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Abstract – Operational planning decisions of a carrier consist 

of accepting transport requests and constructing vehicle routes. 

However, a carrier has only a limited capacity within his own 

vehicle fleet and can only serve a selection of clients. Transport 

requests are accepted only if they contribute to a higher total 

profit. This practical aspect is modelled with the Pickup and 

Delivery with selection of customers. A mixed-integer 

programming formulation is given. It is indicated how the 

problem is solved by means of a meta-heuristic, more specifically 

a tabu-embedded simulated annealing algorithm. A number of 

alternative settings may appear in practice. They are discussed in 

this article. 

Keywords – Heuristic algorithms, operations research, 

optimisation, vehicle routing.  

I. INTRODUCTION

The operational planning decisions of a carrier consist of 

accepting transport requests of customers and constructing 

daily vehicle routes. Several customers may have less-than-

truckload requests to be transported between two specified 

locations: these customers are consolidated into vehicle tours 

by the carrier. However, a carrier has only a limited capacity 

within his own vehicle fleet. Therefore, the carrier can only 

serve a selection of customers. Transport requests of 

customers are accepted only if they contribute to a higher total 

profit. But many companies outsource their transport activities 

to reduce overhead costs. Logistics service providers are hired 

to execute the transportation services. Such companies are 

called freight carriers, which operate in the “hire and reward” 

mode. Operational planning problems relate to decisions, such 

as crew scheduling (assignment of crews to vehicles or 

transhipment facilities); empty balancing (preparation of the 

operations for the next planning period), and vehicle routing 

and scheduling (scheduling of the services for the pickup and 

delivery phases). A carrier faces the daily problem of optimal 

scheduling of the transport orders. Each day a carrier receives 

transport requests from customers, which have to be executed 

within a certain time period. To obtain a maximum profit, the 

carrier has to group certain orders and create an optimal 

sequence of paired pickup and delivery tasks. In literature, this 

problem is called a pickup and delivery problem (PDP). When 

a carrier has to decide whether to accept a certain request, the 

problem is defined as a Pickup and Delivery Selection 

Problem (PDSP). 

“Tactical request” acceptance problems require a general 

decision about the future acceptance of different requests. 

Mostly, this type comprises all requests of a certain customer. 

“Operational request” acceptance problems require that the 

carrier company has to decide about the acceptance of 

particular requests, which are not part of long-term contracts. 

Such a request is accepted if expected revenues cover 

expected additional costs caused by this additional request. If 

a carrier refuses a customer demand, it may be expected that 

also all other requests of this customer are lost for this carrier. 

The traditional PDP is extended to a PDSP by allowing a 

selection of transportation requests. This leaves the carrier 

with the option to discard transportation requests, which lead 

to a lower total profit. After planning and scheduling vehicles 

into routes as in a classical PDP, a selection within the 

transportation requests has to be made. The PDSP is 

formulated as a mixed integer linear program. The objective of 

the PDSP is to maximise the profit collected along the vehicle 

tours. Profit is defined as the sum of the total revenue 

collected on all the tours minus the total cost of performing the 

tours. A number of constraints are added. They relate to flow 

conservation constraints, vehicle constraints, time window 

constraints, and pairing and precedence constraints. 

A number of alternative settings may appear in practice. 

Four of those settings are discussed: (1) Compulsory requests: 

due to long-term contract or for other commercial reasons, 

some of the requests cannot be neglected, even if they do not 

contribute fully to profit; (2) Fixed vehicle cost: for each 

vehicle that is executing a route a fixed vehicle cost is added 

to the total operating cost of the carrier. The carrier has to 

consider whether or not a vehicle will be performing a route; 

(3) Logistics service providers: in order to increase the number

of transport requests that are accepted, a carrier may outsource

requests to a logistics service provider (LSP). The

consideration has to be made whether a request is performed

with the vehicle fleet of the carrier, outsourced to an LSP or

refused; (4) Alternative revenue model: the assumption is

made that the price is fixed and that revenue depends on the

distance between the pickup and delivery point of the

customer. In most real life cases, transport prices depend on

the total number of units transported and not only on the

distance travelled.

II. LITERATURE REVIEW

The PDP is a generalisation of the vehicle routing 

problem (VRP) [1], [2]. In a VRP, generally all trip requests 

either originate or terminate at a single depot. In a PDP, the 

trip requests are made between two locations that are outside 

the depot. In this section, the division between paired and 

unpaired pickup and delivery points is used as in [3]. Pickup 

and delivery vehicle routing problems are characterised with 
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unpaired pickup and delivery locations. In this case, an 

identical load is considered, and each unit picked up may be 

used to serve a delivery request. A classical pickup and 

delivery problem, on the other hand, has paired pickup and 

delivery locations. Every request is associated with a paired 

origin and destination location and a specified load. 

The literature related to this specific case of the PDP, the 

pickup and delivery selection problem, relies on two main 

bodies of routing literature: on the one hand, the VRP with 

profits and, on the other hand, literature concerning PDP. A 

review of the literature on the VRP with profits and on the 

pickup and delivery selection problem is provided in [4]. 

This research offers the following novelties compared to 

existing research. The traditional PDP is extended to a PDSP 

by allowing a selection of transportation requests. This leaves 

the carrier with the option to discard transportation requests, 

which lead to a lower total profit. The problem at hand 

considers more than one commodity and paired pickup and 

delivery locations. This is different from the study of [5] 

where a single commodity is considered and pickup and 

delivery are unpaired. Furthermore, multiple vehicles are 

considered and transport loads are less-than-truckloads. In the 

study of [6], only a single vehicle is assumed and in [7][10] 

full truckloads are investigated.  

The paired pickup and delivery locations together with 

the multiple vehicles and less-than-truckload requests make 

the PDSP very hard to solve. The only paper that studies a 

PDSP with similar problem characteristics but in a different 

problem context is [11]. Their heuristic results are not 

compared to exact solutions or lower bounds, and the reported 

results are briefly described. This hinders the comparison of 

computational results. 

III. PROBLEM FORMULATION

In this section, a mathematical representation of the 

problem is given. First, the key characteristics of a PDSP are 

described. Next, all symbols are introduced. Finally, the 

objective function and problem constraints are formulated. 

The problem is defined as a static PDSP problem. The 

formulation is an adaptation of the PDPTW formulation of [1]. 

A. Key Characteristics of PDSP

Not all requests have to be accepted, but every fulfilled 

request leads to revenue. If a request is accepted, a reward is 

achieved when the transport is done successfully. For every 

request, a hard time window is assigned to both the pickup and 

delivery location. A request is of the type “less-than-

truckload”. Furthermore, pickup has to occur before delivery 

of each request (Precedence constraint), and pickup and 

delivery have to be performed by the same vehicle (Pairing 

constraint). In the model, multiple vehicles are used of equal 

capacity. All vehicles depart from and return to a depot of the 

carrier. Finally, travel costs and travel times for each link are 

known and assumed to be constant. 

B. Introduction of Symbols 

Index Sets 

𝑖 ∈ 𝑃 = {1, … , 𝑛}: set of requests originating at the pickup 

locations. 

𝑖 ∈ 𝑁 = 𝑃 ∪ 𝐷 ∪ 𝑂: set of nodes where 𝑃 = {1, … , 𝑛} is the 

set of pickup locations, 𝐷 = {𝑛 + 1, … ,2𝑛} is the set of 

delivery locations, and O represents node 0, i.e. a single depot. 

𝑘 ∈ 𝐾 = {1, … , |𝐾|}: set of identical vehicles. 

Parameters 

Q: uniform  vehicle capacity. 

ct: unit distance travel cost which is the same for each 

vehicle. 

qi:  the quantity to be picked up or delivered at node 𝑖 ∈ 𝑁\
𝑂. It is positive if 𝑖 ∈ 𝑃 and negative if 𝑖 ∈ 𝐷. 

Revi: the revenue earned from request 𝑖 ∈ 𝑃. 

dij: the distance between two nodes 𝑖 𝑎𝑛𝑑 𝑗 ∈ 𝑁. 

tij:  the travel time between two nodes 𝑖 𝑎𝑛𝑑 𝑗 ∈ 𝑁. 

sti: service time at node 𝑖 ∈ 𝑁\𝑂. By convention the service 

time st0 at the depot is zero. 

ei:  the earliest service start time at node 𝑖 ∈ 𝑁\𝑂. 

li: the latest vehicle arrival time at node 𝑖 ∈ 𝑁\𝑂. 

sk:  the operation start time of vehicle 𝑘 ∈ 𝐾. 

fk:  the operation finish time of vehicle 𝑘 ∈ 𝐾. 

Decision Variables 

Two sets of binary variables are defined: flow variables X and 

request acceptance variables Y. 

𝑋𝑖𝑗 
𝑘 = 1 if vehicle k travels from i to j; 0 otherwise (𝑖 , 𝑗 ∈

𝑁, 𝑘 ∈ 𝐾). 

𝑌𝑖
𝑘 = 1 if vehicle k performs request i; 0 otherwise  (𝑖 ∈ 𝑃, 𝑘 ∈

𝐾). 

In addition to these binary variables, two sets of continuous 

variables are introduced to keep track of service completion 

times and vehicle loads. 

Ti
k is service completion time at node 𝑖 ∈ 𝑁. 

Li
k is load of vehicle k after serving node 𝑖 ∈ 𝑁. 

Requests. A carrier receives a set P of requests. Each request 

consists of a pickup location, a delivery location, a quantity to 

be shipped and a revenue if the request is completely satisfied. 

The quantity qi may either be a positive or a negative number, 

depending on the type of operation, either a pickup or a 

delivery task. 

Locations. Three different types of locations may be 

distinguished, each with their own time window. A set of 

pickup locations and a set of delivery locations are included, 

each with earliest operation time ei, latest operation time li. A 

single depot O is available, where each vehicle starts and ends 

its route. 

Network. Network G(A,N) is given with 𝑁 = 𝑃 ∪ 𝐷 ∪ 𝑂 – the 

set of nodes and A – a set of undirected arcs. Within the 

network, the distance between two nodes i and j is given as dij. 

The travel cost ct expresses the charge for travelling a single 

distance unit. The cost to travel a link is expressed as ct.dij. 

The variable tij represents the time needed to travel from node 

i to node j. 

Vehicles. The carrier has a given homogenous fleet of own 

vehicles. Each vehicle k has capacity Q. Vehicles are bound in 

time by their driver due to legal driving time restrictions. Each 

vehicle has start time sk and finish time fk. To keep track of the 
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content of the vehicle, so that it does not exceed the capacity, 

load variables Li
k are introduced. 

Operations. A vehicle performs several operations on its 

route. Each pickup and delivery operation takes a certain 

amount of operation time oti to perform per unit that needs to 

be handled. The total time a vehicle spends at the pickup or 

delivery location is oti .qi . A vehicle is allowed to arrive early 

at the location, but must then wait until the start of the time 

window. A vehicle is not allowed to finish its service at a 

location after time li. A drive-first strategy (drive first and wait 

at the arrival location) is used for the PDSP. 

 

Objective Function 

The objective of the PDSP is to maximise the profit 

collected along the vehicle tours. Profit is defined as the sum 

of the total revenue collected minus the total cost of 

performing the routes. The total revenue is found by 

accumulating all revenues of the requests that are accepted and 

executed. 

𝑅𝑒𝑣𝑡𝑜𝑡 = ∑ ∑ 𝑅𝑒𝑣𝑖 . 𝑌𝑖
𝑘

𝑖∈𝑃𝑘∈𝐾

 

 

The total cost (Ctot) is calculated as the sum of the costs of 

each link travelled by a certain vehicle k. 
 

𝐶𝑡𝑜𝑡 = ∑ ∑ ∑ 𝑐𝑡 . 𝑑𝑖𝑗

𝑗∈𝑁

 . 𝑋𝑖𝑗
𝑘

𝑖∈𝑁𝑘∈𝐾

 

 

The objective function to be maximised is: 

𝑃𝑟𝑜𝑓𝑖𝑡 =  [𝑅𝑒𝑣𝑡𝑜𝑡 − 𝐶𝑡𝑜𝑡]. 

The formulation is different from a well-known formulation 

by [12] in the following way: (1) the objective function is 

different; (2) the non-linear constraints are linearised; and (3) 

variable Ti
k refers to the end of service rather than the start of 

service. 

 

Constraints 

Flow conservation constraints. These constraints are 

introduced to make sure that vehicles entering a location   also 

leave the location. 

∑ 𝑋𝑖𝑗
𝑘 − ∑ 𝑋𝑗𝑖

𝑘 = 0

𝑁

𝑗=1
𝑗≠𝑖

𝑁

𝑗=1
𝑗≠𝑖

, ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾 

 

Vehicle constraints. Each vehicle starts and ends its route at 

the depot. An unused vehicle stays at the depot. 

∑ 𝑋0𝑗
𝑘 ≤ 1

𝑗∈𝑃

, ∀𝑘 ∈ 𝐾 

∑ 𝑋𝑖(2𝑛+1)
𝑘 ≤ 1

𝑖∈𝐷

, ∀𝑘 ∈ 𝐾 

 

Every request may be executed by at most one vehicle. 

 

∑ 𝑌𝑖
𝑘

𝐾

𝑘=1
≤ 1, ∀𝑖 ∈ 𝑃 

 

A vehicle cannot load more freight than its capacity. 

𝐿𝑖
𝑘 ≤ 𝑄𝑚𝑎𝑥 , ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁 

 

To keep track of the load of a vehicle at a certain moment, the 

following constraints are necessary. Each vehicle leaves from 

and returns to the depot empty. 

𝐿0
𝑘 = 0, ∀𝑘 ∈ 𝐾 

𝐿𝑗
𝑘 − 𝐿𝑖

𝑘 − |𝑞𝑗| ≥ 𝑀1. (1 − 𝑋𝑖𝑗
𝑘 ),  

∀𝑖, 𝑗 ∈ 𝑁 𝑎𝑛𝑑 𝑖 ≠ 𝑗, ∀𝑘 ∈ 𝐾 

 

Time window constraints 

Each node has to be served within its time window. The start 

of the operation, as well as the end of the operation has to fall 

within the time window. 

𝑒𝑖 + 𝑜𝑡𝑖. |𝑞𝑖| ≤ 𝑇𝑖
𝑘 ≤ 𝑙𝑖 , ∀𝑖, 𝑗 ∈ 𝑁\Ο, ∀𝑘 ∈ 𝐾 

  

To keep track of time, a time variable is introduced. Initially, 

the time variable is set equal to the start time of the vehicle.  

𝑇0
𝑘 = 𝑠𝑘 , ∀𝑘 ∈ 𝐾 

 

A vehicle may not exceed its finish time. 

𝑠𝑘 ≤ 𝑇𝑖
𝑘 ≤ 𝑓𝑘 , ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾  

  

The arrival time at a node may not precede the earliest 

operation time allowed on that location. This is specified in 

the following constraint: 

𝑇𝑖
𝑘 + 𝑡𝑖𝑗 − 𝑇𝑗

𝑘 + 𝑜𝑡𝑗  . |𝑞𝑗| ≤ (1 − 𝑋𝑖𝑗
𝑘 ) . 𝑀2,  

∀𝑖, 𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾  
 

Due to the time window constraint on 𝑇𝑖
𝑘, it is assured that the 

operation does not start before ej. 

 

Pairing and precedence constraints 

If a request is performed, then vehicle k has to finish its 

operations at the pickup location i before it can visit the 

associated delivery location n+i. This is known as the 

precedence constraint expressed as: 

𝑇𝑖
𝑘 + 𝑡𝑖(𝑛+𝑖) − 𝑇𝑛+𝑖

𝑘 ≤ (1 − 𝑌𝑖
𝑘) . 𝑀2, ∀𝑖 ∈ 𝑃, ∀𝑘 ∈ 𝐾 

 

It is not allowed to split a request over multiple vehicles. A 

vehicle has to perform both the pickup and the delivery 

operation. This is known as the pairing constraint expressed 

as: 

∑ 𝑋𝑖𝑗
𝑘 = 𝑌𝑖

𝑘

𝑗∈𝑁\𝑂

, ∀𝑖 ∈ 𝑃, ∀𝑘 ∈ 𝐾 

and 

∑ 𝑋𝑗(𝑛+𝑖)
𝑘 = 𝑌𝑖

𝑘
𝑗∈𝑁\𝑂 , ∀𝑖 ∈ 𝑃, ∀𝑘 ∈ 𝐾. 

 

In the expression, two big M-values are used, where M stands 

for a sufficiently large number. The value of M1 is set equal to 

the capacity of the vehicles, and the value of M2 is set equal to 

the maximum length of a working day. 

IV. SOLUTION METHOD 

The problem under study is solved by means of a 

metaheuristic. The heuristic is based on the tabu-embedded 

simulated annealing algorithm of [13]. The algorithm starts 
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with an insertion heuristic to create the first feasible solution 

(Sbest). This solution is further improved by an improvement 

heuristic. Instead of repeating the tabu search until the 

procedure terminates, it is restarted from the current best 

solution (Sbest) after several iterations (STOP) without 

improvement. At the same time, the global annealing 

temperature T is reset. After a number of restarts K without 

improvement the algorithm is terminated. The generation of 

new best solutions (S’best) is done via a tabu-search algorithm. 

The TSA algorithm is described below. 
 

T(abu-embedded)S(imulated)A(nnealing) algorithm 
Empty tabu set 
Set gNoImpr = 0 
Set Sbest to initial solution from insertion heuristic 
Sbest = PostOptimize(Sbest) 
Sbest = LocalSearch(Sbest) 
while gNoImpr < K do 
  S = Sbest 
  S′best = TABU(S) 
  if Profit(S′best) > Profit(Sbest) then 

Set Sbest to S′best and gNoImpr = 0 
  else 

gNoImpr = gNoImpr + 1 
  reset T to T0 
  end if 
end while 
output Sbest 

 

The TSA algorithm makes use of some procedures called 

PostOptimize, LocalSearch and TABU.  

The PostOptimize procedure relates to a REORDER 

operator. Starting from a solution, the operator tries to lower 

costs by reordering the nodes within existing routes. As no 

new requests are added, the revenue remains the same. Hence 

to increase profit, the cost of performing a route should 

decrease, i.e. when the total distance, the only cost driving 

factor, decreases. The operator tries to improve the original 

route by serving pickup points earlier in the route and delivery 

points later. 

The LocalSearch procedure relates to an improvement 

heuristic in which four local operators are used to improve the 

initial solutions. Two operators are classical PDP operators. 

Two operators, called SHIFT and EXCHANGE, are similar to 

the local search operators of [13]. Both other operators are 

specifically designed for this heuristic. The INSERT operator 

tries to insert, from a list of non-served requests, a request in a 

route in a feasible way. If the insertion of such a request leads 

to a higher profit for the route considered, the request is 

inserted in the position with the lowest cost. The SWITCH 

operator removes the request with the lowest profit from the 

selected route and replaces it with a non-served request. These 

requests are switched if they result in a higher total profit. 

The TABU(S) procedure aims to find from existing solution 

S a new local optimum (S′local) with the help of the 

SHUFFLE (S) algorithm. Random feasible solution (S′) is 

generated with the SHUFFLE(S) algorithm, which is not in the 

tabu list. This random solution (S′) is further optimised by 

means of the LocalSearch function. This leads to a new local 

optimum (S′local), which is compared to the current local 

optimum (Slocal). If it performs better, the new local optimum 

is stored in Slocal and transferred as an output of the TABU(S) 

algorithm. If the current local optimum (Slocal) is not 

improved, the search continues with the new found local 

optimum (S′local). The algorithm repeats itself until no 

improvement is found for a certain number of iterations 

(STOP). The pseudo-code of the Tabu Search procedure is 

given below. 
 

Tabu Search procedure TABU(S) 
Set Slocal = S 
Set NoImpr = 0 
while NoImpr < STOP do 
   S′ = SHUFFLE(S), with S′ not in tabu set 
   S′local = LocalSearch(S′) 
   S′local = PostOptimize(S′local) 
   if Profit(S′local) > Profit(Slocal) then 
     Set Slocal to S′local and NoImpr = 0 
   else 
     NoImpr = NoImpr + 1 
   end if 
   Set S = S′local 
end while 
output Slocal 

V. VARIANTS OF THE PROBLEM 

A. Compulsory Requests 

In some cases, it is possible to decide for each transport 

request whether it is fulfilled by the carrier or by a third party 

LSP. For high quality goods or because of reliability or 

trustiness, sometimes customers prohibit subcontracting. The 

customer requires fulfilment of the transport request by the 

carrier. Such a request is called a “compulsory request”. Only 

limited research has concentrated on these kinds of requests, 

but important publications are [14] and [15]. 

The optimisation model has to be slightly adapted. Let 

index icomp be used for the requests which are compulsory and 

iNcomp for those which are non-compulsory. The constraints to 

express this are as follows: 

 

∑ 𝑌
𝑖𝑁𝑐𝑜𝑚𝑝
𝑘

𝐾

𝑘=1
≤ 1, ∀𝑖 ∈ 𝑃 

 

∑ 𝑌𝑖𝑐𝑜𝑚𝑝
𝑘

𝐾

𝑘=1
= 1, ∀𝑖 ∈ 𝑃 

 

To cope with compulsory requests, modifications to the 

TSA algorithm have to be made. The insertion heuristic is 

adapted as it is no longer obliged for each request to have a 

positive impact on the profit of a route. Furthermore, the 

insertion of compulsory requests has to be ensured. A list is 

created, which contains all compulsory requests. The insertion 

heuristic starts by placing the requests from this list into 

vehicle routes. Only the feasibility concerning time windows 

and vehicle capacity are taken into account. For the first 

compulsory request to be inserted into a route it is not checked 

whether the request is profitable. Subsequent compulsory 
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requests are inserted into the most profitable place in an 

existing route. This procedure leads to a higher overall profit 

or a lower loss within a route. Again, as in the original 

insertion heuristic, pickup and delivery are inserted separately 

at their best location keeping in mind the time precedence 

constraint. If a compulsory request cannot be inserted in an 

existing route at a profitable place, a new vehicle is added as 

long as vehicles are available. The first compulsory request of 

a new route may either lead to a profit or a loss. Further 

compulsory requests are inserted at the most profitable place 

in an existing route. When all available vehicles are in use and 

some compulsory requests remain non-served, they are 

inserted at the first available place regardless of the profit or 

loss. When all compulsory requests are inserted, the remaining 

requests are selected until all vehicles are fully used or no 

request can be inserted at a profit. Requests which are not 

compulsory are only inserted if the total profit increases. 

B. Fixed Vehicle Cost 

The cost evaluation of the routing plan consists of a variable 

part related to the distance or time travelled. This variable part 

might be different depending on whether each transport 

request is fulfilled by a carrier or by a third-party logistics 

service provider. But in addition to the variable part, also a 

fixed part may be included in the cost. The fixed vehicle cost 

represents the daily operating cost, the maintenance cost, and 

the labour cost. In case, a vehicle routing model does not 

assume that the fleet of vehicles is of a fixed size, it makes 

sense to associate a fixed cost on the use of a vehicle.  

Decisions on the number of vehicles in the fleet of the 

carrier are tactical decisions and the cost of the vehicles is 

considered in the long run. Furthermore, it is supposed that a 

carrier has to pay its drivers regardless whether they operate a 

vehicle or not. This means that its cost structure does not 

change when a vehicle is used and, hence, no fixed vehicle 

cost is induced. In this section, this assumption is relaxed. For 

each vehicle that is executing a route, a fixed vehicle cost is 

added to the total operating cost of the carrier. The carrier has 

to consider whether or not a vehicle is performing a route. 

Only when the profit obtained from a route is high enough to 

cover the fixed vehicle cost, the route will be considered in the 

solution. This might lead to accepting fewer transport requests 

from customers. 

In the mathematical programming model, the objective 

function needs to be modified. The total cost (Ctot) is 

calculated as the sum of the costs of each link travelled by 

certain vehicle k plus the fixed cost of each vehicle which is 

used (identified by the variable leaving the depot). 

𝐶𝑡𝑜𝑡 = ∑ ∑ ∑ 𝑐𝑡 . 𝑑𝑖𝑗

𝑗∈𝑁

 . 𝑋𝑖𝑗
𝑘

𝑖∈𝑁𝑘∈𝐾

+ ∑ ∑ 𝐶𝑣𝑒ℎ . 𝑋𝑜𝑗
𝑘

𝑗∈𝑁𝑘∈𝐾

 

Also in this case the TSA algorithm is easily modified. 

First, the insertion heuristic and post-optimisation operators 

are run. Afterwards, the fixed cost of the vehicle is added to 

the cost of each of the constructed routes. In the third step, 

local search is applied to obtain the most profitable routes 

given the fixed vehicle cost. The fourth step checks whether 

all routes are profitable. A non-profitable route is removed and 

the requests from these routes are stored in a list. If one of the 

initially constructed routes is not profitable, fewer vehicles are 

used in the optimal solution. Next, the TSA algorithm is rerun 

taken the previous solution (with the unprofitable routes) 

removed as input. However, this time only the remaining 

vehicles are considered. For this reason, the requests removed 

from a deleted route together with the other non-served 

requests are considered for insertion in one of the remaining 

routes during the second run of the algorithm. As fewer routes 

are considered, the run time of the rerun is lower compared to 

the first run. Finally, the profitability of the routes is evaluated 

again and the local search heuristic is applied. 

C. Logistics Service Provider 

In order to increase the number of accepted transport 

requests, a carrier may outsource requests to a logistics service 

provider. The consideration has to be made whether a request 

is performed with the vehicle fleet of the carrier, outsourced to 

an LSP or rejected. In [13] a vehicle routing problem is 

studied, which allows subcontracting a part of the requests to 

external carriers. Their results show large cost savings by 

allowing subcontracting. The opportunity is also considered to 

outsource requests to external carriers in [17]. The objective is 

to minimise the sum of all costs, internal and external. Both 

the studies of [16] and [17] do not outsource to an LSP or 

reject. In our case, the pickup and delivery selection problem 

with an LSP (PDSPLSP) induces a fixed cost for each request 

outsourced to the LSP. The PDSPLSP checks if it is cheaper 

to perform the request using his own vehicle or to pay the LSP 

for the service. The third option is to reject a customer request. 

The optimal routes constructed for a carrier in the PDSPLSP 

are not necessarily the same as the optimal routes for the 

PDSP. In the PDSPLSP a carrier may decide to perform a 

request that remains non-served in the PDSP instead of an 

accepted request, even if it leads to a lower profit. This may be 

the case because the profit obtained from outsourcing a 

request, which is accepted in the PDSP, may be higher than 

the profit of outsourcing requests that are non-served in the 

PDSP. Thus, within the PDSPLSP the total profit of their own 

routes may be lower, but the profit obtained from the 

outsourced requests may be sufficiently high to balance this 

loss. This may lead to a higher total profit. 

The insertion heuristic of the TSA algorithm is adapted to 

incorporate profits from outsourcing requests to an LSP. In the 

first step, the potential profit from outsourcing a request is 

calculated for all requests based on the difference between the 

revenue gained and the price paid to the LSP. In the next step, 

requests are added to routes the same way as in the insertion 

heuristic. However, it is not only checked whether the request 

is profitable, but also if it is more profitable than outsourcing a 

request to an LSP. When a request is inserted into a route of a 

carrier, it cannot be outsourced to an LSP. The INSERT and 

SWITCH operators are slightly modified. Each time a request 

is inserted into a route from the list of non-served requests, it 

is verified whether the profit is higher than the potential profit 

obtained when outsourcing the request. A request may be 

removed from a route, when a higher profit can be obtained 

from outsourcing the request to an LSP. Within the 

SHUFFLE(S) algorithm, the request is removed regardless of 

the potential profit to allow for extra diversification from the 

current local optimum. At the end of the algorithm, all 
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requests that remain non-served by the carrier are checked. If 

the fixed cost to outsource the request is less than the revenue 

gained from the customer, the request is outsourced to an LSP. 

D. Alternative Revenue Model 

The pricing of transport requests may be formulated in two 

ways: either the price is fixed resulting in a selection problem 

for the carrier to determine the profitable requests, or the 

pricing is performed according to the cost incurred to execute 

the request. Mostly the assumption is made that the price is 

fixed and the revenue depends on the distance between the 

pickup and delivery point of the customer. Hence, it is at the 

discretion of the carrier to select customers based on the 

potential revenue keeping in mind his limited resources.  

In many real life cases, transport prices depend on the total 

number of units transported and not only on the distance 

travelled. The heuristic may include this variant. The only 

difference relates to the calculation of the proposed revenue in 

the input data. Therefore, instances where transport revenue 

depends on the number of units transported may be solved as 

well. This means that the assumption of a fixed revenue per 

kilometre is relaxed. Now the carrier has the opportunity to set 

his price according to the costs made to execute the transport 

requests. The objective is to try to accept as many customers 

as possible given the limited resources and later to determine 

the price that each customer has to pay to cover the total cost.  

The problem at hand is a selection problem due to the fixed 

vehicle size and the limited number of working hours per day, 

but the objective is no longer to maximise the profit. The 

carrier aims to serve as many customers as possible during a 

single day. In a final step, the transport price for each 

customer is calculated based on the minimum price necessary 

to cover the cost made and a fixed profit margin. From the 

viewpoint of the carrier, it is assumed that there is no cost 

difference between the routing of an empty truck or a full 

truck. The cost of a truck is considered to depend only on the 

distance travelled. The extra fuel consumption for driving a 

loaded truck is considered to be marginal in the total cost of 

operating a truck per kilometre. 

In literature, this type of selection problem, which 

maximises the number of accepted clients within a PDP, is not 

thoroughly studied. A variant of this selection problem, where 

resources are scarce, may be found in [18]. They propose a 

dynamic dial-a-ride problem in which the maximisation of the 

number of customers served is part of the objective function. 

The other two parts of the objective function are to optimise 

the level of service received by the customers and to minimise 

the total distance travelled by the vehicles. 

The TSA-algorithm is split into two phases. First, the 

selection problem is solved to serve as many customers as 

possible. In the second phase, the selling price of transport 

requests is set. The first phase starts with the insertion 

heuristic. No revenue per request is given in the input data. 

The objective is to accept as many requests as possible in 

order to optimise the use of the available vehicles. Therefore, 

all requests are inserted as long as vehicle capacity is available 

and time windows are respected. When a request is inserted, it 

is placed into the route where it induces the lowest increase in 

the transport cost.  

Furthermore, the local search operators are modified. The 

INSERT operator only checks whether an insertion is feasible, 

so neglecting the incurred cost of inserting a request. The 

incurred cost is the transport cost for travelling the additional 

distance to serve the extra client. The SWITCH, SHIFT and 

EXCHANGE operators remain the same. As there is no 

revenue, the transport cost before and after the change is 

compared instead of the profit. The improvement heuristic 

repeats the loop of local search operators as long as more 

requests are accepted (instead of improvement in profit as with 

the PDSP).  

Finally, in the TSA algorithm the assessment criteria are 

changed to the number of accepted requests instead of the total 

profit over all routes. The DELETE operator is no longer used 

within the TSA algorithm, because the algorithm aims to 

insert as many requests as possible. The assessment criterion 

looks for an increase in the number of accepted requests; 

hence, removing a request reduces the probability of finding a 

better solution.  

The second phase calculates the total cost for each vehicle, 

as the total distance travelled multiplied by the price per 

kilometre. Then, the marginal cost of each customer is 

determined. From the cost of a route with and without a 

customer, the difference of these costs is set as the marginal 

cost of that request. The total cost of a route is divided by the 

number of clients of that route based on the share of their 

marginal cost. Afterwards, a profit margin is added to the cost. 

This action gives the price asked to be paid by customers in 

order to execute their transport request. 

VI. CONCLUSION 

The operational planning decisions of a carrier consist of 

accepting transport requests of customers and constructing 

daily vehicle routes. Customers may have less-than-truckload 

requests to be transported between two specified locations, so 

these customers are consolidated into vehicle tours by the 

carrier. However, a carrier has a limited capacity within his 

own vehicle fleet. Therefore, he can only serve a selection of 

customers. Transport requests of customers are accepted only 

if they contribute to a higher total profit. A paired pickup and 

delivery selection problem is hardly investigated in literature. 

This paper tries to fill this gap. Two new local search 

operators, INSERT and SWITCH, are created to be able to 

handle the selection of transport requests. Together with the 

local search operators, SHIFT and EXCHANGE, an 

improvement heuristic is developed.  

Next, a Tabu-embedded simulated annealing algorithm is 

proposed to solve the selection and routing problem. The TSA 

algorithm is able to further improve solutions found by the 

improvement heuristic.  Although the TSA algorithm is not 

developed to solve PDP instances, tests on benchmark data by 

Li and Lim (2001) give good results. This indicates that the 

algorithm is able to construct short routes for the selected 

requests. Finally, alternative problem settings of the PDSP are 

considered. Different assumptions made in PDSP are relaxed. 

It is studied how these problem settings may be solved by 

using modified versions of the TSA algorithm. 

Implementation of the algorithms has been done in C++ and 
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Visual Studio. Experiments have been run on benchmark data 

sets. No experimental results are reported here. 
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