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Chapter 1 

Introduction 

The random walk is one of the paradigms of statistical physics , but it 

is also a very practical concept that has found applications in a wide variety 

of fields. Since the gambler's ruin problem can be formu lated as a random 

walk problem (how many time steps does it take before the gambler exhausts 

his capital), one can argue that the concept of a random walk goes back as 

far as the seventeenth century, when the vivid interest in gambling led to 

the formulation of probability theory [l]. However, we have t o wait until 

the beginning of the twentieth century for the first explicit formulation of a 

random walk problem. In 1905, Pearson [2] inquired on the solution of the 

following problem : 

A man starts from a point O and walks I yards in a straight line, 

he then turns through any angle whatever and walks another I 

yards in a second straight line. He repeats this process n times. 

I require the probability that after these n stretches he is at a 

distance between r and r + dr from his origin 0. 

Although this was the first time a random walk problem was formulated, other 

stochastic models had already been treated, be it in a more disguised form. In 

fact, Pearson's problem had been solved a few years earlier by Lord Rayleigh 

[3], albeit in a very different context, while Bachelier [4], a student of Poincare , 
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presented in 1900 a random walk model for the behaviour of prices of items 

traded in the stock exchange. The real breakthrough of random walk models 

was provided by the pioneering work of Einstein on Brownian motion [5]. Over 

the next decade, this theory was developped and extended by several other au­

thors, among which Kluyver [6], Markov [7), Smoluchowsky [8], Wiener [9] and 

Ornstein and Uhlenbeck [10]. In 1921, P6lya [11] introduced another class of 

important random walk models, namely the lattice random walks : he studied 

the probability of return to the origin of a random walker on periodic lattices. 

Since the first random walk models for polymer chains by Kuhn and Griin 

[12,13] and the work of Montroll and his co-workers on lattice random walks 

in the fifties [14], random walk theory has become very popular and has found 

a vast range of applications in different fields such as solid state physics, chem­

ical kinetics, biology and astronomy. Excellent reviews on random walk theory 

that cover both the state of the art and its applications can be found e.g. in 

the book by Barber and Ninham [15) and in the review articles by Weiss and 

Rubin [16) and Haus and Kehr [17], while an inspiring account of the early 

history of random walks is given by Montroll and Shlesinger in "The wonderful 

world of random walks" [l). 

Random walk theory continues to be , even today, a fi eld of very active 

and exciting research. Our purpose here will be to add a few new technical 

results , in particular for the case of one-dimensional random walks , and to add 

some further applications to the long list of existing ones. 

In chapter 2, we will review the techniques that can be used to calculate the 

Green's function of a random walk. We present a few "tricks", and derive 

some new explicit results for the Green's function of a one-dimensional ran­

dom walk. 

We then proceed with two applications of random walks in the field of polymer 

physics. In the model we consider in chapter 3, a polymer chain is described as 

a random walk with persistence. We give a complete analytic treatment of the 

model, and derive expressions for quantities of interest such as the moments 

of the end-to-end distance of the polymer. These results were published in 

[18). In chapter 4, we investigate the orientational relaxation in the so-called 

reptation model for polymers. This model was introduced by de Gennes and 

Edwards to describe the dynamics of entangled polymers. We derive compact, 

2 



analytic results for the variables that are observed in experiments , notably the 

stationary anisotropy. These results have been published in [19]. 

Random walks have successfully been used to describe one of the basic trans­

port processes in nature : Fickian diffusion. Another basic transport process 

is pure convection. An interesting situation arises when one combines these 

two processes, for example when Brownian particles are suspended in a fluid 

in non-uniform flow. This problem is known in the literature under the name 

of Taylor diffusion [20]. In chapter 5, we consider another variant of the Tay­

lor dispersion problem, namely the dispersion of particles in spatially periodic 

flows. Our main contribution is to show that the quantity of interest for these 

processes, the effective dispersion coefficient, can be expressed in terms of the 

Green's function of the random walk inside the unit cell. 

Finally, we discuss a new, interesting phenomenon of stochastic resonance for 

particles suspended in an oscillating flow in chapter 6. We find that the in­

terplay between the frequencies that characterize a stochastic process, e .g. a 

random walk, and the frequency of the oscillating flow, can lead to a resonance 

phenomenon, remi niscent of that encountered in classical mechanics. The dif­

ference is that here , the resonance is characterized by a strong increase of an 

effective diffusion coefficient rather than that of an amplitude of oscillation. 

These results have been published in [21] . 

Some people have dedicated their entire lifetime to the study of random 

walks. Indeed, there seems to be no end to the surprises that one encou nters 

on the random walk track. \Ve hope that our results , however modest , will 

have contributed a few new surprises. 
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Chapter 2 

The Green's function 

One of the central quantities in random walk problems is the probability 

distribution P( m, mo; t) for the random walker to be in site m , given that he 

started from mo at t = 0. For a Markovian random walk , this distribution is 

the solution of the Master equation 

OtP(m , mo; t) = L [Wmm'P(m', mo; t) - Wm'mP(m , mo; t)] (2.1) 
m' 

with Wm'm the transition probability to go from site m to site m', Wmm = 0 

and with initial condition 

P(m, mo; t = 0) = Ommo. (2.2) 

To simplify the notations, we introduce the transition matrix T : 

OtP(m, mo; t) = LTmm,P(m', mo; t) (2.3) 
m' 

where the nondiagonal elements Tmm' are identical to Wmm' , and the diagonal 

elements Tmm contain the contributions to the jump rate of particles that leave 
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state m : 

(2.4) 

A standard method to solve the Master equation is to take the Laplace trans­

form of both sides. The Laplace transform ~m
0
(s) of P(m,mo;t) 

(2.5) 

is then the solution of 

-bmmo +sG~m0 (s) = LTmm1G~1m
0
(s). (2 .6) 

m' 

Rearranging the terms, G~mo ( s) can be expressed as 

(2.7) 

a;;m0 (s) is the so-called Green's function of the random walk . In principle, 

once the Green's function for a particular random walk is known, the proba­

bility distribution describing the position of the particle can be obtained from 

it by inverting the Laplace transform. Unfortunately, this proves to be very 

difficult, if not impossible in many cases. However, even if Laplace inversion 

turns out to be difficult, the Green's function itself remains a key result, be­

cause it is directly related to other quantities of practical interest, such as 

the moments of the displacement, the span of the random walk and the first 

passage time distribution. 

In section 2.1 we review various calculation techniques and results for 

the Green's function . We start with the representation of the Green's function 

in terms of the eigenvectors of the transition matrix T, and the properties of 

these eigenvalues and eigenvectors. We then proceed with the calculation of 

closed form expressions for t ranslationally invariant one-dimensional random 

walks, and with an example of the derivation of the small s expansion in a 

case where no closed form expression is available. In the last part of section 
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2.1, we give the Green's function for a continuous time random walk with 

nonexponential waiting times. All the results presented here, are given for 

further use in the following chapters. Finally, in section 2.2, we illustrate the 

relation between the Green's function on one hand, and the first passage time 

distribution, the span of the random walk and the probability of return to the 

origin on the other hand. 

2.1 Calculation of the Green's function 

2.1.1 Eigenfunction expansion 

Consider the Markovian random walk on a discrete set of states intro­

duced above. We saw that the Green's function G~m
0

(s) is given by Eq. (2.7). 

A standard method to calculate G~m/ s) is to invert ( sl - T) by using the 

expansion in eigenvectors of the matrix T : 

provided a complete set of eigenvalues Aa and right eigenvectors Xa exists. 

The disadvantage of this procedure is that the Green's function is expressed 

in terms of a series, rather than in a compact form . Howeve r, sometimes 

the series can be resummed , as we will see in the example given below, or a 

compact result can be derived using a more ingenious method described in the 

next subsection. For the remainder of this subsection, we will concentrate on 

the properties of the transition matrix T and its eigenvalues and eigenvectors. 

The conservation of probability implies that 

LTmm' = 0. 
m 

(2.9) 

Therefore, the vector Yo = (1, · · ·, 1) is a left eigenvector with eigenvalue 

Ao = 0. The corresponding normalized right eigenvector is, by definition, the 
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stationary distribution P"t 

X _ pst 
mO- m· (2.10) 

We will assume that the system under consideration is not decomposable. 

Therefore, the matrix Tis irreducible and the stationary solution P"t is unique. 

We will also make the rather strong assumption that the detailed balance 

condition holds ( this will anyway be the case for most situations considered 

in this work), i.e. that the transitions between each pair of stationary states 

m and m' are balanced or that there exists no net flux in the system 

(2.11) 

Under these conditions, one easily verifies that the matrix V with elements 

1 
Vmm' = ,/l5J[ Tmm' pst 

m 

r;;;; y,~, (2 .12) 

is symmetric. Consequently, it has a complete set of eigenvalues ).0 and eigen-
"' 

vectors Xa, and, moreover, the left and right eigenvectors are the same. We 

conclude that 

L Xmo Vmm'Xm'.B = A0 b0 _e (2.13) 
m,m' 

or 

(2.14) 

Thus the right and left eigenvectors X 0 and Y O of the matrix T are given by 

Xmo = [iii Xm o 

-Xmo 
Yam=~ ­p.,t 

m 

8 
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They have the following properties, as can easily be checked 

(2.17) 

(2.18) 

(2.19) 

Because the matrix V is symmetric, we know that the eigenvalues Aa 

are real. A further specification of the region to which the eigenvalues are 

restricted is provided by the Gersgorin theorem (22]. This theorem states that 

the eigenvalues of a general n x n complex matrix C are located in the union of 

N disks, each with origin Cmm and radius Pm = Lm'#m ICmm' I- This implies 

for our case, due to the special form of the transition matrix T (cf. Eq. (2.9)) , 

that the eigenvalues Aa are negative and bounded as follows : 

(2.20) 

As an example, we will use this method to solve the unbiased random 

walk on a line of N sites with periodic boundary conditions. The eigenvalues 

and eigenvectors are the solution of the following set of equations : 

(2.21) 

The N eigenvalues Aa can be found by Fourier expansion 

( 2a71") A0 = -2k 1 - COS N a € [O, N - 1) . (2.22) 
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Since in this case, the matrix T is symmetric, its left and right eigenvectors 
are the same : 

O' = 0 
1 

Xmo = vN 

{2 2mo-1r 
Xma = VN cos~. 

The Green's function for this random walk is thus given by 

Ge -- - ~ 1 2 N-t [ cos 2ma1r cos 2mj;°'1r l 
mmo - N s + N E S + 2k{l - COS~) 

Introducing the variable {f = {f { s) as 

cosh {f = 1 + 
2
8
k 

(2.23) 

(2.24) 

{2.25) 

(2.26) 

in the denominator of Eq. (2.25), we can rewrite the Green 's function as: 

N-1 [ [2(m - mo)0<1r] _ [2(m+mo)0<1r] l c 1 1 cos N cos N 
Gmmo = - + -- L C · 

Ns 2kN a=l cosh{0 - cosN 
(2.27) 

For this particular situation, the expression Eq. {2.27) can be resummed using 

the following summation formula [23,24] : 

[N-l) 
-2- COS 21r0<m 

L cosh {c =-::-s 21ra 
a=l O 7ir 

(2.28) 

_ cosh({f ( !{- - m + N [NJ)) 1 ( -1 r ( 1 + ( -1 )N) 
sinh {f sinh ( N~f) 4 sinh2 

( +) 8 cosh2 
( +) 
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where [a/b) is the largest integer in (a/b). After some algebra, we finally obtain 

the following closed form result for the Green's function G~mo ( s) 

with 

m> = max( m, mo) 

m< = min(m, mo). 

(2.29) 

(2.30) 

In the next section, we will review the cases for which a compact form of the 

Green's function can be obtained. 

2.1.2 Closed form expressions 

The exp ression of the Green's function in terms of the eigenvector ex­

pansion is no doubt useful, but it would be preferable to obtain a closed form 

expression without first having to calculate the eigenvalues and eigenvectors 

of the transition matrix. We will present here two methods to obtain such re­

sults for one-dimensional nearest neighbour random walks which posses trans­

lational symmetry. The first method, which could be called "guided guess­

work", was given by Mazo [25). The idea is to work back from the known 

compact result for the Green's function of the diffusion process, which is the 

continuum version of the random walk problem under consideration (in ap­

pendix 7.A a brief comment is given on the relation between discrete random 

walks and diffusive motion). We will illustrate the calculation for a unbiased 

random walk on an infinite one-dimensional lattice. The Green's function for 

the diffusive process obeys the following equation 

(s - Do;)Gc (x, x0 ; s) = 8(x - xo), (2.3 1) 
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with Gc(x,x0 ;s) the Laplace transform of the probability P(x,zo;t) for the 

particle to arrive at z at time t, given that it started from zo at t = O. The 

solution can easily be calculated (or found in the literature, see e.g. [26)) : 

· e-/ilx-xol 
ac (x, zo; s) = .;;n 

2 sD 
(2.32) 

The problem that arises now is that there is no unique way of going back from 

Ge ( x, xo; s) to the discrete version G~mo ( s). Indeed, in the continuum limit 

where the lattice spacing a goes to zero, not only expressions such as am ( with 

m the label of the site on the infinite lattice) give z, but also a(m+constant) 

reduce toxin this limit (for any fixed value of the constant). Hence the Green's 

function for the random walk problem will have the same basic dependence 

on Im - mol, but the proportionality constants in Eq. (2.32) may differ. We 

will therefore try the following expression for G~mo ( s) : 

(2.33) 

The factors A(s) and ~f? are determined from the equation for G~m
0

(s) 

First consider m > mo (the case m < mo follows by symmetry) : 

This condition implies that we have to choose {f? according to 

cosh{f = 1 + 
2
5
k. 

If, on the other hand, m = mo, Eq. (2.34) reduces to 

- 2kA(s)e-~cf + (s + 2k)A(s) = 1. 

12 
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Therefore 

1 
A(s) = 2ksinhef. (2.38) 

This fully specifies the Green's function : 

(2.39) 

We now turn to a second, more ingenious, systematic method to obtain 

closed form expressions for the Green's function. Consider the s lightly more 

complicated case of a biased nearest neighbour random walk on an infin ite 

one-dimensional lattice with transition rates k± = k( 1 ~ g ). The Green 's 

function for this situation is the solution of 

-k(l+ g)G~-1,mo ( s)+( s+ 2k)G~mo ( s)-k(l-g)G~+l,mo (s) = Ommo . (2.40) 

Defining the complex variable {c as 

C 1 + 2I cosh{ = ---
If-=-? 

(2.41) 

with Reec > 0, Eq. (2.40) can be rewritten as 

-(1 + g) G~-l,mo(s) + (eec + e-ec)p G~m
0
(s) 

(1 - g) G~+l.mo(s) = Omto (2.42) 

or 

- - ec r; ( C ec r; c ( ) Ommo - e V / Gmm0 (s) - e V /Gm-1,mo s) - k(l - (2.43) 
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where we introduced f as 

!= l+g. 
1 - g 

(2.44) 

We will first consider the case m > mo. By iteration of Eq. (2 .43) one finds 

(taking into account that G~m
0
(s) __. 0 for m __. ±oo, and that the factor 

e-(m-mo){c does not diverge) 

(2.45) 

After a second iteration , G~m
0
(s) can be expressed as 

e ( ) c m-mo e 
G (s) e m-mo { f 2 G (s) mmo = momo 

( )
eC m-mo-1 1 e- m-mo-1, f 2 - m-mo-L e2i{c 

i=O k(l - g) 
(2.46) 

Carrying out the sum in the last t erm on the r.h .s ., Eq. (2.46) reduces to 

m-m0-1 . e 
Ge ( ) = lm-mol{c /m-;mo Ge ( ) - / 2 smh Im - mo!{ (2.47) 

mmo s e momo s k(l-g) sinh{e 

where we included the result for m < mo. Since G~m
0
(s) __. 0 form__. ±oo 

we can derive from Eq. (2.47) the expression for G~
0

m
0
(s), so that we finally 

obtain the following compact result for the Green's function : 

m-mo-1 I I C f 2 e- m-mo { 

G~mo(s)= 2k(l-g)sinh{e · (2.48) 

Unt il now, we have limited ourselves to unrestricted random walks. One­

dimensional random walks in th e presence of reflecting or absorbing boundaries 

can be delt with either by using the methods given above, or by the method 

of images , also called reflection principle [27 ,28,29]. This technique uses the 

fact that the probability distribution for the random walk in the presence of 
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boundaries can be expressed in terms of the probability ditribution for the 

random walk on the infinite lattice. For example, for an unbiased random 

walk with one reflecting boundary in the origin, we have the following relation 

between Po(m, mo; t) (reflecting barrier in 0) and P(m , mo; t) (infinite lattice) 

Po(m , mo; t) = P(m, mo; t) + P(m, -mo+ l;t). (2.49) 

The same relation is valid for the Laplace transform, and thus one finds by 

combining Eqs. (2.48) (with the bias g equal to zero) and (2.49) : 

C e-m>ef(eef - l)cosh(m< - l){{r' 
Gmmo(s) = ec 2 

s cash T 
(2.50) 

with 

m> = max(m, mo) 

m< = min( m, mo) 

In the table on pages 17-20 we have listed the results for the Green's fun ctions 

for discrete time step random walks, random walks with a continuous time 

variable as well as for diffusive processes with various sets of boundary con­

ditions (some of them can be found in the literature, cf. [24,25,30,31]). The 

following notations are used 

• for a biased random walk 

with discrete time variable 

I= 1 + g 
l-g 

1 
{3 = 2 ln / 

1 + 1-z 
cosh {D = 2zor 

~ 

15 

(2 .51) 

(2 .52) 

(2.53) 



with continuous time variable : 

C 1+~2" cosh e = -="""',I;=" 

Jr=? 
1 1 ---­- = -V4sD+v2 

..\ 2D 

• for an unbiased random walk (g = 0) 

D 1-z 
cosh{0 = 1 + --

2zo: 

cosh{f = 1 + ;k 

(2.54) 

(2.55) 

(2.56) 

(2.57) 

We finally would like to mention that the cases for which a closed form 

expression for the Green's function can be obtained are not limited to the 

nearest neighbour transitions we considered in this section. In refs. [32,33) e.g. , 

results for the Green's function for a one-dimensional symmetric random walk 

with exponentially distributed step lengths and various boundary conditions 

have been calculated using the eigenfunction expansion. 
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-J 

G~mo(z) -

G~mo(s) -

G(x, x0 ; s) = 

G~m0 (z) 

G~mo(s) -

G(x, xo; s) = 

Infinite lattice 

biased 

f (m mo l)/2e-{D(m> m<) 

2za(l - g)sinh{D 

J<m mo l)/2e-{c(m> m<) 

2k(l - g)sinh{C 

A e(r- ro)m e-~ 

2D 

Reflecting boundaries in O and N + I 
biased 

j(m mo 1)/2 
(1- z)sinh{D sinh(N{D) [sinh[(N - m> + l){D] - Jf sinh[(N - m>)~D J] 

x [Jlsinh(m<{D)-sinh[(m< - l){Dl] 

j(m m0 1)/2 
ssinh~c sinh(N{C) [sinh[(N - m> + l){c] - J]sinh[(N - m>){CJ] 

x [v'lsinh(m<~c) - sinh[(m< - l){CJ] 

A e(r-ro)m [ v2 + 2sD ( L 
. L 2 D cosh - x> - x<) + cosh ( L - x> + x<) 

2Dsmh - s A A 
A 

V . ( L - x> - x ) ] 
- As smh A < 

unbiased 

e- €f(m> -m<) 

2zasinh{/? 

e- {f (m> -m<) 

2ksinh{f 

e--lfi(r>-r<) 

2Vill 

unbiased 

cosh[~{?(N + i - m>)] cosh[~f(m< ~ )] 
zosinh{§> sinh(N{§>) 

cosh[{f(N + t - m>)] cosh[~f(m< ~ )] 
k sinh {f sinh( N {f) 

cosh[/i(L- x>)]cosh(/ix<) 

VsDsinh(L/i) 



..... 
00 

G!i!mo(z) = 

G~mo(s) = 

G(x,xo;s) = 

G~mo(z) = 

G~mo(s) = 

G(x,xo;s) = 

Half infinite line with reflecting boundary in 0 

biased unbiased 

-m> (D ( (.D v'7 e-m>(D(efD - l)cosh[{f(m< - ·rn 
f(m-mo-l)/2e e. - ) [v'J sinh(m<{D)sinh[(m< - l){DJ] 

(1- z) smh{D ( 1 - z) cosh ff, 

f(m-mo-l)/2e-m>{c (ef.c. - v']) [ v'f sinh(m<{c ) - sinh[(m< - l){CJ] e-m>ef (eef - 1) cosh[(m< - !){fl 
ssmh{c 

s cosh 5t 
(:r :r)• ~(l .Xv)( v . hx< 1 hx<) e-"'>~ 

cosh(x</i) e - 0 m e- - - - - sm - + - cos -
vsi5 s 2Ds 2D .X .X .X 

Absorbing boundaries in O and N + I 
biased unbiased 

f(m-mo-l)/2 sinh(m<(D)sinh[(N + 1 - m>){DJ sinh(m<{f)sinh[(N + 1 - m>){f] 
zo(l - g)sinh(D sinh[(N + l){D] zosinh{f sinh[(N + l){f )] 

f(m-mo-l)/ 2 sinh(m<{c)sinh[(N + 1- m>){C] sinh(m<(cf)sinh[(N + 1 - m>){fj 
k(l - g)sinh(c sinh[(N + l)(CJ ksinh{f sinh[(N + l){fj 

A e<r- :rohi, sinh \< sinh ( L ~ x> ) sinh(x< /i)sinh[(L - x>)/i] 

Dsinh{ ./sl5 sinh( L Ii) 



..... 
co 

G~mo(z) = 

G~mo(s) = 

G(x,xo;s) = 

G~mo(z) = 

G~mo(s) = 

G(x, xo; s) = 

Half infinite line with absorbing boundary in 0 

biased unbiased 

J<m-mo-1)/2e-m>f.D sinh(m<{D) e-m>f.f? sinh(m<{f) 
za(l - g)sinh{D zasinh{f 

JCm-mo-l )/2e-m>f.c sinh(m<{c) e-m>f.f sinh(m<{f) 
k(l - g)sinh{c ksinh{f 

( ) !f- . x< e-">v-h sinh(x< /i> ,\ e :r. - 1:0 Tb e - smh -
,\ 

D ../sD 

Reflecting boundary in O and absorbing boundary in N + 1 

biased unbiased 

J<m-mo-l)/2 sinh((N + 1 - m> ){D][v']sinh(m<{D) - sinh((m< - l){D]J sinh((N + 1- m>){f]cosh((m< -t){f] 
za(l - g)sinh{D[../lsinh((N + l){D]- sinh(N{D)] zosinh{f cosh((N + !){f] 

J<m-mo-l)/ 2 sinh ((N + 1 - m>){c ](../7 sinh(m<{C] - sinh((m< - l){c]J sinh((N + 1 - m> ){f] cosh((m< - i){f] 
k(l - g)sinh{C[v'7 sinh[(N + l)(C] - sinh(N(C)] ksinh{f cosh[(N + t)<fl 

v>.. x< x< ] sinh((L - x>)/i] cosh(x< /i> ,\ e<r-xo)~ . ( L _ x>) [2D smh T + cosh T 
D smh ..\ L L 

vsD cosh(L/i) [# sinh I+ cosh I] 



"" 0 

G~mo(z) = 

G~mo(s) = 

G(x,xo;s)= 

Periodic boundaries 

biased 

/Cm-mo-l)/2 [sinh[{D(N - m> + m<)]- sinh(N.B)sinh[{D(m- mo)] 
2zo(l - g)sinh(D[cosh(N{D) - cosh(N,8)] 

+ cosh(N,8) sinh[{D(m> - m< )J_l 

/Cm-mo-l)/2 [sinh[{c(N - m> + m<)]- sinh(N,B)sinh [{c (m - mo)] 
2k(l - g)sinh{C[cosh(N{C) - cosh(N,B)] 

+cosh(N,B)sinh[{C(m> - m<)J.J 

A e(r-zo)-m [ . L - x> + x< 
L L smh( A ) 

2D [cosh( 
2
;) - cosh I] 

. h ( xo - x) . h ( Lv) . ( x> - x<) ( Lv) J + sm -A- sm 2D + smh A cosh 
2

D 

unbiased 

cosh[{{?(m> - m< -1 )] 
2zo sinh {{? sinh( 1{f) 

cosh[{f(m> - m< -1)] 
2k sinh {f sinh( 1{{?) 

cosh[/i(x> - x< - t)J 

2vsDsinh(/it) 



2.1.3 Small s expansion 

Even though one may not be able to calculate the complete Green's 

function, it is in some cases possible to obtain an analytic exp ression for its 

small s expansion, without knowing the explicit form of the eigenvectors. We 

will illustrate this method for a one-dimensional, nearest neighbour random 

walk with general transition probabilities kt on a strip of N sites with reflect­

ing boundary conditions. The Green's function is expanded around s = 0 by 

first separating out the singular contribution corresponding to the e igenvalue 

zero : 

pst 1 
~ + L Xmo ,\ Yomo 

s o;tO s - o 

P st l oo 
~ __ ~ nG•n 

~ S mmo• 
S S n =l 

(2.58) 

with the terms G*n defined as 

(2 .59) 

We will limit ourselves here to the calculation of the first two terms, pst and 

G*1 , which we will use later in chapter 5. 

For this particular situation, the stationary distribution pst obeys the 

detailed balance condition. We have (V m f (1 , N - 1]) : 

k+ pst k- pst 
m m = m+l m +l· (2.60) 

From this set of N - 1 equations, combined with the normalization condition 

N 

L p~ = 1, (2.6 1) 
m=l 
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we find the following solution for P!t : 

3t 1 k+ + k k pm = N 1 · · · km-1 ;+l · · · N· (2.62) 

The normalization factor N is given by 

(2.63) 

We will now proceed with the derivation of G*1 . The right eigenvectors 

Xe, , a f:. 0, are the solution of the following set of equations : 

Using the relationship between left and right eigenvectors (Eq. (2 .17)) and 

rear ranging the terms , this can be written as 

(2.67) 

(2 .68) 

(2.69) 

By iteration, this set of equations can be replaced by 

(2.70) 

where we also used the detailed balance condition (Eq. (2.60)). Multiplying 
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with Xma/ ).0 and summing over a yield the recursion relation for G*1 

mo-1 (6 pst)pst a•l = a•t + ""' mk - m k 
mmo m,mo-1 ~ k+ p st 

k=l mo-1 mo-1 

(2.71) 

or 

mo-1 r (6 pst)pst 
a•l = a•l + ""' ""' mk - m k 

mmo ml ~ ~ k+pst 
r=l k=l r r 

(2.72) 

The last step in our calculation will be the determination of G~1 . Since 

N N 
""'G*l pst _ ""' Xmo Y o1X10 _ O 
~ ml I - ~ ). - , 
l=l l=l Cl 

(2.73) 

we find for G~1 

N 1-1 r (6 pst)pst 
a•I = _ ""' pst ""' ""' mk - m k 

ml ~ I ~ ~ k+ pst 
1=2 r=l k=l r r 

(2.74) 

So that the result for G~mo finally red uces to the following compact form 

G•l 
mm0 

N 1-1 r (, pst)(' pst) 
""' ""' ""' pst 0

mk - k 0 mol - I 
~~~ m k+pst 
1=2r=lk=l r r 

N-1 r r (' pst)(' p st ) 
_ ""' ""' ""' pst 0 mk - k 0

mo I - I . 
~ ~~ m k+pst 
r=l /:;; l k=l r r 

(2.75) 

The last equality is obtained by reversing the summation order of rand /. The 

expressions for the higher order terms a•n in the expansion of the Green's 

function can be obtained by an analogous, but increasingly tedious, computa­

tion. 
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2.1.4 Continuous time random walks 

In the previous sections we have considered random walks where the 

time intervals between two jumps are uncorrelated, i.e. the walker jumps 

to another state at completely random points in time ( cf. Eq. (2.3)). A 

natural generalization is to consider walks where the time interval between 

successive jumps is drawn from a distribution t/;(t), also called the waiting 

time distribution (34)-[36). This type of processes are usually referred to as 

continuous time random walks. For these problems, it is important to correctly 

specify the initial condition, because the moment that we start monitoring the 

motion of the particle does not necessarily coincide with a point in time where 

a transition took place. Therefore, the time interval prior to the first transition 

of the particle is not given by the waiting time distribution t/;(t), but rather by 

a first waiting time distribution t/Jo( t). If we assume stationarity in the sense 

that the starting time is picked at random, the following relation between 

t/Jo(t) and 1/J(t) can be derived (see e.g. [27) or [37)) : 

100 

t/J(t')dt' 100 

t/J(t')dt' 
1/Jo( t) = ~ = .:..;t,...._ __ _ 

la t'ip(t')dt' < T > 
(2.76) 

or after Laplace transformation 

"' .tc ) - i - t/JC s > 
'f'O S - , 

s<r> 
(2.77) 

The on ly situation in which t/Jo(t) and 1/;(t) are identical is when the waiting 
time is exponentially distributed : 

(2.78) 

T his is also the only case in which the walk is Markovian and can be described 

by a Master equation [38). To study the non-Markovian effects, we consider 

the simplest case of a symmetric two-state random walk (symmetric in the 

sense that the waiting time density 1/;(t) is identical for the two states) . If the 
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walker is to arrive at state two at time t, starting from state one at t = 0, it 

has to switch an odd number of times between the two states. P(2ll; t) can 

. thus be expressed as 

P(2ll;t) = P(ll2;t) = I: lat t/Jo(ri)dr1 lat-ri tf;(r2)dr2 

n=l 
odd 

where the last factor states that step n + 1 is taken after time t. Similarly, a 

walker can only return to its initial state after an even number of steps : 

P(lll;t) = P(2!2; t) = f: lat t/Jo(ri)dr1 lat-ri tf;(r2)dr2 
n=l 
even 

By Laplace transformation and carrying out the sums over n, we find for the 

Green's function Gc(s) 

"' 
Gfi (s) Gfi( s) = ! - t/Jo(~) 

5 s(l + ip( s)) 
(2.81) 

"' 
Gf;(s) Ge ( ) _ t/Jo( s) 

21 S - "' 
s(l + tf;(s)) 

(2.82) 

We will use these results in chapter 6 to derive the effective diffusion coefficient 

for a two-state model for particles suspended in a flow with an oscillating 

velocity field . 

The procedure described above (but involving considerably more effort) 

can also be used to calculate the Green's function for a one-dimensional nearest 

neighbour random walk on an infinite lattice. For the symmetric case, the 
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Green's function is given by [39] : 

with 

Ge ( ) _ ! (1 _ t/J~(s)) ~ + ! t/J~(s) t h { -Im-mole 
mmo s - s '.Ji(s) Ummo s '.Ji(s) an 2e 

1 
cash { = ;;;;-- . 

t/;( s) 

(2.83) 

(2.84) 

In the case of an exponential waiting time distribution, this reduces to the 

result for the infinite lattice we obtained earlier ( cf. Eq. (2.39) ). 

The more complicated problem of a random walk on a semi-infinite or 

finite chain with reflecting or absorbing boundaries can be related to the ran­

dom walk on the infinite lattice using the method of images already mentioned 

in section 2.1.2. Consider for instance a walker on a semi-infinite lattice with 

an absorbing boundary in site m. In order for the walker to survive at time t, it 

can never have reached the the barrier in m prior tot. Therefore Pm(m' , mo; t) 

(with an absorbing barrier) is equal to P(m', m 0;t), provided we substract all 

the paths that have crossed the barrier m. This is equivalent (for a symmet­

ric random walk) to the su bstraction of all the walks that have reached the 

"reflection" 2m - m' of m' on the infinite lattice. We thus have 

Pm(m', O; t) = P(m', mo; t) - P(2m - m', mo; t). (2.85) 

Substituting the result Eq.(2.83) for the infinite lattice into the Laplace trans­

form of Eq. (2.85) thus yields the desired result for the Green's function of a 

random walk in the presence of an absorbing boundary. Similar calculations 

can be performed to obtain the Green 's function for symmetric as well as 

biased continuous time random walks with different kinds of boundaries [29]. 
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2.2 First passage times and related quantities 

One of the important quantitities that can be derived from the Green's 

function is the probability Q(m, mo; t) that the walker arrives at site m for 

the first time (starting from mo) at time t, also called the first passage t ime 

distribution. For a Markovian random walk, it can be related to the probability 

distribution P(m, mo; t) as follows. Consider a random walk on an infinite 

d-dimensional lattice. In order for the random walk to reach site m, it has to 

pass through there for the first time at an earlier time t' and then return to 

m in the remaining time interval t - t' : 

P(m,mo;t) = lat Q(m,mo;t')P(m,m;t-t')dt' (2.86) 

or after Laplace transformation : 

(2.87) 

For a one-dimensional nearest neighbour random walk, the fo llowing stronger 

result due to Siegert [40) holds true : 

"' . _ G~ 1m(s) 
Q( m, mo, s) - cc ( ) 

m1mo 8 
for (2 .88) 

Hence, using the closed form expressions for the Green's function of one­

dimensional nearest neighbour random walks given in section 2.1.2, we can 

derive the result for the generating function of the first passage time distri­

bution. For instance, for a biased random walk with a reflecting boundary in 

the origin we have (30) 

Q"'( . ) _ /(m-mo)/2 [ v7 sinh( mo + l)~c - sinh mo~c l 
m, mo, s - n c c · 

v f sinh(m + l )~ - sinh m~ 
(2.89) 
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The moments of the first passage time < tr > are determined by the .... 
small s behaviour of Q(m, mo; s) : 

or "' 
<tr>= (-1r ~Q(m, mo; s) 1.,-o. 

vs -
(2.90) 

From Eq. (2.89) we thus find for the mean first passage time < t > 

I f + I [ ( /m _ /mo ) ] < t > = - -- ( m - mo) -
2k f - I f - I 

for O :S: mo < m. (2.91) 

The Siegert eguation (2.88) is not valid for non-Markov processes such 

as the continuous time random walk with waiting times between consecutive 

jumps we considered earlier. For these cases, another approach has to be used 

to derive the first passage time distribution. This can be done as follows . For 

a walker on a one-dimensional infinite chain, the problem of the first passage 

to a point m , starting from mo (mo < m) is equivalent to the problem of a 

random walk with an absorbing barrier in m [41]. If the particle is in state 

m', somewhere in the interval ] - oo, m[, at time t, then at the slightly later 

time t + dt two things can happen : the particle can survive, and therefore 

never have reached the absorbing barrier, or it can make a first passage to the 

barrier. We thus have 

m-1 m - 1 

L Pm(m' ,mo ;t) = L Fm(m', mo; t + dt) + Q(m, mo; t)dt, (2 .92) 
m'=-oo m'=-oo 

with Pm( m' , mo; t) the probability distribution in the presence of an a bsorbing 

boundary in m. We can rewrite Eq. (2.92) as 

d m-1 

Q(m, mo;t) = -- '°' Fm(m', mo; t). dt ~ 
m'=-oo 

(2.93) 

The distribution Pm( m', mo; t) can be obtained from P( m' , mo; t) for an infi­

nite lattice using the method of images, described earlier 

Pm(m' , mo;t) = P(m' , mo;t) - P(2m - m' , mo;t). (2.94) 
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In Laplace transform language, the generating function for the first passage 

time distribution can thus be expressed in terms of the Green's function for 

the random walk on an infinite lattice : 

m-1 
Q(m, mo; s) = 1 + s L [Gfm-m•,m0 (s) - G~,,m0 (s)], 

m'=-<X> 

(2.95) 

Substituting the result of Eq. (2.83), we find for the first passage time dis­

tribution for a symmetric continuous time random walk on an infinite line 

[39) 

with 

"' 
Q"'( . ) _ 1Po(s) -Jm-moJe n1 , nio, s - -,...,--e 

ip( s) 

1 
cosh ~ = ;::;--- . 

1/;( s) 

(2.96) 

(2.97) 

Another important quantity in the study of random walk problems is 

the probability of return to the origin. Consider a discrete t ime step random 

walk on ad-dimensional infinite lattice. The equivalent of Eq. (2.86) for this 

system reads ( we choose the origin as the starting point of the random walks) : 

n 

P(m, O; n) = L Q(m, O; j)P(m, m; n - j) for n > 0 . (2 .98) 
j=l 

"' Introducing Q(m, O; z) , the generating function for the first passage time dis-

tribution : 

00 

Q(m, O; z) = L znQ(m, O; n), (2.99) 
n=O 

Eq. (2.98) can be rewritten as 

"' 1 ["' l Q(m , O; z) = ,.., G(m, O; z) - 6mo . 
G(O, O; z) 

(2.100) 
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Since Q(m, O; z = 1) is the probability that the random walker ever reaches the 

point m, i.e. in any number of steps, we can derive from this the probability 

that the walker returns to the origin : 

- 1 Q( 0, 0; z = 1) = 1 - ,.. . 
G(O, O; z = 1) 

(2.101) 

For nearest neighbour random walks on infinite one- and two-dimensional cubic 

lattices, G(O, O; z) diverges as z goes to one [42] and thus the particle is certain 

to return to the origin [llJ, while in three ( or more) dimensions there exists a 

finite escape probability. The average number of steps required to return to 

the origin 

~ 8Q(O,O;z)I 
< T >= ~ nQ(O, O; n) = {)z z=l, (2.102) 

is not only infinite in three (or more) dimensions as expected, but also in 

one and two dimensions [27]. On a finite d-dimensional lattice with periodic 

boundaries however , the number of steps required to ret urn to the origin is 

equal to the number of latt ice points [42] : 

(2.103) 

We close this section with a last example of a quantity that can be 

expressed in terms of the Green's function , namely the average number of 

distinct lattice points visited after n steps , also called the span of the random 

walk, which we will denote by Sn. To calculate Sn , we note that 

Sn= L Fn(m), (2.104) 
m 

where Fn(m) is the probability that , after n steps, the walker has visited site 

m at least once : 

n 

Fn(m) = L Q(m, O;j). (2 .105) 
j=l 
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Combining these last two equations, the generating function S(z) of the num­

ber of distinct sites visited can thus be expressed in terms of the Green's 

function as (42] 

- 1 1 
S(z) = 2 - . 

(1 - z) G(O, O; z) 
(2.106) 

2.3 Conclusion 

In this chapter we have rev iewed results for the Green's function of a 

random walk. In some cases, such as one-dimensional translationally invariant 

nearest neighbour random walks, closed form expressions can be derived, while 

in other , more complicated situations (cf. section 2.1.3), one can only compute 

the small s expansion. We also discussed how some quantities can be directly 

related to the Green's function, with as most important example the first 

passage time distribution. In the following chapters, we will present other 

physical problems in which such a direct relation can be established. 
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Chapter 3 

Random walk with 

persistence 

In the context of random walk models for polymer chains, one is inter­

ested in properties such as the moments < Ru > of the end-to-end distance 

R (for e ~ 2) and the probability density P(R, n) [43 ,44]. In this chapter , 

such analytic results will be derived for a random walk with persistence. 

In the free flight model a polymer is represented as a chain of n segments 

rk (k = 1, . .. , n) , each with a constant length I rk I= b, but with a random 

orientation. The end-to-end distance 

n 

R(n) = I: rk, (3.1) 
k=l 

being the sum of uncorrelated random variables rk, is a Markov process. We 

now consider a model with persistence in which the k th segment rk (k = 
2, .. . , n) has the same direction as the segment rk-l with probability p, and 

has a random orientation otherwise (probability I - p). In this case, rk itself 

is a Markov process and therefore R(n) alone is no longer Markovian. This 

complication can be dealt with by considering the pair of variables (R(n), rn) 

which again defines a Markov process. 
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In the free flight model, subsequent segments are uncorrelated, and the 

correlation length is therefore equal to b. In the model with persistence, the 

correlation length is defined as 

b 
a= -- = ncb 

1-p 
(3.2) 

The free flight model corresponds to the particular case p = 0. For a polymer 

length much larger than a, we expect the end-to-end distance to be close to 

Gaussian. We will study this approach to the Gaussian regime on the basis of 

exact results for< R2 (n) >, < R4 (n) >and< R6 (n) >. 

In section 3.1, we present the analytic result for the fourier transform of 

the Green's function G(R, z) for a random walk with persistence 

F(k, z) = j dR eik.RG(R, z), (3.3) 

with 

00 

G(R, z) = L zn P(R, n), (3.4) 
n=O 

the Laplace transform of the probability distribution for the end-to-end dis­

tance. From this result, we will derive in section 3.2 the expressions for the 

moments of the end-t(}-end distance < R2(n) >, < R4 (n) > and < R6(n) > 

and study their convergence to the Gaussian limit. In section 3.3, we discuss 

the continuum limit of the random walk with persistence. 

3.1 Random walk with persistence 

Both for the sake of generali ty and for conceptual simplicity, we will 

consider, instead of a continuum of possible orientation O(B, ¢) of the segments 

rk, a finite number of orientations O;, j = 1, ... , N, in a general space. For 

example, Oj may correspond to a number of allowed polar angles in a two­

dimensional space, or it may refer to the orientation of a vector in a many-
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dimensional space. A continuum of orientations, such as appropriate for the 

polymer problem in three dimensions, will be obtained by taking a suitable 

limit . 

At each step, an orientation is chosen. With a probability p, it is equal 

to the previous orientation, while it is any of the N - 1 remaining orientations 

with probability (1 - p)/(N - 1). Associated to each orientation we have a 

segment vector bi. The quantity of interest is the probability density for the 

end-to-end distance Ras a function of the number of segments n. As discussed 

in the introduction, R(n) is not a Markov process, but a Markov process is 

obtained by including in the description the orientation j of the last segment . 

The probability density P(R, j , n) to arrive at an end-to-end vector Rafter n 

segments, with j being the orientation of the last segment, obeys the following 

Master Equation : 

P(R,j, n) = pP(R- bj , j, n - 1) + L 1 
- pl P(R- bj ,j', n - 1). (3.5) 

i'f.i N -

We will suppose that for the first segment all orientations are equally likely 

P(R,j, 0) = N - 18(R). (3.6) 

The exact solution of Eq. (3 .5) can easily be obtained by Fourier-"Laplace" 

mvers1on. For the transform of the end-to-end probability density P(R, n) : 

F(k, z) = f: Zn J dR eik.R P(R, n) 
n=O 

(3.7) 

with 

N 

P(R, n) = L P(R, j, n), (3.8) 
i= l 
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we find from Eq. (3.5) : 

with 

1 1-p '°' 
(Iv - Iv - l)L..,(k,z) 

F(k, z) = ---'----..,....
1
-..;;._--­
- p'"' 1 - Iv_ 1 L..,(k, z) 

(3.9) 

(3.10) 

Even though the inverse transformation leading to P(R, n) cannot be per­

formed , this result allows one to investigate various limits and particular cases. 

Let us now apply Eq. (3.9) to the problem of a polymer chain in three 

dimensions. In order to obtain a continuum of possible orientations n for the 

segments, we have to take the limit where Iv goes to infinity. This leads to 

the following correspondences : 

Iv ,_____. lv-oo 

J ,_____. 11=(0,¢) 

bj ,_____. b(O) = (bsinBcos¢,bsinBsin¢,cosB) 

I N 

-E Iv . 1 
J= 

211" 11" 

,_____. 
4
~ j d¢ j dB sin B. 

0 0 

Applying this limit procedure, we obtain from Eqs. (3 .9) and (3.10) : 

1 + pz kb 
pkb + 2pArctan[-- tan(-

2 
)] 

I - pz 
F(k, z) = 1 + pz kb . 

(p + 1)kb + 2(p - l)Arctan[-- tan(-)] 
1- pz 2 

(3.11) 

(3.12) 

Note that F(k, z) is a function of k =I k I, as was to be expected on the basis 

of spatial isotropy. Since the dependence of F(k, z) on the variables k and 

z is still rather complicated, the inversion of the Fourier-Laplace transform 
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does not seem to be obvious. However, we can derive from Eq. (3.12) the 

expression for the moments of the end-to-end distance, as we will see in the 

next section. 

3.2 Moments of the end-to-end distance 

By expanding F(k, z) about k = 0, we find 

00 

F(k, z) = I: Au( z )k2t (3.13) 
l =O 

and, by comparison with Eq. (3.7) 

- -Il ~ n u 
Au(z) - (2£+ l)! ~ z < R (n) >. (3 .14) 

Hence such an expansion allows one to obtain explicit results for the moments 

of the end-to-end distance. 

This procedure quickly becomes tedious as f. increases, but can be handled by 

a symbolic manipulator. We obtain (see appendix 7.8) 

< R2 ( n) > = b2 [n 1 + p - 2pb2 1 - pn ] 
1-p (1-p)2 

(3. 15) 

b4 [~ 2 (1 + p)2 + ~ 2 pn+l + 4 n+l (1 + p) (3.16) 
3 n (1 - p)2 3 n (1 - p)2 np ( I - p)3 
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b6 [88 4 pn+l 35 3 (1 + p)3 128 3 n+l (1 + p) 
g" (1- p)2 + g" (1 - p)3 + g" p (1 - p)3 

2 2 pn+ 1 2 14 2 ( 1 + p )2 2 
- 9n (l _ p)4 (35p - 58p + 35) - 3 n (l _ p)4 (p + 5p + 1) 

_inpn+l (l + p) (29p2 + 62p + 29) 
9 (1 - p)5 (3.17) 

The result Eq. (3.15) is in agreement with the general result for the second 

moment of the end-to-end distance of a random walk with ''first order correla­

tion" (see [45)). Approximate results for< R4 (n) >and< R6 (n) > have been 

obtained by computer simulation in refe rence [46]. All t he resu lts in tabel II 

of this paper agree within the simulation error with the analytic results Eqs. 

( 3. 16) and ( 3 .17) 1 . 

In the limit p - 0, the results Eqs. (3.15) - (3.17) reduce to those for 

the free flight model [43,44] : 

< R 2(n) >FF nb2 (3. 18) 

< R4(n) >FF 
5 [3n(n - 1) + n]b4 (3.19) 

< R6 (n) >FF 
35 

= [9 n(n - l)(n - 2) + 7n(n - 1) + n]b6 . (3.20) 

On the other hand , for large n, or more precisely for n much larger than n c 

( cf. Eq. (3.2) ), R converges to a Gaussian random variable with the following 

1 
There seems to be something sys tematically wrong with the results of table I in (46). 
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relations between the moments : 

(3.21) 

(3.22) 

In order to investigate the convergence to the Gaussian limit , we have plotted 

the ratio's< R4 > /(5/3 < R2 >2
) and < R6 > /(35/9 < R2 >3 ) as a function 

of~= L for several values of pin Figs 3.1 and 3.2 (L = nb). 
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Figure 3.1: Convergence of the fourth moment of the end-to-end distance to 

the Gaussian limit , as a function of L/a. 
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Figure 3 .2: Convergence of the sixth moment of the end-to-end distance to 

the Gaussian limit , as a function of L/a. 

Another quantity of interest in polymer statistics, which arises when 

evaluating hydrodynamic interact ions between the polymer heads, is the av­

erage< R- 1(n) >. In the Gaussian limit, one has : 

1 V 6 <-->a-
R( n) - ,r < R2 ( n) > · (3.23) 

To calculate corrections to this limit, one can expand the probability P(R, n) 

in a series of Hermite polynomials as follows (µ2 = 3
~

2 
) 

< R > 

P(R,n) [21r <3R2 >r /2 e-'t- [1 + ;,(< µ2 > -3)H3:µ) 

+ ;,(< µ4 > -10 < µ2 > +15)Hs;µ) + ;,(< µ6 > -21 < µ4 > 
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2 H1(µ) ] + 105 < µ > -105)-µ- +... . (3.24) 

To evaluate the coefficients of H3, Hs and H1, the expressions Eqs. (3 .15) -

(3.17) can be used. A typical probability profile is plotted in Fig. 3.3. 
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Figure 3.3: Radial probability distribution, obtained by the expansion in Her­

mite polynomials, as a function of R/nb. 

The corresponding expansion for< R-1 (n) > reads [43] 

1 ~ [63 < R
4 

> 9 < R
6 

> l 
< R( n) > = V ~ 80 < R2 > 2 - 112 < R2 >3 · 

(3.25) 
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Figure 3.4: Convergence of the average inverse end-to-end distance to the 

Gaussian limit, as a function of L/a . 

This result is plotted in Fig. 3.4 for different values of p. The agreement with 

the numerical results of reference [46) is, as could be expected, not so good, 

because the series expansion of the probability density P(R, n) in Hermite 

polynomials does not converge rapidly enough. 

3.3 The continuum limit 

A polymer model in polymer statistics, for which analytic results can 

be obtained, is the so-called worm-like chain. It can be looked upon as the 

continuum limit of the free rotation model in which t he bond angle Bo is 

converging to 180° while, at the same time, the length b of each segment is 

going to zero and the number of segments to infinity, with both nb = L and 

b/(1 + cos Bo) kept constant. An analogous limit can be formulated for the 
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persistent random walk model : 

n-+oo 

with 
nb = L 

b 
--=a 
1-p 

constant. 

The evolution equation for the probability density P(R, i, L) becomes 

:L P(R,j, L) 

with 

(Nl- 1) L P(R, j', L)- ~P(R, j , L) 
a ·14· a 

) ~) 

-Uj , a~ P(R, j , L) 

1
. bj 

Uj = 1m-b. 
b-o 

(3.26) 

(3 .27) 

(3.28) 

This equation can be solved by Fourier-Laplace transformation. Introducing 

with 

00 

F(k,s) = j dLe-sL j dReik.RP(R, L) 

0 

N 

P(R, L) = L P(R,j, L), 
j=l 

one finds for the Laplace transform of the Green 's function 

ak 
aArctan--

( ) 1 + as F k, s = -----ak::---
ak - Arctan-

1
-­+ as 
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( 3. 29) 

(3.30) 

(3 .31) 



This result can also be obtained from Eq. (3.12) . The moments of the end­

to-end distance read 

2 [L L] 2a -;- - 1 + e - a (3.32) 

(3.33) 

Sa6 [35 (~)
3 

_ 147 (~)
2 
+ 20 £ _ 20 

9 a 9 a a 3 

(3 .34) 

T he ratio's < It > /(5/3 < R 2 >2), < R6 > /(35/9 < R2 >3 ) and 
1 1 . . 

< R > / < R >c for the present contmuum model have also been mcluded 

in Figs 3.1, 3.2 and 3.4 , as well as the corresponding resu lts for the worm-like 

chain. 
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3.4 Conclusion 

In this chapter, we have shown that random walk with persistence can, to 

a certain extend, be treated analytically by calculating the Fourier transform 

of the Green's function. Although the inverse Fourier-Laplace transform of 

the end-to-end distribution can not be performed, it is still possible to obtain 

the moments by expansion around k = 0. Apart from its intrinsic interest, the 

model can thus be used to test the validity of approximation schemes or to 

check numerical calculations. From Figs. 3.1, 3.2 and 3.4, it follows that the 

approach to the Gaussian form is rather insensitive to the value of p, provided 

that the length L = nb of the polymer is expressed in terms of the correlation 

length a. Finally, we note that the present model differs strikingly from the 

worm-like chain. 
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Chapter 4 

Orientational relaxation 

the reptation model 

• 
Ill 

In order to describe the dynamical behaviour of entangled polymers, 

de Gennes [47] and Edwards [48] introduced the so-called reptation model. In 

this model, the confinement of a given polymer by its surrounding neighbours 

is taken into account by supposing that the polymer can only glide along 

its own axis. Several quantities of experimental interest were calculated for 

this model, as e.g. exemplified by the Doi-Edwards papers [49]. In most 

of these calculations, a limit is taken in which the polymer is represented 

as a continuous chain. This is a good approximation since most polymers 

consist of a very large number of segments. On the other hand, the range of 

validity of the reptation model can also be studied in computer experiments 

(see e.g. [50,51]). In this case, the number of segments is usually small, and a 

comparison with theoretical results for the discrete chain rather than for the 

continuous chain would be preferable . 

A given configuration of the polymer chain is characterized by the set 

of orientations a= {a:Jli = 1, . .. , M} of its M segments (see Fig. 4.1). 
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Figure 4.1: A configuration of a polymer chain is characterized by the set of 

orientations ex j. 

The configuration, and hence the orientational ordering, changes due to the 

reptation process. The chain moves one segment step either forward or back­

ward in such a way that each segment takes the orientation of the one it 

replaces (i.e. the orientation of segment i becomes that of segment i + 1, if 

the chain moves in that direction), while the orientation of the top segment is 

chosen from the equilibrium distribution. 

The question at hand is how fast a given segment of the polymer chain 

loses the memory of its initial orientation, i.e. how fast it relaxes to the equi­

librium form. It is of interest to obtain the dependence of this relaxation on 

the position of the segment inside the chain, and on the chain length. We will 

derive the analytic result for the (Laplace transformed) probability density 

that a segment i has a given orientation at time t, for a general initial con­

figuration of all the segments (Eq. (4.18)) . This result includes other results 

from the literature as particular cases. 

Orientational relaxation can be experimentally studied by e .g. fluores­

cence polarization spectroscopy [52]- [54). In these experiments, one ( or more) 

segment of the polymer is a fluorescent probe which can be excited by an in­

coming light beam with the right polarization. The excited state has a finite 

lifetime and the probe will eventually de-excite with the emission of a polarized 

photon. If the emission and absorption dipoles coincide, the randomnisation 

of the polarization of the emitted photon relative to the incident one, essen­

tially reflects the orientational relaxation that has taken place meanwhile. As 

a result of the destructive interference between photons emitted by different 

probes, the intensity of the emitted light will decrease. In experiments con-
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ducted under continuous illumination, one measures the so-called stationary 

anisotropy defined by 

( 4.1) 

Here Ill and h are the emitted intensities with a polarization respectively 

parallel and perpendicular to that of the incoming beam. The latter will be 

chosen along the z axis, which in this case is also the symmetry axis of the 

sample. rs can be expressed in terms of stochastic properties of the azimuthal 

angle B of the probe as follows [55] ( we choose absorption and emission dipoles 

along t.he axis of the probe) : 

00 

J 'l.e-tf'r «: P2(cosBo)P2(cosBt) » dt ( B) 
o r < P2 cos O > rs=---------------+--------

1 + 2 < P2 ( cos Bo) > 1 + 2 < P2 ( cos Bo) > 
(4.2) 

with T the average lifetime (time before de-excitation) of the probe. The sin­

gle brackets refer to an average over the azimuthal angle Bo with the steady 

state probability profile, while the double brackets indicate that the addi­

tional dynamical average has to be performed with the conditional probability 

P(Bt, t I Bo, t = 0) to go from the value Bo at time t = 0 to the value Bt at time 

t. The evaluation of this last quantity is the hardest part. Fortunately how­

ever, the stationary anisotropy is expressed in terms of the Laplace transform 

of P( Bt, t I Bo, t = 0), for which we have been able to obtain the analytic result 

(cf. Eq. (4.41)). 

Finally, there ha.c; been recent experimental and theoretical interest for 

orientational relaxation in anisotropic systems (see e.g. [56,57]). In this case, 

a nonisotropic equilibrium distribution prevails, being induced for instance by 

stretching, compression or the application of an electric field. We include this 

possibility by carrying out all the calculations for the case of a general orien­

tational equilibrium distribution peq which need not be isotropic. This allows 

to identify explicitly the dependence of, for instance , the stationary anisotropy 

rs on the equilibrium averages of the second and fourth Legendre polynomials. 

The organization of this chapter is as follows. In section 4.1 we introduce 
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the equations describing orientational relaxation in the reptation model and 

show how they can be solved thanks to the knowledge of the Green's function 

for a random walk on a finite lattice. In section 4.2, these results are applied 

to the calculation of the stationary anisotropy as a function of the number M 

of segments of the polymer , the position j E {1, 2, ... M} of the probe in the 

polymer chain for a general form of the equilibrium orientational distribution 
function peq. 

4.1 Orientational relaxation in the reptation model 

A given configuration of the polymer chain is characterized by the set of 

orientations o = {aj I j = 1, .. . , M} (see Fig. 4.1). Each of these orientations 

can either be taken from a set of discrete values (for example in lattice models 

for which only a finite number of orientations are allowed) or from a continuum 

of values. 

As explained m the introd uction , the chain moves one segment step 

either forward or backward, each with a probability kdt during a small time 

interval dt, in such a way that each segment takes the orientation of the one it 

replaces. The orientation of the end segments is chosen from the equilibrium 

distribution p eq. The probability that the configuration remains unchanged 

during the time interval dt is equal to (1 - 2kdt). The time evolution of the 

probability distribution P( o, t) is governed by the following Master equation 

( o = { 01, ... , a M}) : 

OtP(o,t) = kPeq(aM)LP({a' ,01, . .. ,ll'M-d ,t) 
a' 

o' 

To stud y orientational relaxation , it will be sufficient to calculate the reduced 
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probability Pj(aj, t) 

Pj{aj,t) = L··· LL ···LP(o,t). ( 4.4) 
01 aJ-1 a;+1 "'M 

In the following , we will drop the subscript j in the orientation variable a j. 

By summation of Eq. ( 4.3) over the orientations of all the segments but one , 

we find 

for 1 < j < M, and : 

for the end segments. 

We now consider the Laplace transform 

Furthermore , we introduce the following vector notation : 

"' P(a,s) = ( - ) P1(a , s) 

P M:a, s) 
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(4.7) 

(4 .8) 

(4.9) 



S( o:) = (4.10) 

-2k k 0 0 

k -2k k 0 
T= 0 0 (4.11) 

k - 2k k 

0 0 k - 2k 

Eqs. (4.5)-(4 .7) can now be rewritten as 

- "' -sP(o:, s) - P(a, t = 0) = T P(a, s) + S(a). (4.12) 

We conclude that : 

- 1 
P(a,s) = [S{o:) + P{o:,t = O)]. 

sl-T 
(4.1 3) 

T he matrix T is identical to the transition matrix for a symmetric nearest 

neighbour r andom walk with constant transition rates k and with absorbing 

boundary conditions (at j = 0 and j = M + 1). Hence the calculation of the 

(Laplace transformed) probability density that the segment i has orientation 

o: is red uced to the calculation of the Green's function (sl -T)- 1 (see section 

2.1.2). We thus obtain: 

(4.14) 
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t P·( _ )sinh[emin(i,j))sinh[e(M+l-max(i,j))] 
+ i=l 1 o:,t - O ksinhesinh[e(M + l)] 

with 

s 
coshe = 1 +-. 

2k 
(4.15) 

This result describes how the orientation of the segment i evolves in time, given 

an initial configuration Pj(a , t = 0) for every segment j = 1, ... , M. Note that 

the equilibrium distribution appears in a simple way as the coefficient of the 

second term in the r.h .s. of Eq. ( 4.14). Furthermore, we see that correlations 

do not enter at this level. A convenient check of the calculation so far is 

provided by the verification of the short and long time limits. 

Fors___. oo (the short time limit) we find 

and for s---+ 0 (the long time limit) 

These are obviously the correct results. 

1 
-Pi(o:, t = 0), 
s 

(4. 16) 

( 4.17) 

For orientational relaxation in three dimensions, o: is a solid angle char­

acterized by the angles (B, ¢). For simplicity, we will assume from now on that 

peq is a function of B only, i.e . peq = peq(B). Eq. (4.14) thus reduces to 
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"' P;(B,s) 
cosh [i(M + 1 - 2i)] 

peq ( () )---=----;--,,..------:~ 

s cosh [~(M + l)] (4.18) 

~ P·(B _ )sinh [{ min(i,j)) sinh [{ (M + 1 - max(i,j))] 
+L..., 3 ,t-0 . . ] . 

i =l · ksmh{smh[{(M + 1) 

This exact result will be used in the next section to calculate the stationary 

anisotropy and related measures of orientational relaxation. 

Before proceeding, we note the following interesting property. For equi­

librium orientation of all the segments at time t = 0, P1(B, t = 0) = peq(B), 

it is clear that the probability distribution of the i th segment at time t will 

also be of the equilibrium form, i.e . P;(B, s) = peq(B)/s. This implies the 

following summation property 

f sinh [{ min(i,j)) sinh [{ (M + 1 - max(i,j))] 

i=l ksinh{sinh [{(M + l)J 

cosh [i(M + I)] - cosh [~(M + 1 - 2i)] 

s cosh rn(M + l)] 

as can also be verified by performing explicitly the sum in the l.h .s. 

(4 .19) 

The dependence of Eq. ( 4.18) on the Laplace variable s is rather com­

plicated, but the inverse Laplace transformation can be performed provided 

we consider the continuum limit where (a is the length of the chain segments) 

M - oo 

a -> 0 ( 4.20) 

k - 0() 
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with 

L = Ma ( 4.21) 

the length of the chain and 

( 4.22) 

the diffusion coefficient both kept constant. In this limit Eq. ( 4.18) becomes 

-P x(B, s) J
L sinh [ ~ min(x, y)] . [ (s ] 

. [ ff ] smh VD (L - max(x, y)) 
O ,Jil5smh VnL 

cosh [~cl - x)] 
xP,(0,t=O)dy+ fALJ P''(O). 

s cosh --
D 2 

( 4.23) 

Using the ident it ies [58) 

cosh[b(rr - w)] = _1 + 2b f cos(qw) 
sinh[brr] 1rw 1r q=l q2 + b2 

( 4.24) 

and 

7r 
cosh[b( - - w )] 4 q sin( qw) 
-----=-,2 - - ~ 

7r - - L- 2 b2' 
cosh[b2] 1r q odd q + 

(4.25) 

the two terms on the left hand side of Eq. ( 4.23) can be expanded into infinite 
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sums. This leads to : 

...., 
Px(B,s) 

oo L 
"'""' . rrqx 1 2 / . rrqy 
L..tsm(y) 2 L sm(y-)Py(B,t=O)dy 
q=l c.!.. + s) 0 

Tc 

+ peq(B) L 4 / sin( rr;q) 
q odd 11' s( i.. + 8 ) 

with 

Tc 

L2 
Tc= - 2 - . 

rr D 

( 4.26) 

( 4.27) 

In this way, the dependence of the probability distribution ( 4.26) on the 

Laplace variable s has become very simple and Laplace inversion is easy to 

perform : 

Px(B, t) 
oo L 

"'""' . 1l'qX 2 / . 1l'qy 
L..t sm( L) L sm( L )Py(() , t = O)dy 
q=l 0 

e Tc 

( 
tq2) 4 rrxq - -

+Peq(B) L - sin(-) 1 - e Tc . 

q odd qrr L 
( 4.28) 

This expression can be further simplified if we take the initial condition Py(B, t = 0) 

identical for all the segments, i.e. independent of y , 

Py(B,t = 0) = P(B,t = 0). ( 4.29) 
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Combining Eqs. ( 4.28) and ( 4.29) and integrating over y, we get 

tq2 
Px(B,t) P(B, t = 0) L ~ sin( 1rxq )e --:;:; 

q odd rrq L 

( 
tq2) 4 rrxq --

+Peq(B) L ;- sin( L) 1 - e Tc . 

q odd q 
( 4.30) 

For the isotropic case (Peq(B) = sin()), this result is in agreement with the 

one obtained by Doi & Edwards (49f and Curtiss & Bird (59]. 

4.2 Time dependent order parameters and station­

ary anisotropy 

A classical measure of orientational order is provided by the average 
. 1 

of the second Legendre polynomial< P2(cos8) >= 2(3 < cos2 B > -1). It 

can vary from zero, in the case of random orientations, to one, for complete 

alignment. The result ( 4.18) allows us to calculate the time dependence of 

this quantity for every segment i, in terms of its Laplace transform : 

11' 

< P2(cosBi,s) >= j dBP2(cosB)Pi(B,s) 
0 

~ sinh [e min(i, j)] sinh [e ( M + I - max( i, j) )] p. ( B O) 
= L., < 2 cos ·, t = > 

j:;::l ksinhesinh[e(M + 1)) 1 

cosh rn(M + I - 2i)] 

+ s cash rn(M + 1)] 
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Let us now consider Eq. (4.31) for some special initial conditions. If we start 

from the steady state distribution 

P;(B,t = 0) = p e9 (B), ( 4.32) 

we get, as should be expected, that < P2 > is independent of time ( cf. Eq. 

(4.19)): 

( 4.33) 

For an initial state with all the segments aligned along a preferential direction 

() = 0, one finds (using again Eq. ( 4.19)) 

1 cosh [f(M + 1- 2i)] 
< P,( cos O; , ,) >= -; + 2 

[{ l [< P,( cos 0) >'' -1], ( 4.34) 
scosh 2(M+l) 

while for random initial orientations of all segments, one has 

( 4.35) 

The dependence on the Laplace variable s is still complicated, but again we 

can invert the transformation if we take the appropriate continuum limit. Fol­

lowing the same procedure as before (cf. Eqs. (4.20)- (4.25)), or alternatively, 

using Eq. (4.28) to calculate the average< P2(cosBx,t) >, we get 
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tq2 
00 

L sin( tr~q) e Tc 

q=l 

L 
2 / . qtry L sm( £) < P2(cosOy, t = 0) > dy ( 4.36) 

0 

( 

tq2) 4 . 1rxq --+ < P2(cosB) >eq L -sm(-) 1- e Tc . 

9 odd q1r L 

In the isotropic case(< P2(cosB) >eq vanishes) and with the same initial 

conditions for all segments, the average orientation (Eq. ( 4.36)) reduces to 

tq2_ 
'°' 4 . 1rxq --< P2(cosBx,t) >=< P2(cosB,t = 0) > ~ -sm(L)e Tc, 

q odd 1rq 
( 4.37) 

a result also calculated by Tassin et al (60] and Lawrey et al (61]. 

Let us now turn our attention to the stationary anisotropy given by Eq. 

(4.2). In this case (for probes with an exponentially distributed lifetime) the 

Laplace transform is precisely what we need. To calculate r! for segment i, 

we have to evaluate the following expression : 

00 

Ci(s) = j ~ P2(cosB0)P2(cosB) ~ e- 3 tdt 

0 

1r 1r 

= j dB j dBoPi(B,s I Bo,t = O)Pe9 (0o)P2(cosBo)P2(cosB). (4.38) 
0 0 

Here, Pi(O, s I Bo, t = 0) is the Laplace transform of the probability distribu­

tion that segment i has orientation B at time t, starting from the orientation 

Bo at t = 0. All the other segments j have orientations sampled independently 
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from the equilibrium distribution at t = O. Filling in these initial conditions 

in Eq. ( 4.18), we obtain for P;(B, s I, Bo, t = 0) 

_ e cosh rn(M + 1 - 2i)] 
Pi(B,s I Bo,t = 0) = P 9 (0) [{ ] 

s cosh 2(M + 1) 

~ sinh [{ min(i,j)) sinh [{ (M + 1 - max(i,j))] 
+ki ksinh{sinh[{(M+l)] (4·39) 

Note that , here again, the Laplace inversion can be performed in the continuum 

limit we discussed in the previous section. 

The expression Eq. ( 4 .39) can be further simplified by using Eq. ( 4.19), and 

the following result is obtained for the orientation autocorrelation function 
Ci ( s) fo r segment i : 

( 4.40) 

_ sinh [{i) sinh [{( M + 1 - i)] [[ ( B) eq]2 - [P. ( 0)]2 eq] 
ksinh{sinh[{(M+l)] <P2 cos > < 2 cos > · 

Combining the result Eq. ( 4.40) with Eq. ( 4.2), we finally obtain the following 

compact resu lt for the stationary anisotropy : 

( 4.41) 

sinh [{i]sinh [{(M + 1- i)] (< [P2(cos0)}2 >eq - [< P2(cos8) >eq]2) 
+ rksinh{sinh [{(M + 1)] 1 + 2 < P2(cos8) >eq 
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with 

1 
cosh{ = 1 +-, 

2kr 

and r the average lifetime of the fluorescent probes. 

In particular, for an isotropic system, Eq. (4.41) reduces to 

i 2 sinh [{i] sinh [{( M + 1 - i)] 
r~ = . 

5rksinh{sinh [{(M + l)] 

( 4.42) 

( 4.43) 

As was expected, the stationary anisotropy depends on the position i of the 

probe inside the chain. Indeed, orientational relaxation wil l take place faster 

for a probe close to one of the endpoints of the chain. Consequently, the 

stationary anisotropy is smaller. The limiting values of r~ for r « k-1 and 

r ~ k-1 however are independent of i : 

( 4.44) 

and 

( 4.45) 

Indeed, for very short lifetimes, the probe is not exploring neighbouring seg­

ments, while, for very long lifetimes, relaxation to equilibrium has taken place. 

To get an idea of the i dependence at intermediate values of r, we have cal­

culated r~ for a simple one parameter anisotropic model in which one specific 

direction (chosen along the z axis) is preferred. This corresponds to a "poten­

tial landscape" which is flat , except for a delta function well centered at the 

privileged direction. The equilibrium distribution for this specific example is 

given by 

Pe9 (B) = (1 - p) si; () + p 5(0), ( 4.46) 
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in which pis a measure of the strength of the delta function well . It stands for 

the fraction of segments that have the preferential direction (} = 0. It is also a 

measure of orientational order in the equilibrium state since < P2( cos 9) >eq= 
p. For p = 0, one recovers the isotropic case. 

r
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Figure 4.2: T he stationary anisotropy r~ for different positions i along the 

chain, as a function of the dimensionless lifetime rk, compared to the limit 

value rs for large M and i . 
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Figure 4.3: The stationary anisotropy r! for the middle part of the chain, for 

different values of M, compared to the limit value rs for large M and i . 

In Fig. 4.2 and Fig. 4.3 we plotted r! for various positions i of the probe, 

and various values of M , in function of the lifetime kr, measured in units k- 1 . 

It turns out that the dependence on i, as well as on M is extremely weak. 

In fact, for M ~ 10, r~ is very well approximated by the limiting expression 

obtained for M - oo : 

( 4.47) 

sinh[{iJe- (i (< [P2(cos8)]2 > eq -[< P2{cos8) >eq]2) . 
+ rk 1 + 2 < P2(cos8) >eq 

Moreover, the dependence on i is rather weak. For i ~ 5, r! is almost inde­

pendent of i, and we can write 
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lim ( 4.48) 
i _. 00 

M-+oo 

In this limiting form, the dependence of r3 on the dynamic parameter kr is 

extremely simple. For an isotropic system Eq. ( 4.48) reduces to 

2 
r - -:--;:=:=:::;:= 3 

- 5v11 + 4h ' 
( 4.49) 

and a log-log plot or r3 versus 1 + 4kr should yield a straight line with slope 
I 

-2· 
This has to be contrasted with the result for the case of one segment (just the 

probe) obtained from Eq. ( 4.41) by putting M = 1 : 

( 4.50) 

In the isotropic case, this has a form identical to the result obtained by Perrin 

[62] for rotational Brownian motion : 

( 4.51) 

in which 2k (the jump frequency) plays the role of the rotational relaxation 

time rn . 
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4.3 Conclusion 

We have shown that, through the use of the Green's function, orienta­

tional relaxation in the reptation model can be discussed analytically, without 

going to a continuum limit for the chain. A somewhat surprising result is 

that the stationary anisotropy r~, as measured in fluorescence depolarization 

experiments, is found to be almost independent of chain size and positioning 

of the probe. The exact dependence of r~ on these parameters is rather com­

plicated, cf. Eq. (4.41), but a numerical evaluation for a specific anisotropic 

case ( cf. Fig. 4.2 and Fig. 4.3) shows that this dependence is rather weak, 

and that r! is very well approximated by the simple (limiting) form given in 

Eq. (4.48). This is true for all values of rk, i.e. independently of whether 

the fluorescent probes have a long, short, or intermediate lifetime (in units of 

the inverse k- 1 of the jump frequency) and the resulting dependence on the 

parameter rk itself is extremely simple. Furthermore, we have investigated 

the effect of anisotropy, characterized by an equilibrium orientation distribu­

tion function p eq, which need not be isotropic. As can be seen from the exact 

results (4.18) and (4.41), this anisotropy does not affect in an essential way 

the dependence on the position, chain length or the dynamic variable rk : the 

dependence on peq shows up in a different proportionality factor and in an 

additional term, both of which are such that the correct short and long time 

limits (kr - 0, kr - oo) are reproduced. 

Finally, we are aware of the limitations of a reptation type of description 

for polymer dynamics. Nevertheless, it would be interesting to compare the 

analytic results derived here for a discrete chain with computer experiments 

for more realistic discrete chain models. 
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Chapter 5 

Dispersion of particles 

spatially periodic flows 

• 
Ill 

The transport or dispersion of neutrally buoyant particles in fluids is gov­

erned by two mechanisms : molecular diffusion and flow convection. Diffusion 

plays an important role in a wide variety of physical and chemical processes, 

such as chemical reactions, mixing of fluids, spreading of pollutants, chro­

matography and electrophoresis. It is therefore of fundamental and practical 

importance to understand the interaction between these two mechanisms, i.e. 

how does the flow pattern affect the dispersion of passive particles, and what 

is the resulting concentration profile of the particles. 

Although the enhancement of dispersion by turbulence is well known, the 

fact that even laminar flow can increase the dispersion is far less well known. 

In 1953 Taylor [63] showed that the longitudinal dispersion in a Poiseuille flow 

in a cylindrical tube of radius R is described by an effective diffusion coeffi­

cient D* ( D* is a measure for the width of the concentration profile of the 

particles) which is given by 

< V >2 R 2 

D* = Dm + 48 Dm ' 
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where Dm is the molecular diffusion coefficient and < v > is the average flow 

velocity. The molecular diffusion coefficient being typically of the order of 

10-5 
- 10-8cm2 / s in liquids, we see that the contribution of the flow to the 

effective dispersion of particles is by far the dominant effect. 

The study of convection induced dispersion in a general velocity field is 

very complicated. However, analytic results can be obtained for an important 

subclass of flows, namely the ones with a periodic velocity field . Examples 

are flow profiles arising as a consequence of hydrodynamic instabilities, such 

as the Rayleigh-Benard system and the circular Couette system, or flow pro­

fil es in periodic media [64,65). In these cases, the mean velocity < v > of 

the flow is zero, and the dispersion of the particles occurs through the com­

bination of convection along the streamlines and molecular diffusion between 

the streamlines. In particular , for the Rayleigh-Benard instability, Sagues and 

Horsthemke [66] found (using a perturbative method) an effective transport 

coefficient n· equal to : 

• < v2 > d 2 

D = Dm + ( 2 2) D . a + 7r m 
(5.2) 

The convection-induced contribution is again dominant, and has a form similar 

to that encountered in the original Taylor problem cf. Eq. ( 5.1). 

I - 1 I • I 

N 

2N 

I' 

Figure 5.1: Periodically repeated unit cell consisting of N x M internal states. 
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Different ways to approach the description of such systems have been 

used (see e.g. (64]-(69]) among which perturbative methods and Monte Carlo 

simulation. The procedure we propose to follow is based on a study of the 

problem using the random walk formalism. The motion of the particles in 

the periodic fluid velocity field can be described as a random walk across a 

system consisting of a periodically repeated unit cell (see Fig. 5.1). The 

unit cell contains a number of internal states between which the particles 

can jump according to prescribed jump rates. The internal states can be 

interpreted in two different ways. They can represent possible spatial locations 

at which the particles reside, and jumping from one state to another thus 

constitutes a physical displacement of the particle. This is the way in which 

processes mentioned earlier can be modelled, e.g. Taylor dispersion or the 

dispersion of particles in Rayleigh-Benard instabilities. Another possibility is 

that they represent different states of the system, e.g. configuration states of 

a molecule. The random walk over the internal states then reflects changes in 

the state of the system. This description can be used to model processes such 

as chromatography, electrophoresis, NMR, molecular rotational dynamics, etc. 

In section 5.1 we will first derive an expression for the average velocity 

v and the effective diffusion coefficient D* in terms of the detailed structure of 

the unit cell, more precisely, in terms of the Green's function characterizing the 

walk inside each unit cell. Using the results obtained for the Green's function 

in section 2.1, we will apply the formalism to calculate the diffusion coefficient 

for several specific cases of interest in section 5.2. 

5.1 General description 

The periodically repeated unit cell consists of M x N internal states 

(see Fig. 5.1). The position of a particle is labelled by a number i = n + 
I N( n € (1, N] and I € [O, M - l]) specifying the location inside each cell, and 

by the number I of the unit cell. The global horizontal position x = n + NI of 

the particle is determined by both the number of the internal state and that 

of the unit cell in which the particle is located. As the particles move through 

the system, they jump from one state to another . The jump rate to go from a 
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state i to another state i' ( not necessarily nearest neighbours) inside the same 

unit cell is given by the matrix element Wi'i, while the transitions to states in 

the previous or next unit cell are denoted by the elements of resp. the matrices 

BN(ext) and BP(revious) . The probability to find a particle in state i in unit 

cell I at time t is the solution of the following Master equation : 

&t P(i, 1, t) = I)wii' P(i', 1, t) - wi'i P(i , 1, t)) 
i' -/;i 

+ 2)Btf, P(i', I+ 1, t) - Bf,; P(i , I , t)) (5.3) 
i' -/;i 

+ L,(B[, P(i' , I - l , t) - Bf,; P(i, I, t)) 
i' -/;i 

with the sum over i' extending over the whole range of the internal states 

except i : W;i = 0. We expect that the displacement of the particles will, 

in the long time regime, obey a Gaussian law [70] and thus only the first 

< x(t ) > and the second moments < x2(t) > are needed to characterize the 

process . Since x = n +IN, we have that 

< x(t) > = < n(t) > + N < I (t) > (5 .4) 

M-1 N M-1 N 

L, L, n µ~+IN(t) + N L, L µ~+IN(t) (5 .5) 
l=O n=l l=O n=l 

< n2 (t) > +2N < n(t) l(t) > +N2 < I 2 (t) > (5.6) 

M-1 N M-1 N 

L, L, n2 µ~+ IN(t ) + 2N L L n µ~+ IN(t ) 
l= O n=l l=O n=l 

M-1 N 

+ N2 L L µ;+IN(t) (5.7) 
l=O n=l 

were µ~(t), µ}(t) and µJ(t) are the reduced moments of the distribution P(j, I, t) 

µ1(t) = 'I:,P(j , 1, t) (5.8) 
I 
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µ}(t) LJP(j,I ,t) (5 .9) 
I 

µJ(t) (5.10) 

The equations governing the reduced moments can be derived from Eq. (5 .3) 

by multiplying with the appropriate power of I and then carrying out the sum 

over I. As explained in detail in appendix 7.C, these equations are solved by 

Laplace transformation. Using the long time limit expressions for the moments 

< x(t) > (Eq. (7.C.20)) and < x2 (t) > (Eq. (7.C.21)), we find for the average 

velocity v 

(5.11) 

Only the stationary distribution P;; of states m from which the particles can 

leave or enter a unit cell and the jump rates between these boundary states 

determine the average velocity v. 

In a similar way the expression for the effective diffusion coefficient D· 

is obtained 

D• 

N2 (i L L(Bfm + B{;J p;; 
I m 

(5. 12) 

- L LLL(Bfm - Bf:n) G~n (B~ - B;r) p:t) , 
I m n r 

with G~n the second term in the expansion of the Green's fun ction G(s) 
(for the random walk inside the unit cell with periodic boundary conditions) 

around s = 0 ( cf. Eqs. (2.58) and (7.C.22)). The factors (Bfm + Bf:n) and 

( Bfm - Bfm) in D· indicate the influence on the diffusion coefficient of the 

particles passing from one unit cell to another, while G~11 , which depends 

explicitly on the specific structure of the unit cell , reflects the motion of the 
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particles inside the unit cell. We conclude that the average velocity v and the 

effective diffusion coefficient D* can be expressed in terms of pst and G*1
, thus 

only the small s behaviour of the Green's function of the random walk on the 

unit cell with periodic boundary conditions is needed. In the next section we 

will apply the results we obtained for the Green's function ( or its expansion) 

in section 2.1 to calculate the diffusion coefficient D* for some specific cases 

of interest. 

5.2 Applications 

To check and illustrate the method introduced in the previous section, 

we will first calculate the diffusion coefficient for a very simple case : a one­

dimensional symmetric random walk with periodic boundary conditions. 

The unit cell consists of a strip of N internal states (see Fig. 5 .2). 

2 

Figure 5.2: Unit cell consisting of a strip of N internal states. 

There are only transitions possible between nearest neighbour states, with 

equal jump rates k to go from state i to state i + 1 or from i + 1 to i. The 

transition matrix W has thus the very simple tridiagonal form 

-2k k 0 0 
k -2k k 0 0 

0 k -2k k 0 0 

W= (5.13) 

0 0 k -2k k 0 

0 0 k -2k k 

0 0 0 k -2k 
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The only transitions that occur through the boundaries are the ones from state 

1 to state N and vice versa. The matrices BN and BP have but one element 

different from zero 

(5.14) 

(5.15) 

The Green's function for this periodic random walk was given in section 2.1.2: 

with 

Gmn = (sl - (W +BP+ BN));~ 

cosh~(lm - nl- .tf-) 
2k sinh ~ sinh !ff 

s 
cosh ~ = 1 + 

2
k. 

(5.16) 

( 5.17) 

To calculate the diffusion coefficient , we need the first two terms in the expan­

sion around s = 0 of the Green 's function 

Gmn(s) 
P"'t 
__!!!_ - o;;n + 0( s) 

s 
(5.18) 

s-0 

!..!_ N
2 

- 6 Im - nl N + 6 (m - n)2 
- 1 O(st). 

sN+ I2Nk + 

Filling in the appropriate values of m and mo we find 

p-'t _ p-'t 1 
(5. 19) 1 - N -

N 

a•t G*t N 2 - 1 
(5.20) 11 = NN I2kN 

a•t a•t N 2 -6N + 5 
(5.21) lN = Nl I2kN 
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Combining Eq. (5.11) with Eqs. (5.19), (5.20) and (5.21) , we find that the 

average velocity v equals zero, as was to be expected , because the random 

walk is symmetric . For the diffusion coefficient D* (Eq. (5 .12)) we also find 

the correct result, namely k. 

5.2.1 Taylor dispersion phenomena 

We now turn to the description of the dispersion of particles in a flow 

consisting of N layers , on which a transverse random walk is superimposed 

(see Fig. 5.3). 

Figure 5.3: Unit cell used to describe Taylor dispersion phenomena. 

The unit cell contains N internal states. Inside the unit cell, the particle can 

jump from state i to its nearest neighbours i - 1 and i + 1 with transition 

probabilities ki and kt resp. Because the particles can not leave the system 

through the upper or the lower boundaries, the jump rates k1 and kJ:, are 
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equal to zero. The transition matrix W is given by 

k+ - 1 k-
2 0 0 0 

k+ 1 -(kt+ kz") k-
3 0 0 

W= 
0 k+ 2 (5.22) 

kN-1 0 
0 0 kJt_2 -(klt-1 + kN-1) k-

N 

0 0 0 kt-1 -k"it 

From each internal state i, the particles can move to the previous or the next 

unit cell with jump rates I; or 17 resp. The matrices aN and BP are thus 

diagonal 

BN_ 
') 

Bf' 
') 

8· .,+ 
•J i 

oij t;. 

(5.23) 

(5.24) 

When the particles leave unit cell I through the boundaries, they jump to the 

same internal state i they left. Consequently, the transitions rates If do not 

enter in the calculation of the Green's function 

1 
G=--­

sl-W 
(5.25) 

We calculated the stationary distribution Pr and G';} for this particular ran­

dom walk in chapter 2, Eqs. (2.62) and (2.75) : 

p:1t - _.!_ k+ · · · kf k-:-
1 

.. · kN-' - N 1 ,-1 •+ (5 .26) 

withN 

(5.27) 
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and 

N-1 r r (c pat)(c pat) 
G~l = - ~ ~ ~ p:'t Ujk - k Oj/ - I • 

SJ £- £- £- S k + pat 
r=l l=l k=l r r 

From Eq. (5.11) we obtain for the average velocity v 

N 

v = Eut - r; )Pt' 
i=l 

and the effective diffusion coefficient D* (Eq. (5.12)) equals 

D* = 
1 N N N N-1 r r 

2 Eut + 1nP/' +EE EE Eut -1npr 
i=l i=l j=l r=l l=l n=l 

(5.28) 

(5.29) 

(5.30) 

As already mentioned in the introduction , we see that the particles are more 

effectively dispersed due to the presence of the flow in the horizontal direction. 

In the case of two layers with It = 12 = Ii and /1 = it = /2, Eqs. (5 .29) and 

(5.30) reduce to the well known results (kt = k1 and k2 = k2) 

(5.31) 

and 

(5.32) 

From the general expressions Eqs. (5.29) and (5.30) for the discrete sys­

tem, we can derive several other results by taking the appropriate continuum 

limits (see appendix 7.A). To obtain a continuum of states in the horizontal 

x-direction, we take the following limits (introducing the parameter a, being 
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the width of the unit cell) : 

{ 

a ...... 0 

~±-......: 
with 

{ 

x = la 

2 
( /7 - 1-:-) 

a ' ' = Di 

a(lt + \-) = Vj 

fixed. (5.33) 

We recover in this case the results previously obtained by Van den Broeck and 

Mazo [71] 

V 

D* 

N ""'v· p~t 
L...J ' ' 
i=l 

(5.34) 

(5.35) 

An example of a process that can be described in this continuum limit, is the 

dispersion of particles in a chromatographic column. Here, the layers (two 

in this case) do not represent physical locations of the particles, but possib le 

internal states (see also chapter 6 and [101]) . The particles can either be in 

the adsorbed state ( vi = 0) or in the mobile phase ( v2 = v ). They switch 

between these two states with jump rates k[ = k1 and k2 = k2. The effective 

diffusion coefficient D* is given by (if the diffusion in the horizontal direction 

is neglected) 

(5.36) 

The dispersion of particles suspended in a fluid flowing through a tu be or 

between plates has been extensively investigated : see e.g . [63], [72]-[75]. We 

can describe this phenomenon with our formalism (for systems in which there 

occurs no interaction between the suspended particles and the boundaries such 

as adsorption, i.e. we only consider refl ecting boundaries in the layers 1 and 

N) in the limit that the number of layers N of the fluid goes to infinity. The 

random walk across the system then becomes a diffusive process. Using the 
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limit procedure described in appendix 7.A we get from Eqs. (5.34) and (5.35) 

( the variable y describes the vertical position of the particles) : 

(5 .37) 

rl I t I 12 

D* 
L L (Jn (v(y) - v)Ps (y )dy) 

lo D(y)Pst(y)dy + lo o D(y)pst(y) dy, (5.38) 

with L the total thickness of the system, v(y) the velocity profile of the flow 

and D(y) the diffusion coefficient in the transverse direction, which in general 

can depend on the vertical location of the particles in the fluid. Here again, 

we see that the transport of the particles is enhanced due to the interplay 

between convection and molecular diffusion. 

As an example, we will consider the analog of Taylor diffusion (the disperion 

of particles in a laminar flow through a tube of radius R) for a system with 

planar symmetry. The Poisseuille velocity field v(y) for a laminar flow between 

plane parallel plates at a distance L from each other is given by : 

y y 
v(y) = 6u-(1 - - ) 

L L 
V Yl [O, L] (5.39) 

with v the average solvent ve locity, which is also equal to the average velocity 

of the dispersed particles. We have in this case : 

D(y) 

and thus we find for D* (Eq. (5.38)) : 

D 

1 
L 

a result simular to the one obtained by Taylor (cf. Eq. (5.1)). 
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5.2.2 Dispersion of particles in a system of rotating fluid rolls 

k k(l•g) K 

1 2 

K 
k( 1-g) 

K 

K( I •g ) K( 1- g) 

KC 1-gl k( 1 •g ) 

K k( 1-g) k 

3 4 

k 
I(( 1 •g) 

k 

Figure 5.4: Unit cell with four internal states for a periodic system consisting 

of clockwise rotating rolls. 

As a next example, we turn to the transport of particles moving through 

a system of rotating rolls. The unit cell we use to model this situation has four 

internal states (see Fig. 5.4) with transition rates k(l - g) between nearest 

neighbours in the counter clockwise direction and k(l + g) in the clockwise 

direction . The particles can move through the boundaries to the next or 

previous cells with jump rates k. T he matrices T (with periodic boundary 

conditions), aN and aP are given by : 

-3k k(2- g) k(I + g) 0 

T 
k(2 + g) -3k 0 k(l - g) 

k(l - g) 0 -3k k(2 + g) 
(5.43) 

0 k(l + g) k(2 - g) -3k 

0 k 0 0 

0 0 0 0 

0 0 0 k 
(5.44) 

0 0 0 0 
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0 0 0 0 
k O O 0 
0 0 0 0 
0 0 k 0 

(5.45) 

The Green's function for this random walk can be obtained by simple matrix 

inversion. Expanding it around s = 0, we obtain for Pr and G7] 

p.~t - ! 
I - 4 (5.46) 

a·1 a·1 a-1 a-1 (g2 - 7)2 
7

11 = 7
22 = 33 = 44 = - 144k2(g2 + 2)2 

a·1 _ a·1 _ g4 + 4g2 + 54g - 23 
12 - 43 - 144k2(g2 + 2)2 

a·1 _ a·1 _ g
4 + 4g2 

- 54g + 31 
13 - 42 - 144k2(g2 + 2)2 (5.47) 

a·1 a·1 .1 a·1 g4 + 22g2 - 41 
14 = 23 = G32 = 41 = - 144k2(g2 + 2)2 

a·1 _ a·1 _ g4 + 4g
2 + 54g + 31 

24 - 31 - 144k2(g2 + 2)2 

0 .1 _ a·1 _ g4 + 4g2 
- 54g - 23 

21 - 34 - 144k2(g2 + 2)2 

The average velocity v equals zero and D* (Eq. (5.12)) can be expressed as 

.. ( g2 ) D = k I+ g2 + 2 . (5.48) 
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Figure 5.5: Unit cell with nine internal states for a periodic system consisting 

of clockwise rotating rolls . 

In an analogous way we obtain the result for D" when the unit cell contains 

nine internal states (see Fig. 5.5) 

D .. = k (1 + 292(92 + 11) ) . 
g4 + 13g2 + 18 

(5.49) 

We see that the dependence on g becomes more complicated as the number 

of internal states increases. Note that if the bias g tends to zero we recover 

the result fo r normal diffusion. Note a lso that v• is even in g and thus not 

sensitive to the direction of the flow. 

81 



k k( I •g) k Id l•g ) k 

1 2 3 4 
k k ( 1- g k k ( 1- g) k 

k( I •g) k( 1-g) K( 1- g) k( l•g) 

f< ( 1-g ) k( I •g) kl I • g) k( 1-g) 

k k ( 1-g) k k ( 1- 9) k 

5 6 7 8 k k ( I •g k k( I •g ) k 

Figure 5.6: Unit cell for a periodic system consisting of counter rotating rolls. 

In the Rayleigh-Benard system counter rot ating fl u id rolls arise. To 

model t h is situation, we considered a very simple system in which t he unit 

cell contains eight internal states (see Fig. 5.6) . We find for the matrices T , 
BN and BP: 

- 3k k( l +g) 0 k k( l - g) 0 0 0 
k(l - g) -3k k 0 0 k( l + g) 0 0 

0 k -3k k( l - g) 0 0 k(I + g) 0 

T = 
k 0 k(I + g) -3k 0 0 0 k(l - g) 

k(l + g) 0 0 0 - 3k k(I - g) 0 k 
0 k(l - g) 0 0 k(l + g) -3k k 0 
0 0 k(I - g) 0 0 k - 3k k(l + g) 
0 0 0 k( I + g) k 0 k(l - g) - 3k 

(5.50) 

B~ k 

k (5.51) 

B.fi k 

k, (5.52) 

with the other elements of BN and BP equal to zero. The Green's function is 

found by d irect inversion of the mat rix (sl - T ). After expanding it a round 

s = 0, we get for P/' and G;J ( we only list here the elements of G*1 t hat we 
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need the calculation of D*) 

p."t = .!. 
I 8 

.1 
0

.1 .1 .1 llg4 + 9lg2 + 116 
Gu = 44 = G55 = Gss = - k(96g4 + 48092 + 384) 

a·1 a·1 a·1 a·1 5g4 + 37 g2 - 4 
14 = 41 = 85 = 58 = k(96g4 + 48Qg2 + 384) 

g4 - 24g3 + 5g2 - 60g + 4 

k(96g4 + 480g2 + 384) 
G.1 a·1 

15 = 48 = 

•l •1 7g4 + 35g2 + 36g + 28 
G18 = G4s = k(96g4 + 48092 + 384) 

G.1 0 .1 
51 = 84 = 

g4 + 24g3 + 5g2 + 60g + 4 
k(96g4 + 480g2 + 384) 

•l •l 7g4 + 35g2 
- 36g + 28 

G81 = G54 = k(96g4 + 48092 + 384). 

(5.53) 

(5.54) 

The average velocity v of the dispersed particles is again zero and D* equals 

• ( g
2 

) D =k 1+-
2
-- . 

g + 4 
(5 .55) 

A comparison of this result with Eq. (5.48) shows that the particles are more 

effectively dispersed in the case where the fluid rolls have the same direction 

than in the case of alternating rolls. 
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5.3 Conclusion 

In this chapter we have shown that the calculation of the effective diffu­

sion coefficient for the dispersion of particles in spatially periodic systems can 

be reduced to the calculation of the Green 's function for the random walk in 

the periodically repeated unit cell. In the case of small unit cells, as in the last 

example , the Green's function can be calculated explicitly (possibly with the 

use of symbolic manipulators like Macsyma). In other cases, such as a random 

walk in a one-dimensional unit cell with general transition rates, the smalls 

expansion of the Green's function is known analytically (cf. section 2.1.3). In 

all these models, the enhancement of the effective diffusion coefficient due to 

the interplay between convection and molecular diffusion can be calculated. 

In principle , similar calculations can be performed for two-dimensional 

systems where we have periodical boundary conditions in both the horizon­

tal and vertical direction. The expressions for the diffusion coefficients D;x 

and DZY are thus the same, because the influence of the additional periodic 

boundaries will on ly prevail in the Green 's function. 
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Chapter 6 

Stochastic resonance for 

dispersion in oscillatory flows 

In 1955, Giddings and Eyring (76) proposed the following simple model 

for chromatography. A particle in a chromatographic column can be in two 

different states. Either it is in the mobile phase , and it moves along the 

chromatographic column with a velocity equal to the fluid velocity v, or it is 

immobile, while it is adsorbed in the s tationary phase. The rates of change 

from mobile to stationary phase, and vice versa, will be denoted by k1 and k2 

respectively. The average fraction of time spent by a particle in the mobile 

phase, is equal to k2/(k1 + k2). Therefore, the particles move, on the average, 

with a speed equal to u k2/ ( k1 + k2), leading at time t, to a concentration 

peak at a location 

k2 
< x(t) >=Vt k k 

1 + 2 
(6. 1) 

downstream of the injection point. The idea behind flow chromatography is 

that different types of particles will be characterized by different values of the 

exchange rates, which will lead to separated peaks in the chromatographic 

column. However, due to the stochastic nature of the adsorption-desorption 

process, these peaks will not be infinitely sharp. The form and width of these 
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peaks will determine the separating power of the set up . For their simple 

model, Giddings and Eyring were able to calculate explicitly the shape of the 

peaks . In particular , they showed that the probability density P(x , t), describ­

ing the distribution of identical particles along the x axis, approaches a Gaus­

sian form in the limit t-+ oo, with an average value given by Eq. (6 .1) and with 

a mean-square deviation increasing proportional to time (6x = x- < x >) 

< 6x2(t) >= 2 K0 t + O(t). (6.2) 

The proportionality constant /(0 describes the dispersion of the particles in 

the direction of the flow, and is t herefore called the longitudinal dispersion 

coefficient . In t he present problem, it is given by 

(6.3) 

Note that the average position < x(t) > of the chromatographic peak only de­

pends on the ratio of the rate constants , cf. Eq. (6. 1) , while its width depends 

on t he actual time scales involved, cf. Eq. (6.3) . In particul ar, for the simple 

case of equal transition rates k1 = k2 = k, we find that I<0 ,...., k-1 , i.e. the dis­

persion rate decreases as the exchange rate between the layers increases. T his 

can be understood as a resu lt of the law of large numbers : as the frequency 

of exchanges between the layers increases, the fluctuations in the total time 

spent in each layer are suppressed. 

The above-described dispersion process is a simple example of what is 

called Taylor dispersion [20] . In many problems of this type (e .g ., dispersion of 

particles suspended in blood vessels or estuary fl ows), the velocity field under 

consideration is oscill ating in time. In these cases, the corresponding longitu­

dinal dispersion coeffi cient becomes a function of the oscillation frequency w. 

This fun ct ion has been calculated in the li terature for several cases of interest 

[77] - [101). In particular , Mysels [1 01) studied the dispersion for the above­

described two-layer model, with the additional feature that the flow velocity 
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of the mobile phase is equal to v cos(wt). The correct result for K reads : 

(6.4) 

Note that K reduces, in the limit w _. 0, to half the value of the disper­

sion coefficient K 0 for the non oscillatory flow. Note also that K decreases 

monotonously as w increases. These properties are well known and under­

stood, and are also found in other Taylor dispersion problems (see e.g. [98)). 

A feature which seems to have escaped attention, is that the coupling 

between the oscillatory flow field and the stochastic jump process leads to a 

phenomenon of stochastic resonance (102]. To illustrate this, we consider the 

simple case of equal transition rates k1 = k2 = k, for which Eq. (6.4) becomes: 

(6.5) 

For k >> w, the coefficient I< behaves as in the non oscillatory case, namely 

I< "" k- 1
. For k << w however, we have that K "" k, to be contrasted with 

the divergence of /(0 fork -> 0. Moreover , /( reaches a maximum fork = w /2. 

This maximum is the result of a resonance effect between the stochastic hop­

ping process between the two states and the oscillatory velocity field. For 

k = w /2, the hopping of the particles between the two states with rate equal 

to k is, "as much as possible", in phase with the oscillation of the flow with 

frequency w. 

The jump process between the stationary and mobile phase is the so­

called random telegraph signal. The spectrum S(w) of this stationary stochas­

tic process is a Lorentzian, and is, in fact, equal to K times 4/1r. This is not 

a coincidence. It turns out that the longitudinal dispersion coefficient is equal 

to the spectrum of the amplitude fluctuations of the velocity field. The mea­

surement of I< in function of w thus corresponds to an indirect measurement 

of the power spectrum of this stochastic process. 

The outline of this chapter is as follows. In section 6.1, we derive the 

relation between K and the spectrum of the underlying stochastic process. In 

section 6.2, we present the generalization of the Giddings-Eyring model for a 
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time-periodic flow where the transitions between the two states are described 

by a non-Markovian process. In section 6.3, we discuss some cases that have 

been studied previously in the literature. Finally, in section 6.4, we consider 

the problem of field flow fractionation with an oscillatory velocity field. In all 

these examples, the phenomenon of stochastic resonance is put to evidence. 

6.1 The frequency dependent dispersion coefficient 

K 

We are monitoring th e motion of particles along the x axis. The rate of 

change, or velocity, along this axis, is supposed to be of the following form 

OtX = A(t) cos wt, (6.6) 

where A stands for the amplitude of the time-periodic motion . This amplitude 

undergoes an independent stochastic process, which we will assume to be sta­

tionary. In the Giddings-Eyring model for chromatography, A(t) is a random 

telegraph signal, switching between the two possible values A = u and A = 0. 

As a result of the stochastic properties of A, the particles do not fol­

low identical trajectories, and will be dispersed in the course of time around 

an average position < x(t) >. By integration of Eq. (6.6), one finds for 

this dispersion (using the notation 8/ = f- < f >, and assuming that 

< t5x2(t = 0) >= 0 ) : 

< t5x 2 (t) >= lot dr lot dr' < 8A(r)5A(r') > coswr coswr1
. (6.7) 

By introducing the time auto-correlation function of the amplitude 

C( T - r 1
) =< t5A( r)t5A( r') >, (6.8) 
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one can rewrite Eq. (6.7) as follows 

< 8x2(t) > = t lot du C(u) coswu 

1t d C( ) [sinw(2t - u) - sinwu ] (6 9) + U U - U COS WU . . 
0 2w 

In the long-time limit, the following expression for the longitudinal diffusion 

coefficient K is obtained : 

K -- 11·m < 8x2(t) > 1 lo"° 1T' =-
2 0 

drC(r)coswr=-
4

S(w). 
t-oo 2 t 

(6.10) 

We conclude that I< is (apart form a factor rr/4) identical to the spectrum 

of the amplitude fluctuations. Note that positivity of [( is guaranteed by the 

Wiener-Khintchin theorem (103] . 

In the general case of Taylor dispersion, the flow velocity along the x 

axis depends on the transverse location y of the particles, but not on the 

position along the flow axis x. This location y changes in a stochastic manner 

in the course of time, due to the intrinsic random motion, e.g. diffusion , 

of the particles. Hence A is a stochastic process through its dependence on 

y : A(t) = A(y(t)). The time-dependent dispersion and the longitudinal 

dispersion coefficient K can then be obtained from the Green's function of the 

stochastic process y(t). To show this , we start by writing explici tly in Eq. 

(6.7) the average that now refers to an average over they-coordinate 

< 8x2(t) > = 2 fot dr for dr' J dy J dy'8A(y)8A(y') 

P(y'jy; r1 
- r)p8t(y) coswr coswr'. (6.11) 

Here P(y'ly ; r) stands for the conditional probability to go from y toy' during 

a time interval equal to T, and p3 t(y') = limr-oo P(y'ly; r) is the correspond­

ing steady state density. For simplicity, we assume that the particles are 

initially distributed according to the steady state density p' t(y), an assump­

tion that does not influence the long-time behaviour of the particles. The 
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integral over the y variable is over the total state-space of this variable and 

has to be replaced by a summation in the case of a discrete valued variable. 

By introducing Laplace transforms 

(6.12) 

one obtains the following result : 

< 6.i
2(s) > = 2 j dy j dy'6A (y)6A(y') [ 

52 

2
(::: ::2 ) Re.P(y'ly ; s + iw) 

+ s (s2: 4w2) lm.P(y' ly; s + iw)] Pst(y). (6.13) 

Re( z) and Im( z) stand for the real and imaginary part of z, respectively. 

In the limit s - 0, corresponding to the long-time behaviour, the following 

expression is obtained for the longitudinal dispersion coefficient K (this is 

anot her way of writing Eq. (6.10) , for A(t) = A(y(t))) 

I{ = l~ s; < 6i:2(s) >= 4 j dy j dy' oA(y)6A( y') Re.P(y'ly; i w) ps\y). 

(6.14) 

The Laplace transform .P(y'ly; s) of P(y'ly; t) is the so-called Green's function 

of the stochastic process y(t) . Its explicit form is known in several cases of 

interest as we saw in chapter 2. Eqs. (6.13) and (6.14) are the basis for the 

results derived in the next sections. 

Finally, we mention that the calculation of the long-time dispersion co­

efficient /{ can also be related to the time-dependent dispersion for the same 

problem in a non oscillatory flow. The Laplace transform of Eq. (6. 7) in the 

absence of the time period ic term in the velocity field reads 

l
oo 2 l oo < 6.i2 (s) >N.o.= e-st < 6x2(t) >N.O. dt = 2 e-st C(t) dt. (6.15) 

0 S 0 

By comparison with Eq. (6 .10), one easily verifies that 

(6.16) 
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where the subscript N.O. is an abbreviation for non-oscillatory. The calcu­

lation of the frequency - dependent dispersion rate is thus of the same level 

of difficulty as that of calculating the dispersion at all times for the non­

oscillatory problem. 

6.2 Non-Markovian two-layer system 

As a first illustration of the above results, we consider the non-Markovian 

generalization of the Giddings-Eyring model of chromatography. In this case, 

the time T between the changes in state, from velocity A1 cos wt to velocity 

A2 cos wt or vice versa, is a random variable with probability density tj;( r). For 

simplicity, we consider the symmetric case for which this waiting time density 

is the same in both phases. In order to apply the results of the preceding 

section, we need to consider a stationary jump process, for which the waiting 

time density for the first jump, tj;0 (t) is of the following form [27 ,37] : 

100 

t/J( r)dr 
1Po(t) = 

1
::o 

T tj;( r)dr 
0 

(6.17) 

We assume here that the average waiting time < T >, appearing in the denom­

inator of Eq. (6.17), is finite (if this is not the case, there exists no stationary 

jump process with t/J(t) as waiting time density). 

Let P( iJj; t) denote the probability to go from state j at time zero to state i 
at time t (i, j = 1 or 2). Its Laplace transform, the Green's function P(ilj; s) 

is given by (cf. section 2.1.4, Eqs. (2.81) and (2.82)) 

P(lll ; s) = P(2l2; s) = 

P(ll2; s) = P(2ll ; s) 
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s s (1 + J(s)) 

t/>o(s) 

s (1 + J (s))' 
(6.18) 



while the dispersion reads (cf. Eqs. (6 .13), (6.17) and (6.18)) 

0_2( ) _ (A1 - A2)2 [ s
2 + 2w2 

< X S >- 2 52 (s2 + 4w2) 

xRe [-1-. _ 2 (1-1,b(s + i':'.)) l 
s + iw ( s + iw )2 < r > ( 1 + 1/J( s + iw)) 

(6.19) 

+ w Im [-1 -. _ 2 (1 - J( s + i':'.)) l l · 
s(s2 +4w2) s+tw (s+iw)2<r>(l+1/J(s+iw)) 

The diffusion coefficient I< is found from Eqs. (6 .14), (6.17) and (6.18) 

where 

K = (A1 - A2)2 1 - a2 - b2 

4 < T > w2 [(a+ 1 )2 + b2] 

< T > = fo00 

T ip(r) dr 

a = fo00 

COS WT 1/J( r) dr 

b = fo00 

sinwr 1/J(r) dr. 

In the limit w-> oo, Eq. (6.20) reduces to the simple result 

K 
(A1 - A2)2 1 

4 < T > w2' 
W->00 

(6.20) 

(6.21) 

(6.22) 

so that only < r > enters in the determination of the dispersion rate. On the 

other hand , for w -> 0, one finds 

(A1 - A2)2 ( < r 2 > - < T >2
) 

4 4<r> (6.23) 
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which depends both on the first and the second moment of the waiting time 

density tJ,(r). 

For the particular case of an exponential waiting time 

(6.24) 

we recover the result given in Eq. (6.5). This waiting time density corresponds 

to transitions that occur at completely random time points, with an average 

waiting time equal to 

1 
< T >= ,;· (6.25) 

At the other extreme, we consider the case of transitions occurring in a 

perfectly regular manner 

(6.26) 

In this case, instead of calculating the diffusion coefficient [{, we need the 

result for the complete time dependence of the mean square displacement 

given by Eq. (6.20) (the fluctuations in jump times arise from the fact that , 

under stationary conditions, the first jump takes place at a random time T E 

[O, k- 1]) 

i:-2( ) (At - A2)2 
< ux s >= • • 

2 s2 (s2 + w 2)(s2 + 4w2)(e2I + 2 ei cos f + 1) 

x (s (s2 + w2)(e2I + 1) - 2k (s2 - 2w2)(e2I - 1) (6.27) 

+ 2 s ef ( s2 cos I + w2 cos I - 6 k w sin i)] . 
In the limit s - 0, corresponding to the long-time behaviour, one has to make 

the distinction between the following resonant and non resonant regimes. 

93 



For w/k = (2 n + l)1r, (n = 0, 1, 2, 3, .. . ), Eq. (6 .28) reduces to 

s-o 
(6.28) 

In the other cases (w/k =/; (2n + l}1r), one has 

s -o 

! (At_ A
2

) 2 (w cost+ 5 w - 6 k sin t). 
s 8 w 3 ( cos 7; + 1) (6.29) 

In the first case , the transverse jumps are in resonance with the oscillatory 

velocity field , leading to a ballistic separation ( < 8x2 (t) >- t2
). The diffusion 

coefficient [( is thus divergent. When the two processes are not in resonance, 

the disp ersion tends to a constant in the long-time limit, and the diffusion 

constant I< is equal to zero . 

The so-called Erlang waiting time density includes both previous situa­

tions as particular cases : 

or 

"Pn( r) = nk ( nk rt-1 e-nk-r 
( n - 1 )! 

- (nkt 
"Pn ( S) = ( k) . s + n n 

(6.30) 

(6.31) 

For n = 1, one recovers the exponential waiting time density (cf. Eq. (6 .24)). 

The fluctuations around the average jump time < T >= k-1 become smaller 

as one considers larger n . In the limit n -+ oo, the distribution given in Eq. 

(6 .26) is recovered. For general n , I< can be obtained from Eq. (6.20), with 

< T > = 

a 

1 

k 

(6.32) 
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In Fig. 6.1, we have plotted K/(A1 - A2 ) 2 as a function of k for w = 1 and 

different values of n. All these plots exhibit the phenomenon of stochastic 

resonance, discussed in the introduction. As n - oo, the structure of the res­

onances approaches that of the equally spaced jump process, cf. Eq. (6.26). 

In particular, the number of resonances increases as n becomes larger, while 

at the same time, the resonance peaks become sharper. We conclude that 

the resonance structure can be quite complicated if the jump process devi­

ates markedly from a Markov process. On the other hand, the ex istence of 

sharp resonance peaks may be useful to separate particles. Only particles 

corresponding to a k value close to a resonant value will be dispersed. 
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Figure 6.1: (Ai !_(A
2

)2 as a function of k with w = 1 for the two layer 

non-Markovian model with the Erlang-distribution as waiting time density, 

for different values of n = 1, 2, 10,500. The arrows indicate the position of the 

resonant peaks for the case of equally spaced hoppings. 
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6.3 Comparison with some results from the liter­

ature 

Consider the dispersion of particles, suspended in a time-periodic flow 

between two plane parallel plates ( cf. Fig. 6.2). 

y 

L 

y( t) A[y(tl] cosw t 

0 X 

Figure 6.2: Time periodic flow between plane parallel plates. 

The equation of motion of the particles along the x axis reads 

OtX = A [y(t)] cos wt, (6.33) 

where y(t) stands for the transverse location of the particle. We will suppose 

that the particles undergo, in this direction, a diffusive motion with a diffusion 

coefficient D between reflecting boundaries located at y = 0 and y = L. We 

neglect the diffusion in the x direction. The Green's function for this situation 

can be found in the table in chapter 2 (pages 17-20) : 

_ , cosh[Jt"[L-max(y,y')]] cosh [#min(y,y')] 
P(y ly; s) = en ( [;:\ 

vsD sinh Ly 15} 
(6.34) 
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and the dispersion coefficient K reads : 

J< = /~ fo1 

dv fo1 

dw (A (vL)- A) (A(wL)-A) (6.35) 

[

cosh [u + 1) v'TI[l - max( v, w)]) cosh [(i + 1) v'TI min(v, w)] l 
x Re [ ] . 

(i+l)v'TI sinh (i+l)v'TI 

The ratio 

(6.36) 

measures the relative importance of the characteristic time for diffusion across 

the system over the characteristic oscillation time. 

For an oscillating Poiseuille flow between plane parallel plates at a dis­

tance L from each other, the velocity field reads (for y E [O, L]) 

- y ( y) A(y) cos wt= 6 A L I - L cos wt 

and one finds 

A
2 

L
2 

3 ( 3 sinh v'TI - sin v'TI) 
I< = -D 2 n2 1 - rr; rr; rr; . 

H V f2 cosh V f2 - COS V f2 

For a linear shear flow with velocity field (for y E [O, L]) 

-Y A(y) coswt = 2 A L coswt, 

one has 

A
2 

L
2 

1 ( 1 sinhv'TI+ sinv'TI) 
I< = -D 2 n2 1 - rr; rr; rr; . 

~' V f2 cosh V f2 + COS V f2 

(6.37) 

(6 .38) 

(6.39) 

(6.40) 

These results agree with those given previously in the literature [89,98], see 

also [99). 
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The following velocity profile simulates the presence of an immobile 

layer: 

A(y) coswt = { O 
A cos wt 

for O $ y $ I 

for I$ y $ L 
(6.41) 

The flow has a uniform oscillating velocity A cos wt in the top-layer of width 

L - I, while the bottom-layer of thickness / is at rest. After a lengthy but 

straightforward calculation , one obtains from Eq. (6 .36) 

with 

-2 2 

l( = ~ g(O) 
D 

( 6.42) 

g(O) = (cos ( 2qv'n) sinh ( 2 ( q - 1) vn) + cosh ( 2qv'n) sin ( 2 ( q - 1) vn) 

- sin ( 2qv'n) cosh ( 2 (q - 1) vn) - sinh ( 2qv'n) cos ( 2 (q - 1) vn) 

+ sinh 2v'O + sin 2vn] / [ 16 0 3
/

2 
( cosh 2v'O - cos 2vn)] (6.43) 

and q = t;. This result is equiva lent to (but more convenient than) the series 

expansion obtained by Yasuda [100). 

In the limit n - oo, the following asymptotic result is obtained : 

A2 L2 1 
!( = -- -----::-= 

D 16 n312 · 
(6.44) 

Note that, in this limit, K is independent of I , and decreases asymptotically 

as w312
• This somewhat surprising result can be understood from the fact 

that the large frequency behaviour of /( is determined by the crossings of the 

y = I border by the particles close to this border. These crossings occur in a 

self-similar manner with a fr actal dimension eq ual to 1/2 [104). 
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Figure 6.3: T with w = 1 as a function of ¥?- for a Poisseuille flow between 

plane parallel plates (- - -), for a linear shear flow (-.-) and for the velocity 
field given by Eq. (6.41) {- - -). 

To discuss the above results in the context of stochastic resonance, we 

note that 2 D / L 2 is equal to the inverse of the typi cal time for diffusion 

between the boundaries. In Fig. 6 .3, we have plotted K/A2 as a function of 

2D/ L2 for the three cases discussed above (with w = 1). In all these cases, 

one observes that l( goes through a maximum at a specific resonant value of 

2 D/L2
. 

6.4 Field flow fractionation with an oscillatory ve­

locity field 

Field flow fractionation is a chromatographic method first proposed by 

Giddings [105) and independently by Berg and Purcell [106). Particles are 

suspended in a non uniform flow and are subject to a transverse (e.g. electric 

or gravitational) external field. Under the influence of this field, particles of 

a different type will move to different regions of the velocity field, leading to 

separated peaks in the dispersion . Again, it is of interest to calcu late the width 
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of these peaks, since they reflect properties of the random motion of the sus­

pended particles, and determine the separating power of the chromatographic 

technique. Here, we present results for the case of field flow fractionation in a 

time-periodic Poiseuille flow. 

The velocity field for an oscillatory Poiseuille flow between plane parallel 

plates (located at the positions y = 0 and y = L) is given by (cf. Eq. (6.37)): 

- y ( y) A(y) coswt = 6 A L 1 - L coswt, (6.45) 

with A the average solvent velocity. An external field is applied perpendicular 

to the plates (i.e. along the y direction). The particles undergo Brownian 

motion with diffusion coefficient D, on which is superimposed a sedimenta­

tion process with sedimentation velocity v., proportional to the strength of 

the external field. The competition between these two processes leads to the 

establishment of a barometric equilibrium distribution 

where 

st fr e"' 
P (y) = L (e"' - 1) 

v., L 
o-= --

D 

-~ e L (6.46) 

(6.47) 

measures the relative importance of the sedimentation versus diffusion. The 

Green's function for the combined diffusion-sedimentation process, with re­

flecting boundaries at the walls located at O and L was given in section 2.1.2: 

x [ ( 1 + ;:z) cosh [ Qo ( 1 - YI - yl) ] (6.48) 

+cosh [Q 0 (1- YI+ YI) ]+ o-~io sinh [Q 0 (1- YI - Yi)]] 
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with 

and 

Y> max(y, Yo) 

min(y, y0 ). 

(6.49) 

(6.50) 

The average velocity of the dispersed particles < A > is now different from 

the average solvent velocity A 

[L 6 A ( a 2) < A >= lo A(y) p$
1(y) dy = -;- coth 2 - ; . (6.51) 

Inserting the results Eqs. (6.48) and (6 .51) in Eq. (6.14) leads to the following 

expression for the frequency dependent dispersion rate I< : 

]{ = 

with 

- Re dv dw e-(v+w)2 L2 [ I 11 iv 0 

2 D Qsinh Q o o 

x (A(vL)- <A>) (A(wL)- <A>) 

x ( ( 1 + 4~~) cosh ( Q ( 1 - v - w)) + cosh ( Q ( 1 - v + w)) 

+ ;i~ sinh (Q(l - v - w)))] 

Q = ~Va2 + 8irl. 
2 

(6.52) 

(6.53) 

The calculation of the integrals in Eq. (6.52) is quite straightforward, but the 

final result is extremely lengthy. The complete expression for the dispersion 

rate, as well as some limiting results are given in appendix 7.D. 
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Figure 6.4: %1" with w = v3 = 1 as a function of¥?- for field flow fractionation 

in an oscillating velocity field. 

In Fig. 6.4, we have plotted the result obtained for [( from Eq. (6.52) for 

w = 1 and v3 = 1 as a function of 2 D / L 2 . One again observes the phenomenon 

of stochastic resonance. 

6.5 Conclusion 

We have studied the dispersion of particles in time-periodic inhomoge­

neous flows. We saw that the diffusion coefficient can be expressed in terms 

of the Green's function for the transverse stochastic motion of the particles. 

One of the central results is that the dispersion rate [( possesses one or more 

maxima, when plotted as a function of the characteristic time for the intrin­

sic stochastic motion of the particles. These maxima can be explained by a 

phenomenon of stochastic resonance between this stochastic motion and the 

periodic flow. On the other hand , we proved that the longitudinal dispersion 

coefficient K is directly proportional to the power spectrum of this stochastic 

process, which can thus in principle be obtained from the measurement of the 
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dispersion in time periodic flows. Finally, we expect that the measurement 

of the dispersion will be easier for time oscillatory flows , since much shorter 

tu bes can be used in the experiments. 
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Chapter 7 

Appendices 

7.A Relation between discrete time and continu­

ous time random walks and diffusion 

In this appendix, we illustrate by a formal calculation how the results 

obtained for the case of a discrete time random walk can be used for the con­

tinuous time random walk and the diffusion process by taking the appropriate 

limits. We would like to stress that the derivation given here, merely consti­

tutes a "recepy" to make these transitions and for a more rigorous treatment 

of this problem, we refer the reader to the literature (see e.g. [38,103)). 

Consider a discrete time random walk where the particles can jump to 

their nearest neighbours m - 1 and m + 1 with transition probabilities a+ and 

a- resp. We assume that the time interval tit between each jump is fixed . The 

probability to find the walker in site m after n steps, starting its trajectory in 

mo, is governed by the following Master equation : 

P(m, mo; n) = a+ P(m - 1, mo ; n - 1) 

+(1 - a+ - a-)P(m, mo; n) + a- P(m + 1, mo; n - 1) 

P(m, mo; n) L Mmm•P(m', mo; n - 1) V n > 1 (7.A. 1) 
m' 
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where we introduced the transition matrix M with elements 

(7.A.2) 

The solution of Eq. (7.A.l) is equal to 

P(m, mo; n) = }:)Mn)mm'P(m', mo; 0) = (Mn)mmo. (7.A.3) 
m' 

Multiplying both sides with zn and summing over n we get 

"" ~( 1 ) 1 D P(m,mo;z) = L M P(m ,mo;O) = G"'"'
0

(z), 
, 1- Z mm' m 

(7.A.4) 

with GD(z) the Green's function or generating function of the discrete time 

random walk. To relate this result to the continuous time random walk we let 

the time interval 6.t between successive jumps tend to zero 

{ 

.6.t - 0 
n ........ oo 

a± -+O 

with 

In this limit, Eq. (7.A.l) is transformed into 

OtP(m, mo; t) 

+k- P(m + 1, mo; t) 

L Tmm 1 P(m', mo; t). 
m' 

fixed. (7.A.5) 

(7.A.6) 

Here, T is the transition matrix for the continuous time random walk , which 

is related to the matrix M in the following way : 

. M-1 
T= hm . 

~t--+0 .6.t 
(7.A.7) 
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The Master equation (7.A.6) is usually solved by taking the Laplace transform. 

Rearranging the terms we get 

(7.A.8) 

with 

(7.A.9) 

This limiting procedure can be carried out not only on the equations describing 

the random walks, but also on results derived from them, in particular on the 

Green's function itself. Substituting i+!c.t for z and taking the limit tl.t - 0, 

the following relation between Ge ( s) and GD ( z) can be derived [38) : 

Gc(s) = lim tl.t GD (z = 
1 

) 
c.i-o 1 + stl.t · 

(7.A.10) 

Multiplying P( m, m 0 ; n) with zn and summing over n thus constitutes the 

discrete equivalent of taking the Laplace transform of P(m , mo; t). If one is 

interested in the long time behaviour of the probability distribution P(t) , such 

as e.g. in the calculation of the diffusion coefficient, it is not always necessary 

to know the complete s dependence of the Laplace transform .P( s). Using 

Tauberian theorems, one can establish that the long time behaviour of some 

functions P(t) is given by the leading terms of .P(s) ass goed to zero 

-lim P(t) 
t-oo - lim P(s), 

s-o 
(7.A.11) 

and its analog for discrete time steps 

-lim P(n) 
n-oo - lim P(z). 

z-1 
(7.A.12) 

Finally we decribe the limiting procedure transforming the random walk 

into a diffusive process. We will represent the position of the particles by a 

continuous variable x = am with a the length of site which will tend to zero. 

The transition rates k± will diverge , but combinations of the rates scaled with 
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factors of a can be related to the drift velocity and the diffusion constant. 

Using the Taylor expansion of P(z ± a, z0 ; t) around z, one can see that Eq. 

(7 .A.6) goes over into the Focker-Planck equation 

OtP(x, zo; t) = -VOxP(z , zo; t) + Do;P(z, xo; t), 

provided we define P(z, x0 ; t), D and v in the limit a - 0 as 

P(x,xo;t) = lim~P(ma,moa;t) 
a-oa 

(7.A.13) 

(7.A.14) 

The Green's function is again the solution of the Laplace transform of Eq. 

(7.A.13) 

(s - Do;+ VOx)Gc (x, xo ; s) = P(x , xo; 0) = 6(x - Xo). (7.A .15) 
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7.B Moments of the end-to-end distance for a per­

sistant random walk 

In this appendix we show how the moments of the end-to-end distance 

for the persistent random walk can be obtained from the Fourier transform 

F( k, z) of the Green's function. 

A Taylor expansion is a standard procedure on a symbolic manipulator 

(we used MACSYMA) and thus the coefficients Au(z) in Eq. (3.13) can easily 

be obtained. These coefficients all have the following form : 

1 1 3(-1 
Au(z) = (l - z)l+l (l - pz)2l-l (C3l-1Z + ... + C1z) (7.B.1) 

where C are functions of p alone. 

The inversion of Eq. (3.14), and thus of the expansion of Eq. (7.B. l), in order 

to get < R2l(n) >, is made by using the relations 

00 

F(z) = L zn f(n) 

,..,. 
F(z) 

,..,. 
F(z) 

l 
(l - pz)k 

l 
(1-z)F(z) 

sF(z) 

n = O 

,..,. 
/(n) 

pn (k + n - l)! 
n! (k-1)! 
n 
I: f ( i) 
i=O 

"' J(n - 1) with J (0) = 0 
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As an example, we make the inversion for< R4 (n) >. 
< R4(z) > is given by 

00 

< R4 
( z) > = L Zn < R4( n) > 

n=O 

1 1 b
4 

[ 3 s 3 2 4 = (1 - z)3 (1 - pz)3 3 -3p z - (7p + 23p )z 

+(13p2 
- 13p)z3 + (23p + 7)z2 + 3z] . 

Using Eq. (7.B.2) we get 

1 1 00 

(1 - z)3 (1 - pz)3 =]; Zn f(n) 

with 

(7.B.3) 

(7.B.4) 

f ( n) ~ ~ [ (I ~ p )' (p"+' - p 4 
- ( n - l )p'( I - p) - ( n + l ) ( n + 2) ( l ~ p )' ) l · 

(7.B.5) 
And thus 

b4 [ < R
4
(n) > = 3 -3p3 f(n - 5) - (7p3 + 23p2 )/(n - 4) (7.B.6) 

+(13p2 
- 13p)/(n - 3) + (23p + 7)/(n - 2) + 3/(n - 1)] , 

which finally results in Eq. (3.16). 
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7.C Long time behaviour of the moments of the 

displacement for particles in a periodic system 

In this appendix the reduced moments µJ(t), µ}(t) and µj(t), introduced 

in chapter 5, are calculated. They are subsequently used to derive the expres­

sion for the long time behaviour of the moments < x(t) > and < x2 (t) > of 

the displacement of particles in the periodic system under consideration. 

Summing Eq. (5.3) over I we find for µJ(t) : 

Ot µJ(t) = L ( Wjj' µJ,(t) - Wj'j µJ(t)) 
j'-:f:j 

+ L ( Bf;, µJ,(t) - BJ'!j µJ(t)) (7.C.I) 
j'#j 

+ L ( BJ;, µ1,(t) - BJ,j µ1(t)) 
j'-:f:j 

or 

NxM 

Ot µ1(t) = L Tj1 µ?(t). (7 .C .2) 
1=1 

We introduced the matrix T 

(7 .C .3) 

being the transition matrix for the random walk inside the same unit cell 

but with periodic boundaries. The diagonal matrix e lements Tjj contain the 

contributions to t he jump rate from the particles that leave state j 

Tjj = - L (wi'i + BJ'!j + BJii) . (7.C.4) 
j'#j 
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The equations for µ}(t) and µ;(t) are derived in the same way: 

&i µ}(t) L I'jj 1 µ},(t) + L ( Bf;, - Bf;,) µJ,(t) 
j' j' 

(7.C.5) 

&i µJ(t) LTii' µJ,(t) + 2 L ( Bf;, - Bf;,) µ},(t) 
j' j' 

+ L (Bf';,+ Bf;,) µJ,(t). 
j' 

(7.C.6) 

The three equations (7.C.2), (7 .C.5) and (7.C.6) can be solved successively : 

the solution for µ 0 (t) is inserted in the equation for µ 1 (t) , which on its turn 

is needed to obtain µ 2(t). To find the solutions of these equations, we will 

first take the Laplace transform and then solve for the Laplace transformed 

reduced moments ji0 (s) , µ 1(s) and µ 2 (s): 

µn(s) = l oo µn(t)e-&tdt 

After the transformation Eq. (7.C.2) becomes 

NxM 

s µJ(s) - µJ(O) = L Tjl il?(s). 
l=l 

By rearranging the terms can be written as 

NxM 

µJ(s) = L Gj1(s) µ? , 
l=l 

(7 .C.7) 

(7.C.8) 

(7.C.9) 

with G(s) the Green's function of the random walk m the unit cell with 

periodic boundary conditions : 

Gj1(s) = (sl - T)5/ 

p~t NxM-1 l 
_J_ + L Xjo Yol· 

s s - .\o o=l 

(7.C.10) 
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The vector elements Xia and Yai are the i th elements of the right, resp. left 

eigenvectors of the matrix G( s) matching the eigenvalue ) 0 . The state a = 0 

is the stationary state with eigenvalue 0, YOi = 1 and Xia = P/' ( cf. section 

2.1.1). Substituting Eq. (7.C.10) in Eq. (7.C.9) gives for µJ(s) 

p~t NxM NxM-1 l 
0 iJJ(s) = "7 + L L Xja 

5 
_ Aa Ya1 µI (0). 

l=l a=l 

(7.C.11) 

For simplicity, we will assume that the particles are initially located in unit 

cell I = 0 and are distributed according to the stationary distribution : 

< I(O) >= 0 

< / 2(0) >= o. 

(7.C.12) 

We thus have for iJJ ( s) : 

p~t NxM NxM-1 l 
µJ(s) = -

5
; + L L Xjc, Ya/ P/1

. 
s - Ac, 

l=l a =l 

(7.C.13) 

In an analogous way the expressions for µ}(s) and ii;(s) are obtained : 

µ}(s) = L Gj1(s)µJ(O) +LL L Gj1(s)(Bf':n - Bfm)Gmn(s)P~t 

iT;(s) 

I I m n 

(7.C.14) 

L Gj1(s)µ[(O) + 2 LL L Gj1(s)(Bf':n - Bfm)Gmn(s)µ~(O) 
I I m n 

+2LLLLL Gj1(s)(Bf':n-Bfm)Gmn( s)(B[:,. - Bfr) 
I m n r q 

xGrq(s)P;t +LL L Gj1(s)(Bf':n + Bfm)Gmn(s)P~t. 
/ m n 

(7.C.15) 
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To simplify the notations , we have dropped the limits to which the summation 

indices extend . 

The solutions Eqs. (7.C.13) , (7 .C.14) and (7.C.15) will now be trans­

formed back to real time to compute the moments < x(t) > and < x2(t) >. 
The diffusion coefficient D* reflects only the long time behaviour of the parti­

cles. It is therefore not necessary to calculate the complete time dependence 

of the moments, only the leading terms in the limit t - oo will suffice. The 

terms containing $-\ for a -::p O (cf. Eq . (7 .C.10)) give rise to a factor of the 

order of e..\at after inverse Laplace transformation . These contributions will 

vanish as t goes to infinity because all the eigenvalues of the matrix G( s) are 

negative {except for the maximum eigenvalue ) 0 = 0) . In the long time limit, 

the expressions for µJ(t) , µ}(t) and µ;(t) thus reduce to : 

µ~(t) "' P;t + O(C1
) (7.C.16) 

t-> 00 

µ} (t) "' t p~t L I:::C BN - BP ) p$t 
t-> 00 ) Im Im m 

I m 

- L LLXio-}- Yol (Bfm- Bf:n) P~ (7 .C.17) 
o=,;O I m 0 

- LL L Xjo + Yo1 (Bfm - Bf:n) µ~(O) + o(t- 1
) 

o =,;O I m 0 

µ;(t) "' t' PJ' [~par.. -B/m) P,:.f 
t - 00 

+t p$t L L(BN +BP) p$t ) Im Im m 
I m 

-2 t [ ~ ~(B~ - B;r) p:t] 

X [ L LL X;. f- Y.,(Bt.', - B/m) I'.:: l (7.C.18) 
o =,;O I m 0 
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With the above derived results, we can now calculate the the moments < 
x(t) > (Eq. (5.5)) and < x2(t) > (Eq. (5.7)). Carrying out the sum over j, 

the second and the third term in < µ}(t) > (Eq. (7.C.17)) and the third in 

< µ;(t) > (Eq. (7.C. 18)) vanish due to the orthogonality of the left and right 

eigenvectors 

NxM NxM 

L 1 Xjo = L Yoj Xja = 60 0. (7.C.19) 
j=l j=l 

We thus get for the leading terms in the long time limit of the first and the 

second moment : 

M-1 N 

< x(t) > rv 

t - 00 
Nt L L(Bf:n - Bf:) P~ + L L nP;~IN 

I m l=O n =l 

+o(t-1) (7.C.20) 

N2
t
2 [~pB,':',- Bf..) P,;,']' 

M-1 N 

+2N t L L nP~~IN L L(Bfm - B;m) P~ 
l=O n=l r m 

(7.C.21) 
/ m 

-2t LL L L(Bf:n - Bf:)G';;n 
I m n r 

x (BN - BP ) pst + O(to) nr nr r 
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where we introduced G;,:n as 

(7.C.22) 
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7.D Frequency dependent dispersion coefficient for 

field flow fractionation in an oscillating veloc­

ity field 

After a straight forward calculation of the integrals in Eq. (6.52) we 

obtain for the frequency dependent diffusion coefficient K : 

(7 .D.1) 

-RQ(12a:20 4 + 1604 
- a:60 2 

- 4a:4 0 2 + a:8 )] 

+2a: sinh3 in (-(12804 + 80a:40 2 
- a:8 )P + a:2 (802 

- a:4)QP 

+8R0(202 + a:4 )Q - 16o:2 R0(702 
- a:4

)] 

+4a:sinh i02 [4o:2 0QP - 40(802 + 3a:4 )P 

+R( 402 + a:4 )Q - a 2 R(2802 
- a 4

)) 

+4a:2 cosh 'i04 
[ 80P - RQ - a 2 R] ] cosh P sinh P 

- o: cos R [sinh2 'i [ 40(8a:20 4 
- 3204 

- 3o:60 2 + 16a40 2 
- 4o:8 )P 

+4a:2 0Q(a:20 2 + 802 + 2a:4 )P 

+RQ(4a20 4 + 1604 + o:6 0 2 
- 4o:4 0 2 + a 8

)] 

-4a cosh °i sinh °i02 
[ 4a2 0QP - 40(802 + 3a:4 )P 
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+R( 402 + o4 )Q - o 2 R(2802 - o4 )] 

-32020 5 P + 4o2 R04 Q + 4o4 R04] sinh P 

+8 sinh
2 
i03 Q [ 2 sinh i [020 2 + 802 

- o 4
) 

- cosh i [ 802 + o 4
)] cosh2 P 

+o sin R [sinh
2 i [02 (3602 0 4 + 24004 

- 06 0 2 + 7604 0 2 
- 0 8

) p 

+Q( 4a2 0 4 + 1604 + a 6 0 2 
- 4a40 2 + o 8 )P 

+4R11(8a2 0 4 
- 3204 

- 3a60 2 + 16a4 0 2 
- 4a8

) 

-4a2 ROQ(a20 2 + 8112 + 2a4
)] 

-4a cosh i sinh i02 [(402 + o 4 )QP + a 2(2802 - o 4)P 

-4o2 ROQ - 4R11(8112 + 3a4 )] 

+4a2 0 4 QP - 404 0 4 P - 32a2 Rr25
] cosh P 

+a cos R sin R [- cosh i sinh2 i 
[-a-2 (8402114 

- 24004 
- cr6112 - 76040 2 + o8 )P 

+Q{l2a20 4 + 1604 
- 06 0 2 

- 404 0 2 + o8 )P 

- 16R11(10o2 0 4 + 804 
- a-6 0 2 

- 404 0 2 + a-8
) 

+8a2 ROQ(o20 2 - 402 - o4 ) ) 

+4 sinh i112 
[( 402 + a 4 )QP + 0 2(28112 

- o4 )P 

-4o2 R11Q - 4R11{802 + 3o4 )] 
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with 

+2o sinh3 in [80(202 + o:4)QP + 160:20(702 
- o4)P 

-R(12804 + 80040 2 
- 08

) - o:2 R(802 
- o:4 )Q] 

-4o2 cosh in4 [QP - o2 P - 8Rn]] 

-8 sinh2 ~ cos2 R 0 3Q 
2 

/ {16o:2 sinh3 in7 Q [cosh(2P) - cos(2R)]} 

Q = v'64n2 + o 4 

p = 

R = 

JQ + o:2 

2\/'2 

JQ - o:2 
2\/'2 . 

(7.0.2) 

For small w this reduces to : 

£
2 

A
2 

{ 3 [ 2 . 3o 3o: 
I( = ~ 

06 
sinh3 ~ 3 ( o: + 28) smh 2 - 300: cosh 2 

+ (o:4 + 2lo2 
- 252) sinh i- - 60: (o:2 

- 5) cosh i-] 
0 2 

[ 2 . 5o 5o: 
-

10 
. 5 20 (1260 + 475) smh -

2 
- 302400 cosh -

2 400: smh % 

+ 2 (2906 
- 60004 

- 91800:2 
- 237600) sinh 

3
; + 5 (-o:7 + 36ct5 

3o: 
- 115203 + 18144a) cosh 2 
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+2 (153a6 
- 3960a4 + 21240a2 + 475200) sinh i-

+ 5 (a-7 
- 612a5 + 1152a3 

- 12096a) cosh i-] + O(fi) } . (7 .D.3) 

The first term in the series has been obtained previously by Giddings et al. 

[107]. The leading behaviour for large w is given by : 

2 -2 
L A 9 [ 2 . 3a 3a 

!{ = -D 2 2 . 3 3 (a + 8) smh - - 4a cosh -
2 n 16a smh :: 2 

- (3a2 + 24) sinh i + 4a cosh i] + ocrr 5l 2
). (7 .D.4) 
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