially rely on classical log-linear or logistic techniques 
where the dependence on time is simply introduced through a factor variate 
taking a different value at each occasion. This is done using the cumulative 
or adjacent-category logits. 

Molenberghs and Lesaffre (1994) develop a full likelihood approach to 
the analysis of ordinal categorical responses based on an extension of the 
Plackett distribution. The chosen measure of association is the global cross­
ratio. 

Stram et al. (1988) propose a two-step procedure to analyse repeated 
ordered categorical data with possibly missing observations and time de­
pendent covariates. In the first step, the data are analysed separately at 
each time point using a GLM. In the second step, the asymptotic distribu­
tion of the parameter estimates is derived to make inferences. The technique 
is illustrated by analysing the effects of indoor and outdoor air pollution on 
respiratory health. 
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1.7.5 MISSING DATA 

Key references in the missing data literature are Rubin (1976), who intro­
duces the concept of missing at random data where the probability for one 
observation to be missing is independent of the unobserved values; Little 
and Rubin (1987), who make a distinction between data missing at random 
and completely at random where a further independence of the missing data 
mechanism from the other observations is assumed. 

Laird (1988), Diggle and Kenward (1994), Diggle et al. (1994), Robins 
et al. (1995) and Fitzmaurice et al. (1995) consider the problem in a lon­
gitudinal data setting. 

There are numerous other papers on the subject, but the proposed ones 
should provide a reasonable introduction to the problem. 

1.7.6 OTHER MODELS 

Diggle (1988) proposes to model a (possibly transformed) continuous re­
sponse using a linear normal model. The stochastic element is decomposed 
into three parts: a term modelling subsampling variation within units, an­
other one modelling unit heterogeneity, and a final term modelling within­
unit or measurement error autocorrelation. The variance structure of the 
latter element is parameterized using a reduced number of elements to avoid 
inefficient estimation (Altharn, 1984), as with an unstructured covariance 
matrix. This model simplification enables one to treat series observed in 
continuous time. The empirical semi-variogram is used to analyse the dif­
ferent sources of variation in the data. An overparameterized model for 
the systematic part is first considered to avoid inducing spurious autocor­
relation due to model misspecification. The resulting residuals are used to 
compute the empirical semi-variogram which helps to choose a model for 
the covariance structure. As soon as the different parameters in the model 
have been estimated, the theoretical semi-variogram can be compared with 
the empirical one to check the adequacy of the model. 

Jennrich and Schluchter (1986), Munoz et al. (1992), Nuiiez-Ant6n and 
Woodworth (1994) propose different structures for the normal covariance 
matrix to define heterogeneity and autocorrelation. 

Mauger et al. (1995) compare different models for pulsatile series using 
simulation. 

Ware et al. (1988) discusses some existing marginal and conditional 
methods for use in the analysis of repeated categorical outcomes. 





2 
Positive longitudinal data modelling 

In this chapter, we propose to develop a general methodology for model­
ling series of non-negative data observed at unequally spaced times. This 
subject is a major concern in biomedical sciences where the follow-up of pa­
tients or animals often gives rise to sequences of positive observations that 
might have a skewed distribution. Moreover, the sampling is not necessar­
ily done at equi-spaced time points. This can be the result of a protocol 
prescription where, for example, important changes are thought to happen 
in a limited time range, with a more stable or less interesting evolution for 
other time values. Or the irregular sampling is simply due to missing val­
ues in an experiment where the data should have been observed after fixed 
and constant time intervals. The model developed below will assume that 
the data are missing (completely) at random. Situations where the missing 
data mechanism is informative can arise; we refer to Section 1.7.5 for such 
problems. 

Thus, both distributional and longitudinal aspects are the source of 
technical problems. In the coming lines, we present a flexible model for 
longitudinal data that includes a wide variety of distributions such as the 
normal, exponential, gamma, Weibull and log-normal. The parameteriza­
tion enables both the importance of serial association, as well the 'order ' of 
this dependence to be expressed. The theory will be illustrated by an ex­
ample where the effects of three fiber based diets on dog triglyceride profiles 
are compared. 

This chapter is an extended version of Lambert ( 1996c). 

2.1 Data set of interest 

The data were collected by a veterinary team of the nutrition department 
of the University of Liege (Belgium) . 

Two groups of four young adult Beagle dogs were used in two separate 
but similar experiments. A 4 by 4 Latin-square design, described in Table 
2.1 where the numbers stand for the identification numbers of the dogs, 
was adopted. Two groups {l,7,9,10} and {2,5,8,11} of four dogs were con­
sidered in 1992 and 1993 respectively. Dogs 5 and 7 were castrated males, 
whereas the others were females. Each dog was given four different diets 
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Diet 
Period C G I FB 
11.03.92 10 1 7 9 

Exp 1 10.04.92 9 10 1 7 
27.05.92 7 9 10 1 
22.06 .92 1 7 9 10 

16.12.92 5 11 2 8 
Exp 2 13.01.93 8 5 11 2 

18.02.93 2 8 5 11 
23.03.93 11 2 8 5 

Table 2.1. 4 by 4 Latm-square design used to collect blood parameter 
values in adult Beagle dogs. The numbers in the Table are the identification 
numbers of the dogs. 

at four different calendar times. All the diets were based on minced meat, 
cooked rice, maize oil and a mineral mixture ( = control diet C) . Diets ( G) , 
(I) and (FB) were supplemented with respectively guar gum, inuline and 
beet fibers . The time between two experiments on the same dog was long 
enough to avoid carry-over effects. Note that each of the four evaluations 
(of a given treatment) was performed at a different calendar time to avoid 
confounding with period effect. Moreover, with this cross-over design , a dog 
was not restricted to a given diet , avoiding a possibly unfair comparison of 
the treatments. Indeed it might happen that a given dog is systematically 
responding at a lower or higher level for a variable of interest, yielding an 
apparent treatment effect. However, one weakness of this particular design 
is that each treatment always follows the same previous one. 

At a given period, for a given dog and diet , e.g. dog 10 on diet (C) 
on the 11 March, 1992, seven profiles related to different plasma compon­
ents , namely a-amino-N (mg/1) , urea (mg/1) , glucose (mg/1), insulin {g/1) , 
cholesterol (g/1) , triglycerides (g/1) and non esterified fatty acid (NEFA) 
(µEq/1), were recorded. Blood was taken before feeding and then serially 
over a six hour period at times 20, 40, 60 , 90 , 120, 180, 240, 300 and 360 
minutes. The corresponding profiles for the triglycerides are plotted on 
Figures 2.1 , 2.2, 2.3 and 2.4, each plot corresponding to one treatment. 
The sampling was successfully completed for all the blood variables, except 
for the triglyceride and NEFA profiles where more irregular sampling was 
adopted. But the missing data mechanism was not informative , missing 
data appearing because of technical problems in the analysis of some blood 
samples. 

We shall focus our attention on the triglyceride profiles. In the next 
section, we develop both the rationale and the technical aspects related to 
the generalized autoregression model. 
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Fig. 2.1. Observed triglyceride (g/l) profiles for the control diet. 
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Triglycerides : Guar Gum group 
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Fig. 2 .2. Observed triglyceride (g/1) profiles for the guar gum diet. 

2.2 Generalized autoregression models 

55 

Assuming normality when analysing the triglyceride data set might not 
be sensible. Indeed a quick inspection of the data set shows the possible 
skewness of the distribution. This is mainly due to the positive character 
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Fig. 2.3. Observed triglyceride (g/1) profiles for the inuline diet. 
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Fig. 2.4. Observed triglyceride (g/1) profiles for the beet diet . 

360 

of the response. The normal distribution does not take this into account, 
meaning that it allows a negative fit on some time range. However normal 
models have been used and assessed below on this data set . Their poor 
performance (measured using the AIC) in this context confirms the need 
for non-normal longitudinal models. 
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Of course one could analyse the log of the response to reduce the danger 
of a symmetric error term assumption, but this choice would ignore the 
many other sensible candidate distributions for non-negative data, such as 
the exponential, gamma, Weibull, power transformed normal densities, and 
so on, which possibly would provide a better description of the data pattern. 

Specification of serial association in a non-normal setting is technically 
more difficult than in the normal case, because the covariance matrix does 
not completely specify the dependence structure. 

The method of analysis that we propose is an attempt to solve these 
theoretical problems. It is a generalization of the autoregression models 
presented in Lindsey (1993, p. 55) to unequally spaced time sampling. 

Consider a distribution f (Yii lµij, Oij) (not necessarily a member of the 
exponential family) for the response where Yii and µij respectively denote 
the response and the mean response for unit i ( i = 1, . .. , I) at the p h (j = 
1, ... , n;) sampling time tij. The vector 8;j stands for nuisance parameters 
such as scale or shape parameters. 

Different families of distributions such as the normal , log-normal, ex­
ponential, gamma and Weibull will be considered below. Note that many 
of these densities are special cases of the generalized gamma family. Its 
distribution is given by 

It includes well-known members such as the exponential (,c = 1, o = I), 
Weibull (,c = 1) and gamma densities (o = 1), the log-normal being (,c-+ 
oo) a limiting case. 

Denote by 

• g(·) the desired link function. One could for example take the log­
link for a gamma distribution, or any other one such as the inverse 
( canonical) link. 

• rij, the residual for unit i at time tij on the g-scale, defined by 

r;i = g(y;i) - 'J/&/3;i 
riO = 0 

where /3ij stands for regression parameters and Z;j for the vector 
of regressors at time tij . This definition for the residual is rather 
arbitrary, as pointed out by Lindsey (1993 , p . 56) . Note also that non­
linear forms can be considered for the systematic part of the model. 
But, in this chapter, we shall restrict our attention to the usual linear 
regression setting. 

• rfj , the cumulated residual for unit i at time t;i on the g-scale, defined 
by 
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C _ -</,~t,j C + .. 
r,j - e r,,j-l r,J 

re.= 0 IJ 

where b.t;j = t;j -t;,j-l and O < </J. Note that </J will be modelling the 
relative importance of former residuals to explain the last observation. 

• wfj, the weight for the cumulated residual r fj, where 

w~- = e-<l>~t,;w~ · + 1 
IJ 1,J-1 

wfo = 0 

The idea is to model the g-transform of the mean as 

C 

g(µ;j) = zfi/3;j + e-p~t;; 2/-1 
i ,j-1 

{2.1) 

where O < p. An illustration of this is given on the figure below. The dots 

t 

represent the data on the g-scale plotted against time for a given unit. The 
line is the systematic part zfJ/3,j of the g-mean estimated by the model. 
We can see that a positive residual tends to be followed by a residual of 
the same sign and order. This is a typical situation with longitudinal data. 
Equation (2.1) is precisely made to account for this feature . The first term 
is the systematic part given by the line on the figure , while the second term 
is a weighted average of past residuals. The importance of this correction 
is decreasing with p and b.t,j. A large value for p is an indication of 
independence. The relative importance of former residuals is decreasing 
with </J. In other words a large residual value can still induce a large residual 
several steps further if </J is close to zero. 

Note also that full confidence is given to the model (and its system­
atic part) at the start of the series when no previous observation occurred 
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because, then, no past residual is available. 
Estimation of¢, p, the regression parameters and 8;j can b e made by 

maximizing the likelihood 

IT IT f(Yij lµij , 8;j) 
j j 

where µ; j is a function of </J, p and the regressors. 
No random effect has been included in the model just presented. A num­

ber of technical problems arise as soon we relax the normality hypothesis 
for the response distribution . One could choose the conjugate distribution 
for a random effect for the intercept to keep a closed analytic form for the 
likelihood. More traditionally people tend to work with normal random 
effects to model the effect of unrecorded covariates. Estimation in such a 
context can be made using the EM algorithm (Anderson and Hinde, 1988). 

Another possibility is to use a nonparametric random effect (Davies, 
1987; Oskrochi, 1994). Technically speaking, one could modify Equation 
(2.1) to yield 

r~. 
g(µ . ·) = >.· + 2 !, a . . + e-pAt;; ~ 

1J J tJ/JJJ C 
wi,j-1 

It is assumed that >.; can only take a finite number k of values on the real 
line. Take the example of a symmetric random effect with k = 5. The ran­
dom effect will be completely specified by the set {(ro, 7ro) , (ri , 7ri) , (r2, 11"2)} 
with 

r_, - r, 
71"_ , rr, 

r1,1 < rlu! if Isl > lul 
Pr(>.;= r, ) rr, 

•=2 
L 71", 1 

•=-2 

and O < rr, < 1 for s E {O, 1, 2}. Hence the expression for the likelihood is 

ITLrr• IT!(Ytjl>.; =r, , µ;j, 8ij ) 
j j 

A non-linear optimizer can be used to maximize this likelihood. 
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2.3 Model selection 

Different types of models have been presented so far. Some of them are 
reasonable candidates for modelling the dog data set: 

• the Jones model (Jones and Boadi-Boateng, 1991) as a natural exten­
sion of the traditional ANOVA. 

• the generalized autoregression family of models with normal, gamma, 
log-normal, generalized gamma, power-transformed normal density 
functions for f (-). 

Comparison of these models can be made using the AIC 

-2 LLlogf(y;3) + 2p 
i j 

where /{-) is the density function and p the number of parameters in the 
model. Arguments for using the AIC instead of the traditional likelihood 
ratio test in a model selection context are given in Lindsey (1994). 

2.4 Analysis of the triglyceride data set 

Five explanatory variables are candidates for explaining the variability in 
the data: 

• Period An 8-leve1 factor variable: it takes different values for any two 
different calendar times and thus accounts for any possible seasonal 
effect on the response. 

• Sex A 2-level factor variable: it takes values 1 for females and 2 
otherwise. 

• Treatment A 4-level factor variable: it takes values 1 for control, 2 
for guar gum, 3 for inuline and 4 for beet fibers. 

• YiO A continuous explanatory variable: it contains the value of the 
baseline response just before feeding. 

• tij A continuous (non-randomized) explanatory variable: it measures 
the time (in minutes) elapsed since the last meal. 

The transformation g(µ;j) of the mean for all the models described below 
is of the form 

r e; . 
( ) Tr.,. +e-pt!i.t,;~ g µ;j = :z:, /J C 

wi ,j- 1 

(2.2) 

where 

• {3T = (f3o f3f {3rT (3frFT f3TrMT a /31 /32). The size of these para­
meter vectors should be clear as soon as the row :z:'f of the design 
matrix has been described. 
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T ( M pT TrFT TrMT 2 ) h • z; = l x, z; z, z; y,o t,j t;j w ere 

* x{"1 is 1 if the observation was made on a male dog, and O oth­
erwise. 

* zf:c is 1 if the observation took place at the kth period and 0 
otherwise (k = 2 ... 8). 

* zf[F is 1 if the observation took place on a female dog under 
treatment Tr = k (k = 1 . . .4), and O otherwise. Similarly for 
males with zf[M. 

• f3o + f31t,j + /32t;i models a quadratic profile in time. 

• the last term in Equation {2.2) is responsible for the modelling of 
serial association. 

Of course, /32 can be set to O if the profile is thought to be linear. 
The main results of the analysis are presented in Tables 2.2 and 2.3 

where a star in the column spanned by an explanatory variable indicates 
that the variable appears linearly in the systematic part of the model. In 
the special case of the treatment column, a sequence of eight symbols (four 
for each sex) describes how treatment effects are modelled: a star at the 
ith position in one of the quadruple indicates that treatment i effect is 
contrasted with the treatment(s) with a zero symbol. For example, the 
sequence 'O * * * I * 000' indicates that, for females, treatments 2, 3 and 4 
are contrasted with the control diet , whereas, for males, the control diet is 
compared with the other 3 treatments ( assumed to have the same effect on 
the response). This is equivalent to setting z'{'-{ P = 0 and zf,; M = 0 ( k = 
2, 3, 4) in Equation (2.2). Note that SA and Rd stand respectively for serial 
association and a random effect for the intercept. The selected model is 
indicated by a bold AIC value. 

From the AIC values, we see that the log-normal distribution is dis­
carded. It is even worse than the normal. This result alone is very import­
ant for applied statisticians who, very often, just take the log of positive and 
possibly skewed data to use commercialized software dealing with series of 
normal observations. 

The Jones (Jones and Boadi-Boateng, 1991) and normal generalized 
autoregression models (AIC=l47.2 and 147.0 respectively) perform better, 
but still lie behind the three remaining families of distributions. This might 
be due to the non-zero probability assigned to negative responses. 

Next comes the gamma family of models which markedly improves 
the fit (AIC=ll4.0). However the square-root transformed normal and 
Weibull generalized autoregression models have even lower AIC values 
(104.2 and 93.4 respectively). Note that the choice of the square root 
transform was suggested by the MLE 0.534 for the power coefficient in 
the power-transformed normal generalized autoregression model. Because 
of this, the corresponding number of parameters was increased by one. 



62 POSITIVE LONGITUDINAL DATA MODELLING 

Per Sex Tr/emaleJTrmale Y;o i t;j t& SA Rd Par AIC 
Jones 

* * O***JO*** * * * * * 21 157.2 
* * O*** J*OOO * * * * * 19 153.6 
* * O*OO J*OOO * * * * * 17 150.8 

* O*OO J*OOO * * * * * 10 173.5 
* * O*OOJ*OOO * * * * 16 149.2 
* * OOOOJ*OOO * * * * 15 149.7 
* * O*OO JOOOO * * * * 15 149.6 
* * O*OOJ*OOO * * * 15 167.8 
* * O*OO J*OOO * * * 15 147.2 . . 

Normal generalized autoregress1on with 1dentity-lmk 
* * O***JO*** * * * * 22 156.0 
* * O***J*OOO * * * * 20 152.2 
* * O*OO J*OOO * * * * 18 149.0 

* O*OOJ*OOO * * * * 10 167.4 
* * O*OOJ*OOO * * * 17 147.1 
* * OOOO J*OOO * * * 16 147.0 
* * O*OOJOOOO * * * 16 147.8 
* * OOOO J*OOO * * 15 196.3 

Log-normal generalized autoregression with identity-link 
* * O*** JO*** * * * * 22 182.1 
* * O*** J*OOO * * * * 20 178.3 
* * O*OO J*OOO * * * * 18 175.6 

* O*OOJ*OOO * * * * 10 191.3 
* * O*OO J*OOO * * * 17 174.4 
* * OOOOJ*OOO * * * 16 176.4 
* * O*OOJOOOO * * * 16 174.2 
* O*OOJOOOO * * * 15 183.2 
* * O*OO JOOOO * * 15 191.1 

Table 2.2 . AICs for the tnglycende data set: normal and log-normal 
distributions (with a bold AIC value for the best model in the family of 
densities considered). 

The parameter estimates in the Weibull model together with the devi­
ance changes when they are eliminated from the best model are displayed 
in Table 2.4. This table shows that conditioning on the baseline response is 
not fundamental and that one might eliminate it. Note that some paramet­
ers (such as the intercept fJo) cannot be suppressed, and that others such as 
{3M have to stay in the model if e.g. a treatment-sex interaction is present. 
FinaUy the elimination of the period effect was not considered with isolated 
periods, but rather for the whole parameter vector 13P. This explains the 
blanks in the last two columns of Table 2.4 . 
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Per Sex Tr J em ale I Tr male Yto ! t;j { 0 I SA Rd ! Par AIC 
Gamma generalized autoregression with log-link 

* * O***IO*** * * * * 22 121.8 
* * O***l*OOO * * * * 20 118.0 
* * O*OOl*OOO * * * * 18 114.7 

* O*OOl*OOO * * * * 10 134.0 
* * O*OOl*OOO * * * 17 114.0 
* * OOOOl*OOO * * * 16 117.8 
* * O*OOIOOOO * * * 16 116.8 
* * O*OOl*OOO * * 16 131.4 . Power-transformed normal gen. auto. with identity-link 
* * O*** IO*** * I * * I * ! 23 112.4 

Square root-transformed normal gen. auto. with identity-link 
* * O***IO*** * * * * 23 112.7 
* * O***l*OOO * * * * 21 108.8 
* * O*OOl*OOO * * * * 19 105.9 

* O*OO l*OOO * * * * 11 125.0 
* * O*OOl*OOO * * * 18 104.2 
* * OOOOl*OOO * * * 17 105.4 
* * 0*0010000 * * * 17 105.0 
* * O*OOl*OOO * * * 17 125.2 
Generalized gamma generalized autoregression with log-lmk 
* * O*** IO*** * j * * ! * j 23 100.3 

Weibull generalized autoregression with log-link 
* * O***IO*** * * * * 22 99.5 
* * O***l*OOO * * * * 20 96.3 
* * O*OOl*OOO * * * * 18 93.4 
* * O*OOl*OOO * * * * * 20 97.4 

* O*OOl*OOO * * * * 11 120.8 
* * O*OOl*OOO * * * 17 94.3 
* * OOOOl*OOO * * * * 17 98.7 
* * O*OOIOOOO * * * * 17 99.7 
* * O*OOl*OOO * * * 17 110.7 

63 

Table 2.3. AICs for the triglyceride data set: gamma, power-transformed 
normal, generalized gamma and Weibull distributions (with a bold AIC 
value for the best model in the family of densities considered). 

The gamma, square-root and Weibull models essentially provide the 
same type of conclusion: 

• there is a period effect. 

• female profile is lower under the guar gum diet than under the other 
treatments. 



64 POSITIVE LONGITUDINAL DATA MODELLING 

Par. Est. 6.dev. P-value 
/3o -0.0979 - -
/31 0.00219 - -

/32 -0.0000128 19.3 0.000 
/3f1 -0.447 - -
{3r 41.4 0.000 
pf 0.280 
ft[ 0.561 
/3f 0.143 
/3f 0.125 
/3{ 0.220 
Pf -0.165 
/3[ 0.189 

/3~ r r -0 .230 7.3 0.007 
fJ[rM 0.415 8.3 0.004 

Q 0.0928 2.9 0.089 
Table 2.4. Parameter estimates and deviance changes when the cor­
responding explanatory variable is withdrawn {if it is sensible) from the 
selected Weibull model. 

• male profile is higher under the control diet than under the other 
treatments. 

• a degree 2 { at least) profile is required to model the triglyceride evol­
ution. 

In addition, the Weibull model indicates that the triglyceride level before 
diet is related to its subsequent values. 

Note that the non-selected candidates are more discordant on the treat­
ment effects, but this is not worrying in the light of their AIC values. 

From a technical point of view, the zero observations caused certain 
problems. These zeros appeared not because the triglyceride level was zero 
but because the measurement process was not sensitive enough for values 
of the response close to zero. This was not a problem with normal models, 
where Y,j only appears in a positive power form in the deviance, but with 
models such as the log-normal generalized autoregression where one must 
compute the logarithm of a zero value. In these situations the zeros were 
replaced by a parameter whose MLE was evaluated. 

Note also that the Weibull is a good reduction of the generalized gamma 
as indicated by the AIC values. 

No random effect was detected as shown by the Jones and one of the 
Weibull models. 

In terms of goodness of fit we can classify the merits of the different 
models. We also give, as an illustration, some estimated profile equations 
for females under respectively non-guar gum and guar gum diets at period 
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1, with i;j standing for (t;j - 180): 

(1) Weibull generalized autoregression with log-link {18 par.; J; = 0.529 , 
p= 0.101 ; J = 2.28): 

µ;j = exp[-0.0979 + 0.0928 log(y;o) + 0.00219 i ;j 

-0.0000128 i;j] 

µ;J = exp(-0.328 + 0.0928 log(y;o) + 0.00219 t;J 

-0.0000128 i;j] 

(2) Square root-transformed normal generalized autoregression with iden­
tity link (17 par. ; J; = 0.0253, p= 0.0376) : 

[ - ;2]2 
µ;j = 0.819 + 0.000885 t; j - 0.00000596 t;j 

[ - ;2]2 
µ;j = 0.742 + 0.000885 t;j - 0.00000596 t i j 

(3) Gamma generalized autoregression with log-link (17 par. ; J; = 0.049 , 
p = 0.063): 

µ;j = exp(-0.268 + 0.00224 t;3 - 0.000015 i;j) 
- ,2 

µ ;j = exp(-0.518 + 0.00224 t;J - 0.000015 t,j ) 

(4) Jones model {15 par.) and Normal generalized autoregression with 
identity-link (16 par.; J; = 0.0302, p = 0.0280) 

(5) Log-normalgeneralized autoregression with identity-link {16 par.; ;J; = 
0.0200, p = 0.0492) 

These female profiles for the guar gum diet are plotted on Figure 2.5. One 
can see that all the models, except the log-normal (which is too skewed) , 
provide similar curves. This is not a surprise: the log-normal model has the 
largest AIC value. The normal generalized autoregression and the Jones 
models behave differently from the others for small values of tij . They even 
provide negative values for times close to zero. This can happen (with the 
identity link) because data were only included in the fit after time 20 , the 
observations at time O being used as covariates. 

Note that we have omitted the autoregression term in the fitted profile 
equations because its contribution is specific to the animal under consider­
ation. Hence the departure between e.g. the observed profiles for females 
under guar gum and the fitted ones in Figure 2.5 is overestimated. To con­
clude the analysis we mention that we have computed the deviance residuals 
(not displayed) to detect possible 'outliers' . Some stand out, such as the 
top profile on Figure 2.2. In this example the fit tends to be pushed up­
wards yielding a few series of negative residuals. However these data could 
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Fig. 2.5. Fitted female triglyceride profiles. 
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not be discarded, as pointed out by the veterinarians , because no protocol 
violation was detected. 



3 
Longitudinal count data in continuous time 

Our second contribution is devoted to modelling series of count data meas­
ured at irregularly spaced time points. This has been the subject of two 
papers, Lambert (1996a and b), that we propose to present in a single 
chapter. 

Models in discrete time are available. We have mentioned several meth­
ods in Section 1.7, most of them based on the Kalman filter. Related 
references include West et al. (1985) , Harvey and Fernandes (1989), Ord 
et al. (1993) (See Sections 1.4.4 and 1.4.5), Lindsey (1993, pp. 58- 60, 206-
209) , Lindsey and Lambert (1995) and Fahrmeir and Tutz (1994, Sections 
8.2 , 8.3 and 8.4). Our goal in this chapter, will be to extend the ideas 
in these references to be able to cope with count data in continuous time. 
Other approaches include J¢rgensen et al. (1994) (see Section 1.4.7) who 
use exponential dispersion models to model linear growth in count data 
series, and Francis (1994) who analyses the growth of plants measured by 
leaf counts using an autoregression model. 

3.1 Problem setting with two examples 

In order to determine precisely the nature of the challenge, we now present 
two data sets that will be used throughout this chapter to illustrate the 
techniques that we have developed. 

The first example concerns bovine respiratory diseases which are a ma­
jor concern to workers involved in meat production. Even if efficient pro­
phylactic measures and therapeutic drugs are available, respiratory diseases 
are reported to be the most frequent causes of death. In the U.K., such 
losses exceed 50 million pounds annually (Genicot et al., 1993). For this 
reason veterinarians need to be able to induce acute respiratory distress 
syndrome artificially in healthy calves to test the effectiveness of the drugs 
that they are developing. This is often done by intramuscular injection of 
5-hydroxytryptamine receptor blocker. The data set of interest (shown in 
Table 3.1 and plotted in Figures 3.1 and 3.2) consists of six series of the 
respiratory rates of Belgian White and Blue calves. The animals were sub­
mitted to a continuous injection of 5-hydroxytryptamine receptor blocker , 
at different doses over 30 minutes. The goal of the study was to find out 
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Time 0 5 15 25 35 40 45 50 55 60 
Y1 (ti;) 48 126 120 126 - 56 - 46 - 56 
Dose 0 20 20 20 0 0 0 0 0 0 
Y2 (t2;) 33 49 46 54 - 32 - - - -
Dose 0 10 10 10 0 0 - - - -
y3 ( l3;) 32 73 82 108 - 27 - - - -
Dose 0 15 15 15 0 0 - - - -

Y4 (t4;) 39 58 58 88 68 - 58 - 40 -
Dose 0 15 15 15 0 0 0 0 0 -
Ys(tsj) 19 21 39 45 31 - 28 - 26 -
Dose 0 15 15 15 0 0 0 0 0 -
Y6 (t6j) 19 52 43 52 26 - 27 - 22 -
Dose 0 17.5 17.5 17.5 0 0 0 0 0 -

Table 3.1. Measurements of the respiratory rate (min-1 ) of calves sub­
mitted to a continuous injection of 5-hydroxytryptamine receptor blocker 
at different doses (in µgr kg-1 min- 1) during 30 minutes. 

the drug doses that the calves could tolerate. A second, but not essential, 
objective was to model the respiratory rate profiles as a function of the dose. 
These profiles were observed at irregularly spaced time points during and 
after the drug injection. In addition to serial association, several technical 
difficulties appear in this data set. Firstly, the data will not be normal 
simply because they are counts. Therefore traditional methods, such as the 
autoregression model of Jones and Boadi-Boateng (1991), have to be dis­
carded. Secondly, the observations were made at irregularly spaced time 
points. Moreover the same timing was not necessarily used for two differ­
ent calves. Hence a discrete time setting is not acceptable any longer. And 
finally, fixed and time varying covariates (the dose received by the animal) 
have to be included in the model. 

The second example concerns the growth of three closed colonies of 
Paramecium aurelium in a nutritive medium. The observed counts (in 
Table 3.2) are plotted in Figure 3.3. Details concerning the experiment can 
be found in Diggle (1990, p. 8). Our goal is to build a model for the profile 
of the mean number of individuals. One can easily see from Figure 3.3 that 
the colony growth cannot be modelled using polynomial or spline based 
methods. Indeed, the colony sizes seem to stabilize around day 10, sug­
gesting a model with an asymptotic behaviour. Actually, biological models 
would be more appropriate than any artificial mathematical construct in 
this situation. 

The next sections in this chapter will aim to build a flexible tool for 
longitudinal count data that can be used to analyse the data sets in the 
above two examples. 
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Day 0 2 3 4 5 6 7 8 9 10 
Sample 1 2 17 29 39 63 185 258 267 392 510 
Day 11 12 13 14 15 16 17 18 19 
Sample 1 570 650 560 575 650 550 480 520 500 
Day 0 2 3 4 5 6 7 8 9 10 
Sample 2 2 15 36 62 84 156 234 348 370 480 
Day 11 12 13 14 15 16 17 18 19 
Sample 2 520 575 400 545 560 480 510 650 500 
Day 0 2 3 4 5 6 7 8 9 10 
Sample 3 2 11 37 67 134 226 306 376 485 530 
Day 11 12 13 14 15 16 17 18 19 
Sample 3 650 605 580 660 460 650 575 525 550 

Table 3.2. Growth of three closed colomes of paramecmm aurehum m a 
nutritive medium (Gause, 1934). 

3.2 Gamma-Poisson model 

We shall keep consistent with the notation used in the preceding chapters. 
This will facilitate the comparison of the existing models with ours. 

Suppose that we observe independent series of counts {y,1 , ... , Y,n,} on 
I units ( i = 1, ... , I) at unequally spaced times { til , .. . , t;n J, together 
with a set of covariates { :i:;1, . . . , Zin;}. One possible model for such data 
is the gamma-Poisson model 

(Y;j l>.,j, /3;j , Fi ,j jj-i) "" Poisson{>.,j exp( z[/3,j)} 
(>,,j IF,,il}-1) ""gamma(K,,jlj-1, v;,il}-1) 

where .1";,}lj-l denotes the filtration or history of the responses for unit i 
up to, but not including time t;j and gamma(K, v) the gamma distribution 
with observed Fisher information v/ "- at the mode "-· Here the value Yij 

is seen as generated by a Poisson process with a time dependent mean 
>-.,j exp(:i:'f;/3,j)-

The non-random part exp(~'f;/3;j) of the mean, modelling the influence 
of covariates, can be used in several ways. It can be defined to model the 
influence of continuous explanatory variables such as the dose of a given 
medicine (cfr. dose of 5-Hydroxytryptamine in example 1, a function of 
time defining the shape of the profile, etc.), or the influence of an indicator 
variable (e.g. a variable that might distinguish two breeds of calves in ex­
ample 1). Note that one can release the linearity assumption for the part 
of the mean involving the covariates. 

The residual at time t;j is log>-.;; on the log-scale for unit i. If the data 
are serially associated, values of two residuals observed at close time points 
should be closely related. One way to allow for this is to give a gamma 
prior to >-.;j and to use Bayes theorem 
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to construct the posterior distribution ( with :F;j denoting the filtration for 
unit i until and including time tij) from the residual prior and the like­
lihood for the previous observation. The choice of the conjugate gamma 
distribution enables us to derive a closed analytic form for the posterior. 
The prior distribution is built by taking into account the time elapsed since 
the last observation. The further back in time the previous observation, the 
less weight the last posterior is given in building the new prior distribution. 
This can be done by taking as prior at time t;j a distribution with the same 
mode as the (last) posterior distribution at time ti,j- l , but with a smaller 
Fisher information. We suggest taking 

11:;_jlj-l = "-i,j-1 

Vi,jlj-1 = ((~t;j)Vi,j-1 

where ~tij = t;j - ti,j-l and (( ·) is a monotonally decreasing real function 
with values on [O, 1] such that ((0) = l. We shall restrict our attention 
to ((~t) = exp(-ef;~t). Notice that the above specification of the prior 
enables us to cope with continuous observation times. 

Updating the prior distribution of log Aij ( using Bayes' theorem) to take 
into account that it has generated the observed residual, we get a gamma 
posterior: 

( Aij l:Fij) - gamma( "-ij, v;j) 

where 

Yij - "-i,jlj-1 exp(z?;/3;j) 
Kij = "-i,jlj-1 + ( T ) 

v;,}lj-1 + exp z;/3;j 

v;j = v;,jjj-l + exp(zi/3;j) 

(3.1) 

(3.2) 

This recursive procedure can be started by taking a vague prior for the first 
residual, e.g. K; ,110 = 1 and v;,110 = 0. Considering a distribution for A;j 

different for each unit avoids problems related to heterogeneity, because an 
evolution for the residuals different for each unit is allowed. 

The parameter used for modelling the prior weight, a generalization of 
the discount parameter used by Harvey and Fernandes (1989), West et al. 
(1985), Grunwald et al. (1993a, b) and Smith (1979) in a discrete time 
setting, behaves somewhat like an autocorrelation coefficient. Indeed, re­
member that <p is used to model the loss of information on Aij between two 
observation times. Basically the prior information on Aij at time f ;j is ob­
tained by multiplying the posterior information at time t;,j-l by a quantity 
that decreases from 1 with the time elapsed since the last observation. This 
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loss of information is even more marked for large values of ¢. Hence we 
expect serial association to be a decreasing function of ¢. 

The likelihood function can easily be written down if it is decomposed 
into a product of conditional probabilities. The contribution of the ith series 
to the likelihood is 

n ; ",.;1;-1 ",.;1;-1 ( Ta ) 

II vi,jjj-1 exp Z;jJJijYij 

Y. ·{v· ·1 · 1 + exp(z'!.a. -)}",.;1;- 1" ,,;1;-1 + !1,; B(,,;; · ·1 · 1v- -1- 1 y · ·) j=2 ' J 1,J J- 1;/J1; •,J J- ' ,J J- ) •J 

where B( ., .) is the beta function. 
This likelihood must be maximized with respect to the regression para­

meters {jij and ¢. 

3.3 Analysis of data set 1 

We now have all that is required to analyse the respiratory rate data set. 
As seen in Figures 3.1 and 3.2 and Table 3.1 , the measures were made 
at irregular times between O and 60 minutes. The observation times are 
common during the administration of the drug. This is no longer true af­
terwards. Note that the observations at time O were obtained before the drug 
injection. They will be used as baseline covariates in the following mod­
els, our purpose being to decrease the uncontrolled heterogeneity among 
calves. The gamma-Poisson model was considered with different linear 
forms T/ij = z'fifj;J for the regression part . These forms are summarized as 
follows. 

(a) T/ij = cdogy;o + [Ict,;<30).81 + l (t;;?_ 30) ,82] (t;J - 30); 

(b) 1/ij = a log Yio + [ f (t;;<30).81 + l(t,;"?::30 ) .82] (t;j - 30) + 0dose;; 

(c) T/ij = alog y;o+ [I(t,;<30).81 +f(t;; ?::30) .82] (t;j - 30)+,log(dose;) ; 

( d) T/ij = a log Y,o + [ f(t ,;<30).81 + Ict,;?_30) .82] (t,j - 30) +,dose;; 

(e) 1/ij = alogy;o + f(t,;?_30) .82(t,j - 30) +,dose; 

The deviances ( with the deviance of the most complex model arbitrarily 
set to 0), the AIC values and the corresponding numbers of parameters are 
displayed in Table 3.3. 

Form (a) considers a slope .81 to model the evolution of the respiratory 
rate during the 30 minutes of the drug injection. Indeed the calves might 
grow accustomed to the drug as time passes, or the drug might have a 
cumulative effect on the respiratory rate. A slope /32 modelling the decrease 
in respiratory rate is proposed for times greater than 30 minutes (the drug 
injection stopping at t = 30). We also condition on the control value y;0 

( at rest) of the respiratory rate. Note that the regression parameters are 
assumed to be identical for all the calves, i.e. we consider parallel profiles. 
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a continuous injection of 5-hydroxytryptamine receptor blocker at different doses 
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Gamma-Poisson model 
T/ij Par. Dev. AIC 
1 5 37.0 47.0 
2 8 0.0 16.0 
3 6 6.7 18.7 
4 6 0.6 12.6 
5 5 5.8 15.8 

Table 3.3. Deviance and AIC table for the models (selected model in 
boldface) considered in Section 3. 

Parameter Estimate Standard error 
a 0.9962 0.0079 

/31 0.0079 0.0014 
/32 -0.0507 0.0095 
'Y 0.0558 0.0017 

Table 3.4. Estimates and standard errors for the regression parameters 
of the model selected. 

Forms {b )-( d) are equivalent to form ( a) except that the level of the time 
series is allowed to vary with the dose. Form {b) considers a non-parametric 
function of the dose ( using a 4-level factor variable), whereas forms ( c) and 
( d) assume that the respiratory rate varies linearly with respectively log­
dose and the dose. From the AIC values in Table 3.3, we conclude that 
there is a dose effect and that a linear function of the dose seems to account 
for the drug effect. 

At this stage, we might wonder whether the respiratory rate can be 
assumed to be stable during the 30 minutes of the drug injection, as in form 
(e), but this form yields a larger AIC, thereby rejecting the hypothesis. 

We finally select form {d): 

T}ij = 0.996 log(y;o) + 0.00787 (t;j - 30) + 0.0558 dose; (tij ~ 30) 

rj;j = 0.996 log(y;o) - 0.0507 (t;j - 30) + 0.0558 dose; (t,j > 30) 

where the respiratory rate increases during the drug injection and then 
decreases afterwards. The estimates and the standard errors corresponding 
to the regression parameters of this model are given in Table 3.4. Note 
that one should be cautious with standard errors in a non-normal context 
where non-symmetric profile likelihoods are likely to arise. A 10% likelihood 
interval for¢ is [0.217, 0.333] with¢= 0.278. The fitted profiles are plotted 
together with the data on Figures 3.1 and 3.2. Note that no observation is 
available at time 30; the fitted value is a projection. Some calf profiles are 
not well modelled. This is due to the assumption that profiles for all calves 
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are parallel. Relaxing this assumption would not be realistic (because there 
would be too many parameters for the amount of data) or interesting in a 
situation where we want to make statements valid for our (whole) population 
of calves. 

3.4 Robustification of the gamma-Poisson model 

In this section, we extend the gamma-Poisson model to include the Poisson 
distribution as a special case and to reduce its sensitivity to extreme ob­
servations. The first point is desirable to ensure that the gamma-Poisson 
model performs at least as well as the Poisson, the 'performance' of each 
model being measured using the AIC. We have known several data sets 
in discrete time where the Harvey and Fernandes {1989) gamma-Poisson 
model had a larger AIC than the negative binomial which only accounts 
for heterogeneity. But we should remember that the last two authors were 
working in a forecasting context. The robust gamma-Poisson model turned 
out to be more satisfactory than the negative binomial in all these examples. 

The second point concerns the sensitivity of the model to extreme ob­
servations. As can be seen from Equation (3.1), the updated mean of the 
residual distribution can markedly differ from its predicted value if an un­
expected observation arises. We shall add a new parameter to our model 
to limit the impact of such outlying observations. 

As mentioned in the last section, we can release the linearity assumption 
for the response mean. Using the same notation as above, we denote the 
resulting mean by A;jµ{z;j) where µ(z;1) models the influence of covariates. 
Suitable forms for the non-random and possibly non-linear part µ(z;i) in a 
growth curve context are described in Section 3.6. 

3.4.1 THE POISSON DISTRIBUTION AS A LIMITING CASE 

In the preamble, we have found it desirable to have the Poisson distribution 
as a limiting case of the gamma-Poisson model. This would ensure that our 
model does perform al least as well as the Poisson. This can be achieved 
by considering )..~j instead of A;j where 

The gamma mixing distribution will reduce to a point if J tends to zero and 
to a vague distribution if J tends to infinity. The recursive procedure will 
be similar to above, but with Equations (3.1) and (3.2) replaced by 

I 

, - I Yi j - ICi,jlj-lµ;j 
IC;j - IC; ,j jj-1 + , ~ + .. 

vi,ilJ-10 µ,1 
I I µ ;j 

v;J = vi ,i li-1 + T 

(3.3) 

{3.4) 
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3.4.2 ROBUSTIFICATION 

Extreme observations can have undesirable effects on inferential procedures. 
This is particularly true with dynamic models where an extreme observa­
tion can completely change the profile of the model. Different methods have 
been proposed in the literature to deal with such problems. Bolstad (1995) 
distinguishes three types of count observations in a gamma-Poisson set­
ting: outliers, unsurprising observations {i.e. consistent with what has been 
observed before), and observations indicating a real change in the data pat­
tern. For each type of observation, a different gamma mixing distribution 
for the mean is chosen. 

Gordon and Smith (1993) robustify the updating equation in the Kal­
man filter to ensure that the posterior distribution of the mean stays close 
to the prior when an extreme observation is observed. Meinhold and Sing­
purwalla (1989) robustify the Kalman filter using the Student-t as a mixing 
distribution instead of the normal in a normal data setting. We refer to 
Section 1.7.2 for more details on these papers. 

In our setting the problem arises in Equation (3.3) where a large differ­
ence (measured by the second term in the equation) between the observed 
data and its predicted value based on past information , can radically change 
the residual distribution. Hence reducing the impact of outlying values 
would be desirable in the procedure. A further parameter a E [O, l] in 
Equations {3.3) and (3.4) such that 

(3.5) 

could reduce the sensitivity of the model to extreme observations. Values of 
a close to zero avoid having too quick a correction ( as implied by Equation 
(3.1)) of the model towards an outlier, i.e. an observation for which Yij -

I • l 
"';,jlj-lµ;j 1s arge. 

The two new parameters J and a can be estimated by maximizing the 
likelihood using a non-linear optimizer. Section 3.6 will illustrate this on 
data set 2 (related to the growth of colonies of Paramecium aurelium). 

3.5 Modelling the growth curve 

One striking feature of data set 2 is the stabilization of the colony sizes after 
about ten days. Therefore the systematic part of the model should tend to 
an asymptote as time passes. The model considered by Diggle (1990 , p. 
155) does not allow for this. He just considered a quartic polynomial in 
time for the mean number of individuals in each colony. The fit may be 
reasonable within the observed time-span, but is not realistic for larger 
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time values. 
Nelder (1961 and 1962) considers a generalization of the logistic growth 

curve further developed by Heitjan (1991a and b) and including the Mitscher­
lich, Gompertz, logistic and exponential forms as well-known members. 
Heitjan (1991b) uses this family of models to assess the effect of three mul­
tiple sclerosis treatments on the evolution of ACFR, a measure of autoim­
munity. Inclusion of explanatory variables in the systematic part is illus­
trated. 

The equation of these profiles is given by 

l 

µ;j = e"2 [ 1 + (e<"2-1<1)"• - l)e-1<3t,;e"2"• ]- "• IC4 'f O (3.6) 

(3.7) 

It is the solution of the differential equation 

where 

µ~~ - 1 
d (µ;j, IC4) = IJ IC4 :f. Q 

IC4 

= log(µ;j ),c4 IC4 = Q 

Note that ,c1 = log(µ;o) is the initial condition and ,c 2 = limt,;-+oo log(µ.;j), 
the asymptote. The parameters ,c3 and 1C4 model the rate of growth. 
The parameter ,c4 also determines the type of the curve, varying from the 
Mitscherlich (,c4 = -1) through the Gompertz (,c4 = 0) , and the logistic 
(,c4 = 1) to the exponential (,c4 -too and d{e" 2 , ,c4 ) 4 constant) {Heitjan, 
1991b). 

3.6 Analysis of data set 2 

We now propose to use the robust gamma model to analyse the three series 
of data (in Table 3.2) plotted in Figure 3.3, giving the daily counts of 
Paramecium aurelium over a period of twenty days in a nutritive medium. 

Two families of models are considered. The first one , ignoring the lon­
gitudinal aspect of the data set, and thus ignoring serial association between 
data on the same unit, assumes that the counts a.re distributed as a negat­
ive binomial. The second family is the gamma-Poisson model where serial 
association is modelled using an empirical Bayes approach for the resid­
uals on the log-scale, this choice being suggested by the canonical link for 
Poisson data. 
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Ind. Neg. Bin. gamma-Poisson 
Syst. Part Dev. Par. AIC Dev. Par. AIC 
Polynom 553.7 6 565.7 546.2 8 562.2 
Gen.Log. 556.5 5 566.5 548.8 7 562.8 

Table 3.5. Deviance and AIC table. 

For each family of models, two types of systematic parts for the mean 
were fitted to the data: 

• a fourth degree polynomial in time as suggested by Diggle (1990 , p. 
155) . 

• the generalized logistic growth curve given by Equations (3.6) and 
(3.7) (Nelder, 1961 and 1962). 

The parameter estimation of the gamma-Poisson model was performed 
in three steps. Firstly, the MLEs for the regression parameters in the inde­
pendence negative binomial model were computed. Then the serial associ­
ation parameters ¢,, o and a of the gamma-Poisson model were estimated, 
the regression parameters being held fixed at their first step values. Finally 
the gamma-Poisson likelihood was maximized over both the serial associ­
ation and regression parameters, starting values being given by the first two 
steps of the algorithm. 

The deviance, number of parameters and AIC for the above four models 
are displayed in Table 3.5. Whatever the chosen systematic part, we see that 
the gamma-Poisson model performs better than the independence negative­
binomial model, thereby showing the need for modelling serial association 
within unit. 

The AIC provides no clear-cut choice for the systematic part. Therefore 
it seems advisable to select the gamma-Poisson model with a generalized 
logistic growth curve for the systematic part, because it is simpler and is 
properly modelling the asymptotic behavior of the colony development for 
large time values. 

The equations for the profiles of the gamma-Poisson model are respect­
ively given by 

µij = 0.6850 + 1097.4 t;j - 66.02 t;j + 0.9843 tfj + 0.0139 tt 

and 

µ;j = e6.304 1 + (e5.791 _ I)e- 0.0004t,;e 
[ 

7.600]-0.830 

for the polynomial and generalized logistic growth curves. They are both 
plotted on Figure 3.3. One can see that the polynomial model will predict an 
explosive numbe~ of individuals for large time values, whereas this number 
is estimated by e"2 = 54 7 for the logistic growth curve model. 
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Fig. 3.3. Growth of three closed colonies of Paramecium aurelium in a nutritive 
medium (Gause, 1934): fitted profiles and data. 

The serial association -parameters for the above models are respectively 
estimated as ¢ = 0.2245, 5 = 0.000084, a = 0.05937 and ¢ = 0.1944, 
5 = 0.000077, a= 0.04837 for the two best models. 

Note that the model described in the above sections can easily cope 
with sampling at irregularly spaced time points. Such situations might be 
caused by the design. For example, a regular sampling is very important 
at the beginning of the colony development (which undergo quick changes 
at the early stage), whereas its asymptotic behavior allows for more sparse 
observations after day 10. But coping with unequally spaced observation 
time may also be needed when missing (completely) at random data appear 
in an equally spaced sampling design. 

Logistic growth curves (Nelder 1961 and 1962) are more realistic than a 
polynomial or any spline based systematic part, because each of the para­
meters has an interpretation as explained in Section 3.5. Moreover it is 
more sensible than polynomials to model biological mechanisms of growth. 

Covariates such as an indicator of the growth condition can easily be 
included as shown by Lindsey (1993 , p. 133). They might affect the level 
of the asymptote, or the growth rate of the colony at an early stage, and so 
on. 

The parameters used by the full likelihood approach were estimated 
using the procedure OPTMUM in GAUSS, thereby enabling the use of 
non-linear expressions for the mean. 



4 
Other Applications of the GARM 

In Chapter 2, we have presented the generalized autoregression model or 
GARM, to model series of positive data in continuous time. The basic idea 
was to express some transformation of a location parameter (such as the 
mean response) as a function of past covariates plus a correction enabling 
inertia in the sign of residuals. The setting was very general and the model 
defined was not even restricted to exponential family distributions. For 
example, in this same chapter , we have used the generalized gamma dis­
tribution, which includes well-known nonexponential members such as the 
Weibull density, to model series of positive data. 

Hence nothing prevents us from modelling other types of data such as 
series of binary and multinomial data (Lambert, 1995d) . We shall consider 
this problem in Section 4.1. The use of the resulting tool will be illustrated 
using two data sets from the literature. The performances of the binary 
model will be compared with Markov chain models. 

The next theoretical point will be devoted to rewriting the GARM as 
a GLM when the covariates enter linearly in the systematic part (Section 
4.2). In this particular setting, the different parameters in the GARM will 
be computable using GLM software such as GLIM or S-PLUS. This will 
enable us to use the powerful IWLS algorithm to compute the regression 
parameters, the other two or three autoregression parameters being estim­
ated using a non-linear optimizer or by considering a grid of sensible values. 

Finally, predictions using an approximate predictive likelihood that cor­
rects for the randomness in the parameter estimates of the basic model are 
computed (Lambert, 1995e; Section 4.3). An example is considered where 
the basic model is the negative binomial GARM for overdispersed count 
data. The rewriting of the GARM based on a GLM significantly improves 
the time required to compute likelihood prediction envelopes. 

4.1 Series of binary and multinomial data 

In this section, we show how the GARM can be extended to deal with series 
of binary and multinomial data in continuous time. Three extra parameters 
compared to the independence model setting enable it to compete with low 
order Markov chain models even when the series are short or the serial as-
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Profile Larval origin Profile Larval origin 
Apple Hawth. Apple Hawth. Apple Hawth. Apple Hawth. 
1111 1111 2 1 0001 1011 1 0 
1110 1111 1 0 0001 1111 1 0 
1101 1111 1 0 0000 1111 6 7 
1011 1010 1 0 0000 0010 1 0 
1000 1111 1 1 0000 0111 3 5 
0111 1111 1 0 0000 1011 2 1 
0110 1111 1 0 0000 1100 1 0 
0100 1111 1 2 0000 1101 2 1 
0100 0010 1 0 0000 0011 2 2 
0011 0111 2 1 0000 0001 1 6 
0011 1011 1 0 0000 0000 0 2 
0010 1111 1 0 0000 0101 0 1 
0010 1100 1 0 0000 0100 0 1 
0010 1011 1 0 0000 1000 0 I 
0001 0011 1 0 0000 1110 0 I .. Table 4.1. Frequency of observed profiles by fly ongm for eight bmary 

responses (1: Success; 0: Failure). 

sociation order is small. But the superiority of generalized autoregression 
models is more obvious with longer series of data where a larger autore­
gression order might arise. The technique is illustrated on two data sets 
from the literature. 

The first example that we shall consider studies acceptance for ovipos­
ition by Rhagoletis pomonella adult female flies (Stanek and Diehl, 1988). 
Female flies, which grew as larvae either in apple or hawthorn fruit, were 
first placed on apple and then on hawthorn at four different ages: 8-9, 11-
12, 15-16 and 18-19 days after adult eclosion. At each occasion they were 
observed for five minutes for possible oviposition, the success or failure of 
the procedure being recorded (see Table 4.1). The whole process was suc­
cessfully repeated with 70 flies (37 of apple and 33 of hawthorn origin). 
Our goal is to model the response profiles. The response of a fly at a given 
day should be allowed to depend on its past history, as well as on the fly 
origin and the type of fruit support. 

The second example is a series of multinomial data giving the number of 
Pinus, Abies, Quercus and Alnus pollen grains in samples of size 100 (Mosi­
mann, 1962). These samples coming from a single core were extracted from 
the soil at increasing depths that we shall assume to be equi-spaced. Space 
will now be used instead of time as a qualitative tool for ordering the ob­
servations and defining a measure of serial association. The corresponding 
data are plotted on Figure 4.1. Our goal is to model and compare the dif­
ferent pollen profiles to enable the study of past changes in vegetation and 
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Fig. 4.1. Number of pollen grains of Pinus, Abies, Quercus and Alnus fossil 
forests in samples of 100 grains (Mosimann, 1962) extracted at increasing depths 
in the soil. 

hence in climate. We refer the reader to Section 1. 7 for a review of the key 
papers on longitudinal models for binary and multinomial data. 

4.1.1 BINOMIAL SERIES 

We now explain how to adapt the GARM to deal with non-stationary series 
of binomial data observed at unequally spaced times. 

Suppose that we observe a series {y;ifn;i , .. . , Yim./n;m.} (i = 1, . . . , J) 
of m; proportions on unit i at unequally spaced times { t;1 , ... , t,m,} to­
gether with covariates { x; 1 , . . . , Xim;}. 

Denote by 

• r;j, the residual for unit i at time t;j on the logit-scale, defined by 

r,j = a log ( Yij + 0.5 ) - x'fi/3;j 
n;j - Yij + 0.5 

r;o = 0 

( 4.1} 

where /3;j stands for regression parameters. This is simply the dif­
ference between the empirical and the theoretical logits. The double 
subscript for the regression parameters indicates that we do not put 
a constraint on the parameter structure. But very often it will just 
be assumed that /3;j = /3. 

• rfj , the cumulated residual for unit i at time t,j on the logit-scale, 
defined by 
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(j > 0) 

where t:i.t;j = t;j - t;,j-l and O < ¢. 
• wfj , the weight for the cumulated residual rfj, where 

The idea is to model the logit of 'Trij , the proportion of successes on unit i 
at time t;j, as 

logit(1r .. ) = :i:T.f3 .. + e-p~t,; rf,j-l 
•J •J •J we 

i,j-1 
( 4.2) 

where O < p. Note that ¢ and p are respectively modelling the order and 
importance of the serial association. 

The introduction of n,j in the definition of the cumulated residual and 
of the cumulated weight expresses that a deviation by the data from the 
systematic part of the model is more likely to be 'serious' ( and thus to be 
followed by a deviation of the same order) if it is based on a large number 
of observations. 

Note that, because r;o = 0, full confidence is given to the systematic part 
when no previous observation (and hence no previous cumulated residual) 
is available. 

The above model specification can also cope with binary observations 
(where n;j = 1) thanks to the use of the empirical logit in Equation (4.1). 

Estimates for the parameters can be computed by maximizing the like­
lihood 

L(/3;js, P, <P) = II II 11"ij (/3;j, P, <P )Y;; [l - 1T"jj (/3;j l p, <P )r·;-Y,j 
i j 

(with 1r;j{/3;j , p, ¢) defined in Equation ( 4.2)) using a non-linear optimiza­
tion routine such as Proc OPTMUM in GAUSS. 

4.1.2 ANALYSIS OF THE FLY DATA SET 

We have applied the technique described in the last section to the fly data 
set. Several factors were liable to influence the presence or absence of 
oviposition by any given insect, among which the fly origin (ORI, indexed by 
k and parameterized using ok), the support for oviposition (SUP, indexed 
by l and parameterized using ,1) and age {AGE, which stands for time 
tj ). We also expect that the probability of 'success' ('failure') is larger 
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if one or several successes (failures) were recorded in the fly history. A 
summary of the models considered, including several of these explanatory 
variables, is given in Table 4.2 together with the corresponding number of 
parameters and AIC values. The Wilkinson and Rogers (1973) notation is 
used to describe the systematic part of the model. For example, the fourth 
generalized autoregression model in Table 4.2 is 

which assumes that the probability for a fly to lay its eggs depends on both 
its origin and the support. In addition, the effect of AGE is allowed to vary 
with the last covariate. 

For comparison, the independence model together with the first and 
second order Markov chain models with the same systematic part were 
computed. In these three settings, the logit of the probability of success is 
respectively modelled as 

• logit(1r;1) =/Jo+ 0:1< +"/I+ /311tj (independence) 

• logit(1r;j) =/Jo+ Ctk +"/I+ /311tj + p(2Yi,j-I - 1) (1st order Markov 
chain model) 

• logit(1r;j) =/Jo+ Ctk +"/I+ /J11tj + P1(2Yi,j-1 -1) + P2(2Yi,j-2 -1) 
(2nd order Markov chain model) 

In Markov chain models, conditioning on past events is impossible and thus 
ignored for the first observation. In the 2nd order Markov chain model, 
full conditioning is only considered after the second observation time. This 
procedure is equivalent to assigning a response of one half for missing past 
events. 

The results are summarized in Table 4.2. Note that the Markov chain 
models were computed using all the observations . The covariates were 
solely used to define the systematic part when no previous observation is 
available. This permits a sensible comparison of the AIC values with these 
for the generalized binomial autoregression model. We now propose to 
explain the meaning of the systematic parts considered in the table. The 
first line assumes that the probability for a fly to lay its eggs depends on 
its origin and on the support. Moreover, the effect of each of these two 
variables is allowed to depend on the value of the other one. The effect of 
AGE can differ for each combination of origin and support. The second 
systematic part makes the same assumptions as the first one, except that 
there is no origin-support interaction. The third line further assumes that 
the difference in AGE effects between flies of two different origins does not 
depend one the type of the support. In the fourth model, the incidence of 
AGE is assumed to be independent of the fly origin. The fifth systematic 
part supposes that there is no AGE effect for flies of apple origin. In the 
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Systematic Part Par AIC AIC 
IND Ml M2 GA 

(ORI*SUP).(l+AGE) 8 559.2 516.9 513.6 513.3 
(ORI+SUP)+(ORI*SUP).AGE 7 557.5 515.9 511.8 512.0 
(ORI+SUP).(l+AGE) 6 559.2 516.3 513.5 513.3 
(ORI+SUP)+SUP.AGE 5 557.5 514.3 511.6 511.7 
(0R1+SUP)+(SUP=2).AGE 4 557.2 516.1 515.5 510.0 
ORI+SUP 3 570.5 524.2 523.2 524.6 
SUP+(SUP=2).AGE 3 576.6 527.0 525.5 520.0 

Table 4 .2. AIC table for the generalized bmary autoregress10n (GA), 
independence (IND), first (Ml) and second order (M2) Markov chain models 
applied to the fly data set (with a bold AIC value for the selected model). 
Each successive column has one more parameter. 

sixth model, the probability of success is stationary. Finally, the seventh 
systematic part is the same as the fifth one, except that there is no origin 
effect. 

By comparing the AICs in the last four columns of Table 4.2, we see 
that we cannot assume independence. The generalized autoregression (GA) 
and second order Markov chain (M2) models are clearly superior to the 
other two. The 'best' GA model performs slightly better (with an AIC 
value of 510.0) than the 'best' M2 model (AIC=511.6). The corresponding 
systematic parts are not in perfect agreement even if the conclusions are 
quite similar. 

In order to compare the estimates of the two models, we shall compute 
the regression parameters using the systematic part of the best GA model. 

The GA and the M2 models both indicate an effect of larval origin. 
When the fly is observed for the first time, the conditional odds for ovi­
position for a fly from apple origin is estimated by the GA (M2) model to 
be 3.290 (2.203) larger than the conditional odds for a fly from hawthorn 
origin. 

The need for autoregression indicates that we can say more when the 
fly has performed the test earlier. The conditional odds for success at the 
second observation time is (estimated to be) more than five times larger if 
the last recorded observation is a success than ifit was a failure just before. 
Clearly there might be situations in practice where the information carried 
by covariates is negligible once the history of a given unit is available. Then 
marginal modelling would be completely unadapted. 

We also detect a support effect . The conditional odds for success on an 
apple support is estimated to be 2.546 (3.357) larger than the corresponding 
odds on a hawthorn support . 

Note that no origin-support interaction was detected. 
There seems to be an evolution of the support effect with AGE, even 



SERIES OF BINARY AND MULTINOMIAL DATA 85 

when conditioning on the fly history. The older the fly the more likely the 
success. The selected GA model suggests that there might be no evolution of 
the odds of success when the fly is from apple origin. This is in contradiction 
with the M2 model conclusions. Hence caution is needed on this point of 
the analysis. 

4.1.3 MULTINOMIAL SERIES 

Suppose that we observe I series {y;1 , ... , Yim} of m data at common and 
possibly unequally spaced times { t 1 , ... , tm} where Y.j is fixed by the design 
for any j E { 1, ... , m}. In other words, we assume that we have a multino­
mial sample at each time point ti. Our goal is to model the evolution of the 
probability of being in category i, while taking into account the multinomial 
constraint and the possible serial association between proportions observed 
at close time points. 

Denote by { 1r1j, ... , 'frfj} the theoretical multinomial probabilities at 
time t i with 7r .j = 1 for all j. Consider the log-linear model 

log(µ;j} = log{yj'!rij) = O:j + z;;/3;j (4.3) 

where µ;j and Zij are respectively the mean response and a vector of cov­
ariates for unit i at time t j. 

Serial association can be modelled by conditioning on cumulated resid­
uals as in binary generalized autoregression models. Cumulated residuals 
r'tj can be defined using 

r;j = log (Yi~) - (o:j + z;;/3;j) 
Y.J 

r;o = 0 
C - -¢At; C + 

rij - e ri,j - l Y.jrij 

rfj = 0 
C -¢At; C + 

wij = e wi ,j-l Y.j 

wfo = 0 

( 4.4) 

where again a departure of the theoretical model from the observed data 
is more completely accounted for when the related multinomial total Y.j 

is large. T he meaning of this notation and the rationale for the above 
procedure are the same as in Section 4.1.1 and need not be repeated . As 
in the binary case, one could add one half to a zero observation and the 
related multinomial total to avoid trouble with Equation ( 4.4). 

Equation ( 4.3) can then be modified to yield 

re . 
I ( ) T/3 -pAt · 1,3 - 1 og µ;j = a i + z;j ij + e ' -c -

wi,j-1 
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which now accounts for serial association. 
The next step is to maximize the Poisson likelihood 

(4.5) 
j 

= II exp [O:jY.j + LYij (z[/3;j + e-pAtj r~j--1 )] II e-µ,i(/3,j ,p, ¢,) 
j i w,,3-1 i 

Thus Yj is a su~ent statistic for Ctj, Now, in exponential family models, 

we know that E[T(Y)] = T(Y) for any sufficient statistic T(Y). Hence 'fi..j = 
Y.j, meaning that the estimated multinomial frequencies µij (j = l . .. J) 
maintain the observed marginal (and multinomial) total Yj. This is the 
usual log-linear model 'trick' where estimation of the regression parameters 
is done by maximizing the Poisson likelihood. By conditioning on Yj, the 
sufficient statistic for O:j, we recover the multinomial likelihood 

IIII(µij)Yij =rrrr{ exp[z7;/3;j+e-pAt,~] }Yii(4.6) 
. . µ,J . . '°' exp [zT .r.1 . + e-pAt; ~ .-1] 

J I J • ~k k3/Jk3 we 
k,J-1 

which does not contain O:j anymore. Maximizing the likelihood in Equation 
(4.5) or the conditional likelihood in Equation ( 4.6) gives the same estimates 
for the regression parameters. The probability of observing a datum in the 
ith category at time t;j is then estimated by 

7rjj = 
exp [z'!'.'jj .. + e -pAt; :::~.H] 

IJ SJ W~,j-1 

4.1.4 ANALYSIS OF THE POLLEN DATA SET 

We are now in a position to model and compare the profiles of the four 
types of fossil forest pollens presented in the introductory section. Space 
will now be used instead of time to classify the observations on a given unit. 

Different linear forms were considered for the profiles . Unfortunately 
we were not able to simplify the most complex model considered , which 
assumes a different quadratic profile for each type of pollen. Note that it is 
only necessary to specify three out of the four profiles, the other one being 
computed using the multinomial constraint . The final model is plotted 
in Figure 4.2. The large values for the parameter estimates p (= 12.21) 
and J (=0.055) suggest that no serial association is present in the data, 
the specification of the systematic part using polynomials in space being 
sufficiently precise to model the data evolution. 
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Fig. 4.2. Number of pollen grains of Pinus, Abies, Quercus and A/nus fossil 
forests in samples of 100 grains (Mosimann, 1962) extracted at increasing depths 
in the soil: fitted profiles. 

4.2 The GARM and generalized linear models 

In particular situations, the GARM can be expressed as a generalized linear 
model. As already explained in the preamble, this is particularly interest­
ing in practice because the IWLS algorithm, which is implemented in many 
statistical software packages, can then be used to compute the regression 
parameters. We now give the details and conditions under which that ap­
proach is feasible . 

Consider the special case of a GARM with a linear model for the sys­
tematic part and an exponential family distribution as stochastic element. 
From Equation (2.1) , one can easily show that 

g(µ;i) = z'fi/3 
g(µ;2) = zh_/3 + e-p,CH;2 [.q(yi1) - z[i/3] 

= [zi2 - e-p.C. t;2 z ;1f /3 + e-p.C.t;2 g(yii) 

Similarly, one can show that 
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More generally, we have 

g(µ;j) = [x;;-e-ptlt,;x~,j-1]T f3+e-ptlt ,, 'Y~j-1 (4.7) 
wi,j-1 wi,j-1 

dT = X;j /3 + offset;j ( 4.8) 

where 

,...c _ ,... .. + e-ptlt,;,...c 
"'ij - "'lJ "'i,j-1 

xf1 = X;1 

'Yfj = g(y;j) +e-ptlt,;'Yi,j-1 

'Yil = g(y;1) 

From Equation (4.7) we thus conclude that, for fixed values of p and ¢, 
the GARM can be expressed as a GLM where, for each unit, and some 
observation time t;j, 

• any design matrix row xfj T can be expressed as the difference between 
the original design matrix row x'f; and some kind of weighted average 
of design matrix rows from previous observation times . 

• an offset 'Yij, a weighted average of the last observation on the g-scale 
and the previous g-observations on this unit, is introduced. 

This formulation will be particularly useful below to compute modified or 
approximate predictive likelihoods. 

4.3 An approximate predictive likelihood 

The goal of this section is to apply existing methods to make predictions 
in time series of non-normal data. We shall focus on the particular case of 
overdispersed count data, although the presentation is sufficiently general 
to be applied in other contexts. 

The tool developed will be applied to the second example of Section 3.1 
which was further analysed in Section 3.6. The data set of interest concerns 
the growth of three closed colonies of Paramecium aurelium in a nutritive 
medium on a twenty day period. One of the series (Colony 1) has been 
(artificially) truncated at day 10 (see Figure 4.3). We propose to construct 
a likelihood prediction envelope based on a model built from the three series 



GI .. 
C: 
0 

700 

525 

~ 350 
GI 
II: 

175 

AN APPROXIMATE PREDICTIVE LIKELIHOOD 

Growth of colonies of paramecium aurelium 

oColony 1 
+Colony 2 
6Colony 3 

- Flt (Colony 1) 
- - Flt (Colony 2) 
-· Fit (Colony 3) 

+ 

0 ... -==='-------'-------'--------'--------.J 
0 5 10 15 20 

Time (min) 

89 

Fig. 4.3. Growth of three closed colonies of paramecium aurelium in a nutritive 
medium (Gause, 1934): fitted profiles and data. 

at the preceding time points, and to check that the actually observed values 
fall into these intervals. 

4.3.1 LIKELIHOOD PREDICTION ENVELOPES 

The first thing to do to make predictions is to build a model suitable for 
the observed data. Various techniques have been proposed in the literature 
to model series of count data. We refer to Chapter 3 for a review of these 
methods. Here we shall adapt the generalized autoregression model to deal 
with our discrete data. 

Predictions can then be made using the final model built from the ob­
served data. One naive but simple way to make predictions is to consider the 
profile predictive likelihood (Fisher, 1959, pp. 128-133; Lejeune and Faulken­
berry, 1982) 

where z stands for the observation to come on unit k (which now plays the 
role of the parameter of interest in the likelihood), Y; denotes the set of ob-

servations on unit i, and µi.i) and vr•) respectively stand for the MLEs of µ;i 
and V; given {y;1 , ... , Yin, , z} and the observations on the other series. The 
symbol (z) as superscript is used to make a distinction between the MLEs 
computed from the likelihood including the contribution of the unobserved 
z datum, and the 'classical' MLEs computed only using the observed data 
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contributions to the likelihood. More precision is achieved by estimating 
the model parameters using a likelihood based on the three series instead 
of using the sole likelihood contribution from the series of interest. Note 
that the first element in the profile predictive likelihood is related to the ob­
servation to come, whereas the others are the contribution of the observed 
data. 

One major criticism of the profile predictive likelihood is that it does 
not take into account the uncertainty attached to each of the estimated 
parameters. The profile likelihood just assumes that the estimates of the 
nuisance parameters are the true (or 'population') values. A consequence 
of this in our setting, is an underestimated width for prediction intervals. 
One way to release this unrealistic hypothesis (Hinkley, 1979) is to condi­
tion on the maximum likelihood estimators which have a given distribution. 
Deriving such quantities is not an easy task, and except in very special cir­
cumstances, one has to approximate the conditional distribution. There is a 
considerable literature on the subject which often relies on known analytic 
forms for the MLEs or on a substantial reduction of the data to sufficient 
statistics (Butler , 1986 and 1989; Kalbfleisch and Sprott, 1970; Hinkley, 
1979; Bjornstad, 1990; and, indirectly, Barndorff-Nielsen, 1983, 1993). For 
a review of prediction techniques based on the likelihood, see Bjornstad 
(1990). For example, the resulting conditional density can be approxim­
ated using the modified profile likelihood. The so-called Barndorff-Nielsen 
(1983) p*-formula provides an approximation to the distribution of MLEs 
given an ancillary statistic. The required (approximate) conditional distri­
bution can then be derived, yielding 

• _ (z) ~ (z ) - 2 88 
l I ~ I L (z lY1 , .. · , Yr) - L(zlY1 , .. ·,Yr) IJ (8 )I ao(z) (4.9) 

where 8T = (/3T, vf , ... , vj,) stands for all the parameters in the model 
such as the regression parameters /3 defining µ,j and the nuisance paramet-

ers; J(z) (O(z)) is the observed information matrix about 8 computed at the 
MLEs for a given value of the unobserved data z, i.e. 

J(z)('o(z)) = 82
logf(ziyk;6) I 

08 88T 8=6<•> 

+""'""' 8
2 

logf(Yij IFi,j-li 8) I 
L..., L..., t:i(J o8T ~(,) 

j j V 8=8 

Unfortunately the last factor in Equation (4.9) is particularly tedious to 
compute, because it requires knowledge of the analytical forms for the 
MLEs, which, outside the exponential family, are usually impossible to de­
termine. In such settings, Butler (1986, Rejoinder) proposes an approximate 
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predictive likelihood which can be evaluated with any type of distribution, 
because it only requires the maximum likelihood estimates of the nuisance 
parameters based on {Yi , .. . , yJ , z}: 

(B ) (z) -(z) .! I -(z ) T -(z) I 
L (z lY1 ,· ··,Y1) = L(z lY1, · ·· ,Y1) IJ (8 )1 2 H(8 )H (8 ) 

( 4.10) 

with 

As briefly explained in the original paper, this last formula for the con­
ditional likelihood can be derived by using a Taylor series expansion for 
the joint density of the observed and unobserved data about the nuisance 
parameter MLEs, and by dividing the whole by a normal approximation to 
the nuisance parameter joint distribution. Note that using the inverse of 
the Fisher information evaluated at 6 as an approximation to the covari­
ance matrix of the above normal distribution simplifies the formula, finally 
yielding Equation ( 4 .10). 

The goal of this section is to construct likelihood prediction envelopes. 
By a 100 p% likelihood prediction envelope, we mean a succession of 100 
p% (Butler approximate) predictive likelihood intervals computed at the 
time points of interest. These likelihood intervals are obtained in the same 
way as with a traditional parameter likelihood (Kalbfleisch , 1985), the role 
of the parameter here being played by the unobserved quantity. 

Note that we have not tried to compute simultaneous prediction inter­
vals, to make an analogy with the frequentist simultaneous confidence inter­
vals. In our view , one is more interested by what is 'likely ' to be observed 
in the future at one given time point independently of what the other pre­
dictions are. Plotting an envelope is more a way to summarize graphically 
a series of independent results than giving artificially related statements. 
However a simultaneous approach is feasible, but this is technically far 
more difficult , particularly in a non-normal setting , because it requires the 
computation of Np- (and thus possibly large) dimension normed likelihood 
regions (if one wants to predict Np unobserved data). Finally note that a 
method for modelling series of data observed at unequally spaced times is 
required , because the time at which the prediction is made is (in practice) 
totally arbitrary. A second (but not rigorous) choice would be to proceed 
step by step by using a conditioning argument . The observation at time 
tnk + 1 could be predicted conditional on the last observation; the one at 
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time tnk + 2 could be derived by conditioning on the first step prediction; 
and so on until the time of interest has been reached. This sounds very 
useful when the point forecast is really what interests us, but this becomes 
far more complicated when prediction intervals are required. 

4.3.2 APPLICATION 

Applying the theory of Sections 4.2 and 4.3.1 to construct a likelihood pre­
diction envelope for the truncated part of the introductory data set is the 
subject of this section. The full data set has been studied by Diggle (1990, 
p. 155) who proposed a quartic polynomial in time to model the observed 
growth curve. Lambert (1996b and Ch. 3 above) uses a generalized form 
of the logistic growth curve (Nelder, 1961 & 1962) to take into account 
the asymptotic behaviour of the colony sizes, and compares it with the 
quartic polynomial fit. It was noticed that both solutions are realistic in 
the observed time range, but that the generalized logistic form should be 
prefered because it is more sensible than polynomials to model biological 
mechanisms of growth. 

However, in order to illustrate the expression of the GARM as a GLM, 
we have decided to present the construction of the likelihood prediction 
envelopes with the quartic polynomial (and thus linear) model. Note that 
the same approach can be used with the generalized logistic form, but this 
will require the use of FORTRAN or GAUSS (in our case) codes to compute 
MLEs. 

As was already pointed out in Ch. 3, a negative binomial distribution 
seems to be more adapted than the Poisson alternative. Hence we shall 
focus on the building of the Butler approximate predictive likelihood using 
the stochastic and systematic elements derived in a traditional approach to 
modelling the observed data. 

We shall denote by NB(v, rr;j), the negative binomial distribution 

r(v + Yij) (l - ··)v ¥!i 
. ,Ir( ) rr,; 71",; 

Y13• V 

with mean v 1 :;;; for the random variable Y;j . 
The influence of time as well as of any other explanatory variable on the 

mean response µ;j on unit i at time t;j can be modelled using a logistic 
regression 

7r;j d T 
7]ij = log 1 _ rr· . = xii J3 + offset;j 

IJ 

jointly with a GARM to take the serial association into account . Note 
that the GARM appears in this last equation through the offset and the 
transformed design matrix Xd computed using Equation (4.7). 
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Par. Est. 
V 63.38 

Autoregression Par. 
¢ 0.2786 
p 0.7685 
Regression Par. 

f3o 0.6804 
/31 1.104 
/32 -0.06493 
/33 0.000755 
/34 0.0000226 

Table 4.3. Parameter MLEs computed on the triglyceride data set using 
a logistic regression jointly with a GARM. 

If the negative binomial parameter v and the autoregression parameters 
p and ¢ were known, then one could simply compute the regression para­
meter MLEs using the IWLS algorithm. Taking a grid of values for the 
three unknown parameters might be one solution to determine the MLEs. 
In this example we have used the non-linear optimizing procedure PROC 
OPTMUM in GAUSS. The corresponding MLEs and fit are respectively 
displayed in Table 4.3 and on Figure 4.3. The fitted profiles displayed on 
this figure are not smooth curves because corrections due to serial associ­
ation were added to the polynomial contribution. 

The next step is the computation of the Butler approximate predictive 
likelihood for various values of z at the time point of interest. This can be 
done in three steps: 

(1) Given the likelihood based on the observed data and z, compute the 
MLEs of the eight parameters in the model (see Table 4.3). 

) 
~ (,) ~ (z) 

(2) Compute the Jacobian J(z (9 ) and the matrix H(9 ) at the MLEs 
from step 1. 

(3) Compute the approximate predictive likelihood using Equation (4.10) 
together with the results of the first two steps. 

In our example, the procedure has been simplified by only conditioning on 
the regression parameter estimates. This reduces the dimension of the Jac­
obian and of the H matrices from eight to five. Of course it is not necessary 
to use numerical methods to compute the J and H matrices: analytic forms 
are easy to derive. This point is essential to ensure a reasonable rapidity 
to the procedure. Indeed one has to repeat the three above described steps 
for different values of z to determine first the forecast z (which maximizes 
the predictive likelihood) at the time point of interest. Once z is known, 
the predictive likelihood is rescaled by dividing it by its maximum value. 
The 10% (say) predictive likelihood interval can then be determined. This 
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Fig. 4.4. Growth of three closed colonies of Paramecium aurelium in a nutritive 
medium (Gause, 1934): predictions and likelihood prediction envelope for the 
artificially truncated series. 

can be done using e.g. the secant method for determining the zeros of a 
function. This method has the advantage of not requiring the derivative of 
the predictive likelihood ( at the cost of a function evaluation). 

The corresponding results for the Paramecium aurelium data set are 
displayed on Figure 4.4. Two approaches were used to compute the 10% 
likelihood prediction envelope. The first one was based on the 'naive' Le­
jeune and Faulkenberry (1982) predictive likelihood which assumes that the 
parameters are known (and equal to their MLEs). The second method is 
the one described in Section 4.3.1. As can be seen from Figure 4.4, there is 
a small bias correction and the likelihood prediction envelope derived using 
the Butler approximation is slightly wider, reflecting the extra uncertainty 
in the regression parameters values. It would probably be even wider if all 
eight parameters were used when conditioning. The correction with respect 
to the 'naive' method is not very important in this setting. We would expect 
larger corrections with smaller counts and shorter series, or if all series had 
been truncated. Finally note that the actually observed data fall well within 
the 10% likelihood prediction envelope (whatever the chosen method). 



5 
Conclusion 

In this chapter, we propose to review and discuss some key points in the 
writing of the preceding lines. Finally, in the last section, we suggest some 
extra topics that could be the subject of further research to provide the user 
with a complete and flexible tool to analyse series of non-normal data in 
continuous time. 

5.1 Conditional models 

Conditional models were presented as the natural approach to analyse lon­
gitudinal data. The key underlying argument was based on Simpson's para­
dox: with longitudinal data sets, the conclusions drawn using conditional 
and marginal models can be in complete disagreement, although a careful 
inspection of these results simply reveals that the data generating mechan­
ism was more complex than what the marginal point of view was ready to 
assume (cfr. 'treat or not to treat') . Hence, it was concluded that a model 
for longitudinal data has to describe, as far as possible, the relationship 
between the response and the causal mechanism. Then, if marginal con­
clusions are required, they should be derived from such an appropriately 
constructed conditional model. 

In practice, and more particularly in biological settings, it is desirable to 
explain the observed 'data generator' using simple models. This can usually 
be done easily using conditional models, where both covariates and past his­
tory of the process contribute to explain what has been observed. However , 
the marginal correspondent of such a model is usually very complex (when 
normality cannot assumed), and often requires the use of numerical meth­
ods to be derived. Hence, one might question the reality underlying simple 
marginal models, which, in turn, have complex conditional equivalents. In 
our view, this disconnection with reality is the most worrying problem in 
marginal models. 

We have also briefly discussed technical problems arising in these set­
tings. Many of the proposed approaches rely on the GEE, which cannot be 
integrated back to a proper likelihood , except in very special cases. Hence, 
these methods of analysis do not correspond to a proper model , because 
the probability of the observed data cannot be calculated. Therefore, it is 
impossible to compare competing 'models' based on GEE. 
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5.2 Models in continuous time 

As shown in the literature review of Chapter 1, most of the models for longit­
udinal data assume that time is discrete. This hypothesis is a real handicap 
in practice for several reasons. Experimenters, such as veterinarians, often 
do not want to be restricted by a discrete time schedule when they collect 
observations. An example of this was given in Section 3.6 , where the size 
of colonies of Paramecium aurelium undergoes quick changes at the start of 
the experiment before reaching stability. There, it would be more interest­
ing to observe the colonies intensively at the beginning of the process, and 
to reduce the effort after day 10 (say). 

In some situations, veterinarians simply cannot collect data regularly, 
giving rise to 'missing data' in a discrete time design. Sometimes, observa­
tions cannot be gathered on week-ends because the technical staff is limited 
on these days; or a suddenly ill nonexperimented animal might distract the 
doctor from the trial for a short period of time, giving rise to a missing 
at random observation; or the observed animal might be moving at some 
stage of the data collection, making the process unobservable at this time. 

Therefore, from Chapter 2 on, we have restricted attention to longit­
udinal data models which are not constrained by the artificial assumption 
that time is discrete. 

5.3 Nonlinear regression 

The technical phase in the modelling of data is made in two steps. Firstly, 
a family of distributions , likely to approximate the stochastic process which 
gave rise to the data, is chosen. Secondly, some location parameter ( and 
less often, shape or scale parameters) is described in terms of covariates. 
For technical reasons, and due to the availability of GLM packages such 
as GLIM, modellers very often restrict attention to linear functions of the 
explanatory variables ; unfortunately, these popular polynomial and spline 
based methods do not model the underlying reality. This is somehow re­
grettable when the biological or economical mechanism is well understood 
and could be transposed in the modelling process. This kind of approach, 
although desirable, was impossible until recently. But the wide availab­
ility of fast computers and the existence of powerful nonlinear optimizer 
no longer justify the nearly exclusive use of (generalized) linear models in 
many settings. Of course, these (locally) linear approximations to the real­
ity still remain the only alternative with large database, repetitive analyses 
and recursive models, but the data analyst should always wonder if a more 
realistic approach is feasible. 
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5.4 Non-normal models 

In the last section, the first step in the modelling process was mentioned to 
be the choice of a distribution for the data. A large part of the longitudinal 
data literature in continuous time restricts attention to normal models. A 
few exceptions to this rule include the exponential dispersion models and 
the GEE 'models'. The same arguments used to introduce generalized linear 
models, can justify the need for non-normal longitudinal models. This has 
been one of the main underlying themes of our work: Chapter 2 was devoted 
to the modelling of series of positive longitudinal data, for which skewed 
distributions are necessary alternatives to normality; Chapter 3 focused 
attention on series of overdispersed counts; finally, Chapter 4 proposed 
models for binary, binomial and multinomial longitudinal data. The analysis 
of the triglyceride data set in Section 2 .4 shows that the conclusions can be 
very sensitive to the choice of the distribution. Therefore, the consideration 
of wide families of distributions, such as the generalized gamma for positive 
data, to model the data generating mechanism, is an important step in 
any modelling strategy. The use of these 'highly ' parameterized densities, 
as recommended by Sprott (1982), can point out unexpected candidates, 
such as the Weibull (in our example) which is more traditionally used in a 
survival context. Again, fast computers and efficient nonlinear optimizers 
enable to fit atypical distributions outside the restrictive exponential family. 

5.5 Model selection 

Throughout this work, the Akaike information criterion (AIC) has been 
used to select models. Other authors, such as Jones (1993) and Lindsey 
(1995a and b), have used the AIC as a guideline in model selection. As 
explained in Lindsey (1994) , likelihood ratio tests based on the Chi-squared 
distribution, are not well adapted in this context, because they do not treat 
the models that we wish to compare symmetrically. There has been an 
important debate on this problem, from which the AIC of Akaike (1973) 
and the BIC of Schwarz (1978) arose. 

Another problem appears in the modelling of stochastic processes (see 
Lindsey, 1995a, pp. 17 4- 178) where (when using likelihood ratio tests based 
on the Chi-square) models with few parameters are systematically rejected 
in favour of very complex ones. This phenomenon seems to be particularly 
worrisome when the models compared differ by a large number of paramet­
ers. T his goes in the opposite direction to what any scientist would desire: 
a simple and easily interpretable model. 

Finally note that the AIC can be modified to yield models smoothing 
the data more. Collet (1991) suggests to add 3p instead of 2p in Equation 
(2.2), thereby penalizing complex models. This kind of generalization of the 
Akaike's criterion was originally proposed by Atkinson (1980) and Bhansali 
and Downham (1977). 
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5.6 Further research 

In this section, we propose to review some aspects that might be the sub­
ject of future research. As mentioned in Section 1.1, this work voluntarily 
ignores some important steps in the development of a longitudinal study. 
Problems related to the design of such experiments are very challenging 
and important in practice. The available methods to compute sample sizes 
in a longitudinal context assume that the response is normally distributed, 
which, with large data sets, often turns out to be an unrealistic hypothesis . 
As already mentioned , the formula proposed in Lindsey (1995b, pp. 88-91 ) 
in an independence context could be adapted in a non-normal longitudinal 
context if the likelihood is decomposed as the product of independent con­
tributions, as in Equation (1.1). Of course, this supposes that the model 
likely to be satisfactory, is already known. 

A refinement of the existing exploratory methods (Diggle et al. , 1994, 
Ch. 3) in a longitudinal context, would also be welcome to deal with non­
normal and irregularly spaced observations. The definition of appropriate 
residuals in the context of the above models is also important, although, 
again, the independence of the conditional contributions in Equation ( 1.1) 
allows the use of most of the existing methods. The convenience of deviance 
residuals in this setting was already pointed out at the end of Section 2.4. 
Schnatter (1994; see also Section 1.7.2) also suggests using the P-scores in 
a similar context. 

Another important problem concerns the choice of the initial conditions 
in conditional models containing random effects. The paper by Heckman 
( 1981) is certainly an interesting starting point. 

The modelling of missing data patterns in the models of the preced­
ing chapters, could also be investigated. Diggle and Kenward (1994) is a 
possible first reference. 

Finally, a few technical improvements could also be made to the models 
that we have presented. Even if efficient nonlinear optimizers are available, 
it would be interesting to develop efficient algorithms which are more ad­
apted to the problem at hand, thereby enabling the treatment of large data 
sets. 

Similarly to the gamma-Poisson, the beta-binomial model might be an 
interesting alternative to the GARM for binary and binomial data. But, 
as already mentioned in Section 1.1, important difficulties arise when cov­
ariates are present, particularly with the logit link. One could avoid these 
by using a log-log link with a log-gamma distribution for the residual part, 
although this idea was originally proposed to introduce a random intercept 
(Conaway, 1990) . But the nonsymmetric treatment of 'success' and 'failure' 
by the log-log link restricts the appeal of such a model. 

One could also inquire on possibly more appropriate forms for the ((.) 
function, which models the relation between time and serial association in 
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Chapter 3. The same type of question arises in the GARM, where functions 
of the type exp( -¢J6.t;j) were systematically used to model the decaying 
influence of past residuals on the response. Of course, one could wonder if, 
in practice, there is enough information in the data to discriminate between 
such (parametric) functions. 

It would also be interesting to consider wider families of distributions to 
model discrete data, in the same way as the generalized gamma in Chapter 
2 with positive continuous data. 





6 
Summary 

We shall begin from the general fact that most of the methods proposed in 
the literature to analyse non-normal longitudinal data make the assumption 
that the observations are equally-spaced in time. Very often, the authors 
of such papers mention that extension to continuous time is not a problem, 
although without explicitly explaining how to do so. However, such a gen­
eralization usually turns out to be theoretically difficult , if not impossible , 
the original model making a large use of the discrete structure of time. 

A second worrying limitation is the wide use of marginal models when 
irregularly sampled longitudinal data have to be analysed, few flexible con­
ditional model being available. This is not a problem in observational pop­
ulation studies, such as epidemiology, where marginal tools exist and are 
well adapted to answer the usual type of questions attached to such settings. 
However, when the data generating mechanism is the central question of the 
study, when the way that the observations evolve over time is of interest, 
such as in clinical trials or biological experiments, conditional models are 
desired (Sheiner et al. , 1989; Davidian and Giltinan, 1995, p. 122). 

For all these reasons, building conditional models for non-normal lon­
gitudinal data turns out to be both an interesting and challenging problem 
to be considered. An extra motivating problem was to concentrate on like­
lihood based approaches to enable different models to be compared, either 
directly through their likelihood functions, which indicate how probable 
they each make the observed data, or by more sophisticated model selec­
tion procedures, such as the AIC (Akaike, 1973), which penalizes for the 
complexity of the competing models. Note that this is not possible with 
most of the marginal models in the literature ( with a few remarkable excep­
tions such as in Molenberghs and Lesaffre, 1994), because they essentially 
rely on some kind of score equations, the generalized estimating equations 
(Liang and Zeger, 1986) , which, most often, cannot be integrated back to 
obtain a likelihood function (McCullagh and Nelder, 1989, 2nd Ed ., Section 
9.3.2) . 

After these few motivating remarks, we now describe the structure of 
our presentation. 
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Chapter 1: Introduction 

This chapter first presents a few practical situations, in different scientific 
areas, where longitudinal data arise. Some of these examples will be ana­
lysed in details in the subsequent chapters, as suitable theoretical tools are 
developed. The different steps, required to setup and to analyse data from 
a longitudinal study, are then presented. The points around which this 
work will be built up, are indicated and referenced. Arguments for using 
conditional likelihood based approaches instead of marginal methods are 
developed. The extra difficulties when analysing longitudinal data instead 
of the usual independent observations in cross-sectional studies, are also 
discussed. The different ways with which these extra features - namely 
heterogeneity and serial association - are handled in the literature, are the 
subject of the following sections. 

Normal autoregression models, which are equivalent in conditional and 
marginal settings, are then reviewed. The possible combinations of random 
effects - modelling heterogeneity - and of autoregression terms - mod­
elling serial association - and their consequences on the normal covariance 
matrix structure, are considered. The non-normal equivalent of autoregres­
sion models is also discussed. It is shown how, by suitably conditioning on 
past responses, we can compare autoregression models of different order. 

State-space models, where the likelihood function is derived using the 
Kalman filter, are then presented as an alternative in a normal setting 
(Jones and Ackerson, 1990; Jones, 1993) giving the dynamic linear model. 
The Kalman filter, which enables a dynamic derivation of the likelihood 
function in complex settings, is shown to have numerical advantages and to 
be very flexible, particularly when time is assumed to be continuous. 

Dynamic generalized linear models (West et al. , 1985) are then pro­
posed as a generalization of the last approach in a non-normal context, but 
in a discrete time setting. These are derived by assigning a conjugate prior 
distribution to the linear part ( or linear predictor) of the usual static gen­
eralized linear model. This prior distribution is then updated using Bayes 
theorem. The choice of the conjugate as a prior yields a closed analytic 
form for both the posterior and the likelihood, thereby avoiding the compu­
tation of numerical integrals, which would have to be repeatedly evaluated 
to estimate other integrals, as observations accumulate. 

Other approaches to modelling series of count data are also presented 
(Harvey and Fernandes, 1989; Ord et al., 1993), again in a discrete time 
setting. Here, the intercept, in the canonical regression, is given a conjugate 
prior distribution, which, again , is updated using Bayes theorem. This 
technique can be used with count, binomial and multinomial data. Note 
that approximations are required for the logistic models when explanatory 
variables are present. 

T hese dynamic generalized linear models can be further generalized to 
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deal with a vector of observations (Fahrmeir, 1992) , while still assuming 
time to be discrete. Here, the dynamic regression parameters are assumed 
to evolve according to transitions equations fixing their first two moments, 
and to be normally distributed. The use of the posterior mode instead 
of the traditional posterior mean to estimate these parameters, avoids the 
computation of numerical multidimensional integrals. 

Heterogeneity, which was accounted for in several of the above models, 
is then more systematically treated in the next section on random effects. It 
is introduced in conditional models by giving a distribution to the intercept 
in regression models. Random effects are further generalized to the other 
parameters in the regression, yielding the random coefficient model. 

Despite the fact that we have decided to concentrate on conditional mod­
els, we give a short review of marginal ones in longitudinal data analysis. 
The generalized estimating equations are presented, although no proper 
model usually corresponds to these 'score' equations. Marginal likelihood 
methods are also mentioned. 

Finally, a review of the literature on subjects related to the themes 
developed above, is proposed. 

Chapter 2: Positive longitudinal data modelling 

This second chapter is really the start of our contribution to the modelling 
of non-normal longitudinal data, although the discussion on conditional 
models in Ch. 1 already brought some new materia1 to the debate. As its 
title shows , Ch. 2 is dedicated to the modelling of series of positive data. 
This is a subject of particular importance in several sciences such as hu­
man and veterinary medicine, economics, etc. As pointed out in the first 
chapter, we focus our attention on the modelling of biomedical data. More 
particularly, we develop a model to analyse the measures of the triglyceride 
profiles for two sets of four Beagle dogs under four types of fiber based di­
ets. These data are typically positive and bounded below by zero, meaning 
that their distribution might be skewed. A second technical problem is that 
the responses were not measured at equally spaced times, meaning that 
a continuous time setting would be more appropriate than a discrete time 
model assuming that some data are missing at random. The generalized 
autoregression model (GARM) is then developed as a tool for modelling 
series of irregularly sampled observations. Serial association is modelled 
using two extra parameters compared to the traditional model assuming 
independence. Different ways to model heterogeneity are suggested, in­
cluding a non-parametric random effect that will be used to analyse the 
triglyceride data set. No particular hypothesis is made on the type of the 
distribution, meaning that the GARM could be used in other settings (see 
Ch. 4). The generalized gamma family of distributions , which includes 
well-known members such as the exponential, Weibull, gamma and log-
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normal as a limiting case, is proposed to analyse the positive longitudinal 
data. These different models are compared using the Akaike information 
criterion (AIC), which enables one to assess and compare the goodness of 
fit on non-nested models. The traditional normal and log-normal distribu­
tions, which are widely used in practice to analyse this kind of data, are 
shown to be completely unadapted , the Weibull being our final choice. 

Chapter 3: Longitudinal count data in continuous time 

This chapter is devoted to the modelling of discrete longitudinal data ob­
served at irregularly spaced time points. The initial idea was to generalize 
the dynamic generalized linear models of West et al. (1985) and Harvey 
and Fernandes (1989) to model count data in continuous time. Basically, 
the intercept in a log-linear model, is given a gamma prior (conjugate) dis­
tribution. This prior is used to predict the state of the process at the next 
observation time, simply by considering a gamma predictive distribution 
with the same mode as the original prior, but with a smaller Fisher inform­
ation at this point. As soon a one observation is available, the distribution of 
the intercept, which is a kind of residual in a model assuming independence, 
is updated using Bayes theorem. The resulting (unconditional) likelihood 
is then the product over observation times of negative binomial densities. 

This technique, based on the Kalman filter, can be modified to reduce its 
sensitivity to extreme observations and to include the Poisson distribution 
as a special case. This last improvement is desirable in practice, because 
the Harvey and Fernandes (1989) model was found , in some examples, to 
have a larger AIC than the negative binomial model, which only accounts 
for heterogeneity. 

Two examples are then presented and analysed using the above new 
technique. The first one studies the respiratory rate profile of calves sub­
mitted to a thirty minutes injection of a receptor blocker, which simulates 
acute respiratory distress syndrome in healthy animals. The data, collected 
before, during and after the drug injection, were irregularly sampled. 

The second example studies the evolution of three colonies of Parame­
cium aurelium in identical nutritive media over a twenty day period. The 
goal is to build a profile equation giving the mean number of individuals in 
each colony at any time point. One interesting feature of the data set, is the 
apparent stabilization of the colony size after day 10. Thus polynomial or 
the related spline based methods cannot take this behaviour into account. 
Biological models would be more appropriate than any artificial mathem­
atical construct in this situation. Therefore, a generalization of the logistic 
growth curve {Nelder, 1961 and 1962), further developed by Heitjan (1991a 
and b) , is proposed to model the profile. 
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Chapter 4: Other applications of th e GARM 

This chapter considers the generalized autoregression model in another con­
text than in Chapter 2. There, no particular assumption was made on the 
form of the density function involved in the GARM definition. 

Hence nothing prevents us from using the GARM to model series of bin­
ary, binomial and multinomial data. This idea is first used to analyse series 
of binary data on the acceptance for oviposition by Rhagoletis pomonella 
adult female flies (Stanek and Diehl , 1988) on two types of support. Our 
goal is simply to model the response profiles by allowing the response of a 
fly on given day to depend on its past history, in addition to the fly origin 
and the type of fruit support. 

The second example consists of a series of multinomial data giving the 
number of Pinus, Abies, Quercus and Alnus pollen grains in samples of 
size 100 (Mosimann, 1962). These samples coming from a single core were 
extracted from the soil at increasing depths that we assume to be equi­
spaced. Thus, space is now used instead of time as a qualitative tool for 
ordering the observations and for defining a measure of serial association. 

The next theoretical point is to rewrite the GARM as a GLM, when 
the covariates enter linearly in the systematic part. Under this assump­
tion, the regression parameters in the GARM are computable using GLM 
software such as GLIM or S-PLUS. The other two or three autoregression 
parameters have to be estimated either by using a non-linear optimizer, or 
by considering the likelihood at a grid of sensible values. 

Finally, the last section is devoted to the application of prediction meth­
ods to series of non-normal data. From the particular case of overdispersed 
count data, it is shown how the GARM can be used jointly with an approx­
imate predictive likeljhood (Butler, 1986), to build prediction envelopes. 
This approximate predictive likelihood, where the observation to come now 
plays the role of a parameter in the likelihood function, is used instead 
of the better known profile predictive likelihood (Fisher, 1959, pp. 128-
133) , because it does not assume that the (regression) parameters are fixed 
quantities equal to their MLEs as traditionally. Hence the imprecision due 
to the parameter estimates is directly taken into account when predictions 
are drawn from the estimated model. 

An example is then considered , where the missing data from an artifi­
cially truncated series of the Paramecium aurelium data set of Ch. 3 are 
predicted by using the information present in the observations remaining in 
the three series. The resulting prediction envelopes are shown, as expected, 
to be wider than the predictive likelihood ones. 

Finally, a short concluding chapter discusses the advantages of the mod­
els presented in the preceding pages. 





7 
Sam en vatting 

Ons uitgangspunt is dat de meeste methoden voor de analyse van niet­
normale longitudinale data de onderstelling maken dat de observaties op 
equidistante tijdstippen gebeuren. De auteurs van deze artikels stippen 
meestal aan dat de uitbreiding naar continue tijd geen probleem vormt. Er 
wordt echter nooit expliciet aangegeven hoe dit moet gebeuren. Nochtans is 
het doorgaans zo dat het oorspronkelijk model uitvoerig gebruik maakt van 
de discrete tijdsstructuur, hetgeen de uitbreiding theoretisch zeer moeilijk , 
zoniet onmogelijk maakt. 

Een tweede zorgwekkende beperking is het algemeen gebruik van margi­
nale modellen bij onregelmatig gespatieerde longitudinale data daar weinig 
flexibele conditionele modellen beschikbaar zijn. Dit is geen probleem in 
observationele populatie studies, zoals in epidemiologie , waar marginale 
modellen bestaan en goed geschikt zijn om de typische vragen in voornoemde 
context te beantwoorden. Echter, indien het data genererend mechanisme 
de centrale vraag is in de studie, indien het tijdsverloop van de gegevens 
belangrijk is, zoals in klinische studies of biologische experimenten, dan zijn 
conditionele modellen gewenst (Sheiner et al., 1989; Davidian en Giltinan , 
1995, p. 122). 

Om al deze redenen is het ontwerpen van conditionele modellen voor 
niet-normale longitudinale data een interessante uitdaging. Een extra moti­
verend probleem was ons te concentreren op likelihood-gebaseerde bena­
deringen om toe te laten verschillende modellen te vergelijken. Dit gebeurt, 
ofwel direct via de likelihoodfuncties welke aangeven hoe waarschijnlijk zij 
de geobserveerde data maken, ofwel door meer gesofisticeerde model se­
lectie zoals het AIC (Akaike, 1973} die de complexiteit van de modellen 
penaliseert. We merken op dat dit niet mogelijk is voor de meeste mar­
ginale modellen in de literatuur (met enkele merkwaardige uitzonderingen 
zoals in Molenberghs en Lesaffre, 1994). Dit komt omdat zij in hoofdzaak 
steunen op een soort van score vergelijkingen, de veralgemeende schattings­
vergelijkingen (Liang en Zeger, 1986) , die doorgaans niet terug kunnen 
ge"integreerd worden om de likelihoodfunctie te verkrijgen (McCullagh en 
Nelder, 1989, 2nd Ed., Sectie 9.3.2) . 

Na deze motiverende opmerkingen beschrijven we nu de structuur van 
ons werk. 
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Hoofdstuk 1: Inleiding 

In dit hoofdstuk worden enkele praktische situaties uit verschillende weten­
schappelijke gebieden voorgesteld, waarin longitudinale data opduiken. Som­
mige van deze voorbeelden zullen in de hiernavolgende hoofdstukken in 
detail geanalyseerd worden, eens de geschikte theoretische instrumenten 
ontwikkeld zijn. Daarna geven we de verschillende stappen in het opzet 
en de analyse van een longitudinale studie aan. De themata in de opbouw 
van dit werk worden aangebracht en van referenties voorzien. Ook geven 
we argumentatie voor de ontwikkeling van conditionele likelihood modellen 
versus marginale modellen. De bijkomende moeilijkheden bij de analyse 
van longitudinale data i.p.v. onafhankelijke data in cross-sectionele studies, 
worden besproken. De verschillende wijzen waarmee deze extra kenmerken 
(namelijk heterogeniteit en seriele associatie) aangepakt worden in de lite­
ratuur vormt het onderwerp van de volgende secties. 

Vervolgens geven we een overzicht van normale autoregressie modellen. 
Hier zijn marginale en conditionele aanpak equivalent. We beschouwen de 
mogelijke combinaties van random effecten ( die de heterogeniteit model­
leren) en van autoregressie termen (die de seriele associatie modelleren) en 
hun gevolgen op de normale covariantiematrix structuur. Het niet-normale 
equivalent van autoregressie modellen wordt ook besproken. Er wordt aan­
getoond hoe, door gepast conditioneren op respons uit het verleden, het mo­
gelijk wordt autoregressie modellen van verschillende orden te vergelijken. 
Toestandsruimte modellen waarbij de likelihoodfunctie afgeleid wordt door 
gebruik te maken van de Kalman filter , worden voorgesteld als een alter­
natief in een normaLe set up (Jones en Ackerson, 1990; Jones , 1993) , het­
geen leidt tot het dynamisch lineair model. Van de Kalman filter , die een 
dynamische afleiding van de likelihoodfunctie in complexe set up toelaat , 
wordt aangetoond dat hij numerische voordelen biedt en bijzonder flexibel 
is, in het bijzonder bij continue tijd. 

Dynamische veralgemeende lineaire modellen (West et al., 1985) worden 
voorgesteld als een veralgemening naar een niet-normale context, maar in 
een discrete tijdssituatie. Deze worden afgeleid door een toegevoegde a pri­
ori verdeling toe te kennen aan het lineair deel ( of lineaire predictor) van het 
gebruikelijk statische veralgemeend lineair model. Deze a priori verdeling 
wordt dan geactualiseerd met de stelling van Bayes. De keuze van de toege­
voegde als a priori verdeling leidt tot een gesloten analytische vorm voor 
zowel de a posteriori verdeling als van de likelihood. Aldus vermijden we 
het herhaaldelijk berekenen van numerische integralen wanneer het aantal 
observaties toeneemt. 

Andere benaderingen voor het modelleren van reeksen van aantallen 
worden ook gegeven (Harvey en Fernandes, 1989; Ord et al. , 1993), opnieuw 
in discrete tijd . Hier wordt het intercept in het regressiemodel voorzien 
van een toegevoegde a priori verdeling die dan geactualiseerd wordt met de 
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stelling van Bayes. Deze techniek kan gebruikt worden voor aantallen, bino­
miale of multinomiale gegevens. Merk op <lat benaderingen vereist zijn voor 
de logistische modellen indien verklarende variabelen aanwezig zijn. Deze 
dynamische veralgemeende lineaire modellen kunnen verder veralgemeend 
worden naar vectoren van observaties (Fahrmeir, 1992) in discrete tijd. Hier 
wordt ondersteld dat de dynamische regressieparameters evolueren volgens 
de transitievergelijkingen die hun eerste twee momenten vastleggen en daar­
bij normaal verdeeld zijn. Het gebruik van de a posteriori modus in plaats 
van het traditionele a posteriori gemiddelde bij het schatten van parameters, 
vermijdt het berekenen van numerische multidimensionale integralen. 

Heterogeniteit, waarmee rekening gehouden werd in verschillende van 
hoger genoemde modellen , wordt dan meer systematisch besproken in de 
volgende sectie over random effecten. Het begrip wordt ingevoerd in con­
ditionele modellen door een verdeling toe te kennen aan het intercept in 
regressiemodellen. Random effecten worden verder veralgemeend naar de 
andere parameters in de regressie, hetgeen leidt tot het random coefficient 
model. Niettegenstaande we besloten hebben ons te concentreren op de 
conditionele modellen, geven we toch een kort overzicht van marginale rno­
dellen in de analyse van longitudinale data. De veralgemeende schattings­
vergelijkingen worden gegeven, alhoewel meestal geen echt model corres­
pondeert met deze 'score' vergelijkingen. We vermelden ook marginale like­
lihood methoden. Tenslotte geven we een overzicht van de literatuur rond 
de hogervermelde onderwerpen. 

Hoofdstuk 2: Modelleren van positieve longitudinale data 

In dit tweede hoofdstuk wordt een aanvang genomen met ooze eigen bijdrage 
tot het modelleren van niet-normale longitudinale data. Het client echter 
gezegd dat de discussie in Hoofdstuk 1 over conditionele modellen reeds 
enig nieuw materiaal aanbracht in de discussie. Zoals de titel aangeeft is 
Hoofdstuk 2 gewijd aan het rnodelleren van reeksen van positieve gegevens. 
Dit onderwerp is van bijzonder belang in verschillende wetenschappelijke 
domeinen zoals menselijke en dierlijke geneeskunde, economie, enz. Zoals 
aangegeven in het eerste hoofdstuk zal ooze aandacht vooral gaan naar het 
modelleren van biomedische data. Meer in het bijzonder ontwikkelen we een 
model voor het analyseren van maten van de triglyceride profielen voor twee 
groepen van vier Beagle honden onder vier types van vezelrijk dieet. De 
data zijn typisch positief en naar onder begrensd door nu! , hetgeen maakt 
dat de verdeling scheef kan zijn. 

Een tweede technisch probleem is dat de respons gemeten werd op niet 
equidistante tijdstippen, hetgeen betekent dat een continue tijd opzet meer 
geschikt zal zijn dan een discrete tijd model waarbij sommige data worden 
verondersteld op willekeurige wijze te ontbreken (missing at random). Het 
gegeneraliseerd autoregressie model (GARM) wordt dan ontwikkeld als een 
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instrument om reeksen te modelleren die op onregelmatige tijdstippen ge­
meten werden. Seriele associatie wordt gemodelleerd met twee extra para­
meters in vergelijking met het traditionele model dat onafuankelijkheid 
onderstelt. Er worden verschillende manieren gesuggereerd om heteroge­
niteit te modelleren, zoals onder andere een niet-parametrisch random ef­
fect model <lat zal gebruikt worden om de triglyceride data te analyseren. 
Geen speciale onderstelling wordt gemaakt over het type verdeling, het­
geen betekent dat het GARM kan gebruikt worden in andere situaties (zie 
Hoofdstuk 4). 

De familie van veralgemeende gamma verdelingen die de exponentiele, 
de Weibull, de gamma en de lognormale als limietgevallen heeft, wordt 
voorgesteld om positieve longitudinale data te analyseren. Deze verschil­
lende modellen worden vergeleken met het Akaike informatie criterium 
(AIC) hetgeen toelaat de aanpassing te berekenen en te vergelijken in niet­
geneste modellen. De traditionele normale en lognormale verdelingen, die 
in de praktijk zeer veel gebruikt worden om dit soort data te analyseren , 
blijken hier totaal ongeschikt te zijn. Onze finale keuze is de Weibull ver­
deling. 

Hoofdstuk 3: Longitudinale aantallen in continue tijd 

Dit hoofdstuk is gewijd aan het modelleren van discrete longitudinale gege­
vens op onregelmatig gespatieerde tijdspunten. De oorspronkelijke idee was 
dan de dynamische veralgemeende lineaire modellen van West et al. (1985) 
en Harvey en Fernandes (1989) te veralgemenen voor aantallen in continue 
tijd. In essentie wordt aan het intercept in het log-lineair model een gamma 
a priori (toegevoegde) verdeling toegekend. Deze a priori verdeling wordt 
gebruikt om de toestand van het proces te beschrijven bij de volgende obser­
vatietijd door eenvoudigweg een gamma predictieve verdeling te beschouwen 
met dezelfde modus als de oorspronkelijke a priori verdeling, maar met een 
kleiner Fisher informatie in dit punt. 

Van zodra een observatie beschikbaar is kan de verdeling van het inter­
cept (dat een soort residu is in een model met onafuankelijkheid) geactuali­
seerd worden met de stelling van Bayes. De resulterende (niet-conditionele) 
likelihood is dan het produkt van de negatief binomiale dichtheden over de 
observatietijden. Deze techniek, gebaseerd op de Kalman filter , kan aange­
past worden om de gevoeligheid voor extreme observaties te reduceren en 
om de Poisson verdeling meer op te nemen als bijzonder geval. Deze laatste 
verbetering is zeer gewenst in de praktijk, aangezien gebleken is dat het 
Harvey en Fernandes (1989) model in sommige voorbeelden een hoger AIC 
heeft clan het negatief binomiaal model, dat enkel heterogeniteit in reke­
ning brengt. Vervolgens worden twee voorbeelden gegeven en geanalyseerd 
met deze nieuwe techniek. Het eerste bestudeert het ademhalingstempo 
profiel van kalveren die onderworpen werden aan een dertig minuten in-
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jectie van een receptor blocker die een acuut ademhalingsnood syndroom 
simuleert bij gezonde dieren. De data voor, tijdens en na de injectie met 
het geneesmiddel, werden verzameld op onregelmatig gespatieerde tijdstip­
pen. In het tweede voorbeeld bestuderen we de evolutie van drie kolonies 
van Paramecium aurelium in hetzelfde voedingsmidden over een periode 
van twintig dagen. De bedoeling is een profielvergelijking te construeren 
die het gemiddeld aantal individuen geeft op elk tijdstip. Een interess­
ant kenmerk van deze data is de uitgesproken stabilisatie van de grootte 
van de kolonie na de tiende dag. Vandaar dat de methodes gebaseerd op 
veeltermen of splines niet in staat zijn met dit gedrag rekening te houden. 
Biologische modellen zouden meer geschikt zijn in deze situatie dan om 
het even welk wiskundig artefact. Vandaar dat een veralgemening van de 
Iogistische groeikromme (Nelder, 1961 en 1962) , verder ontwikkeld door 
Heitjan (1991a en b) , voorgesteld wordt om het profiel te modelleren. 

Hoofdstuk 4: Andere toepassingen van het GARM 

In dit hoofdstuk wordt het gegeneraliseerd autoregressie model beschouwd 
in een andere context dan in Hoofdstuk 2. Daar werd geen speciale onder­
stelling gemaakt over de vorm van de dichtheidsfunctie in de GARM defi­
nitie. Bijgevolg is er niets dat ons belet om het GARM te gebruiken voor het 
modelleren van reeksen van binaire, binomiale en multinomiale data. Dat 
idee wordt eerst gebruikt om reeksen van binaire data te analyseren over de 
geschiktheid tot eileggen bij de volwassen Rhagoletis pomonella vrouwelijke 
vliegen (Stanek en Diehl, 1988) op twee soorten substraat . Onze bedoeling 
is eenvoudig het modelleren van de respons profielen door toe te laten dat 
de respons van een vlieg op een gegeven dag afhangt van het verleden , het 
soort vlieg en het soort substraat. 

Het tweede voorbeeld bestaat uit een reeks multinomiale data over het 
aantal Pinus, Abies, Quercus en Alnus pollen in steekproeven van grootte 
100 (Mosimann, 1962) . Deze steekproeven werden genomen op dezelfde 
kern en op verschillende diepten in de bodem . Deze bodemdiepten worden 
equidistant ondersteld. Op die manier wordt ruimte gebruikt in plaats van 
tijd als een kwalitatief instrument om de observaties te ordenen en een 
maat voor seriele associatie te definieren. Het volgende theoretisch punt 
is het GARM te herschrijven als een GLM waarbij de covariabelen line­
air voorkomen in het systematisch gedeelte. Bij deze onderstelling zijn 
de regressieparameters in het GARM te berekenen met GLM software 
zoals GLIM of S-PLUS. De andere twee of drie regressieparameters moeten 
geschat worden ofwel via niet-lineaire optimizatie of door de likelihood te 
beschouwen in een rooster van zinvolle waarden . 

Tenslotte wordt de laatste sectie gewijd aan het toepassen van voor­
spellingsmethoden op reeksen van niet-normale data. Vanuit het bijzonder 
geval van aantallen met overdispersie wordt aangetoond hoe het GARM kan 
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gebruikt worden samen met een benaderde predictieve likelihood (Butler , 
1986) . Deze benaderde predictieve likelihood , waarbij de toekomstige obser­
vatie nu de rol speelt van parameter in de likelihoodfunctie, wordt gebruikt 
in plaats van de beter bekende profiel predictieve likelihood (Fisher, 1959, 
p. 128-133). Dit gebeurt omdat er niet ondersteld wordt dat de (regressie) 
parameters vaste grootheden zijn die gelijk zijn aan hun maximum like­
lihood schattingen. Bijgevolg wordt rechtstreeks rekening gehouden met 
de onnauwkeurigheid te wijten aan parameterschatting door predicties te 
maken vanuit het geschatte model. 

Er wordt een voorbeeld gegeven , waarin de ontbrekende gegevens in een 
kunstmatig afgebroken reeks van de Paramecium aurelium data in Hoofd­
stuk 3 voorspeld worden door gebruik te maken van de overblijvende in­
formatie in de drie reeksen. De resulterende predictie omhullende blijken , 
zoals verwacht, breder te zijn clan deze verkregen met predictieve likelihood. 

Tenslotte bespreken we in een kort hoofdstuk de voordelen van de hier­
boven voorgestelde modellen. 



8 
Resume 

Modeles pour donnees longitudinales non-normales en temps con­
tinu, bases sur la fonction de vraisemblance 

Ce travail tire son origine du constat que la plupart des methodes 
d 'analyse de donnees longitudinales non-normales font l 'hypothese que les 
donnees ont ete observees en des temps equidistants. Les auteurs de tels 
articles mentionnent frequemment qu'une extension en temps continu ne 
pose pas de problemes, mais ils ne detaillent pratiquement jamais une telle 
demarche. Pourtant, de telles generalisations s'averent habituellement dif­
ficiles, et meme souvent impossibles d'un point de vue theorique car le 
modele de depart fait un large usage de la structure discrete du temps. 

Un deuxieme constat preoccupant en analyse longitudinale en temps 
continu, est le monopole des modeles marginaux, peu de modeles condi­
tionnels etant disponibles dans ce contexte. Ce n'est pas un probleme clans 
des etudes observationnelles, telles que l'epidemiologie, pour lesquelles les 
methodes marginales existent et sont bien adaptees pour repondre aux ques­
tions surgissant dans de tels contextes. Cependant, lorsque le mecanisme 
generant les donnees est la preoccupation majeure de l'etude, quand la 
fa~on dont les donnees evoluent au cours du temps est au centre des ques­
tions, comme dans les essais cliniques et autres experiences biologiques, 
des modeles conditionnels sont requis (Sheiner et al. , 1989; Davidian et 
Giltinan, 1995, p . 122). 

Pour toutes ces raisons, le developpement de modeles conditionnels pour 
des donnees longitudinales non-normales en temps continu s'est avere etre 
un defi interessant . 

Une autre source de motivation etait de se limiter a des methodes basees 
sur la fonction de vraisernblance, cette derniere permettant de comparer Jes 
merites de modeles de nature differente. Ces comparaisons peuvent se faire, 
soit directement en calculant la probabilite d 'observer les donnees etudiees 
sous les hypotheses considerees, soit en utilisant l 'AIC (Akaike, 1973) qui 
penalise les modeles complexes. Cette fa~on de proceder est impossible 
avec la plupart des modeles marginaux ( avec quelques exceptions notables 
telles que Molenberghs et Lesaffre, 1994), parce qu 'iJs sont essentiellement 
bases sur les equations generalisees d'estimation (Liang et Zeger, 1986) qui, 
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clans la majorite des cas, ne peuvent pas etre reintegrees pour obtenir la 
fonction de vraisemblance (McCullagh et Nelder, 1989, 2nd Ed. , section 
9.3.2). 

Apres ces quelques remarques motivantes, nous decrivons la structure 
de notre travail. 

Chapitre 1: Introduction 

Dans un premier temps, nous presentons quelques situations concretes 
ou les donnees longitudinales surviennent. Quelques exemples du meme 
type seront analyses en detail afin d'illustrer Jes propos theoriques des 
chapitres suivants. Les differentes etapes requises pour collecter et analyser 
des donnees longitudinales sont alors decrites. Les themes autour desquels 
ce travail est construit , sont enonces avec les renvois correspondants clans le 
texte. Nous exposons aussi des arguments militant en faveur de !'usage de 
modeles conditionnels (par opposition aux modeles marginaux) ayant une 
fonction de vraisemblance sous-jacente. Les difficultes supplementaires sur­
venant clans un contexte longitudinal (l'hypothese d'independance usuelle 
des etudes transversales etant la plupart du temps irrealiste) sont egalement 
discutees. Les differentes methodes utilisees dans la litterature pour mode­
liser ces nouvelles caracteristiques , nommement l'heterogeneite et la depen­
dance serielle, sont le sujet des sections suivantes. 

Les modeles autoregressifs normaux, qui sont equivalents dans un con­
texte conditionnel et marginal, sont alors presentes. Par la suite , nous 
enumerons les differentes fa(_;ons de combiner les effets aleatoires, modelisant 
l'heterogeneite, avec les termes autoregressifs, modelisant la dependance 
serielle. Nous considerons !'equivalent de ces modeles autoregressifs clans 
un contexte non-normal. Nous montrons comment ii est possible, par un 
conditionnement adequat, de comparer des modeles d'ordres differents. 

Un modele base sur le filtre de Kalman (Jones et Ackerson, 1990; Jones, 
1993), le modele lineaire dynamique, est alors mis en avant comme une 
alternative clans un contexte normal. Nous montrons alors la flexibilite et 
Jes avantages numeriques du filtre de Kalman, qui permet de calculer la 
fonction de vraisemblance de maniere iterative (dynamiquement) dans des 
situations compliquees, meme lorsque le temps est suppose continu. 

Le modele lineaire generalise dynamique (West et al., 1985) elargit le do­
maine d'application de cette derniere approche a des donnees non-normales 
observees en des temps equidistants. Celui-ci est construit en donnant une 
distribution conjuguee a la partie lineaire du desormais bien connu modele 
lineaire generalise (statique) . Cette distribution conjuguee est alors re­
mise a jour en utilisant le theoreme de Bayes. Le choix de la distribution 
conjuguee comme distribution a priori, resulte en des formes analytiques 
explicites pour la distribution posterieure et la vraisemblance. Ceci p ermet 
d 'eviter !'evaluation numerique d'integrales, qui, au fur et a mesure que Jes 
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observations s'accumulent, devraient etre calculees de fa<;;on repetee pour 
estimer d'autres integrales. 

D'autres approches permettant de modeliser des series de comptages 
sont aussi presentees (Harvey et Fernandes, 1989; Ord et al. , 1993), de 
nouveau en temps discret. On y donne une distribution a priori conjuguee 
au terme independant de la regression canonique, qui est mise a jour a 
!'aide du theoreme de Bayes. Cette technique peut etre utilisee avec des 
donnees de comptage, binomiales et multinomiales. Remarquons que des 
approximations soot requises avec des modeles logistiques comportant des 
variables explicatives. 

Ces modeles Iineaires generalises dynamiques peuvent etre etendus pour 
modeliser des vecteurs d 'observations (Fahrmeir, 1992), tout en continuant 
de supposer que le temps est discret. Les parametres de regression dy­
namiques, en plus d 'avoir une distribution normale, soot supposes evoluer 
conformement a des equations de transition fixant leurs deux premiers mo­
ments. L 'usage du mode a posteriori plut6t que de la moyenne a posteriori, 
evite de devoir calculer numeriquement des integrales multidimensionnelles. 

L'heterogeneite, dont nous avons tenu compte clans certains modeles 
parmi Jes precedents, est traitee de fa<;;on systematique clans la section rela­
tive aux effets aleatoires. Cette notion est introduite clans les modeles con­
ditionnels en donnant une distribution au terme independant des modeles 
de regression. L 'usage de cette technique peut etre etendu aux autres 
parametres de la regression, donnant un modele a coefficients aleatoires. 

Bien que nous ayons decide de concentrer nos efforts sur le developpement 
de modeles conditionnels, nous proposons de revoir brievement quelques 
modeles marginaux fondamentaux en analyse longitudinale. Les equations 
d'estimation generalisees sont presentees, bien qu'elles ne puissent etre 
derivees d'aucune fonction de vraisemblance. 

Enfin, nous proposons un survol de la litterature relative aux themes 
mentionnes precedemment. 

Chapitre 2: Modelisation de donnees longitudinales positives 

Ce deuxieme chapitre marque reellement le debut de notre contribution 
a la modelisation de donnees longitudinales non-normales, bien que la dis­
cussion des modeles conditionnels clans le premier chapitre ait deja apporte 
quelque chose de nouveau au debat. Comme son titre l 'indique, le deuxieme 
chapitre est consacre a la modelisation de donnees positives. Ce sujet est 
particulierement important clans des domaines tels que la medecine humaine 
et veterinaire , l'economie, etc. Ainsi que nous l 'avons mentionne clans le 
premier chapitre , nous nous consacrons essentiellement a la modelisation de 
donnees biomedicales. Plus particulierement, nous developpons un modele 
permettant d'analyser Jes profits de triglycerides de deux groupes de quatre 
chiens de race Beagle nourris a !'aide d'un regime choisi parmi quatre ali-
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mentations a base de fibres. Ces donnees sont typiquement positives et 
bornees a gauche par zero, ce qui pourrait donner lieu a une distribu­
tion asymetrique. Un deuxieme probleme technique survient parce que les 
donnees n 'ont pas ete observees en des temps equidistants. Un modele en 
temps continu serait plus approprie qu'un modele en temps discret sup­
posant que certaines donnees sont aleatoirement manquantes. Pour cette 
raison, nous avons developpe le modele autoregressif generalise (MAG), 
qui permet de modeliser des series de donnees echantillonnees de far;on 
irreguliere. La dependance serielle est modelisee avec deux parametres ad­
ditionnels par rapport au modele d'independance. Nous suggerons plusieurs 
methodes pour rendre compte de l 'heterogenei te. En particulier, nous 
considerons un effet aleatoire non-parametrique pour analyser les donnees 
relatives aux chiens. Aucune hypothese particuliere n'a ete emise quant a 
la distribution des donnees. Des lors, rien ne s 'oppose a }'utilisation du 
MAG clans d 'autres contextes (voir chapitre 4). La famille de distributions 
gamma generalisees, qui inclut comme membres connus, les distributions 
exponentielle, Weibull, gamma et log-normale a la limite, est proposee pour 
analyser des donnees positives longitudinales. Ces differents modeles sont 
compares en utilisant le critere d'information de Akaike (AIC), qui permet 
d'evaluer et de comparer l'ajustement de modeles non-imbriques. Nous 
montrons que, clans notre exemple, Jes traditionnels modeles normal et 
log-normal, communement utilises pour analyser ce genre de donnees, sont 
completement inadaptes, la Weibull etant notre choix final. 

Chapitre 3: Modelisation de comptages longitudinaux en temps 
continu 

Nous consacrons ce chapitre a la modelisationde donnees longitudinales 
discretes observees en des temps irregulierement espaces. L'idee de depart 
etait de generaliser le modele lineaire generalise dynamique de West et 
al. (1985) et de Harvey et Fernandes (1989) pour modeliser des series 
de comptage en temps continu. Fondamentalement , on donne au terme 
independant du modele log-lineaire, une distribution a priori gamma ( con­
juguee). Cette derniere est utilisee pour predire l'etat du processus au temps 
d'observation suivant, en considerant une distribution gamma (predictive) 
avec le m eme mode que la distribution a priori en ce point, mais avec une 
information de Fisher plus petite. Des qu'une observation est disponible, 
la distribution a priori du terme independant, qui est en quelque sorte un 
residu clans un modele faisant I 'hypo these d 'independance' est mise a jour a 
!'aide du theoreme de Bayes. La vraisemblance (inconditionnelle) resultante 
est alors le produit de densites binomiales negatives, toute nouvelle obser­
vation amenant un facteur supplementaire clans ce produit. 

Cette technique, basee sur le filtre de Kalman, peut etre modifiee a.fin de 
reduire la sensibilite du processus aux observations extremes et d'assurer 
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que la distribution de Poisson en soit un cas particulier. Cette derniere 
amelioration est particulierement desirable en pratique, car le modele de 
Harvey et Fernandes (1989) presente, clans quelques exemples, un plus 
grand AIC que le modele binomial negatif, qui tient seulement compte 
de l'heterogeneite. 

Nous donnons ensuite deux exemples que nous nous proposons d'analy­
ser a l'aide de cette technique. Le premier etudie l 'effet d' une perfusion de 
trente minutes de 5-hydroxytryptamine sur le profil respiratoire de veaux. 
Cette substance est utilisee pour simuler des syndromes de detresse respir­
atoire chez des bovins sains. Les donnees ont ete collectees avant, pendant , 
et apres la perfusion, et ce, de fac:;on irreguliere clans le temps. 

Dans le deuxieme exemple, nous etudions, sur une periode de vingt 
jours, !'evolution de trois colonies de Paramecium aurelium observees clans 
des milieux nutritivement equivalents. Notre but est de construire un 
modele estimant le nombre moyen d'individus presents a chaque instant 
clans chacune des colonies. II est interessant de remarquer que la taille 
des colonies semble se stabiliser apres environ dix jours. II est evident que 
toute methode basee sur des polynomes ou des splines ne peut pas rendre 
compte de ce comportement. Dans ce genre de situation, un modele biolo­
gique serait plus approprie qu'un quelconque artifice mathematique. Pour 
cette raison , nous proposons d'utiliser une generalisation de la courbe de 
croissance logistique (Nelder, 1961 et 1962), que Heitjan (1991aet b) a plus 
amplement developpee, pour modeliser ce genre de profil. 

Chapitre 4: Autres applications du MAG 

Ce chapitre considere le modele autoregressif generalise clans un autre 
contexte que clans le deuxieme chapitre. Aucune hypothese sur la forme de 
la densite n 'a ete faite !ors de la definition du MAG. 

Par consequent, rien ne nous empeche d'utiliser le MAG pour modeliser 
des series de donnees binaires, binomiales ou multinomiales. Dans un 
premier temps, nous exploitons cette idee pour analyser des series de don­
nees binaires (Stanek et Diehl, 1988) decrivant !'aptitude de mouches femel­
les Rhagoletis pomonella a pondre ieurs oeufs sur deux types de support. 
Notre but est simplement de modeliser le profil de la reponse, en tenant 
compte que le comportement d'une mouche un jour donne peut non seule­
ment etre explique par l 'origine de l'insecte et le type du support (fruitier) 
propose, mais aussi parses comportements anterieurs. 

Le second exemple, une serie de donnees multinomiales, donne le nombre 
de grains de pollen de type Pinus, Abies, Quercus et Alnus clans des echantil­
lons de cent unites (Mosimann , 1962). Ces echantillons proviennent de 
carottes prelevees clans le sol a des profondeurs croissantes que nous sup-­
posons regulierement espacees. Par consequent, nous utilisons maintenant 
l'espace au lieu du temps comme outil qualitatif permettant de classer les 
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observations et de definir une mesure de dependance serielle. 
L'objectif theorique suivant est de reecrire le MAG sous forme d'un 

modele lineaire generalise, lorsque les variables explicatives apparaissent 
lineairement clans la partie systematique du modele. Sous cette hypothese , 
ii est possible d'estimer les parametres de regression du MAG en utili­
sant des logiciels tels que GLIM ou S-PLUS. Les deux ou trois parametres 
restants, relatifs a l'autoregression, doivent, quant a eux, etre estimes a 
!'aide d'une routine d 'optimisation non-lineaire, ou en evaluant la fonction 
de vraisemblance sur une grille de valeurs raisonnables pour ces parametres. 

Enfin, nous consacrons la derniere partie de ce travail a une methode 
de prediction clans un contexte non-normal. A partir du cas particulier de 
series de comptages surdisperses, nous montrons comment le MAG peut 
etre utilise conjointement avec une vraisemblance predictive approxima­
tive (Butler, 1986) pour construire des 'enveloppes de confiance ' . Cette 
vraisemblance predictive approximative, clans laquelle !'observation a venir 
joue le role d'un parametre, est utilisee au lieu de la classique vraisem­
blance predictive (Fisher, 1959, p . 128-133}, parce que cette derniere sup­
pose que les parametres (de regression) sont des quantites fixes egales a 
leur maximum de vraisemblance. L'imprecision presente clans l'estimation 
des parametres est directement prise en compte lorsque des predictions sont 
derivees du modele estime. 

Nous considerons alors un exemple ou les donnees manquantes prove­
nant de la troncature d'une des trois series relatives aux colonies de Parame­
cium aurelium presentees clans le troisieme chapitre , sont predites a partir 
des observations restant clans Jes trois series. Nous montrons que les en­
veloppes de prediction resultantes sont, sans surprise, plus larges que celles 
obtenues avec la vraisemblance predictive traditionnelle. 

Pour conclure, nous presentons un court chapitre discutant des avanta­
ges des modeles presentes precedemment. 
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