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Introduction 

A workflow is a high-level description of a complex and possibly long-during 
process, consisting of different tasks, that must be performed in a specified 
order [vdAvH04, SGBBOl, BF05, FKSS08]. Tasks are composed of other 
tasks, implying control flow dependencies. The control flow need not be lin­
ear: some tasks can be performed concurrently, or alternatively. In addition 
to t he control flow, there is also data flow. One distinguishes between a work­
flow specification, also known as a workflow template, or a process definition, 
or an executable workfiow (depending on the supported level of abstraction), 
and the actual executions of a workflow specification. In an enterprise set­
ting, there may be many different workflow specifications in use, and every 
specification may have been executed many times. A workfiow management 
system facilitates the design of workflow specifications , and management of 
the different executions. 

Workflow management [vdAvH04] has its origins in business process mod­
elling, but in recent years workflows have gained importance in e-Science, in 
parallel with the rise of Grid Computing [FK04]. Although a strong separating 
line between business workflows and scientific workflows is impossible to draw, 
there is a clear tendency in scientific workflows to be less focused on control 
flow , and more focused on data flow [SKDN05, GDE+07, FKSS08]. For this 
reason, we refer to scientific workflows as datafiows. 

The use of workflows in e-Science includes the following aspects: 

• design and execution of dataflows i 

• storage of dataflows and related data in a repository; 

• querying of a dataflow repository; 
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2 Introduction 

• sharing of dataflow data with others. 

Dataflow repositories, in particular, can serve many important purposes: 

• Effective management of all experimental and workflow data that float 
around in a large laboratory or enterprise setting, helping to "enforce 
the scientific method" [Bro08]. 

• Verification of results, either within the laboratory, by peer reviewers, 
or by other scientists who try to reproduce the results. Verification 
often involves tracking the provenance (origin) of (parts of) data values 
occurring in the output of a dataflow execution. 

• Making all data and stored dataflows available for complex decision sup­
port or management queries. The range of such possible queries is enor­
mous; just to give two examples, we could ask "Did an earlier run of 
this dataflow, using an older version of GenBank, also have t his gene as 
a result?"; or "Did we ever run a dataflow in which this sequence was 
also used in a BLAST search?". 

A formal model of dataflow repositories The first goal of our work 
is to contribute a formal, conceptual data model t hat synthesises some key 
database aspects of dataflow management. Many workflow management sys­
tems and provenance management systems* have already been developed, of­
ten on top of general-purpose databases.t The database systems used can be 
(i) key-value [HSBMR08, MGM+08], (ii) relational [CM95, AI198, SKDN05, 
BD08, GCM+ n, Fsc+o6, SPGOS, KDG+os, MGM+os], (iii) XML [Fsc+o6, 
SPGOS, FMSOS], (iv) RDF [KDG+os, ZGSTOS], or (v) file-based [LAB+o6, 
MGM+os] . 

There is, however, no standard underlying conceptual data model specific to 
such systems. Such a data model should cover at least the following aspects: 

• A data model for the complex data structures that are given as input to 
a dataflow, or t hat are produced as output , or that occur as intermediate 
results. 

*In the context of workflows, a provenance management system is a system that only 
captures information about workflow executions. T hey al low for use of scripts, general 
purpose programming languages, and higher-level workflow languages alike. 

t some systems use different database systems for workflow specifications on the one hand, 
and workflow executions on the other. 
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• A formal operational semantics for operators, provided by the workflow 
system, performing basic transformations on the complex data struc­
tures. 

• A formal definition of the information present in the execution of a da­
taflow. This information is often called the workfiow provenance [CT09, 
MCF+ll] or retrospective provenance [FKSS08] of the data output of 
the work.flow. 

• The involvement m dataflow executions of external services, typically 
supplied by a third party, for which the dataflow system provides a 
wrapper. These external services form the basic t asks of a scientific 
workflow. 

• The use of a datafl.ow serving as a task in another datafl.ow. 

• A conceptual model for a repository consisting of many dataflow speci­
fications and their executions. 

• The querying of the entire information present in such a datafl.ow repos­
itory. Of particular interest are queries for the finer-grained provenance 
of parts of data output of workfl.ows. This kind of queries are often called 
where-provenance. 

A conceptual data model for datafl.ow repositories should offer a precise spec­
ification of the types of data (including the dataflows themselves) stored in 
the repository, and of the rela tionships among them. Such a data model is 
important because it provides a formal framework that allows: 

• Analysing, in a rigourous manner , the possibilities and limitations of 
datafl.ow repositories. 

• Comparing, again in a rigourous manner, the functionality of different 
existing systems. 

• Highlighting differences in meaning of common notions as used by differ­
ent authors or in different systems, such as "workflow" , "provenance" , 
or "collection" . 

It should be clear that the pmpose of our contribution is not to propose a 
blueprint for a new dataflow management system with innovative features that 
"competing" systems do not support yet. Rather, our work is a detailed effort 
to model such a system , hoping to contribute a formally defined synthesis of 
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some key database aspects of dataflow management systems. Indeed, each of 
the aspects we touch upon has been addressed in existing systems, of course 
each particular system with its own emphasis. In a perfect world , one would 
like a standard database schema for the exchange of dataflow specifications 
and executions, similar to the myExperiment.org initiative that is specific to 
the Taverna system. The need for such a repository has also been emphasised 
by Lacroix [KCL06, KLL +o7]. Our work is a new step in this direction, after 
initial steps during the 1990s [CM95, AIL98] did not receive the follow-up 
they deserved. The need for a workflow repository is also acknowledged in 
other fields, as shown by Blockeel and Vanschoren's Experiment Databases 
for Machine Learning [Blo06, BV07]. 

Dataflow management systems have been largely developed within the com­
puter systems community, and have received less interest in the database the­
ory community. We hope to partially fill this gap by t he present work. We 
do note that much attention has been paid to automated verification of data­
intensive workflows, but this is a research focus that is orthogonal to the focus 
on data modelling and querying t aken in this work. 

For a review of scientific workflow management and provenance systems, we 
refer to Freire et al. [FKSS08], Yogesh et al. [SPG05], Bose and Frew [BF05], 
and Davidson and Freire [DF08]. Where-provenance is one form of data prove­
nance as investigated in database research [BKTOl, CT 09, CCT09]. In this 
work we show how the concept of where-provenance can also be defined in the 
context of workflow provenance. 

Semantics for the Open Provenance Model The second goal of our 
work is to contribute to the semantics of the Open Provenance Model (OPM) 
[MCF+ll]. OPM is a proposed system-independent format for exchanging 
provenance data. OPM responds to the same need of a standard data model 
for workflows addressed above , but OPM targets past executions/ activit ies of 
diverse processes (which need not be workflows as understood in business or 
e-Science), and data dependencies occurring in these executions. In a quest 
to understand emerging models for provenance in Semant ic Web technologies, 
the W3C Provenance Incubator Group+ decided to map the concepts employed 
in these models to a single t arget model. OPM has been adopted as this target 
model. Very recently, a W3C Provenance Working Group§ has been formed, 
with the goal of defining a standard language for exchanging provenance in­
formation, proposed earlier by Moreau [MorlO], and based on the review and 

thttp ://www . w3. org/2005/Incubator/pr ov/wi ki/Main_Page 
§http: //www .w3.or g/2011/prov/wiki/ Main_Page 
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roadmap provided by the W3C Provenance Incubator Group. 

The current specification of OPM [MCF+ ll], however , is purely syntactical. 
Yet, a semantics is suggested, both informally, and in the form of a number of 
inference rules. We present a formal, temporal semantics for OPM, and give 
a complete set of inference rules for temporal inference in OPM. This work 
has been done in collaboration with Luc Moreau [KMVlOJ. 

There have already been other efforts to provide semantics for OPM. 

Cheney [ChelOJ investigates the use of structural causal models as a semantics 
for provenance graphs, and relates some OPM concepts to notions of actual 
cause and explanation proposed by Halpern and Pearl [HP05].1 The temporal 
semantics we propose is similar to Cheney's in the sense that it provides a 
mathematical meaning for OPM graphs. However, it differs in other significant 
ways: (i) our semantics conforms to the OPM reference specification [MCF+ 11J 
and in particular handles time, all permitted OPM edges, algebraic operations 
and refinements; Cheney's semantics regards single-step derivation edges as 
inferable, when they can only be asserted in OPM, and does not characterise 
inferred edges; (ii) our semantics is pmely temporal, and does not see an OPM 
graph as a function operating on some inputs and generating outputs; this view 
of OPM graphs is complementary to ours, but relies on meanings associated 
with processes by means of annotations, which have not been modelled here. 
(iii) Cheney's semant ics attempts the more ambitious goal of providing a global 
approximation (using the predictive nature of causal models) for the program 
being executed (without having its explicit code) , so that its behaviour can be 
repeated for any arbitrary input; our semantics is agnostic about the predictive 
nature of OP!VI graphs. 

Missier and Goble [MGll] address the question of whether, for any OPM 
graph, a plausible workflow exists in the Taverna workflow language, which 
could have generated the graph. To this end, they identify the extra informa­
tion that should be captured as part of an OPM graph so that the mapping 
from OPM to a workflow representation can be derived. Thus, this work 
derives a trace semantics for OPM, obtained by composing their translation 
and the Taverna semantics [SH09a, SH09b, SHMG 10] . It however does not 
tackle OPM in full, ignoring time and refinement; their translation should 
be revisited to leverage the distinction between precise and imprecise edges, 
introduced in this work. 

4JSee Note A.4.12 in the Appendix for a more detailed explana tion of causality in OPM. 



6 Introduction 

1.1 Chapter Overview 

In Chapter 2, we define our dataflow model for complex objects [HKS+07, 
HKS+osJ. Indeed, our model is strongly based on the well-known complex 
object data model. As t he language in which to write dataflow specifications, 
we naturally adopt the Nested Relational Calculus (NRC) . This language 
serves as an abst raction for basic operations on complex objects within a 
dataflow. Such operations can be provided by t he workflow system as tasks 
that are useful for conversion between data formats, or for formatting data for 
presentation. 

We note that several workflow management systems already support com­
plex data, e.g., Taverna [T MG+o7, MBz+os], Taverna 2 [SHMClO], Kepler­
CoMaD [MBL06, BML08], and Pegasus-Chimera [FVWZ02, CFv+osJ. The 
operation of applying a function on all elements of a collection is typically 
provided. 

However , in a dataflow, many operators can be used to connect the basic tasks. 
In our work, we focus on t hose operators t hat perform complex object trans­
formations , and here we restrict attention to t he basic and well-established set 
of operators provided by NRC. Therefore, we use NRC, extended with tasks, 
as a dataflow specification language. 

The suitability of NRC (in the form of a variant language called CPL) for 
scientific data manipulation and integration purposes has already been amply 
demonstrated by the Kleisli system [CCW03, DW04]. We have confirmed this 
further by doing some case studies ourselves (including dataflows based on 
published bioinformatics protocols [GJZ06, LKO+o6, NDK+o6, GV04]). 

In Chapter 3, we define a conceptual model for a dataflow reposi tory. 

• We formally define executions, or runs as we call them, of NRC dataflows. 

• We formalise the representation of external services in a dataflow repos­
itory. 

• We formalise t he substit ution of abstract t asks in a dataflow specifica­
t ion, either by external services, or by calls to other dataflows. 

• We present a simple concep tual schema of a dataflow repository, and 
formalise some essential integrity const raints. 

• We describe a proof-of-concept representation in SQL:2003. 
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In Chapter 4, we discuss the querying of the information present in a da­
taflow repository. Queries can, in general, be programmed in SQL/ XML. 
Nevertheless, we identify and formally define subvalue provenance as a useful 
query primitive. For any subvalue of the final result of any run , this function 
computes the where-provenance of that subvalue. Moreover, we identify the 
subruns of a run. This allows us to compute the where-provenance of subvalues 
of intermediate results, by using the corresponding subrun. 

We note that many workflow management systems already use standard query 
languages for querying their repository [MLA +os, FKSS08, SG Mll J: 

• REDUX [BD08J, Swift [GCM+ll] and Pegasus [KDG+osJ use SQL, 

• Taverna [ZGST08] and Pegasus use SPARQL, and 

• ES3 [FMS08] and PASOA/ PreServ [MGM+08] use XQuery. 

Unfortunately, all these systems use different logical database schemas; ex­
change of informat ion can only be done using the common OPM format. 

We should also mention some more distantly related work. Beeri et al. are 
working on an interesting project on querying the potential executions of a 
given workflow specification [BEKM08]. That approach is mainly verification­
oriented rather than repository-oriented, although they did also consider mon­
itoring [BEMP07]. 

F inally, in Chapter 5, we present a formal , temporal semantics for the Open 
Provenance Model [MCF+ 11 J. Our main contribution consists of a set of 
inference rules that work entirely on the logical level of OPM graphs, yet 
capture in a sound and complete sense all temporal inferences that can be 
drawn from the temporal axioms associated with an OPM graph. 
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Dataflow model 

2 .1 Complex value s 

In this section we formally define complex values, which we use to model 
complex data structures used in dataflows. Complex values are constructed, 
using record and set constructions, from base values. Base values can be 
numbers, strings, or booleans, but can also be flat fi les or XML files, in essence 
any value that is considered atomic in a dataflow. 

Basically, the designer of a scientific workflow decides which kinds of values are 
considered to be atomic, and for which kinds of values he needs to explicit ly 
model the internal structure. The latter is only necessary if the complex values 
need to be manipulated by operators in the dataflow. It is the responsibility of 
t he designer to choose which data manipulation aspects need to be explicitly 
modelled , and which can be modelled as a single step: a good formal model 
should not enforce this choice in a particular direction. 

D efinition 2.1 (Complex values) . Assume a countably infinite set A of base 
values and a countably infinite set £ of labels, with A n £ = 0. We define the 
set V of complex values as the smallest set satisfying the following: 

• A t:;: V, 

• if v1, . .. , Vn E V, then the finite set { v1 , .. . , Vn } is a complex value, 

• if v1 , .•. , Vn E V , and l1 , ... , ln E £ are distinct labels then the named 
tuple ( li : v1, .. . , ln: vn.) is also a complex value. The positioning of 
elements 4: Vi, for i E {1, ... , n}, within a named tuple is arbitrary. 

9 



10 Dataflow model 

From now on we abbreviate "named tuple" to "tuple". 

Note that we work with set s as the basic collection type, because other kinds of 
collections can be modeled as set s of records. For an ordered list, for example, 
one could use a numerical attribute that indicates the order in the list. 

Next we illustrate the use of complex values with a simple example from 
bioinformatics. 

Example 2.2. Let A include the following set: 

{EF051731.fasta, EF051731mRNA.fasta, FASTA, EF051731 , ABK79072, 

hemoglobin delta gene, DNA , RNA, homo sapiens} , 

and let 

{annotation, desc, file , format , id, organism, proteins, 

sequences, type, nseq} 

be a subset of£. Base values EF051731.fasta and EF051731mRNA.fasta are 
place holders for the actual content of the corresponding flat files in FASTA­
format . Value EF051731.fasta contains information about the gene with 
accession number EF051731 , and EF05 1731mRNA.fasta contains information 
about its corresponding messenger-RNA sequence. If we want to analyse the 
nucleotide sequence of that gene, we may need different information at differ­
ent st eps of the analysis. If we want to perform a BLAST-search, and some 
program expects the whole content of a FASTA flat file, we can pass base value 
EF051731.fasta as input to that program. However, if that program expects 
only a nucleotide sequence, we can make the following complex value: 

gene= (id: gi\118199992 \gb lEF051731.1I, 

desc : homo sapiens ... complete eds , nseq: GCAGAGT ... AGGCTCT), 

and subsequently use gene.nseq as input value to that program. Note that we 
can populate the set of base values according to our needs. 

Vve can also use complex values for bundling relevant information. For exam­
ple, if we want to look for non-transcribed regions in that gene, we may need 
to construct the following complex value: 

seqs = {(type : DNA,format: FASTA,file : EF051731.fasta), 

(type : RNA,forrnat : FASTA,file : EF051731mRNA.fast a )} . 
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If we are collecting annotation information about that gene, we may want to 
work with the following: 

ann =(id: EF05173, organism : homo sapiens ,proteins : {ABK79072}, 

desc: hemoglobin delta gene). 

Of course, we can also put all available information into a single complex value: 

geneData =(annotation : ann, sequences : seqs) . 

D 

2 .1.1 Subvalue path of a complex value 

Intuitively, a subval-ue of a complex value v is a complex vaJue occurring in 
v, possibly v itself. However, a subvalue may have different occurrences. For 
example, in { ( id : 1, set : { 1, 2 , 3} )}, subvalue 1 appears twice. We need 
a formal way to distinguish these occurrences . Therefore we introduce the 
notion of a subvalue path. 

A subvalue path of a complex value v is a sequence over V U£ ,* start ing wit h 
the value v itself and containing subvalues of v . If a complex value in the 
sequence is not the final subvalue of the path, t hen it is followed by one of its 
elements if it is a set, or by an element label and its corresponding value if it 
is a tuple. 

Formally, we define a subva!ue path of a complex value by the rules given in 
Definition 2.3. We use symbol «cp" to denote a subvalue path , and notation 
cp - v for "cp is a subvalue path of v" . 

When a subvalue path rp of v is not [ v J itself, we ca!J it a proper subvalue path 
of v . We then use cp H v as notation . We frequently address the subvalue 
path [ v J of v as the trivial subvalue path. 

Definition 2.3 (Subvalue path of a complex value). 

vE V 

['v] - v 
V = { V1 , ... , Vn} <p f---e Vi 

[v] · cp _. V 

iE {l , .. . ,n} 

V = ( l1 : V1, . .. , ln: Vn) <p _. Vi iE{ l , .. . ,n} 
[v; 4] · cp _. V 

·sequences are formally defined in Section A.l 
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Figure 2.1: Tree-representation of value v { v1, v2, v3} from Example 2.4. 
Note the two occurrences of subvalue 2 and their corresponding subvalue pat hs. 

Example 2.4. Let v be the set { v1 , v2, v3} with v1 = (N: odd, S : { 1, 3} ), v2 = 
( N: even, S: { 2, 4} ), and v3 = ( N: even, S: { 2} ), then v has the following 
subvalue paths: 

[v] 
[v, v1] 
[v, V1, N , odd] 
[v,vi , S,{1,3} ] 
[ V, V1, S, { 1, 3} , 1] 
[ V, V1 , S, { 1, 3} , 3] 

[v, v2] 
[v, v2, N, even] 
[ V, V2, S, { 2, 4}] 
[ V , V2, S, { 2, 4}, 2] 
[ V, Vz, S, { 2, 4} , 4] 

[v,v3] 
[v,v3,N, even] 
[ V, V3, S , { 2} j 
[ V, V3 , S, { 2}, 2] 

Note that there are actually two different subvalue paths ending in subvalue 2, 

i.e ., [v, v2, S, { 2 , 4 } , 2] and [v, v3, S, { 2}, 2]. We see that those subvalue paths 
ident ify different occurrences of subvalue 2 in v. D 

2.1.2 Tree-representation of a complex value 

It is convenient to represent a complex value as a tree, where each node is 
labelled with the subvalue it represents. If such a subvalue is a set, then 
each child node represents one element of that subvalue, and its connecting 
edge is unlabelled. If such a subvalue is a tuple, then each child node repre­
sents the complex value of one element of that subvalue, and its connecting 
edge is marked by the corresponding element label. In Figure 2.1 we see the 
t ree-representation of value v = { v1, v2, v3 } from Example 2.4. Note that a 
subvalue path of a complex value v corresponds to a simple path in the tree 
representation of v , starting at t he root and ending in one of its nodes. 
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2.2 Complex types 

Types are a basic mechanism in computer programming used to avoid the 
application of operations to inputs on which the operation is not defined . 
All data occurring in our dataflow model are strongly typed. We use a typing 
system for complex objects with tuples and sets, as defined by Pierce ([P ie02]), 
that includes a form of sub-typing. 

Definition 2.5 (Complex types). Assume a finite set B of base types, and a 
symbol "J.." t hat is not in B . We define the set T of complex types as the 
smallest set satisfying the following: 

• J.. E T , 

• B ~ T , 

• if T E T , then the expression { T} is also a complex type, called a set 
type, 

• if T1, ... , Tn E T , and li, ... , ln E [, are distinct labels, then the ex­
pression ( Z1 : T1, ... , ln: Tn) is also a complex type, called a tuple type. 
The posit ioning of elements 4 : Ti, i E { 1, ... , n}, within a tuple type is 
arbitrary. 

For convenience, we abbreviate "complex type" to "type". 

We use "l." to denote a special bottom type, the purpose of which is to have a 
generic type for t he empty set - that type is t he set type { J..}. t The purpose 
of base types is obviously to organise the base values in classes. Generally, the 
semantics of types is that for each type we have a set of values of that type. 

D efinition 2.6 (Type semantics) . We define the set of values of type T, de­
noted by [T], as follows: 

• [J..]=0, 

• [b] , with b E B, is the set of base values of type b, i.e., a non-empty 
subset of A determined by the application , 

• [ { T} J is the set of all finite subsets of [ T], 

• [ (Li : T1 1 •• • ,lm: Tm)] is the set of all tuples (l1: V[, ... ,l,1 : vn), where 
Vi E [Ti], i E { 1, ... , m}, and m :S n . 

tType { ..l} for the empty set is used in Section 2.4.2. 
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Note that we regard a tuple type (l1 : T1, . .. , lm: Tm) as describing all tuples 
with at least all elements ~ of type Ti, for i E { 1, ... , m}. This definition 
conforms to the definition by Pierce [Pie02]. 

We assume that at least the base type Boolean is always an element of B 
with [Boolean] = { true, false}. 

2.2.1 Subtyping relation 

Reasons of flexibility require that a type system used for scientific workflows is 
equipped with a form of subtyping [Pie02]. Base types provide an organisation 
of the different types of base values into different classes, and it is standard 
practice to allow for classes and subclasses. Moreover, subtyping allows a 
flexible typing of if-then-else statements in dataflows. Thus, t he type system 
of our dataflow model, while guaranteeing safe execution of operations, does 
not impede flexible specification of dataflows. 

Definition 2.7 (Subtyping relation) . We assume a subtyping relation on the 
set B of base types as a partial order relation ::s on B that satisfies the following 
condition: 

(2.1) 

This relation can be arbitrarily defined by the application, as long as condi­
tion ( 2. l) is satisfied. 

A subtyping relation ::s on B is canonically extended to the set T of complex 
types as follows: 

• _L ::s T, for any complex type T. 

• a set type can only be a subtype of another set type. For two set types 
T = { T 1

} andµ={µ'}, we have T :::s µ if and only if T 1 ::s µ' . 

• a tuple type can only be a subtype of another tuple type . For two tuple 
types T = (Li: TJ, ... , Lr,,: Tn) and µ, we have T :::s µ if and only if 11 
can be written as ( li : µ1, . .. , lm: µm), with m ::; n, and Ti ::S µi for 
i E {l, ... ,m}. 

We read T :::s µ as "T is a subtype ofµ" or "µ is a supertype of r" . Note that 
if T is a base type and T :::s µ, then µ is also a base type. 

Next we illustrate the use of complex types and subtyping with a simple ex­
ample from bioinformatics. 
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/trr~ 
Ir~ocus Description 

GeneID Prote inID 

Figure 2.2: Partial order relation for B in Example 2.8 

Example 2.8. Let B include the following set: 

{AminoAcidSeq, BioSeq, Description, DNA, GeneID, ID, Locus , 

mRNA, N ucleotideSeq, PeptideSeq, ProteinID , String}, 

and let 
{ desc, gene, id, loc, rnRNA, pept , prot , seq} 

be a subset of£. F igure 2.2 shows us a partial order relation defined on B. 

Let us consider the following tuple types : 

BioSequence = (id: ID, desc: D escription, seq: BioSeq) 

Gene = (id: GenelD, desc: D escription, 

Zoe: Locus , seq: DNA, mRNA: {mRNA }) 

Protein = (id: ProteinID, desc : D escription, 

seq: AminoAcidSeq, pept: {PeptideSeq}) 

Clearly, Gene ~ BioSequence and Protein ~ BioSequence, and thus {Gene} ~ 
{BioSequence} and {Protein} ~ {BioSequence} . Suppose we have an exten­
sive collection of sequence data, about both genes and proteins, that was 
downloaded from a public database. If we wou1d like to check whether the 
sequences have changed, we can write a dataflow that accepts a set of values 
of type BioSequence. D 

Defining the subtyping relation based on a partial order of the base types, 
together with condition (2 .1) , extends that partial order to complex types, as 
we prove in Proposition 2.10. We first need the following lemma. 

Lemma 2. 9 . Let T and µ be complex types. If T ~ µ then [ T] <;;;; [µ]. 
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Proof. Letµ E T such that T j µ holds. We prove [T] ~[µ]by induction on 
the structure of T . 

If T = ..l, then [T] = 0 ~[µ],for anyµ as desired. 

If T is a base type, t hen µ is a base type as well, and [ T] ~ [µ ] follows from 
Definition 2. 7. 

If T is a set type of the form { T 1
}, then µ must be a set type of the form 

{ µ'}, with T1 j µ' (Definition 2. 7). To show [ T] ~ [µ], let v E [ T]. We have 
v ~ [T' ] and, by induction, [T'] ~[µ' ],and thus v E [µ] as desired. 

If T is a tuple type of the form (l1 : r1, ... , ln.: Tn), thanµ must be a tuple type 
of the form (l1: µ1 1 ... , Zm: µm) with m :Sn, and Ti j µi for i E { l , ... ,m} 
(Definition 2.7). To show [T] ~[µ], let v = (l1 : v1 , .. . ,lq : vq) E [T], with 
q 2: n. Then, by induction , Vi E [Ti)~ [µi] for i E { l , ... ,m} , with q 2: n 2: 
m. Thus v E [ (li : µ1 , ... , Zm: µm)] = [µ] as desired. D 

Proposition 2 .10. The subtyping relation j on T is a partial order relation. 

Proof. We prove this proposition by induction on the structure of T. We 
already know from Definition 2.7 that j is a partial order relation on 6 . We 
show it also holds for ..l, set types and tuple types. We need to prove the 
following: 

1. _:::::is reflexive: VTET:TjT, 

2. j is anti-symmetric: VT,µ E T: T j µ I\ µ j T ===} T = µ, 

3. j is t ransi tive: VT, µ, v E T : T j µ I\ µ j v ===} T j v . 

1. We prove t hat j is reflexive: 

If T = ..l, t hen, by Definition 2.7, ..l j v holds for all v ET. Obviously 
.l j .l. 

If T is a set type of the form T = { T1
}, then, by induction , T1 j T1

• 

Therefore, by Definition 2.7 , { T1
} :5. { r 1

}. 

If r is a tuple type of the form ( l1 : r1 , .. . , ln.: rn), then , by induction, 
Ti j Ti for i E {1, ... ,n} . T hus, by Definition 2.7 , (l1 : r 1, . .. , ln.: Tn) :::$ 

( l1 : T1 1 • • • , ln. : T n) · 

2. We prove that j is anti-symmetric. Let µ E T such that r j µ and 
µ j T hold. 

If r = ..l, thenµ j ..l is only possible if [µ] = 0, which, by Definit ion 2.7 , 
is only possible if µ = ..l. Therefore T = µ. 
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If T is a set type of the form T = { T 1
}, t hen, by Definition 2.7, µ must 

also be a set type of the form { µ'}, and T
1 :5 µ' and µ' :5 T

1 hold. By 
induction, we have r 1 =µ' , and by Definition 2.7 , { T 1

} ={µ'},therefore 
T = µ,. 

If Tis a tuple type of the form (l1 : r 1, ... , l,,,: rn), then, from T :5 1..1, and 
Definition 2.7 , µ must be a tuple type of the form (l1: µ 1, ... , lm: µm), 
with m :'.S n and Ti :5: µ i for i E { 1, ... , m }. Sinceµ ::s T, we know that 
n :'.S m and µ i :5 Ti hold as well, for i E { 1, ... , n }. Therefore m = n 
and , by induction, Ti = µi for i E { 1, ... , m}. We have T =µas desired. 

3. We prove that :s is transitive. Let µ, v E T such that T :5 µ and {L :5 v 
hold. 

If T = _L, then, by Definition 2.7, _l :5 v , so trivially T ::s v. 

If T is a set type of the form T = { r'}, then, by Definition 2.7, µ and 
v must be set types of the respective forms { µ'} and { v'}, for which 
T

1 ::S µ' and µ 1 ::s v' hold. By induction, r' :5: v', and by Definition 2. 7, 
{ r'} :5: {v'}. We have T ::s v as desired. 

If T is a tuple type of the form ( li : r1, ... , 4i : T n), then, by Defini­
tion 2.7, µ and v must also be t uple types of the respective forms 
(l1: /J,1, ... , lm: µm) , with m :'.S n, and (l1: vi , ... , lq: vq ), with q :'.S m. 
Since q :'.S m :'.S n, by induction, Ti :5: vi for i E { 1, . . . , q}. By Defini­
tion 2. 7, (l1 : T1, ... , 41 : T n) :5: ( l1 : vi , ... , lq: Vq) , therefore T ::s v. 

D 

2.2 .2 Compatible types 

As illustrated in Example 2.8, there are situations when it is convenient to 
use one supertype T for operations on values from different subtypes of T . 

In such cases we can call the subtypes of T compatible. In t his section, we 
formally define compatible types, and define their join, which is their least 
general supertype. 

Definition 2 .11 (Compatible types). For two complex types T and µ, we 
define when they are compatible. If so, we define their join, which is again a 
complex type, denoted by T V µ . 

• If either of the two types T and µ is the bottom type, then T and µ are 
compatible. Let µ = 1-. We define their join as follows: 

TV _L =r. 
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• Two base types T and µ are compatible if and only if they have a least 
upper bound w.r.t. j. We define TVµ to be this least upper bound. 

• T wo set types { T} and { µ} are compatible if and only if T and µ are 
compatible. We define their join as follows: 

• Two tuple types T and µ are compatible if and only if they have a 
non-empty set { li , ... , lk} of all common distinct labels, such that T = 
(l1: TJ, .. . , lk: Tk, .. . ) andµ= (Zi: µ1, ... , lk: µk, .. . ), and Ti and /J,i are 
compat ible for i E { 1 , ... , k}. We define their join as follows: 

Example 2.12. We continue Example 2.8. Types Gene and Protein are 
compatible, and Gene V Protein = BioSequence. Types {ProteinID} and 
{ AminoAcidSeq} are not compat ible, nor are the types 

(gene: GeneID, prot: {ProteinID }) 

and 
( gene : N ucleotide Seq, prot : { AminoAcidSeq }) . 

D 

Proposition 2.13. Let T andµ be two complex types. If TVµ exists, then it 
is the least upper bound of T and JL w. r. t. j , i.e., 

1. T ~ T Vµ andµ j TV µ , 

2. \Iv E T : T j v and /.L j v ===} TVµ~ v. 

Proof. We prove the proposition by induction on the structure of T. We al­
ready know from Definition 2.11 that if T is a base type and µ is a base type, 
then TVµ is the least upper bound of T andµ w.r.t. j. We show the proposi­
tion also holds for 1- , set types and tuple types. Note that to prove T j T Vµ 
and µ~T Vµ, it is sufficient to show that T :j TV µ, because TVµ=µ VT. 

Let T = .L 

1. By Definition 2.11 , TV µ = ..L V µ = µ. By Definition 2.7 , T = ..L j µ = 
TVµ . 

2. By Definition 2.11 , T Vµ=µ~ v. 
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Let T be a set type of the form { T 1
} . Then, by Definition 2.11, µ is also a set 

type of the form {µ'} , and T
1 and µ1 are compatible. Therefore, T

1 V µ' exists. 

1. By induction, T
1 j_ r 1 V µ'. By Definition 2.7, {T'} j {T' V µ'} = 

{ T 1
} V {µ'}. Hence T j TVµ. 

2. By Definition 2. 7, v must also be a set type of the form { v'}, and both 
T

1 j v' and µ' j v' hold. By induction , r 1 V µ' j v' holds. Hence, 
T V µ = { 7 1 V µ'} j { v'} = v. 

Let T be a t uple type. Then, by Definition 2.11, µ is necessarily a tuple type. 
Moreover , T and µ have a non-empty set of a ll common distinct labels, say 
{l1, ... , lk}, such t hat r = (l1 : r 1, .. . , lk: Tk, .. . ), µ=(Li: µ1 , ... , lk: µk, .. . ) , 

and Ti and µ i are compatible for i E { 1, ... , k} . Therefore, Ti V µ i exists for 
iE{ l , ... ,k}. 

1. For i E { 1, . .. , k }, we know by induction that Ti j r; V ~- By Defi­
nition 2.7, (l1 : T1, . . . , lk: rk, .. . ) ::S (l1: T1 V µ1, .. . , lk: Tk V µ k), hence 
T j TVµ. 

2. By Definition 2. 7, v must also be a tuple type. As T j v, v can be 
written as (li : v1 , .. . , ln: vn), with lk+l, .. . , ln labels common with T. 

As µ j v, v can be written as (li : v1, ... , ln,.: vm), with lk+l, ... , lm 
labels common with µ . As all common labels of T and µ are in the set 
{ li, . . . , lk}, we have n = m = k, and thus Ti :S vi and µi :S v; , for 
i E {l, . .. , k }. By induction , Ti V µ i :S vi, for i E { 1, ... , k }. Hence, 
T V µ = ( li : 'TJ V µ 1, .. . , lk: 'Tk V µk) ::S ( l1 : VJ, .. . , lk: Vk ) = V. 

D 

2.3 Abstract services 

A scientific workflow is often viewed as a computational task that is composed 
from "simpler" tasks [SGBBOl , BF05, FKSS08, DFOSJ. These "simple" t asks 
may be calls t o various external services, such as the NCBI BLAST web­
service; or calls to various library functions, such as addition for numbers, or 
concatenation for strings, or the application of XQuery to an XML document. 
Moreover , one dataflow can serve as a task in another dataf:low, becoming its 
subdataflow. 

In our model, the composition of a dataf:low is structured using the program­
ming constructs of nested relational calculus. To model the diverse tasks, we 



20 Dataflow model 

use service-call expressions. In this section, we define the necessary concepts 
for service-call expressions. 

We use abstract service names to denote services. The type system requires 
signatures to be attached to these names. 

Definition 2.14 (Service names, signatures, signature assignment). Assume 
a countably infinite set N of service names. We define a signature to be 
an expression of the form T1 x ... x Tn ---+ Tout, where T1, .. . , Tn and Tout are 
complex types. We use S to denote the set of all possible signatures, i.e. , 

S ~ { T1 X ... X Tn - Tout In EN /\ (T1, ... , Tn , Tout ) E 7n+l }. 

For a set N of service names, i.e., N ~ N, we define a signature assignment 
over N as a mapping 8 from N to S. 

Only at the time of execution of a dataflow we provide a meaning for its 
service names by assigning them service functions, which are, for the time 
being, merely abstract non-deterministic funct ions. In other words, we use 
service functions to model the input-output behaviour of services. We assume 
service functions to be total+ 

D efinition 2.15 (Service functions, function assignment). We define a service 
function as a relation JO from [Ti] x ... x [Tn] to [Toud, for some complex 
types T1 , ... , Tn, Tout, that is total in the following sense: 

\i ( W1, . , . , Wn) E [ Ti] X ... X [ T n l 3 V E [Tout] : ( W1 , ... , Wn, V) E JO. ( 2. 2) 

We use F to denote the set of all possible service functions. 

For a set N of service names, i.e., N ~ N, we define a Junction assignment 
over N as a mapping ( from N to F. 

Note that service functions may be non-deterministic - they may have more 
than one output related to a given input. This is especially important for 
modelling external services, which we have no control over. For example, the 
internal database of an on-line service may be updated (e.g., NCBI), or the 
service may fail from time to time, and produce an error value instead of t he 
expected output value. 

Before the execution of a dataflow, we have thus both a signature assignment 
and a function assignment for its service names. Care must be taken such that 
this function assignment is consistent with the chosen signature assignment. 

t Although we have no control over external services, which the a bst ract services generally 
represent, we can guarantee totality by using wrapper relations (see Section A.2). 
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Definition 2.16 (Consistency) . Let N ~ N. Let 8 be a signature assignment 
over N, and ( a function assignment over N. We call ( consistent with 8 , if 
the following holds: 

2 .4 NRC expressions 

In our model, we use nested relational calculus (NRC) to provide the "glue" for 
connecting various tasks occurring in a dataflow. Nested relational calculus, 
introduced by Buneman et al. [BNTW95], is a query language over nested 
collections of tuples . Buneman et al. consider t hree types of collections, i.e., 
sets, bags and ordered lists. However , we .have chosen to work with sets, 
because other collect ion types can be modelled as sets of tuples. For an ordered 
list, for example, one could use a numerical tuple attribute that indicates the 
order in the list. Moreover, in our study of use cases, we have noticed that in 
a significant number of cases, order matters on1y for visualisation of data. 

We naturally augment NRC with service calls, which, for the time being, refer 
to some abstract services. A dataflow specification containing only abstract 
services is often referred to as a workflow template or an abstract workfiow. 
In Section 3.2 we have to be more specific and dist inguish between exter­
nal services and subdataflows. We then provide a mechanism to bind the 
abstract services to either external services or subdataflows, essentially pro­
viding a t ranslation of the abstract specification into a concrete one . Such a 
concrete dataflow specification is often referred to as a workflow instance, or 
an executable workfiow. 

Formally, Definition 2.17 defines t he set of NRC expressions, the grammar of 
the corresponding abstract syntax is shown in Figure 2.3. 

Definition 2.17 (NRC expressions) . Assume a countably infinite set X of 
variables.§ We define t he set NRC of NRG express'ions as the smallest set 
satisfying the following: 

§We assume X and A to be pairwise disjoint. 
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a E A ==> a E NRC 
X E X ==> X E NRC 

0ENRC 

e E NRC ==> {e} E NRC 
e1, e2 E NRC ==> e1 U e2 E NRC 

e E NRC ==> LJ e E NRC 

Dataflow model 

(constant) 
(variable) 

(empty set) 
(set) 

(union) 
(flatten) 

e1, ... , en E NRC ( l 1 ) N-nc ( 1 ) 
and{li, . .. ,Zn} ~ L ==> 1: e1, - .. ,1n:en E '" tupe 

e E NRC I\ l EL ==> e.l E NRC (projection) 
e1, e2 E NRC I\ x E X ==> for x in e1 return e2 E NRC (for) 

e1, e2 E NRC ==> e1 = e2 E NRC (equali ty test) 
e E NRC ===? e = 0 E NRC (ernµLiness LesL) 

eo , e1, e2 E NRC ==> if ea then e1 else e2 E NRC (if) 
e1, e2 E NRC I\ x EX ==> let x := e1 in e2 E NRC (let) 

e1, ... , en E NRC I\ JEN ==> J(e1, . .. , en) E NRC (service call) 

We require that all labels in a tuple-expression must be dist inct. 

For convenience, we frequently abbreviate "NRC expression" to "expression11
. 

From now on, unless otherwise stated, we use the following notations: 

• a is a constant; x is a variable, 

• l, li, ... , ln are labels, 

Expr - BaseExpr I CompositeExpr 
BaseExpr - Constant I Variable I "0" 

CompositeExpr - "{" Expr "}" JExpr "U'' Expr J "U" Expr I 
"(" Element ("," Element)* ")" JE xpr" ." Label I 
"for" Variable "in" Expr "return" Expr I 
Expr "=" Expr I Expr "= 0" J 

"if" Expr "then" Expr "else" Expr I 
"let" Variable ":=" Expr "in" Expr I 
ServiceName "(" Expr ("," Expr)* ")" 

Element - Label ":" Expr 
Constant - a EA 
Variable - x EX 

Label - l E L 
ServiceName - f E N 

Figure 2.3: Abstract syntax of NRC expressions 
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• f and g are service names, 

• b is a base type; T, µ, T
1
, ,1, . . . , Tn are complex types, 

• e, e', ea, .. . , en are NRC expressions. 

D efinition 2.18 (Free variables) . The set of free variables of an expression 
e, denoted by FV (e), is defined by the following rules. Note that FV(e) ~ X. 

e = { e1
} 

FV(a) = 0 FV(x) = {x} FV(0) = 0 FV (e) = FV(e') 

FV(e) = FV(e,) U FV (e2) 

e = ( l1 : e1, . .. , ln : en) 

FV(e) = FV(e1) U · · · u FV(en) 

e = for x in e1 ret urn e2 

e= LJ e' 

FV(e) = FV(e') 

e = e1.l 

FV(e) = FV(e') 

e = (e1 = e2) 

FV(e) = FV(e1) U (FV(e2) \ {x}) 

e = (e' = 0) 

FV (e) = FV(e1
) 

FV(e) = FV(ei) U FV(e2) 

e = if ea then e1 else e2 

FV(e) = FV(ea ) U FV(ei) U FV(e2) 

e = let x := e1 in e2 e= f(e1, ... , en) 

FV(e) = FV (e1) U (FV(e2) \ {x}) FV (e) = FV(e1) u · · · U FV (en) 

D efinition 2.19 (Service names) . T he set of service names of an expression 
e, denoted by SN(e) , is defined by the following rules. Note t hat SN(e) ~ N. 

e = { e'} 

SN(a) = 0 SN (x) = 0 SN(0) = 0 SN(e) = SN(e') 

e = e1 U e2 e = LJ e' 

SN(e) = SN(e1) U SN(e2) SN(e) = SN(e') 

e = (li:e1, ... , ln : en) e = e1 .l 

SN(e) = SN(e1) U · · · U SN(en) SN(e) = SN(e') 

e = for x in e1 return e2 e = (e1 = e2) 

SN(e) = SN(e,) U SN(e2) SN(e) = SN(e1) U SN(e2) 

e = (e' = 0) e = if ea t hen e1 else e2 

SN(e) = SN(e') SN(e) = SN(ea) U SN(e1) U SN(e2) 

e= let x := e1 in e2 e= f(e1, .. . ,en) 

SN(e) = SN(e1) u SN(e2) SN(e) = {f} U SN(e1) u · · · u SN( e1i) 
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2.4.1 Subexpression path of an NRC expression 

Intuitively, a subexpression of an expression e is an expression occurring in e, 
possibly e itself. Similarly to a subvalue of a complex value, a subexpression 
of an expression e may have various occurrences in e. Again , we need a formal 
way to distinguish these occurrences. Theret o, we introduce the notion of a 
subexpression path. 

A subexpression path of an expression e is a sequence over NRC U £ U N, 
where N is the set of natural numbers.'11 A subexpression path of e starts with 
e itself and consists of subexpressions of e, possibly preceded by labels from 
£ or natural numbers. 

Formally, we define a tml>exµret>t>iou µaLh of au expression by the rules given in 
Defini t ion 2.20. Note t hat expressions a , x and 0 are covered by the first rule, 
i.e., they have no other subexpressions except themselves. We use symbol "<I>" 

to denote a subexpression path, and notation <I> f-0 e for " <I> is a subexpression 
path of e" . When a subexpression path <I> of e is not [ e J itself, we call it a 
proper subexpression path of e, and use <I> +---0 e as notation. 

Definition 2.20 (Subexpression path of an NRC expression) . 

eENRC 

[e] f-0 e 

e= {e'} or e= LJ e' or e=e'.l or e = (e' = 0) 

[e] · <I> f-0 e 

<I> f-0 e' 

e=e1U e2 or e=(e1=e2) or e =forxine1return e2 
or e = let x :=e1 in e2 <I> f-0 ei i E {l , 2} 

[e, i] · <I> f-0 e 

e = if ea t hen e1 else e2 <I> <-0 ei i E {O, 1, 2} 

[e, i] · <I> <-0 e 

e = ( l1 : e1 1 • •• , ln: en) <I> ~ ei i E { 1, . .. , n} 
[e, 4] · <I> <-0 e 

e = f ( e 1 , ... , en) <I> f-0 ei i E { 1, ... , n} 

[e, i] · <I> <--0 e 

'II We assume NRC, L , and N to be pairwise d isjoint. 
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We use subexpression paths to define runs of NRC expressions in Section 3.1.1, 
and subvalue provenance in Section 4.2. In this context , we do not need 
a subexpression path to the bound variable of a for-expression, nor to the 
bound variable of a let-expression. 

Example 2.21. Let e be t he following expression: 

for x in { x} ret urn 
if x = a then f(x) else g(x) , 

then e has the following subexpression paths. 

[e] 
[e, 1, {x }] 
[e, l, {x},x] 
[e, 2, if x = a then J(x) else g(x) ] 
[e, 2, if x = a then f( x ) else g(x), 0, x = a ] 
[e, 2, if x = a then f (x) else g(x), 0, x = a , 1, x] 
[e, 2, if x = a t hen f (x) else g(x), 0, x = a , 2, a ] 
[e, 2, if x = a then J(:c ) else g(x), l ,f (x)] 
[e, 2, if x = a t hen J(x) else g(x), l,f(x) , l,x] 
[e, 2, if x = a then f(x) else g(x), 2, g(x)] 
[e, 2, if x = a then f (x ) else g(x), 2, g(x), 1, x] 

Note that variable x is a subexpression of e, but there are actually four different 
occurrences of x in e, according to Definition 2.20. D 

2.4.2 Well-typedness of an NRC expression 

After writing an expression , we need to (i) assign input types to the free 
variables, and (ii ) assign signatures to the service names used in the expression. 
The latter is accomplished by a signature assignment (Definition 2.14) . The 
former is accomplished by a type assignment, which we subsequently define. 

Definition 2.22 (Type assignment) . Let X ~ X. We define a type assignment 
over X as a mapping r from X to t he set of complex types. We use TA to 
denote the set of a ll possible type assignments. 

Next we define an operation on type assignments. 

Definitio n 2 .23. Let X ~ X. Let r be a type assignment over X , x E X , and 
r a complex type. We define r[.r i-; r ] as the type assignment over X U { x} 
that is equal to r , except for the variable x that is assigned the type r. 
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We are ready to formally define a type system for NRC expressions. Since this 
system is known from the literature [BNTW95], we omit informal explanation. 

Let e be an NRC expression, r a type assignment over FV(e) , and 8 a signa­
ture assignment over SN(e). 

Rules T. l ~T.15, presented in Definition 2.24 , define whether e is well-typed 
under r and 8 , and if so, determine possible types for e. The rules infer 
judgements of the form r , 8 I- e : T, meaning "Tis a possible type inferred for 
e under r and 8 " . When there is no type T, such that r, 8 I- e : T can be 
derived by these rules , we say that e is not well-typed under r and 8. 

Definition 2.24 (Well-typedness of an expression). 

a E [b] 
----T.l 
r, 8 I- a: b 

------ T.2 
f, 8 I- X: f (x) 

------ T.3 
r,8 1-0 : {...L} 

f , 8 1-e:µ µ-<T 
--------- T.4 

f , 8 1-e :T 

f,8 1-e :T 
------ T.5 
f,8 1- {e}: {T} 

f 1 8 f- e1 : { T} f , 8 f- e2 : { T} 
------------- T.6 

r , 8 l-e1 Ue2: {T} 

f , 8 1-e : {{T}} 
-----~ T.7 
f,8 1- LJ e : {T} 

Vi E { 1, ... , n}: r , 8 I- ei : Ti 
----------------- T.8 
f,8 1-( fi: e1, ... ,ln: en) : (fi: T1 1 ••. ,ln: Tn/ 

f,8 1-e : ( ... , [: T, ... / 
--------- T.9 

f ,8 1- e.l : T 

f , 8 I- e1 : { T1} r[x f--+ T1], 8 I- e2 : T2 
---------------- T .10 

f, 8 f- for X in e1 return e2: { 72} 

f 1 8 f- e1 : T f 1 8 f- e2 : T 
------- - - - T .11 

r , 8 I- e1 = e2 : Boolean 

f , 8 1-e : {T} 
----- - - -- T.12 
r, 8 I- e = 0 : Boolean 

r , 8 I- eo: Boolean r , 8 f- e1 : T r , 8 I- e2: T 
-------------------- T.13 

f , 8 f- if eo then e1 else e2 : T 

f , 8 I- e1 : T1 r[x f--+ T1l, 8 f- e2 : 72 
---------- - ---- T.14 

f 1 8 I- let X : = el in e2 : T2 

Vi E {1, ... ) n}: r, 8 1- ei: Ti 8(!) = T1 X . .. X Tn--, Tout 
--------------- ------T.15 

I' 1 8 I- f ( e1 , ... , en) : Tout 
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Remark that a constant expression a may have more than one possible type 
under a given type assignment . Every base type b, such that a E [b], is a 
possible type for a. For example, Jane can have both F irstName and String 
as its type. 

The type system may seem too restrictive, in the following respects: 

1. an empty-set expression is only given the explicit type { J_ }; 

2. an equality-test, a union , and an if-expressions are only well-typed if e1 

and e2 can be given exactly the same type. 

Fortunately, these restrictions are alleviated by Rule T . 4, that infers e : T from 
e: µ , provided thatµ is a subtype of T. Indeed, 

l. since J_ :::s T for any type r, we infer that 0 : { r}, for any type r; 

2. likewise, an equality-test , a union , and an if-expressions are well-typed 
if e1 and e2 can be given compatible types. Indeed, if e 1 : r 1 and e2: r2 

and r 1 V r 2 exists, then 1 by P roposition 2.13, we have e1 : r 1 V r2 and 
e2 : Tt V r2 , and thus the expression is well-typed. 

2.4.3 Value semantics of an NRC expression 

·when we want to run an expression, we need to (i) assign input values to 
the free vari ables, and (ii ) assign service functions to the service names used 
in the expression. The latter is accomplished by a function assignment (Def­
inition 2.15). The former is accomplished by a value assignment, which we 
subsequently define. 

Defin ition 2.25 (Value assignment) . Let X ~ X. We define a value assign­
ment over X as a sequence(; of pairs of the form (x, 'u) , with x E X and v a 
complex value. Every x E X must appear at least once in (; , but may appear 
several times. 

Vle define a value assignment as a sequence to allow for reuse of variables. 
Next we define two operations on value assignments. 

Definition 2.26. Let X ~ X . Let (; be a value assignment over X , and 
x E X . We define get((;,x) as the value v , such that the pair (x,v) is the last 
pair in (; having x as its first element . 
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D efinition 2.27. Let X <;::: X. Let u be a value assignment over X , x E X , 
and v a complex value. We define add(u,x,v) as the sequence obtained from 
u by appending the pair (x, v) at the end of u. Note that add(u, x, v) is a 
value assignment over X U { x}. 

Definition 2.28 (Consist ency) . l et X <;::: X. If r is a type assignment over 
X, and u is a value assignment over X , then we say that u is consistent with 
r if, for every x E X, value get(u, x) is a complex value of type r(x) . 

We are ready to formally define a system of rules for evaluating NRC expres­
sions. Since these inference rules are known from the literature [BNTW95], 
we omit informal explanation. 

Let e be an NRC expression, u a value assignment over F V ( e), and ( a function 
assignment over SN ( e). 

Rules v .l- v .17, presented in Definition 2.29, define a result value of e under 
u and(. The rules infer judgements of the form u , ( Fe=;, v , meaning "value 
v is a possible final result of evaluating e under u and (". Recall that there 
can be more than one possible final result value, if non-deterministic service 
functions are used in the evaluation. Note that in Rule v.9, some values Vi, 

i E {l , ... , n }, may be equal. 

Definition 2.29 (Value semantics of an NRC expression). 

a E A 
-----v.l 
u , (Fa =} a 

XE X 
--- - ---- v .2 
u,( F X =} get(u,x) 

u , (Fe=} v 
------- v.4 
u , ( F { e} =} { v} 

----~ v.3 
u,( F 0 =} 0 

u, ( F e1 =} v1 u, ( F e2 =} v2 v1 and v2 are sets 
---------------------~ v.5 

u, ( F e1 U e2 =} v1 U v2 

er,( F e =} {v1, ... ,vn } Vi is a set, for i E {l, . .. ,n} 
-------------- -------~ v.6 

O', ( F LJ e =} V1 U · · · U Vn 

Yi E { 1, . . . , rz } : u, ( F ei =;, Vi 
-------------------v.7 
u, ( F (l1 : e1 , ... , l,.,: en)=} (li: Vt,···,~,: Vn) 

u, ( F e => ( ... , z: v , . .. ) 
- - - ------~ v.8 

u,( F e.l => v 
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17, ( F e 1 => { w1 , ... , Wn} with all distinct W i 

Vi E {1, ... ,n.}: add(17,x,wi ),( F e2 => Vi 
- - ----- --- ------- v.9 

17, ( F for x in e1 return e2 => {v1 , ... ,vn} 

17, ( F e1 ::::;,- v1 17, ( F e2 => v2 v1 = v2 
------- ---------- v.10 

17, ( F e1 = e2 => true 

17, ( F e1 => v1 17, ( F e2 => V2 v1 =I= v2 
------------ --- -- v .11 

17, ( F e1 = e2 => false 

17, ( F e => v v = 0 
-------- v .12 

171 ( F e = 0 => true 

17, ( F e => v v =I= (/J 
-------- v.13 
17, ( Fe= 0 =;, false 

17, ( F ea =;, true 17, ( f= e1 => v 
------ ------- v .14 

17, ( F if ea t hen e1 else e2 =;, v 

17,( F ea=;, false 17,( F e2 =;, v 
------------- v.15 

17, ( F if ea t hen e1 else e2 => v 

17, ( F e1 => w add(17, x, w) , ( F e2 => v 
-------- - ------- v. 16 

17, ( p let x : = e 1 in e2 =;, v 

Vi E {l, ... ,n}: 17,( F ei => Vi (v1 , .. . ,vn,w) E ((J) 
------------ - ------ -- v. 17 

17, ( F f ( e 1 , . .. , en) =;, w 
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T heorem 2.30 (Soundness). Let r be a type assignment over FV(e), and Ga 
signature assignment over SN ( e). If 17 is consistent with r , and ( is consistent 
with 8 , and f , 8 I- e : T , then the following holds: 

(a) there is a complex value v, such that 17, ( F e =;, v; 

(b) for all v E V, if 17, ( F e =;, v then v E [r ]. 

Proof. We prove the theorem by induction on the number of rules necessary 
to derive f , 8 j- e : T. 

The base case involves Rules T . 1-T. 3. 

For Rule T.l, e = a and T = b. 

(a) Clearly, a E A. We apply Rule v . l , thus v = a. 

(b) Let v E V, such that 17, ( F a =;, v . The only rule that could have been 
applied is Rule v.l, so v = a. From Rule T . l , v E [b ] . 
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For Rule T.2 , e = x and T = r (x) . 

(a) We apply Rule v.2 , hence v = get(a ,x) . 

(b) Let v E V , such that a, ( I= x => v . The only rule that could have been 
applied is Rule v .2, so v = get(a,x) . We know that a is consistent with 
f , thus V E [r (x)]. 

For Rule T.3, e = 0 and T = {-l } 

(a) We apply Rule v .3, thus v = r/J. 

(b ) Let v E V , such th at a , ( I= 0 => v. The only rule that could have b een 
applied is Rule v . 3 1 so v = r/J . By Definition 2.6, v E [{ J.. }]. 

Suppose the theorem holds for all r, 8 I- e: T that can be derived by n rules. 
We now prove it also holds for r , 8 I- e : T that can be derived by n + 1 rules. 

l. Suppose the last rule used t o derive r , 8 f-- e : T was Rule T.4 . Then we 
can apply the induction hypothesis tor, 8 I- e : µ , wit h µ j T , so 

(i) :3v' E V: a , ( I= e => v' ; 

(ii ) for a ll v' E V, if a , ( I= e => v' then v' E [µ ]. 

(a) From case l i, simply take v = v'. 

(b) Let v E V , such that a, ( I= e => v . From case lii, v E [µ ]. Since 
µ j T , by Lemma 2.9, [µ] ~ [T]. Hence v E [T]. 

2. Suppose the last rule used to derive r , 8 I- e : T was Rule T.5. Then 
e = { e'} , T = { T 1

} , and we can apply the induct ion hypot hesis to 
f , 8 I- e1 

: T
1

, SO 

(i) :3 v' E V: a,( I= e' => v' ; 

(ii) for all v' E V, if a , ( I= e' => v' then v' E [T']. 

(a) Take v' from case 2i. We apply Rule v.4 , t hus v = { v'}. 

(b) Let v E V, such that u, ( I= { e' } => v . The only rule that could 
have been last applied is Rule v .4, so t here is a value v", such that 
v 11 was produced by evaluation of e1 under a and (, and v = { v"}. 
From case 2ii , v11 E [T' ]. By Definition 2.6, v = { v" } E [{ T1}]. 
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3. Suppose the last rule used to derive r , 8 f- e: T was Rule T.6. T hen 
e = 1:1 U e2, and we can apply the induction hypothesis to r , 8 f- ei : T , 

for i E { 1, 2} , so 

(i) :lvi E V: a,( F ei => Vi ; 

(ii) for all Vi E V, if a , ( F ei => Vi then Vi E [Tj; 

( a) Take v 1 and v2 from case 3i. We know from case 3ii that v 1 and v2 

are sets. Hence, we apply Rule v.5 , thus v = v1 U v2. 

(b) Let v E V, such that a, ( F e1 U e2 => v . The only rule that could 
have been last applied is Rule v. 5, so, for i E { 1, 2} , there is a 
value v:, such that v~ was produced by evaluation of ei under a and 
(. Thus v = v~ U v~ . From case 3ii, v~ E [T]. By Definition 2.6, 
V = v~ u vb E [ T]. 

4. Suppose the last rule used to deriver, 8 f- e : Twas Rule T.7. Then 
e = LJ e', T = { T'}, and we can apply the induction hypothesis tor , 8 f­
e' : { { T 1 

}} , SO 

( i) :3 v' E V : a, ( F e' => v' ; 

(ii) for all v' E V, if a ,( Fe' => v' then v' E [{ {T' } }]. 

(a) Take v' from case 4i. We know from case 4ii that v1 is a set of sets. 
Hence, we apply Rule v .6, thus v = LJ v'. 

(b) Let v E V, such that a , ( F LJ e' => v. The only rule that could 
have been last applied is Rule v. 6, so there is a value v", such that 
v" was produced by evaluation of e' under a and (, and v = LJ v" . 
From case 4ii, v11 E [{ {T1

} }]. By Definition 2.6, v = LJ v" E [{T'H . 

5. Suppose the last rule used to derive r , 8 f- e: T was Rule T.8. Then 
e = \ l1: el, · ·· , ln : en), and T = (fi : TJ, · · · , ln : Tn) · \!\Te can apply the 
induction hypothesis to r , 8 f- ei : Ti, for i E {1, . . . , n}, so 

( i) :3 Vi E V : a, ( F ei => v i ; 

(ii) for all vi E V, if a, ( F ei => vi then Vi E [Ti] . 

(a) For ,;, E { 1, ... , n }, take vi from case 5i. We apply Rule v . 7, thus 
V = ( l1 : V 1 , .. , , fn : Vn) . 

(b) Let v E V, such that a, ( F (l1: e1 , ... , Zn : en) => v . The only rule 
t hat could have been last applied is Rule v . 7, so, for i E { 1, . .. , n }, 
there is a value v;, such that v; was produced by evaluation of ei 
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under er and ( . Thus v = ( li : v~, . .. , l,.,: v~). From case 5ii, v~ E h]. 
By Definition 2.6 , v = (l1: vi, .. . , l,., : v~) E [( li : T1, . .. , ln : Tn)]. 

6. Suppose the last rule used to derive r , 8 f-- e : Twas Rule T.9. Then e = 
e1.l, and we can apply the induction hypothesis to r , 8 f-- e' : ( . .. , l : T , .. . ), 

so 

( i) :3 v' E V : er, ( F e' ::::} v' ; 

(ii) for all v1 E V, if rr,( p e'::::} v' then v' E [( ... ,l : T , .. . )]. 

(a) Take v' from case 6i. We know from case 6ii that v1 is a t uple type 
wit h a component labelled by l, so v' = ( ... , l: w, . .. ), for some 
w E V . We apply Rule v .8, thus v = w. 

(b) Let v E V, such that er, ( F e1.l =} v . T he only rule t hat could have 
been last applied is Rule v . 8, so there is a value ( .. . , l: v 11

, .• • ) , such 
that it was produced by evaluation of e' under er and (, and v = v". 
From case 6ii, ( .. . , l: v", . .. ) E [ ( ... , l: T, ... )]. By Definition 2.6 , 
V = V 11 E [T]. 

7. Suppose the last rule used to derive r , 8 f-- e : T was Rule T .10. T hen 
e = for x in e 1 return e2 and T = { T2} . We can apply the induction 
hypothesis to r , 8 f-- e1 : { Ti}, SO 

(i) :3v1 E V: er,( F e1::::} v1; 

(ii) for all v1 E V, if rr, ( F e1 ::::} v1 t hen v1 E [{Ti}]. 

We can also apply the induction hypothesis to r[x 1---, T1 ] f-- e2 : T2 , for 
a ll value assignments er' that are consistent with r[x 1---, T1 ], so 

(iii) :3v2 EV: er' F e2 ::::} v2; 

(iv) for all v2 E V, if rr' F e2::::} v2 then v2 E [T2 ]. 

(a) Take v 1 from case 7i. Ftom case 7ii , v1 E [{ T1 }] , so, for w E v1, 
value assignments add(er,x,w) are consistent with r[x 1---, T1] . From 
case 7iii, t here exists a value Vw for each add(er, x, w) . We apply 
Rule v. 9, so v = {vw I w E v1 }. 

(b) Let v E V, such t hat O", ( F for x in e1 return e2 ::::} v . The only 
rule that could have been last applied is Rule v .9, so there is a set 
w that was produced by evaluation of e1 under O" and (; and for 
u E w, the value assignment add(O", x, u), such that v,. was produced 
by evaluation of e2 under add(O", x, u) and ( . Thus v = { V-u I u E w }. 
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From case 7ii, w E [{T1 }] , so each u E [Ti], and each add(a-,x,u) 
is consistent with r[x 1---+ T1]. From case 7iv, each vu E [T2 ]. By 
Definition 2.6 , v = { Vu I u E w} E [{ T2}]. 

8. Suppose the last rule used to derive r , 8 f- e: T was Rule T.11 . Then 
e = (e1 = e2), T = Boolean, and we can apply the induction hypothesis 
to f, 8 f- ei : T

1
, for i E { 1, 2}, SO 

(i) :lvi E V: a-,( F ei =} Vi; 

(ii) for all vi E V, if a-, ( p ei => Vi then Vi E [T']. 

(a) Take v1 and v2 from case 81. We know from case 8ii that v1 and 
v2 are elements of [ T 1

]. If v1 = V2, we can apply Rule v. l O, so 
v = true. If V1 f v2, we can apply Rule v.11 , so v = false. 

(b) Let v E V, such that a-, ( p e1 = e2 => v. The only rules that 
could have been last applied are Rule v .10 and Rule v .11. If it was 
Rule v.10, then v = true E [Boolean]. If it was Rule v.11 , then 
v = false E [Boolean]. 

9. Suppose the last rule used to derive r, 8 f- e : T was Rule T.12. Then 
e = (e' = 0), T = Boolean, and we can apply the induction hypothesis 
to f 1 8 f- e1 

: { T
1
}, SO 

(i) :lv' E V: a-,( p e' =} v'; 

(ii) for all v' EV, if a-, ( p e1 => v' then v' E [{ T 1
}]. 

(a) Take v' from case 9i. We know from case 9ii that v' is a set. If 
v' = 0, we can apply Rule v .12, so v = true. If v' f. 0, we can 
apply Rule v.13, so v = false. 

(b) Let v E V , such that a, ( F e' = 0 => v . The only rules that 
could have been last applied are Rule v .12 and Rule v .13. If it was 
Rule v. 12, then v = true E [Boolean). If it was Rule v.13, then 
v = false E [Boolean]. 

10. Suppose the last rule used to derive r ,e f- e: Twas Rule T.13. Then 
e = if eo then e1 else e2, and we can apply the induction hypothesis to 
f , 8 f- ei : T, SO 

(i) for i E {0, 1, 2} , :lvi EV: a-,( p ei =} vi; 

(ii) for all vo E V, if a-, ( p eo =} vo t hen vo E [Boolean); 

(iii) for i E {1,2 }, for all vi E V, if a-,( p ei => Vi then vi E [T]. 
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(a) For i E {O, 1, 2} , take vi from case lOi. We know from case lOii that 
vo E [Boolean]. If vo = true , we can apply Rule v. 14, so v = v1. 

If v0 = false , we can apply Rule v .15, so v = v2. 

(b) Let v E V , such that a, ( p if ea then e1 else e2 ::::;, v . The only rules 
t hat could have been last applied are Rule v .14 and Rule v .15. If 
it was Rule v. 14, then v was produced by evaluation of e1 under a 
and ( . If it was Rule v.15 , then v was produced by evaluation of e2 
under a and ( . From case lOiii, v E [r ]. 

11. Suppose the last rule used to derive r ,e f- e : Twas Rule T.14. Then 
e = let x := e1 in e2 . We can apply the induction hypothesis to r , 8 f­
e1 : T

1
1 SO 

(i) ::l v1 E V: a ,( F e1::::} vi ; 

(ii) for all v1 E V, if a , ( F e1 ::::;, v1 then v1 E [r']. 

We can also apply the induction hypothesis to f[x 1---. r'J f- e2 : r , for all 
value assignments a' that are consistent with r[x 1---. r'], so 

(iii) ::lv2 E V: a' F e2::::} v2; 

(iv) for all v2 E V, if a' F e2::::;, v2 then v2 E [r ~. 

(a) Take v1 from case lli. From case llii , v1 E [r '], so add(a, x , v1 ) is 
consistent with r[x 1---. r'J . From case lliii with a' = add(a, .r , vi) , 
take value v2 . We apply Rule v .16, so v = v2 . 

(b) Let v E V , such that a, ( F let x := e1 in e2 ::::;, v . The only rule 
that could have been last applied is Rule v .1 6, so there is a value 'V~ 

that was produced by evaluation of e1 under a and (, and the value 
assignment add(a, x , 'VD, such t hat v was produced by evaluat ion of 
e2 under add(a, x, vD and ( . From case llii we know add (a , x , vD 
is consistent with f [x 1---. T

1
], so, by case ll iv, v E [ T]. 

12. Suppose the last rule used to derive r, 8 f- e : T was R ule T .15. T hen 
e = J (e1, ... ' en ), with 8 (!) = T] X . . . X Tn -) Tout, and T = T out· We 
can apply the induction hypothesis tor, 8 f- ei : T i , for i E { 1, ... , n }, 
so 

(i) 3 viE V:a, ( pei ::::;, vi ; 

(ii) for all Vi E V , if a , ( F ei::::;, vi then vi E h]. 
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(a) For i E {l , ... , n}, take Vi from case 12i. We know ( is consis­
tent with 8 , and, from case 12ii, vi E [Ti] . By Definition 2.15, 
((!) is a total relation, so there must be a w E [Toud, such that 
(v1 , ... , Vn, w) E ((!). We apply Rule v.17, therefore v = w. 

(b) Let v E V, such t hat a, ( f= f (e1 , .. . , en) => v . The only rule that 
could have been last applied is Rule v .17, so, for i E {1, ... ,n}, 
there is a value vL such that v: was produced by evaluation of ei 
under a and (, and (v~, ... , v~, v) E ((!). Since ( is consistent with 
8 , V E [Tout ]. 

D 





3 

Towards a dataflow repository 

3.1 Storing past executions of NRC dataflows 

In a dataflow repository, we want to keep sufficient information about the 
different executions we have performed of each dataflow. To achieve this, it is 
not always enough to just keep the input values. Indeed, if non-deterministic 
service functions are used in a dataflow, merely rerunning the dataflow on 
the same inputs may not produce the same result as before. It is also not 
sufficient to keep only the final result of every execution in addition to the 
input values. \Vhen the final result value is vast and complex, it is desirable 
to be able to track how a particular subvalue of that result was produced 
during an execution. Again, as before, merely rerunning the dataflow will not 
do. It is obvious that we need to keep, for each execution of a dataflow, the 
output of each called service function in addition to the inputs of the dataflow. 

Often some other intermediate result values, produced by evaluation of subex­
pressions other than service functions , are also important. Those intermediate 
results may help with debugging the dataflow during the design phase, or may 
enable performing partial reruns of the dataflow. 'We can naturally represent 
this information as triples consisting of an identification of executed subex­
pression, the used inputs, and the corresponding result. A set containing such 
triples, forms a log of an execution of a dataflow, or, in other words, a past 
"run" of a dataflow. 

Eventually, the designer of a dataflow may indicate during design for which 
subexpressions the information should be stored in the repository, depending 
on the application of the dataflow. If it is desirable for the users to have 
access to complete executions of the dataflow, then at least the inputs of the 
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dataflow, and the intermediate result values of all service functions that are 
known, or suspected, to be non-deterministic,* must be stored. 

T herefore, in the next subsection , we define Rules R.1- R . l 7 that produce a run 
of an NR G expression, on a chosen value assignment and function assignment. 
The resulting set contains triples with information about all values produced 
during evaluation of that expression. As previously mentioned , not all these 
triples must be stored. Moreover, the same rules can be used to reconstruct 
a past execution from stored triples, as long as the stored triples provide 
adequate information. 

Caveat 3.1. The complete , or as detailed as possible, record of a past execu­
t ion of some workflow, applied to certain input, and leading to a final result, is 
commonly called t he (workflow) provenance [MCF+11J or retrospective prove­
nance [FKSS08] of that result. In the context of our model, we refer to such 
a record as a run. 

3.1.1 Run semantics of an NRC expression 

Let e be an NRC expression, u a value assignment over FV(e), and ( a function 
assignment over SN(e) . 

We represent a run R of e under u and ( as a set consisting of triples. Each 
triple is of the form (<Ii1,u1 ,v1

), where <Ii' is an occurrence of subexpression e' 
of e, i.e., <Ii' t----0 e,t and where u', ( I= e' =} v' holds. In particular , if v is the 
final result value of evaluating e under u and ( in R , then R always contains 
the triple ( [ e], u, v) . 

Recall that there can be more than one run for a given expression e, given 
a value assignment u, and a function assignment (, due to the possibly non­
deterministic nature of the service functions used in ( . In general, there is at 
least one run for each possible result value of e under u and ( (Theorem 3.5). 

The following Rules R.1- R. l 7 formally define a run R of e under u and ( . The 
rules infer judgements of the form u, ( ~ e =} R , meaning "R is a possible 
run resulting from evaluation of e under u and (". These rules also define 
result(R): the final result value of run R. 

We intensively use the prefixing operation defined in Eq. A.l. The rules should 
be read with the operator "·" having a higher precedence than t he operator 

*Even deterministic service functions may fail (due to, e.g., connection fai lure , or a non­
compatible change to the invoked external service), and recording the failu re may be advis­
able in some cases. From this point of view, all service funct ions are non-determ inistic. 

t Remember , we represent an occurrence of a subexpression by a subexpression path 
ending in that particular subexpression (Definition 2.20) 
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"U", for example, [e, 1 J · R1 U [e, 2] · R2 should be read as ([e, 1] · R1)U([e, 2] · R2 ). 

a E A R:= {([a], a,a)} 
d f R. l 

a, (~a=> R result(R ) ~ a 

x E X R := {([x], a, get(a,x))} 
df R.2 

a, ( ~ x => R result(R ) ~ get(a, x) 

R := { ([0 ], a, 0)} 
I R.3 

a, ( ~ 0 => R result(R) ~ 0 

e = { e'} 
a , (~ e1 => R' v := { result (R' )} R := [e] · R' U { ([el, a, v)} 

df R.4 
a, ( ~ e => R result(R ) ~ v 

e = (e1 U e2) 
a, ( ~ e1 => R1 a, ( ~ e2 => R2 v := result(R1) U result(R2 ) 

R := [e, l] · R1 U [e, 2] · R2 U { ([el, a, v) } 
------- ----------------- R.5 

a,(~ e => R result(R ) ~ v 

e= LJ e' 
a,(~ e' => R' v := LJ result(R') R := [e] · R' U {([el, a , v)} 

If R.6 
a, ( ~ e => R result( R) ~ v 

Let us explain Rule R. 6. We see that, in order to be able to derive a possible 
run R of e on given a and (, we must first derive a possible run R' for e' on 
the same a and ( . From this part icular R', we construct a final result value 
v for e, and a run R of which v is the final result value. This R is one of the 
possible runs of e on a and (, in part icular the one that has R' as its subrun 
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which, as we show in Section 4.2.1, can be found in R by subexpression path 
[e; e'J and CT. 

e = ( Z1: e1, ... , ln,: en) 'r/i E { 1, . .. , n}: CT, ( ~ ei => ~ 
v := ( l1: result(R1), ... , ln,: result( Rn) ) 

R := (uiE{l, ... ,n}[e, 4] · Ri) u {( [e], CT , v)} 
·---------------------~ R.7 

CT , ( ~ e =;, R result(R) ~ v 

e = e'.l 
result(R') = ( ... , l: v, .. . ) 

CT , ( ~ e' =;, R' 
R : = [ e] · R' U { ( [e 1, CT, v) } 

d R.8 
CT, ( ~ e =;, R result(R) ~ v 

e = for x in e1 return e2 
CT , ( ~ e1 =;, R' result(R') = { W1, •.. , W n} with all distinct Wi 

'r/i E {l , ... ,n} : add(CT,x , wi),( ~ e2 =;, Ri 
v := { result( Ri), .. . , result(Rn)} 

R := [e, 1] · R' U (uiE{l, ... ,n}[e, 2] · Ri) U { ([el, CT, v)} 
---------~- - - ------------ R.9 

result(R) ~ v 

Let us explain Rule R.9. We see that we must first derive a possible run R' 
for e 1 on the same CT and (. We then use t he elements of the result value of 
R': for each element Wi, we extend CT by adding the pair (x, Wi), and use the 
new value assignment together with ( to derive a possible run ~ for e2 . From 
all these runs of e2, we construct a final result value v for e, and t hen we use 
R' and all the runs of e2 to construct a run R of e, of which v is the final 
result value. T his run R is, again, one of the possible runs of e under CT and 
(, in particular the one t hat has R' and all the runs of e2 as its subruns. We 
can find R' in R by [e; l ; e1 ] and a, and we can find each~ by [e; 2; e2] and 
add(CT, x, Wi)-

CT,(~ e1 => R1 
v := true 

e = (e1 = e2) 
CT, ( ~ e2 => R2 result(Ri) = result(R2 ) 

R := [e, 1] · R1 u [e, 2] · R2 U { ([el, CT, v)} 
- --------------------- -- R.10 

result ( R ) ';;! v CT, ( ~ e => R 
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e = (e1 = e2) 
a, ( ~ e2 ::::} R2 result (R1 ) I- result (R2) 

R := [ e, 1 J · R1 U [ e, 2] · R2 U {( [ e], a , v) } 
·~~~~~~~~~~~~~~~1~~~~~~ R.11 

a ,(~ e::::} R result( R ) ~ v 

a, ( ~ e1::::} R1 
v := fal s e 

e = (e' = 0) a ,( ~ e1
::::} R' 

result (R') = 0 v := t r u e 

a, ( ~ e::::} R 

R := [e] · R' U {([el, a, v) } 
d 

1 
R.12 

result (R ) ~ v 

e = (e' = 0) a , ( ~ e' ::::} R' 
result( R' ) I- 0 v := false 

a, ( ~ e =} R 

R : = [ e J · R' U { ( [ e], a, v) } 
d 

1 
R.13 

result (R ) ~ v 

e = if eo t hen e1 else e2 
a, ( ~ eo ::::} Ro result (Ro) = true a, ( ~ e1 ::::} R1 

v := result (R1 ) R := [e, OJ · Ro U [e, 1] · R1 U {([el, a, v) } 
d 

1 
R. 14 

a, ( ~ e =} R result ( R) ~ v 

e = if eo then e1 else e2 
a, ( ~ eo::::} Ro result(Ro) = false a, ( ~ e2::::} R2 

v := result (R2) R := [e, OJ · Ro U [e, 21 · R2 U { ([el, a, v)} 
d 

I 
R.15 

a ,( ~ e =} R result(R) ~ v 

e= let x :=e1 in e2 
a, ( ~ e1 ::::} R1 add(a , x, result(R1)), ( ~ e2::::} R2 

v := result (R2 ) R := [e, l] · R1 U [e,2] · R2 U {([e], a, v)} 
d. R.1 6 

a, ( ~ e::::} R result(R ) ~ v 

4 1 
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e =f(e1, ... ,en) Vi E {l, . .. ,n}: a,( f1ei =;, R;, 
(result (R1), . .. , result(Rn), v) E ((!) 

R := (LJiE{l, ... ,n}[e,i] · R;,) U {([e], a, v)} 
- ----'-------- -~------ - R.17 

a, ( ~ e =;, R result(R ) '!;/, v 

Example 3 .2 . We execute t he following NRC expression: x U {y .r }. 

Let e = x U e1, e1 = {y.r }, and e2 = y .r . Let a= [(x, ini), (y, in2)], wit h 

in1 {(a : l ,b: l ),(a: 3,b : 9),(a: 5,b : 25)} , 

in2 ( k: odd, r: (a: 5, b : 25)) . 

T he only run R of e under given a and empty ( is+ 

R = { ([e, 1,x], a , in1), 

([e, 2,e1,e2,yJ, a, in2), 

([e, 2, e1, e2J, a, vp), 

([e,2,e1J, a, Vs), 

([e], a, out)} 

wit h Vp = (a: 5, b: 25), Vs= { ( a: 5, b: 25) }, and 

out= {(a: 1, b: 1), (a: 3, b: 9), (a: 5, b: 25)} . 

Example 3 .3 . We execute the following NRC expression: 

for x in y return (b: x.b, c : .f(x.a)). 

D 

Let e = for x in y return e1 , e1 = (b: e2, c: e3), e2 = x .b, e3 = J(e4), and 
e4 = x.a. Let a = [(y, in)], wit h in = { in1 , in2, in3}, and 

in1 (a:2,b:4), 

in2 (a : 5, b: 2), 

in3 - (a:5,b:4) . 

•There are no service names in e, so ( = 0. 
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Let { (2, 1), (5, 1) , (5, 7)} ~ ((!). A possible run R of e under given CJ and ( is: 

R = { ([e,l,y], CJ, in), 

([e, 2, e1, b, e2, x], add(CJ, x, in1), in1) , 

([e, 2,e1, b,e2,x], add(CJ,x,in2), in2), 

([e, 2, e1, b, e2, x], add(CJ, :1:, in3), in3), 

([e,2,e1 , b, e2], add(CJ,x,in1): b1), 

([e, 2, e1, b, e2J, add(CJ, x, in2): b2) , 

([e, 2, e1, b, e2J, add(u, x, in3): b3) , 

([e, 2, e1, c, e3, 1, e4, x ], add(u, x, in1) , in~), 

([e, 2,e1,c,e3 , l ,e4,x), add(cr,x,in2), in~) , 

([e , 2, e1,c,e3, l ,e4,XJ, add(CJ,x,in3) , in;) , 

([e , 2,e1,c,e3, l ,e4], add(CJ,x,ini), a1), 

( [ e, 2, e1 , c, e3, 1, e4], add ( u, x, in2) , a2) , 

([e, 2, e1 , c, e3, 1, e4], add(cr, x, in3), a3) , 

([e, 2, e1, c, e3], add(CJ, x, in1) , w1), 

([e,2,e1,c,e3], add(CJ,x,in2), w2) , 

([e,2 ,e1,c,e3], add(CJ,x , in3), w3) , 

([e, 2, ei], add(CJ, x , in1) , vi), 

([e, 2, e1 ], add(cr, x , in2), v2), 

([e,2,e1 ], add(CJ,x,in3), vs), 

([el, er, out)} 

'hb b 4b 2 ., . •/ . · / . 2 5 wit 1 = 3 = , 2 = , in1 = in1, zn2 = in2 , in3 = zn3, a1 = , a2 = a3 = , 
W1 = W3 = 1, W2 = 7, V1 = (b : 4,c: 1), V2 = (b : 2,c : 7) , V3 = (b : 4,c : 1), 
andout = { (b:4,c :1),(b:2,c :7)} . D 

Not e t hat in the third component of each run-triple, instead of a complex 
value, we use a unique identifier for that value ( unique in the scope of the 
run) . For a complex value , t he unique identifier helps to locate the correct 
triple the value belongs to. In the following, we continue to use these examples 
to illustrate other concepts, and the identifiers are useful as a visual aide. (In 
Proposition 3.10 we prove that we can uniquely identify a complex value in a 
run, without explicit identifiers) . 

The following proposition can be proven by straightforward comparison of each 
rule from Rules R. l - R. 17 with t he corresponding rule from Rules v . l -v.17. 

Proposition 3.4. If CJ, ( ~ e =:> R , then u , ( p e =:> result(R). 
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Theorem 3.5 (Soundness). Let r be a type assignment over FV(e) , and G a 
signature assignment over SN ( e). If CT is consistent with r , and ( is consistent 
with G, and r, e I- e : T, then the following holds: 

(a) there is a run R, such that CT, ( ~ e => R; 

{b) for each run R, if CT, ( ~ e => R then result(R) E [T] . 

Proof. Part b of the theorem follows directly from Proposition 3.4 and Theo­
rem 2.30. 

We prove part a by induction on the structure of e. The base case involves a 
constant, a variable, or an empty-set expression. 

If e = a, we apply Rule R.l , thus R = {([a],CT, a)}. If e = x, we apply 
Rule R.2 , thus R = {( [x], CT, get(CT,x))}. If e = 0, we apply Rule R.3, thus 
R = {([0],CT,0) }. 

Let us assume part a of the theorem holds for expressions of height n. § We 
now prove it also holds for expressions of height n + 1. 

1. If e is of the form 

(i) { e' }, 

(ii) LJ e' , or 

(iii) e' .l , 

t hen we can only consider (i) Rule R.4; (ii) Rule R.6; or (iii) Rule R.8. 
We can apply the induction hypothesis to e', so there is a run R', such 
that CT,(~ e' => R', with result(R') of the same type as e' . Let (i) v = 
{ result(R')}; (ii) v = U result(R'); (iii) result(R') = ( . .. , l: v, .. . ). Let 
R = [e] · R' U {([e],CT,v) }. By the corresponding rule, CT,( ~ e => R. 

2. If e is of the form 

(i) e1 U e2, 

(ii) ( e1 : {i, ... , en, : ln) , or 

(iii) f ( e 1, ... , en) , 

then we can only consider (i) Rule R.5; (ii) Rule R. 7; or (iii) Rule R.1 7. 
Let (i) I= {1 ,2 }; (ii- iii) I= {l, ... ,n} . For i E J , we can apply the 
induction hypothesis to ei, so there is a run~ such that CT, ( ~ ei => Ri, 
with result(R-i) of the same type as ei . Let 

~ By "height " of an expression e we mean t he height of the syntax tree of e. 
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(i) v = result(R1 ) U result (R2), and , for i E I , mi= i; 

(ii) v = ( l1 : result(R1), ... , ln: result( Rn )), and, for i E I , mi= 4; 

(iii) (result( R1) , . . . , result (Rn), v) E ((!), and, for i E J , mi= i . 
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Let R = u iEJ [ e, m i] . Ri u { ( [ e], a, V)} . By the corresponding rule, 
a , (~ e =} R. 

3. If e = for x in e1 return e2, then we can only consider Rule R.9. Since e 
is well-typed, there is a type r 1 such that e1 : { T 1 }. We can apply the 
induction hypothesis to e1, so there is a run R1 such that a, ( ~ e1 =} R1, 

with result(R1) E [{ T1}]. Since, for each w E res·ult(R1 ), f [x f-, r i] is 
consistent with add (a, x , w), we can apply the induction hypothesis to 
e2, so there is a run Rw such that add(a ,x,w),( ~ e2 =} Rw. Let 
v = {result(Rw) I w E result(R1)} and 

R = [e, 1] · R1 U U wEresult(Ri) [e, 2] · Rw U { ([e], a, v) }. 

By Rule R.9, a , ( ~ e =} R. 

4. If e = ( e1 = e2), then we can only consider Rules R. l 0-R. l l. We can 
apply the induction hypot hesis to both e1 and e2, so there are runs R1 
and R2 , such that, for i E {l, 2}, a , ( ~ ei => R;, with result(R;) of the 
same type as ei . Let R = [e, l ] · R1 U [e, 2] · R2 U {([e],a,v) }, with 
v = true if result(R1) = result(R2), and v = false if result(R1 ) =I= 
result(R2). By Rule R.10 and Rule R.11 , resp ectively, a, ( ~ e =} R . 

5. If e = (e' = 0), then we can only consider Rules R.12-R.13. We can 
apply the induction hypothesis to e' , so there is a run R' , such that 
a,(~ e' =} R' , with result(R') of the same type as e'. Let R = [e] · 
R' U {([e],a,v)}, with v = true if result(R') = 0, and v = false if 
result(R')-/=- 0. By Rule R.12 and Rule R.13 , respectively, a ,(~ e => R. 

6. If e = if eo then e1 else e2, then we can only consider Rules R.1 4-R.15. 
For i E {O, 1, 2}, we can apply the induction hypothesis toe;, so there is 
a run Ri such that a, ( ~ ei => Ri, with result(Ri) of the same type as 
ei. Let R = [e, O] · Ro U [e,j] · Rj U {([e], a , tesult(Rj) )} , with j = l if 
res11,lt(Ro) = true , and j = 2 if result(Ro) = false. By Rule R.1 4 and 
Rule R. 15, respectively, a, ( ~ e => R. 

7. If e = let x := e1 in e2 , then we can only consider Rule R.16. Since 
e is well-typed, there is a type r' such that e1 : T 1

• We can apply 
the induction hypothesis to eJ, so t hP.re is Pt. run R1 such that a, ( ~ 
e1 =} R1, with res11,lt( R1 ) E [T']. Since f [x f-, T 1

] is consistent wit h 
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add(cr, x , result(R1)) , we can apply the induction hypothesis to e2, so 
there is a run R2 such that add (er, x, result ( R 1)), ( ~ e2 ::::;,- R2. Let 
R = [e, l ] · R1 U [e, 2] ·R2 U {([e], cr,result(R2))} . By Rule R.16, 

er, ( ~ e ::::;,- R. 

D 

Next , after three auxiliary lemma's , we show that each triple in a run can be 
uniquely identified. 

Definition 3.6 (Subexpression invocation). Let er, ( ~ e ::::;,- Rand (<1? ', cr1, v') E 
R. We call (<I>' , cr') a subexpression invocation of R . We use SI (R ) to denote 
the set of all subexpression invocations of R. 

Lemma 3.7. Let er, ( ~ e ::::;,- R. Then there is only one triple in R having [e] 
as its first component, i .e., the triple ([el, er, result(R)). Moreover, there are 
no other triples with a trivial subexpression path in the first component. 

P roof. A simple inspection of t he rules in Section 3.1.1 is sufficient . Indeed , 
in each rule, the only triple with a trivial subexpression path in the first 
component t hat is added t o run R is exactly ([el, er, result (R )). D 

Le mma 3 .8. Let er,(~ e ::::;,- Rand (<I>' , cr' ,v') E R. Then 

1. <I>' is a subexpression path of e; 

2. er is a prefix of er' . 

Proof. A simple inspection of the rules in Section 3.1.1 is sufficient. 

1. Indeed, the sequence in t he first component of each triple is constructed 
according to Definition 2.20. 

2. T he only rules where an occurrence of a subexpression of e is evalu­
ated under another value assignm ent than er, are Rule R.9 for an for­
expression, and Rule R.16 for an let-expression. Value assignments used 
in these rules, by construction, clearly have er as a p refix. 

D 

Lemma 3.9. Let er,(~ e1 ::::;,- R'. Let result(R') = {w1, . .. ,wn } , with all 
distinct Wi· For i E {l , ... ,n }, let add(cr,x,wi),( ~ e2 ::::;,- ~ - Then, for 
i, j E { 1, . .. , n }, Ri and Rj are disjoint if i -=I= j. 
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Proof. Foreach i E {l , ... ,n} and (q:i' , a' ,v') E /4, byLemma 3.8, add(a,x,wi) 
is a prefix of a'. Since aU values Wi are distinct, also all add(a, x, wi) are dis­
tinct. Hence, all /4 are mutually disjoint. D 

Proposition 3.10. Let a,( ~ e => R and (q:i , O'') E SI (R ). Then (q:i , a' ) 
corresponds to exactly one triple in R. 

Proof. We prove the lemma by induction on the structure of e. 

If e is a constant (Rule R.l ), a variable (Rule R.2), or an empty-set expression 
(Rule R.3), then R is the singleton { ([e], a, result( R ))} and (q:i,a' ) = ([e],a). 
Clearly, ([ e], a) corresponds to exactly one triple in R. 

Let us assume the lemma holds for expressions of height n. We now prove it 
also holds for expressions of height n + 1. 

l. If e is of the form 

(a) {e'} (Rule R.4), 

(b) LJ e' (Rule R.6), 

(c) e'.l (Rule R.8), or 

(d) e' = 0 (Rules R.12- R.13), 

then it follows from the corresponding rules, that there is a run R' for 
e' , such that 

R = [e] · R' U {([e],a, result(R))}. 

Since (q:i, a') E SI(R), by Definition 3.6, there is a value v' such that 
(<1?, a' , v') E R. 

Let (<I> ,a1,v') E {( [e], a, result(R ))} . Then (<I> , a',v') = ([e],a, result(R)). 
Hence, by Lemma 3. 7, ([ e], a) corresponds to exactly one triple in R . 

Let (q:i ,a' ,v') E [e] · R' . Then , by Lemma 3.7, q:> = [e] · W, with a non­
empty W. Therefore ([e] · W,a' ,v') r/. {([e],a,result(R))}. Moreover, 
([e]. w,a' ,v') E [e] · R' implies (w,a',v') E R ', so (w, a') E SI(R'). We 
can now apply the induction hypothesis to R', thus (\JI , a') corresponds 
to exactly one triple in R'. Hence ([e] · W, a') corresponds to exactly one 
triple in R . 

2. Expression e is of the form 

(a) e1 U e2 (Rule R. 5), 

(b) e1 = e2 (Rules R.10-R.11) , 



48 Towards a dataflow repository 

(c) let x := e1 in e2 (Rule R.16) , 

( d ) e = if eo then e1 else e2 (Rules R.14- R.15 ), 

( e) ( li : e1, ... , Zn: en) (Rule R. 7), or 

(f) J (e1,- .. ,en) (Rule R.17). 

Let 

(a-c) I = {1, 2} and, for i E I , mi = i; 

(d ) I = {O, 1} if result(Ro) = true; I = {O, 2} if result(Ro) = false; 
and , for i E I , mi = i; 

(e) I = {1, ... ,n} and, for -i EI, m i= li; 

(f) I = { 1, . . . , n} and, for -i E I , mi= i . 

Then , by the corresponding rules, there are runs~ for ei, for i E I , such 
that 

R = u iEl [e, mi]. ~ u { ([e], a, result(R ))}. 

Since (cI>,a') E SI(R) , by Definition 3.6, there is a value v' such that 
( <P , a', v') E R. 

Let (<P, a', v') E { ([e], a, result(R)) }. Then (<P, a' , v') = ([el, a, result(R) ). 
Hence, by Lemma 3.7, ([el, a) corresponds to exactly one t riple in R. 

Let j E I and (c.I> ,a',v' ) E [e,mj] · Rj- Then <Pis of the form [e,mj] · W, 
for some W. Therefore ([e,mj] · W,a',v') (/. {( [e],a, result( R )) }. Also 
([e,mj ] · W,a' ,v') (/. [e ,mk] · Rk, fork EI\ {j}, because the prefix 
[e, mi] does not match. Moreover, ([ e, mi J · W, a', v') E [e, mj ] · Rj implies 
(w ,a',v') E Rj, so (w ,a') E SI (Rj)- We can now apply the induction 
hypothesis to Rj, thus (w, a') corresponds to exactly one triple in Rj . 
Hence ( [ e, mj] · W, a') corresponds to exactly one triple in R. 

3. If e = for x in e1 return e2, then it follows from R ule R.9, that there is 
a run R1 for e1, and for w E result(R1), there are runs Ru, for e2, such 
that 

R= [e, l ] ·R1 U (Uw[e, 2] ·Rw) U {([e],a,result(R))}. 

Since (cf>, a') E SI(R) , by Definition 3.6, there is a value v' such that 
(<P, a' , v') E R. 

Let ( <.P, a1
, v') E { ([ e], a, result(R)) }. T hen ( <P, a', v') = ([ el, a, result (R) ). 

Hence, by Lemma 3.7, ([el, a) corresponds to exactly one triple in R . 



3.2. External services and subdataflows 49 

Let (<P,CT',v') E [e, 1] · R1. Then <I> is of the form [e, 1] · W, for some W. 
Therefore ( [ e, 1 J · W, CT1

, v') (j_ { ([ e], CT, result ( R))}. Also ([ e, 1] · w, CT1
, v') (j_ 

Uw [e, 2] · Rw, because the prefix [e, l j does not match. Moreover, ([e, l] · 
W,CT',v') E [e, 1] · R1 implies (W,CT1,v1

) E R1, so (W,CT') E SI(R1). We 
can now apply the induction hypothesis to R1 , thus (W,CT') corresponds 
to exactly one triple in R1 . Hence ( [ e, 1] · W, CT1

) corresponds to exactly 
one triple in R. 

Let (<I> , CT1
, v') E Uw [ e, 2] · Rw. Then <I> is of the form [e, 2] · W, for some W. 

Therefore ([e,2] ·'11, CT' ,v') ¢ {([e],CT,result(R))}. Also ([e,2J· W, CT',v') ¢ 
[ e, 1] · R1 , because the prefix [ e, 2] does not match. From Lemma 3.9, we 
know that there is only one 'U E result(R1), such that (w, CT1

, v') E Ru and 
(w, e7

1
) E SI(flu). We can now apply the induction hypothesis to Ru, 

thus (w, CT1
) corresponds to exactly one triple in Hi,. Hence ([ e, 2] · w, CT' ) 

corresponds to exactly one triple in R. 

D 

3.2 External services and subdataflows 

Recall that, in a dataflow repository, we would like to store d ifferent dataflows 
together with their past executions . Each dataflow could be potentially exe­
cuted for distinct value assignments (inputs) , and even more, with different 
function assignments (services). Remember that a function assignment binds 
the service names occurring in the dataflow to service functions. Up till now 
we have simply stated that a service function from [Ti] x .. . x [Tn] to [r0 ut] 
is a total relation on [ Ti] x ... x [ Tn]. However, each service function stands 
for an actual, executable service. Therefore, we must provide a mechanism to 
bind the abstract services to executable ones, essentially providing a transla­
tion of the abstract specification into an executable dataflow. Here, we make 
a distinction between external and internal services. 

A service is external when it is defined outside our system, e.g. , an applica­
tion that queries a public database, an application that executes a particular 
algorithm, or a library function providing data transformations that cannot 
be expressed in NRC. Such a service is often a "black box", when only in­
complete information is available about the computation it provides. In short, 
an external service is not a dataflow. To access an external service, we use a 
service function as an interface.~ 

'liWe still require a ll service functions to be t otal. If a service function JO is used as an 
interface to an external service, then JO is most likely a wrapper relation for that external 
service. We briefly discuss construct ing a wrapper relation in Section A.2. 
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Note that external services account for t he non-determinism in our system . 
Indeed, a data entry of a public database may be updated, an algorithm may 
be revised , and a library function may contain some bugs that need addressing. 
In general, we cannot expect all external services to be deterministic, even if 
their execution is always successful. 

D efinition 3.11 (External services) . Assume a countably infinite set£ of ex­
ternal service identifiers. Assume a given mapping sig : £ ___, S , which assigns 
a signature to each external service ID. Assume a given mapping June : £ ___, F , 
which assigns a service function to each external service ID. 

We require sig and June to be consistent, i. e., 

'</ S E £ : sig ( S) = T1 X . .. X T n ___, Tout ==> June ( S) <;;;; [ Ti] X ... X [ T n] X [ T oud · 

For s E £ , we call ( s, sig ( s) ,June ( s)) the external service identified by s. When 
context allows, we simply uses to refer to (s , sig(s),func(s)). 

Obviously, an internal service is a dataflow. The use of already existing 
dataflows has several benefits, e.g., it enables modular design of dataflows 
and allows for reuse of dataflows. In essence, all previously designed dataflows 
comprise a dataflow library. 

Definition 3.12 (Dataflows) . Assume a countably infinite set V of datafiow 

identifiers, with V and £ disjoint. 

Assume a given mapping expr: V --+ NRC, which assigns an NRC expression 
to each dataflow ID. Assume a given mapping types: V --. TA, which assigns 
to each dataflow ID d a type assignment over FV ( expr( d)) . Assume a given 
mapping signatures: V ___, S , which assigns to each dataflow ID d a signature 
assignment over SN ( expr ( d)) . 

For d E V, we call (d, expr(d), types (d), signatures(d)) the datafiow identified 
by d. We require expr(d) to be well-typed under types(d) and signatures(d) . 
When context allows, we use d to refer to its dataflow. 

If we want to translate a dataflow into an executable one, we need to associate 
service names with external services or available datafl.ows, and subsequently 
construct a function assignment for t he dataflow. When a service name is as­
sociated with a dataflow d, we refer to d as a subdatafiow. Indeed, its execution 
is init iated from another dataflow, its parent datafiow. A complication that 
arises from the use of subdatafiows, is that a subdatafiow d may in turn con­
tain service names, associated with other subdataflows, for which d becomes 
a parent dataflow. In order to avoid non-terminating executions, we must pay 
attention not to create cycles. All these issues are t aken care of by a binding 

tree, and a function assignment derived from a binding tree. 
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3.2.1 Binding trees 

Intuitively, a binding tree specifies, for the dataflow identified by its root label, 
say cl,. , which service names in the NRC expression of dr are bound to external 
services, and which to subdataflows. For these subdataflows, the binding tree 
again specifies a binding for their own service names, and so on. During this 
process, care must be taken to ensure that the NRC expression of the parent 
dataflow, and the expressions of all subdataflows remain well-typed. 

Therefore, we first specify conditions under which a service name f with sig­
nature{) can be associated with an external service or a dataflow. An external 
service is suitable if the complex types in its signature, when used as a replace­
ment for types in 19, allow for the application of the subtyping rule T .4. 

Definition 3.13 (Signature replacement mapping) . Let {)1 = T1 x ... x Tn--, 

Tout and {)2 = µ1x .. . x µm --, µ 0 ut be two signatures. We say that {)2 is a 
signature replacement candidate for {) 1 if and only if the following holds: 

1. 'r/ i E { 1, .. . , m} :3 j E { 1, ... , n} : Tj :::S µi, and 

2. Taut :::S µout· 

If {)2 is a signature replacement candidate for {) 1 , then a signature replacement 
mapping for {) 1 by {)2 is a function rep : { 1, ... , m} --, { 1, ... , n}, such that 
'r/i E {1 , ... ,m}: Trep(i) :::S µ;. 

Note 3.2.1. In the above definition m may not equal n. For example, if a ser­
vice g: Int --, Int is supposed to return the square of its input, we may bind 
it to external service multiply: Int x Int --, Int, with the following signa­
ture replacement mapping: { (1, 1), (2 , 1) }. During execution, g(x) will be re­
placed by mul tiply(x, x). Likewise, if a service g: File x Database - Report 
is supposed to perform a search in a database, and it is always called in 
the dataflow expression with a constant db specifying the database, then 
we may bind it to external service searchDB: File --, Report , performing 
the required search in database db. The signature replacement mapping is 
{ (1 , 1) }, and g(x , db) will be replaced by searchDb(x) . Another example for 
m < n is when a parameter is simply ignored. If a service g: Database x 
Keyword x Quality --+ { Image } is supposed to retrieves images from the 
specified database, based on t he given keyword and quality specification, then 
we may bind it to external service keywordSearch: Database x Keyword --+ 
{Image} , ignoring the quality specification (it may be the only external ser­
vice available, or it searches in databases that only provide one quality). T he 
signature replacement mapping is { (1, 1 ), (2, 2) }, and g(x 1 y, z) will be replaced 
by keywordSearch(:r;, y). D 
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Similarly, a dataflow dis suitable as a subdataflow for f with signature {), if 
we can map the free variables in expr(d) to complex types in{), such that t he 
type assignment of d allows for application of the subtyping rule T.4 . 

Definition 3.14 (Replacement mapping) . Let {) = T1 x .. . x Tn --; T aut · Let 
e be an NRC expression, r a type assignment over FV(e), and 8 a signature 
assignment over SN(e). Let r, e f- e: /L. 

We say that e, r and 8 are replacement candidates for {), if and only if the 
following holds: 

l. VxE FV (e):3iE{ l , . .. ,n}:,:ij r (x),and 

2. Tout ::5 µ. 

If e, r and 8 are replacement candidates for {), then a replacement mapping 
for {) by e and r is a function rep : FV (e) --; {1, . .. , n }, such that 

V XE FV(e): Trep (x) j r(x) . 

We are finally ready to define a binding tree. 

D efinition 3.15 (Binding tree) . A binding tree for a dataflow d is a finite 
structure (T, ,\, M), where 

• T = (r, V , E) is a finite tree with root r , r E Vand E ~ Vx V ; 

• ,\ is a function defined on V UE, that labels each node with either a 
dataflow identifier or an external service identifier , and each edge with 
a service name; 

• M is a function defined on V\ { r }; 

such that t he following properties are satisfied: 

1. ,\(r) = d. 

2. Only leaves can be labeled with external service identifiers. 

3. If node x is labelled with d' E D , t hen x h as precisely as many children as 
there are service names in SN( expr(d')), and for each f E SN(expr (d')), 
t here is exactly one child edge labelled with f. 

4. If node x is a leaf with parent y , where 
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• A(x) E £ 

• A(y) = d' E D, and 

• the edge (y, x) is labelled with f , 

then sig ( A ( x)) is a signature replacement candidate for signatures ( d') (J). 
Moreover, lVJ( x) is a signature replacement mapping for signatures ( d') (.f) 
by sig ( A ( X)) . 

5. If node x is an internal node, and z is a child of x, where 

• A ( X) = d' E V ) 

• A( z) = d" E D , and 

• >.((x , z)) = f, 

then expr(d"), types(d"), and signatures(d") are replacement candidates 
for signatures(d')(J). Moreover, M (x) is a replacement mapping for 
signatures(d')(J) by expr(d") and types(d") . 

Observe that each subtree of a binding tree is again a binding tree (with >. 
and M restricted to this p articular subtree). 

Note 3.2 .2 . Let d E D and e = expr(d). We sketch a recursive procedure 
by which all possible binding t rees (T, >. , M) for d can be constructed, with 
T= (r, V, E ). 

If SN(e) = 0, then 

•V={r}; 

• E = 0; 

• [>. ]={(r, d)} ; 

• [M] = 0. 

If SN(e) i- 0, then let r = types(d) and 8 = signatures(d) . 

Choose I ~ SN(e), such that I contains all service names that you want to 
bind to subdataflows. Then E = SN(e) \ I contains t he service names t hat 
you want to bind to external services. 

Construct a mapping extemazd from E to £ , such that for each g E E , 
sig( extemald(g)) is a signature replacement candidate for 8(g ). Then, for 
each g E E, construct a signature replacement mapping rep

9 
for 8 (g) by 

sig( externald(g) ). 
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Construct a mapping intemald from I to D, such that for each J E I, 1, r f 
and 81 are replacement candidates for 8(!), with ef = expr(intemal (!)), 
r f = types(intemald(J)), and 81 = signatures(internald(J)). Then, for each 
f E I , construct a replacement mapping rep1 for 8 (!) by e1 and f J· 

Now, for each f E I , recursively construct a binding tree (Ti, AJ, MJ) for 
intemald(J), with TJ = (r1 , V1,E1)-

Finally: 

• Let G = { Xg I g EE} be a set of new nodes. Then 

V={r} U G U LJ{VJ If EI}; 

• E = {(r ,xg) I g E E} U { (r,r1) If E J} U LJ{E1 If EI}; 

• [,\] = {((r,xg) ,g) I g E E} U { ((r,r1),f) If E I} U LJ{[>..j] If EI}; 

• [ M ] = { ( x g, rep g) I g E E} U { ( r J, rep f) I J E I} U U { [ MJ ] I f E I}. 

D 

Remember, t hat before executing an NRC expression we need a signature as­
signment and a function assignment for its service names. A binding tree {3 for 
a dataflow d encodes a signature assignment for expr(d) t hat may differ from 
signatures(d). Moreover, /3 associates service names in expr(d) with services 
that can be actually executed. What we need now is a function assignment 
for expr(d) that is consistent with t he signature assignment encoded in (3 . 

We define a function assignment specified by a binding t ree by induction on 
the height of the t ree. 

D efinition 3.16. Let /3 = (T, .-\, M) be a binding tree ford. Let e = expr(d) 
and 8 = signatures ( d) . 

We define a function assignment (p for e as follows. Let h be the height of {3. 

If h = 1, t hen (13 is empty. 

If h > 1, then, for f E SN(e), (13(!) is defined as follows. Let x be the node 
such t hat ,\ ( ( r, x)) = J. 

• If >..(x) = s E £, then let rep8 = M(x) . Let 8 (!) = T1 X . .. X Tn -t Taut 

and sig(s) = µ1 x ... X µm -t µ 0 ut· Then we define (13(!) to be the 
following relation: 

{ ( v1 , . .. , Vn, w) I 'ii i E { 1 , . . . , n} : Vi E [Ti] , 

and W = func(s)(1;reps(l), · · · ,Vrep
5
(m)) } · 
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• If >.(x) E 7) , t hen let e1 = expr(>. (x)), and rep1 = M(x) . Let G (f) = 
7 1 x ... x Tn --+ Tout · Consider the subtree /31 of /3 rooted at x . By 
induction, we already have a function assignment (131 for e1 . T hen we 
define (13 (!) to be the following relation: 

{ ( v 1 , . . . , Vn, w) I V i E { 1, ... , n} : Vi E [ Ti] , 

CT = [(Y ,Vrep1(y) ) I Y E FV(e1)], 

and CT, ( 131 ~ e1 =? w}. 

Note that the order of elements in CT is irrelevant. 

3.3 Dataflow repository 

3.3.1 A formal model of a dataflow repository 

We are now in position to give a formal definition of a dataflow repository, 
which gathers all previously defined concepts. We use t he following notations: 

notation the set of all possible 
s signatures 
:F service functions 
NRC NRG expressions 
TA type assignments 

SA signature assignments 
VA value assignments 
Bindings binding trees 
Runs runs 
Triples triples occurring in runs 

Definition 3.17 (Dataflow repository) . 

A dataflow repository contains the following pairwise d isjoint sets: 

• a finite set £ of e:rternal service identifiers, 

• a fi nite set 1) of datafiow identifiers, and 

• a finite set R of run identifiers, 

together with the mappings shown in t he following list: 
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Runs 

Triples 

Bindings 

Figure 3.1: ER-diagram of a dataflow repository 

sig: £ --+ S 
June : £ --+ F 
expr : V --+ NRC 

types : V --+ TA 
signatures : V --+ SA 

datafiow : R --+ V 
values : R --+ VA 

binding: R --+ Bindings 
run : R --+ Runs 

internal Call : R x Trip les -+ R 

3 
i,, 
::, 
'< 

I 
0 
I 

0 
::, 
~ 

The first nine mappings are standard, total, many-to-one mappings. The last 
mapping, however , is partial, but must be one-to-one. Figure 3.1 shows an 
ER-diagram of the used set s and mappings. 

Moreover, the mappings must satisfy the following integrity constraints, for 
any e E £ , any d E V and any r E R: 

• sig(e) is consistent with func(e); 
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• types(d) is defined on FV(expr(d)); 

• signatures(d) is defined on SN(expr(d)); 

• expr(d) is well-typed under types(d) and signatures(d); 

• values(r) is defined on FV(expr(datafiow(r ))); 

• values(r) is consistent with types(datafiow(r)). 

• The root of binding(r) is labeled with datafiow (r). 

• run(r) is a run of expr(datafiow(r)) evaluated under values(r) and 
(&inding(r), i.e., values(r), (&inding(r) ~ expr(datafiow(r)) =? run(r). 

• The repository is closed by the mapping internalCall. 

We still need to define the last constraint in the above definition. When a 
dataflow datafiow(r) is being executed to construct a run for r, t hen for each 
occurrence of a service-call expression f in expr( datafiow ( r)), if J is bound 
to a subdataflow, the service function (binding(r) (!) must be used to construct 
the run-triplet for f. However, in a dataflow repository, (binding(r)U) does 
not really exist. Instead, the subdataflow bound to f will be executed, the 
resulting rur1 , identified by r', will be stored, and t he final result value of 
run(r') will be used to construct t . Moreover, the pair ((r, t) , r') must be 
added to internalCall . If f occurs inside a for-loop, t hen its subdataflow may 
be executed several times. 

The last constraint, closure, corresponds to the following int uit ion: if the 
repository contains a run of some dataflow, t hen it also contains all corre­
sponding runs of its subdataflows. This is precisely the purpose of the mapping 
internalCall . Formally, we define: 

Definition 3.18. A dataflow repository is closed by internalCall, if for any 
r E R and any t = (<I>, a, v) E Triples, the following holds: 

• internalCall(r, t) is defined if and only if t E run(r) and <I> is an occur­
rence of a service-call expression to a service named f, such that the 
node x in binding ( r), which is connected to the root by the edge labeled 
with f, has a dataflow ID as label, say d' . 

• If internalCall(r, t) is indeed defined, say internalCall(r, t) = r', then 

datafiow ( r') = d'. 

binding(r') equals the subtree of binding(r) rooted at x. 
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let the service call be of the form f ( e1, ... , en) and binding ( r) = 
(T, >.., M). So there are n run-triples of the form (<I>· [i, ei ], a, vi) in 
run(r) , for i E {l, . .. ,n}. Then values(r') is equal to a extended 
with [(y, VM(x)(y)) I y E FV( expr(d'))]. 

~ the final result value of run(r') equals v. 

What we have not included in our formal model are annotations (meta-data). 
However, it is possible to extend the model, for instance, by adding relations 
from annotation identifiers (representing diverse meta-data) to identifiers and 
entities defined in the model. The actual content of meta-data is an ongoing 
research topic [DCM, MDF+ 10, LKM+09], beyond the scope of this work. 

3.3.2 Proof-of-concept representation in SQL:2003 

Complex data 

Complex data flowing in a scientific workflow can be either atomic in a work­
flow, or can have a structure that must be available to the operations in the 
workflow. We model complex data by complex values, defined in Section 2.1. 

Remember that "atomic" data can be quite complex, e.g., a text fi le or an 
XML document. However, for a dataflow that has only tasks that operate on 
the file as a whole, it is not relevant to model the file contents. In such cases, 
we model t he file as a base value. On the other hand, if the structure of the file 
as a collection is important, because we want to apply some operation to its 
elements, then we model the file as a complex value, e.g., as a set of records. 

We first discuss the storing of base values. Then we discuss two basic ways 
for storing complex values: decomposition and XML representation. 

Base Values. We can represent most base values as VARCHAR strings. For 
small types of atomic data, such as numbers, words, short texts or dates, the 
VARCHAR string can hold the entire string representation of the value. Such 
values can be easily stored together with an entity they are part of, such as a 
complex value, a value assignment or a run triple. 

For large atomic data such as a file, we can also represent it as a VARCHAR 

string by means of an identifier of the file (e.g., full path name or an URI). 
In many cases, however, it is more desirable to store large atomic data in the 
database as a BLOB ( which can contain a text file, or an XML document, as 
well as a binary file) in a t able Base Values (vID VARCHAR, object BLOB). In 
that case, the VARCHAR string representing the data object is an identifier, and 
a foreign key to BaseValues(vID). 
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Decomposition of complex values. A complex value, together with its 
nested subvalues, can be naturally viewed as a tree (Section 2.1.2). Wegener­
ate a VARCHAR string ID for each tuple and set node. The base values, which 
occur as leaves in t he tree, a lready have their VARCHAR string representa tions. 
We t hen store the complex-value t ree in two tables: 

Sets (vID VARCHAR, kind CHAR(l), eValID VARCHAR) , and 
Tuples(vID VARCHAR, kind CHAR(1), lbl VARCHAR, cValID VARCHAR) . 

Here, eValID stands for element ID , lbl stands for label, and cValID stands 
for component ID. Attribute kind specifies the kind of values in att ributes 
eValID and cValID as follows: 

• value b for a base value fully represented by the VARCHAR string, 

• value B for an ID of a base value stored in the BaseValues table, 

• value s for an ID of a set value stored in the Sets table, 

• value t for an ID of a tuple value stored in the Tuples table, or 

• value e in the record ( 'emptyset' , ' e' , NULL) in table Sets, wh ich 
represents the empty set. 

Database constraints must enforce the existence of referenced complex-value 
identifiers in their corresponding t ables. 

Example 3.19. Consider t he following complex value: 

{ (exp : P2T42, targets: {human, mouse }, result : report123) , 

(exp : P42T3, targets: {human, chimp} , result: report456)} . 

Figure 3.2 shows its tree representation and decomposition. D 

XML represe ntation of complex values. We can also take advantage of 
the XML data type supported by modern database systems. We can store 
a complex-value tree as an XML value either in table Values(vID VARCHAR, 
value XML) , or together with an entity the complex value is a part of, like a 
value assignment or a run triple. Base values at t he leaves can be represented 
by text nodes. For a large base value, the t ext node contains its ID in the 
BaseValues table. The DTD for complex values is in Section A.3.1. If the 
complex value is stored in Values , we assume t hat the va1ID attribute of t he 
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report123 

Sets Tuples 
vID kind eValID vID kind lbl cValID 
v1 t v2 v2 b exp P42T3 
v1 t v4 v2 B r esult report456 
v3 b chimp v2 s targets v3 
v3 b human v4 B result report123 
v5 b human v4 b exp P2T42 
v5 b mouse v4 s targets v5 

Figure 3.2: Tree representation and decomposition of a complex value 

root element of the value stored in Values(value) matches the correspond­
ing value in Values(vID). Figure 3.3 shows t he XML representation of the 
complex value from Example 3.19. 

There is an additional choice when a complex value contains XML documents 
at the leaves: we can just have the IDs of these base values in the Base Values 
table, or we can include their full XML cont ent. For example, in Figure 3.3, 
the results are represented by IDs report123 and report456 referring to the 
BaseValues table, but alternatively we could have replaced these IDs inside 
t he XML tree by the corresponding full XML values . 

The best choice among decomposition, intermediate XML, and full XML for 
complex values depends on the application. Library routines can be provided 
for conversion between the representations; these routines can then be used in 
SQL statements. 

Complex types 

We store complex types in the following tables: 

BaseTypes(tID VARCHAR), 
SetTypes(tID VARCHAR, kind CHAR(!), etID VARCHAR), and 
TupleTypes(tID VARCHAR, kind CHAR(!), lbl VARCHAR, ctID VARCHAR). 

Here, et ID stands for element type ID, lbl stands for label, and ctID stands 
for component type ID. Attribute kind specifies the kind of types in attributes 
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<set va1ID="v1"> 
<tuple va1ID="v4"> 

<lbl>exp</lbl> 
<base kind="b">P2T42</base> 
<lbl>targets</lbl> 
<set va1ID=" v5 "> 

<base kind= "b">human</base> 
<base kind="b">mouse</base> 

</set> 
<lbl>result</lbl> 
<base kind=" B">report123</base> 

</tuple> 
<tuple va1ID="v2"> 

<lbl>exp</lbl> 
<base kind="b">P42T3</base> 
<lbl>targets</lbl> 
<set va1ID= "v3"> 

<base kind="b">human</base> 
<base kind="b">chimp</base> 

</set> 
<lbl>result</lbl> 
<base kind="B">report456</base> 

</tuple> 
</set> 

Figure 3.3: XML representation of 
a complex object 

etID and ctID as follows: 

61 

<settype typeID="Experiments"> 
<tupletype typeID="Experiment"> 

<lbl>exp</lbl> 
<basetype typeID="ExpNr "/> 
<lbl>targets</lbl> 
<settype type!D="Organisms"> 

<basetype typeID="Organism"/> 
</set type> 
<lbl>result</lbl> 
<basetype typeID="Report"/> 

</tupletype> 
</settype> 

Figure 3.4: XML representation of 
a complex type 

• value b for an ID of a base type stored in the BaseTypes table, 

• value s for an ID of a set type stored in the SetTypes table, or 

• value t for an ID of a tuple type stored in the TupleTypes table. 

Database constraints must enforce the exist ence of referenced complex-type 
identifiers in their corresponding tables . vVe assume t hat type bottom is stored 
in BaseTypes. 

vVe also need an XML representation for complex types, as complex types also 
featme as parts of other entities, like a type assignment or a signatme assign­
ment. The DTD for complex types is in Section A.3.2. Figure 3.4 shows the 
XML representation of a possible complex type for value from Example 3.19. 
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dataflow AFlow(input: aSetType) 
for x in input return f(x) 

dataflow BFlow(input : aTupleType) 

Towards a dataflow repository 

<expr eID="BFl ow"> 
<tupleExpr eID="e1"> 

<lbl>c</lbl> 
<call eID="e2"> 

<service>f</service> 
<call eID="e3"> 

<service>g</service> 
<project eID=" e4"> 

<var eID="eS">input</var> 
<lbl>a</lbl> 

</project> 
</call> 

</call> 
<lbl>d</lbl> 
<call eID="e6"> 

<service>f</service> 
<c: f(g(input.a)), d: f(g(input.b))> <call eID="e7"> 

<service>g</service> 

Figure 3.5: Dataflow specifications 

NRC dataflows 

<project eID="e8"> 
<var eID="e9">input</ var> 
<lbl>b</lbl> 

</project> 
</call> 

</call> 
</tupleExpr> 

</expr> 

Figure 3.6: XML representation of 
BFlow 

Figure 3.5 shows example specifications of dataflows. A dataflow consists of 

• a keyword dataflow followed by a name, which may be used as the 
dataflow's identifier; 

• a type assignment for the free variables of the dataflow expression, be­
tween parentheses; and 

• an NRC expression, wh ich specifies the dataflow's behaviour. 

A dataflow specification is stored in two tables: 
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Dataflows(dID VARCHAR, expr XML) , and 
Variables(dID VARCHAR, var VARCHAR, type VARCHAR, kind CHAR(l)). 

In table Dataflows , attribute dID contains the identifier of the dataflow, and 
attribute expr contains the NRC expression, in XML format based on its 
BNF syntax. Table Variables stores the type assignment of the dataflow. 
Attribute dID is a foreign key to Dataflows (dID). Attribute kind uses again 
values b, s and t to specify the kind of the complex type. 

Recall that we also need a signature assignment for the service names occurring 
in the dataflow. In line with common usage in programming languages, we use 
parameter names to refer to positions in a signature. The signature assignment 
is stored in table 
Signatures(dID VARCHAR, service VARCHAR, par VARCHAR, 

type VARCHAR, kind CHAR(1)) , 

with dID again a foreign key to Dataflows (dID) , and kind having the same 
function as in table Variables. Attribute par contains a parameter name. 
We asume that parameter name output is reserved for the output type of 
the signature. For t ables Variables an Signatures, database constraints 
must enforce the existence of referenced complex-type identifiers in their cor­
responding tables. 

To facili tate storing dataflows, t he system should provide a stored function 

InsDesign(expr XML, types XML, sigs XML) returns VARCHAR, 

which expects, respectively, an NRC expression, a type assignment, and a 
signature assignment, all in their corresponding XML format. 

Function InsDesign should ensure that (i) a dataflow specification is not 
stored in the repository unless it is well-typed under the given type assign­
ment and signature assignment; (ii) if the eID of the root element of parameter 
expr already exists as another datafl.ow's identifier, a new dataflow ID is gen­
erated; (iii) upon successful completion , value of attribute Dataflows (dID) 
of the new record matches the returned dataflow ID; and (iv) in the value 
of Dataflows (expr) , the eID attribute of t he root element also contains t he 
dataflow ID, and others h ave an eID composed of e followed by a number in 
document order , starting at one. 

Note that instead of using tables Variables and Signatures for storing, re­
spectively, the type assignment and the signature assignment of a dataflow, 
we can also add attributes of type XML to table Dataflows, and store their 
XJ\,fL representations. 

The DTDs for the type and signature assignments are in, respectively, Sec­
tions A.3.3 and A.3.4. The DTD for NRC expressions is in Section A.3.5 , and 
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Figure 3.6 shows the XML representation for dataflow Bflow. Note that all 
expression element nodes in the XML tree have unique eID attributes. This 
allows us to create an index on XML column expr based on the XPath pattern 
I /©eID. This is useful to support efficient querying of stored expressions using 
SQL/XML. Indeed, other tables in the repository contain references to these 
IDs, so queries may use conditions involving the above XPath pattern. 

External services 

In order to integrate external services in the dataflow repository1 we assume 
Java wrapper functions for them, which are registered as external routines 
(user-defined Java functions). These functions take XML representations of 
complex objects as input and output. In this way, external services can be 
called directly in SQL statements, but also, data-flow executions can be initi­
ated from inside the database server. 

These Java wrapper functions must be registered in table 

External(extID VARCHAR, name VARCHAR, checks VARCHAR), 

where attribute extID is an external service identifier that can be used in 
a binding tree, and name is the name of the Java wrapper registered in the 
system's catalogue. Their signatures are stored in table 

ExtSigs(extID VARCHAR, par VARCHAR , type VARCHAR, kind CHAR( 1)), 

with ext ID a foreign key to External (extID) , and kind having the same 
function as in table Variables. Attribute par contains a parameter name. 
We asume that parameter name output is reserved for the output type of the 
signature, and that database constraints enforce the existence of referenced 
complex-type identifiers in their corresponding tables. 

The designer of the Java wrapper function has the responsibility to ensure 
that it only executes its external service if the XML values supplied for its 
parameters match the registered complex type. Therefore, we assume that 
each Java wrapper function provides an associated user-defined function, of 
the same signature except for the output type, that can be used to verify 
if given XML values conform to the registered signature. The output type 
should allow for necessary communication about p ossible errors. The name of 
this function must be stored in External (checks). This function can then 
be used, in case of failure, to rule out type mismatches. 
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<btree dID="AFlow"> 
<subentry> 

<service>f</service> <sub>BFlow</sub> 
<subpair> 

<var>input</var> <spar>x</spar> 
</subpair> 
<btree dID="BFlow"> 

<ext entry> 
<service>f</service> <ext>funcA</ext> 
<ext pair> 

<epar>a</epar> <spar>x</spar> 
</extpair> 

</ext entry> 
<ext entry> 

<service>g</service> <ext>funcB</ext> 
<ext pair> 

<epar>b</epar> <spar>x</spar> 
</extpair> 

</extentry> 
</btree> 

</subentry> 
</btree> 

Figure 3. 7: A binding tree for AFlow 

Executing and storing runs 
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Remember that, in order to execute a dataflow, we must have a value assign­
ment and a function assignment for the dataflow. A value assignment is rep­
resented by XML format defined in the DTD in Section A.3.6. A function as­
signment is provided indirectly by a binding tree, t hat associates service names 
used in the dataflow to either subdataflows, or external services. A binding 
tree is represented by X:ML format defined in the DTD in Section A.3.7. 

Example 3.20. Recall dataflow AFlow from Figure 3.5. To execute AFlow 

we might want to bind service f (x: aTupleType) with output type another­

TupleType to BFlow (input: aTupleType) , so BFlow becomes a subdataflow 
of AFlow. We now bind the service names in BFlow, f (x: Int) and g(x: Int), 
both with output type Int , to some external functions funcA (a: I nt) and 
funcB (b : Int) , respectively, both with output type Int. The binding tree 
that specifies all this is shown in Figure 3.7. 0 

To execute a dataflow stored in the dataflow repository, the system should 
provide a stored procedure 
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Execute(dID: VARCHAR, vassign: XML, btree: XML) , 

where dID designates a dataflow specification from the Dataflows table, btree 
is a binding tree for the dataflow, and vassign is an assignment of input 
values to t he free variables of the dataflow. It is the task of Execute to ensure 
the consistency between the type and value assignments of the dataflow, the 
validity of the binding tree, and the consistency between the signature and 
function assignments that can be derived from the given binding tree. It must 
also determine the output type of the dataflow for this run. 

A successful call to Execute should result in t he run of the dataflow being 
stored in two tables: 

Runs(rID VARCHAR, dID VARCHAR, vassign XML, btree XML, 
type VARCHAR, kind CHAR(l)), 

Triples(rID VARCHAR, caller VARCHAR, cvassign XML, 
subexpr VARCHAR, vassign XML, value XML). 

Table Runs stores the environment under which the run was executed (value 
assignment and binding t ree), with at tribute rID a newly generated run iden­
tifier, and dID a foreign key to Dataflows (dID). Attributes type and kind 
hold the complex type of the final result of the run. 

Table Triples contains "tagged" triples for the run: one holding the final 
result value, and one triple for each service call that has been made. II The 
system should provide a stored function Run(rID: VARCHAR), that can later 
reconstruct a ll other triples. The triples can be either returned in some format, 
or Run can return the name of a temporary t able storing the triples. 

The attributes of table Triples have the following meaning. Consider the 
service-call expressions in the NRC expression of the main dataflow. Attribute 
subexpr holds the eID of the corresponding element in the XML representation 
of the dataftow expression. Attribute vassign holds the value assignment of 
the free variables of the dataflow at the time of the call. Attribute value holds 
t he final result value of the service call. For the tuple holding the final result 
value of the run, subexpr is simply the eID identifier of the first child of the 
root element, and vassign is the original value assignment. Attributes caller 
and cvassign hold NULL for all the triples corresponding to the execution 
of the main dataftow. In triples corresponding to subdataflow executions , 
these columns hold , respectively, the eID of the calling subexpression, and the 
value assignment of the dataflow parameters at the time of the call. Other 
attributes contain the same values as if the subdataflow were executed as a 

II In some cases it may be better to store additional triples in t a ble Triples. The system 
may therefore provide means to alter t he behaviour of Execute. 
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main dataflow. "* 

Example 3.21. Let us illustrate the Triples table. Assmne we have executed 
BFlow from Figure 3.5 on valuett (a: 2, b: 6), for the binding tree that can 
be found as the subtree in Figure 3.7. A possible run with ID runl could 
generate the following triples: 

('runl', NULL, NULL, 'el', [(input ,( a: 2, b: 6))), ( c: 1, d: 0)) , 
('run!', NULL, NULL, 'e2', [(input , (a: 2,b: 6))] , 1) , 
('run!', IWLL, NULL, 'e3', [(input, ( a:2,b:6 ))] , 4) , 
('run!', NULL, NULL, 'e4', [( input ,( a: 2,b: 6))] , 2) , 
('runl', IWLL, NULL, 'e5', [(input, ( a: 2, b: 6 )) ]. ( a: 2, b: 6 ) ) , 
('run!' , NULL, NULL , 
( 'runl', NULL, NULL, 
('run!', NULL, NULL, 
('run!', NULL, NULL, 

'e6', 
'e7', 
'e8', 
'e9', 

[(input,( a: 2, b: 6)) ]. 0) , 
[(input, (a: 2, b: 6))], 1) , 
[ (input , (a: 2, b: 6)) ] , 6) , 
[(input,( a: 2, b: 6)) ], (a: 2,b: 6)), 

of which only the following would be stored in table Triples ( e2 and e6 are 
calls to f , and e3 and e4 are calls to g): 

('run!', NULL, NULL, 'el', [(input,(a:2 , b:6 ))]. ( c : l , d:0 )) , 
('run!', NULL, NULL, 'e2', [(input , (a:2 , b:6 ))] , 1), 
('runl', NULL, NULL , 'e3', [(input, (a:2 , b:6))], 4) , 
('run!', NULL, NULL, 'e6', [(inp·ut ,( a:2 , b:6))] , 0) , 
('runl', NULL, NULL, 'e7', [(input ,(a : 2, b: 6))], 1). 

Now assume we have executed AFlow for the binding t ree from Figure 3.7, and 
on value in equal { (a: 2, b: 6),( a: 5, b: 35) }. From a possible run with ID 
run2 , the following triples would be stored in table Triples ( e4 is a call to f , 

which is bound to BFlow): 

C 'run2', NULL, NULL , ' el', [(input , in) ] , (c :l, d : O) ) , 

C 'run2', NULL, NULL, ' e4', [(input , in), (x, (a: 2, b: 6))]. (c : l, d:0)) , 

( 'run2', NULL, NULL, ' e4', [(input ,in),(x,(a : 5, b: 35))], (c: 1, d:O)) , 

( 'run2', 'e4', cassing L, 'el', [(input, (a: 2, b: 6)) ], (c :l,d : O) ) , 

( 'run2', 'e4', cassing1 , ' e2' , [(input , (a: 2, b: 6))], 1) ' 
( 'run2', 'e4', cassing1 , 'e3', [ ( input, (a: 2, b: 6))], 4) ' 
( 'run2', 'e4', cassing1 , 'e6', [(input , (a : 2, b: 6))], 0) ' 
( 'run2', ' e4', cassing 1 , 'e7', [ (input, (a : 2, b: 6))], 1) ) 

( 'run2', 'e4', cassing2 , 'el', [(input, (a : 5, b: 35)) ]. (c : l , d: 0 )) , 

('run2', 'e4 ' , cassing2 , 'e2' , [(inpid , (a: 5, b: 35))], 1) , 

( 'run2', 'e4', cassing2 , 'e3', [(input ,(a : 5, b: 35)) ]. 4 ) ' 
('run2', 'e4 ', cassing2 , 'e6', [(input, (a : 5, b: 35))], 0) ' 
( 'run2 ' , 'e4', cassing2 , 'e7', [(input,(a : 5, b: 35)) ], 0) I 

.. In fact, this is a representation of the t rip les of a run together wit h t he mapping 
internal Call. 

tt w e use the formal representation of value a.-;signments and complex values instead of 
their XML-representations , for brevity. 
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with 
cassing1 = [(input,in),(x,(a :2,b:6))], 
cassing2 [(input, in), (x , (a : 5, b: 35))] . 

Note t hat { (2, 4), (5, 4), (6, 1), (35, 0)} ~ [funcB], which is bound to g, and 
{(4, 1), (1, 0), (0,0)} ~ [funcA] , which is bound to f. D 

Procedure Execute can be straightforwardly implemented by compiling NRC 
into SQL/ XML. Indeed, under a decomposed representation of complex ob­
jects, NRC operations can be quite simply programmed in SQL. We have 
already seen that external services can be called in SQL as external routines. 
Under the XML representation of complex objects, either decomposition can 
be applied first ( this is the approach we have tested ), or a direct compilation 
of the NRC operations into XQuery may be performed. 

Annotations 

Another advantage of implementing a dataflow repository on top of a modern 
SQL platform, is the possible integration with an annotation system, if it also 
provides a database schema. The identifiers used in the dataftow repository 
can be referenced as foreign keys in annotation tables. 

The are kinds of annotations though, that should be provided by the repository 
system. These annotations are typically starting and ending times of runs, t he 
user performing the run , and properties of used external services (e.g., version 
number, starting and ending time of the call, possible errors codes). In order 
to provide applicabons with a flexible annotation recording of runs, procedure 
Execute can provide hooks that are executed before and after each service call, 
and at the beginning and at the end of its own execution. The application 
developer can instantia te these hooks with the code required to record the 
meta-data required by the applicat ion. In a similar way, function InsDesign 
can provide hooks to record annotations such as the author of the dataftow, 
and the time of its addition to the repository. 

Choice of representation Note that this is only one of the possible repre­
sentations of the formal model. It is impossible to provide one representation 
that is equally suitable for a ll scientific workftow applications, as there are 
many issues to consider, e.g., the size, complexity, and volume of data; the 
number of different dataflows and how often they are executed. 

We have chosen this representation because it closely resembles the formal 
model. Even if t he actual database schema is different, it is possible to create 
(materialised) views that simulate this representation. 
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Querying a dataflow repository 

4.1 Querying an SQL/ XML dataflow repository 

The participants of t he Provenance Challenges* have already informally for­
mulated various queries, involving both a dataflow specificat ion and its past 
executions. 

For ex ample, for a specified part of a workflow output , say O'ut , t hey have 
formulated queries that ask (i) which workflow in puts have contributed to the 
computation of out (Ql ,Q5 from PC3); (ii) which part of the execution con­
tributed to the computation of out, possibly further rest ricted by annotations, 
or only up to a specified task (Ql-Q3 from P Cl , Q3 from P C3); (iii) to verify 
if certain tasks were involved in t he computation of out (Q2 of PC3) ; (iv) to 
look for t asks that can be swapped during execution without affecting out 

(opt ional Q5 from PC3). 

Queries that involve many executions of t he same workflow ask (i) to find all 
invocations of a specified t ask, using a specifi ed input, and having specified 
annotations (Q4); (ii) to retrieve (intermediate) results produced by a specified 
task and/or having specified an,notations (Q8-Q9 from P Cl ), or even preceded 
by another specified task (Q6 from PCl ); (iii) to find all workflow outputs 
produced from a specified input (Q5 from P Cl ); (iv) to find differences between 
specified past executions (Q7 from PCl). 

In general, there are various t ypes of queries that a dataflow repository should 
support, including: 

*http:/ / t viki. ipaw . info/bi n/view/Challenge / WebHome , we refer to the fi rst challenge 
as P C l , and to t he t hird as P C3. 
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• Queries involving subvalues of a (final) result. Indeed, in some dataflows, 
both intermediate values and the final result value may be huge data sets, 
and the user might be only interest ed in some part. 

• Querying vast amounts of past executions, in order to identify dataflows 
and their executions involving a particular external service. Indeed, if 
that service produced erroneous results, or t here is a better implementa­
tion available, such queries are necessary if we want to rerun t he affected 
dataflows with another external service. 

• Queries that allow mod ifying of dataflow specifications and immediate 
execution of the modified dataflows. 

In this section , we give some example queries in SQL/ XML, based on the 
proof-of-concept schema from Section 3.3.2. 

Queries involving subvalues. Recall dataflow Bflow from F igure 3.5, and 
the run wit h ID run1 from Example 3.21, with final result value ( c: 1, d: 0). 
Consider now the query: 

"What is the part of the run that produced the subvalue 1 in the 
output?" 

From t he dataflow specification we see that subvalue 1 is the output of f, 
applied to the output of g, applied to input. a . We can thus retrieve the 
t hree relevant triples as follows: 

SELECT 'input .a' , T.vassign, T.value 
FROM Triples T, Dataflows D 

WHERE T.rID='runl' AND D.dID= 'Bf l ow' 
AND XMLEXISTS(' $e//proj ect[©eID=$s and . /lbl=" a"]' 

PASSING D.expr AS "e " , T.subexpr AS "s ") 
UNION 

SELECT 'g', T.vass i gn , T.value 
FROM Triples T, Dataflows D 

WHERE T. rID= ' runl ' AND D.dID='Bflow' 
AND XMLEXISTS( '$el /call [©eID=$s and ./service="g" 

and . /proj ect/lbl= "a"] ' 
PASSING D.expr AS "e ", T.subexpr AS "s") 

UNION 
SELECT 'f ', T.vassign , T.value 

FROM Triples T, Dataflows D 
WHERE T.rID='runl' AND D.dID='Bflow' 
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AND XMLEXISTS('$e//call[©eID=$s and ./service="f" 
and ./call/project/lbl="a"]' 

PASSING D. expr AS "e", T.subexpr AS "s") 
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Note t he use of the SQL/ XML predicate XMLEXISTS [EM04, OCKM06] to 
retrieve the eID at t ributes of the elements in the XML representation of the 
dataflow's NRC expression. 

Things get a bit more subtle when working with collections and subdataflows. 

Recall dataflow Aflow from Figure 3.5, and t he run wit h ID run2 from Ex­
ample 3.21 , with final result value {(c : 1, d: O)} . Suppose we again want to 
know the part of the run that produced the subvalue 1. From the dataflow 
specificat ion we see that subvalue 1 is part of the result of f applied to at least 
one element of the input collection. We thus want to retrieve all elements x 
in input for which f (x) contains subvalue 1: 

SELECT 'f', XMLQUERY( ' $b//varval[./var="x"]' PASSING T.vassign AS "b") 
FROM Triples T, Dataflows D 

WHERE T.rID='run2' AND D. dID= ' Aflow' 
AND XMLEXISTS('$e//call[©eID=$s and ./service="f "]' 

PASSING D.expr AS "e", T.subexpr AS "s") 
AND XMLEXISTS('$v[./lbl[1] =" c" and ./base [2]="1" 

and ./lbl[3]="d" and ./base[4]="0"] ' 
PASSING T.value AS "v ") 

Further querying must be done in the triples corresponding to the run of 
BFlow, executed as a subdataflow of Aflow, in the same way as in the first 
example. Note the use of the SQL/XML function XMLQUERY to extract the 
value of variable x from the value assignment of the triple. 

The two example queries over r un1 and run2 are simple but typical examples 
of provenance queries , where we ask for the part of the run that has contributed 
to a given value v, occurring as a subvalue of the output , or some intermediate 
result. In the context of workflows, "contribution" is often only informally 
understood, and may involve subvalues from the input that also occur in v, 
unchanged , as well as subvalues from the input that were transformed into v 
by a computation. 

When the dataflow specification is known in advance, as in om examples, we 
have seen that provenance can b e directly expressed in SQL/ XML. This is no 
longer straightforward, however , when the dataflow specification is not fixed 
in t he query, as it is the case for queries involving numerous runs of dataflows 
with different specifications. 

Our solution is t o provide a generic s'I.J,bvalue provenance computation as a 
library routine. In Sections 4.2- 4.3 we formally specify which part of a run 
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has contributed to a given subvalue, be means of inference rules that track the 
subvalue provenance. 

Queries involving ( external) services. For some queries, even involving 
numerous executions of different dataflows, we do not need to know the exact 
dataflow specification to pose the query. For example, queries like 

"List all bioinforrnatics dataflows in which a service named f , called 
with input 5, returned the value GPZ158. ', 

can be expressed using similar techniques as above ( assuming an annotation 
table Bioinf (dID ... ) that lists the IDs of bioinformatics dataflows): 

SELECT dID 
FROM Triples Tl, Triples T2, Runs R, Dataflows D, Bioinf B 

WHERE R.dID = D.dID AND D.dID = B.dID 
AND Tl.rID = R.rID AND T2.rID = R.rID AND Tl.vassign=T2.vassign 
AND XMLEXISTS (' $e//call[©eID=$sl and ./service="f"] / *[2] [©ID=$s2]' 

PASSING D.expr AS "e", 
T1.subexpr AS "sl", T2.subexpr AS "s2") 

AND XMLEXISTS( ' $v="GPZ158"' PASSING T1. value AS "v") 
AND XMLEXISTS( '$v="5"' PASSING T2. value AS "v") 

Consider an external service that is registered in the database with ID BLASTvl. 
The database may contain many dataflow executions that have called this ser­
vice. To retrieve them, it suffices to look in the binding tree of each execution, 
which is stored together with the run ID in the Runs table. The following 
query also retrieves the service name that is bound to BLASTvl. 

CREATE VIEW Bv1Calls AS 
SELECT R.rID, Tree.service 

FROM Runs R, XMLTABLE('$tr//extentry' PASSING R.btree AS "tr" 
COLUMNS service VARCHAR (30), 

ext VARCHAR(30) ) AS Tree 
WHERE Tree.ext='BLASTv1' 

Now suppose we want to understand the effect of replacing the external func­
tion BLASTvl by another one, say, BLASTv2. We are interested, across all ex­
ecutions in t he database, which calls to BLASTv l would give a different result 
when replaced by a call to BLASTv2. We can find this out using the following 
query: 

SELECT O.rID, O.subexpr, O.argval, a.value, N.newvalue 
FROM (SELECT R.rID, U.subexpr, Tl.value, T2 .value AS argval 
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FROM Runs R, Bv1Ca1ls B, Dataflows D, Triples Tl, Triples T2 
WHERE R.rID=B.rID AND R.dID=D.dID 

AND R.rID=Tl.rID AND R.rID=T2.rID AND T1.vassign=T2 .vassi gn 
AND XMLEXISTS 

) AS 0, 

('$e//call[©ID=$s1 and ./service=$b)/*[2] [©ID=$s2)' 
PASSING D.expr AS "e", Tl.subexpr AS "sl", 
B.service AS "b", T2.subexpr AS "s2 ") 

LATERAL (VALUES BLASTv2(0.argval)) AS N(newvalue) 
WHERE is_different(O .value , N.newvalue) 

Observe how the query directly calls BLASTv2 on the inputs of the recorded 
calls to BLASTvl. We also use a Boolean user-defined function is_different 
to compare the two resulting XML values, as a literal non-equality is not what 
we want. 

Queries execut ing m odified dataflow specifications . What if we want 
to find those dataflow executions whose final result value would change if we 
replaced BLASTv1 by BLASTv2? Note that a difference in an individual call 
might not result in a difference in the final result. To answer this query, we 
can no longer simply call BLASTv2 as before, because the call is embedded 
within an entire NRC expression, which is not fixed by the query, and which 
has to be re-evaluated. 

(Of course, if we are only interested in the executions of a dataflow whose 
specification is known in advance, we can simply rerun it, either through the 
repository or directly in a query, and compare the differences.) 

Our solution, inspired by earlier work on meta-querying [VGV96, VVV05, 
VVV04], lies in providing dynamic dataflow execution through a library func­
tion. More specifically, the system may provide a user-defined table-valued 
function Eval with the following signature: 

function Eval(expr XML, vassign XML, btree XML) 
returns table (caller XML, cassign XML, subexpr integer, 

vassign XML, value XML) 

This function should return the set of tagged triples representing the whole 
run of NRC expression expr on value assignment vassign and binding tree 
btree. Essentially, Eval should be a lightweight version of procedure Execut e , 
where the run is not stored in the repository, but is merely made available for 
ad-hoc querying. 

vVe are now able to express our query asking for those dataflow executions, 
whose final result would change if we replaced BLASTv1 by BLASTv2. 
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SELECT O. ID, a.result, E.value 
FROM (SELECT T.value AS r esult, D.expr, R.vassign, R.btree 

FROM Runs R, Dataflows D, Triples T 
WHERE R.dID=D.dID 

AND R.rID=T.rID AND T.subexpr = 'el' 
AND XMLEXISTS('$b//ext="BLASTvl"' 

PASSING R.btree AS "b")) AS 0, 
LATERAL (XMLTABLE('copy $newb := $b 

modify for $n in $newb//extentry 
where $n/ext="BLASTvl" 
return 

replace value of node $n/ext 
with "BLASTv2" 

return $newb' 
PASSING 0.btree AS "b" 
COLUMNS "newbtree" XML PATH" . ") as N, 

TABLE (Eval(O.expr, O.vassign, N.newbtree) ASE 
WHERE E.subexpr='el' AND is_different(O.result, E.value) 

The condition E. subexpr=' e1' on the last line selects the top-level NRC ex­
pression so as to retrieve the final result value of each rerun. Note also the 
use of XQuery Update facili ties. 

In the above example, we only rewrit e the binding trees , not t he actual NRC 
expressions themselves. It should be clear by now that such rewritings are 
equally possible. For example, we might want to see the effect of shutting out 
certain parts of certain dataflows. We can express such queries using the same 
techniques. 

4.2 Subvalue provenance 1n past executions 

Recall that a result value of an execution of a dataflow may be quite complex. 
In such cases it may be desirable to be able to track how a part icular occurrence 
sofa subvalue of that result was produced during an execution. Intuitively, the 
subvalue provenance of s is the restriction of the corresponding past execution 
to all subexpressions and subvalues of intermediate results, that have, in a 
senset, contributed to the appearance of s in the final result. From this point 
of view, tracking subvalue provenance can be considered as a special case of 
querying a past execution. 

twe argue our understanding of this type of provenance in Section 4.2.3. 
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4.2.1 Subruns 

Before we can define subvalue provenance, we first need the notion of a subrun. 
Intuitively, in Section 3.1.1 , we recursively construct a run R of an expression 
e, from runs of subexpressions of e. Now we need a selection mechanism by 
which we can extract from R only that part that constitutes t he run of a 
part icular subexpression inside R . 

Definition 4.1 (Subrun). Let CJ, ( ~ e =>Rand (<I>'· [e' J, CJ1
) E SI( R ). T he 

subrun of R for (<I>'· [e' ], CJ
1

) , denoted by subrun(<I>' · [e'], CJ1
, R ), is the following 

set of triples: 

{ ([e'] · <I>", CJ11
, v") I (<I>'· [e'] · <I>", CJ 11

, v") E R and CJ1 is a prefix of CJ11
}. 

Example 4.2. In Example 3.2 (p. 42), we have computed a run R for e= x U 
{y .r }, with e1 = {y.r }, and e2 = y.r . Here, we continue the example and ex­
tract subrunsof R: S1 = subrun([e, l ,x], CJ, R ), andS2 = subr-un([e, 2,e1l, CJ, R ). 

S2 = { ([e1J, CJ, Vs), 

([e1, e2l, CJ, vp), 

([e1, e2, y], CJ, in2)} 

D 

Example 4.3. In Example 3.3 (p. 42) , we have computed a run R for 

e = for x in y return (b : x .b, c: f(x .a)), 

with e1 = ( b: e2, c : e3), e2 = x .b, e3 = J(e4), and e4 = x.a. Here, we 
continue the example and extract subruns of R: S = subrun([e, 1, y], CJ, R) , 
and S1 ,1 = subrun([ e, 2, e1], add( a, x , in1), R). 

S = { ([e, 1,y], a , in)} 

S1,1 = { ([e1J, add(a,x, ini), v1), 
([e1 , b, e2l, add(a, x, in1), OJ), 
([e1, b,e2,x] , add(cr,x, in1), int) , 

([e1, c, e3], add(cr, x , ini), w1), 

([e1, c, e3, 1, e4], add(CJ, x, ini), a1), 
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([e1,c,e3,l , e4,x], add(c,,x,ini), ini)} 

We now extract S{, 1 = subrun([e1, b, e2], add(a, x, in1), S1,1 ) . 

S{,1 = { ([e2], add(a, x, in1) , b1), 

([e2, x], add(a, x, in1 ) , ini)} 

In the following proposition we prove that subruns are actual runs. 

Proposition 4.4. If a, ( ~ e => R and (<I>'· [e' ], a') E SI(R) , then 

a', ( ~ e' => subrun( if!' · [ e'], a' , R). 

Proof. We prove the proposition by induction on the length of if!'.+ 

D 

If the length of if!' is zero, t hen if!' is empty (Definition 2.20) and, by Lemma 3.7, 
e' = e and a'= a. We prove that subrun( [e], a, R) = R. 

Let ([ e] ·<I>" , a 11
, v") E subrun([ e], a, R). Then, by Definition 4.1 , ([ e] ·if!" , a" , v") 

is a triple in R. Therefore subrun([ e], a , R) ~ R. 

Let (<I>",a",v") be a triple in R. By Lemma 3.8, <I>" = [e] · W, for some IJ! , and 
we know that a is a prefix of a". According to Definition 4 .1, ( [ e] · \JI, a'1, v") E 

subrun ( e, a , R). Therefore R ~ subrun( [ e], a, R). 

Let us assume the proposition holds for all if!' of length n . 

We now prove the proposition for if!' of length n + 1. By Lemma 3.8, we know 
that <I>' starts with [ e]. Let <I>' = [ e] · \JI , for some \JI of length at most n . 

We have to prove that a', ( ~ e' => subrun([e] ·\JI · [e'], a', R). Therefore we 
inspect all possible forms of e. (Since if!' is not empty, e cannot be a constant, 
a variable, or an empty-set expression.) 

1. If e is of the form 

(a) { et} (Rule R.4), 

(b) U e1 (Rule R.6) , 

(c) e1.l (Rule R.8), or 

(d) e1 = 0 (Rules R.12- R.13) , 

twe define the length of a (sub-sequence of a) subexpression path <I> nat urally as the 
number of elements in <I> that are NRC expressions. 
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then, by Definition 2.20, '1i · [e'] .-o e1 . From the corresponding rules, 
we know that there is a run R 1 for e1 , such t hat 

R = [e] · R1 U { ([e], a, result(R))}. 

Since ([e] · W · [e'J, a') E SJ(R), by Definition 3.6, there is a value v' such 
that ([e] · w · [e'J , a',v') ER. 

( [ e J · '1i · [ e'], a', v') E R 

=? ( [ e] · w · [ e' ], a', v') E [ e J · R 1 U { ( [ e], a, result ( R)) } 

the length of [e] ·\Ji· [e' J is at least 2 

=? ([e] · '1! · [e' l, a' , v') E [e] · R1 

=? (w · [e'],a',v') E R1 

=? (w · [e'], a') E SJ(R1) 

For R 1 and (w · [ e' ], a') E SI (Ri), we can apply the induction hypothesis, 
thus er' , (~ e' => subrun(w · [e'],a', R1 ) . It is sufficient to show t hat 
subrun(w · [e' J, a',R1 ) = subrun([e] · W · [e'],a' , R ). 

([e'] · w" ,a" ,v") E S'ubrun(w · [e' J, a' , R1) 

applying Definition 4.1 , a' is a prefix of a" 

{==> (w · [e' ] · w" ,a" ,v") E R1 

{==> ([e] · '1i · [e' ] · W11 , a 11 , v") E [e] · R1 

the length of [ e J · '1i · [ e' J is at least 2 

{==> ([e] · '1i · [e' ] · w" ,a" ,v") E R 

applying Definition 4.1 , a' is a prefix of a" 

{==> ([e'J · w" ,a",v") E subrun([e] · w · [e' ], a' ,R) 

2. If e is of the form 

(a) e1 U e2 (Rule R.5) , 

(b) e1 = e2 (Rules R.10-R. ll) , 

(c) letx: = e1 in e2 (Rule R.1 6) , 

(d) e = if eo th en e1 else e2 (Rules R.14- R.15), 

(e) ( li: e1, . . . , ln: en) (Rule R.7) , or 

(f) J(e1, .. , ,en) (RuleR.17), 

then , by Definition 2.20, w = [mi] · wi where wi · [e' J .-o ei, for 
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(a- c) i E {1, 2} , with mi = i; 

(d) i E {O, 1, 2}, with mi= i; 

(e) i E {l , ... ,n}, with mi = 4; 

(f) i E {l, ... ,n}, with mi= i. 

Let 

(a-c) I = { 1, 2} ; 

(d) I = {O, 1} if result(Ro) = true; I = {O, 2} if result(Ro) = false; 

(e- f) I= {l, ... ,n} . 

Then, by the corresponding rules , we know that there are runs R,i for ei, 
for i E I , such that 

R = u iEJ [e, mi ] . Ri u { ([e], er, result(R))} . 

Let j EI. Since ([e,mj ] · Wj · [e' J,er') E SI(R) , by Definition 3.6, there 
is a value v' such that ([e,mj] · Wj · [e'],er',v') ER. 

([e, mj] · Wj · [e'J,er',v') E R 
the prefix [ e, mj J must match 

=} ([e, mjJ · Wj · [e'J,er',v') E [e,mj] · Rj 

==;, (w j · [e'J, er', v') E Rj 

==;, (Wj · [e'], er') E SI(Rj) 

For Rj and (\JI j · [e'J, er') E SI(Rj ), we can apply the induction hypothesis, 
thus er', ( ~ e' =} subrun(Wj · [e'], er', Rj ), It is sufficient to show that 
subrun(Wj · [e'],er', Rj) = subrun([e] · W · [e'J,er',R). 

([e' ] · w11 ,er11 ,v11
) E subrun(Wj · [e'J,er', Rj) 

applying Definition 4.1, er' is a prefix of er" 

{=> (IJ!j · [e'] · \Jl11 ,er11 ,v11
) E Rj 

{=> ([e,mj] · Wj · [e'] · W11 ,er11 ,v11
) E [e,mj] · Rj 

the prefix [ e, mj J must match 

{=> ([e,mj] · Wj · [e'] · \Jl11 ,er11 ,v11
) ER 

applying Definition 4.1 , er' is a prefix of er" 

{=> ([e'J · w11 ,er11 ,v11
) E subrun([e,mj] · Wj · [e'], er',R) 

{=> ([e' ] · w" ,er",v") E subrun([e] · \JJ · [e'],er',R) 
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3. If e = for x in e1 return e2, then, by Definition 2.20, W = [i] · Wi where 
Wi · [e' ] f-0 ei, with i E {l, 2}. 

From Rule R.9, we know that there is a run R1 for e1 , and for w E 

result(R1), there are runs R..v for e2, such that 

R = [e, 1] · R1 U (Uw [e, 2] · R..v) U { ([el, a, result(R))}. 

Case \.II = [1] · '11 1 Since ([e, 1] · W1 · [e' J, a') E SI(R), by Definition 3.6, 
there is a value v' such that ([e,l ] · 1li1 · [e1],a-1,v1

) E R. 

([e, l ] · '111 · [e' ], a', v') E R 

the prefix [ e, l] must match 

==> ([e, l ] · Wi · [e'J, a' , v') E [e, l] · R1 
==> ('li1 · [e'J, a', v') E R1 
==> (w1 · [e'J, a') E SI(R1) 

For R 1 and ( w 1 · [ e1 J, a') E SI ( R1 ) , we can apply the induction hypothesis, 
thus er',( p e' =;- subrun(W1 · [e1],a',R1) . It is sufficient to show that 
subrun(W1 · [e' ],a', R1) = subrun([e] ·\.II · [e'J,a', R). 

([e'J · w11 ,a11 ,v11
) E subrun( w1 · [e'J,a',R1) 

applying Definition 4.1 , a' is a prefix of a 11 

~ (ll11 · [e'] · '11 11
, a 11

, v 11
) E R1 

~ ([e, 1] · '111 · [e' J · '11 11
, a 11

, v") E [e, l ] · R1 

the prefix [ e, 1 J must match 

~ ([e, 1] · '111 · [e'] · w11 ,a11 ,v11
) E R 

applying Definition 4.1, a 1 is a prefix of a" 

~ ([e'] · w11 ,a11 ,v11
) E subrun([e, l ] · w1 · [e'J,a',R) 

~ ([e'J · w" ,a" ,v") E subrun([e] · w · [e'J,a',R) 

Case \.II = [2] · '112 Since ([e, 2] · W2 · [e'], a') E SI(R), by Definition 3.6, 
there is a value v' such that ([e, 2] · '¥2 · [e'J, (5

1
, v') E R. 

([e, 2] · '1!2 · [e'J, a', v') E R 
the prefix [e, 2] must match 
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-==> ([e, 2] · 1}12 · [e' ], a' , v' ) E Uw [e, 2] · Ru, 

Lemma 3.9, :3! u E result(R1 ) 

-==> ( [ e, 2] · 1}12 · [ e' ], a' , v') E [ e, 2] · Ru 
====> ( 'l'2 · [ e'], a' , v' ) E Ru 

-==> ( 'l'2 · [e' ], a ') E SI(Ru) 

For Ru and ('h · [e' ], a') E SI(Ru ), we can apply the induction hypoth­
esis, thus a' , ( ~ e' * subrun(w 2 · [e'], a' , Ru ). It is sufficient to show 
that subrun(iI! 2 · [e'], a' , Ru) = subrun([e] · 'l' · [e'], a', R ). 

([e'] · W11 , a11 ,v11
) E subrun(iI!2 · [e' ],a', Ru) 

applying Definition 4.1 , a' is a prefix of a" 

{=:} ( iI!2 · [ e' ] · iI!" , a" , v") E Ru 

{=:} ([e, 2] · W2 · [e' ] · W11
, a", v" ) E [e, 2] · Ru 

Lemma 3.9, :3! u E result(R1 ) 

{=:} ([e, 2] · iI!2 · [e'] · w", a", v") E R 

applying Definition 4.1, a' is a prefix of a" 

{=:} ([e' J · w" ,a" ,v" ) E subrun([e ,2] · w2 · [e'],a' ,R) 

{=:} ([e' J . l}l" , a" ,v") E subrun([e] · W · [e'l, a ', R) 

D 

4.2.2 The subvalue provenance function 

Let e be an NRC expression, a a value assignment over FV(e), and ( a function 
assignment over SN(e) . Let a, ( p::: e * R and v = result(R) . Let <p be an 
occurrence of a subvalue of v, i.e., <p ,_. v .§ 

Recall t hat we represent R as a set of t riples of the form (iD',<T',v'), with <I>' 
an occurrence of subexpression e' of e, such that a' , ( I= e' * v' . Likewise, we 
represent the subvalue provenance P of <p in R as a set consist ing of triples. 
Each triple is of the form (iD',a' , <p'), where, again, <I> ' is an occurrence of 
subexpression e' of e, with a 1

, ( I= e1 * v1
, and where <p1 is an occurrence of 

a su bvalue of v', i.e., <p1 +-e v'. Such a triple represents the information that 
the intermediate result v' has partly contributed to <p in t he output ; <p1 t hen 
indicates which part . In particular, P always contains t he t riple ([ e], a, <p). 

§Remember, for complex values , we identify an occurrence of a subvaluc by a subvalue 
path ending in that particular subvalue (Definit ion 2.3). 
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In the following Rules P .1- P .18, we define the subvalue provenance function, 
denoted by Prov(). In general, we refer to sets produced by Prov() as prove­
nance sets. As some rules'J are quite complex, we provide an informal explana­
tion when necessary. We use symbol ":=" in the premises to indicate that the 
notation on the left-hand side is an abbreviation for the right-hand side. In 
each rule, Prov(cp, R) is the sitbvalue provenance of cp in R. In the following, 
we frequently abbreviate "subvalue path" to simply "subvalue". 

Rules P .1- P. 3 deal with the base NRC expressions: a constant, a variable and 
an empty-set expression. A run of these expressions is always a singleton. In 
a provenance set for a constant or an empty-set expression, we use t he triple 
from the run, and , in the third component, replace the value by its t rivial 
subvalue. Likewise, for a variable, we replace the value v by its subvalue <.p. 

In this case cp may also be a proper subvalue of v . 

er,(~ a => R R = {([a], cr,a)} 
~~~~~~~~~~~~~~ P.l 

Prov( [a], R) ~ { ([a], er, [a])} 

cr,(fix=>R R = {([x],cr,v)} cp .- v 
~~~~~~~~~~~~~~~~~~ P.2 

Prov ( <p, R) ~ { ( [ x], er, cp) } 

er, (~ 0 => R R = {([0],cr,0)} 
d f P.3 

Prov([0], R) ~ { ([ 0], er, [0])} 

For the following NRC expressions: a set-expression, a union, a flatten , and a 
t uple-expression; we have separate rules for t he trivial subvalue (P.4,P .7,P.9), 
and for proper subvalues of the final result (P.5,P.6,P.8,P.10). Both kinds 
of rules call Prov() recmsively on certain subruns of R, namely, the subruns 
of the direct subexpressions that have contributed to <p. The rules for the 
trivial subvalue simply call Prov(), for each subrun, for the trivial subvalue of 
the final result of this subrun. The rules for proper subvalues, however, call 
Prov(), for each subrun , for proper subvalues of the final result of the subrun, 
but only for these subvalues that have actually contributed to cp. Note that the 
construction of the proper subvalue of a subrun depends on the corresponding 

1Again , we intensively use the prefixing operation defined in Eq. A.l. The rules should 
be read with the operator "-" having a higher precedence than the operator "U". 
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subexpression. 

e = { e' } or e = LJ e' 
CT, ( p e => R v := result(R) S := subrun([e, e'], CT, R) 

f P.4 
Prov( [v ], R ) ~ [ e] · Prov([ result(S) ], S) U { ([ e], CT, [v]) } 

e = { e1
} CT, ( p e => R <p .-. result(R) <p = [ result(R )] · <p1 

~~~~~~~~~~~~~~~~~~~~~~ P.5 
Prov(<p, R ) <Jg [e] · Prov(<p1,subrun( [e,e1 ],0", R )) U {([el, CT, <p)} 

e= LJ e' 
tp' -u 

CT, ( p e => R <p .-. result(R ) <p = [ result(R )] · <p1 

S := subrun([e , e'], CT, R ) W := { w E result(S) I u E w} 
df u P.6 

Prov(<p, R ) ~ [e ]·Prov([result(S),w]·<p',S) U {([e], CT, <p)} 
wEW 

e = ( e 1 U e2) CT, ( p e => R 
v := result(R) Vi E {1,2} : Si:= subrun([e,i,ei],CT,R) 

d f P . 7 
Prov( [v],R) ~ LJ [e,i] · Prov([result(Si)], Si) U {([e], CT, [v])} 

iE{l,2} 

e=(e1Ue2) 
CT, ( p e => R <p .-. result(R) <p = [result(R)] · <p1 

Vi E {1, 2}: Si := subrun([e,i,ei],O",R) /\Vi:= result(Si) 
I : = { i E { 1 , 2} I [ Vi J · <p1 

- vi} 
~~~~~~~~~~~~~~~~~~ P.8 
Prov( rp, R) <Jg LJ [ e, i] · Prov([vi] · <p1

, Si) U { ([ e], CT, <p)} 
iEJ 

e = ( li: e1, . .. , ln: en) O", ( p e => R 
v := result(R) Vi E {l, . .. , n}: Si := s11brun( [e, 4, ei], O", R ) 

~~~~~~~~~~~~~~~~~~~~~~ P.9 
Prov([v], R) <Jg LJ [ e, 4] · Prov([ result(Si)], Si) U {([ e], CT, [ v])} 

iE{ 1, .. . , n} 
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e =(ii : e1, ... , ln: en ) CT, ( ~ e =} R <p ..-. result(R) 
<p = [ result(R), 4] · <p1 S := subrun([e, 4, ei], CT, R ) 

---------------------- P.10 
Prov(cp,R) ~ [e, 4J · Prov(<p1

, S) U {([el, CT, cp)} 

In Rules P.11- P.15 for the following NRC expressions: a project ion , an equal­
ity test, an emptiness test , a service-call expression, and an if-expression, we do 
not need to distinguish between trivial and proper subvalues. In Rules P .12-
P .13 we do not even recursively call Prov() at all. These expressions do not 
assemble their final results from the fina l results of the subruns of their direct 
subexpressions. Indeed , for an equality or an emptiness test, the final result 
has been created by t he expression, and has only the trivial subvalue. We 
cannot trace that subvalue any further. For a service-call expression , the final 
result value has been provided by t he service. Here, both trivial and proper 
subvalues of the final result are possible . We cannot trace these subvalues any 
further because, in general, the service call is considered a black box. (In some 
cases, however , there may be sufficient information to whiten a black box a 
little, see Section 4.2.4.) 

e = e'.l 
CT, ( ~ e =} R <p .- result(R ) S := subrun([e, e'J, CT, R) 

df P.11 
Prov( <p , R ) ~ [ e] · Prov([ result ( S), l] · <p, S) U { ([ el, CT, <p) } 

e = (e1 = e2) or e= (e' = 0) CT,( ~ e =} R v := result(R) 
-------------------- ----- P.12 

Prov([v], R) ~ { ([el, a, [v]) } 

e = f (e1, .. . , en) CT, ( ~ e =} R <p .-e result(R) 
df P.13 

Prov(cp, R) ~ {([el, CT, cp) } 

In Rules P .14-P .1 5, function Prov() is recursively called for the same su bvalue 
and only for t he subrun that corresponds to t he actually executed branch of 
the expression. 

e = if eo then e1 else e2 CT, ( ~ e =} R 
<p .- result( R ) result(subrun([e, 0, eol, a, R )) = true 

df P.14 
Prov(cp, R) ~ [e, l ] · Prov(cp,subrun([e, l ,ei] ,CT,R)) U {([el, CT, cp) } 
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e = if eo th en e1 else e2 a, ( ~ e =:;, R 
<p .- result(R ) res'ult(subrun([e, 0, eol, a, R )) = fal s e 

df P,15 
Prov(cp, R) ~ [e, 2] · Prov(cp, subrun([e, 2, e2J, a, R )) U { ([e], a, cp)} 

T he last three rules are t he most complex ones. They are for the following 
cases: Rule P .16 for a let-expression; Rule P .1 7 for a for-expression and the 
t rivial subvalue of t he final result; and Rule P.18 for a for-expression and a 
proper subvalue of t he final result . Here, we also need to consider the bound 
variables of t he expressions. 

We first introduce an auxiliary function, which selects provenance-triples with 
a subexpression path ending in a par ticular variable. 

Definition 4.5. Let X, Y, and Z be sets. For a set P ~ SEQ(X ) x Y x Z, 
for x E X and y E Y, we define: 

Sel(x , y, P ) ~ {(q,y,z) E PI x is the last element of q} . 

For a let -expression , we first recursively call Prov() on the same subvalue for 
the body of the expression. In the resulting provenance set, we look for triples 
where the subexpression path in the first component ends in the bound vari­
able. II Also, the second component of the triple must cont ain the same value 
assignment . Then, for each of these t riples, we call Prov() on the subvalue 
from t he third component, for t he head of t he expression. 

e = let x:= e1 in e2 a,(~e=:;,R cp ;---. result (R) 
S := subrun([e, l , e1 ], a, R) a':= add(a, x, result(S)) 

P := Prov( <p, subrun([ e, 2, e2], a' , R)) ((J) := Sel( x , a', P) 
df P.16 

Prov(cp,R) ~ [e, 2] ·PU {([el, a, cp)} U LJ [e, 1] · Prov(cp',S) 
( <I> ,a' ,'P') EO 

For a for-expression and the trivial subvalue of a final result , we first recursively 
call Prov () for each subrun of t he body, on the trivial subvalue of the final 
resul t of that subrun. Then, for each resulting provenance set, we process the 

II We have formerly defined t he subvalue provenance without tracking the bound vari­
ables [HKS+07). We owe this improvement to our rules to feedback provided by Ja mes 
Cheney, University of Edinburgh. 
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bound variable in a similar way as for a let-expression. 

e = for x in e1 return e2 
CJ, ( ~ e =} R S := subrun([e, 1, e1J, CJ, R) 

85 

Vw E result(S): CJw := add(CJ, x, w) I\ Sw := subrun([e, 2, e2J, CJw, R ) 
I\ Pw := Prov( [result(Sw)J, Sw) I\ Ow := Sel(x,CJw,Pw) 

df P.17 
Prov([result(R)], R) ~ LJ [e, 2] ·Pw U {([e], CJ, [result (R)])} U 

wEresult(S) 

LJ LJ [e, l] · Prov( [result(S )] · <p, S ) 
wEresult(S) (<I> ,crw,'P)E<Dw 

For a for-expression and a proper subvalue of a final result , we recursively 
call Prov() only for those subruns of the body that have contributed to the 
subvalue. Again , for each resulting provenance set, we process the bound 
variable in a similar way as for a let-expression. 

e = for x in e1 return e2 CJ, ( ~ e =} R <p .-. result(R) 
<p = [result(R) ] · <p1 <p1

-. u S := subrun( [e, l ,e1J,CJ, R) 
Vw E result(S): CJw := add (CJ, x , w) I\ Sw := subrun([e, 2, e2 J, CJw, R) 

lV := {w E result(S) I result(Sw) = u} 
Vw E W: Pw = Prov(1.p', Sw) I\ Ow := Sel(x , CJw, Pw) 

- -----
1
- - - ----------------- P.18 

Prov(<p,R ) ~ LJ [e, 2] · Pw U {([el, CJ, cp) } U 
wEW 

u u [ e, l ] · Prov([ result(S) ] · 1.p" , S) 

Observe that we can use the rules to compute the subvalue provenance of any 
subvalue of any intermediate result in R. Indeed, for a triple ( 1>' , CJ1

, v') E R 
and <p1 .-. v', Prov(<p' ,subrun(<I>' ,CJ' , R)) computes the subvalue provenance 
in the relevant subrun of R , and the missing prefixes from the subexpression 
invocation (<I>' , CJ1

) can be added afterwards. 

Example 4.6. In Example 3.2 (p. 42), we have computed a run R for e = 
x U {y.r }, with e1 = {y.r }, and e2 = y .r. In Example 4.2 (p. 75), we have 
extracted subruns 51 and S2. Here, we continue the example, and track the 
subvalue provenance of <p = [ out , (a : 5, b: 25) , b, 25] in R. 

We first apply Rule P.8: 

with ip' = [(a: 5, b: 25) , b, 25]. In t he first two rows of Figure 4.1, we see how 
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Figure 4.1: Application of subvalue provenance rules in Example 4 .6 

Rule P .8 maps <.p1 between the final result out of run R, and the final result 
values in1 and Vs of, respectively, runs S1 and S2.** The subvalue path in the 
first argument of Prov() is marked by bold lines: (i) in value out we see <.p 

from Prov( <.p, R) ; (ii) in value in1 we see [ in1 ] · ip' from Prov([ ini] · <.p1
, S1 ); and 

(iii) in value Vs we see [ V8 ] • <.p1 from Prov ( [ V 8 ] · ip' , S2). 

We recursively apply, respectively, Rules P. 2 and P. 5: 

Prov([in1 ] · <.p1
, Si)= {( [x],a, [in1] · ip')} 

Prov ( [Vs] · <.p
1

, S2) = [ e i] · Prov ( <.p
1

, S3) U { ([ e1], a, [ V 5 ] · ip')} , 

with S3 = s'ubrun( [e1, e2J, a, S2) . We follow with Rule P.11: 

with S4 = subrun([e2,Y],a, S3). In the last two rows of Figure 4. 1, we see 
how Rule P.5 maps <.p1 between Vs and Vp (the final result of run S3); and 
Rule P. 11 between Vp and in2 (the final result of run S4). T he subvalue paths 

'* We use the tree-representation of a complex value from Section 2.1.2. 
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shown in vp and in2 are first argmnents in, resp ectively, Prov ( rp', S3) and 
Prov([ in2 , r J · rp' , S4). 

Finally, we again apply Rule P.2: 

Prov([in2,r] · <p1
, S4) = {([y],a, [in2 ,r] · rp')} 

After all t he necessary concatenations and unions, we obtain the following 
provenance set: 

Prov(<p, R )= { ([e], a , [out ,(a: 5, b: 25), b,25]) , 

([e,l,x], a, [in1,(a : 5,b : 25), b, 25]), 

([e, 2,e1l, a, [v8 ,(a: 5, b: 25),b,25]), 

([e, 2,e1,e2], a, [vp, b,251) 

([e,2,e1,e2,yJ, a, [in2,r,( a: 5,b: 25),b, 25])} 

Example 4. 7. In Example 3.3 (p. 42) , we have computed a run R for 

e = for x in y ret u rn ( b : x. b, c : f ( x . a) ) , 

D 

with e1 = (b: e2, c : e3), e2 = x .b, e3 = f( e4), and e4 = x.a. In Example 4.3 
(p . 75) , we have extracted subruns S, S1,1, and S{,1 . Here, we continue the 
example. Assume that service-call expression e3 represents an external service. 

Let rp1 = [out,( b: 4,c: l ), b, 4] and <p2 = [oitt,( b: 4,c : l ),c, l ]. We want to 
compute both Prov(r.p1 ,R) and Prov(cp2, R). 

As a first step, we need to apply Rule (P .18). We see in t he premises that we 
have yet to determine the set W. For Prov(r.p1 ,R), <p: is [(b : 4, c: 1), b,4]. It 
is clear that 'Pi is a subvalue path of both v1 and v3 . For Prov(cp2, R) , <p'z is 
[ ( b: 4, c: 1), c, l ]. It is also clear tha t rp2 is a subvalue path of both v1 and v3 . 
In both cases W = { in1, in3 }. 

For i E {1, 3} and S1,3 = subrun([e, 2,e1J,add(a,x,in3),R) , we now compute 
Prov(r.pi, S1,i )- From Rule P.10: 

Prov(cp~, S1 ,i ) = [e1, b] · Prov([4], S{,i) U ([e,], add(a, x, ini), [vi , b, 4]) 

with S{,3 = subrun([e1, b,e2l, add (a,x, in3), S1 ,3) . We apply Rule P.11 : 

Prov ( [ 4], S{ i) = [ e2 ] · Prov ( [ ini, b, 4], S{' i) U ([ e2], add (a, x, ini), [bi]) 
' ' 

with S{'..; = subrun([e2 , x],add(a,x,ini),S{J. In Figure 4.2, we see how Rule 
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Rule P.2 
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Figure 4.2: Application of subvalue provenance rules in Example 4.7, in com­
putation of Prov ( <p~, S1, 1) and Prov ( <p~, S1 ,3). 

P .10 maps [ 4] between the final result Vi of run S1,i and the final result bi of 
run S{ i . Then Rule P .11 maps [ 4] between bi and ini, the final result of run 
S{' i· B'y Rule P.2, 

' 

Prov( [ini, b,4], S{:i) = {([x], add(a,x, ini) , [ini, b,4])}. 

All together we obtain, 

Prov(<p~, S1 ,i ) = { ([e1 ], add(a, x, ini), [vi, b, 4]), 

([e1 , b, e2 J, .add(a, x, ini), [b,,]), 
([e1, b,e2,x], add(a,x, ini), [ini, b,4])} 

For i E {1,3}, we compute Prov((f); ,s2,i), with S2,i = S1,i . From Rule P.10: 

with SL= subrun([e1, c,e3], add(O',x, ini) , S2,i ). We apply Rule P.13: 

Prov ([1], S~ i ) = { ([e3], add (a, x, ini), [ wi])} . 
' 

All together we obtain , 

Prov(<p;, S2,i ) = { ([e1J, add(a, x , ini), [vi, c, l]) 

([e1, c, e3], add(a, x, ini), [wi]) } 

We can now determine the last sets in the premises of Rule (P.18) . For 
Prov(<p~ , S1,i ) , we have ((J)l ,i = { ([e1,b,e2,x l,add(a, x, ini) , [ini, b,4]) }, but 
for Prov(<p;, S2,i ) , the sets ((])2,i are empty. 
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We can already compute Prov(i.p2, R): 

therefore 

Prov(1P2, R ) = LJ [e, 2] · Prov(,A, S2,i) U { ([e], a-, <p2) } , 
iE{ l ,3} 

Prov ( Y,2, R ) = { ( [ e], a-, [out , ( b : 4, c : 1) 1 c , 1]) 

([e, 2,ei] , add(a-,x,ini), [v1 ,c, l ]) 

([e, 2,e1,c,e3]. add(a-,x,in1), [wi]) 

([e, 2,e1 J, add(a-,x,in3) , [v3, c,l]) 

([e, 2, e1 1 c, e3], add(a,x, in3) , [w3])} 

Finally, we complete Prov(i.p1 , R): 

Prov(<p1, R) = LJ [e, 2] · Prov(i.p~, S1,i) U { ([el, a-, <p1)} U 
iE{l,3} 
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u u [e, l ] · Prov([in] · <p, S) . 
iE { 1,3} ( <I>, add(o-,x, ini),<p)E01,i 

In the first two rows of Figure 4.3, we see how Rule P.18 maps <p~ between t he 
final result out of R, and the final result values v1 and v3 of, respectively, runs 
S1 ,1 and S1,3 . 1n the last two rows, we see how Rule P.18 tracks the bound vari­
able: for i E { 1, 3}, it maps [ ini, b, 4 J from the triple in <Dli,i to the same path in 
in , t he final result of run S. In rows 2- 4, for i E { 1, 3}, we see that Figure 4.2 
provides the connection between [Vi, b, 4 J and [ ini, b, 4 J, with the missing part 
inserted here in dotted lines . Observe that [ ini, b, 4] from Figure 4.2 occurs 
in triple ([e1 ,b ,e2,xl, add(a-,x,ini), [ini,b,4l) from Prov(i.p~,S1,i), that also 
belongs to ((})1,i . From subexpression invocat ion ([e1, b, e2, x], add(a-, x, ini)) in 
run S1,i, we know that [ini, b, 4] is a subvalue path of ini.tt From Rule P.2 , 
for i E {l, 3}, 

Prov([ in, ini, b, 4], S) = { ([y], a-, [ 'in , ini, b, 4]) } . 

Therefore, 

Prov(<pi, R ) = {([el, a-, [out,(b: 4,c : l ),b,4]) 

H ffere, [ in 1, b, 4] a.nd [ in3, b, 4] a.re convenient notations for , respectively, [ (a: 2, b: 4) , b, 4 J 

a.nd [(a: 5, b: 4) , b,4] . In the run a nd provenance-triples, results and subvalue paths are 
simply values, without any identifiers we can refer to. To access the correct result value 'U in 
a run, we must use a subexpression invocation. The same subexpression invocation used in 
a provenance set gives access to a subvalue path of v . 
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Figure 4.3: Application of subvalue provenance rules in Example 4. 7, in com­
putation of Prov(ip1, R). 

([e, 2, e1l, add(c,, x, in1), [v1, b, 4]) 

([e, 2, e1 , b, e2 ], add(c,, x, in1), [b1 ]) 

([e, 2,e1, b,e2, xl, add(c,, x , in1 ) , [in1,b, 4]) 

([e, 2, e1], add(c,, x, in3), [v3, b, 4]) 

([e,2,e1,b,e2J, add(c,,x ,in3), [b3]) 

([e, 2,e1, b,e2, xl, add(c,,x,in3) , [in3, b,4]) 

([ e, 1,y], c,, [in ,in1 , b, 4]) 
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Notice the difference between the provenance sets Prov(l.f)1, R) and Prov(l.f)2, R). 
In Prov (l.f) 1 , R ), we find triples t hat show us from which part of the input in, 
subvalue l.f)i was obtained. In Prov(l.f)2, R) , we can only trace 1.()2 as far as 
the result value of e3, which is a service call. We cannot trace any further, 
because the service call is here a black box: we do not now how the result of 
e3 depends on its input. D 

4.2.3 Subvalue where-provenance 

Let e be an NRC expression, a a value assignment over FV(e), and ( a function 
assignment over SN(e) . Let a, ( ~ e => R and v = result(R) . Let r.p be an 
occurrence of a subvalue of v. 

Suppose we want to answer the question: 

"Where does l.f) originate from in R?" 

Assume that e only contains service-call expressions that represent external 
services. We have the following cases: 

1. Subvalue <.p originates from a constant in e. 

2. Subvalue <.p originates from a free variable in e. 

3. Subvalue <.p originates from an empty-set expression in e. 

4. Subvalue cp originates from a result of an NRC expression in e that 
assembles its result from the results of its constituent subexpressions. 

5. Subvalue r.p originates from the result of an equality test or an emptiness 
test. These NRC expressions create their results. Indeed, for an equality 
test or an emptiness test, its result value is influenced by the values of the 
constituent subexpressions, but it is not assembled from those values. It 
is simply created by the expression. 

6. Subvalue cp originates from the result of a service-call expression in e. 

For a service-can expression that represents an external service, its result 
value is provided by the called service, which is, in general, a black box 
in R. In this case we do not know anything about the rela tion between 
the output of the black box and its inputs, unless additional information 
is provided by the supplier of the service. Therefore, the tracking process 
stops. 



92 Querying a dataflow repository 

The rules given in Section 4.2 clearly track the origin of ip in R as far as 
possible. 

The tracking process stops at Rules P .1- P .3 for base NRC expressions, cover­
ing cases 1- 3. 

Most rules (P.4-P. ll ,P.14-P.18) apply to case 4. There, the tracking process 
continues into those subruns that have contributed to the assembling of ip. 

Note that in Rules P.14- P.15 for an if-expression, the tracking occurs only in 
t he subrun corresponding to the actually executed branch of the expression. 
Indeed, although the final result of the subrun of the condition does influence 
t he final result of R, <p cannot originate from that subrun. Note also that 
Rules P .16-P .18 take care of the tracking of subvalues of their bound variables. 

Rule P .12 obviously applies to case 5 and also stops t he t racking process. 

Rule P .13 applies to case 6. As the service-call represents a black box, the 
tracking process stops. 

Taking all this into consideration , we argue that repeated application of rules 
for computing subvalue provenance produces a suitable answer to the question, 
i.e., we can use the rules to compute the where-provenance of a subvalue, in 
the same sense as the concept of where-provenance defined in the context of 
databases[BKTOl, CCT09]. We can either use the rules to compute the whole 
provenance set Prov(<p, R), which can be queried further, or we can use the 
rules in an interactive way, as we illustrate in Section 4.4. 

In the field of database theory, Cheney, Acar and Ahmed [CAA08] have de­
fined a notion of "trace" of an NRC expression evaluation, which is similar to 
our notion of run. Moreover, they define an annotation propagation seman­
tics for NRC, following Buneman, Cheney and Vansummeren [BCV08], over 
annotated inputs. An annotated input consists of an input c, and an annota­
tion function h that maps each subvalue occurrence to some annotation value. 
For where-provenance, this function h can be taken to be the identity. The 
propagation semantics propagates annotations from the input into the result 
value of the NRC expression. Subvalues of the result value that have been 
constructed during the evaluation receive a dummy annotation .L They have 
shown that instead of evaluating an expression e using the annotation propa­
gation semant ics, on an input c, annotated by annotation function h, one can 
equivalently obtain the annotated result by propagating h through the trace 
of e on c,. They have formally proven that a subvalue in the final result has a 
non-l_ annotation if a.nd only if that subvalue was copied from the input . 

Our definition of subvalue provenance works bottom-up and "backwards", 
rather than "forward" by propagation. It remains an open problem to formally 
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reconcile these two approaches. We point out, however, that om definition of 
subvalue provenance allows tracking back the origin of a subvalue even if it was 
constructed during expression evaluation. In this way we go beyond merely 
extracting copies from the input. 

As yet, we have assumed that all service-call expressions in e represent black 
boxes. This view conforms to the approach taken by the participants of t he 
Provenance ChallengesH, for the chosen example workflows. This view is 
consistent with the way their workflow systems operate. However, they had 
additional information about the behaviour of the black boxes, in the sense 
that all t he black boxes were functional: the output of a black box depends 
on all of its inputs. Moreover , information was present that all inputs directly 
contributed to the output, i.e., the inputs were transformed into the output. 
Clearly, such information about black boxes is valuable. In Section 4.2.4 we 
investigate how we can use such information to augment the where-provenance 
of a subvalue. 

Many workflow systems allow the reuse of existing dataflows as tasks in other 
dataflows. We have modelled this concept as service-call expressions that can 
be bound to subdataflows. Obviously, in this case, the service call is not a 
black box anymore, so we should be able to continue the tracking process into 
the corresponding run of the used subdataflow. Note that before executing 
e, we could simply substitute the subdataflow's expression in place of the 
service-call expression ( with necessary changes to the function assignment). 
Then instead of a run of a subdataflow we simply have a subrun in R, and we 
can use the subvalue provenance function as defined. However, it is interesting 
to revisit the definition of su bvalue provenance to take subdataflows explicitly 
into account, which we do in Section 4.3. 

4.2.4 Turning a b lack box into a gray one, if possible 

Thus far, we have treated service-call expressions bound to external services 
as impenetrable black boxes. Indeed, in general, we do not know any depen­
dencies between the subvalues of t he result of the call and subvalues of its 
actual parameters. The question is, whether we can whiten some of the black 
boxes. Missier et al. [1v'IBz+os] have suggested using semantic rules to model 
dependencies between outputs and inputs of services . 

In our model , we can include asserted dependencies in computing subvalue 
provenance. 

t thttp://tviki.ipaw.info/bin/view/Challenge/WebHome 
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Example 4.8. We continue to examine Prov('P2, R) from Example 4.7. Since 
e3 is a service call, in general, we cannot establish dependencies between its 
output and its input. Suppose, that we have additional information that the 
output of e3 indeed directly depends , in a sense, on its input . In each execution 
of e1, the subrun that produced the input of e3 may also contribute to subvalue 
provenance. However , we cannot relate the subvalue of the result of e3 to its 
input. We only can examine the subvalue provenance of the entire final result 
value of e4 in the run of e4 . 

For i E { 1, 3}, let Si = subrun([ e, 2, e1, c, e3, 1, e4], add ( CJ, x, ini), R). Then 

Prov([result(Si)], Si)= [e4J · Prov ([ini, a, result(Si)l, S[) 

U { ([ e4 J, add ( CJ, x, ini), [ result (Si)])} 

with Sf= subrun([e4, x], add(CJ, x, ini), Si), and 

Prov([ ini, a, result (Si)], Sf) = { ([x], add(CJ, x , ini), [ ini, a, result (Sf)])} 

We could thus consider incorporating the following set into Prov ( ({)2, R): 

{ ([e, 2, e1, c, e3, 1, e4J, add(CJ, x, in1), [a1]) 

([e,2,e1,c,e3,l,e4,X], add(CJ,x,ini) , [in1,a,2]) 

([e, 2, e1, c, e3, 1, e4 ], add(CJ, x, in3), [a3]) 

([e,2,e1,c,e3, l ,e4,Xj, add(CJ,x,in3), [in3, a,5])} 

The set, however, is not yet complete. Remember that e4 was executed inside 
a for-expression, therefore we should further track t he bound variable x. For 
iE {l,3}, 

Prov([in, ini, a, result(Si)], S) = {([e, l ,y],CJ, [in, ini, a, result(Si)])} 

Thus we could also consider incorporating the following set into Prov(({J2, R): 

{([e, l,y], CJ, [in , in1 ,a,2]) 

([e,l , y], CJ, [in,in3,a,5 ])} 

However, adding these sets to Prov('P2, R) alters the semantics of the prove­
nance set, as discussed in Section 4.2.3. Indeed , the additional triples do 
not contribute to the where-provenance of ({)2 in R. But they do show the 
where-provenance of the inputs of e3, on which the final results of e3 somehow 
depend. D 
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In general, we cannot even assume that for a service call with one input, its 
output is directly computed from the input. Indeed , that service call might 
invoke an external service that uses the input to select records in a database 
query, and then computes the output from the query result. Each service call, 
in principle, might have side effects. 

Therefore, we define a dependency assignment, that can be specified, either 
before or after executing a dataflow, for a given function assignment. 

Definition 4.9. Let N ~ N. Let ( be a function assignment over N. We 
define a dependency assignment D epc; as a mapping from N to JP'fin(N), such 
that the following holds: 

VJ EN:(((!): [ri]x ... x [rn)-+ [Toud ==} Depc; (f ) ~ {l, . .. ,n} ) . 

These natural numbers positionally identify the inputs of ((j) on which a 
result value of((! ) directly depends. 

We do not define what directly depends exactly means, other that the depen­
dency is sufficient for the designer of the dataflow to assert its existence in 
Depc; . Additional annotations may be used to explain the significance of the 
dependencies in Depc; . 

Note 4 .2.1. To illustrate different understandings of what it means that an 
output of a service call directly depends on its input , consider some external 
services filter1 and filter2, that both take one parameter criterion. Suppose 
filter1 executes the left-hand side SQL query, and filter2 the other one: 

SELECT a, b , c 
FROM Table 

WHERE f(a) = criterion 

SELECT criterion AS criterion, a, b, c 
FROM Table 

WHERE f(a) = criterion 

On one hand, we could consider the output of filter2 to directly depend on 
criterion, as t he parameter is actually used in the construction of the output. 
In this sense, the output of filter1 does not directly depend on criterion . 

On the other hand, we could decide that the fact that crit erion is used to 
filer records is already strong enough to assert a dependency. In this case, the 
output of both filt er1 and filter2 directly depends on criterion. 

One could even consider a dependence between criterion and the output of 
the following query: 
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SELECT a, b, c, g(criterion) as d 
FROM Table 

WHERE f(a) = criterion 

D 

What we do assume, is the following notion of independence. 

Definition 4.10. Let f be a non-deterministic mapping from X 1 x · · · x Xn 
to Y. We say that f is independent of the i-th input if 

V(v1, ... ,vi- 1,vi+l, .. . vn) E X1 X · · · X xi - 1 X xi+l X · · · X Xn 

V Wi, W~ E Xi : ( VJ , ... , Wi, ... , Vn) E [ fj <==> ( V1, ... , W~, ... , Vn) E [j] . 

We can now alter the definition of subvalue provenance to take such informa­
tion into account. 

Let e be an NRC expression, and a a value assignment over FV(e). Let ( be 
a function assignment over SN(e), and Dep( a dependency assignment for(. 
Let a, ( ~ e => R and v = result(R). Let cp be an occurrence of a subvalue 
of v , i.e., cp ......... v. For each f E SN(e) , let f be independent of all input s in 
positions not included in Dep((f) . 

We define the asserted subvalue provenance function , denoted by Gray() , by 
adjusting the Rules P.l- P.18 as follows: 

• for every rule except Rule P.13, we simply use the same rule with every 
occurrence of Prov() replaced by Gray(). 

• we replace Rule P .13 with the following one: 

e =f(e1, .. , , en) a,(~e=>R 
cp ......... result(R) Vi E Dep((f): Si = subrun([e, i , e1J, a,R) 

Gray(cp, R) '!;;1 LJ [e] · Gray([result(Si)],Si ) U {([e], a , cp) } 
G. 13 

i EDep<(f) 

We call Gray(cp, R) "the asser ted subvalue provenance of cp in R" . 

Rule G. 13 essentially adds the subvalue provenance of the relevant inputs of 
the service call, in their corresponding subruns. Note that it corresponds to 
the informal notion of "contribution" in the context of workfl.ows, where prove­
nance information includes subvalues from the input that were transformed 
into v by a computation. 
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We should mention that the Open Provenance Model [MCF+ ll] provides 
means to explicitly model dependencies between data in a run . A run is 
modelled as a graph , in which data is represented as artifact-nodes. The 
dependency between artifact-nodes is expressed by the so called "was-derived­
from edges". Currently, the artifact-nodes in OPM are treated as atomic 
data, although t he need for support of complex data has been acknowledged 
in the OPM community. Recently, Anand et al. [ABALlO] have presented 
a graph model that accommodates structured data, modelled by XML trees, 
recording dependency relations between nodes in the trees . Also Chapman 
and Jagadish [CJlO] have tackled the problem of black boxes, and have pro­
posed a model for recording dependencies provided by a black box. I t would 
be interesting to investigate whether we can, for some classes of black boxes, 
express the dependencies between subvalues of the inputs and subvalues of the 
output in the form of provenance rules. 

4.3 Subvalue provenance 1n the context of a data­
flow repository 

Recall the formal model of a dataflow repository we have defined in Section 3.3. 
Let r E R be a run ident ifier and let R = run(r). Let er = expr(datafiow(r)) , 
err = values(r), and (r = (binding(r) · Let ({Jr be an occurrence of a subvalue of 
result(R) , i.e., <p,- .- result(R). 

R emember that we represent the provenance set Prov(cp,., R ) as a set consist­
ing of triples. Each triple is of the form (<I>', er' , cp'), where, <I>' is an occurrence 
of subexpression e' of e,., with er' , (r F e'::::} v', and where cp' is an occurrence 
of a subvalue of v', i.e., cp' .-. v'. We also know that (<I>' ,er') E SI (R) and 
v' = result(subrun(<P' , er' , R)) (P roposit ion 4.4). The definition of Prov() op­
erates only in the context of a given run, and thus provides only the desired 
result , being the where-provenance of a subvalue, for runs of expressions whose 
service-call subexpressions represent external services . 

In this section, we redefine the subvalue provenance function in the context of a 
dataflow repository, so that service-call expressions representing subdat aflows 
can be handled properly. Indeed, if a service-call expression is bound to a 
subdataflow, the tracking of subvalue provenance should continue into the 
correct run of that subdataflow. As the subdataflow may contain service­
call expressions as well , the tracking process can be stopped if the service 
call is a black box. However, if it is a subsubdataflow, the tracking process 
can continue, and so forth. If the tracking process, while in the run of a 
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subdataflow, does not encounter any black boxes, than the tracking process 
can return to the run of the parent dataflow. 

vVe represent the extended subvalue provenance P* of 1Pr in run(r) as a set 
consisting of pairs. Each pair is of the form (r', (<I>', er', <.p1

) ) , where (<I>', er') E 

SI(run(r')), and <.p1 
...-. result(subrun(<I>',er',run(r'))). Essentially, extended 

subvalue provenance "tags" provenance-triples with the identifier of the run 
in which the provenance was being tracked. 

In Rules E. l-E.18, we define the extended subvalue provenance function, de­
noted by Prov*(). In general , we refer to sets produced by Prov*() as extended 
provenance sets. We refer to Prov* ( 1Pr, r JI [er], err) as the extended subvalue 
provenance of 1Pr in run(r) . 

In defining Prov*() 1 we use a slightly different notation. Instead of passing a 
whole run as an argument, we can use its run identifier and a subexpression 
invocation (the two arguments after the "II " symbol) to identify the correct 
subrun, in which the tracking process should continue. Each rule is thus aware 
of the full subexpression path, and can use it in its tagged provenance-triple. 

Rules E.l- E.12 and E.14-E.18 are a tedious but straightforward adaptation 
of their corresponding rules from Section 4.2.2. 

r ER (<I>,er) E SI(run(r)) <I> = cI>' · [e] 
~~~~~~~~~~~~~~~~~~~~~ E.1 

Prov*([a], r 11 <I> , er) '!;1 { (r , (<P, er, [al))} 

e =a 

r E R («1>,er) E SJ(run(r)) 
<I> = <I>'· [e] e = x cp ...-. result(subrun(<I>, er, run (r))) 

a f E.2 
Prov *(<.p, r I) q'>, <i) de { (r, (<I> , er, 1.p))} 

r E R (<I>,a) E SI(run(r)) <l> = <P1 
• [e] e = 0 

~~~~~~~~~~~~~~~~~~~~~- E.3 
Prov*( [0], r II <l>, <i) ~ {(r, (q, , CJ, [0]))} 

r E R (<I> , er) E SI ( run ( r)) q> = <I>' · [ e] 
e = { e'} or e = LJ e' v := result( subrun( q, , CJ, run (r))) 

S := subrun ( q> · [ e'], er, run ( r)) <.p1 = [ result ( S)] 
~~~~~~~~~~~~~~~~~~~~~~~~~ E.4 
Prov* ( [ v], r 11 <I> , er) '!;1 Prov* ( cp', r 11 <l> · [ e'], CJ) U { ( r, (<I>, er, [ v])) } 
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r E R (<I>, a) E SI (run(r)) <I> = <I>'· [e] e = {e'} 
S := subrun(<I>, a, run(r)) cp H result(S) cp = [result( S )J · cp' 
~~~~~~~~~~~~~~~~~~~~~~ E.5 

Prov* ( cp , r 11 <I> , a) ':;1 Prov* ( cp' , r 11 <I> · [ e'], a) U { ( r, (<I> , a, cp)) } 

r E R (<I>, a) E SI(run(r)) 

<I> = <I>' · [ e] e = LJ e' S := subrun( <I> , a, run(r)) 
(f) H result(S) cp = [result(S) J · cp' cp' .- u 

S' := sv,brn,n(<I> · [/], a, run(r)) W := { w E= resnlt( S') I ?J, E w} 
~~~~~~~~~~~~~~~~~~~~~ E.6 

Prov* ( cp, r 11 <I> , a) '!;1 { ( r, (<I> , a, cp))} U 

LJ Prov*([result(S'),w] · cp' ,r ll <I>· e' , a) 
w EW 

r E R (<I> , a) E SI ( run ( r)) <I> = <f>' · [ e] 
e = (e1 U e2) S := subrun( if> , a, run(r) ) v := result(S) 
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Vi E {1,2}: Si := subrun(if> · [i ,ei ],a, run(r)) A 'Pi = [result(Si )] 
df E.7 

Prov*([v ], r ll if>,a) ~ LJ Prov*(cpi, r ll il>· [i,ei],a) U {(r, (<I> , a, [v]))} 
iE{ 1,2} 

r E R (if> , a) E SI (run (r )) <I> = <I> '· [e] e = (e1 U e2) 
S := subrun(if> , a, run(r)) cp H result(S) cp = [result(S) ] · cp1 

Vi E {1, 2}: Si := subrun(i:P · [i,ei], a , run(r)) A Vi := result(Si ) 
I : = { i E { 1, 2} I [Vi] · <p

1 
.- vi} 

~~~~~~~~~~~~~~~~~~~~~~~ E.8 
Prov* ( <p , r II if> , a) '!;1 LJ Prov* ([Vi] · cp\ r II if> · [ i, ei ], a ) U { (r , (<I> , a, cp)) } 

iE / 

r E R (if> ,a) E SI(run (r)) 
if> = <I>'· [e] e = (l1: e1, .. . , ln: en ) S := subrun(<l> , a, run(r) ) 
v := result(S) Vi E { 1, ... , n }: Si := subrun (<l> · [ 4, ~ ], a, run(r)) 

d f E.9 
Prov*( [v], r ll <I> , a) ~ {(r,(<l>, a, [v]))} U 

LJ Prov*( [result (Si)J, r II <I>· [4,eiL a) 
iE {1, ... ,n} 
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r ER 
(<I>,cr)ESI(run(r)) <I>=<I>'· [e] e=(Zi:e1, ... ,lrt:en) 

S := subrun(<P,cr, run(r)) <p ~ result(S) 
<p = [result(S), 4] · <p1 S' := subrun(<P · [4, ei], er, run(r)) 

------------- - -------- E.10 
Prov*(<p ,r II <I>,cr) ';;1 Prov*(<p',r II <P · [4 ,ei],cr) U {(r, (<I>, er, <p))} 

r ER (<I>,cr) E SI(run(r)) 
<J:, = <I>'· [e] e = e1.l S := subrun(<I.>,cr, run(r)) 
<p-. result(S) S' := subrun(<I> · [e'],cr, run(r)) 

--- - --------- ------~ E. 11 
Prov*(ip,r ll <I>,cr) ';;1 {(r,(<I>, er, <p))}U 

Prov* ( [ result ( S') , l] · <p, r II <I> · [ e' ], er) 

r ER 
(<I>, er) E SI(run(r)) <I> = <J:,' · [e] e = (e1 = e2) ore= (e' = 0) 

S := subrun(<I>, er, run(r)) v := result(S) 
----------------'----------'-- - --~ E.12 

Prov* ( [ v], r II <I>, a) ';;1 { ( r, (<I>, er, [ v])) } 

r E R (<I>, er) E SI(rnn(r)) 
<I> = <I>'· [e] e = if ea then e1 else e2 S := subrun(<I>, er, run(r)) 

<p-. result(S) result(subrun(<I> · [O, ea], er, run(r))) = true 

Prov*(<p,r II <I>,cr) ';;1 Prov*(<p,r II <I>· [l, e1],a) U {(r, (<I> , <7, <p))} 
E.14 

r ER (<I>,cr) E SI(run(r)) 
<I> = <I>' · [ e] e = if ea then e1 else e2 S := subrun( <I>, a, run(r)) 

<p-. result(S) result(subrnn(<I> · [O, ea ], <7, run(r))) = false 

Prov*(<p, r II cl>, er) ';;1 Prov*(<p, r II <I>· [2, e2], er) U { (r, (<I>, er, <p))} 
E.15 

We also need to adapt the definition for t he function selecting provenance­
triples with a subexpression path ending in a particular variable. 

Definition 4.11 . Let U, X , Y, and Z besets. For P s;;; Ux(SEQ(X)xYxZ), 

for u EU, x EX, and y E Y, we define: 

Sel(u,x,y,P) ';;1 {(u,(q,y, z )) E P I x is the last element of q}. 
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Now we can adapt the rules for the let- and for-expressions. 

r ER (<P , a) E SJ(run(r)) <P = <P1 
· [e] 

e = letx: = e1 in e2 S := subrun(<P , O', run(r)) <p<-eresult(S) 
S1 := subrun( <P · [l, e 1 ], O', run(r)) a' := add( a, x , result ( S1 )) 

P* := Prov* ( <p, r II <P · [2, e2L 0'
1

) tD := Sel( r, x, a' , P*) 
------------- ----------- E. 16 

Prov*(<p, r II <P, a) '1;1 P* U { (r , (<P, O', <p)) } U 

LJ Prov*(<p',rll <P· [l ,e1], a ) 
(r,(<P" ,cr' ,'f'' ))EO 

r ER (<I> , a) E SI(run(r)) 
<I> = <P1 

• [e] e = for x in e1 return e2 S := subrun(<P , a, run(r)) 
<.p = [result(S) ] S1 := subrun(<P · [l,ei], O',run(r )) 

Vw E result(S1): aw := add(a,x,w) 
Vw E result(S1): Sw := subrun(<P · [2,e2 l, aw, run(r)) 

Vw E result(S1): P: := Prov* ([ result (Sw)], r II <P · [2, e2J, aw) 
Vw E result(S1): tDw := Sel(r,x,aw, P:) 

------------------- ------ E.17 
Prov* (<p, r 11 <P , a) ~ LJ P: U { (r, (<P, a, <p))} U 

11JEresi,lt(S1) 

LJ LJ Prov*( [result(S1)] · <p,r II <P · [l ,e1 ], a) 
wEresult(Si) (r,(<I>" ,crw,'f'))EOw 

r E R 

(<P , a) E SI(run(r)) <P = <I>'· [e] e = for x in e1 return e2 
S := subrun(<I> ,a, run(r )) <p .-. result(S) 

<p = [result(S )] · <p1 <p1 
,_. 'u S1 := subrun(<P · [l ,e1 ], a, run(r)) 

Vw E result (S1) : aw := add(a, x, w) 
Vw E result(S1): Sw := subrun(il> · [2, e2 l,aw, run(r)) 

W := { w E result(Si) I result(Sw) = u} 
Vw E W: P: = Prov*(<p',r ll <P · [2,e2],0'w) I\ tDw := Sel(r, x,aw, P: ) 
------------------------- E.18 

Prov*(<p, r II <I>, a) '1;1 LJ P: U { (r, (cJ> , a, cp))} U 
wEW 

LJ LJ Prov*( [result(S1) ] · <p11 , r II <P · [l ,e1J,u) 
wEW (r,(il>" ,crw,'f'11 ))E0w 

The last two rules deal with service-call expressions. The first rule is for a 
service-call expression that is bound to a subdataflow. The binding is ex­
tracted from the binding tree that is associated with r : there must be a 
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child-node c of the root that is labelled with a dataflow identifier , and the 
connecting edge must be labelled with the service name from this service-call 
expression. If it is the case, the run identifier of the correct run of the sub­
dataflow is provided by the mapping internal Call(). We then compute the 
extended subvalue provenance set P* , in the correct run of the subdataflow. 
It is possible that the tracking process does not encounter any black boxes, 
and tracks up to the free variables of the subdatafiow. We look for all such 
pairs and collect them in ((}) . For each of these pairs, we compute the extended 
subvalue provenance in the corresponding subrun of the parent dataflow, for 
the subvalue of the input that was tracked in P*. To determine the correct 
su brun we use the replacement mapping from the binding tree. 

rER (<P,a)ESl(run(r)) <I>=<I>'·[e] e=f(eI, ··· ,en) 
(3 := binding(r) /3 = (T, >. , M) I\ T = (r, V, E) 

:l c E V: >.(r, c) = f I\ >.(c) E V S := subrun(<P, a, run(r)) 
i.p ,..._. result(S) r' = irzternalCall(r, (<I>, a, result(S))) 

P* := Prov*(i.p, r' II [ expr( datafiow(r'))], values(r')) 
((}) := {Sel(r',x,values(r'),P*) Ix E FV(expr(datafiow(r')))} 

-------------------------- E.13S 
Prov*(i.p,r II <I> ,a) ';;i {(r, (<I> , a, i.p))} U P* U 

LJ Prov*(i.p',r II <I>· [M(c)(x),eM(c)(x)],a) 
(r' ,( ¢", values(r'),<P' ))EO 

If the service-call expression is bound to an external service identifier, the 
tracking process stops. 

r ER (<P ,a) E Sl(run(r)) 
<I> = <J/ · [ e] e = J ( e 1 , ... , en) (3 : = binding ( r) 

/3 = (T, >., M) I\ T = (r, V, E) :l c E V: >.(r, c) = f I\ >.(c) E £ 
S := subrun(<P,a, run(r)) i.p ,..._. result(S) 

------------------------- E.13E 
Prov* ( <p, r II <I> , a) d_;l { ( r , (<I>, a, i.p)) } 

Note that we can alternatively define the last rule to accommodate any as­
serted dependencies, as described in Section 4.2.4. In order to do so, we need 
to extend the dataflow repository with a mapping asserted() from R to VA, 
with VA t he set of all dependency assignments. We also need to add the fol­
lowing constraint: asserted(r) is a dependency assignment for (binding(r), such 
that for each f E SN(expr(datafiow(r))), f is independent of all inputs in 
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positions not included in asserted(r)(J) . 

r ER (<I> ,cr) E SI (run(r)) 
<I>= <I>'· [e] e = f(e1, . . . , en) fJ := binding(r) 

fJ = (T, ).. , M) /\ T = ( r , V, E) 3 c E V: ).. ( r, c) = f /\ ).. ( c) E £ 
S := subrun(<I>, er, run(r)) i.p -. result(S) 

r/i E asserted(r)(J) : Si= subrun(<I> · [i, ei], er, run(r)) 
----- -------------------- --- E.13G 

Prov* ( i.p, r 11 <I> , er) ~ { ( r, (<I> , er, i.p))} U 

LJ Prov*([result(Si)],r II <I>· [i,ei],cr) 
iE asserted ( r) (!) 

Observe the difference with Rule E. 13s. Here, we can only compute the ex­
tended subvalue provenance of an entire input in its corresponding subrun. 

4 .4 Exploring a past execution 

An interesting way of using our provenance inference rules is, instead of com­
puting a whole provenance set at once, tracking subvaJue provenance in a 
step-by-step manner. In the following, we use an example to show how we can 
use the rules for the extended subvalue provenance to explore a run within the 
context provided by the rules. Indeed, each rule already determines a selection 
of run-triples that contribute to subvalue provenance. We can choose to either 
follow the entire selection, or , in rules for a for-expression or a flatten, only 
a part of it. Vve can also choose to stop and "change direction", for example 
to explore the part of the run that has produced a boolean in a test or in a 
conditional. 

Recall Example 3.3 (p. 42) , where we have computed a run R for 

e = for x in y return (b: x.b, c : f(x.a)) , 

with e1 = (b: e2, c: e3), e2 = x.b, e3 = f(e4), and e4 = x .a. In Example 4.7 
(p. 87), we have computed Prov(1.p2,R) for i.p2 = [out, (b: 4, c: 1), c, l]. 

Now suppose that R is stored in a dataf:l.ow repository ( conform to the model 
in Section 3.3), with run identifier r, i.e., run(r) = Rand values(r) = er. Let 
d = datafiow ( r), then expr( d) = e. Suppose that we are still interested in 
subvalue 1.p2 of the final result value of R, shown in t he first tree of Figure 4.4. 

We have tagged md wit h the run identifier r , to indicate to which run the 
value belongs. Instead of computing the whole Prov*(1.p2, r II [el, er), we redo 
the exercise by stepping t hrough the rules. In the first step, we must use 
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r 

Figure 4.4: Subvalue provenance in partial computation of Prov*(cp2, r II [el, u) 

Rule E.18 for a for-expression. The rule a lready produces the first tagged 
triple: 

(r, ([el, u, [out, (b : 4, c: 1), c, l])) . 

As in Example 4.7, we know W = { in1, in3 }. The rule determines which 
subexpression invocations in R have to be considered in the second step, but 
we can choose, for instance, to only follow the branch for in3 . The rule also de­
t ermines which subvalue of v3 from the run-triple ([e, 2, e1J, add(u, x, in3), v3) 
is going to be tracked, as shown in Figure 4.4. 

Note that if we also want to trace the bound variable , we must compute the 
whole Prov* ( cp~, r JI [ e, 2, e1], add(u, x, in3) ). 

In the second step, we must use Rule E.10 for a tuple-expression. T his rule 
produces t he second t agged triple: 

(r,([e,2 ,e1J, add(u,x,in3), [v3,c, l ])), 

and determines that next we track [l ] from the run-t riple 

t = ([ e, 2, e1, c, e3], add(a, x, in3), W3) . ( 4.1) 

In the third step , we must use a rule for a service-call expression. In Exam­
ple 4.7, e3 represented an external service. T hat means that in binding(r), 
there is an edge labelled f from the root to some node y, and t hat node is 
labelled with an external service identifier. We use Rule E.13E, which adds 
the last tagged triple: 

t p = (r, ([e, 2, e1, c, e3), add(u, x, 1:n3), [w3])), (4.2) 

and stops t he tracking process. T hat also means the we have the whole 
Prov*(cp~, r II [e, 2, e1J, add(u, x, in3)): 

{ (r, ([e,2,e1J, add(u,x,in3), [v3, c, l ])) 
(r, ([e, 2, e1, c, e3], add(a, x, in3), [w3]))}. 
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As none of the subexpression paths ends in the bound variable x of the for­
expression, we cannot track any further , so we have reached the run-triple 

from where '{)2 originates. 

Note t hat at this point, we can also choose to use Rule E.13G instead of 
Rule E. 13E, if we know that the output off depends on its input , and either 

compute 

or again, step through it. From Example 4.8 (p. 94 ) we already know P* 
contains a tagged t riple with a subexpression path ending in x, which can be 
used to track fu1ther till we reach the input value in. 

Observe that if we reach an equality-test, an emptiness-test, or an if-expression , 
we can, in t he same way, explore the part of the run that produced the boolean 
result value. Moreover , instead of a subvalue of out , we can also track any 
subvalue of any intermediate result of R. Indeed, for a triple (<P' ,a',v') E R, 
and <p1 .--. v', we can either compute Prov*(<p' ,rll <P' ,a') , or step through its 

computation. 

To show how the extended subvalue provenance deals with subdataflows, we 
need t o slightly modify the example. Suppose that in the thfrd step , e3 repre­
sents a subdataflow with identifier d5 . T hat means t hat in binding(r), there 
is an edge labelled f from t he toot to some node y labelled with d5 . Suppose 
expr( ds) is the following expression: 

if x = 5 then g(x) .l else O, 

with es = if ec t hen et else 0, ec = (x = 5) , et = e9 .l, and e9 = g(x) . Suppose 
g is bound to an ext ernal serv ice. The ident ifier of the relevant run of d8 is 
internalCall(r, t) = rs (E q. 4.1 ). Let a3 = add(a, x, in3), then values(r8 ) = 
add(a3, x, 5), assuming the rep lacement mapping for f maps the free variable 
x of es to the only input off. Suppose run(rs) is the following set: 

{ ([es, 0 , ec, 1, x], add(a3 , x, 5), Vx), 

([es, 0, ec, 2, 5], add(a3 , x, 5), v5), 

([es, 0, ec], add(a3, x, 5), t rue) , 

([es, l ,et,eg, l ,x], add(a3,x,5), v9 ), 

([es,l,el,eg], add(a3 ,x, 5), (k: 25 , l: l ,m : 11 )), 

([es, 1, et], add(a3, x , 5) , Vt), 

([es], add (a3,x,5), Vs)} 
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Figure 4.5: Subvalue provenance in a run of a sub dataflow 

with Vs = Vt = I and Vx = V5 = v9 = 5. Instead of Rule E. 13E, we now use 
Rule E.13S, which also adds t he tagged triple tp (Eq. 4.2). We can t rack fur­
ther , by stepping through t he computation of Prov* ([1], rs II [ e8 ], add (0"3 , x, 5) ), 
as shown in Figure 4.5. We start with Rule E. 14, which adds the tagged t riple 

and directs t he tracking t o t he run-trip le ([es, 1, et l, add (0"3, x , 5) , Vt ), again 
for subvalue path [1]. We continue with R ule E.11, which adds 

(rs, ([ es , 1, et] , add(0"3, x, 5) , [vt])) 

and directs us t o ([es , 1, e1, e9 ], add(0"3 , x , 5), (k: 25, l: 1, m : 11) ), for t he sub­
value pa th [ ( k : 25, l : 1, m: 11 ), l , l ]. As g is bound to an ext ernal service , we 
yet again use R ule E. 13E, which stops t he tracking process after adding 

(rs, ( fes, I , ei,e9 ], add(0"3, x ,5), [(k: 25, l: 1,m : 11),l,l ])) . 

Again, we have reached t he run-triple from where <p2 or iginates , in run(rs). 
The collected set of t agged t riples is t hus 

{ (r , ([el, O", [ out , ( b: 4, c : 1) , c, 1])), 

(r, ([e , 2, et] , add(O", x, in3) , [v3, c, 1])), 

(r, ([e, 2, e1, c, e3], add(O", x , in3), [w3])) , 
(rs, ([es], add(0"3 , x , 5), [vs])) , 

(rs , ([es, 1, et], add (0"3, x , 5), [vt]) ), 
(rs, ([es, I ,e1, e9 ], add(0"3,x ,5), [(k : 25 , l : l , m : 11) ,l, 1]))} 
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Note that now we can again apply Rule E. 13G instead of Rule E.13E to reach 
the free variable x of es . That would allow us to return to Rule E. l 3S, to con­
tinue the tracking process into Prov*([5], r II [e, 2, e1, c, e3, 1, e4], add(cr, x, in3)), 
back in the run of the parent dataflow. 

On a final note, it would be interesting to develop a GUI, with a graphical 
representation of a run , that would facilitate exploring the run through the 
provenance inference rules. 





5 

Open Provenance Model 

5.1 Overview of OPM 

In this section we present a representative example to illustrate key compo­
nents of the Open P rovenance Model. For a detailed presentation of OPM, we 
refer to the OP M reference specification [MCF+ 11]. Consider the following 
scenario: 

Alice and her young son Bob ordered a latte and a frui t juice in 
a coffee shop. Bob, who is a young child, did not observe the 
activities involved in processing their order, and only focused on 
his own drink. Hence, Bob's version of events is that an order was 
submitted and resulted in his juice being delivered. 

Alice, who could observe the activities behind the counter , iden­
tified three different processes . The cashier took the order and 
associated payment. As soon as the order was taken, the cashier 
put an empty cup on a tray next to the coffee machine; once pay­
ment was taken, the cashier added a till receipt to the same tray. 
The coffee machine operator picked up the cup, and filled it with 
the requested coffee, as per receipt, and handed the tray over to 
Alice. A third person behind the counter served other drinks , on 
request from the cashier. Alice was unable to ascertain how infor­
mation was communicated (e.g. , the request was stated by cashier, 
or order read from receipt); what is definite from Alice's viewpoint 
is t he juice was also delivered with the tray. 

109 
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Figure 5.1: OPM graph for coffee shop order. The dotted edges are imprecise. 

The OPM data model consists of a directed graph , whose nodes are artifacts 
and processes, and edges are dependencies between them. Artifacts in this 
scenario consist of an "order", some "cash", an "empty cup", a "receipt" , 
a Hjuice" and a "latte" . According to Bob, there is a single process: "Get 
Drink". Alice 's version of events is more detailed and involves three processes: 
"Take Order", "Make Coffee", and "Provide other Beverages" . 

OPM edges are d irectional: an edge source represents an effect and an edge 
destination a cause. T here exist four types of edges according to the types of 
effect and cause. A used-ed ge is between a process and an artifact; a generated­
by edge is between an artifact and a process; a derived-from edge is between 
two artifacts; and an informed-by edge is between two processes. 

Moreover, the first t hree types of edges are further categorised into precise 
and imprecise versions. Precise edges are labeled with roles, which indicate 
the role in which artifacts are used and generated; roles are comparable to 
parameter positions in a procedure. Imprecise edges are used when precise 
information about what happened is not important or not available. 

Nodes are list ed in Table 5.1, and edges in Table 5.2. Nodes and edges are 
displayed graphically in F igure 5.1. The "Take Order" process used two ar­
tifacts, "order" and "cash", and generated t he "empty cup" . The latter was 
used by the process "Make Coffee", to generate a "latte" . 
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Table 5.1: OPM processes and artifacts for coffee shop order 

node type node label 
process P1 Take Order 
process P2 Make Coffee 
process p3 P rovide other Beverage 
process p4 Get Drink 
artifact a1 order 
artifact a2 cash 
artifact a3 empty cup 
artifact a4 receipt 
artifact a5 latte 
artifact a6 juice 

We note that the empty cup was put on the tray, before payment was taken. 
So there is no edge from the "empty cup" to "cash" . On the other hand, 
the receipt was put on the tray after cash was received , which explains t he 
presence of an edge from "receipt" to "cash". 

Furthermore, some OPM edges can be decorated with time information (not 
represented explicitly in the figure nor table). Specifically, the time associated 
with a precise used-edge denotes the t ime at which an artifact was used by a 
process; likewise, the time associated with a precise generated-by edge denotes 
the t ime at which an artifact was generated by a process. Moreover, processes 
may be given a beginning and an ending time. 

OPM specifies some constraints between such time information and the graph 
struct ure. For instance, let t be the time associated with (p1, money, a2). Time 
t represents the time at which p1 ( "Take Order") used artifact a2 ("cash") , 
with role "money" . Time t is required to precede the ending of P1, and to 
follow the beginning of p 1. Note also that P1 may well be finished before arti­
fact a5 ("latte") was actually produced. This paper formalises all constraints 
identified by OPM. 

We note that Bob's version of events is represented in the same graph as 
Alice's version . In the graphical representation of Figure 5.1, the nodes in 
Bob's version have a double border, and the edges are bold. Art ifacts "order" 
and "juice" belong to both versions. To support multiple descriptions of an 
execution, OPM introduces a notion of account. An account is a subgraph, 
which is also an OPM graph. 



112 Open P rovenance Model 

Table 5.2: OP M edges for coffee shop order 

edge type source destination asserted edges for Figure 5.1 
/effect /cause 

precise generated-by artifact process (a3, cup,p1), (a4, receipt,p1), 
(as, coffee, P2) ,( a5, juice, p3) 
(a5,juice,p4) 

precise used process artifact (p1, money, a2), (P1, order, ai) , 
(p2, receipt , a4), (p2, cup, a3), 
(p4, order, ai) 

precise derived-from artifact artifact (a3,order,a1) , (a4,order,a1 ), 

(a4, money, a2), (as, cup, a3), 
(a5 , receipt, a 4 ) 

generated-by artifact process (a6,P1) 
used process artifact (p3, a1 ), (p3, a2) 
derived-from artifact artifact (a6, a1) 
informed-by process process (p3,P1) 

5 .2 OPM graphs and their temporal semantics 

The OPM reference specification [MCF+ll] defines the proposed data model 
only informally. The purpose of this section is to provide a temporal semantics 
to OPM graphs, the data structure introduced in the reference specification. 

Section A.4 contains a set of notes covering technical details of the OPM 
reference specifi cation , and their relationship with the temporal semantics we 
propose. When relevant, we refer to these notes . 

5 .2 .1 OPM g raphs 

We begin by formally defining OPM graphs. Our definition is slightly more 
detailed in distinguishing between precise and imprecise edges. 

In our formalisation, OPM graphs consist of nodes and edges. Nodes can be 
of two types: artifacts and processes (Note A.4.1). There are four types of 
edges: generated-by, used, derived-from, and informed-by, depending on the 
type of their source and destination (Note A.4.2). 

The edges are further categorised into precise and imprecise edges. Precise 
edges are syntactically marked by the presence of roles to characterise the 
nature of the relationship between the source and destination of the edge. 
Intuitively, OPM roles are to used-edges1 what parameter positions are to 
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procedures in programming languages; likewise, roles in a generated-by edge 
identify the nature of an output generated by a process; finally, roles in a 
derived-from edge characterise the precise usage of an artifact by a process. 
By contrast, imprecise edges do not have roles; they represent incomplete 
information (Note A.4.3). 

This work provides a semantic interpretation of precise and imprecise edges. 

Definition 5.1 (OPM graph). An OPM graph is a structure 

(Art, Proc, Roles, GeneratedBy! , Used !, DerivedFrom! , 

GeneratedBy , Used , DerivedFrom , InformedBy) 

where 

• A rt and Proc are two disjoint finite sets of elements called art~facts and 
processes, respectively; 

• Roles is a finite set of elements called roles; 

• GeneratedBy! ~ Art x Roles x Proc ; 

• Used! ~ Proc x Roles x A rt; 

• DerivedFrom! ~ Art x Roles x Art; 

• GeneratedBy ~ Art x Proc; 

• Used~ Proc x Art; 

• DerivedFrom ~ Art x Art; 

• InformedBy ~ Proc x Proc. 

Artifacts and processes are collectively referred to as the nodes of an OPM 
graph. The elements of GeneratedBy!U Used!UDerivedFrom! are called precise 
edges, and the elements of GeneratedBy U Used U DerivedFrom U lnformedBy 
are called imprecise edges; all together they are called edges (Note A.4.4). 
Precise edges are of t he form (x, r, y) and are additionally denoted as x 2-. y , 
or, when it is not important to know r, as x-'-+ y. Imprecise edges (x,y) are 
denoted simply as x ---. y . When the distinction between precise and imprecise 
derived-from edges is of no consequence, we use the following set to refer to 
all derived-from edges of an OPM graph: 

DerivedEdges = DerivedFrom U {(A,B) I (A,r,B) E DerivedProm!}. 
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Figure 5.2: A use-generate-derive triangle (A, B, P, r ). 

This definition of graph allows for multiple precise used-edges between a same 
process-artifact pair with multiple roles. They would indicate that during its 
lifetime a process used a same artifact several times, with different roles. 

The OPM reference specification defines a notion of legal graph as a directed 
graph without cycles in the derived-from edges, in which each artifact is gener­
ated by at most one process. For now, we relax the constraint on the derived­
from edges, which we revisit in Section 5.4.2, and we refine this notion of 
legality in the context of our formalisation (Note A.4.5). 

Definition 5 .2 (Legal OPM graph). An OPM graph is called legal if 

• for each artifact A there is at most one process P with a precise generated­
by edge A ._:_. P; and 

• for each precise derived-from edge A ~ B there is a process P with 
precise edges A ._!_, P and P ~ B, for the same role r . 

A configuration (A, B , P, r) as above, with edges A~ B, A ._:_. P , and P ~ 
B, is called a use-generate-derive triangle, or simply triangle for short (see 
Figure 5.2) . To denote that a use- generate-derive triangle (A , B , P, r ) occurs 
in some given OPM graph G, we use the notation G 6. (A, B , P, r ). 

A use-generate-derive triangle offers an insight into the inner workings of a 
process P , since not only does it state that B was used by P in role r and 
A generated according to a role, but also does it state that B had a direct 
influence on A, because it was used in this precise role r .* A typical usage 
of a use-generate- derive triangle is for a division process, illustrated in the 
following example. 

• The usage role in the use--generate--deri ve triangle is crucial. We could imagine an 
ext ension of Figure 5.2 , in wh ich Puses B in a second role, say s. T he t riangle of Figure 5.2 
identifies the precise usage of B t hat affected the output A, here r, whereas, an alternate 
use of B , with role s, could have not impacted A (for instance, because it took place after 
A was crea ted). 
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Example 5.3. Let / be a division process, 8 and 4 be its inputs (in respective 
capacity of dividend and divisor), and the quotient 2 be its output. So, edges 
are as follows: 

edge type source destination 
precise generated-by artifact process (2, quotient ,/) 
precise used process artifact (I, dividend, 8) , (/, divisor, 4) 
precise derived-from artifact artifact (2, dividend, 8), (2, divisor, 4) 

They form two triangles: (2, 8, /, dividend) and (2, 4, /,divisor). D 

In the following, unless otherwise explicitly stated , we only consider legal 
OPM graphs. Whenever we refer to a single OPM graph G, we use the names 
defined in this section to refer to the different constituents of the OPM graph. 
If we handle more than one OPM graph, for instance graphs G and H , we use 
superscripts G and H to distinguish their respective constituents. We extend 
this convention to other concepts related to OPM graphs. 

5 .2.2 Temporal models for OPM graphs 

The OPM reference specification [MCF+ 11] allows OPM graphs to be deco­
rated with time information for specific t ime-points, which are meaningful in 
the context of a computation. Four of these are identified: the beginning of 
a process, the ending of a process, t he instant a process uses an artifact, and 
the moment a process creates an artifact. Such time information is routinely 
captured by computer systems. For instance, creation t ime is readily available 
from file systems in typical operating systems. HTTP servers and databases 
logs would usually include the time at which a document or table is read or 
queried, respectively. Likewise, the beginning and ending time of processes are 
frequently recorded by job submission systems. The OPM reference specifica­
tion introduces some constraints between time-points, such as an artifact can 
only be used after it has been created. In this section, we revisit the notion of 
time in OPM, by means of a t emporal interpretation of a graph, in terms of 
all the time constraints that it implies (Note A.4.6). 

A temporal interpretation of a legal OPM graph is an assignment of the follow­
ing time-points to processes, artifacts, and precise used-edges: t (Note A.4. 7) 

t One may wonder why precise generated-by edges do not get a time-point. But, as a 
matter of fact, they do. For each precise generated-by edge A ..::, P , we indeed have a 
time-point create(A). Since the OPM graph is legal, there can be at most one precise edge 
emanating from A , so we do not need to specify r and P. 
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• for each artifact A, its creation time, denoted by create(A) ; 

• for each process P , its beginning and ending times, denoted by begin(P) 
and end(P ) respectively; 

• for each precise used-edge P .!..,, A, the time when P "read" A in role r , 
denoted by use(P, r, A). 

Formally, we fix some OPM graph G for the remainder of this section. We 
define the set of temporal variables of G, denoted by Vars(G), as follows: 

Vars(G) = {create(A) I A E Art} U {begin(P), end(P) I P E Pmc} 

U {use(P,r, A) I (P ,r, A ) E Used!} . 

We then define: 

Definition 5.4. A temporal interpretation of G is a t riple (T, $ , T) , where 

• Tis a set, we call its elements time-points; 

• :S is a partial order on T; 

• T is a mapping from Vars(G) to T. 

\¥hen no confusion can arise, we omit T and :S from the notation and simply 
denote a temporal interpretation by T. 

Not every temporal interpretation makes sense as a temporal model of C. 
Indeed, to reflect the dependencies specified in G, the interpretation should 
satisfy various constraints reflecting these dependencies. 

In order to define these constraints formally, we define an inequality over G as 
an expression of t he form u :::< v , with u, v E Vars(G). By a trivial inequality 
we mean an inequality of the form u j u . We are now ready to define t he set 
of constraints expressed by a legal OPM graph. 

Definition 5.5. The temporal theory of G, denoted by Th(G) , is the set 
consisting of all the inequalities stat ed in the following axioms: 

AX 1: for each process P, the inequality begin(P) :::< end(P); 

AX 2: for each precise generated-by edge A -!.+ P in G, t he inequalities 
begin(P) ::s create(A) :::< end(P) ; 

AX 3: for each precise used-edge P .!..,, A in G, the three inequalit ies begin(P) :::< 
use(P, r, A) , use(P, r, A) :::< end(P), and create(A) ::s use(P, r, A); 
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AX 4: for each imprecise derived-from edge A - B in G, the inequality 
create(B ) j create(A); 

AX 5: for each imprecise generated-by edge A -----, P in G , the inequality 
begin(? ) ~ create(A); 

AX 6: for each imprecise used-edge P -+ A in G, the inequality create(A) ~ 
end(P ); 

AX 7: for each informed-by edge P -+ Q m G 1 the inequality begin(Q) -< 
end(P ); 

AX 8: for each G 6 (A , B , P, r), the inequality use(P , r, B ) j create(A). 

Axioms 1- 7 are either obvious (e.g., Axiom 1) or are in line with the OPM 
reference specification (Note A.4.8). The eighth axiom, the "triangle axiom", 
corresponds to the intended usage of OPM by which a precise derived-from 
edge in a generate-use-derive triangle (A , B , P, r) in G is not redundant, but 
expresses exactly that P needed to read B in role r before it could generate 
A (Note A.4.9). 

Example 5.6. The temporal interpretation of precise edges can be illustrated 
by a service analogy. Let us consider a translation Web Service P. The service 
has to be running to receive a translation request A and for the translation 
result B to be returned; so A is received (used) and Bis sent (created ) after 
the beginning of P and before its end; furthermore, B is created after A is 
re~wd. D 

Example 5.7. Referring to Figure 5.1 , the coffee machine operator begins 
the "Make Coffee" process by cleaning the steam pipe and emptying the coffee 
filter; once an "empty cup" and "receipt" are available, they are used (precise 
edge) to generate a "latte" (precise edge) . In the same figure, it is unspecified 
when the "order" is taken, with respect to the beginning of the "P rovide 
Beverages)) process; hence, an imprecise used-edge appears in the figure. D 

We finally define the temporal models of G as follows. Naturally, a temporal 
interpretation r is said to satisfy an inequality u j v if r( u) ::; r( v) . 

Definition 5.8 . A temporal interpretation r of G is a temporal model of G , 
denoted by r F Th(G), if it satisfies all inequalities from Th(G). 

Example 5 .9 . Consider the small OPM graph G shown in Figure 5.2. Let us 
use natural numbers with their natural ordering as time-points. T hen the two 
interpretations r1 and r2 , presented in Table 5.3, are temporal models of G. 
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Table 5.3: Two temporal models for the graph shown in Figure 5.2. 

T1 variable value T2 variable value 
create(B) 1 create(B) 1 
begin(?) 2 begin(? ) 1 
use(P , r, B) 3 use(P, r, B) 1 
create(A) 4 create(A) 1 
end(P) 5 end(P) 1 

Temporal model , 2, which maps all temporal variables to the same time-point, 
might be generated by a very coarse clock. 

Many temporal interpretations of G, however, are not temporal models of 
G. If, for example, we would modify T1 to T{ by setting T{(end(P)) = 0, 
then Axiom 1 would be violated. Likewise, if we would modify T2 to T~ by 
setting T~(use(P, r, B)) = 0, then Axiom 3 would be violated. Also, if we 
would modify T1 to T{' by setting T{'(create(A)) = 0, then we would violate 
Axioms 2 and 8. D 

Example 5 .10. For another example, consider an OPM graph with two ar­
tifacts A and B and nothing else (no edges either). Then any possible tem­
poral interpretation qualifies as a model. In particular, in some models T we 
have T(create(A)) < T(create(B)); in other models we have T(create(B)) < 
T(create(A)); and still in others we have T(create(A)) = T(create(B)). This 
is because the OPM graph does not impose any constraints by the absence of 
~~~- D 

Whilst the temporal semantics is a novel contribution, the OPM reference 
specification [MCF+ n J defines time placeholders in some construct s, and al­
lows them to be filled with time information. These time-decorated constructs 
correspond to the time variables introduced in this work. The OPM reference 
specification does not mandate all time placeholders to be filled. Thus, from a 
temporal semantics viewpoint, for every decorated construct, the time infor­
mation found in the placeholder fixes T for the corresponding variable. If all 
placeholders are filled , then a single temporal interpretation exists. In general , 
for every filled placeholder , the number of possible interpretations is reduced. 

Now that we have formally defined a temporal model for OPM graphs, we can 
investigate, in the next section , how we can conduct inference in OPM graphs. 
Whether there are other, non-temporal, ways to provide a formal semant ics 



5.3. Inference in OPM graphs 119 

for OPM graphs is an interesting direction for further research. (We briefly 
discuss other efforts in Chapter 1). 

5.3 Inference in OPM graphs 

The axioms of Definition 5.5 allow us to obtain a number of inequalities over an 
OPM graph's variables. These inequalities logically imply further inequalities. 
For a trivial example, in an OPM graph wit h derived-from edges A -. B -. 
C, Axiom 4 gives the inequali ties create(C) j create(B ) and create(B ) j 

create(A), which logically imply t he further inequality create(C) j create(A). 

Formally, we define: 

Definition 5.11. Let G be a legal OPM graph and let u, v E Vars(G ). The 
inequality u j v is a logical consequence of G, denoted by Th(G) p u ::5 v, if 
u ::5 v is satisfied in every t emporal model of G. 

A general example of logical consequence is provided by the following lemma 
and proof. 

Lemma 5.12. Let G be a legal OPM graph with artifacts A and B and a 
precise edge A -2:.. B for some role r. Then Th(G) F create(B ) j create(A). 

Before proving this lemma we note that Axiom 4 is almost exactly the same, 
except that it is stated for an imprecise derived-from edge. Thus, t he present 
lemma shows that the same constraint holds for precise der ived-from edges. 
This constraint did not need to be explicitly given as an axiom because it 
already logically follows from the given axioms. 

Proof. Since G is legal, t here exists a process P in G with edges P -2:.. B and 
A --'-. P. Let T be a temporal model of G. By Axiom 3 we h ave T(create(B)) S 
T(use(P,r, B )) . By Axiom 2 we have T(use(P,r,B)) s; T(create(A)) . We 
conclude 7(create(B)) s; T(create(A)) as desired. D 

One may indeed wonder exactly which inequali ties logically follow from a 
given OPM graph. It is well known that an inequality u ::5 w can b e inferred 
from Th(G) by using repeated applications of the rule of transit ivity: "from 
u j v and v j w we infer 'U j w" .t However, this way it is hard to relate 

t For a set of inequalities E and an inequa lity <p, <p is a logical consequence of E if and only 
if <p can be inferred from E by us ing t ransitiv ity. U llman [Ull90) present s a self-contained 
proof for a more general case. 
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the newly inferred inequalities to nodes and edges in the graph. Fortunately, 
we show in Section 5.3.2 that it is possible to p erform temporal inference in 
a purely graphical manner. We prove in Theorem 5.14 that every possible 
logical consequence can be directly inferred from the OPM graph by looking 
for a fixed set of patterns in the graph. 

5.3.1 Edge-inference rules 

The cornerstone of our graph-based inference of inequalities is provided by 
four inference rules that infer new edges in an OPM graph. These four rules 
are already part of the OPM reference specification [MCF+n], except that 
here we extend them to better take precise edges into account . Inferred edges 
prove to play an important role in graphical patterns that we introduce to infer 
inequalities . Moreover, we establish that inference of edges is t he only action 
we need to perform to infer inequalities that do not involve use-variables. (For 
inequalities involving use-variables, patterns more complicated than a single 
edge have to be matched in the graph.) We thus provide a justification for the 
edge inferences introduced in the OPM reference specification. 

We first introduce the inference of edges at an intuitive level. Then we define 
it formally in Definition 5.13. According to the OPM reference specification, 
t he edges present in an OPM graph G denote dependencies. From the given 
dependencies in G, we can infer derived dependencies. A very intuitive type 
of inference is to follow chains of derived-from edges. In this section, we define 
edge-inference rules based on this intuition. 

Suppose there is a chain of derived-from edges in G (which can be either 
precise or imprecise) that st arts in an artifact A and ends in an artifact C. 
We denote this by A - -~ C. Formally, relation ---t between two artifacts is 
nothing else than the transitive closure of DerivedEdges. Since A has been 
indirectly derived from C, we can t hink of A ---t C as an inferred edge, as 
illustrated in Figure 5.3(a) . 

Next we show how to infer generated-by edges. Suppose we h ave artifacts A 
and B with A - - -t Band, in addition, a generated-by edge from B to a process 
Pin G, either a precise edge B ~ P or an imprecise edge B -+ P. Then A 
has been indirectly generated by P and we can infer an edge A - --t P, as 
illustrated in Figure 5.3(b). 

We can infer used-edges as well. Suppose we have artifacts A and B with 
A -- -t B. In addition, there is a used-edge from a process P to A in G, eit her 
precise P ~ A or imprecise P -+ A. Then P has indirectly used B and 
we can infer an edge P - --t B , as illustrated in F igure 5.3(c). Moreover, we 
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Figure 5.3: Inference of (a) derived-from, (b) generated-by, (c)- (d) used and 
(e)- (f) informed-by edges. The bold edges are newly inferred. The edges 
labeled by "(!)" may be either precise or imprecise. 
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Figure 5.4: Trivial inference of (a) derived-from, (b) generated-by, (c) used 
and (d) informed-by edges. 

can also infer a used-edge in the following situa.tion. Suppose we again have 
A -- -+ B , but now in combination with a precise edge A-.:+ Pin G. Since A 
was precisely generated by P , but A has also been indirectly derived from B , 
we can conclude that P has indirectly used B . Again, we can infer P ---+ B, 
which we show in Figure 5.3(d). 

Finally, to infer informed-by edges, we can reason as follows. Suppose, for 
some processes P and Q and an artifact A , we have edges P - - -+ A and 
A-- -+ Q, which are already present in G (either precise or imprecise) or have 
been previously inferred. Then A represents information that flowed from Q to 
P and we can infer an edge P ---+ Q, as illustrated in Figure 5.3(e). Moreover, 
an informed-by edge can also be inferred in the following case. Suppose we 
again have A ---+ Q, but now in combination with a precise edge A -.:+ P in 
G. Since A was directly generated by P, but A was also indirectly generated 
by Q, we can conclude that P was somehow influenced by Q. Again, we can 
infer P ---+ Q, whjch we show in Figure 5.3(f). 

There are also trivial inferences for all types of edges, to the effect that an 
edge that is already present in the graph can always be inferred. as illustrated 
in Figure 5.4. 
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A _. B in G or A _'._, B in G 

G f- A -- -t B 

A _. P in G or A _'._, P in G 

G f- A ---t P 

Open Provenance Mode l 

TRIVIAL DERIVED- FROM 

TRIVIAL GENERATED-BY 

P _. A in G or P _'._, A in G 

G f- P ---t A 
T RIVIAL USED 

P -Q in G 

G f-- P -- -t Q 
TRIVIAL I NFORMED-BY 

Figure 5.5: Tl:ivial edge-inference rules. 

The above discussion is formalised in the following definition. 

D efinition 5 .13 (Edge-inference rules) . Let G be a legal OPM graph and let 
X and Y be two nodes in G. In the following, we define when X ---t Y can 
be inferred from G, denoted by G f- X ---> Y. Specifically, let A , B and C be 
artifacts in G, and let P and Q be processes in G. 

We begin by stating four t rivial inference rules which mean that if an edge 
already belongs to G, then that edge can be inferred from G. These rules are 
presented in Figure 5.5. Next we define four further inference rules, in cases 
where at least one of the present edges was previously inferred. T hese rules 
are presented in F igure 5.6. 

Note that , as a direct consequence of the above definition, we have the follow­
ing properties: 

• G f- A -- -> B iff (A, B) belongs to the transitive closure of DerivedEdges ; 

• if G f-- A - - + B and G f- B ---t P then G f- A - - -t P; 

• if G f-- P --+ A and G f-- A --+ B then G f-- P --+ B. 

Edge-inference rules introduced in this section allow us to derive new edges 
from a graph G, noted as G f-- X ---> Y, with X and Y two nodes of G. Inferred 
edges do not belong to the sets of edges identified in Definition 5.1, implying 
that t hese edges X - --> Y are inferred "outside" G. Thus, the temporal theory 
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G f-- A - -.+ B G f--B --.+ C 
DERIVED-FROM 

G f- A -- .+ C 

G f- A -- .+ B B --.+ P in G or B ~ P in G 
GENERATED-BY 

G f- A-- .+ P 

G f- A--.+ B P --. A in G or P _!_. A in G or A _!_. P in G 

G f- P -- .+ B 
USED 

G f- A -- .+ Q G f-- P --.+ A or A ...:.. P in G 

G f- P --.+ Q 
INFORMED-BY 

Figure 5.6: Edge-inference rules. 

of Definition 5.5 does not directly associate a temporal meaning to these edges . 
In the next section, we observe t hat inferred edges have a similar temporal 
semantics as imprecise edges. 

5 .3.2 Characterisation of temporal inference 

Let us reconsider the axioms of Definition 5.5 that define the temporal se­
mantics of an OPM graph. We see that each axiom is a rule that relates 
a pattern in the graph to one or more inequalities. For example, Axiom 2 
relates the pattern consisting simply of a single edge A ...:.. P, to the in­
equalities begin(P ) j create(A) and create(A) j end(P ). Axiom 1 even 
relates the pattern consisting simply of a process node P to the inequality 
begin(P) j end(P ). Axiom 8 has a more complicated pat tern in the form of 
a use-generate-derive triangle. 

In a similar way, we now introduce ten more such rules. Rules l - 9A~9B are 
shown in Figure 5.7. (The figure also includes some axioms, but we explain 
this after the statement of Theorem 5.14.) An important d ifference with the 
axioms, however , is that every dashed edge in a pattern now stands not just 
for an edge t hat is present in the graph, but for an edge that can be inferred 
by the edge-inference rules. 

The following theorem states that these rules are sound and complete in the 
following sense. The rules are sound in that t hey represent valid inferences: 
the inequalities they infer are indeed logical consequences of the axioms in 
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the sense of Definition 5.11. Moreover , the rules are complete in that any 
inequality that is a logical consequence of the axioms, and that is not already 
part of the axioms, can be inferred by one of the ten rules. 

Theorem 5.14. Let G be a legal OPM graph and let cp be a nontrivial inequal­
ity over the temporal variables of G. Then Th(G) I= cp if and only if either (0) 
cp already belongs to Th( G), or cp matches one of the following inequalities: 

• Cases not involving use-variables: 

1. create(B) :::s create(A) with G f- A --+ B; 

2. begin(P) :::s create(A) with G f- A --+ P ; 

3. create(A) ::: end(P) with G f---- P -- -t A; 

4. begin(Q) :::S end(P) with G f- P -- + Q; 

• Cases involving use-variables: 

5. create(B) :s use(P, r, A) with P ~ A in G and G f- A --+ B ; 

6. begin(Q) :s use(P , r, A) with P -2:... A in G and G f- A --+ Q; 

7. use(P , r, C) ::: create(.4) with G 6 (B, C, P, r) for some B, and 
G f- A--+ B ; 

8. use(P, r, B) ::: end(Q) with G 6 (A, B, P, r) for some A, and G f­
Q - -+ A; 

9. use(P ,r, B) :::s use(Q,s, A ) with G 6 (C,B,P,r) for some C, with 
Q ~ A in G, and either (a) A = C or (b) G f- A--+ C. 

Note that in the above, A, B and C, or P and Q, need not be distinct. 

Since Rules 1- 4 subsume Axioms 4- 7, Figure 5.7, which includes the remain­
ing axioms, provides a complete picture of the possible logical consequences 
of an OPM graph in the sense of Definition 5.11. That definition was purely 
semantic and does not give any concrete algorithm for checking logical con­
sequence. The figure now gives us direct shortcuts from patterns in an OPM 
graph to its logical consequences . 

The inference rules of Figure 5. 7 a re an entirely novel characterisation of the 
temporal inferences of OPM since t hey are sound and complete, in the sense 
defined in this section. To check that an inequality u :::s v is logical consequence 
of a graph, it suffices t o select the corresponding pattern in Figure 5. 7, and 
verify that it is satisfied by the graph ( extended with the proper inferred 
edges). Vice versa, if an inequality u :5 v is logical consequence of Th(G), 
then the corresponding pattern is known to exist in G. 
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0 
(AX 1) -----­

begin(?) j end(P) 

~ 
(AX 2) ------ - --­

begin(? ) j create(A) ~ end(P) 

l 

~ 
0 

(1) ------­
create(B) j create(A) 

~ 
0 

(2) - -----­
begin(P) ~ create(A) 

(AX 3) ------------------­
begin(?) ~ use(P , r, A) ~ end(P ) create(A) j use(P, r, A) 

~ 
Cf> ~ 
(B 0 

125 

(
3

) create(A) ::S end(P) (
4

) begin(Q) j end(P) 

i 
(5) -cr-ea-t-e(_B_)_~_us-e-(P-,-r,-A-) 

~ 

~ 
(5) -be-g-in-(Q_)_:::s_u_se-(P-,-r,-A-) 

V p 

' B 

0 
( 7) -us-e-(P-,-r,-C:-)_j_cr-ea-t-e(_A_) 

r 
(9A) -------­

use(P, r, B) ::s use(Q,s, A ) 

V 
(AX 8) --- - ---­

use(P, r, B) ~ create(A) 

' @] 
(S) -us-e-(P-,-r,-B-)_j_e_n_d(_Q_) 

V 
I 

(9B) -------­
use(P, r, B) j use(Q,s , A ) 

Figure 5.7: Characterisation of temporal inference. 



126 Open Provenance Model 

We anticipate t hat developers can leverage Theorem 5.14 to design reasoners 
for OPM. So far, reasoners have typically relied on Semantic Web t echnolo­
gies, such as OWL and SRWL, to compute transitive closures of OPM prop­
erties [MDF+ lO, MF08]. What this theorem shows is that there are logical 
consequences involving use-variables that cannot be directly represented by 
edges in OPM graphs. 

5.3.3 Proof of Theorem 5.14 

In this section we present the proof of T heorem 5.14. First, we tackle the 
soundness property; then , we address the completeness proposit ion. 

Proof of soundness 

Let G be a legal OPM graph and let r.p be a nontrivial inequality over the 
temporal variables of G that satisfies the conditions from Theorem 5.14. We 
have to show that Th( G) F r.p. Thereto, let T be a temporal model of G , 
i.e ., T I= Th(G). We have to show that T satisfies r.p. We inspect the t en 
possibilities for r.p: 

(0) if r.p E Th( G) , then T satisfies r.p since T I= Th( G) . 

(1) r.p is create(B) :::s create(A) with G 1-- A -- -t B. 

As a consequence of Definition 5.13, G 1-- A -- -t B holds jf (A, B) belongs 
to the transitive closure of DerivedEdges. Therefore, there is a path 
A1, A2, ... , An of derived-from edges from A to B , for some n 2: 2 with 
A1 = A and An = B, and with (Ai, Ai+1) E D erivedEdges, for i E 

{l , . .. , n - 1}. Since every (Ai, Ai+1 ) is an edge in G, we know that 
create(Ai+1 ) j create(Ai) belongs to Th(G) (Axiom 4 and Lemma 5.12) 
and is thus satisfied by T, i. e., T(create(Ai+1)) -:; T(create(Ai)). Hence 
we also have T(create(An)) ::; T(create(A1 )), because 'S is a partial order 
for T . Thus T satisfies create(B) :::s create(A). 

(2) r.p is begin(P) :::s create(A) with G 1-- A ---t P. 

By Definition 5.13, G f--- A ---. P if either 

a) there is already an edge A - P or A ~ Pin G; or 

b) there is an artifact B such that G 1-- A - - -t B and there is an edge 

B - P or B ~ P in G. 
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2a) For an edge A --. P (A _'._. P ) in G, we kllow by Axiom 5 (Axiom 2), 
that <p E Th( G) and thus T satisfies <p. 

2b) We already know from case 1 that T satisfies create(B ) :::-5 create(A) 
for G t- A - --> B , i.e. , we have T(create(B)) ::; T(create(A)). For 

an edge B --. P (B ....:... P) in G, we know by Axiom 5 (Axiom 2), 
that begin(P) ::s create(B) belongs to Th(G). Therefore T satisfies 
begin(P ) :::-5 create(B ), i.e., T(begin(P )) ::; T(create(B)). Hence 
T(begin(P)) ::; T(create(A)) , since ::; is a partial order for T. We 
conclude that T satisfies begin(P ) ::s create(A). 

(3) <p is create(A) ::s end(P ) with G f-- P -- -> A. 

By Definition 5.13 , G t- P -- -> A if either 

a) there is already an edge P --. A or P _'._. A in G; or 

b) there is an artifact B such t hat G t- B - - -> A and there is an edge 
P --. B or P _'._. B or B _'._. P in G. 

3a) For an edge P---, A (P _'._. A) in G, we know by Axiom 6 (Axiom 3) 
that <p E Th( G) and thus T satisfies cp. 

3b) We already know from case 1 that T satisfies create(A) :S create(B) 

for G t- B -- -> A. For an edge P --. B (P _'._. B) in G, we know 
by Axiom 6 (Axiom 3) that create(B ) ::s end(P) belongs to Th(G). 

For an edge B _'._. Pin G, we know by Axiom 2 that create(B) ::s 
end (P ) belongs to Th(G). Therefore, in each case, T satisfies both 
create(A) ::s create(B ) and create(B) :::-5 end(P ). Hence T also 
satisfies create(A) :i end(P). 

(4) <p is begin(Q) ::s end(P) with Gt- P ---> Q. 

By Definition 5.13, Gt- P -- -> Q if either 

a) there is already an edge P --. Qin G; or 

b) there is an artifact A such that G t- A ---> Q, and either G t- P ---t 

A or there is an edge A_'._. Pin G. 

4a) For an edge P --. Q in G, we know by Axiom 7 that <p E Th(G) 
and thus T satisfies cp. 

4b) We already know from case 2 t hat T satisfies begin(Q) ::s create(A) 
for G t- A ---> Q. We also know from case (3) that T sat isfies 

create(A) ::s end(P ) for Gt- P -- -> A. For an edge A _'._. P in G, 
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we know by Axiom 2 that create(A) ::s end(P) belongs to Th(G). 
Therefore, in each case, T satisfies both begin(Q) ::s create(A) and 
create(A) -::s end(P). Thus T also satisfies begin(Q) :s end(P). 

(5) <p is create(B) :< use(P, r, A) with P ~ A in G and GI- A ---t B. 

We already know from case 1 that T satisfies create(B) :< create(A) 
for G f-- A -- -t B. For edge P ~ A in G we know, by Axiom 3, that 
create(A) :s use(P, r, A) belongs to Th( G), and is thus satisfied by T. 

Therefore, T also satisfies create(B) :s use(P, r, A). 

(6) (fJ is begin(Q) :s use(P, r, A) with P ~ A in G and G f-- A ---t Q . 

We already know from case 2 that T satisfies begin(Q) :s create(A) for 
G f-- A ---t Q. For edge P ~ A in G, we know, by Axiom 3, that 
create(A) :< use(P, r, A) belongs to Th(G), and is t hus satisfied by T. 

Thus, T also satisfies begin(Q) ::s use(P, r, A). 

(7) tp is use(P, r, C) :s create(A) with G 6 (B, C, P, r) and GI- A ---t B. 

We already know from case 1 that T satisfies create(B) :< create(A) 
for G f-- A - --t B. Ftom G 6 (B,C,P,r) we know, by Axiom 8, that 
use(P, r, C) ::s create(B) belongs to Th(G) , and is thus satisfied by T. 

Therefore, T also satisfies use(P, r, C) :s create(A). 

(8) <pis use(P, r, B) ::s end(Q) with G 6 (A, B, P, r) and G f-- Q -- -t A. 

We already know from case 3 that T satisfies create(A) :s end(Q) for 
G 1- Q ---t A. From G /",., (A, B , P, r) we know, by Axiom 8, that 
use(P, r, B) ::s create(A) belongs to Th(G), and is thus satisfied by T . 

Hence , T also satisfies use(P, r, B) j end( Q). 

(9) <p is use(P, r, B) :< use(Q, s, A) with G /",., (C, B , P, r) in G, Q ~ A in G, 
and either (a) A= C or (b) G I- A -- -t C. 

We already know from case 1 that T satisfies create(C) :s create(A) 
for G f-- A ---t C (9b). If A = C (9a) then , obviously, T(A) = T(C), 
and T still satisfies create(C) :< create(A). For edge Q ~ A in G, we 
know, by Axiom 3, that create(A) ::s use(Q, s, A) belongs to Th(G), and 
is thus satisfied by T. From G 6 ( C, B , P, r) we know, by Axiom 88, 
that use(P, r, B) ::s create(C) belongs to Th(G) , hence is satisfied by T. 

Therefore, we have use(P,r,B) :< create(C) :s create(A) :s use(Q,s,A) . 
We conclude that T also satisfies use(P , r, B) ::s use(Q, s, A). 
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Proof of completeness 

Let G be a legal OPM graph and let <p be a nontrivial inequality over the 
temporal variables of G such that Th( G) I= <p . We must show that <p E Th( G) 
or <p matches one of the cases 1- 9 of Theorem 5.14. 

It is well known [Ull90] that <p can be inferred from Th(G) by using repeated 
applications of the rule of transitivity: "from u j v and v j w infer u ::5 w." 
We proceed by induction on the number of applications of the transitivity rule. 

If r.p can be inferred by zero applications, then <p is already in Th( G) and we 
are done, as this corresponds to case O of the theorem. 

Now consider an application of transitivity inferring <p of the form u j w from 
u ::5 v j w, where, by induction, the theorem can already be assumed to hold 
for the inequalities u j v and v j w . Since begin-variables (end-variables) 
never appear on the right-hand (left-hand) side of an inequality, v cannot be 
a begin-variable (end-variable). That leaves us with two cases, with v being 
either a create- or a use-variable. 

Case v is a create-variable Let v be a create-variable, say create(Av), Let 
us list the possibilities for u and note the relevant properties: 

(a) u is also a create-variable, say create(Au). By induction , we know 
that the inequality u ::5 v either already belongs to Th(G), so there 
is an edge A v -, A u in G (Axiom 4), or the inequality corresponds 
to case 1 of the theorem, therefore G 1- A v --+ Au. In either case 
we have GI- Av - - + A u , 

(b) u is a begin-variable, say begin(Pu)· By induction, u ::5 v either 

belongs to Th(G) , so there is an edge Av ~ Pu in G (Axiom 2) 
or A u -, Pu in G (Axiom 5); or u j v corresponds to case 2 of 
the theorem, therefore G 1- Av - - + Pu . In either case we have 
CI- A v --+ Pu.· 

(c) u is a use-variable, say use(Pu , ru , Au). By induction , u ::5 v either 
(cl) belongs to Th(G) , so there is some use- generate- derive trian­
gle (Av, Au, P,,, ru) in G (Axiom 8); or (c2) u ::5 v corresponds to 
case 7 of the theorem, thus there is a use- generate-derive triangle 
(A~ , Au, Pu, ru) in G with GI- A v -- + A ~. 

We also list t he possibilities for w and their relevant properties: 

(d) w is also a create-variable, say create(Aw) . By the induction hy­
pothesis applied to v --< w, reasoning similarly as in case (a) above, 
we have GI- Aw --+ Av. 



130 Open Provenance Model 

(e) w is an end-variable, say end(Pw)- By induction, v j w either 

belongs to Th(G), so there is an edge A v ~ Pw in G (Axiom 2) 
or Pw -. Av in G (Axiom 6) ; or v j w corresponds to case 3 of 
the theorem, therefore G I- Pw --+ Av. We have thus either (el) 

Av~ Pw in G or (e2) G f- Pw --+ A v. 

(f) w is a use-variable, say use(Pw, rw, Aw)- This necessitates the pres­
ence of edge Pw ~ Aw in G. By induction, the inequality v j w 
either (fl) belongs to Th(G), so that Aw = Av (Axiom 3); or (f2) 
v j w corresponds to case 5 of the theorem, thus G I- Aw --+ A v. 

We can now inspect the nine possible combinations: 

(ad) tp is create(Au) j create(Aw)· From G I- A v --+ Au and G I­
Aw --+ A v we infer CI- Aw - - + Au, which matches case 1 of t he 
theorem . 

(ae) ip is create(Au) j end(Pw)- From G I- Av --+ Au and either 
A v _:_. Pw in C or G I- Pw --+ Av we infer C I- Pw --+ Au, which 
matches case 3 of the theorem. 

(af) ip is create(Au) j use(Pw, rw, Aw) with Pw ~ Aw in G. In case fl, 
we have CI- A v --+ Au and A v = A w, so the case corresponds to 
case 5 of the theorem. In case f2, we infer G I- A w --+ Au from 
G I- Aw - -+ A v and C 1- Av - - + A u, which again matches case 5 of 
the theorem. 

(bd) r.p is begin(Pu) j create(Aw)- From G I- A v --+ Pu and G I­
A w - - + Av we infer GI- A w - - + Pu , which corresponds to case 2 of 
the theorem. 

(be) tp is begin(Pu) j end(Pw)- From GI- A v --+ Pu and either A v -..:.. 
Pw in G or GI- Pw - - + A v we infer G 1-- Pw --+ Pu, which matches 
case 4 of the theorem. 

(bf) r.p is begin(Pu) j use(Pw, rw, Aw ) with Pw ~ Aw in C. In case fl, 
we have GI- A v --+ Pu and Av = Aw, so the case corresponds to 
case 6 of the theorem. In case f2, we infer G I- Aw --+ Pu from 
G 1- A w --+ A v and GI- A v -- + Pu, which again matches case 6 of 
the theorem. 

(cd) r.p is use(Pu, ru , Au) j create(Aw). Case cl corresponds directly to 
case 7 of the theorem. In case c2, we infer G I- A w --+ A ~ from 
GI- A v --+ A~ and C I- Aw --+ Av, which again matches case 7 of 
the theorem. 
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Figure 5.8: Proof of the completeness of Theorem 5.14 for cases (a) c2 with 
el , (b) c2 with e2, (c) hl with 1, and (d) h2 with I. The bold edges are newly 
inferred. 

(ce) i.p is use(Pu, ru, Au.) ::s end(Pw) . First , consider case cl together 
with el. Since G 6 (Au, Au, Pu, ru), Pu and Pw must be equal be­
cause G is legal. In this case the inequality holds by Axiom 3. Case 
cl together with e2 corresponds directly to case 8 of the theorem. 
Finally, in case c2, from G f- Av--+ A~, and either Av~ Pw (from 
el, see Figure 5.8(a)) or G f- Pw -- + Av (from e2, see Figure 5.8(b)) 
we infer G f- Pw -- + A~, which matches case 8 of the theorem. 

(cf) i.p is use(Pu, r,., , Au) ::S use(Pw, rw, A w). Case cl together with fl 
corresponds directly to case 9a of the theorem. Case cl together 
with f2 matches case 9b of t he t heorem. The same holds for c2 
together with fl . In case c2 together with f2 we infer G f- Aw - - + A~ 
from G f- Aw - - + Av and G f- Av --+ A~, which again matches 
case 9b of the theorem. 

Case v is a use-variable 

Let v be a use-variable, say use(Pv, rv, Av). Note that this necessitates 
t he presence of the edge Pv ~ Av in G. Let us list t he possibilities for 
u and note the relevant propert ies: 

(g) u is a create-variable, say create(Au). By induction, we know 
that the inequality u ::s v either (gl) already belongs to Th( G), 
so Au equals Av with the edge Pv ~ Av in G (Axiom 3); or 
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(g2) the inequality corresponds to case 5 of the theorem, therefore 
G f- Av--+ Au with the edge Pv ~ Av in G. 

(h) u is a begin-variable, say begin(Pu). By induction , u j v either 
(hl) already belongs to Th(G), thus Pu equals Pu with the edge 
Pv ~ A v in G (Axiom 3); or (h2) the inequality corresponds to 
case 6 of the theorem, therefore G f- Av --+ Pu with the edge 
Pv ~Av in G. 

(i) u is also a use-variable, say use(P11 , r 11 , A11 ). By induction, we know 
that the inequality u j v can only correspond to case 9 of the 
theorem, therefore we have some t riangle (A~, Au, Pu, ru) in G with 
the edge Pv ~ Av in G, and either Av= A~ or G f- Av --+ A~. 

We also list the possibilities for w and their relevant properties: 

(j) w is a create-variable, say create (Aw)- By induction, v j w either 
(j 1) already belongs to Th( G) , so there is some use-generate-derive 
triangle (Aw, Av, Pv, rv) in G (Axiom 8); or (j2) the inequality corre­
sponds to case 7 of the theorem, and there is a use-generate-derive 
triangle (~v, Av, Pv , rv) in G with G f-- Aw --+ A~ . Note that in 
both cases we can infer G f- Aw --+ Av. Indeed, in case jl we have 
t he edge Aw ~ Av in G. In case j2 we have G f- Aw ---> A~ and 
t he edge A~~ Av in G. 

(k) w is an end-variable, say end(Pw)- By induction, v j w either (kl ) 
already belongs to Th(G) , so Pw equals Pv with the edge Pv ~ Av 
in G (Axiom 3); or (k2) corresponds to case 8 of the theorem, 
thus there is some use- generate- derive triangle (Aw, Av, Pv, rv) in 
G with G f- Pw --+ Aw. Note that in both cases we can infer 
G f- Pw - - + Av. Indeed, in case kl we have t he edge Pw ~ Av in 
G. In case k2 we have G f- Pw -- -> Aw and the edge Aw ~ Av in 
G. 

(1) w is also a use-variable, say use(Pw, rw, Aw ). By induction , we know 
that the inequality v j w can only correspond to case 9 of the the­
orem, so there is some use-generate-derive triangle (A~, A v, Pv, r v) 
in G with Pw ~ Aw in G, and either Aw= A~ or G f- Aw --+ A~. 
Note that in both cases we can infer G f- Aw -- -> Av by the edge 
A~1 ~ Av in the triangle. 

We can now inspect the nine possible combinations: 

(gj) r.p is create(Au) j create(Aw). In case gl , we have G f- Aw -- -> Av 
and Av = Au, so the case corresponds directly to case 1 of the 
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theorem. In case g2, we have G 1-- Aw ---t Av and G 1-- Av ---t Au, 
so we can infer G 1-- Aw ---t Au, which, again, matches case 1 of the 
theorem. 

(gk) <pis create(Au) ::s. end(Pw)- In case gl together with kl, we have 
Av = Au, Pv = Pw , and the edge Pv ~ Av in G, so the case 
corresponds directly to case 3 of the theorem. In case g2 together 
with kl, we have Pv = Pw with the edge Pv ~ Av in G. From the 
latter and G f- A v -- -t A11 , we infer G f- Pw - - -t Au, which again 
matches case 3 of the theorem. In case gl together with k2, we 
have G f- Pw - - -t A v and Av = Au, so the case corresponds directly 
to case 3 of the theorem. In case g2 together with k2, we infer 
G f- Pw -- -t Au from G f- Pw - - -t Av and G 1-- Av -- -+ Au. Hence 
the case again matches case 3 of the theorem. 

(gl) cp is create(Au) ::s. use(Pw, rw, Aw)- In case gl, we have G 1-- Aw -- -+ 

Av and Av = Au, so the case corresponds directly to case 5 of the 
theorem. In case g2, we infer G 1-- Aw -- -+ Au from G f-- Aw ---t Av 
and G 1-- Av ---t Au , which matches case 5 of the theorem. 

(hj) cp is begin(Pu) ::S create(Aw) - By case j, we infer G 1-- Aw -- -+ Pv. 
(Indeed, in case jl we easily infer G f- Aw -- -+ Pv. In case j2 we 

also infer G 1-- Aw -- -+ Pv from G 1-- Aw---+ A:V and A:V -..:.. Pv in G. ) 
Now in case hl we have Pv = Pu, so t he case corresponds directly 
to case 2 of the theorem. In case h2 we have G 1-- Aw ---+ Av and 
G 1-- Av ---t Pu, so we can infer G 1-- Aw ---+ Pu. Thus the case 
again matches case 2 of the theorem. 

(hk) ip is begin(Pu) ::s. end(Pw) - In case hl together with kl, we have 
Pu = Pv = Pw, so the inequality trivially holds (Axiom 1). In 
case hl together with k2, we have Pv = Pu, and we infer G 1-­
P w - - -+ Pv from G 1-- Pw -- -+ A w and G f- Aw -- -+ Pv. Thus the 
case corresponds to case 4 of the theorem. In case h2 we have 
G f- Pw - - -+ A 11 , which combined with G 1-- Av -- -+ P11. , yields G f­

Pw ---t Pu. Hence the case again matches case 4 of the theorem. 

(h i) cp is begin(Pu) ::s. use(Pw, rw, Aw). By case 1, we infer G 1-- Aw ---+ 

Pu from A~ -..:.. Pv in G, and either Aw = A:V or G f- Aw -- -+ A:V. 
Also, there is an edge Pw ~ Aw in G, and G 1-- Aw -- -+ Av. In case 
hl (see Figure 5.8(c)) we have Pv = Pu, so the case corresponds 
to case 6 of the theorem. In case h2 (see Figure 5.8(d)), from 
G 1-- Aw -- -+ Av and G f- Av -- -t P1,, we infer G f- Aw ---+ Pu. 
Hence the case again matches case 6 of t he theorem. 

(ij) cp is use(Pu, ru, Au) j_ create(Aw) - We infer G f- Aw - --t A~ from 
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G I- Aw -- 7 Av, and either Av = A~ or G I- Av -- 7 A~. Together 
with G 6. (A~, Au, Pu , ru), the case corresponds to case 7 of the 
theorem. 

(ik) cp is use(Pu, ru, Au) ::S end(Pw). We already have the triangle G 6. 
(A~, Au , Pu, ru), In case kl, we have Pw = Pv. We infer G 1-
Pv -- 7 A~ from the edge Pv 2:", Av in G , and eit her Av = A~ or 
G 1- Av --7 A ~. The case thus matches case 8 of the theorem. In 
case k2, we infer GI- Pw --7 A~ from GI- Pw --7 A w, Aw ~ Av 
in G, and either Av = A~ or GI- Av --7 A~. Hence the case again 
matches case 8 of the theorem. 

(il) cp is use(Pu, ru, Au) ::S use(Pw, rw, Aw). vVe already have Pw ~ Aw 
in G and G 6. (A ~, Au, Pu, ru). We additionally infer G I- Aw --7 

A~ from G I- Aw --7 Av, and either Av = A~ or G I- Av -- 7 A~. 
Hence t he case matches case 9b of the theorem. 

5.3.4 About no-use inequalities 

The OPM reference specification }v1CF+n ] defines edges adjacent to artifacts 
in terms of the creation of the artifact, with respect to the creation of another 
artifact , or the beginning and ending of a process. There is some value in 
considering a temporal theory that ignores use time-points, since the theory 
becomes simpler ( though it is unable to tell us anything about usage of arti­
facts). In this case, it is worth characterising temporal inference in the context 
of t his simpler theory. 

First we state a remarkable corollary, after introducing the following definition. 

Definition 5.15. If in an inequality cp of the form u ::s v, neither u nor v is a 
use-variable, then we call cp a no-use inequality. 

As a corollary to Theorem 5. 14, we obtain the following completeness result 
for edge inference, as far as no-use inequalities are concerned. Note that the 
edge-inference rules are present as Rules 1-4 in Figure 5.7. 

Corollary 5.16. Let G be a legal OPM graph and let cp be a no-use inequality. 
Then Th(G) p cp if and only if cp can be inferred using Axioms 1-2 and 
Rules 1-4 in Figure 5. 7. 

Proof. It is clear from Theorem 5.14 that if cp can be inferred using Axioms 1-
2 and Rules 1-4, then Th(G) p cp. For the other direction, assume that 
Th(G) p cp holds. Then we know by Theorem 5.14 that cp can be inferred by 
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the axioms and rules presented in Figure 5.7. By examination of these axioms 
and rules, however, we notice that Axioms 1-2 and Rules 1- 4 are the only 
ones that infer no-use inequalities. D 

It is interesting to note, that when dealing with no-use inequalities, we do 
not need the full temporal theory of an OPM graph. We start with a small 
generalisation of Definitions 5.8 and 5.11 . 

D e finition 5.17. Let G be a legal OPM graph and let u, v E Vars (G). Let E 
be a subset of Th( G). Any temporal interpretation that satisfies all inequalities 
of E is called a temporal model of E. Furthermore, the inequality 'l.l j v is a 
logical consequence of E , denoted by E p u j v, if u j v is satisfied in every 
temporal model of E. 

We can now select , for a given OPM graph G, only the no-use inequalities 
from its temporal theory. 

D e finition 5.18. For a legal OPM graph G, we define the no-use temporal 
theory of G , denoted by Thno-use( G), as follows: 

Th no-use( G) = { cp E Th( G) I tp is a no-use inequality} 

U { create(A) j end(P) I P-:.. A in G} 

U { create(B) j create(A) I A _:_. B in G} 

The intuition is that Th no-use( G) does not contain Axioms 3 and 8, and enforces 
Axioms 4 and 6 for precise and imprecise edges alike.§ 

We can now observe that use-variables do not influence the no-use inequalities 
that are logical consequences of Th( G). 

Proposition 5 .19 . Let G be a legal OPM graph and let cp be a no-use in­
equality. Then Th(G) p cp if and only if Th no-use(G) F cp. 

Proof. Since any t emporal model T of Th( G) is also a temporal model of 
Thno-use (C), the if-direction is immediate. For the only-if d irection, let T be 
a temporal model of Thno-use( G). We try to extend T to T

1 in such a way 
that T 1 is a temporal model of Th(G) . For every neruse variable u simply put 
T1(u) = T(u). Now we have to find suitable values for: 

§Note that in t he full theory Th(G), t he no-use inequality create(A) _::s end(P) for P _!.. A 
in G is implied by Axiom 3, but since we omit t his axiom, we need to recover the inequality in 
Axiom 6. Likewise, the no-use inequality create(B) :s create( A) for A _:.; B in G is provided 
by Lemma 5.12. Since the proof of the lemma utilises use-variables, the lemma doesn't hold 
anymore and we need to recover the inequality in Axiom 4. 
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• use(P, r, A) for each P--"-+ A in G, so that Axiom 3 is satisfied, and 

• use(P ,r, B) for each G 6 (A,B,P,r), so that Axiom 8 is satisfied. 

It is easy to verify that Axiom 3 holds if r'(use(P, r, A)) equals the maximum 
of r(create(A)) and r(begin(P)) . Likewise, Axiom 8 holds if r'(use(P, r, B)) 
equals the maximum of r(create(B)) and r(begin(P)) . Thus r' satisfies all 
eight axioms and is a temporal model of Th( G). We know thus that r' satisfies 
1.p. Since i.p is a no-use inequality, and r' and r coincide on all variables used 
in no-use inequalities, T also satisfies 1.p. D 

The above proposition together with Corollary 5.16 yields the following: 

Corollary 5.20. Let G be a legal OPM graph and let i.p be a no-use inequality. 
Then Th no-use( G) I= 1.p if and only if i.p can be inferred using A xioms 1- 2 and 
Rules 1-4 in Figure 5. 7. 

This section provides a remarkable result since it establishes the completeness 
of edge inferences (Rules 1- 4 in Figure 5. 7) for no-use inequalities . Further­
more, reasoning with use t ime-points does not allow us to derive any new 
inequality about no-use variables. We envisage this result to be leveraged 
by developers of reasoners for OPM, since it offers opportunities to optimize 
reasoners, by reducing the number of t ime-points to reason over, focusing 
on no-use variables in a first phase, and dealing efficiently with use-variables 
afterwards. 

5.4 Operations on OPM graphs 

T he reason for capturing provenance is that it can be used to address a variety 
of use cases [MGBM07]. To this end, one needs to collect provenance infor­
mation from potentially different sources, combine and process it in multiple 
ways. It is therefore useful to define operations on OPM graphs, which we 
anticipate can become part of "provenance toolkits" . 

When two OPM graphs are obtained from different sources, a reasoner may 
want to take their union, if it ascertains they relate to some common entities. 
Given two OPM graphs, an intersection operation helps identify t heir common 
elements. Different sources may use different identifiers for graph nodes; thus, 
to be able to compute meaningful union and intersection , it may be required 
to rename some nodes, before performing these operations. In this section , we 
formalise notions of subgraph, union, intersection, and renaming and merging. 
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Figure 5.9: Three legal OPM graphs. 

Let us fix two OPM g;raphs G and H for use in thi~ section. Neither G nor H 
have to be legal. 

Definition 5.21 (Subgraph) . H is a subgraph of C if every constituent of H 
is a subset of t he corresponding constituent of G. Formally: 

• ArtH ~ Arte, 

• ProcH ~ ProcG, 

• RolesH ~ Rolesc, 

• GeneratedBy!H ~ GeneratedBy !c, 

• Used!l-1 ~ Used!G, 

• DerivedFrorn!H ~ DerivedFrom!0 , 

• GeneratedByH ~ GeneratedByc, 

• UsedH C UsedG - , 

• DerivedFrornH ~ DerivedFrom0 , 

• InforrnedByH ~ Inform,edByG. 

Note that a subgraph of a legal OPM graph may not be legal. For example, 
the graph presented in F igure 5.9(a) is legal, whereas its subgraph composed 

of nodes A , B, P , role r, and edges A ~ Band A ~ Pis not legal, since the 
use- generate-derive t riangle (A, B, P, r) is not complete. 

D efinition 5.22 (Union ). The union of G and H , denoted by GU H, is 
the OPM graph where each constituent equals the union of the corresponding 
constituents in G and H. Formally: 
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• P rocGuH = ProcG U ProcH, 

• RolesGuH = Roles0 U RolesH , 

• GeneratedBy!GuH = GeneratedBy !G U GeneratedBy!H , 

• Used!GuH = Used!G U Used!H, 

• DerivedFromrGuH = DerivedFrom !G U DerivedFrom!H , 

• GeneratedByGUH = GeneratedByc U GeneratedByH , 

• UsedGuH = Usedc U UsedH, 

• DerivedFromGuH = DerivedFrom0 U DerivedFromH , 

• InformedByGuH = InformedByG U InformedByH. 

Note that the union of two legal OPM graphs may not be legal. For in­
stance, the graph presented in Figure 5.9(a) is legal, and so is the graph in 
Figure 5.9(b). The union of these two graphs, however, is not legal, since in 

the union A has two different precise generated-by edges: A ~ P and Ai., Q. 

Definition 5.23 (Intersection) . The intersection of G and H, denoted by 
G n H , is the OPM graph where each constituent equals the intersection of 
the corresponding constituents in G and H. Formally: 

• RolesGnH = Roles0 n RolesH 
) 

• GeneratedBy!GnH = GeneratedBy !0 n GeneratedBy!H , 

• Used!GnH = Used !G n Used!H, 

• DerivedFromrGnH = D erivedFrom!G n D erivedFromW, 

• GeneratedByGnH = GeneratedByG n GeneratedByH, 

• UsedcnH = Usedc n UsedH 
' 

• DerivedFrom GnH = DerivedFrom G n DerivedFrom H, 

• InforrnedByGnH = InformedByc n I nformedByH . 
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Note that G and H need to have at least one node or one role in common for 
their intersection to be non-empty. For example, the intersection of the two 
graphs in Figures 5.9(a) and 5.9(b) yields the OPM graph consisting of the 
artifacts A and D. 

The following is readily verified: 

Proposition 5.24. The intersection of two legal OPM graphs is legal. 

One may wonder about the relations between union and intersection of legal 
OPM graphs and their temporal theories . We answer this question next . Let 
G and H now be two legal OPM graphs. 

Proposition 5.25. Th(G U H ) = Th(G) U Th(H ) . 

Proof. Each inequality in Th(G) or Th(H ) corresponds to a single node, a 
single edge or some use-generate-derive triangle present in G or H. Thus all 
inequalities present in Th(G) U Th(H), also belong to Th(G U H ). Moreover, 
the only additional inequalities in Th(G U H ) would correspond to some use­
generate-derive triangles that were newly formed by the union of G and H. 
Since both G and H are legal, this is impossible, because legal OPM graphs 
cannot contain parts of a use-generate-derive triangle. Therefore, Th( G U H ) 
contains only inequalities that are already present in Th(G), or in Th(H), or 
in both . D 

Proposition 5.26. Th(G n H ) ~ Th(G) n Th(H). 

P roof. Any inequality from Th( G n H ) corresponds to a single node, an edge, 
or a use- generate-derive t riangle present in G n H , and thus in both G and 
H. Therefore, it also belongs to T h (G) n Th(H) . D 

The converse inclusion does not hold . If G consists only of edge P --t A , and 
H consists only of edge A ~ P , then G n H consists of the two nodes A and 
P. So 

Th(G) = { create(A) ::s end(P), begin(P) ::s end(P)} , 

Th(H) = {begin(?) ::s create(A), create(A) j end(P) , begin(?) ::s end(P)} , 

and 

T h (G n H ) = {begin (?) ~ end(P)} . 

Clearly create(A) ::s end(P) E Th(G) n Th(H) i Th(G n H). Note that 
create(A) ::5 end(P) is not even a logical consequence of Th(G n H). 
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5.4.1 Renaming and merging 

By definition, the nodes and roles of an OPM graph are local to the graph. 
Prior to performing a union or an intersection of two OPM graphs G and H, 
we may need to resolve some identity issues between the nodes and roles in 
the graphs. For example, some process node P in G may represent the same 
actual process as some process node Q in H. Likewise, role r in edge P 2... B 
in G may refer to the same actual role as role s in edge Q ~ C in H , and 
also B and C may represent the same actual artifact. Moreover, it is equally 
possible that some node or role is accidentally used in both graphs whereas 
this node or role does not represent the same actual entity across the two 
graphs. Resolving such identity issues leads to a renaming operation on one 
or both of the graphs , whereby nodes and roles representing the same actual 
entity can be renamed to a common node or role; likewise, nodes and roles 
not representing the same actual entity, but accidentally used in both graphs, 
can be renamed to distinct nodes or roles. 

Definition 5.27 (Renaming). Let G and H be OPM graphs , which need not 
be legal. Let PA rt be a bijection from Arte to a finite set Art' , let PProc be a 
bijection from Proc0 to a finite set Proc' , and Jet PRoles be a bijection from 
Roles0 to a finite set Roles' , with the sets A rt' , Proc' , and Roles' mutually 
disjoint. Then H is the renaming of G by PArt, PProc , and PRoles , if the 
following holds: 

• ArtH = Art', 

• ProcH = Proc' , 

• RolesH = Roles', 

• GeneratedBy!li = {(PA ri (A), PRoles (r) ,PProc (P)) I (A ,r, P) E GeneratedBy!G}; 

• Used!H = {(PProc (P) , PRoles (r),PArt (A)) I (P,r , A) E Used!0 } ; 

• DerivedFrom!H = {(PArt(A) ,PRoles (r ),PAri (B) ) I (A,r,B ) E DerivedFrom!G} ; 

• GeneratedByH = { (PA rt (A) , PProc(P)) I (A, P) E GeneratedByc }; 

• UsedH = { (PProc(P) , PArt (A)) I (P, A) E Used0
} ; 

• DerivedFromH = {(PA rt(A) , PArt (B) ) I (A, B) E DerivedFrom0
} ; 

• InformedByH = { (PProc(P), PProc(Q)) I (P, Q) E InformedBy0
} ; 
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Note that Arte and Art' need not be disjoint; similarly, neither Procc and 
Proc' , nor Rolesc and Roles' , need to be disjoint. Indeed, PA rt, p Proc and 
PRoles may coincide with the identity function on some of their inputs, i.e., not 
all artifacts, processes and roles need to be renamed. 

Example 5.28. We can rename the graph presented in Figure 5.9(b) by t he 
following bijections: 

• PArt(A) = A , PArt(C) = B, PArt(D) = F, and PArt(E) = E ; 

• PProc(Q) = P; 

• PRoles(s) = r and PRoles(s') = r'. 

Then we can take the union of the renamed graph with the graph shown in 
Figure 5.9(a), which yields the legal OPM graph presented in Figure 5.9(c). D 

The following is readily verified: 

Proposition 5.29. The renaming of a legal OPM gmph is legal. 

We next define the following generalisation of renaming. 

Definition 5 .30 (Merge-renaming) . Let G and H be OPM graphs, which 
need not be legal. Let PArt, PProc and PRoles be as in Definition 5.27 except 
that PA rt, p Proc and PRoles need not be bij ective: they only need to be surjective 
(onto) mappings. Then we say that H is the merge-renaming of G by PArt, 
PProc , and PRoles, exactly if the same equalities of Definition 5.27 hold. 

Merge-renaming allows the coalescing of two or more nodes to a single node 
( or two or more roles to a single role). Coalescing of nodes or roles may be 
performed when analysing an OPM graph on a coarser level of detail. But 
coalescing may also be practical when more information becomes available. 
For example, in a traffic accident scenario, there may be observations about a 
"blue car" and other observations about a "Toyota" , only to realise later that 
the blue car is the Toyota. 

In contrast to Proposition 5.29, the merge-renaming of a legal OPM graph 
need not be legal. For example, in Figure 5.10( c), if we coalesce C and D into 
a single artifact E, but do not coalesce P and Q, nor their roles, then E has 
two distinct precise generated-by edges. 

As a merge-renaming can coalesce artifacts, such an operation can introduce 
cycles of derived-from edges to an OPM graph. In the next section. we inves­
t igate the consequences of such cycles in OPM graphs. 
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5.4.2 Equality inference 

Our definitions allow the presence of derived-from cycles in legal OPM graphs. 
By a derived-from cycle, we mean a directed simple cycle composed of derived­
from edges (precise or imprecise). An OPM graph resulting from a typical ex­
perimental provenance collection procedure does not contain such cycles, and 
indeed the current OPM reference specification forbids them. For example, 
it would be strange to assert that A is derived from B and that B is derived 
from A. 

Nevertheless, cycles may arise in a graph when, after a merge operation, certain 
nodes coalesce. Suppose, for example, that we have three artifacts A --, B --, 
C without a cycle. If an applimtion docs not need the full level of detail 
provided, it may consider, for example, A and C to be the same at a coarser 
level of detail. As a consequence, a cycle A--, B--, C = A is created. 

Thus, we do not want to disallow derived-from cycles in OPM graphs from 
the outset. It is important, however, to understand the consequences of the 
presence of such cycles. We observe that they enforce the equality of certain 
temporal variables. In the preceding example, we would have create(A) = 
create(B) = create(C). 

First of a ll , we point out that every OPM graph has a trivial model Ttriv con­
sisting of a single time-point to wit h Ttriv ( u) = to for every temporal variable u. 
Indeed, since the temporal theory of an OPM graph consists only of non-strict 
inequalities, this interpretation trivially satisfies all non-strict inequalities. Of 
course, that does not mean that this trivial model is the only model that the 
OPM graph possesses. On the contrary: intuitively, on a fine enough tem­
poral granularity, we should expect that every OPM graph indeed possesses 
a model where all temporal variables are assigned distinct time-points. We 
observe that this is indeed always possible provided there are no derived-from 
cycles. 

Formally, we fix some OPM graph G for this sect ion. Let us say that a 
temporal interpretation (T, :S, T) of G is all-distinct if T( u) -/- T( v ) for any two 
distinct temporal variables u and v of G. When, in addition, :S is a total order 
on T , we say that r has the strict linear order property. 

P roposition 5 .31. If G does not contain any derived-from cycles, then G 
has an all-distinct temporal model that even satisfies the strict-linear-order 
property. 

Proof. We construct a total order on all temporal variables of G that is a 
temporal model of G under the identity mapping. Since G does not contain 
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any derived-from cycles, we can linearly order all artifacts so that no artifact 
has a derived-from edge from an artifact coming later in the order. Note 
that there may be many possibilities for such an ordering. Any such ordering 
imposes an ordering on the corresponding create-variables. All begin-variables 
are placed before all create-variables, in some arbitrary order among them, and 
similarly all end-variables are placed after all create-variables . Finally, a use­
variable involving artifact A is placed immediately as a successor of create( A ). 
If there are more than one use-variables for the same artifact A , they can all 
be placed in an arbitrary order right after create(A). By inspecting the axioms 
we see that this order satisfies all axioms. D 

We note that Proposition 5.31 does not state that all temporal models of 
cycle-free graphs are all-distinct. Rather, it establishes that one such all­
distinct model exists. The next proposition provides a partial converse to 
Proposition 5.31: 

Proposition 5.32. If G does contain a derived-from cycle of length at least 
two, then G cannot have an all-distinct temporal model. 

Proof. Consider a derived-from cycle and let A and B be two distinct artifacts 
on that cycle. Then any temporal model T should satisfy T(create(A)) '.S 
T(create(B)) as well as T(create(B)) '.S T(create(A)), so r(create(A)) equals 
T(create(B)). Hence Tis not all-distinct. D 

Propositions 5.31-5.32 do not specify what happens when there are only 
derived-from cycles of length one (self-loops). Moreover, for a temporal model 
r , they do not specify which distinct variables u and v cannot have distinct 
r(u) and T(v) if the graph contains derived-from cycles. The next proposition 
fills these gaps by characterising exactly when two temporal variables must be 
equal in all temporal models. 

Naturally, for two distinct temporal variables u and v of G, we write Th(G) p 
u = v to denote that both Th( G) p u j v and Th( G) p v j u . T hus , if 
Th(G) F u = v, then there is no model of G that is all-distinct since any 
temporal model T must satisfy T(u) '.S r(v) and T(v) '.S T(u); so r(u) = T(v). 
Intuitively, two temporal variables u and v of G such that Th( G) F u = v 
can be seen as indistinguishable in the given temporal model, for example as 
a result of coalescing some nodes in a graph with a more detailed temporal 
model. 

Proposition 5.33. Th(G) Fu = v if and only if u and v match one of the 
following possibilities: 
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Figure 5.10: Graph patterns for Proposition 5.33. 

(1) u is create(A), v is create(B) , and A and B belong to the same derived­
from cycle. 

(2) u is create(B), v is use(P, r, B), and in G, the nodes P and B, together 
with some node C, match the pattern shown in Figure 5.10(a). Note 
that B and C need not be distinct. 

(3) u is create(A), v is use(P,r, B) , and in G, the nodes P , A and B , 
together with some node C , match the pattern shown in Figure 5.JO(b). 
Note that A , B and C need not be distinct. 

(4) u is use(P,r, B) , v is use(Q, s, A) , and in G, nodes P , Q, A and B , 
together with some nodes C and D , match the pattern shown in Fig­
ure 5.lO{c). Note that A, B , C and D need not be distinct, nor P and 
Q., 

Proof. The proof of the if-direction amounts to an inspection of involved pat­
terns to verify that Th( G) F u = v indeed holds. For example, let us examine 
pattern in Figure 5.lO(c) in case 4. By Axiom 3 we have Th(G) F create(B) ::s 
use(P, r, B ) for edge P _:, B and Th(G) F create(A) ::s use(Q, s, A) for edge 
Q -..::. A. For the triangle ( C, B , P, r) and G f- B - - -. C, we can apply Rule 7 
from Figure 5.7, so we have T h(G) F use(P , r, B ) ::s create(B), and thus 
Th(G) F create(B) = use(P , r,B). Likewise, for the triangle (D,A,Q,s) and 
G f- A - - -. D, we obtain Th(G) F create(A) = use(Q, s , A). Since A and B 
belong to the same derived-from cycle, we also have Th(G) F create(A) = 
create(B), hence Th(G) F use(P , r, B) = use(Q, s, A). 

-,J ' I Note that in Figure 5.lO(c), if C and D coincide then C ...:+ P and D ...:+ Q must also 
coincide for G to be legal. 



5.5. Refinement 145 

The proof of t he only-if direction amounts to a lengthy but straightforward 
inspection of the possible cases where both Th(G) F u j v and Th(G) F 
v j u, in the characterisation of temporal inference provided by Figure 5.7. 
For example, in case 4, we clearly see that we can only obtain T h( G) F 
use(P,r, B) = use(Q,s, A) by combining the following rules of Figure 5.7: 
Rule 9a with again Rule 9a resulting in the pattern from Figure 5.lO(c) wit h 
A = C and B = D ; Rule 9a with Rule 9b resulting in the pattern from 
Figure 5.lO(c) with A = C; and Rule 9b with again Rule 9b resulting in the 
pattern from Figure 5.lO(c). D 

Observe that a graph that matches Figure 5.lO(c) also matches Figure 5.lO(b), 
since B --+ A can be inferred from B -- -> D and D .!__, A in Figure 5.lO(c). 
Likewise, a graph that matches Figure 5.lO(b) also matches Figure 5.lO(a), 
since B - - + C can be inferred from B - - + A and A --+ C in Figure 5. lO(b). 

Hence, by repeated application of Proposition 5.33 (1)-(4), we derive that all 
use and create time-points for artifacts A , B , C, D in Figure 5.lO(c) are equal. 
Likewise, we note the equality of all use and create time-points for artifacts 
A, B , C in Figure 5.lO(b) and for B, C in Figure 5.lO(a). 

The OPM reference specification does not allow derived-from cycles, but it 
does not define a merge operation either. This section has demonstrated t hat 
a merge operation can introduce derived-from loops into OPM graphs, but 
they must satisfy some constraints: all time-points of artifacts involved in a 
loop must coalesce to a single time-point. Were a merge operation added to 
the reference specification, two options are possible. On the one hand, the 
absence of derived-from cycles can remain a legality constraint, but, therefore, 
the merge operation should be such that it coalesces all artifacts (and related 
process) in a loop and removes all self-loops to ensure legality is preserved. On 
the other hand, t he constraint on derived-from cycles can be lifted , but the 
OPM edges decorated with time information and involved in loops should have 
their t ime information updated , to reflect the constraints of Proposition 5.33. 

5.5 Refinement 

The OPM reference specification [MCF+ ll] introduces the notion of refine ­
ment as a relation between two graphs: this relation expresses that one graph 
represents a more complete description of execution than another graph. T he 
term refinement is inspired by t he concept of specification refinement in formal 
methods [WD96]. The concept was only intuitively defined as follows: a graph 
is a refinement of another if dependencies that can b e inferred in the original 
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graph are "preserved" in the refinement. The purpose of this section is to 
formally ground such a notion of refinement in the context of our temporal 
semantics (Note A.4.10). 

We fix two legal OPM graphs G and H for use in this section. We also define 
the following convenient notion. 

Definition 5.34. The logical closure of a set of inequalit ies E , denoted by E, 
is the set of logical consequences of E, i.e., ~ = { <p I E F <p} . 

When context allows, we abbreviate logical closme to closure. 

First, we define restriction of an arbitrary set of inequalities I: t o a subset of 
variables occurring in E. 

Definition 5.35. Let E be a set of inequalities over a set of variables V. Let 
W be a subset of V. The restriction of E to W, denoted by Elw , is the set 

Elw = { u ::< v EE I u, v E W} . 

Given our temporal semantics, the intuition of a refinement is the following. 
Graph H is a refinement of G if all the temporal constraints that can be 
inferred from Th( G) can also be inferred from Th(H). However, such definition 
is too broad, since refinements can replace nodes by others (say, when a process 
is implemented by composing two other processes) ; some temporal constraints 
of Tb(G) may range over temporal variables t hat do not exist in Th(H). 
Hence, His a refinement of G, if the temporal constraints that can be inferred 
from Th(G) over the common set of variables between H and G, can also be 
inferred from Tb(H) . Formally, the definition is expressed as follows. 

Definition 5.36 (Refinement) . H is a refinement of G if 

Th(G) ) Vars(G)nVars(H) ~ Th(H) · 

Note that Theorem 5.14 can be effectively used to decide whether a given 
graph H is a refinement of a given graph G. Still, the definition of refinement 
is strictly semantic and does not provide much guidance towards constructing 
a refinement. An interesting open problem is to find a finite set of graph 
operations that all result in refinements , and such that every refinement can 
be obtained by using these operations. 
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5.5.1 Graph operations and refinement 

In this section we investigate the relations between the gr aph operations de­
fined in Section 5.4 and refinement. We first investigate the subgraph opera­
tion, the union and the intersection. Let G and H be two legal OPM graphs. 

Proposition 5.37. If H is a legal subgraph of G, then G is a refinement of 

H. 

Proof. Since H is a subgraph of G , it is clear from Definition 5.5 that Th(H ) ~ 
Th(G). Hence Th(H)I Vars(H )nVars(G) = Th(H) ~ Th(G) as desired. D 

Note that a legal subgraph of G is not necessarily a refinement of G. For 
instance, let G be a use- generate-derive triangle (A, B , P, r), and let H be 

a subgraph of G consisting of P !:.. B and A ..:.. P. Then H is legal, but 
is not a refinement of G: create(B) ::5 create(A) E Th( G) I vars(G)n vars(H) yet 

create(B) ::5 create(A) r/. Th(H ). 

The above proposition also applies to the union and intersection, and their 
operands. 

Corollary 5.38. If G U H is legal, then G U H is a refinement of G. 

Note that G is not necessarily a refinement of a legal G U H. For example, let G 
consist of A -, B and node P and let H consist of A ..:.. P and node B . So GUH 

is legal and consists of A _, Band A..:.. P. Then G is not a refinement of GUH: 
G U Hf- P ---. B , so create(B) ::5 end(P) E Th(G UH)] Vars(GuH)n Vars(G) yet 

create(B) ::s end(P) r/. Th(G). 

However , if G and H are node-disjoint, then G is a refinement of GU H. 

Corollary 5.39. G is a refinement of G n H. 

Note that G n H is not necessarily a refinement of G. For example, let G 
consists of A --t Q, A ..:.. P and P --t Q, and let H consist of A - Q and 
P-. Q. Then G n H equals H , which is not a refinement of G: create(A) ::5 
end(P) E Th(G )(vars(G)nVars(H), yet create(A) ::5 end(P) r/. Th(G n H ). 

Next we investigate the merge-renaming operation. Let H be a renaming of 
G by PArt, PProc and PRoles (conforming to Definition 5.27). Then G is not 
necessarily a refinement of H , or vice versa. For instance, let G consist of 
A ---. B, let PArt(A) =Band PArt(B) = A, then H consists of B ---. A. They 
are clearly not each others refinements. 
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Still, if one needs to apply a merge-renaming on a graph before performing 
a union or an intersection, a merge-renaming operation that preserves the 
temporal constraints of the original would be advisable. This motivates the 
following restricted version of the merge-renaming operation: 

Definition 5 .40 (Proper merge-renaming). Let PArt, PProc and PRoles be as 
in Definition 5.30, and let p be the point-wise union of PArt , PProc and PRoles· 

Then we use p(G) to denote the merge-renaming of G by PArt, PProc and PRoles· 

vVe call a merge-renaming p(G) proper if for any node (or role) x in G, if 
p(x) f=. x but p(x) is also a node (or role) in G, then p(p(x)) = p(x). 

Intuitively, in a proper merge-renaming operation, some nodes/roles are pre­
served, whereas all the others are either renamed into new ones or coalesced 
into preserved ones. Such an operation disallows arbitrary renaming and per­
mutation of nodes/roles. Although it seems overly restrictive, it makes sense 
in the OPM model, because nodes and roles are actually identifiers. Hence , 
coalescing of nodes/roles, or renaming them into new ones, is a form of identity 
resolution. For example, witnesses of a car accident may speak of a "blue car" 
or a "Toyota". Later on, one realises the witnesses talked about the same car, 
so both "blue car" and "Toyota" should be renamed to the car's registration 
number (while "blue car" and "Toyota" become its annotations) . Likewise, 
hospitals frequently admit unconscious patients under a temporary ID. Later 
on, they are either matched to an already known patient or to a new ID if the 
patient is admitted for the first time. 

We conclude this section by showing that a proper and legal merge-renaming 
of a graph is indeed a refinement of the original graph. 

Theorem 5 .41. Let G be a legal OPM graph, and let p(G) be a proper and 
legal merge-renaming of G, for some p. Then p(G) is a refinement of G. 

To prove the theorem we use the following auxiliary lemmas. 

Lemma 5.42. Let G be a legal OPM graph, and let p(G) be a legal merge­
renaming of G, for some p. Then if G 1- X - -~ Y, also p(G) I- p(X) --~ p(Y) , 
i. e., a legal merge-renaming preserves edge-inference. 

The above lemma is readily verified. 

Lemma 5 .43. Let G be a legal OPM graph, and let p(G) be a proper merge­
renaming of G , for some p. If a node ( or role) x belongs to both G and to the 
image of p, then p(x) = x. 
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Proof. Indeed, if x is in the image of p, then there exist a node (role) y in G, 
such that p(x) = y . If x = y, then p(x) = x holds immediately. If x -/= y, 

then p(y) -/= y, so p(p( y)) = p(y) (by Definition 5.40). Thus p(x ) = x holds as 
desired. D 

Proof of Theorem 5.41. Let Commons= Vars(G)n Vars (p(G)) . We need 
to prove the following: 

Th(G)[ commons ~ Th(p(G)). 

For each inequality i.p E Th(G) [commons, we must show that <p belongs to 
Th(p(G)) . We know from Theorem 5.14, illustrated in Figure 5.7, that each 
such inequality is associated with a pattern in G. Therefore, we need to find 
a similar pattern in p(G) that produces exactly the same inequality. 

Let <p E Th( G) [Commons. We follow the axioms and rules presented in Fig­
ure 5. 7, the a.'Cioms first, to cover all possible form1=: that <p may assume: 

(a) <p is begin(P) :::s end(P), for some P in G. Since begin(P), end(P) E 

Commons , P is also present in p(G) . By Axiom 1, begin(P) :::s end(P ) E 

Th(p(G)). 

(b) r.p is begin(P) :::s create(A) or create(A) :::s end(P), for some A ~ P in 
G. Since create(A), begin(P ), end(P) E Commons , we also have A and 
P in p(G). From A ~ P in G, by Definition 5.40, we have p(A) ~ p(P) 
in p(G). We can apply Lemma 5.43 to A and P, obtaining p(A) = A 
and p(P) = P. Hence, A ~ P is also in p(G) and, by Axiom 2, both 
begin(P) :::s create(A) and create(A) :::s end(P) belong to Th(p(G)). Note 

that A --..:.. P in G and A ~ P in p( G) need not have the same role. 

(c) <p is one of the following: begin(P) :::s use(P ,r, A) , use(P,r, A) :::s end(P) , 
or create(A) :::s use(P , r, A) , for some P -2:.., A in G. The variable use(P, r, A) 
belongs to Commons; that is only possible if edge P .2:.. A is also present 
in p(G) . By Axiom 3, begin(P) :::s use(P, r, A), use(P , r, A) :::s end(P) , and 
create(A) :::s use(P, r , A) belong to Th(p(G) ) . 

(d) r.p is use(P , r, B) :::s create(A) , for some G L::, (A, B , P, r). For P ~ B 

in G we apply case c, so P ~ B is also in p(G). For A ~ P in G, by 

case b, A~ P belongs to p(G). We can apply Lemma 5.43 to A , B , and 
r , obtaining p(A) = A , p(B) = B , and p(r) = r . For A ~ B in G, we 

apply Definition 5.40, so p(A) P!!) p(B) in p(G), and thus A~ Bin p(G). 
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Clearly, p(G) 6 (A, B, P, r) , hence use(P , r, B ) =:: create(A) E Th(p(G)) 
(Axiom 8). 

(e) cp is create(B) =:: create(A), for G I- A- -+ B. Since create(A) , create(B) E 

Commons , A and B also belong to p(G). From G I- A --+ B, by 
Lemma 5.42, we have p(G) I- p(A) --+ p(B ) . We can apply Lemma 5.43 
to A and B, obtaining p(A) = A and p(B) = B. Hence p(G) I- A --+ B 
as desired and , by Rule 1, create(B ) =:: create(A) E Th(p(G)) . 

(f) cp is begin(P ) =:: create(A), for G I- A --+ P. Since create(A) , begin(P ), 
end (P ) E Commons, A and P belong to p(G). From G I- A --+ P , by 
Lemma 5.42, p(G) I- p(A) --+ p(P). We can apply Lemma 5.43 to A and 
P , obtaining p(A) = A and p(P) = P. Thus p(G) I- A --+ P and, by 
Rule 2, begin(P ) =:: create(A) E Th(p(G)). 

(g) cp is create(A) =:: end(P ), for G I- P --+ A. Since create(A), begin(P), 
end(P) E Commons, A and P belong to p(G) . From G 1- P -- + A , by 
Lemma 5.42, we have p(G) I- p(P ) --+ p(A). We can apply Lemma 5.43 to 
A and P , obtaining p(A) = A and p(P) = P. Therefore, p(G) 1- P --+ A 
and, by Rule 3, create(A) =:: end(P) E Th(p(G)) . 

(h) cp is begin(Q) =:: end(P) , for G I- P -- + Q. Since begin(P), end(P) , 
begin(Q), end(Q) E Commons , P and Q belong to p(G). From G 1- P --+ 

Q , by Lemma 5.42, p(G) I- p(P) - - + p(Q) . We can apply Lemma 5.43 to 
P and Q, obtaining p(P) = P and p(Q) = Q. Hence p(G) I- P --+ Q and, 
by Rule 4, begin(Q) =:: end(P) E Th(p(G)). 

(i) cp is create(B) =:: use(P , r, A), for P --1:+ A in G and G I- A --+ B. By 
applying cases c and e to P -2:., A in G and G 1- A --+ B, respectively, 
we have P -2:., A in p(G) and p(G) I- A --+ B. By Rule 5, create(B) =:: 
use(P, r , A) E T h(p(G)). 

(j) cp is begin(Q) =:: use(P ,r, A), for P -2:., A in G and G I- A - - + Q. By 
applying cases c and f to P -2:., A in G and G I- A --+ Q, respect ively, 
we have P --1:+ A in p(G) and p(G) I- A --+ Q. By Rule 6, begin(Q) =:: 
use(P,r,A) E Th(p(G)) . 

(k) cp is use(P , r, C) =:: create(A) , for G 6 (B, C, P, r) and G 1-- A - -+ B. By 
applying cases d and e to G 6 (B, C, P, r) and G I- A --+ B, respec­
tively, we have p(G) 6 (B,C,P,r) and p(G) I- A --+ B. By Rule 7, 
use(P,r,C) ::< create(A) E Th(p(G)). 
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(1) r.p is use(P , r, B ) j end(Q), for G 6 (A , B , P, r) and G I- Q --+ A. By 
applying cases d and g to G 6 (A , B , P,r) and G 1- Q --+ A , respec­
t ively, we have p(G ) 6 (A , B , P, r ) and p(G ) I- Q --+ A . By Rule 8, 
use(P , r, B ) j end(Q) E Th(p(G)) . 

(m) r.p is use(P , r, B ) j use(Q , s, A ), for G 6 (C, B , P, r) and Q ~ A in 
G, and either A = C or G I- A --+ C . By applying cases d and c to 
G 6 (C,B , P,r) and Q ~ A , respectively, we obtain p(G ) 6 (C, B , P,r) 
and Q ~ A in p(G). If A = C, t hen A clearly belongs to G and to the 
image of p, so , by Lemma 5.43, p(A ) = A. If C 1- A --+ C, then , by 
case e, p(C) I- A --+ C. We can thus apply either Rule 9a or Rule 9b, so 
use(P,r, B ) j use(Q,.s, A) E Th(p(G)). 

5.6 Mapping a run of an NRC dataflow to an OPM 
graph 

An obvious connection between the two parts of this disser tation would be 
a formal translation of runs of NRC dataflows to OPM graphs. Indeed, else­
where [KV08] we have demonstrated such a t ranslation. A complete reworking 
of this t ranslation in the context of our formal model of a dataflow repository, 
remains as fu ture work. This includes extending OPM wit h a profile for rep­
resenting a specific kind of refinement between accounts of an OPM graph, 
suitable for modelling executions of subdataflows . 

In Figure 5.11 we illustrate how a run can be translated into an OPM graph, 
by showing the OPM graph for the run from Example 3.2 (p . 42). T he unique 
identities for the nodes are easily construct ed from run-t riples. For a triple 
t = (cl>· [ e J, a, v) we use [t] as the ident ifier of the process, and label the process 
with e. We use [t, v] as the ident ifier of the artifact representing v , and label 
it by v . For the art ifact representing the value assignment , we simply use [a ] 
as its identifier and label. T his artifact is t hen used by all processes having 
a in their run-triple. The generated-by edge wit h role val is from [t , v] to [t] . 
T he used-edge with role env is from [t] to [a] . Each [t] also has used-edges 
from [t] to the artifacts generated wit h role val by processes that represent the 
constituent subexpressions of e. We also need to explicitly assert which output 
was produced from which input, through the use-generate-derive triangles . In 
order to do so, we need roles for the used-edges and the corresp onding derived­
from edges. If e is not a unary expression, we take the same natural number 
or label, that is used in extending t he subexpression path for its constituent 
subexpressions. If e is a unary expression, we simply t ake number 1. 
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Figure 5.11: OPM graph for run from Example 3.2 

Figure 5.12: Using derived-from edges for subvalue provenance 
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As all artifacts are atomic, the derived-from edges only show dependencies 
between whole values. However, a complex value can also be translated into 
an OPM graph. Indeed, a tuple can be represented as a process that constructs 
a tuple from values , with the roles on the used-edges specifying the component. 
Similarly, a set can be represented as a set-constructing process , consuming 
values and producing a set containing these values . We can construct unique 
identifiers for all artifact nodes by extending [t, v] with the corresponding 
subvalue path. For the process nodes, we can extend [t, v] with a number in 
document order. As roles we can use labels for tuples, and natural numbers 
for sets. These OPM graphs for complex values can be incorporated into 
the graph for the run, however with a different account (an artifact may be 
produce<l liy only one process for the account to be legal). Then we can 
use the rules for subvalue provenance to produce derived-from edges between 
subvalues (dashed bold edges) , as we illustrate in Figure 5.12, for the subvalue 
provenance computation from Example 4.6 (p. 85 and Figure 4. 1). 





6 

Outlook 

In Chapter 3, we have presented a simple formal model of a dataflow repository, 
and a proof-of-concept representation in SQL/XML. In the context of queries 
used in the Provenance Challenges* , it would be interesting to (i) extend the 
model with necessary annotations for these types of queries , and (ii) research 
how we can tune the SQL/XML schema to ease the formulation of frequently 
posed queries. Moreover, it would be interesting to research what types of 
queries occur in a specific domain , for instance, in bioinformatics dataflows, 
and to design a special-purpose query language for this domain. Such a lan­
guage could be implemented by compiling it into SQL/ XML queries. 

In Chapter 5 we have presented a temporal semantics for the Open Provenance 
Model. It would be interesting to adapt the temporal model to allow for 
duration in creating and using artifacts. Also, the notion of refinement in 
OPM is very general , and deals only with two OPM graphs at a time. It 
would be interesting to add a more specific concept of refinement, suitable for 
modelling the hierarchy of runs of nested subdataflows, each run represented 
by an OPM graph. 

In Chapter 4, we have formulated inference rules for computing subvalue prove­
nance. Although subvalue provenance can be expressed in OPM (with some 
representation for complex objects) by explicit derived-from edges, the advan­
tage of using rules is that such edges can be added to an OPM graph after­
wards, on demand. It would be interesting to identify frequently used data 
structures and data transformation operators in other workflow management 
systems, and to define similar subvalue provenance rules. 

·http://twiki .ipaw.info/bin/view/Challenge/WebHome 
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Finally, it would be interesting to design a GUI allowing the user to explore an 
OPM graph at different levels. The user could start with a higher-level view 
of the execution, corresponding to the run of the dataflow without any runs 
of subdataflows , and only atomic representation of complex-objects. The GUI 
should then facilitate tracking subvalue provenance in the graph, providing 
subgraphs detailing complex values, or runs of subdataflows, on demand. Note 
that this type of view is determined by the way a dataflow was designed and 
executed. It could then serve as a starting point for defining other, higher-level 
views, like the user views defined by Davidson et al. [DCSC09, BCD08]. 
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A 

N ates and auxiliaries 

A .I Sequences 

We often employ sequences over a set X , i.e., functions from a chosen index 
set I to X. We assume I to be totally ordered. Unless otherwise stated, we 
take an initial finite subset of N* for I. We use SEQ(X ) to denote t he set of 
all sequences over a set X. 

When writing down sequences, we separate the elements by commas, and we 
use square brackets ( "[" and "]") as delimiters. The empty sequence is denoted 
by "[]". The concatenation operator for sequences is denoted by "·" . 

Let p, q ands be non-empty sequences over a set X. Ifs= p · q, then we call 
pa prefix of s, and q a suffix of s . 

Let Yi, for i E {1, ... , n }, be sets. Let Q <;;;: SEQ(X) x Y1 x · · · x Y,1 and 
let x1 E X, for j E { 1 , ... , m}. We introduce the following notation for 
concatenating a prefix to the first component of each element of Q: 

[xi, . .. ,xm] · Q ~ {( [x1, . . . ,xm] · s, Yl, ... , Yn) I (s, YJ, . .. ,Yn) E Q} (A.l) 

We call it prefi.'Eing of Q by [ X1, ... , Xm J. 

If in a sequence [x1 , . .. , xn] the order of its elements is of no consequence, we 
can write the sequence as [xi I i E {1, .. . ,n}J. 

A.2 Constructing a wrapper relation 

Let R be a partial relation from 11 x ... x In to 0. Let T1 x ... x Tn and Tout 

be complex types, such that 
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• Ii~ [rd, for i E {1, ... ,n}, and 

• 0 ~ [ro'Ut]. 

Let OK and value be labels, and let I be the greatest subset of Ii x . .. x In 
over which R is total, i.e., 

I = {(w1, ... ,wn) E fix ... x In [ 3 v E 0: (w1, ... ,wn,v) ER}. 

We construct a wrapper relation RD for R as a total relation from [ r 1 ] x . .. x [ Tn] 
to [ (OK: Boolean, value: Tout) ] as follows: 

(1) For each (w1, . .. , Wn, v) E R we add 

(w1, ... , Wn, (OK: true, value: v) ) 

to RD. We preserve thus the behaviour of the original relation R. 

(2) For each (w1 , ... , wn) E (([ri] x ... x [rn]) \ J) we add 

(w1, ... , Wn, (OK: false , value : z )) 

to RD, where z stands for an arbitrary element of [ Taud . We ensure thus 
the totality of RD. 

For a value (OK: b, value: v), with b E [Boolean] and v E [r0 ut] , value v is 
a semantically correct value only if b = true. 

A.3 DTDs 

A.3.1 DTD for complex values 

<!ELEMENT set (emptyset I base+ I set+ I tuple+) > 
<'ATTLIST set 

valID ID #REQUIRED> 
<!ELEMENT ernptyset EMPTY> 
<!ATTLIST ernptyset 

valID ID #REQUIRED> 
<!ELEMENT base (#PCDATA) > 
<!ATTLIST base 

valID ID #REQUIRED 
kind (b I B) #REQUIRED> 

<!ELEMENT tuple (lbl , (emptyset I base I set I tuple) )+> 
< ! ATTLIST tuple 

valID ID #REQUIRED> 
<!ELEMENT lbl (#PCDATA) > 
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Attribute valID is used to indentify occurrences of subvalues. If the complex 
value is stored in table Values , we assume that the val ID attribute of the root 
element of the value stored in Values (value) matches the corresponding value 
in Values (vID). If the complex value is st ored in tables Sets and Tuples , 
we assume that the valID attribute of tuple and set elements contains the 
corresponding value of Sets (vID) and Tuples (vID) , respectively. For element 
base, if attribute kind is B, then attribute valID must be a foreign key to 
Base Values (vID) . 

A.3.2 DTD for complex types 

<!ELEMENT settype (bottom I basetype I settype I tupletype ) > 

<!ATTLIST settype 
type!D NMTOKEN #REQUIRED > 

<!ELEMENT bottom EMPTY> 
<!ATTLIST bottom 

typeID (bottom) #FIXED "bottom" > 
<!ELEMENT basetype EMPTY> 
<!ATTLIST basetype 

typeID NMTOKEN #REQUIRED> 
<!ELEMENT tupletype (lbl, (basetype I settype I tupletype))+ > 
<!ATTLIST tupletype 

typeID NMTOKEN #REQUIRED > 
<!ELEMENT lbl (#PCDATA) > 

Attribute typeID contains t he name of the complex type, which serves as its 
identifier in the dataflow repository, i.e., it is a foreign key to one of the follow­
ing: BaseTypes (tID) (for elements bottom and basetype), or Set Types (tID) , 
or TupleTypes(tID). 

A .3.3 DTD for type assignments 

<!ELEMENT tassign (vartype)* > 
<!ELEMENT vartype (var, (tID type)) > 
<!ELEMENT var (#PCDATA) > 
<!ELEMENT tID (#PCDATA) > 
< ! ATTLIST tID 

kind (b I s I t) #REQUIRED> 
<!ELEMENT type (basetype I settype I tupletype) > 

Elements basetype , settype, and tupletype are already defined in Sec­
tion A.3.2. Element var stands for a free variable of a dataflow. Element 
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var is paired with either (i) element type , containing a complex type in XML 
format ; or (ii) element tID, containing a complex type identifier, i.e., a foreign 
key to one of the following: BaseTypes(tID) (kind="b"), SetTypes(tID) 
(kind="s") or Tuple Types (tID) (kind="t" ). 

A .3.4 DTD for signature assignments 

<!ELEMENT sassign (service)*> 
<!ELEMENT service (partype)* > 
<!ATTLIST service 

name ID #REQUIRED> 
<!ELEMENT partype (par, (tID I type)) > 
<!ELEMENT par (#PCDATA) > 

Elements tID and type are already defined in Section A.3.3. Attribute name 
contains the service name of a service-call expression. The definition of element 
partype is similar to that of vartype in Section A.3.3, except that element 
par stands here for a parameter name in the signature of the service name. 

A .3.5 DTD for NRC expressions 

<!ENTITY % base " (const I var I emptyExpr)" > 
<!ENTITY % composite "(setExpr I union I flatten 

tupleExpr I project I for 
eqTest I emptyTest I if I let I call)" > 

<!ENTITY % subExpr "(%base; I %composite;)" > 
<!ELEMENT expr %subExpr; > 
<!ATTLIST expr 

eID ID #REQUIRED> 
<!ELEMENT const (#PCDATA) > 
<!ATTLIST const 

eID ID #REQUIRED> 
<!ELEMENT var (#PCDATA) > 
<!ATTLIST var 

eID ID #REQUIRED> 
<!ELEMENT emptyExpr EMPTY > 
<!ATTLIST emptyExpr 

eID ID #REQUIRED> 
<!ELEMENT setExpr %subExpr; > 
< !ATTLIST setExpr 

eID ID #REQUIRED> 
<!ELEMENT union (%subExpr;, %subExpr;) > 
<!ATTLIST union 



N otations 

eID ID #REQUIRED> 
<!ELEMENT flatten %subExpr; > 
<!ATTLIST flatten 

eID ID #REQUIRED> 
<!ELEMENT tupleExpr (lbl, %subExpr;)+> 
<!ATTLIST tupleExpr 

eID ID #REQUIRED> 
<!ELEMENT project (%subExpr; , lbl)> 
<!ATTLIST project 

eID ID #REQUI RED> 
<!ELEMENT for (var, %subExpr ;, %subExpr;) > 
<!ATTLIST for 

eID ID #REQUIRED> 
<!ELEMENT eqTest (%subExpr;, %subExpr;) > 
<!ATTLIST eqTest 

eID ID #REQUI RED> 
<!ELEMENT emptyTest %subExpr ; > 
<!ATTLIST emptyTest 

eID ID #REQUIRED> 
<!ELEMENT if (%subExpr ;, %subExpr; , %subExpr;) > 
<!ATTLIST if 

eID ID #REQUIRED> 
<!ELEMENT let (var , %subExpr;, %subExpr;) > 
<!ATTLIST let 

e ID ID #REQUIRED> 
<!ELEMENT call (service, %subExpr; , (%subExpr;)*) > 
<!ATTLIST call 

eID ID #REQUI RED> 
<IELEMENT lbl (#PCDATA) > 
<!ELEMENT service (#PCDATA) > 

171 

At tribute eID is used to indentify occurrences of subexpressions. 'vile assume 
that the top element has the name of the dataflow as its eID, and others have 
an e ID composed of e followed by a number in docum ent order , st art ing at 
one. The top-level NRC expression must have eID="e1" . 

A.3.6 D TD for value assignments 

<!ELEMENT vassign (varval)* > 
<!ELEMENT varval (var , (vID I value )) > 
<!ELEMENT var (#PCDATA ) > 
<!ELEMENT vID (#PCDATA) > 
< ! ATTLIST vID 

k: nd (B I s I t ) #REQUIRED > 
<' ELEMENT value (empt ys et I base I set I tupl e)> 
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Elements emptyset , base, set , and tuple are already defined in Section A.3.1. 
Element var stands for a free variable of a dataflow. Element var is paired 
with either (i) element value , containing a complex value in XML format; or 
(ii) element vID, containing a complex value identifier, i.e., a foreign key to 
one of the following: BaseValues(vID) (kind="B"), Sets(vID) (kind="s") 
or Tuples (vID) (kind="t" ). Base values not stored in table Base Values must 
be in XML format . 

A.3.7 DTD for binding trees 

<!ELEMENT btree (extentry I subentry)* > 

<!ATTLIST btree 
dID CDATA #REQUIRED> 

<!ELEMENT extentry (service , ext, extpair*) > 
<!ELEMENT extpair (epar, spar)> 
<'ELEMENT subentry (service, sub, subpair*, btree) > 
<!ELEMENT subpair (var, spar) > 
< ' ELEMENT service (#PCDATA ) > 
<!ELEMENT ext (#PCDATA) > 
<!ELEMENT sub (#PCDATA) > 
<!ELEMENT spar (#PCDATA) > 
<!ELEMENT epar (#PCDATA) > 
<!ELEMENT var (#PCDATA) > 

Element extentry corresponds to a leaf binding a service name to an external 
service, while element subentry corresponds to a node binding a service name 
to a subdataflow. Element service stands for a service name, and element 
spar for a parameter name in the signature of t he service name. Element ext is 
the identifier of an external service, and is a foreign key to External (ext ID). 
Element epar stands for a parameter name in the signature of the external 
service, i.e., ext and epar are a foreign key to ExtSigs C ext ID, par). Element 
sub is a subdataflow identifier, and is a foreign key to Dataflows (dID). Ele­
ment var st ands for a free variable of the subdataflow, i.e. , sub and var are a 
foreign key to Variables (dID, var). Finally, at t ribute dID of btree, a grand­
child service of btree, and a child spar of sibling subpair of service , are a 
foreign key to Signatures (dID, service ,par). (Sibling btree of an element 
sub must have the contents of sub in attribute dID. ) 
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Table A.l: Table for Note A.4.4. 

OPM reference specification This work 
Used Used! and U;,ed 

WasGeneratedBy GeneratedBy! and GeneratedBy 
WasDerivedFrom DerivedFrom! and DerivedFrom 
Used* (asserted) Us ed 
Used' (inferred) -- -t 

WasGeneratedBy* (asserted) GeneratedBy 
WasGeneratedBy* (inferred) __ _. 

WasDerivedFrom* (asserted) DerivedFrom 
WasDerivedFrom* (inferred) ---t 

WasTriggeredBy (asserted) InformedBy 

WasTriggeredBy (inferred) ---t 

WasControlledBy n/a 

A.4 OPM-specific notes 

Note A .4.1. The OPM reference specification also includes agents, which are 
entities controlling processes. We do not formalize such a concept here, since 
it is the subject of multiple ongoing discussions. 

Note A.4.2 . The OPM reference specification also includes edges of the type 
WasCoutrolledBy (from a process to an agent) which are not included in this 
work, because we do not model agents. F\1rthermore, we prefer to adopt the 
t erm informed-by rather than was-triggered-by since its informal meaning is 
more aligned to its formal definition. 

Note A.4.3. The OPM reference specification does not associate a role with 
a was-derived-from edge . It is a contribution of this work to have identified 
the need of this role for defining a temporal semantics of OPM. 

Note A.4.4. Table A.l maps sets in the OPM reference specification to sets 
or notations introduced in this work. 

Note A.4.5. T he OPM reference specification has a different legality def­
inition. The first legality requirement of Definition 5.2 is exactly the same 
as in [MCF+n j, but the second requirement was not stated before. Indeed, 
we have only discovered during the work reported here that the second re­
quirement is needed in order to give a clean semantics to precise derived-from 
edges. Finally, the OPM specification has an additional condition that we do 
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not need here: there may be no cycles in the was-derived-from edges. We fur­
ther discuss the implications of cycles in derived-from edges in OPM graphs 
in Section 5.4.2. 

Note A.4.6. OPM introduces an observation interval that we do not formalize 
here. Our only assumption about time-points is that they can be partially 
ordered. 

Note A.4. 7 . The OPM reference specification associates the create time-point 
with edges of t he type WasGeneratedBy, since different accounts can assign 
different time-points to the same edge. In the presence of an edge of the type 
WasControlledBy, beginning and ending times of a process are associated 
with the edge. 

Note A.4.8. The OPM reference specification defines a used-edge as meaning 
that the process required the availability of the artifact to be able to complete 
its execution: this is exactly Axiom 6. Likewise, the reference specification 
defines a was-generated-by edge as meaning t hat the process was required to 
initiate its execution for the artifact to have been generated: this is exactly 
Axiom 5. The OPM reference specification defines a was-triggered-by edge 
exactly as Axiom 7. 

In addition, OPM time constraints indicate that the use time-point follows 
the start of the process, and the generate time-point precedes the end of the 
process. The OPM reference specification does not cover the time constraints 
related to multi-step edges of the types Us ed* and WasGen eratedBy*. I t is a 
contribution of t his work to have integrated all these constraints into a single 
set of axioms. 

Note A.4.9. The OPM reference specification is not specific about the dif­
ference between the precise was-derived-from edge A __'.., B and its imprecise 
version A -. B. First, a precise edge A ...:.. B can only exist in t he presence 
of a generate-use- derive triangle, according to Defini tion 5.2. Second , both 
the create and use time-points (for A and B , respectively) occur within the 
scope of the process identified by the triangle. These const raints do not hold 
for A --t B. 

Note A.4.10. Technically, the OPM reference specification defines refinement 
between two accounts. However, like graph operations, it is useful to define 
refinement over OPM graphs. 

Note A.4.11. T he OPM reference specification defines three completion op­
erations: process and artifact introduction, as in this work, but also artifact 
elimination. Artifact elimination is precisely the inference of informed-by in 
Definition 5.13. 
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Note A.4.12. The OPM reference specificat ion defines edges as causal rela­
tionships, but does not provide an explanation for this terminology, and the 
kind of causality underpinning them. In this work , we have chosen not to 
adopt t his terminology to avoid unnecessary technical jargon. However, our 
temporal semantics provides a clarification with regard to this notion. Indeed, 
the kind of causality underlying OPM relationships is the causality typically 
defined in distributed systems. The constraints u j v in our temporal theory 
are similar in nature to Tel's causal order [Tel94, Definition 2.20]. In partic­
ular, according to Tel, a send event precedes the corresponding receive event 
in a distributed system, very much like our create time-point precedes a use 
time-point for the same artifact. Similar orders were referred to as "causality 
relation" by Mattern [Mat89] and "happened before" by Lamport [Lam78]. 
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Een workflow is een beschrijving van een complex en mogelijk langdurig pro­
ces, dat bestaat uit verschillende taken die moeten uitgevoerd warden in een 
gegeven volgorde [vdAvH04, SGBBOl , BF05, FKSS08]. Taken bestaan uit an­
dere taken, wat aanleiding geeft tot control-flow afhankelijkheden. De control 
flow hoeft niet lineair te zijn: sommige taken kunnen tegelijk, of alternatief, 
uitgevoerd warden. Naast de control flow is er oak een data flow. Het is be­
langrijk een onderscheid te maken t ussen een workflow-specificatie enerzijds, 
en een workflow-uitvoering anderzijds. Een workflow-specificatie wordt oak 
een workfiow template, process definition, of, na.argelang het niveau van ab­
stractie, zelfs executable workfiow genoemd. In een onderneming kunnen vele 
workflow-specificaties gebruikt warden , en elke specificatie kan vele uitvoerin­
gen hebben. Een workflow-management systeem ondersteunt het ontwerp van 
workflow-specificaties en beheert de verschillende uitvoeringen . 

Workfiow management is ontstaan in business process modeling [vdAvH04], 
maar recent is het belang van workflows in e-Science toegenomen, tesamen met 
de opkomst van Grid Computing [FK04]. Alhoewel het onmogelijk is een harde 
scheidingslijn te trekken tussen business workflows en scientific workfiows, ligt 
de nadruk bij scientific workflows toch voornamelij k op data flow, en minder 
op control flow [SKDN05, GDEi-07, FKSS08] . Om deze reden spreken we ook 
over scientific workflows als datafiows. 

Het gebruik van workflows in e-Science beslaat volgende aspecten: 

• ontwerp en uitvoering van dataflows; 

• opslag van dataflows en verwante gegevens in een repository; 

• ondervragen van dataflow repository 's; 
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• sharing van dataflow-gegevens met derden. 

Dataflow repository's dienen vele doeleinden: 

• Het efficient beheer van de vele experimentele en workflow gegevens die 
bestaan in een laboratorium of onderneming, helpt het volgen van de 
"scientific method" [Bro08]. 

• Controle van resultaten, hetzij intern, hetzij bij peer review, hetzij door 
derden, t er reproductie van de resultaten. Deze controle vereist in vele 
gevallen het opsporen van de herkomst ("provenance") van data waar­
den , of onderdelen daarvan, die voorkomen in het resultaat van de work­
flow. 

• Beschikbaar stellen van de gegevens, inclusief de dataflows, ter beant­
woording van decision-support vragen. Het aantal mogelijke vragen is 
eindeloos; we geven slechts twee voorbeelden: 

"Gaf een vroegere uitvoering van de dataflow, die gebruik maakte 
van een oudere versie van GenBank, hetzelfde gen als resultaat?", 

"Hebben we ooit een dataflow uitgevoerd waarin deze sequentie 
werd opgezocht met behulp van BLAST ?" . 

Een formeel model van dataflow repository's Het eerste doel van ons 
werk is het bijdragen van een formeel, conceptueel datamodel waarin een 
aantal van de belangrijkst e aspecten van dataflow management worden sa­
mengevoegd. Verschillende workflow-management systemen en provenance­
management systemen* zijn reeds ontwikkeld, dikwijls bovenop general-purpose 
databases.t De gebruikte databases beslaan het volledige gamma: (i) key­
value [HSBMR08, MGM+os], (ii) relationeel [CM95, AIL98, SKDN05, BD08, 
GCM+ n , Fsc+o6, SPG08, KDG+os, MGM+osJ, (iii) XML [Fsc+o6, SPG08, 
FMS08], (iv) RDF [KDG+os, ZGST08], of (v) file-based [LAB+06, MGM+osJ. 

Er is echter geen standaard concept ueel model onderliggend aan zulke syste­
men. Een dergelijk model zou tenminste volgende aspecten moeten beslaan: 

*Een provenance-management systeem voor workflows registreert enkel informatie over 
de uitvoeringen van workflows. Zo'n systeem Jaat het gebruik van scripts, general-purpose 
programmeerta len en hogere-orde workflow talen toe. 

tsommige systemen gebruiken verschillende dat abases voor de specificat ies enerzijds, en 
voor de uitvoeringen anderzijds. 
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• Een datamodel voor de complexe datastructuren die dienen als input 
voor een dataflow, of die warden geproduceerd als output, of die voor­
komen als tussenresultaten. 

• Een formele operationele semantiek voor de operatoren die het systeem 
ter beschikking stelt om elementaire transformaties uit te voeren op de 
complexe datastructuren. 

• Een formele definitie van de informatie die vervat zit in de uitvoering 
van een dataflow. Deze informatie wordt dikwijls de workfiow pro­
venance [CT09, MCF+n] of oak de retrospective provenance [FKSS08] 
van de dataflow-output genoemd. 

• De rol die externe services spelen in een dataflow-uitvoering. Externe 
services warden typisch geleverd door derden, en het dataflow-manage­
ment systeem voorziet een wrapperfunctie. Deze externe services vormen 
de elementaire taken van een scientific workflow. 

• Het gebruik van een data.flow als taak in een andere dataflow. 

• Een conceptueel model voor een repository bestaande uit meerdere data­
flow-specificaties tesamen met hun verschillende uitvoeringen. 

• Het ondervragen van zulke dataflow repository's, in het bijzonder wat 
betreft de nauwkeurige herkomst van onderdelen van data.flow-outputs. 
Dit type vragen staat bekend als where-provenance. 

Een conceptueel datamodel voor dataflow repository's moet een preciese be­
schrijving geven van de gegevensstructuren vervat in de repository, met inbe­
grip van de dataflows zelf, en van de verba.nden tussen deze gegevens. Wij 
vinden ans doel belangrijk omdat het een formeel kader biedt waarbinnen het 
volgende mogelijk wordt: 

• De rigoureuse analyse van de mogelijkheden en de beperkingen van de 
verschillende systemen gebruikt in de pra.ktijk, alsook het vergelijken van 
deze systemen. 

• Het na.ar boven brengen van mogelijke semantische verschillen in gebruik 
van veelgebruikte begrippen zoals "workflow", "provenance", of "collec­
tion". 

We stellen duidelijk dat ans doe! er niet in bestaat een bla.uwdruk voor te 
stellen voor een nieuw dataflow-management systeem, met rneer of betere fea­
tures clan de "concurrentie". Ons werk is wel een gedetailleerde paging om 
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zulk een systeem te modelleren, in de hoop hiermee een synthese bij te dra­
gen van een aantal belangrijke database-aspecten van dataflow-management 
systemen. Het moge duidelijk zijn dat elk van deze aspecten in mindere of 
meerdere mate reeds ondersteund wordt door sommige systemen gebruikt in 
de praktijk. In het ideale geval zou er een standaard database-schema en 
een repository bestaan, voor de uitwisseling van dataflow-specificaties en uit­
voeringen, naar analogie met het myExperiment.org initiatief dat specifiek is 
voor het Taverna systeem. De nood voor zo'n uitwisselingssysteem werd ook 
benadrukt door Lacroix [KCL06, KLL +07J. Ons werk is een nieuwe stap in 
die richting, nadat de eerste stappen reeds in de jaren 1990 gemaakt wer­
den, maar te weinig navolging kregen [CM95, AIL98]. De nood aan workflow 
repository's is ook benadrukt in andere wetenschapsgebieden, waarbij Bloc­
keel en Vanschoren [Blo06, BV07] een pioniersrol spelen met de Experiment 
Databases for Machine Learning. 

Dataflow-management systemen zijn voornamelijk onderzocht binnen de on­
derzoeksgemeenschap in computer systems, en minder in de onderzoeksge­
meenschap van database theory. We hopen deze lacune gedeeltelijk te vullen 
door ons werk. We merken op dat er binnen database theory wel degelijk 
veel aandacht wordt besteed aan de statische analyse van data-intensive work­
flows, maar die onderzoeksrichting staat duidelijk loodrecht op de nadruk op 
modelleren en ondervragen die we leggen in dit werk. 

Voor overzichten van workfiow-management en provenance-management syst e­
men verwij zen we naar Freire et al. [FKSS08], Yogesh et al. [SPG05], Bose and 
Frew [BF05], en Davidson and Freire [DF08]. Where-provenance is een vorm 
van "data provenance" onderzocht in database-onderzoek [BKTOl , CT09, CCT09]. 
In ons werk tonen we aan hoe where-provenance kan gedefinieerd worden in 
de context van workflow provenance. 

Semantiek voor het Open Provenance Model Het tweede doel van ons 
werk is een bijdrage te leveren aan de semantiek van het Open Provenance 
Model (OPM) [MCF+ ll]. OPM is een systeem-onafhankelijk formaat voor 
de uitwisseling van provenance gegevens. OPM beantwoordt hierin aan de­
zelfde nood die ons inspireert in het eerst e deel van ons werk; OPM legt zich 
uitsluitend toe op uitvoeringen van allerhande processen, maar beperkt zich 
daarbij niet noodzakelijk tot business of scientific workflows. OPM fungeert 
als gemeenschappelijke taal in een project van de W3C Provenance Incuba­
tor Group+ waarin men de concepten gebruikt in verschillende voorstellen van 
provenance modellen voor Semantic Web technologieen vertaalt in een ge-

*http://www.w3 .org/2005/Incubator/prov/wiki/Main_Page 
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meenschappelijk model, OPM dus. Zopas is een W3C Provenance Working 
Group§ opgericht, gebaseerd op het werk van de W3C Provenance Incubator 
Group, en deze Working Group zal een standaardtaal voor uitwisseling van 
provenance-gegevens definieren. 

De huidige specificatie van OPM [MCF+ll] is in hoofdzaak syntact isch. Noch­
tans wordt een semantiek gesuggereerd, zowel in woorden als in de vorm van 
een aantal inferentieregels. Wij stellen een formele, temporele semantiek voor 
OPM voor, en geven een volledige set inferent ieregels voor temporele inferentie 
in OPM. Dit werk gebeurde in samenwerking met Luc Moreau [KMVlO]. 

Andere onderzoekers hebben ook reeds voorstellen gedaan voor een semantiek 
voor OPM. 

Cheney [ChelO] onderzoekt structurele causale modellen als semantiek voor 
provenance-grafen, en brengt een aantal OPM concepten in verband met de 
begrippen van actual cause en explanation voorgeste1d door Halpern en Pe­
arl [HP05]. Een gelijkenis tussen onze temporele semantiek en die van Cheney 
is dat beide voorstellen een wiskundige betekenis verbinden aan OPrvr grafen; 
er zijn echter ook belangrijke verschillen. (i) Onze semantiek voldoet aan let­
ter en geest van de OPM reference specification [MCF+u] en behandelt tijd, 
alle soorten edges, algebra1sche operatoren, en refinement. Cheney beschouwt 
derived-from edges als afleidbaar, wat niet de bedoeling is van OPM. (ii) Onze 
semantiek is zuiver temporeel, terwijl Cheney een OPM-graaf beschouwt als 
een functie van inputs naar outputs. Dit zijn twee complementaire visies. 
(iii) De semantiek van Cheney heeft een ander doel, namelijk, van een gege­
ven uitvoering het onderliggend programma (of een benadering daarvan) te 
recu pereren. 

Missier en Goble [MGll] behandelen de vraag of, gegeven een OPM graaf, er 
een plausibele workflow in Taverna kan gedefinieerd worden , die de gegeven 
graaf zou kunnen genereren. Daartoe is in het algemeen extra informatie 
nodig. Wanneer een OPM-graaf kan vertaald warden in een Taverna workflow, 
geeft <lit indirect een semantiek van de OPM-graaf, via de bekende trace­
semantiek voor Taverna [SH09a, SH09b, SHMGlO]. Deze aanpak is interessant 
maar duidelijk niet volledig. 

B .1 Korte inhoud 

In Hoofdstuk 2 definieren we ons datafiow-model voor complexe objecten 
[HKS+Q7, HKs+osJ. Ons model is inderdaad sterk gebaseerd op het bekende 

§http://w'W11.w3.org/2011/prov/wiki/Main_Page 
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complex-object datamodel. Als taal waarin de dataflow-specificaties worden 
geschreven, nemen we de Nested Relationele Calculus (NRC). Deze taal dient 
als een abstractie voor de elementaire operaties op complexe objecten binnen 
een dataflow. Deze operaties kunnen aangeboden worden door het workflow­
systeem als taken, en zij n nuttig voor het converteren tussen dataformaten, of 
voor het formatteren van data voor output- of presentatiedoeleinden. 

Verschillende workflow-management systemen ondersteunen reeds complexe 
objecten, zoals Taverna [TMG+Q7, MBz+osJ, Taverna 2 [SHMGlO], Kepler­
CoMaD [MB106, BML08], en Pegasus-Chimera [FVWZ02, CFV+osJ. Een 
typische operatie is deze die een gegeven functie toepast op alle elementen van 
een verzameling. 

Uiteraard kunnen vele operatoren gebruikt wonleu um <le basistaken binnen 
een dataflow met elkaar te verbinden. In ons werk concentreren we ons op 
operatoren voor de transformatie van complexe objecten, en beperken ons 
daarbij tot de welbekende operatoren van de NRC. Dit motiveert onze keuze 
voor NRC, uitgebreid met taken, als taal voor dataflow-specificatie. 

De geschiktheid van NRC (in de variant CPL) voor gegevensmanipulatie en 
gegevensintegratie in wetenschappelijke toepassingen werd reeds uitvoerig ge­
demonstreerd door het Kleisli systeem [CCW03, DW04J. Wij hebben deze ge­
schiktheid verder bevestigd via een aantal eigen case studies , ook gebaseerd op 
gepubliceerde protocollen uit de bioinformatica [GJZ06, LK0+06, NDK+o6, 
GV04]). 

In Hoofdstuk 3 definieren we een conceptueel model voor datafiow repository's . 

• We geven formele definities van uitvoeringen, runs genaamd, van NRC 
datafiows. 

• We formaliseren de voorstelling van externe diensten in een dataflow 
repository. 

• We formaliseren hoe abstracte taken in een dataflow-specificatie kunnen 
vervangen warden, hetzij door externe diensten, hetzij door het oproepen 
van andere dataflows . 

• We stellen een eenvoudig conceptueel schema voor van een dataflow re­
pository, en formuleren een aantal essentiele integrity constraints. 

• We beschrijven een proof-of-concept voorstelling in SQL:2003. 

In Hoofdstuk 4 bespreken we het ondervragen van dataflow repository's. Over 
het algemeen kunnen query's uiteraard geprogrammeerd warden in SQL/ XML. 
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Daarbij echter identificeren we subvalue provenance als een fundamenteel query­
onderdeel, en we geven een formele uitwerking van dit begrip. Deze query 
berekent de where-provenance van een gegeven deelwaarde van de output van 
een gegeven run. Ook formaliseren we de subruns van een run. Dit laat ons 
toe de where-provenance te bepalen van deelwaarden op elk niveau van de 
dataflow. 

In verscheidene workflow-management systernen wordt een standaard query­
taal gebruikt voor het ondervragen van de repository [MLA +os , FKSS08, 
SGMll]: 

• REDUX [BD08], Swift [GCM+llj en Pegasus [KDG+osJ gebruiken SQL, 

• Taverna [ZGST08] en Pegasus gebruiken SPARQL, en 

• ES3 [FMS08] en PASOA/ PreServ [MGM+os] gebruiken XQuery. 

J ammer genoeg gebruiken al deze systemen een verschillend logisch database­
schema; enkel voor uitwisseling van gegevens kan het gemeenschappelijk OPM­
formaat gebruikt worden. 

We vermelden nag het interessante werk van Beeri et al. [BEKM08] betreffende 
het ondervragen van de mogelijke uitvoeringen van een gegeven workflow­
specificatie. Deze aanpak is eerder gebaseerd op verification en legt minder de 
nadruk op repository's. Er werd wel gekeken naar monitoring [BEMP07]. 

Tenslotte, in Hoofdstuk 5, geven we een formele, temporele semantiek voor 
het Open Provenance Model. Onze hoofdbijdrage bestaat in een set van in­
ferent ieregels die werken op het logisch niveau van OPM-grafen , en die sound 
en complete zijn voor logische gevolgtrekking uit de temporele axioma's ver­
bonden aan een OPM-graaf. 
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