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Chapter 1
General Introduction

The research presented in this dissertation focuses on the analysis of non-clinical studies
in drug development. Two case studies will be discussed. The first is a non-clinical
experiment that was conducted to detect early stage biomarkers for Alzheimer’s disease.
The second case study is a dose-response screening behavioural study (the Differential
Reinforcement of Low-rate, DRL-72 study) that was conducted to evaluate the efficacy
of a new antidepressant compound.

Alzheimer’s Disease (AD) research has gained much interest in recent past (Winblad
et al., 2016, O’Bryant et al., 2015). Being an irreversible condition, current therapeutic
treatments aim at mainly managing the condition in order to improve the quality of life
for the patients. The challenge related with AD is that early diagnosis is hampered by
lack of appropriate diagnostic tools, which would pick out the disease in its earliest stages
and distinguish it from other forms of dementia. Currently, pathological examination of
AD can only be performed post-mortem, which from a patient management point of
view, is too late. Several attempts at identifying and validating potential biomarkers for
AD, for instance Cerebral Spinal Fluid (CSF) and blood-based biomarkers, which would
not only allow for early diagnosis, but also ease the follow-up during treatment, have
been made. Sensitivity of blood-based biomarkers to early AD has not been proven,
while CSF acquisition is too intrusive to be viable for disease follow-up. Non-invasive
imaging-based biomarkers hold the most premise, if validated, for clinical follow-up
of AD (Fletcher et al., 2013, López-de-Ipiña et al., 2013). In the first part of this
thesis, we examine Magnetic Resonance Imaging (MRI) markers for AD pathology. In
particular, while Diffusion Tensor Imaging (DTI) has been shown to reasonably quantify
disease pathology in the brain and is currently mostly included in AD imaging, Diffu-
sion Kurtosis Imaging (DKI) may be superior (Cheung et al., 2009, y Palacios et al., 2011).

The first part of this thesis focuses on the MRI DTI and DKI parameters and their
application in AD research. Chapter 2 presents a description of an MRI experiment for
AD in mice. Moreover, the acquisition of diffusion metrics and the pathological histology
is discussed. The resulting longitudinal MRI dataset allows for the evaluation of disease
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2 Chapter 1. General Introduction

pathology development and therefore, can be used to discriminate between diseased and
healthy mice. In Chapter 3, a longitudinal analysis of the dataset is performed for several
brain regions using both DTI and DKI parameters, while Chapter 4 presents the linear
discriminant analysis methodology used to discriminate between the healthy and diseased
mice.

The last three chapters in the first part of the thesis are focused on the establishment
of a linkage between the MRI data and the true pathological histology, in order to validate
several MRI parameters as biomarkers for histology. Chapter 5 presents a short overview
of the methodology for surrogate endpoints based on the meta-analytic approach of
Buyse et al. (2000), in the context of AD studies, from a graphical point of view. An
application of the methodology to several regions in the brain is discussed in Chapter 6
and a "surrogacy map of the brain" is presented. Finally, Bayesian approach to the val-
idation of MRI markers as a surrogate for pathological histology is presented in Chapter 7.

We shift gears in the second part of the thesis whereby, an application of Bayesian
methods to address diverse challenges in dose-response modelling is discussed. In Chapter
8, an introduction to model selection and uncertainty resulting from model selection in
dose-response modelling is provided and the datasets, both Gaussian and non-Gaussian,
that are used for illustration are presented. Count and data often exhibits extra variability
than that which would be expected for their respective distribution. This overdispersion,
if not accounted for, may results in invalid inference. Chapter 9 is devoted to the method-
ology for accounting for overdispersion in correlated dose-response joint models (with
Poisson and binomial outcomes). In order to account for uncertainty resulting from model
selection, Bayesian Variable Selection (BVS) is proposed, which results in model-averaged
estimates of the dose effect. The BVS methodology and an application in Bayesian hier-
archical dose-response models with and without overdispersion is presented in Chapter 10.

In modelling dose-response data, monotonicity constraints may be of interest
especially in testing directional hypotheses such as an increasing or decreasing 0 trend.
Chapter 11 discusses the methodology for the analysis of dose-response data where
the hypothesis of ordered dose effects is of interest. These models may suffer from
uncertainty in determining the correct shape of the monotone dose-response profile
and therefore, in Chapter 11, we extend the order-restricted model and incorporate
Bayesian variable selection procedure. In Chapter 12, we propose a finite mixture model
for analysing the DRL-72 dose-response data. The resulting analysis not only allows
inference for the dose-effect, but also enables the quantification of potential side effects
of the drug. Finally, in Chapter 13, we provide a brief discussion of the main results,
limitations and proposal for future analyses.



Part I

Diffusion Kurtosis Magnetic
Resonance Imaging in
Neurodevelopment and
Neurodegeneration
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Chapter 2
Alzheimer’s Disease: An
Introduction

2.1 Alzheimer’s Disease

Alzheimer’s disease, the most common cause of dementia, is an irreversible age-related
condition resulting in an increase in dependency on care providers for basic functioning.
Clinical symptoms of sporadic AD manifest mostly in the elderly population (at least
65 years) and include progressive deterioration of specific cognitive functions such as
memory, speech, motor skills and perception (McKhann et al., 1984). A proper diagnosis
of AD suffers from the lack of diagnostic tools that can accurately distinguish AD from
other causes of cognitive impairment especially at an early stage of the disease (Blennow,
2004, Chetelat and Baron, 2003, Galvin and Sadowsky, 2012). Moreover, AD results
in multiple pathological changes in the brain, which do not manifest the same way in
all patients. The most common AD related pathological changes in the brain include:
amyloid-beta protein plaque deposition (Masters et al., 1985, Hardy and Selkoe, 2002),
neurofibrillary tangle (hyperphosphorylated tau) formation, and neuro-degeneration (Hol
et al., 2003, Serrano-Pozo et al., 2011). How these changes influence the progression
of AD is unfortunately not clearly understood since the onset of clinical symptoms of
AD occurs much later than the onset of the pathological changes associated with the
disease (Agronin, 2007). Considering the fact that there is no known cure for AD, an
early diagnosis of the disease would therefore be preferable in order to allow for the
introduction of treatments that may delay the progression of the disease such as a
lifestyle intervention or novel therapeutic management of the patients.

From a practical point of view, although the pathological markers of AD are
indicative of the disease progression, they can only be measured cross-sectionally (once
per patient). This is due to the fact that pathological histology staining involves
post-mortem examination whose acquisition comes too late from a diagnostic point of
view (Perl, 2010). Thus, potential biomakers which can be easily acquired in clinical
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6 Chapter 2. Alzheimer’s Disease: An Introduction

follow-up of patients are of interest in early diagnosis of the disease (Hampel et al., 2009).

One of the challenges in current AD research is the availability of a suitable animal
model, fully representative for the disease pathology. The advantage of using an animal
model exhibiting only one pathological indication of AD is that, it enables us to study
the influence of one aspect of the disease, without the interaction of other pathological
indications (Duff and Suleman, 2004). An animal model with co-expressed Amyloid
Precursor Protein (APP) gene and Presenilin (PS) results in variants of mouse models
such as the APP/PS1 mouse model that was used in this experiment (Götz and Götz,
2009, Radde et al., 2006).

2.2 Magnetic Resonance Imaging and Histology Pa-
rameters

Non-invasive neuroimaging based technologies such as Positron Emission Tomography
(PET) scan and Magnetic Resonance Imaging (MRI), if adequately validated, hold the
most premise for adoption in both diagnosis and clinical follow-up of disease progression
in AD (Dickerson and Sperling, 2005). Using neuroimaging, differences in brain anatomy,
chemistry and physiology can be detected via the measured MRI parameters. Additionally,
longitudinal MRI studies enable the assessment of neuro-anatomical changes as the
animal ages. MRI technology is highly advanced with different scanning technologies
resulting in different measures. Diffusion Tensor Imaging (DTI) has been shown to
characterize AD progression in white matter (Alexander et al., 2007, Klohs et al., 2013).
While DTI quantifies the diffusivity of water molecules in the brain microstructure, which
is hypothesized to follow a Gaussian distribution, Diffusion Kurtosis Imaging (DKI) aims
at simultaneously quantifying both the Gaussian (diffusion tensor) and non-Gaussian (dif-
fusion kurtosis) behaviour of water. Note that the acquisition of DKI is time consuming.
Several studies have reported the superiority of DKI over DTI in detecting AD pathology
in both white and grey matter (Hui et al., 2008, Cheung et al., 2009, Veraart et al., 2011).

The degree of neuronal myelination was determined using four histology stains: (1)
Immunohistochemical visualization of myelin basic protein (MBP), which is the major
protein component of myelin sheaths, (2) Glial Fibrillary Acidic Protein (GFAP) as a
marker for astrocytes, (3) Ionizing Calcium-Binding Adaptor molecule 1 (IBA-1) as a
marker for microglia and (4) 4G8 labelling was performed to detect amyloid-beta in the
brains of APP/PS1 transgenic mice.

2.3 Design of the Experiment
For the case studies presented in Chapter 3-7, two sets of experiments were used as
illustrated in Figure 2.1. Panel 2.1a illustrates acquisition of longitudinal MRI data for
a given experimental unit (mice). MRI was performed at 2 months of age and every
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two months thereafter, until 8 months. This resulted in a (possibly) correlated set of
MRI parameters for a given animal. For a selected subset of animals in this longitudinal
study, in addition to MRI, histology staining was performed at 8 months of age. In
order to obtain paired MRI and histology data at other ages, data based on the same
animal model was acquired from previous cross-sectional studies (see panel 2.1b). The
final paired MRI and histology data comprised of cross-sectional datasets at 2, 4, 6,
and 10 months and paired MRI and histology data from the longitudinal study at 8 months.

2 3 4 5 6 7 8

Age (months)

MRI
Histology

(a) Longitudinal study design.

2 4 6 8 10

Age (months)

MRI
Histology

(b) cross-sectional study design.

Figure 2.1: Illustration of the study design for MRI and histology data acquisition. The
symbols denote the age at which a measurement was taken.

2.4 MRI and Histology Data Acquisition
The experiment comprised two mice genotypes: (1) transgenic APP/PS1 mice which
over-expressed the KM670/671NL APP mutation and the L166P PS1 mutation and (2)
wildtype mice which represents a healthy control group.

2.4.1 MRI Data Acquisition
Diffusion weighted data were acquired on a 7T Bruker Pharmascan system: 28 slices
with resolution (0.2136 × 0.214 × 0.2)mm3; 3 x (20 diffusion gradient directions),
δ = 5ms,∆ = 12ms, 7 b-values (400− 800− 1200− 1600− 2000− 2400− 2800)s/mm2.
Seven diffusion parameter maps were estimated (Veraart et al., 2013), including Axial
Kurtosis (MRI-AK), Radial Kurtosis (MRI-RK), Mean Kurtosis (MRI-MK), Axial Diffusiv-
ity (MRI-AD), Radial Diffusivity (MRI-RD), Mean Diffusivity (MRI-MD) and Fractional
Anisotropy (MRI-FA). A population based atlas was created from the 3D T2-weighted
anatomical images of a random subset of animals, on which 23 regions of interest (ROIs)
were delineated. From the transformation matrices which combine the coregistration of
the individual DKI-data to its corresponding 3D data and the normalization of the 3D
data to the atlas, the ROI’s were back-transformed to each animals DKI data set. The
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(a) Isotropic. (b) Anisotropic. (c) Eigenvectors.

Figure 2.2: Illustration of diffusion tensor metrics used to derive DTI parameters.

final step involved extracting for each subject and each ROI, the diffusion tensor and
diffusion kurtosis metrics.

Diffusion Tensor and Diffusion Kurtosis Metrics

Figure 2.2 shows an illustration of the diffusion tensor metrics used to derive the DTI
diffusion coefficents. Panel a shows the diffusion components of an unrestricted water
molecule, which is spherical, hence fractional anisotropy is zero. Note that the mean
diffusion in this case is equal to both the radial and axial diffusion metrics. Within the
brain tissue, the flow of water molecules is restricted and assumes an elliptical shape as
shown in Panel b. In this case, the relationship between the three diffusion tensor metrics
is derived from the corresponding eigenvectors, λ1, λ2 and λ3, shown in Panel c. Note
that MRI-FA is the measure of anisotropy, with MRI-FA=0, implying perfectly isotropic
diffusion and MRI-FA=1 denoting a hypothetical case of an infinite cylinder.

From the three eigenvectors of the diffusion tensor matrix, the corresponding DTI
parameters are given by

MRI−AD : λ1,
MRI− RD : (λ2 + λ3) /2,
MRI−MD : (λ1 + λ2 + λ3) /3.

(2.1)

DKI is parametrized by 22 elements including the independent diffusion tensor matri-
ces. Note that the model used to derive DKI parameters is an extension of the DTI model
to incorporate kurtosis. For DTI, the relationship between the diffusion-weighted signal
and the apparent diffusion coefficients si given by

ln [S (b) /S0] = −bDapp. (2.2)

Here, S (b) is the diffusion-weighted signal along a given direction with a certain b
value and S0 is the non-diffusion-weighted signal. The parameter b is specified during
MRI acquisition while Dapp is the apparent diffusion coefficient.
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By extending (2.2) to incorporate kurtosis, the DKI model is given by

ln [S (b) /S0] = −bDapp + 1
6b

2DappKapp. (2.3)

The parameter Kapp is the apparent kurtosis parameter along the given direction,
while the other parameters are as defined for DTI.

2.4.2 Histology Data Acquisition
Following the magnetic resonance image acquisition, mice were sacrificed and the brains
dissected. Paraffin slices were made from one half of the brain. To allow a 3D histological
reconstruction of the brain, 10 paraffin slices of 4µm thickness were taken at 150µm
intervals, starting from the midline of the brain all the way until the most lateral side
of the brain. The first slice of each interval was stained using myelin basic protein
(MBP). The latter gives a good idea on the myelination of the brain, but also shows very
easily identifiable anatomical locations, which allowed to stack all these images of MBP
stained slices. This resulted in a 3D histological stack of the MBP staining, which was
co-registered to the 3D T2-weighted anatomical magnetic resonance scan. In addition,
the 3 consecutive slices were stained using glial fibrillary acidic protein (GFAP) for
astrocytes, ionizing calcium-binding adaptor molecule 1 (IBA-1) for microglia and 4G8
for amyloid beta. These slices were then co-registered to the corresponding MBP stained
slide, which eventually allowed to also correlate these 3 markers to the voxel-based MRI.

2.5 Longitudinal and Cross-Sectional Datasets

2.5.1 Longitudinal MRI Data
MRI acquisition on 20 APP/PS1 (transgenic) and 19 wildtype (WT) mice was performed
repeatedly in two month intervals from the age of 2 months till 8 months. At each
age, three MRI Diffusion Kurtosis Imaging (DKI) and four Diffusion Tensor Imaging
(DTI) parameters were computed from the MR scan in each of the 23 brain Regions
of Interest (ROI) that had been delineated from the white and grey matter. At each
age, the diffusion tensor and diffusion kurtosis tensor were estimated from which, the
diffusion maps were calculated. The average diffusion tensor metrics (MD, RD, AD,FA)
and diffusion kurtosis metrics (MK, RK, RK) were extracted for each of the 23 regions
of the brain. This resulted in a longitudinal structure consisting of four measurements
(corresponding to 2, 4, 6, and 8 months) for each MRI parameter. It is also expected
that the multivariate set of seven MRI parameters may be correlated since they are
measured on the same subject.

The analysis presented in Chapter 3 and 4 of this dissertation focuses on identifying
the parameters and ROI for which significant differences of brain tissue structure between
the two genotypes can be detected. This implies that 7 × 23 = 161 independent
longitudinal analyses (for each parameter and ROI) ought to be performed.
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2.5.2 Cross-Sectional Paired MRI and Histology Data
In total, five cohorts of mice aged 2, 4, 6, 8 and 10 months were scanned (sample sizes
are given in Table 2.1). Data is available from 23 brain regions of interest (ROI) covering
both the white and grey matter. For each region, the averages of each of the seven MRI
parameters and four histology stains (each quantified by the percentage of area stained)
was obtained per animal where possible.

Table 2.1: Summary of the data: Number of animals per age and genotype.

Age (months) 2 4 6 8 10
Transgenic 10 10 9 9 3
Wildtype 2 2 2 2 2

2.6 Analysis Plan
Figure 2.3 presents an overview of the analysis plan for the MRI experiment. The analysis
approach is broadly categorized into two sets of analyses. The first set of analyses,
presented in Chapter 3 and 4, involves univariate analysis of MRI data. The goal of the
analyses presented in these two chapters is to determine whether MRI parameters can be
used to distinguish between wildtype and APP/PS1 mice, at which age and with which
accuracy. For the longitudinal MRI data (Chapter 3), we wish to identify the age at
which significant separation between the evolution profiles for wildtype and transgenic
mice is observed. In Chapter 4, a classifier is developed at each age group, with the aim
to identify the age at which classification of the mice disease status can be performed
with the least misclassification error. Furthermore, in building the classifier, we evaluate
whether MRI-DKI parameters improve the classification results compared to a classifier
based only on MRI-DTI parameters.

While the analysis presented in Chapter 3 and 4 may show differences between the two
mice genotypes, a connection between the observed differences with the actual disease
pathology is not established. Chapter 5-7 establishes this connection by jointly modelling
the MRI data with the true disease pathology status as quantified by various histology
stains. We seek for a linkage between MRI parameters and the disease pathology
(histology staining) using the methodology for biomarker evaluation in clinical trials.
In Chapter 5, a graphical overview of the implication of surrogacy is presented while
the subsequent two chapters describe the implementation of a frequentist and Bayesian
analysis for the surrogacy evaluation.
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Figure 2.3: MRI experiment: Overview of the analysis plan and the publication strategy.





Chapter 3
Longitudinal analysis of
Alzheimer’s Disease Progression

3.1 Introduction

Magnetic resonance imaging is a non-invasive technique that, if validated, can be used as
a diagnostic tool for new patients as well as for clinical follow-up of disease progression,
since MRI measurements can be acquired on the same patient repeatedly. To perform
these roles, MRI parameters ought to: (1) discriminate between diseased and healthy
patients and (2) quantify the evolution of underlying disease pathology accurately over
time. In this chapter, focus is on the analysis of longitudinal MRI data, with the aim of
identifying the difference in evolution profiles for wildtype and transgenic mice. Figure 3.1
presents a graphical illustration of the analysis problem. Panel 3.1a presents a case where
the MRI parameter does not quantify a significant difference between the genotypes
even though there is progression of disease pathology in the transgenic mice even for
older ages. In this case, the accuracy of the MRI parameter in discriminating between
transgenic and wildtype mice is expected to be relatively low as seen in Panel c, e and
g. In Figure 3.1b, there is an age-dependent shift in the MRI parameter for transgenic
mice, which grows with age. This leads to better separation between the transgenic and
wildtype mice as age increases (see Panel d, f and h).

From the longitudinal magnetic resonance imaging data, evolution of the disease
pathology was quantified by MRI parameters at 2, 4, 6, and 8 months of age for each
rat. At each age, DKI parameters (MRI-AK, MRI-RK, MRI-MK) and DTI parameters
(MRI-AD, MRI-RD, MRI-MD, MRI-FA) were obtained for each animal. The aim of the
analysis is to identify the age from which there is evidence of a significant difference
in MRI parameters between transgenic mice and wildtype mice. For the remaining of
this chapter, we focus on longitudinal analysis of the data. Section 3.2 describes the
methodology for longitudinal data analysis, while in Section 3.3, the motor cortex data
used to illustrate the methodology is presented. Section 3.4 and 3.5 presents the results

13
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Figure 3.1: MRI parameter illustration of the age-dependent separation at 8 and 10
months for a given ROI. The scatterplot and density plots presents simulated MRI data
(arbitrary units) at 8 and 10 months of age.
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of applying the methodology in several brain regions and in Section 3.6, we discuss the
results.

3.2 Model Formulation

For a given ROIr, r = 1, . . . , 23, and MRI parameter m, let Yij be the outcome of
mouse i at age j, j = {1, 2, 3, 4} for 2, 4, 6 and 8 months of age, respectively. In matrix
notation, the linear mixed-effects model can be denoted as


Yi = Xiβ + Zibi + εi,
bi ∼ N(0,D),
εi ∼ N(0,Σi).

(3.1)

Here, Yi is a vector of outcomes of length ni for subject i, 1 ≤ i ≤ N , N is the total
number of subjects. the matrix Xi is an (ni × p) design matrix of covariates (genotype
and age in this case), Zi is an (ni × q) dimensional matrix of random effects, β is a
p-dimensional vector of fixed effects, bi is a q-dimensional vector of random effects, and
εi is a vector of measurement errors. The matrices D and Σi are the covariance matrices
for the random and fixed effects, respectively.

The expected value and the variance of Yi in Equation 3.1 obtained by integrating
out the random effects and considering that E(εi) = 0, E(bi) = 0 and Cov(εi, bi) = 0,
is given by,

E(Yi) = Xiβ,

V ar(Yi) = Σ + ZiDZ>i = Vi.
(3.2)

The covariance matrix comprises of two components: a residual covariance matrix Σ
and the random effects matrix component ZiDZ>i . The dependence between measure-
ments of the same animal can be captured in either of these two components. For the
marginal models presented in this chapter, Vi = Σ where Σ is a 4 × 4 matrix. The
marginal model is given by,

Yi ∼MVN(Xiβ,Vi). (3.3)

The mean structure Xiβ is specified to be unstructured, thus obtaining an estimate
for each genotype and age. In particular, for j = 1, 2, 3, 4 for age = 2,4,6,8 months,
respectively, the mean structure for the ith animal is given by,
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E (Yij) = β11X1i + β12X2i + β13X3i + β14X4i
+β21X1iWi + β22X2iWi + β23X3iWi + β24X4iWi,

while,

Xij =
{

1, age =j,
0, otherwise,

and

Wi =
{

1, if transgenic mice,
0, if wildtype mice.

(3.4)

The regression coefficients {β11, β12, β13, β14} are the age-specific mean MRI
responses for wildtype mice and {β21, β22, β23, β24} are the age-specific regression
coefficients for the transgenic mice. The parameters of primary interest- the age-specific
contrasts γj , between transgenic and wildtype mice- are given by,

γj = β2j − β1j. (3.5)

Multiple statistical tests are performed corresponding to the four timepoints for
each parameter and ROI. Multiplicity adjustment can be performed at two levels: (1)
adjustment for 4 tests in total corresponding to the tests between genotypes at 2, 4, 6
and 8 months and (2) taking into account that for a given MRI parameter, 4× 23 = 96
tests are performed in the whole brain hence adjusting for 92 tests per parameter. Both
approaches were considered and False Discovery Rate (FDR, Benjamini and Hochberg,
1995) adjustment was performed in order to control the false-positive error-rate.

3.3 The Motor Cortex Data
For illustration purposes, longitudinal analysis is first applied to the motor cortex data.
The motor cortex is a region in the brain primarily involved in planning, control and
execution of voluntary movements. In AD patients, the motor cortex suffers from neural
degeneration, amyloid plaque deposition and neurofibrillary tangles (hyperphosphorylated
tau protein formation) (Hol et al., 2003). Depending on the degree of disease progression,
there might be clinically observable changes in motor coordination in patients, although
this might only occur at later stages of the disease. Note that the APP/PS1 mouse
model presents no neurodegeneration.

The individual profile plots for the seven MRI parameters in the motor cortex are
presented in Figure 3.2 which shows that, the different MRI parameters exhibit different
evolution patterns over time. Figure 3.3 presents the average profile plots from which,
potentially significant separation in the profiles is observed as from four months of age
with MRI-MK, MRI-RK, MRI-AK and MRI-FA. For the diffusivity parameters MRI-MD,
MRI-RD and MRI-AD, there is no indication of separability between the two genotypes
as the animals grow older.
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Figure 3.2: Individual profile plots for the seven MRI parameters in the motor cortex.
DKI/DTI units: mm2/s.
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Figure 3.4: Estimated contrasts between genotypes with the 95% confidence interval
included for the cortex motor region in the brain. Confidence intervals not including zero
(dashed horizontal line) are statistically significant. DKI/DTI units: mm2/s.

3.4 Analysis of Longitudinal MRI Data From the Motor
Cortex

The goal of the analysis presented in this section is to identify the age at which significant
differences between healthy and diseased mice can be detected, using MRI parameters.
Each of the DKI (MRI-AK, MRI-RK, MRI-MK) and DTI (MRI-AD, MRI-RD, MRI-MD,
MRI-FA) parameters is evaluated separately. Data was available from 19 transgenic and
20 wildtype mice, which were observed at all four planned timepoints. In Section 3.5,
results of applying the methodology to all the 23 brain regions are graphically summarized.

Figure 3.4 presents the estimated contrasts between the genotypes at each age,
with the corresponding 95% confidence interval. From these results, it is evident that
DTI parameters (first row), have the least ability to discriminate between wildtype and
transgenic mice even for older animals. DKI parameters on the other hand, show good
separation between the genotypes especially for MRI-MK and MRI-AK. Finally, for these
MRI parameters where significant separation is evident (see next section), the disease
progression can be detected from the increase in magnitude of the disease effect on the
MRI parameters.

3.4.1 Multiplicity Adjustment
To control the type I error rate, FDR adjustment on the set of four contrasts in the motor
cortex region was performed for each MRI parameter separately. Figure 3.5 presents the
FDR adjusted P-values for the test of a difference in the MRI readout between transgenic
and wildtype at each age. Results indicate that, for MRI-AK, MRI-MK, and MRI-FA,
significant differences between the genotypes are detectable at 4, 6 and 8 months in
the motor cortex. With MRI-RD and MRI-RK however, significant differences are only
detectable at 8 months of age.
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Figure 3.5: FDR-adjusted P-values for the contrasts between the two genotypes. Note
that the natural logarithm of the P-values is plotted, hence significant P-values are below
the dashed line. The FDR adjustment is performed for four tests per MRI parameter.
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Figure 3.6: FDR-adjusted P-values for the contrasts between the two genotypes. Note
that the natural logarithm of the P-values is plotted, hence significant P-values are below
the dashed line. The FDR adjustment is performed for 92 tests per parameter.

Alternatively, for each MRI parameter, FDR adjustment can account for the fact that
measurements are obtained from all the 23 ROI. In this case, there are 23 × 4 = 92
tests. FDR adjustment taking into account multiple testing across the 23 brain regions in
addition to the four age groups resulted in more conservative results as shown in Figure
3.6. Significant differences between genotype are detectable at six and eight months with
MRI-AK and MRI-MK, at four and eight months with MRI-FA, and at eight months only
with MRI-RK.
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Figure 3.7: FDR-adjusted P-values for the contrasts between the two genotypes. Only
significant p-values are plotted. FDR adjustment in this case only adjusts for 4 tests per
MRI parameter.

3.5 Application of the Methodology to all Regions of
Interest

Figure 3.7 shows the adjusted p-values for parameters and brain regions of interest in
which statistically significant differences between genotype were detectable. Results
indicate that statistically significant differences were detected in 18 of the 23 regions of
interest in the brain. Most of the significant differences were detectable in the cortex
and corpus callosum brain regions. Significance depends on the MRI parameter and age
of the animals although most significant differences were obtained at 6 and 8 months.

A more conservative adjustment was performed by controlling for 23 × 4 = 92
tests corresponding to the fact that for each parameter, 4 tests were performed in
23 brain regions of interest. In Figure 3.8, results of the regions with statistically
significant differences between genotype are presented. Significant differences were
mainly detectable at 6 and 8 months although for some regions of interest (such as the
motor cortex, amyglada, cortex visual and cortex orbital), significant differences were
detectable at 4 months of age. Moreover, most of the significant differences are observed
for MRI-AK, MRI-MK and MRI-FA.
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Figure 3.8: FDR-adjusted P-values for the contrasts between the two genotypes. Only
significant p-values are plotted. FDR adjustment in this case adjusts for 92 tests per MRI
parameter.

3.6 Discussion
Although the disease pathology is expected to evolve with time, hence a difference is
expected between wildtype and transgenic mice, not all MRI parameters are able to
detect this difference in evolution profiles. In particular, the ability for MRI to detect
significant differences in the evolution profile depends on the specific MRI parameter
used, the age at which the difference is evaluated and the region of interest. For some
brain regions such as the caudate putamen and cerebellum, none of the MRI- parameters
detects a significant difference between the genotype. Note that this does not necessarily
imply that the regions do not have disease pathology developing. This will be further
investigated in Chapter 6. In this chapter, we focused on longitudinal data analysis, while
in the next chapter, we investigate if the data can be used in order to classify subjects to
their genotypic group.

In this chapter, a marginal model for the MRI parameters was formulated. That is,
given a vector of responses Yi for the kth MRI parameter in the ith rat,

Yi ∼ Normal(Xiβ,Σ). (3.6)

The association between the measurements are captured by Σ. Alternatively, a Linear
Mixed-effects Model (Verbeke and Molenberghs, 2000, LMM,) can be formulated. From
the LMM, the marginal distribution of Y is given by,
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Yi = Xiβ + Zbi + εi,
bi ∼ Normal (0, D) ,
εi ∼ Normal (0,Σi) .

(3.7)



Chapter 4
Classification of Alzheimer’s
Disease Status Using MRI
Parameters

4.1 Introduction
Developing a predictive tool for Alzheimer’s disease is of interest especially for the purpose
of early diagnosis, disease follow-up and management. The analysis presented in Chapter
3 indicates that MRI parameters have the potential to discriminate between wildtype and
transgenic mice, although this depends on the MRI parameter of interest, brain region of
interest and age of the mice. The aim of the analysis presented in this chapter is to develop
a classification tool, based on MRI parameters, to predict the mice genotype (diseased
or healthy). In particular, the primary interest is to investigate whether either Diffusion
Kurtosis Imaging (DKI) parameters or the Diffusion Tensor Imaging (DTI) parameters
lead to a more accurate classification. Moreover, we evaluate the additive value of DKI
parameters in the classification model.

In machine learning, two approaches to discovering clusters, patterns or trends in
observed data are popular: supervised and unsupervised learning algorithms. In supervised
learning (for instance, Linear Discriminant Analysis, LDA), the class membership is
provided to the algorithm during the training phase. On the other hand, unsupervised
learning algorithms such as clustering algorithms (such as K-means clustering and hier-
archical clustering) evaluates the existence of groups of similarly associated observations
without the need for providing the true class membership in the training phase. For both
approaches, cross-validation methods are applied by splitting the data into training and
test sets (Hastie et al., 2003). The model is fitted on the training set and classification
performed on the test set.

Development of a classifier for the MRI data poses some practical challenges. Based
on the analysis presented in Chapter 3, it is plausible that the performance of the

23



24 Chapter 4. Classification of Alzheimer’s Disease Status Using MRI Parameters

classifier varies with the brain region under evaluation. This implies the need to perform
the classification task by brain region of interest and evaluate the most promising regions
for the classification. In order to find the age at which an accurate classification is
possible, the classification procedure presented in this chapter is performed at each
timepoint separately. It is expected that the misclassification error-rate will be lower for
older animals as the disease pathology is more developed in older mice. Alternatively,
model-based classification algorithms such as the functional data analysis (Ramsay et al.,
2009) and in particular, the functional linear discriminant analysis algorithm of Gareth
M. James (2001), mixture of random-effects models for linear discriminant analysis by
Komárek et al. (2010) amongst others accounts for the longitudinal effects in performing
classification.

In this chapter, we apply Fisher’s Linear Discriminant Analysis (LDA, Fisher, 1936)
to MRI data at each age. At each age, LDA with the DKI parameters only (MRI-AK,
MRI-MK, and MRI-RK), DTI parameters only (MRI-AD, MRI-MD, MRI-RD and MRI-FA)
and finally, LDA with all seven MRI parameters is performed. Appropriate measures are
defined to evaluate the added benefit DKI parameters have on the classification algorithm
as compared to using only the DTI parameters. The analysis algorithm and results are
illustrated with the motor cortex data, while the results of applying the methodology to
all the 23 brain regions are presented in the final section of this chapter.

4.2 Genotype Classification Using Linear Discriminant
Analysis (LDA)

4.2.1 Data Structure
Linear Discriminant Analysis (Hastie et al., 2003, Mclachlan, 2004, LDA) is a supervised
learning method for which a classifier is trained and test data applied in order to derive
the class membership. Let the class membership for animal i be defined as

Yi =
{

1, Transgenic APP/PS1,
0, Wildtype.

(4.1)

Given a set X of predictors, LDA defines a linear function associating the predictor
matrix with the class membership. Further, a classification rule, C(X), based on a
threshold τ , is defined in order to predict the class membership (Hastie et al., 2003) such
that, {

C (X) > τ, if subject is classified as Transgenic,
C (X) ≤ τ, if subject is classified as Wildtype. (4.2)

For the MRI experiment, the predictor matrix comprises of DTI parameters and DKI
parameters, respectively, given by,

X = [X1|X2] ,
X1 = [AD,FA,RD] ,
X2 = [AK,MK,RK] .

(4.3)
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Table 4.1: Illustration of test data misclassification error based on LDA.

True status
Transgenic Wildtype

LDA Transgenic a c
Wildtype b d

T W

Note that MRI-MD is not used in building the classifier in X1, since by definition,
MRI-MD is a linear function of MRI-AD and MRI-RD. For the classifiers, let C(X1) be
the LDA classifier based on DTI parameters, C(X2) is the LDA classifier based on DKI
parameters and C(X12) is the LDA classifier based on both DTI and DKI parameters.

4.2.2 Cross-Validation

Two-fold cross-validation was performed by randomly splitting the data into a training
and test sample. The training dataset comprised of 10 transgenic and 10 wildtype mice,
while the test dataset comprised of 9 transgenic and 10 wildtype mice. We use the
misclassification Error (MCE) to evaluate the accuracy of the classification procedure on
the test dataset. Table 4.1 presents a hypothetical classification problem.

From Table 4.1, the MCE is defined as

MCE = (b+ c)
T +W

. (4.4)

The cross-validation procedure above is repeated for 1000 iterations, each resulting in
a random sample of test and training datasets. At each iteration the classifier is trained
on the training dataset and evaluated on the test dataset. Three different classifiers were
developed: (1) a classifier based on DTI parameters MRI-AD, MRI-RD and MRI-FA,
(2) a classifier based on DKI parameters MR-AK, MRI-RK, MRI-MK and (3) a classifier
based on both DTI and DKI parameters. Furthermore, in order to assess the relative
importance of DKI over DTI, several statistics were defined and discussed below.

4.2.3 Average Misclassification Error (AMCE)

As mentioned above, a loop of B = 1000 two-fold cross-validated samples was used
resulting in MCE1 . . .MCEB from which the average misclassification error (AMCE) is
defined as

AMCE = 1
B

B∑
b=1

MCEb. (4.5)
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4.2.4 Relative Change in Misclassification Error
We define the Relative Change in Misclassification Error (RCMCE) at iteration b as,

RCMCE1,b = θDKI,b = MCE(X1)b −MCE(X2)b
MCE(X1)b

,

RCMCE2,b = θDKI+DTI,b = MCE(X1)b −MCE(X12)b
MCE(X1)b

.

(4.6)

Where θDKI,b is the change in misclassification error when the classifier is based on
DKI parameters compared to the misclassification error when the classifier is based on
DTI parameters. Similarly, θDKI+DTI,b is the relative change in the misclassification
error when the classifier is based on both DKI and DTI parameters compared to the
misclassification error when the classifier is based on DTI parameters.

4.2.5 Comparisons Between DKI and DTI
Let Ib1 and Ib2 , be an indicator variable such that

Ib1 =
{

1, if MCE (X2)< MCE (X1) ,
0, otherwise.

and

Ib2 =
{

1, if MCE (X12)< MCE (X1) .
0, otherwise.

(4.7)

Note that the proportion of cross-validated samples for which Ib1 = 1 is a measure
of the improvement in classification based on DKI parameters rather than a classification
based on DTI alone.

P (θDKI,b1) = 1
B

B∑
b=1

Ib1 . (4.8)

Similarly, the proportion of samples for which Ib2 = 1, is a measure of the improvement
in classification when both DKI and DTI parameters are used in classification compared
to when only DTI is used to build the classifier.

P (θDKI+DTI,b2) = 1
B

B∑
b2=1

Ib2 . (4.9)

4.3 Classification Based on MRI Parameters in the Mo-
tor Cortex Region

The results of the analysis presented in Chapter 3 indicate that significant separation
between the genotypes highly depends on the age of the animals. In the motor cortex
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Figure 4.1: Scatterplot matrix for MRI-AK, MRI-RK, MRI-MK and MRI-FA in the motor
cortex region. Triangles: wildtype. Circles: transgenic. DKI/DTI units: mm2/s.

region, MRI-MK, MRI-RK, MRI-AK and MRI-FA showed significant differences at 8
months while at 6 months, only MRI-MK and MRI-AK were found to be statistically
significant. The scatterplot matrix of the DKI parameters MRI-AK, MRI-RK, MRI-MK
and MRI-FA is presented in Figure 4.1. The separation between transgenic and wildtype
mice improves with age, with 6 versus 8 month data showing the best separation ability
in all the parameters.

Linear discriminant analysis was performed on 2 months, 4 months, 6 months and 8
months data separately. For each age group, classification based on DTI parameters only,
DKI parameters only or a combination of both DKI and DTI parameters was performed.
Figure 4.2 presents the distribution of MCE for the test set in the motor cortex region. In
all three classification models, the MCE reduces with increasing age, implying that better
discrimination of the disease status is obtained in older animals than in younger animals.
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(d) Test data MCE for classification based on 8 months data.

Figure 4.2: Distribution of misclassification error based on linear discriminant analysis at
2, 4, 6 and 8 months in the motor cortex. The MCE is measured in the test datasets in
a two-fold cross validation sample. In total 1000 cross-validated samples were used. The
vertical dashed line represents the average MCE. First column: LDA with DTI parameters
only. Second column: LDA with DKI parameters only. Last column: LDA with both DTI
and DKI parameters.
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Table 4.2: Summary statistics for test misclassification error in the motor cortex region.

AMCE RCMCE P (θ)
Age DTI DKI DTI+DKI DKI DTI+DKI DKI DTI+DKI
2 0.43 0.52 0.48 -0.278 -0.142 0.183 0.266
4 0.35 0.41 0.31 -0.299 0.182 0.256 0.579
6 0.25 0.24 0.14 0.094 0.695 0.452 0.809
8 0.16 0.2 0.09 -0.364 0.624 0.259 0.701

Summary statistics of the misclassification errors for the test data at different months
for the three LDA classifiers are shown in Table 4.2. As earlier stated, average MCE
reduces as the animals grow older regardless of the LDA classifier applied. Moreover, al-
though the average MCE from a model with only DKI is higher than that of DTI only, the
average MCE improves substantially if both DTI and DKI are used in classification. On
average, at 6 and 8 months, there is a change of misclassification error of 0.695 and 0.624,
respectively, if both DKI and DTI parameters are used for classification. The change is ob-
served in 80.9% (age 6 months) and 70.1% (age 8 months) of the cross-validated samples.

4.4 Summary of Results in all Brain Regions of Interest
LDA was applied to all regions of interest for every age. The test misclassification
error based on two-fold cross-validation was computed for the three classifiers presented
in Section 4.2. Figure 4.3 presents the AMCE for different regions of interest in the
brain. As expected, the AMCE depends on the region of interest with cortex regions
specifically motor cortex, retrosplenial cortex, piriform cortex and rhinal cortex having
the largest change in misclassification rate as the animals age. Moreover, for all the
ROI, classification based on DKI parameters is at least as good as classification based on
DTI parameters with regards to AMCE and classification based on both DTI and DKI
parameters provides the smallest misclassification error in some of the regions of interest.
The relative change in misclassification error is presented in Figure 4.4, while Figure
4.5 presents the proportion of change over the cross-validated samples. The results
indicate that only in a few ROI such as the motor cortex and cortex rhinal does DKI in
combination with DTI provide a significant additional accuracy in classification.

4.5 Discussion
The classifiers presented in this chapter were based on LDA performed on data for each
age separately. From the results, the age at which classification is performed influences
the accuracy of the genotype classification whereby, classification improves for older mice.
Note that different regions in the brain for which classification is performed have different
misclassification error for the same classifier. From three classifiers based on DTI only,
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Figure 4.3: Misclassification error for all the regions of interest in the brain. Three LDA
models are presented for each age.
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Figure 4.4: RCMCE for all ROI.
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Figure 4.5: Proportion of improvement for all ROI.

DKI only or both DTI and DKI parameters, it was evident that the relative change in
misclassification error was largest when DKI was used in combination with DTI. Alterna-
tively, rather than use the observed MRI parameters data at each age for classification,
an analysis based on the magnitude of the change from baseline (2 months) can be
performed.





Chapter 5
Development of MRI
Biomarkers for AD: A Graphical
Tour

5.1 Surrogacy in the Context of AD
In the context of randomized clinical trials, biomarkers for ’true’ clinical endpoints are
often of interest to researchers (Burzykowski et al., 2005). Several reasons may cause
the need to establish a surrogate marker to a "true" endpoint. For example, some clinical
endpoints take more time to achieve (for example, overall survival versus progression-free
survival) or the "true" endpoint may be expensive to measure. Advances in the validation
of surrogate endpoints as biomarkers for clinical endpoints have seen a wide array of
measures being developed. For instance, Prentice (1989) presented a formal operational
definition of a surrogate endpoint as a variable such that a test for the null hypothesis
for no treatment effect is also valid for the hypothesis based on the "true" endpoint.
Freedman et al. (1992) extended this notion by deriving the proportion of the treatment
effect that a surrogate endpoint explained, thus allowing for the fact that a surrogate
endpoint may not necessarily explain all the treatment effect observed in the "true"
endpoint.

Buyse and Molenberghs (1998) further introduced quantities such as the relative
effect of the treatment on the "true" and surrogate endpoints and a measure of the
association between the surrogate and "true" endpoints after adjusting for the treatment.
In order to take into account the additional complexity posed by clinical trials, for
instance, multiple centres, Buyse et al. (2000) proposed a meta-analytic framework
for the evaluation of surrogate endpoints. Under this framework, the individual-level
surrogacy is obtained upon adjusting for the multiple experimental units, while the
relative effect derived in a single trial setting is replaced with a trial-level surrogacy
measure.

33
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In the context of Alzheimer’s disease, the validation of biomarkers has been of
interest on several fronts. First, there is a need for the development of reliable diagnostic
tests for Alzheimer’s disease since currently, clinical evaluation of the disease relies
on administration of psychological evaluation tools such as the Mini-mental State
Examination, administration of family and primary caregiver questionnaires amongst
others (Sabbagh et al., 2010, McKhann et al., 1984). These tools are complex to
administer, especially while dealing with patients with cognitive challenges. Moreover,
the early stages of Alzheimer’s disease are difficult to distinguish from other forms of
dementia, therefore rendering these tools less specific.

Laboratory diagnostic tests either based on Cerebral Spinal Fluid (CSF) markers such
as amyloid-beta protein deposition, total tau and hyperphosphorylated tau are currently
the most widely accepted markers for Alzheimer’s disease diagnosis (Humpel, 2011).
PET scan, which uses a radioactive tracer, is also used to visualize the plaque load.
However, CSF collection is an invasive procedure with potential side effects involved,
therefore hampering it’s use as a patient follow-up tool. Although body fluids such as
blood, saliva and urine-which can be easily collected- are commonly used in managing
other diseases, such success has not been replicated in Alzheimer’s disease. In fact,
blood-based biomarkers with properties at least as superior as the CSF markers have not
been successfully validated (Humpel, 2011, Doecke et al., 2012, Snyder et al., 2015).

In this chapter, we introduce the surrogacy setting in the context of AD in which MRI
parameters are evaluated as potential biomarkers for histology. The surrogacy setting
discussed in this chapter is slightly different from the surrogacy setting in randomised
clinical trials. First, rather than multiple trials/centers, the replication unit of the
experiment is the age of the animals. Moreover, often in clinical trials, interest is in
validating a single surrogate endpoint, while in our case, multiple MRI markers are to
be validated, for different parts of the brain separately. Despite these differences, we
propose to use the surrogacy framework for normally distributed endpoints (Buyse et al.,
2000) in the evaluation of MRI parameters as biomarkers for specific histology features,
in several regions of the brain. Using the terminology from the surrogacy framework,
each histology feature denotes the "true endpoint", while each MRI parameter denotes a
surrogate endpoint.

5.2 Two Levels of Surrogacy
Similar to the multi-centre clinical trial surrogacy setting, we define two measures of
surrogacy for the Alzheimer’s Disease (AD) MRI experiment . Panel a and b in Figure
5.1 show an illustrative example in which a histology feature is plotted against a specific
MRI parameter at 2 and 8 months, respectively. The effect of the disease progression is
translated into a shift in both the MRI parameter and histology feature in the transgenic
group. Panel a corresponds to a scenario with a relatively small disease effect on the
"true" endpoint, while Panel b denotes a scenario with a significant disease effect on
both the "true" and the surrogate endpoints. Note that the slope of the lines connecting
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(b) Simulated data at 8 months.

Figure 5.1: Illustrative example. The effect of AD progression on an MRI parameter
and a specific histology feature at two time points for simulated data (arbitrary units).
The solid line connects means of the two genotypes. Blue symbols: wildtype mice. Red
symbols: transgenic mice.

the means of the two clouds in each panel corresponds to the relative effect (RE) as
defined by Buyse and Molenberghs (1998).

Figure 5.2 illustrates two aspects of the association between an MRI parameter and
a given histology feature: the effect of AD progression (for instance, characterized by
additional amyloid-beta deposition) and the correlation between the two variables. Panels
a and b show the data and the residuals after subtracting the means, respectively. The
AD progression effect on both endpoints (denoted by alpha and beta), can be seen clearly
in panel a, while panel b indicates that, conditional on AD progression effect, the two
variable are not correlated. Using surrogacy terminology, Figure 5.2b indicates that, on
an individual level, MRI is a poor biomarker for histology. A second illustrative example
is shown in Figure 5.2 c and d. For this example, the AD progression effect (shown in
Figure 5.2c) has the same magnitude of the effects as in the first example. Figure 5.2d
reveals a substantial difference between the two examples on an individual level. For the
second example, after adjusting for the AD progression effects, MRI and histology are cor-
related (Figure 5.2d). Hence, at an individual level, MRI is a good biomarker for histology.

In the next example, presented in Figure 5.3 and 5.4, we "translate" the two aspects of
the association between MRI and histology into two surrogacy measures: individual-level
surrogacy and disease-level surrogacy. The latter corresponds to the trial-level surrogacy,
discussed in Burzykowski et al. (2005). The examples presented in Figure 5.2 correspond
to a single trial setting and allows us to evaluate the quality of MRI as a biomarker
for histology only at individual level. On the other hand, the animal model for AD
allows us to estimate surrogacy measures in both levels since MRI parameters and
histology features are measured at 5 ages. Figure 5.3 shows a scenario in which an MRI
parameter and a histology feature are not correlated, given the progression effect of AD
but the disease effects (on both MRI and histology), shown in panel c, are correlated.
This suggests a scenario for which the disease-level surrogacy is high (implying that
there is an association between disease-effects as measured by the two endpoints) while
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Figure 5.2: Illustrative examples demonstrating the effect of AD progression on an MRI
parameter and a histology feature at two time points. Panel (a and b) without and with
(c,d) correlation between MRI and histology parameters (arbitrary units). Larger symbols
denote the group means. Blue symbols: wildtype mice. Red symbols: transgenic mice.
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(c) Age dependent AD progression effect.

Figure 5.3: Illustration of simulated (arbitrary units) individual and disease-level surro-
gacy using the AD animal model for a scenario with low individual-level surrogacy. The
solid lines in Panel a connects the means of the transgenic and wildtype groups at each
age. The slope of these lines is equal to the RE (at each age). Panel c presents the
disease effects β on a histology feature versus the disease effects α on an MRI parameter.
Blue symbols: wildtype mice. Red symbols: transgenic mice.

individual-level surrogacy is low. In other words, the effect of AD progression on histology
features can be predicted using the AD progression effects observed on MRI parameters
while at individual level, MRI values are not predictive for histology features. A scenario
in which MRI parameters and histology features are associated at both disease and
individual levels is shown in Figure 5.4.

Other settings that may arise are shown in Figure 5.5. Panels on the left (a, c and e)
corresponds to data with both low individual and disease-level surrogacy, while Panels b,
d and f corresponds to a setting with high individual-level, but low disease-level surrogacy.
In what follows, a two-stage modelling approach applied to the MRI data is presented in
Chapter 6 while a one-stage model fitted within the hierarchical Bayesian framework is
presented in Chapter 7.
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Figure 5.4: Illustration of simulated (arbitrary units) individual and disease-level surro-
gacy using the AD animal model for a scenario with high individual-level surrogacy. The
solid lines in panel a connects the means of the transgenic and wildtype groups at each
age. The slope of these lines is equal to the RE (at each age). Panel c presents the
disease effects β on a histology feature versus the disease effects α on an MRI parameter.
Blue symbols: wildtype. Red symbols: transgenic.
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(d) Residuals after subtracting the means.
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(f) Age dependent AD progression effect.

Figure 5.5: Illustration of simulated (arbitrary units) individual and disease-level surro-
gacy using the AD animal model for a scenario with both low individual-level surrogacy
(left panel) and high individual-level surrogacy (right panel). Both settings correspond
to data with low disease-level surrogacy. The solid lines in panel a and b connects the
means of the transgenic and wildtype groups at each age. The slope of these lines are
equal to the RE (at each age). Panel e and f presents the disease effects β on a histology
feature versus the disease effects α on an MRI parameter. Blue symbols: wildtype mice.
Red symbols: transgenic mice.





Chapter 6
Evaluation of MRI as a
Biomarker for Histology in
Alzheimer’s Disease

6.1 Introduction

Similar to previous chapters, the methodology discussed in this chapter is first illustrated
with the motor cortex data, a particular MRI parameter and histology feature. Subse-
quently, results of analysing data from all brain regions and MRI/histology parameters
combination are presented. Following the procedure for pathological histology acquisition
described in Section 2.4, four histology stains (MBP, GFAP, IBA1, and 4G8) were applied
and several histology features derived. In this and subsequent chapters, the analysis only
focuses on one histology feature (percentage of area stained). Figure 6.1 presents the
motor cortex data for GFAP staining and MRI-AK. In Panel a, a clear age-dependent
shift of the true and surrogate endpoints for the transgenic mice is evident. Moreover,
Panel b shows the age-matched relative effects which also increase with age. Upon
adjusting for the disease status, the association between GFAP percentage of area stained
and MRI-AK is negligible (Panel c and d). The remainder of the chapter is arranged
as follows: Section 6.2 presents the two-stage modelling approach while, Sections 6.3
and 6.4 are devoted to the application of the proposed methodology on the case study.
Section 6.5 provides a discussion while software issues are discussed in Sections 6.6.1 and
6.6.2 .
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(c) Transgenic: Residuals after subtracting the
age-matched means.
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(d) Wildtype: Residuals after subtracting the
age-matched means.

Figure 6.1: The motor cortex data for MRI-AK and GFAP staining. The solid lines in
panel b connects the age-matched means of the transgenic and wildtype groups at each
age. The slope of these lines are equal to the RE (at each age). Blue symbols: wildtype
mice. Red symbols: transgenic mice. DKI units: mm2/s.
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6.2 A Two-Stage Model for Biomarker Evaluation

6.2.1 A Joint Model for MRI and Histology
The analysis presented in this section consists of a region/MRI/histology-specific model.
Hence, for each region, 4× 7 models are fitted. Each model is used to evaluate one MRI
parameter as a biomarker for one histology feature. An extension of the methodology
presented in this chapter to evaluating multiple MRI parameters and/or histology
features simultaneously can be performed, with appropriate adaptation. The observation
unit for the analysis is (Xij , Yij , Zi) with Xij being the MRI parameter for the ith
animal, i = 1, . . . , Nj at age j, j = 1, . . . , J , Yij is the histology feature of the ith ani-
mal at age j and Zi is an indicator variable for the genotype the animal belongs to given by

Zi =
{

1, APP/PS1 Transgenic,
0, Wildtype.

We assume that the mean structure for an MRI parameter and a histology feature,
respectively, is given by

E (Xij |Zi) = µXj + αjZi,

E (Yij |Zi) = µYj + βjZi.
(6.1)

Here, µXj and µYj are the age-specific means of the wildtype mice for the MRI
parameter and histology feature, respectively. Note that for the wildtype mice group, we
assume that the histology feature is constant over time since the disease pathology does
not vary a lot for these young ages (2-10 months) in the wildtype mice. Thus, the mean
structure in (6.1) can be simplified by having only one parameter for histology staining
in wildtype mice, i.e, µYj = µY . The age-specific parameters αj and βj correspond to
the disease effect on MRI and histology at a given age, respectively. Further, we assume
that the two endpoints (histology and MRI) follow a bivariate normal distribution with
genotype-specific covariance matrices, that is,

(
Xij

Yij

)
∼ Normal

([
µXj + αjZi
µY + βjZi

]
,Σ
)
. (6.2)

Here, Σ is a 2 × 2 genotype-specific covariance matrix given for transgenic and
wildtype mice, respectively, given by

ΣT =
(

σ2
Am

σAhm

σAhm σ2
Ah

)
and ΣW =

(
σ2

Wm
σWhm

σWhm σ2
Wh

)
. (6.3)

From (6.3), the notation σ2
Ah

, σ2
Am

, and σAhm corresponds to the variance of a histol-
ogy feature, MRI parameter and the covariance between them, respectively, in transgenic
mice. Similarly, for wildtype mice, σ2

Wh
, σ2

Wm
, and σ2

Whm
corresponds to variance of
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a specific histology feature, MRI parameter and the covariance between them, respectively.

The joint model specified in (6.1) allows us to model two sources (or aspects)
of the association between a specific histology feature and an MRI parameter: (1)
the association between the disease evolution effects (with respect to age) of the two
endpoints and (2) the association between the two endpoints adjusted for the time
evolution of the disease. In what follows, we show that the two sources of association
can be interpreted as individual and disease-level surrogacy. The later is similar to the
trial-level surrogacy discussed in Burzykowski et al. (2005).

6.2.2 Genotype-Specific Individual-Level Surrogacy

Based on the covariance matrices specified in (6.3), we can derive the adjusted correlation
between an MRI parameter and a specific histology feature for each genotype given by

ρT = σAhm√
σ2
Ah
× σ2

Am

, and ρW = σWhm√
σ2
Wh
× σ2

Wm

. (6.4)

The genotype-specific adjusted correlations ρ
W

and ρ
T
measures the association between

the two endpoints adjusted for the time evolution of the disease and can be interpreted in
the same way as the adjusted association in the surrogacy model presented in Burzykowski
et al. (2005), Muchene et al. (2016b). A large absolute values of the adjusted correlation
imply better surrogacy at an individual level. Note that in contrast with the models
discussed in Burzykowski et al. (2005), we do not assume that the association between
MRI and histology is equal in the two groups.

6.2.3 Disease-Level Surrogacy

The joint model specified in (6.1) allows us to estimate the age-and genotype-specific
parameters αj = (α1, α2, α3, α4, α5) and βj = (β1, β2, β3, β4, β5). Our aim is to establish
a relationship between αj and βj and in particular, to assess whether AD evolution
observed for the MRI parameter is predictive for the AD evolution observed for a particular
histology feature. In other words, we wish to evaluate whether an MRI parameter can be
used as a biomarker for a given histology feature in an AD mouse model at a disease level.
Disease-level surrogacy can be measured using R2 obtained from the regression model
(6.5), whereby, η and γ are regression coefficients, while εj denotes the measurement
error for the regression model.

β̂j = η + γα̂j + εj , j = 1...J. (6.5)
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Table 6.1: The motor cortex region: Parameter estimate (standard error) of AD pro-
gression effects. α: the disease effects on MRI-AK ( mm2/s). β: the disease effect on
GFAP percentage of area stained.

Age β̂ (SE) α̂ (SE)
2 -0.35 (0.51) -0.01 (0.02)
4 1.58 (0.51) 0.03 (0.02)
6 5.43 (0.53) 0.03 (0.02)
8 11.83 (0.53) 0.05 (0.02)
10 15.43 (0.92) 0.08 (0.03)

6.3 Application to the MRI Project Data: Examples of
Region Specific Models

The joint model specified in (6.1) was applied for each combination of the seven MRI
parameters and the four histology stains in each of the 23 ROI (shown in Figure 6.6).
In this section, we discuss the results in the motor cortex (Section 6.3.1) and the
caudate-putamen (Section 6.3.2) regions. Note that, as explained in Section 6.2, the
joint model (6.1) is formulated with a constant effect of histology in the wildtype mice
(µYj = µY ).

6.3.1 The Motor Cortex: GFAP Staining and MRI-AK

The observed data for GFAP percentage of area stained and MRI-AK are shown in
Figure 6.2a where an age-dependent shift of MRI and histology measurements for
older transgenic mice is observed. Parameter estimates obtained for the joint model
are presented in Table 6.1. The estimated regression model, shown in Figure 6.2b is
given by β̂j = 0.064 + 192.675α̂j . The surrogacy measure at disease level R̂2

D = 0.91
indicates that MRI-AK is a good predictive biomarker for GFAP staining. At an
individual level, after adjusting for the disease effect, there is low correlation between
the residuals (ρ̂

A
= ρ̂

W
= 0.13) indicating a low individual-level surrogacy (Panel c and d).

Figure 6.3a presents the disease-level surrogacy measures for all seven MRI parameters
and four histology stains in the motor cortex region. Note that the MRI-AK parameter
is found to be predictive for 4G8 staining (R2

D = 0.94) and GFAP staining (R2
D = 0.91),

while it has relatively low predictive value for the IBA-1 (R2
D = 0.60) and MBP

(R2
D = 0.47) staining. MRI-MD was found to be predictive at disease-level for 4G8

(R2
D = 0.87), GFAP (R2

D = 0.90), and IBA-1 (R2
D = 0.76) stainings, respectively. In

addition, MRI-RD was predictive for MBP staining with R2
D = 0.83. The results for

individual-level surrogacy are shown in Figure 6.3 which reveals that MRI parameters
were not predictive for histology at an individual-level in both transgenic (Figure 6.3b)
and wildtype mice (Figure 6.3c).
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(b) Age dependent AD progression effect.
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(c) Transgenic: Residuals after subtracting the
age-matched group means.
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(d) Wildtype: Residuals after subtracting the
age-matched group means.

Figure 6.2: The motor cortex region: Evaluation of surrogacy for MRI-AK (mm2/s) and
GFAP percentage of area stained. Blue symbols: wildtype mice. Red symbols: transgenic
mice.
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(b) Transgenic mice: Individual-level surrogacy for all MRI parameters and histology staining.
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(c) Wildtype mice: Individual-level surrogacy for all MRI parameters and histology staining.

Figure 6.3: The motor cortex region: Individual and disease-level surrogacy for all MRI
parameters (mm2/s) and histology stains (percentage of area stained).
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Table 6.2: The caudate-putamen region: Parameter estimate of AD progression ef-
fects for GFAP percentage of area stained with MRI-AK. α: disease effect on MRI-AK
(mm2/s). β: disease effect on GFAP percentage of area stained.

Age β̂ (SE) α̂ (SE)
2 0.35 (0.43) -0.0001 (0.02)
4 1.05 (0.43) 0.02 (0.02)
6 3.99 (0.46) -0.013 (0.024)
8 8.75 (0.46) 0.0001 (0.024)
10 16.37 (0.80) 0.09 (0.03)

6.3.2 The Caudate-Putamen: GFAP Staining and MRI-AK
A similar analysis was conducted for the caudate-putamen region. The observed data
for GFAP percentage of area stained and MRI-AK shown in Figure 6.4a indicates an
age-dependent shift in histology values for transgenic mice and a relatively small shift in
MRI-AK values. The estimated disease-level surrogacy is relatively low at R2

D = 0.596
(See Figure 6.4b). Moreover, although a large disease effect on histology is observed over
time as shown in Table 6.2, the disease effect on MRI is relatively small, hence the low
association between MRI and histology disease effects. Similar patterns can be observed
for individual-level surrogacy of MRI-AK as a biomarker for GFAP percentage of area
stained as shown in Figure 6.4c and 6.4d.

Figure 6.5a shows the surrogacy measures for all MRI parameters and histology stains
(percentage of area stained) in the caudate-putamen region. For the 4G8 staining, the
highest surrogacy measures at a disease level was found for MRI-AD and MRI-MD (R2

D =
0.62 and R2

D = 0.61, respectively). The MRI parameters with the highest disease-level
surrogacy measures in the caudate-putamen region were MRI-MD, MRI-MK and MRI-RD
for the GFAP staining with R2

D = 0.83, R2
D = 0.87, and R2

D = 0.86, respectively. Note
that for the MBP staining, all MRI parameters except for MRI-AD (R2

D = 0.35), are
good biomarkers at disease-level with R2

D ≥ 0.72. For transgenic mice, individual-level
surrogacy was very low for all MRI parameters and histology stains as shown in Figure
6.5b. On the other hand, individual-level surrogacy was found to be relatively high in
the wildtype mice for MBP staining using MRI-AK (ρ̂

W
= 0.95), MRI-MK (ρ̂

W
= 0.94),

MRI-RD (ρ̂
W

= 0.94) and MRI-RK (ρ̂
W

= 0.71).

6.4 The Surrogacy Map of the Brain
The joint model allows us to evaluate the surrogacy pattern in the brain for all
combinations of MRI parameters and histology stains. Figure 6.6 shows a heatmap of
the disease-level surrogacy in the 23 ROI. Clearly, surrogacy is highly dependent on the
region, MRI parameter and histology stain. For regions such as amygdala and olfactory
bulb, none of the MRI parameters is useful as a biomarker for any of the histology
stains. GFAP percentage of area stained can be predicted by several MRI parameters
in the caudate-putamen, cerebellum, and several cortex regions. For IBA-1 staining,
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(c) Transgenic: Residuals after subtracting the
mean.
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(d) Wildtype: Residuals after subtracting the
mean.

Figure 6.4: The caudate-putamen region: Evaluation of surrogacy with MRI-AK
(mm2/s) and GFAP percentage of area stained. Blue symbols: wildtype mice. Red
symbols: transgenic mice.
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(b) Individual-level surrogacy in transgenic mice.
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(c) Individual-level surrogacy in wildtype mice.

Figure 6.5: The caudate-putamen region: Individual and disease-level surrogacy map for
all MRI parameters (mm2/s) and histology stains (percentage of area stained).
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Figure 6.6: Disease level surrogacy in 23 regions of the brain. R2
D for each MRI parameter

(units: mm2/s) and histology (percentage of area stained). White fill: surrogacy measure
not computed due to inadequate data for estimation.

good disease-level surrogacy was observed in the septal nucleus region using all MRI
parameters (apart from MRI-AD and MRI-AK). Relatively high level of surrogacy of
MRI parameters with 4G8 staining was observed in the cortex regions. Thus, since these
four histology stains evaluate different aspects of the disease morphology, there is need
to evaluate surrogacy at the different brain regions using MRI parameters with high
surrogacy level for the particular histology stains.

A surrogacy map for individual-level surrogacy in transgenic mice is presented in
Figure 6.7a. Overall, a low individual-level surrogacy is observed, an indication that
prediction of histology at an individual level is not practical using MRI parameters.
For the wildtype mice however, individual-level surrogacy was relatively high in some
brain regions, MRI parameters and histology stains (see Figure 6.7b). Note that this
individual-level association between wildtype mice is less of interest since from a biological
point of view, the endpoints in wildtype mice are expected to be "less" correlated since
no disease-induced pathology is expected in wildtype mice.

6.5 Discussion
The joint model specified in Section 6.2 was developed in order to model the association
between MRI and histology, taking into account the disease progression effects on
both endpoints. The observation unit that we have used in this chapter is the triplet
(Genotype

i
,MRIij ,Histologyij). Figure 6.8 illustrates the two sources of association
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(a) Transgenic mice.
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Figure 6.7: Individual level surrogacy in 23 regions of the brain. ρ̂
T
and ρ̂

W
, respectively,

for each MRI parameter (mm2/s) and histology (percentage of area stained). White fill:
surrogacy measure not computed.
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Figure 6.8: Illustration of the joint modelling framework: The association between MRI
and histology after adjusting for the disease effects.

presented in this chapter. For a given age, the effect of the disease on MRI αj and the
effect of the disease on histology βj is represented by the shift in the distribution of
both MRI and histology parameters as illustrated in panel 6.8b. Panel 6.8a illustrates the
genotype-specific association in the residuals after adjusting for the disease effects αj
and βj .

We have shown that, using a two stage approach, we can estimate a genotype-specific
adjusted association ρ̂

W
and ρ̂

A
using the joint model (6.1) in the first stage, while

the prediction of the disease progression effects on histology can be done in the second
stage using linear regression model for β̂j and α̂j . Although, the experimental setting
discussed in this chapter is completely different from the one encountered in clinical
trials, the same association structure (as illustrate in Figure 6.8a) implies that the same
modelling approach can be used in order to evaluate the quality of MRI as a biomarker
for histology. We have shown that the use of MRI as a biomarker for histology depends
on the brain region, MRI parameters and histology staining.

The joint model presented in this chapter assumes that the disease effect on MRI, αj ,
at a particular age j can be used to predict the disease effect on histology, βj at the same
age. That is, there is a relationship between the disease effects on MRI and histology
given by

βj = f (αj) . (6.6)

A model whereby the disease-effect on histology βj at a given age j can be predicted
by the disease-effect on MRI at an earlier timepoint t < j, would be of much interest,
from a diagnostic point of view. For such a model, the relationship is given by

βj = f (αt) , t < j. (6.7)

The case studies presented in this chapter posed two challenges with regards to
sample size: (1) there were only five age groups, which implies that, estimation of the
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linear regression line in the second stage is based on only five observations and (2)
there were only two wildtype mice at each age group. Therefore, the genotype-specific
coefficients µYj in (6.2) are based on two observations, hence they may have higher
variability. Note that for the wildtype mice, we do not expect a correlation between the
two endpoints and therefore, a model assuming the independence of the MRI parameter
and histology feature in wildtype mice can be considered.

6.6 Appendix: Software

6.6.1 Implementation in SAS

In this section, we discuss the implementation of the joint model discussed in Section 6.2
in SAS using data from the motor cortex with a pair of MRI-AK (biomarker) and GFAP
percentage of area stained (true endpoint).

Data Structure

The joint model, discussed in Section 6.2, was fitted using PROCEDURE MIXED in SAS
9.4. For each subject, measurements for both MRI and histology were available. Hence,
data for MRI and histology parameters for a single subject appeared in subsequent rows.
A partial print of the data is given in Panel 6.1.

Panel 6.1: Printout of a section of the SAS dataset.
PROC PRINT data=MriHistData;run;
animalid age genotype response endpoint
1 2 TRANSGENIC 0.001128658 MRI
1 2 TRANSGENIC 0.126652588 Histology
2 2 WILDTYPE 0.189814745 Histology
2 2 WILDTYPE 0.001124777 MRI

Common Parameter for Histology in the Wildtype Group

As mentioned in Section 6.2, from a biological point of view, it is assumed that histology
values of wildtype mice should remain constant between the age of 2-10 months, since
there is no significant disease pathology (due to ageing) progression. Hence, in the model
for histology, wildtype mice have a single parameter which does not change with age. In
SAS, this can be achieved by defining a common parameter CommonInt for histology in
wildtype as shown in Panel 6.2. Parameter estimate for the disease progression effects
(in both endpoints) are shown in Figure 6.9.
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Panel 6.2: SAS code for defining a common intercept the model.
DATA MriHistData;
SET MriHistData;
commonInt=age;
if treatment=’WILDTYPE’ and endpoint=’Histology’ then

commonInt=0;
RUN;

The association between MRI and histology is modelled using the REPEATED state-
ment. The option GROUP=genotype allows for genotype-specific covariance matrices
(6.3). The estimated disease effects on both MRI and histology are output by passing the
SOLUTION option and stored in a dataset named fixedeffects using the SOLUTIONF
option in the ODS OUTPUT command. The complete SAS code used to fit the joint model
is shown in Panel 6.3.

Panel 6.3: SAS code for implementing the joint model for surrogacy.
PROC MIXED DATA=surrogate;
CLASS genotype animalid endpoint commonint(ref=’0’);
MODEL response=commonint*endpoint

commonint*endpoint*genotype/SOLUTION NOINT;
REPEATED endpoint/SUBJECT= animalid*commonint TYPE=UN GROUP=genotype

R=1,4 RCORR=1,4;
ODS OUTPUT SOLUTIONF=fixedeffects;
RUN;QUIT;

Figure 6.9: SAS fixed effects parameter estimates.

The individual-level surrogacy for wildtype and transgenic mice is computed using the
estimated covariance matrices shown in Figure 6.10.
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Figure 6.10: SAS joint model covariance and correlation matrices estimates.

In order to compute disease-level surrogacy, a linear regression model is fitted using
PROC GLM in SAS (Panel 6.4).

Panel 6.4: SAS code: Regression model for disease-level surrogacy.
PROC GLM DATA=fixedeffectsProcessed;
MODEL effectstrue=effectssurrogate;
RUN;QUIT;

In the above code, effectstrue corresponds to the estimated disease effects on
the true endpoint β̂, while effectssurrogate corresponds to the estimated disease
effects on the surrogate endpoint α̂. The reported measure for disease-level surro-
gacy corresponds to R2 obtained from the linear regression model is shown in Figure 6.11.

Figure 6.11: Disease level surrogacy: GLM regression model output.

Age-Specific Parameters for Histology in the Wildtype Model

Rather than assume a common histology parameter in wildtype mice, an age-specific
parameter can be specified by substituting commonint with age. In order to obtain age
and genotype-specific estimates for the disease-effect on both MRI and histology, we
include in the model an interaction term age*endpoint*genotype (See Panel 6.5).

Panel 6.5: SAS code for an age-specific joint model.
PROC MIXED DATA=MriHistData;
CLASS genotype animalid endpoint age;
MODEL response=age*endpoint age*endpoint*genotype/SOLUTION NOINT;
REPEATED endpoint/SUBJECT= animalid*age TYPE=UN GROUP=genotype

R=1,4 RCORR=1,4;
ODS OUTPUT SOLUTIONF=fixedeffects;
RUN;QUIT;
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6.6.2 Implementation in R
The proposed model can easily be implemented in R using the gls function from the
nlme package.

Common Parameter for Histology in the Wildtype Group

We adopt a dummy coding for the variables of interest as shown in the partial print of
the MriHistData.dummy data object in Figure 6.12.

Figure 6.12: Partial print of the R dataset with appropriately defined dummy vari-
ables.



58 Chapter 6. Evaluation of MRI as a Biomarker for Histology in Alzheimer’s Disease

The model can be fitted using the R code displayed in Panel 6.6.

Panel 6.6: R code for implementing the joint model.
library(nlme)
fit <- gls(response~-1+endpoint+mu_SURRO_wt4+mu_SURRO_wt6+

mu_SURRO_wt8+mu_SURRO_wt10 +beta_TRANS_TRUE_2
+alpha_TRANS_SURRO_4+alpha_TRANS_SURRO_6+alpha_TRANS_SURRO_8
+alpha_TRANS_SURRO_10+beta_TRANS_TRUE_2
+beta_TRANS_TRUE_4 +beta_TRANS_TRUE_6
+beta_TRANS_TRUE_8 +beta_TRANS_TRUE_10,

data=MriHistData.dummy,
correlation=corSymm(form = ~ 1| animalid ),
weight=varIdent(form=~1|endpoint*genotype))

By specifying endpoint in the right hand side of the formula, we allow for a
common parameter estimate for histology (true endpoint) in wildtype as well as a
parameter for MRI (surrogate endpoint) at 2 months for wildtype mice. The vari-
ables alpha_TRANS_SURRO_2- alpha_TRANS_SURRO_10 corresponds to α1-α5 while
beta_TRANS_TRUE_2- beta_TRANS_TRUE_10 correspond to β1-β5 in (6.1).

The argument correlation=... allows for the specification of correlated outcomes
within a subject. Further, we specify an unstructured correlation using the corSym con-
struct. In order to define heterogeneous variances, that is, endpoint and genotype-specific
variance covariance matrices as defined in (6.3), the argument weight=varIdent(...)
is used. The output for the disease progression parameters is shown in Figure 6.13 below.

Figure 6.13: R gls output for the surrogacy model.

The estimated covariance matrices (6.3) with the corresponding correlation estimates
for disease-level surrogacy (6.4) are shown in Panel 6.7 below.
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Panel 6.7: R output for the joint model covariance matrices.

Transgenic.covmat <- getVarCov(fit, individual=1)
cov2cor(Transgenic.covmat )
Marginal variance covariance matrix

[,1] [,2]
[1,] 1.00000 0.13295
[2,] 0.13295 1.00000

Wildtype.covmat <- getVarCov(fit, individual=4)
cov2cor(Wildtype.covmat)
Marginal variance covariance matrix

[,1] [,2]
[1,] 1.00000 0.13355
[2,] 0.13355 1.00000

To obtain the disease-level surrogacy, a linear regression is fitted to the disease
progression effects and the model R2 obtained as shown in Panel 6.8.

Panel 6.8: Disease-level surrogacy measure from the R model fit.
summary(lm(alpha~beta, data=fixedEffectsProcessed))$r.squared
[1] 0.9101327

Age-Specific Parameters for Histology in the Wildtype Group

A partial print of the dataset for the model with age-specific parameters for histology in
the wildtype group is shown in Panel 6.9.

The model is fitted using age and endpoint as factor variables. The interaction
term endpoint:age denotes the age-specific average readout for MRI and histology in
wildtype mice, while the three-way interaction term endpoint:genotype:age denotes
the age-specific disease effect (transgenic compared to wildtype mice). The appropriate
R code for model fit is shown in Panel 6.10. The resulting parameter estimates are shown
in Figure 6.14.

Panel 6.9: Printout of a section of the dataset used in R model fit.

> head(MriHistData)
animalid age genotype endpoint response

30 1 10 TRANSGENIC true 17.4715576
81 1 10 TRANSGENIC surrogate 0.8114934
31 2 10 TRANSGENIC true 16.5277908
82 2 10 TRANSGENIC surrogate 0.7101217
32 3 10 TRANSGENIC true 14.3902328
83 3 10 TRANSGENIC surrogate 0.8296881
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Panel 6.10: R code for fitting an age-specific joint model.
fit2 <- gls(response~endpoint:age+endpoint:genotype:age -1,

data=MriHistData,
correlation=corSymm( form = ~ 1| animalid ),
weight=varIdent(form=~1|endpoint*genotype))

The resulting parameter estimates are shown in Figure 6.14.

Figure 6.14: R gls output for the age-specific surrogacy model.

Note that in this case, the coefficients for histology in wildtype are more imprecise
(since at each age, only two observations are available). The estimation of disease-level
surrogacy follows as in the previous case of the model with a common histology parameter
in wildtype mice.



Chapter 7
Hierarchical Bayesian Model for
the Evaluation of MRI as a
Biomarker for Histology in
Alzheimer’s Disease

7.1 Introduction

In Chapter 6, we presented an adaptation of the meta-analytic approach for the
evaluation of surrogacy of MRI parameters for particular pathological histology stains in
Alzheimer’s disease. A two-stage approach was proposed, whereby a joint model for a
given MRI parameter and histology stain’s feature was fitted in order to estimate the
disease effects on both outcomes. In the second stage, a linear regression model was
fitted and the disease-level surrogacy quantified by the model R2. In this chapter, rather
than the two-stage approach, we propose to combine the computation of both disease
and individual-level surrogacy into one stage. To achieve this, a hierarchical Bayesian
joint model is proposed whereby, the disease-level surrogacy evaluation is performed by
specifying a joint prior distribution for the disease effects. The methodology, discussed
in details in Section 7.2, is based on the hierarchical Bayesian model proposed by Shkedy
and Barbosa (2005), with an adaptation for the AD surrogacy settings. Results of
applying the methodology to selected parameters from the MRI study are presented in
Section 7.3. In Section 7.4, a simulation study is performed to assess the performance of
the methodology under different settings.

61
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7.2 Methodology
Consider a histology feature (i.e. a "true" endpoint using surrogacy terminology) Yij and
an MRI parameter (a biomarker) Xij measured for subject i = 1 . . . N at time point
j = 1 . . . 5 (corresponding to 2, 4, 6, 8 and 10 months of age). Further, let Zi be an
indicator variable for the mice genotype, where Zi = 0 corresponds to a healthy control
(i.e, wildtype mice, denoted by W) and Zi = 1 corresponds to APP/PS1 mice (transgenic
mice denoted by A). Buyse et al. (2000) proposed a two-stage model for the validation of
surrogate endpoints in the meta-analytic framework. In the first stage, the linear predictor
for the MRI and histology endpoints, respectively, is defined as

E(Xij |Zi) = µ
Xj

+ αjZi,
E(Yij |Zi) = µ

Y j
+ βjZi.

(7.1)

Here, µ
Xj

and µ
Y j

are the age-specific intercepts (means) in wildtype mice for the
biomarker (MRI parameter) and "true" (histology feature) endpoints, respectively, while
αj and βj are the age-specific effects of the genotype (transgenic) on the MRI parameter
and histology endpoints, respectively. The association between the two endpoints is
captured by specifying a bivariate normal distribution,(

Xij

Yij

)
∼ Normal

([
µ
Xj

+ αjZi
µ
Y j

+ βjZi

]
,Σk

)
. (7.2)

The specification of the genotype specific covariance matrix Σk, k = W,A, allows
for the association between the true and surrogate endpoints to be different in wildtype
and transgenic mice. For the analysis presented in this chapter, Σk is a 2× 2 covariance
matrix given by,

ΣW =
(

σ2
WX

σWXY

σWXY
σ2

WY

)
and ΣA =

(
σ2

AX σAXY

σAXY σ2
AY

)
. (7.3)

Similar to the previous chapter, two measures of surrogacy are computed: an
individual-level and a disease-level surrogacy. The individual-level surrogacy measures
the association between MRI and histology after adjusting for possible genotype effects,
and is obtained from the covariance matrices defined in (7.3) such that, R2

ind = ρ2
W

and
R2
ind = ρ2

A
, for wildtype and transgenic mice, respectively,

ρW = σWXY√
σ2
WX

.σ2
WY

and ρA = σAXY√
σ2
AX
.σ2
AY

. (7.4)

The genotype-specific adjusted correlations ρ
W

and ρ
A

measures the association
between the two endpoints adjusted for the time evolution of the disease. A large
absolute value of the adjusted correlation, or equivalently, a large R2

ind value imply better
surrogacy at individual level.

As explained in Chapter 5 and 6, the second level of surrogacy, disease-level surrogacy,
is related to the association between the disease evolution on both endpoints and in
particular, it focuses on the question of whether the AD evolution on the MRI parameter
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can predict the AD evolution on histology. In order to obtain the disease-level surrogacy,
we specify a bivariate normal distribution prior for the disease effects given by,

(
αj
βj

)
∼ Normal

([
µα
µβ

]
, D

)
and D =

(
σ2
α σαβ

σαβ σ2
β

)
. (7.5)

The disease-level surrogacy R2
D, is defined as the square of the correlation coefficient ρ

αβ

which is derived from (7.5) as follows:

R2
D =

(
ρ
αβ

)2 =
(

σαβ
σα × σβ

)2
. (7.6)

A large R2
D is desirable. For a biomarker to be validated as a good surrogate at

disease and/or individual level, it is required to have at least one or both of surrogacy
measures (individual-level surrogacy and disease-level surrogacy) to be sufficiently high.

The following hyperprior distributions are specified for the covariance matrices in (7.3):

Σ−1
W ∼Wishart (QW , φ) and Σ−1

A ∼Wishart (QA, φ) . (7.7)

Here, QW and QA are 2× 2 diagonal matrices with diagonal elements equal to 0.001
and φ = 3 are the degrees of freedom (Gelman and Hill, 2007, Lesaffre and Lawson,
2012). Similarly, for the disease-level surrogacy estimation, the priors for the covariance
matrix of the disease-effects in (7.5) are given by,

D−1 ∼Wishart(QD, φ). (7.8)

Where QD is a 2×2 diagonal matrix with elements equal to 0.001, φ = 3 are the degrees
of freedom. The hyperprior for the overall mean of the effects is given by

µα ∼ Normal (0.0, 1.0E − 6) and µβ ∼ Normal (0.0, 1.0E − 6) . (7.9)

To complete the specification of the hierarchical model, the priors for the intercepts
in the linear predictors in (7.13) are given by,

µXj ∼ Normal (0.0, τX) ,
µYj ∼ Normal (0.0, τX) ,
τ
X
∼ Gamma (0.001, 0.001) ,

τ
Y
∼ Gamma (0.001, 0.001) .

(7.10)

Finally, taking into account biological considerations, an age-invariant parameter for
the histology endpoint in wildtype mice. That is, µ

Yj
= µ

Y
, is specified since for healthy

mice, there is no disease pathology developing due to ageing. Therefore, histology
staining is expected to be constant even as the animal grows older (Kohama et al., 1995).
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Figure 7.1: The motor cortex region: GFAP percentage of area stained versus MRI-AK
(mm2/s). Blue symbols: wildtype mice. Red symbols: transgenic mice.

7.3 Application to the Data
To illustrate the methodology discussed above, MRI-AK and MRI-RD parameters from
the motor cortex region in the brain are used to evaluate the validity of these endpoints
as biomarkers for a GFAP histology staining feature (percentage of area stained).

7.3.1 Motor Cortex: MRI-AK with GFAP Staining
The motor cortex data for MRI-AK and GFAP histology staining is shown in Figure 7.1a.
The "true" endpoint (GFAP percentage of area stained) shown on the Y-axis seems to
be constant for wildtype mice, while it increases with age for transgenic mice. This is
in agreement with the biological expectation, hence the choice of a common intercept
µ
Yj

= µ
Y
as explained above. Figure 7.1b presents the genotype and age-specific means

of true and surrogate endpoints. There is a clear age-dependent genotype (disease) effect
on both the true and surrogate endpoints.

The proposed joint hierarchical Bayesian model formulated in Section 7.2 was fitted
using a Markov Chain Monte Carlo (MCMC) simulation as implemented in R runjags
package (Plummer, 2015). Three chains were run in parallel for 60000 iterations with
a burn-in period of 30000. Chain mixing and convergence diagnostics were performed
(Lesaffre and Lawson, 2012), whereby the Gelman and Rubin potential scale reduction
factor close to one was obtained, while the autocorrelation at lag 60 was very small for
all parameters. The parameter estimates for the posterior mean of the disease effects are
shown in Table 7.1 and Figure 7.2a. For the biomarker (MRI-AK), large disease effects
are observed at eight and ten months, while for histology (GFAP percentage of area
stained), large disease effects are observed as from four months onwards. Note that the
disease effect increases with age in both the histology and MRI-AK endpoints.
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Table 7.1: Motor cortex. Posterior mean estimates (95% credible intervals) of the disease
effect on true (GFAP staining) and surrogate (MRI-AK) endpoints.

Age GFAP % area stained MRI-AK (mm2/s)
2 0.318 (-0.981, 1.574) -0.001 (-0.027, 0.025)
4 2.262 (0.969, 3.504) 0.016 (-0.009, 0.044)
6 5.795 (3.932, 7.076) 0.029 (0.001, 0.058)
8 12.393 (10.999, 13.668) 0.058 (0.023, 0.092)
10 15.637 (13.41, 17.566) 0.077 (0.036, 0.12)

The disease effects on both endpoints are visualised from the plots shown in Figure
7.2. The posterior distribution of the histology endpoint (Figure 7.2e) shows little overlap
in the distributions with increasing age, compared to that of the surrogate endpoint
(Figure 7.2f). For both endpoints, a clear shift to the right (with respect to age) of the
posterior distribution is observed.

The posterior mean estimates of the residuals (upon adjusting for the disease effects)
covariance matrices (7.3) are given by,

Σ̂W =
(

0.001 0.004
0.004 1.437

)
and Σ̂A =

(
0.001 0.006
0.006 2.557

)
. (7.11)

From these, the posterior means for the individual-level correlation coeffi-
cients (95% credible interval) were given by ρ

W
= 0.149 (−0.504, 0.769) and

ρ
A

= 0.133 (−0.186, 0.427) (see Figure 7.2c and 7.2d), while the posterior medians
were ρ

W
= 0.162 and ρ

A
= 0.134. The posterior mean of the individual-level surrogacy,

R2
ind, is 0.112 (0.0001, 0.473) and 0.042 (0.00005, 0.181) for wildtype and transgenic

mice, respectively, (posterior medians are 0.07 and 0.02, respectively). This implies that
MRI-AK is not a valid biomarker to GFAP percentage of area stained at individual level.

For the disease-level surrogacy, the posterior mean estimate of the correlation between
the disease effects ρ

αβ
= 0.760 (−0.354, 0.989) as shown in Figure 7.2b, while the

posterior mean of the disease-level surrogacy R2
D = 0.689 (0.017, 0.979) (posterior

median for ραβ = 0.890 and R2
D = 0.792). This suggests that for the motor cortex,

MRI-AK is a valid biomarker for GFAP (percentage of area stained) at the disease-level.
However, the precision is low.

7.3.2 Motor Cortex: MRI-RD with GFAP Staining
The data for MRI-RD with GFAP staining in the motor cortex is shown in Figure 7.3.
Although the histology endpoint (GFAP percentage or area stained) seems to vary with
age (Figure 7.3a), there was no clear separation of genotype in the MRI-RD axis. The
genotype and age-specific means are shown in Figure 7.3b, which indicate relatively low
association between the disease effects for the two endpoints.

Parameter estimates of the posterior mean of the disease effects are shown in Table
7.2. As can be seen in Figure 7.4a, the posterior mean estimate of the disease effects
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Figure 7.2: Motor cortex: GFAP staining (percentage of area stained) and MRI-AK
(mm2/s). Posterior mean estimates for the disease effect on the true and surrogate
endpoints, with the corresponding posterior densities.
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Figure 7.3: Motor cortex: evaluation of surrogacy for MRI-RD (mm2/s) and GFAP
percentage of area stained. Blue symbols: wildtype mice. Red symbols: transgenic mice.

Table 7.2: Motor cortex: posterior mean estimates (95% credible intervals) of the disease
effect on "true" (GFAP staining) and surrogate (MRI-RD) endpoints.

Age GFAP % area stained MRI-RD (mm2/s)
2 0.337 (-1.006, 1.632) 0.00008 (-0.015, 0.015)
4 2.258 (0.918, 3.565) 0.00003 (-0.014, 0.015)
6 5.543 (3.653, 7.004) 0.0001 (-0.016, 0.016)
8 12.368 (10.94, 13.683) 0.00006 (-0.014, 0.015)
10 15.368 (13.029, 17.45) 0.00015 (-0.017, 0.017)

indicate a negligible disease effect on MRI-RD in the motor cortex (see also Figure
7.4b). The kernel density estimates for the disease effects on the histology (GFAP
percentage of area stained) and MRI-RD endpoints are presented in Figure 7.4e and
7.4f. Although there is a clear age-dependent separation of genotype with GFAP staining
(Figure 7.4e), MRI-RD (Figure 7.4f) cannot distinguish between the genotypes for all ages.

Figure 7.4c and 7.4d shows the posterior density estimate for the residual correlation
after adjusting for the disease effects, which indicate weak surrogacy of MRI-RD for
GFAP staining at the individual level. Furthermore, the posterior mean of individual-level
surrogacy R2

ind is 0.105 (0.0001, 0.45) and 0.026 (0.000025, 0.125) for wildtype and
transgenic mice, respectively, an indication that MRI-RD is not a valid surrogate for
GFAP staining in the motor cortex at individual level. Similarly, the posterior mean
estimate of the disease-level correlation ρ

D
= 0.002 (−0.860, 0.860, see Figure 7.4b),

while the disease-level surrogacy measure R2
D

= 0.255 (0.001, 0.814) is relatively low,
implying that MRI-RD was not a valid biomarker for GFAP staining in the motor cortex
at disease-level as well.
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(d) Transgenic: individual-level correlation.
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Figure 7.4: Motor cortex: GFAP staining and MRI-RD (mm2/s). Posterior mean esti-
mates for the disease effect on the true and surrogate endpoints, with the corresponding
posterior densities.
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7.4 Simulation Study
In order to evaluate the performance of the hierarchical Bayesian model presented in
Section 7.2, a simulation study was performed. Two different aspects of the study design
were investigated: (1) the impact of the sample size of each treatment group (number
of transgenic and wildtype mice) and (2) the number of trials (corresponds to number
of age groups in the Alzheimer’s disease case study). In both cases, the effect on the
estimation of individual-level and disease-level surrogacy measures (of varying magnitude)
was evaluated.

7.4.1 Simulation Setting
Parameters that were varied during the simulation (shown in Table 7.3) include:

• Disease-level correlation ρ
D

= (0.2, 0.5, 0.85), individual-level correlation ρ
W

=
ρ
A

= (0.2, 0.5, 0.85).

• Number of wildtype mice (5, 10, 20) and transgenic (5, 10, 20) mice in the sample.

• The number of trials for which data is obtained (3, 5, 10).

In total, 243 settings were considered. In addition, parameters which were fixed for
all simulation settings included σ2

WY
= σ2

WX
= 0.01, σ2

AY
= 0.75, σ2

AX
= 0.01, for the

individual-level surrogacy covariance matrices, µα = 0.25, µβ = 11.1875, σ2
α = 0.1 and

σ2
β = 47.69, for the disease-level D components. Note that we fix µXj = 0.70 and
µY j = 0.50, for all j = 1, 2, . . . J , where J is the number of trials (number of time points
in which data are observed).

7.4.2 Data Generation and Model Fitting
To generate a dataset, we first sample the disease effects αj and βj from a multivariate
normal distribution with mean µα and µβ , respectively, and covariance matrix D (accord-
ing to the prior model specified in (7.12)). Once the values of αj and βj are obtained,
we sample the individual observations according to model (7.13). Subsequently, data was
generated using the procedure described in Section 7.4.2. Note that the individual level
correlation was set to be equal in both wildtype and transgenic mice, i.e., ρA = ρW for
all datasets.

Data Generation

The parameter grid for the first 25 settings out of the 243 settings considered in
the simulation is presented in Table 7.7. The data generation and estimation of the
correlation parameters is performed as follows:



70 Chapter 7. Bayesian Evaluation of MRI as a Biomarker in Alzheimer’s Disease

Table 7.3: Simulation study: parameter values for the key parameters explored in the
simulations.

Description Parameter values
No. trials Age 3, 5, 10
Sample size Wildtype 5, 10, 20

Transgenic 5, 10, 20
Correlation Individual-level 0.2, 0.5, 0.85

Disease-level 0.2. 0.5, 0.85

• First, sample the "true" disease effects αj and βj from a bivariate normal distribution
given by,(

αj
βj

)
∼ Normal

([
µα
µβ

]
, D

)
and D =

(
σαα σαβ
σαβ σββ

)
. (7.12)

From this step, we estimate the Pearson correlation coefficient, ρsim = corr (α,β),
corresponding to the "true" simulated correlation between the vector of disease
effects.

• The disease effect on MRI (αj) and histology (βj) are used in order to generate the
observations for each rat which are sampled from a bivariate normal distribution as
follows: (

Xij

Yij

)
∼ Normal

([
µ
Xj

+ αjZi
µ
Y j

+ βjZi

]
,Σk

)
. (7.13)

Note that the dataset obtained from (7.13) is the one to which the proposed hier-
archical Bayesian model is fitted.

A selection of simulated datasets is presented in Figure 7.5. Four scenarios are
illustrated by varying the disease-level correlation and individual-level correlation between
the two extremes (low=0.2 and high=0.85). For each simulation setting, 1000 datasets
were generated, and the hierarchical Bayesian model described in Section 7.2 was fitted
(with 60000 iterations of which the first 30000 were considered as burn-in period).

The key parameters of interest include the individual-level correlation parameters ρ
A

and ρ
W

and the disease-level correlation ρ
D
. In addition, since the "true" disease effects

in (7.12) are sampled from a bivariate normal distribution, the simulation study allows
us to estimate an additional parameter ρsim = cor(αj , βj) which denotes the correlation
between the simulated disease effects. Note that this is not be possible from the case study
data. This enables us to evaluate the association between the disease effect estimated by
the Bayesian hierarchical model, ρ̂

D
and the "true" correlation between the disease effects

ρsim.

7.4.3 Simulation Results
Upon fitting the model, the posterior means of the individual-level correlation ρ

A
and

ρ
W
, the posterior mean of the disease-level correlation ρ

D
as well as for other parameters
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Figure 7.5: Selected simulated datasets: only the correlation is varied. The number of
trials=5 and sample size=10 for each genotype. Red symbols: transgenic mice. Blue
symbols: wildtype mice. All units are arbitrary.
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Figure 7.6: Scatterplot between the simulated and the estimated correlations for the
disease effect. The panels corresponds to cohorts of 3, 5, and 10 age groups, respec-
tively. The true underlying correlation is 0.85 (see also Figure 7.2 in the appendix for this
chapter).

of interest are obtained from the Gibbs sampler.

Disease-Level Surrogacy

For the simulation study discussed in Section 7.4.2, estimates of the two correlation
parameters for the disease-level model (ρ

D
and ρsim) were obtained. Figure 7.6 shows

the scatterplot of ρ
D

against ρsim for various sample sizes (individual level correlation,
ρA = ρW = 0.85). It is clear that the accuracy of both correlation estimates increases as
the number of age points increase. Note that the "true" underlying correlation was 0.85
(solid lines). Table 7.4, 7.5, 7.6 and Figure 7.7 show the results for disease-level surrogacy
for data with 5, 10 and 20 mice of each genotype. Additional output for different levels
of individual and disease-level correlation is shown in the appendix.

While estimating the correlation, there is minimal effect of the composition of wildtye
and transgenic mice in the sample. However, the number of age points for which data
is obtained has an impact whereby, with three trials, the "true" underlying correlation is
under-estimated and as expected, estimation is improved with increasing number of trials.
Moreover, for a given trial size, the magnitude of the "true" underlying correlation has
an impact on the estimation accuracy, with a high correlation in general being under-
estimated (additional output are presented in the supplementary materials).

Individual-Level Surrogacy

Figure 7.8 and Table 7.4, 7.5 and 7.6 present the results for the individual level
surrogacy. The results shown in the tables are for data with 5, 10 and 20 mice of each
genotype. The "true" individual-level correlation is estimated more precisely as the
sample size of the respective genotype increases. Moreover, for a given sample size,
an increase in the number of trials for which data was obtained (age groups) resulted
in more accurate estimates for the "true" individual-level correlation. In general, larger
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Figure 7.7: Disease-level surrogacy: boxplots of the posterior mean estimates for ρD =
0.2, 0.5, 0.85. WT: number of wildtype mice in the sample. APP: number of transgenic
mice in the sample. The boxplot fill corresponds to individual-level correlations, ρ

A
= ρ

W
.

The X-axis shows the number of trials.

Table 7.4: Posterior means (standard error) of the correlation parameters under different
settings, for a sample with 5 transgenic and 5 wildtype mice.

ρ
D

ρ
W

3 age groups 5 age groups 10 age groups
ρ̂
D

ρ̂
W

ρ̂
A

ρ̂
D

ρ̂
W

ρ̂
A

ρ̂
D

ρ̂
W

ρ̂
A

0.2
0.2 0.082 (0.48) 0.195 (0.262) 0.197 (0.282) 0.12 (0.454) 0.184 (0.2) 0.193 (0.218) 0.18 (0.366) 0.203 (0.146) 0.2 (0.153)
0.5 0.05 (0.481) 0.468 (0.23) 0.479 (0.231) 0.135 (0.454) 0.473 (0.172) 0.483 (0.169) 0.173 (0.365) 0.486 (0.122) 0.496 (0.124)
0.85 0.049 (0.49) 0.83 (0.086) 0.828 (0.096) 0.097 (0.431) 0.834 (0.07) 0.845 (0.064) 0.168 (0.351) 0.842 (0.045) 0.846 (0.047)

0.5
0.2 0.254 (0.475) 0.188 (0.263) 0.196 (0.284) 0.361 (0.397) 0.199 (0.204) 0.19 (0.212) 0.441 (0.301) 0.198 (0.141) 0.196 (0.149)
0.5 0.22 (0.465) 0.474 (0.222) 0.477 (0.229) 0.347 (0.405) 0.482 (0.164) 0.489 (0.169) 0.437 (0.296) 0.492 (0.116) 0.486 (0.125)
0.85 0.199 (0.473) 0.816 (0.102) 0.83 (0.101) 0.337 (0.407) 0.836 (0.068) 0.84 (0.071) 0.437 (0.296) 0.842 (0.045) 0.845 (0.045)

0.85
0.2 0.413 (0.395) 0.193 (0.275) 0.194 (0.269) 0.604 (0.296) 0.19 (0.214) 0.18 (0.215) 0.728 (0.172) 0.197 (0.148) 0.196 (0.143)
0.5 0.436 (0.388) 0.471 (0.226) 0.48 (0.223) 0.582 (0.305) 0.484 (0.164) 0.479 (0.172) 0.727 (0.176) 0.495 (0.121) 0.493 (0.121)
0.85 0.418 (0.397) 0.825 (0.098) 0.83 (0.092) 0.612 (0.269) 0.836 (0.067) 0.837 (0.074) 0.741 (0.167) 0.845 (0.044) 0.841 (0.046)

individual-level correlation values are estimated more accurately than smaller correlations.
The magnitude of disease-level surrogacy does not have an influence on the estimation
of the individual-level surrogacy. Estimates of the mean square error, variance and bias
of the individual-level correlation are presented in the supplementary materials.

7.5 Discussion
The Bayesian approach to surrogate validation was adopted and applied on selected
MRI parameters in the motor cortex. For the two examples presented in this chapter,
individual-level surrogacy was too low. Prediction of GFAP staining given MRI-AK or
MRI-RD values of a subject is therefore not possible. On the other hand, predicting
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Figure 7.8: Individual-level surrogacy. Boxplots of the posterior mean estimates for
ρD = 0.2, 0.5, 0.85. WT: number of wildtype mice in the sample. APP: number of
transgenic mice in the sample. Ind: individual-level correlation ρ

A
= ρ

W
. Number of

trials: number of time points for which data is available.



7.5. Discussion 75

Table 7.5: Posterior means (standard error) of the correlation parameters under different
settings, for a sample with 10 transgenic and 10 wildtype mice.

ρ
D

ρ
W

3 age groups 5 age groups 10 age groups
ρ̂
D

ρ̂
W

ρ̂
A

ρ̂
D

ρ̂
W

ρ̂
A

ρ̂
D

ρ̂
W

ρ̂
A

0.2
0.2 0.096 (0.489) 0.185 (0.183) 0.196 (0.184) 0.125 (0.428) 0.186 (0.143) 0.198 (0.144) 0.176 (0.334) 0.2 (0.104) 0.2 (0.099)
0.5 0.111 (0.487) 0.477 (0.151) 0.491 (0.144) 0.16 (0.414) 0.487 (0.119) 0.497 (0.112) 0.178 (0.337) 0.499 (0.078) 0.496 (0.08)
0.85 0.049 (0.486) 0.838 (0.059) 0.84 (0.059) 0.126 (0.427) 0.844 (0.043) 0.845 (0.043) 0.154 (0.325) 0.848 (0.028) 0.846 (0.032)

0.5
0.2 0.257 (0.46) 0.197 (0.178) 0.194 (0.184) 0.363 (0.402) 0.195 (0.143) 0.185 (0.142) 0.44 (0.29) 0.199 (0.101) 0.196 (0.104)
0.5 0.262 (0.455) 0.492 (0.147) 0.487 (0.149) 0.363 (0.401) 0.491 (0.114) 0.493 (0.114) 0.446 (0.283) 0.496 (0.08) 0.496 (0.079)
0.85 0.237 (0.469) 0.84 (0.061) 0.84 (0.06) 0.359 (0.376) 0.843 (0.044) 0.844 (0.045) 0.433 (0.286) 0.848 (0.03) 0.847 (0.031)

0.85
0.2 0.5 (0.35) 0.199 (0.183) 0.197 (0.182) 0.633 (0.259) 0.196 (0.141) 0.199 (0.143) 0.753 (0.148) 0.198 (0.102) 0.203 (0.101)
0.5 0.482 (0.353) 0.493 (0.148) 0.488 (0.151) 0.639 (0.258) 0.494 (0.115) 0.489 (0.113) 0.75 (0.147) 0.495 (0.08) 0.497 (0.079)
0.85 0.49 (0.354) 0.838 (0.058) 0.838 (0.061) 0.636 (0.26) 0.844 (0.043) 0.844 (0.044) 0.759 (0.141) 0.847 (0.03) 0.849 (0.03)

Table 7.6: Posterior means (standard error) of the correlation parameters under different
settings, for a sample with 20 transgenic and 20 wildtype mice.

ρ
D

ρ
W

3 age groups 5 age groups 10 age groups
ρ̂
D

ρ̂
W

ρ̂
A

ρ̂
D

ρ̂
W

ρ̂
A

ρ̂
D

ρ̂
W

ρ̂
A

0.2
0.2 0.119 (0.493) 0.19 (0.123) 0.194 (0.124) 0.153 (0.417) 0.2 (0.102) 0.196 (0.097) 0.162 (0.321) 0.199 (0.068) 0.2 (0.069)
0.5 0.108 (0.49) 0.491 (0.099) 0.495 (0.099) 0.156 (0.409) 0.497 (0.074) 0.498 (0.079) 0.178 (0.317) 0.498 (0.054) 0.498 (0.052)
0.85 0.102 (0.486) 0.845 (0.038) 0.845 (0.037) 0.144 (0.414) 0.847 (0.029) 0.848 (0.031) 0.156 (0.318) 0.849 (0.02) 0.849 (0.02)

0.5
0.2 0.285 (0.444) 0.198 (0.127) 0.193 (0.13) 0.373 (0.38) 0.202 (0.101) 0.198 (0.096) 0.437 (0.271) 0.194 (0.07) 0.201 (0.071)
0.5 0.268 (0.453) 0.49 (0.1) 0.492 (0.099) 0.386 (0.374) 0.493 (0.075) 0.492 (0.078) 0.454 (0.25) 0.499 (0.056) 0.498 (0.054)
0.85 0.265 (0.443) 0.845 (0.039) 0.846 (0.041) 0.354 (0.374) 0.847 (0.031) 0.847 (0.03) 0.443 (0.258) 0.848 (0.02) 0.847 (0.021)

0.85
0.2 0.507 (0.347) 0.197 (0.126) 0.195 (0.128) 0.65 (0.246) 0.2 (0.101) 0.195 (0.097) 0.756 (0.153) 0.197 (0.066) 0.195 (0.069)
0.5 0.517 (0.327) 0.491 (0.104) 0.493 (0.101) 0.662 (0.246) 0.499 (0.078) 0.497 (0.075) 0.763 (0.137) 0.499 (0.054) 0.497 (0.055)
0.85 0.51 (0.34) 0.845 (0.038) 0.844 (0.039) 0.671 (0.23) 0.844 (0.028) 0.846 (0.028) 0.766 (0.133) 0.848 (0.021) 0.848 (0.02)

the disease effect on the GFAP staining from the disease effect on MRI-AK can be
performed since the disease-level surrogacy for MRI-AK parameter was estimated to be
equal to ρD = 0.76. Note that the disease-level surrogacy of MRI-RD for GFAP staining
in the motor cortex is relatively low, hence MRI-RD cannot be a biomarker for GFAP
staining in motor cortex. These results (and others not shown here) indicate that, the
validity of MRI parameters as surrogates for disease pathology largely depends on the
MRI parameter being evaluated.

Simulation studies reveals that, the estimation of disease-level surrogacy is only
affected by the trial size (i.e., the number of age points in which MRI and histology are
measured) and the magnitude of the "true" underlying disease-level correlation. As the
number of trials increases, there is a reduction in the magnitude of the under-estimation
of the "true" disease-level correlation. Moreover, for trials of the same size, if the "true"
disease-level correlation is large, the magnitude of under-estimation is larger compared to
the setting in which the underlying "true" disease-level correlation is low. This therefore
implies that for the case studies presented in this Chapter, the reported disease-level
surrogacy might be higher than the estimated value. The under-estimation may result
in an MRI parameter with moderate disease-level correlation being declared an invalid
biomarker for further consideration. The accuracy of the estimation of individual-level
surrogacy is not only affected by the magnitude of the "true" individual-level correlation,
but also by the sample size of the respective genotype. In contrast to the disease-level
surrogacy, there is minimal bias in the estimation of the individual-level surrogacy.
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7.6 Appendix

7.6.1 Disease-Level Surrogacy

In order to fully understand the final simulation output, a smaller simulation study
was performed on the performance of the correlation parameter for different variances
and sample sizes. We sampled data from a bivariate normal distribution with mean
µ = (0.25, 11.1875). The covariance matrix had a correlation ρ = 0.85, while the
variance components were set to σ2

1 = σ2
2 = 0.1 or σ2

1 = σ2
2 = 1.5. In both cases, 1000

datasets were generated for samples of size 3, 5, 10 or 20. Figure 7.9 shows that only
the sample size of a dataset has an influence on the distribution of the sampled correlation.
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Figure 7.9: Density estimate for the distribution of the correlation. The broken line
denotes the true correlation (0.85).

7.6.2 Additional Output for the Simulation Study

Scatter plots of the estimated correlation (ρ
D

) versus the simulated correlation (ρsim)
between the disease effects are shown in Figure 7.10, 7.11 and 7.12 for trials of size 3, 5
and 10, respectively. For a given trial size, the genotype composition and the magnitude
of the individual-level surrogacy does not affect the accuracy of the estimation. Note
that the correlation between ρD and ρsim increases as the number of trials (i.e. age
points in which MRI and histology are measured) increases. As we mentioned in the
main paper, the correlation ρsim can be estimated only in the simulation study and not
in real data. The mean, variance and bias plots for disease-level surrogacy are shown
in Figure 7.13. For the individual-level surrogacy, the MSE, variance and bias plots for
wildtype and transgenic mice are presented in Figure 7.14 and 7.15, respectively.
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Table 7.7: Simulation study: parameter grid of all the simulation settings considered.
WT: wildtype mice sample size. APP: transgenic mice sample size. Trials: number of
trials.

Setting WT APP Trials ρD ρA = ρW

1 5 5 3 0.2 0.2
2 10 5 3 0.2 0.2
3 20 5 3 0.2 0.2
4 5 10 3 0.2 0.2
5 10 10 3 0.2 0.2
6 20 10 3 0.2 0.2
7 5 20 3 0.2 0.2
8 10 20 3 0.2 0.2
9 20 20 3 0.2 0.2

10 5 5 5 0.2 0.2
11 10 5 5 0.2 0.2
12 20 5 5 0.2 0.2
13 5 10 5 0.2 0.2
14 10 10 5 0.2 0.2
15 20 10 5 0.2 0.2
16 5 20 5 0.2 0.2
17 10 20 5 0.2 0.2
18 20 20 5 0.2 0.2
19 5 5 10 0.2 0.2
20 10 5 10 0.2 0.2
21 20 5 10 0.2 0.2
22 5 10 10 0.2 0.2
23 10 10 10 0.2 0.2
24 20 10 10 0.2 0.2
25 5 20 10 0.2 0.2
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Figure 7.10: Disease-level surrogacy for trial of size 3. Scatter plot of the simulated
and estimated correlation between the disease effects. The true disease-level correlation,
ρD is shown by the solid line. Ind: the true individual-level correlation, ρA = ρw. WT:
wildtype mice. APP: transgenic mice.
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Figure 7.11: Disease-level surrogacy for trial of size 5. Scatter plot of the simulated
and estimated correlation between the disease effects. The true disease-level correlation,
ρD is shown by the solid line. Ind: the true individual-level correlation, ρA = ρw. WT:
wildtype mice. APP: transgenic mice.
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Figure 7.12: Disease-level surrogacy for trial of size 10. Scatter plot of the simulated
and estimated correlation between the disease effects. The true disease-level correlation,
ρDis shown by the solid line. Ind: the true individual-level correlation, ρA = ρw. WT:
wildtype mice. APP: transgenic mice.
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Figure 7.13: Disease-level surrogacy. Simulation performance measures for ρD =
0.2, 0.5, 0.85. WT: number of wildtype mice in the sample. APP: number of trans-
genic mice in the sample. Ind: individual-level correlation ρ

A
= ρ

W
. Number of trials:

number of time points for which data is available.



82 Chapter 7. Bayesian Evaluation of MRI as a Biomarker in Alzheimer’s Disease

Figure 7.14: Wildtype individual-level surrogacy. Simulation performance measures for
ρ
W

= 0.2, 0.5, 0.85. WT: number of wildtype mice in the sample. APP: number of
transgenic mice in the sample. Ind: individual-level correlation ρ

A
= ρ

W
. Number of

trials: number of time points for which data is available.
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Figure 7.15: Transgenic individual-level surrogacy. Simulation performance measures
for ρ

A
= 0.2, 0.5, 0.85. WT: number of wildtype mice in the sample. APP: number of

transgenic mice in the sample. Ind: individual-level correlation ρ
A

= ρ
W
. Number of

trials: number of time points for which data is available.
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Chapter 8
Model Selection and
Uncertainty in Dose-Response
Modelling

8.1 Introduction

Scientific research is often characterized by presence of competing models (and theories)
from which the most probable model (and theory) given observed data is selected. In
drug development for instance, different doses of a drug may be administered and the
effect of the treatment investigated. Dose-response studies often presumes that there
is a monotone relationship between administered doses and the observed response.
However, the choice of an appropriate model to describe a biological process and the
inference resulting from the parameter estimates is always associated with uncertainty
regarding their suitability in capturing the underlying process (Briggs et al., 2012,
Klingenberg, 2009). Traditionally, uncertainty in parameter estimates has been quantified
by confidence (credible) intervals around a point estimate, which provide information
about the accuracy of the estimates.

Ordinarily, scientists/statisticians may hypothesise several potential models for the
underlying biological process and apply model selection criteria such as Akaike informa-
tion criterion (AIC, Akaike, 1973), likelihood-based ratio test or Deviance Information
Criterion (DIC, Spiegelhalter et al., 2002) to choose the "best-fitting model" (Zucchini,
2000). However, the shortcoming with these measures is that, they do not directly
quantify the uncertainty associated with the chosen model, therefore ignoring the fact
that such a model was selected from a set of a priori defined models. It is necessary
to account for and quantify this uncertainty since inference on the resulting parameter
estimates is dependent on the selected model (Raftery, 1995).
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8.1.1 Bayesian Model Averaging
One method that accounts for model uncertainty is model averaging. In this framework,
a weight is assigned to each model in the set of plausible models. Further, the resulting
parameter estimates are a weighted average (using the model weights) of the estimates
from each model. There exists both frequentist and Bayesian approaches to model
averaging and quantification of the model uncertainty (Buckland et al., 1997, Cripps
et al., 2005, Claeskens and Hjort, 2008, Burnham and Anderson, 2003). In this part
of the thesis, we focus on the Bayesian approach applied to dose-response models
with and without order constraints on some of the parameters. Kato and Hoijtink
(2006), Klugkist and Hoijtink (2007) and Claeskens and Hjort (2008) proposed a
Bayesian approach whereby, the Bayes Factor (BF) and an appropriate encompass-
ing prior were used to compute the posterior model probabilities of the competing models.

Let g0 . . . gR be the set of plausible models. The posterior model probability for model
gr, assuming that they were all equally probable a priori i.e P (gr) = 1/R, for r = 0, ..., R,
is based on the Bayes factor BFr0. Let BF00 be the Bayes factor of the null model that
assumes no dose effect, let D represent the data and BF00 = 1. The posterior probability
is given by

P (gr|D, g0 . . . gR) = BFr0
BF00 +BF10 + ...+BFR0

. (8.1)

Whitney and Ryan (2009) used an alternative computation for the posterior model
probability for model gr based on

P (gr|D, g0 . . . gR) = P (D|gr)p(gr)
R∑
i=0

P (D|θrgr)p(gr)
,

P (D|gr) =
∫
P (D|θr, gr)P (θr|gr)dθr.

(8.2)

Here, P (gr) is the prior probability of the rth model. Note that a non-informative
prior, P (gr) = 1/R is used, P (D|gr) is the model likelihood, while θr is the vector of
parameters in the rth model, with appropriately defined non-informative priors, P (θr|gr).
Similar to the usual model averaging approach (Burnham and Anderson, 2003, Claeskens
and Hjort, 2008), an approximation to the posterior probability in (8.2) can be obtained
using model information criteria such as Schwarz’s Bayesian Information Criterion (BIC,
Schwarz, 1978). In this case, the posterior model probability is given by

P (gr|D, g0 . . . gR) = [exp(−0.5BIC(gr))]
R∑
i=0

[exp(−0.5BIC(gr))]P (gr)
. (8.3)

Note that other information criteria such as Akaike Information Criterion (AIC) and
Deviance Information Criterion (DIC) can be used.
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8.1.2 Bayesian Variable Selection
Given a set of potential predictors, X1, . . . , Xp, the relationship between the outcome Yi
and the predictors X, is given by

g (Yi) =
p∑
j=1

Xijβj . (8.4)

Here, βj are regression coefficients, and g (.) is an appropriate link function.

Model selection entails identifying a subset of predictors, X∗1 , . . . , X∗q , corresponding
to the "best" model. Selection of the "best" model out of the 2p submodels can be
performed using information criteria such as AIC and BIC. However, the number of
submodels increases with the predictor set X, therefore increasing the computational
requirements.

George and McCulloch (1993) proposed a Bayesian approach to variable selection
whereby, the hierarchical model is extended with an indicator variable

z =
{

1, if βj sampled from f2,
0, if βj sampled from f1.

(8.5)

The prior distribution of βj is a mixture of two normal distributions, f1 and f2, given
by

βj |zj ∼ (1− zj) f1 + zjf2. (8.6)
The posterior probability of zj is the posterior inclusion probability, which is an

indicator of whether Xj should be included in the model or not. Both f1 and f2 are
assumed to have zero mean. Note that the variance in f1 is set to be very small such
that, if zj = 0, βj is very small and can be safely assumed to be zero. The "best" model
is the one for which the subset, X∗1 , . . . , X∗q , has a high posterior mean of z̄1, . . . , z̄q.
The posterior mean estimates effect are obtained using Gibbs sampling (Dellaportas
et al., 2002).

A second approach for bayesian variable selection (O’Hara and Sillanpaa, 2009) assume
two independent priors for βj and zj ,

βj ∼ Normal
(
0, σ2) ,

zj ∼ Bernoulli (πj) ,
πj ∼ Uniform (0, 1) .

(8.7)

For the prior specification in (8.7), the linear predictor is given by

p∑
j=1

Xijzjβj . (8.8)

Note that, βj is included in the model whenever zj = 1. In the context of
dose-response modelling, Otava et al. (2013), Lin et al. (2012) and Kasim et al. (2012)
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applied Bayesian Variable Selection (O’Hara and Sillanpaa, 2009) methodology in model
selection for gene-expression profiles. We adapt this later approach, which we apply to
several case studies both for continuous, binomial and Poisson outcomes. In all the case
studies, BVS is performed only on a selected subset of the parameters.

8.2 Gaussian Case Studies: Longitudinal Dose-
Response Data

8.2.1 The Wistar Rat Data
Verdonck et al. (1998) described an experiment to evaluate the effect of inhibiting the
production of testosterone on craniofacial growth of Wistar rats. In their study, 50 male
Wistar rats were randomized to either control, or one of two treatment groups. For the
treatment, a low or high dose of Decapeptyl, which inhibits the production of testosterone,
were administered to rats aged 45 days and measurements taken every 10 days thereafter
(the first measurement was taken at 50 days). Rats were anaesthetized, an X-ray of the
skull taken, and the the distance (in pixels) between two predefined points recorded. The
measurement characterizing the height of the skull will be analysed. In Figure 8.1a, the
individual rat profiles are presented from which, there is evidence of drop-out at later
time points mainly attributable to deaths due to anaesthesia administration. The average
evolution profiles are shown in Figure 8.1b.

8.2.2 The Milk Protein Content Trial
The study was designed in order to assess the impact of diet on a cow’s milk protein con-
tent in Australia (Verbyla and Cullis, 1990). In total, 79 Australian cows were randomized
into a diet of barley only (25), lupins only (27) or a barley-lupins mixture (27), after calv-
ing. Subsequently, assays of the milk’s protein content were taken weekly for 19 weeks.
The cow-specific evolution profiles are shown in Figure 8.2a, while the mean evolution for
each diet is presented in Figure 8.2b. Note that although data was available from almost
all cows for the first 14 weeks, subsequent weeks had data from only 59, 50, 46, 46 and
41 cows, respectively. Statistical anaylses taking into account this ’dropout’ can be found
in Verbeke and Molenberghs (2000). Moreover, according to Verbyla and Cullis (1990),
the first three weeks were considered to be settling-in period hence, will be omitted from
subsequent analyses.

8.3 Non-Gaussian Case Studies: DRL-72 Data
In behavioral experiments, a standard protocol commonly applied for testing potential
clinically active antidepressants is the Differential Reinforcement Low-Rate 72 seconds
schedule (DRL-72, Evenden et al., 1993). In this protocol, rats are trained to press a
lever in order to obtain a reward (for instance, a pellet). A rat only obtains a reward if
the inter-response time (time between subsequent lever presses) is at least 72 seconds.
Each rat was subjected to several doses of a candidate anti-depressant treatment and
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Figure 8.1: The rat data. Observed evolution profiles.
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for each administered dose, the rat was monitored for 60 minutes. In this duration, the
inter-response times and the number of rewards obtained were recorded. Subsequently,
the number of times the rat pressed the lever (response) was derived as the number of
recorded inter-response times. There is interdependence of the two outcomes in that,
the number of rewards (the binomial outcome) depends on the number of responses (the
Poisson outcome) since both outcomes are measured on the same subject. Two DRL-72
case studies are analysed, the first involving a parallel drug administration, while the
second has a crossover design.

8.3.1 Parallel Design DRL-72 Case Study
In the parallel design case study, 18 rats were each subjected to four doses of a treatment
(0.0, 2.5, 5.0 and 10.0mg/kg) administered via an injection through the skin, resulting in
a cluster of four measurements per outcome for each rat. Note that in this dissertation,
the term "parallel design" refers to the fact that the same sequence of the four doses
was administered to each rat in the study. An adequate washout period was provided
for hence, no carrover effect of the previously administered doses was expected. Panels
a and b in Figure 8.3 present the individual response and rewards profiles, respectively,
while Panels c and d shows the average number of responses and rewards, respectively,
across all four doses.

8.3.2 Crossover Design DRL-72 Case Study
The second case study comes from a crossover DRL-72 experiment design, previously
analysed by Shkedy et al. (2005). In their study, a crossover design (Jones and Kenward,
1989) comprising of four blocks, three periods and 5 active treatments per block was
used. In total, 20 rats were randomised into a three-period sequence and the respective
doses administered. Further, for every period, each day of treatment administration was
preceded by a training day in which only the placebo was administered. Note that in a
crossover design, there is potential carryover effect of a treatment between subsequent
periods. The observed data for the crossover case study is presented in Figure 8.4 (panel
a and b shows the individual profile plots for the number of responses and number of
rewards, respectively, while panel c and d presents the respective average profiles).

8.3.3 Analysis Plan
An overview of the analysis plan for the dose-response datasets is shown in Figure 8.5.
When the outcome in dose-response experiments is Poisson or binomial, there is potential
overdispersion which ought to be accounted for. Chapter 9 presents a hierachical Bayesian
joint model to account for overdispersion in Poisson and binomial outcomes. In order to
account for model uncertainty, we present the Bayesian variable selection methodology
applied to hierarchical joint dose-response models with and without overdispersion (Chap-
ter 10) and to order-restricted dose-response models whereby, the dose-response profile is
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Figure 8.3: Parallel design DRL-72 experiment observed data. Subject-specific and
average dose-response profiles. For the average evolution, one standard deviation error
bars are included.
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Figure 8.4: Crossover DRL-72 experiment observed data: subject-specific and average
dose-response profiles. For the average evolution, one standard deviation error bars are
included.
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Figure 8.5: Overview of the analysis plan for the dose-response data and publication
strategy.

assumed to be monotone (Chapter 11). Finally, in Chapter 12, an alternative modelling
approach for the DRL-72 studies is provided.



Chapter 9
Overdispersion in Hierarchical
Bayesian Joint Models for
Correlated Data

9.1 Introduction
In drug discovery research, it is common to measure outcomes that are binary in nature,
such as the success or failure of a treatment in inducing a desirable effect, as well
as count outcomes such as the number of cells affected by a toxic effect. For these
outcomes, the distributional assumption is often binomial and Poisson distributions,
respectively. One fundamental feature of these distributions is that, the variance is a
function of the mean. For the Poisson distribution, both mean and variance are assumed
to be equal, while for the binomial distribution, the variance is a multiplicative function
of the mean. Over/under-dispersion in a Poisson distribution occurs when the population
variance is larger/smaller than the population mean (McCullagh and Nelder, 1989). If
over/under-dispersion is not accounted for, the resulting inference for parameters of
interest may be misleading since the variance will be over/under-estimated.

Several models have been proposed to account for overdispersion. For example, in
the Poisson case, Nelder and Wedderburn (1972) proposed specifying the mean-variance
relationship in a generalized linear model and applying the iteratively-weighted least
squares algorithm to estimate the scaling parameter. A scaling parameter greater than
one indicates presence of overdispersion while less than one indicates underdispersion.
An alternative approach is to introduce a multiplicative random effect with unit mean
and the variance quantifying the amount of heterogeneity in the observed Poisson counts.
This implies that the count variable follows a negative binomial distribution (Breslow,
1984). Zero-inflated Poisson and hurdle models can be applied to count data when
overdispersion occurs due to excessive zeros (Lambert, 1992). For the case of binomial
data, the beta-binomial model (Skellam, 1948) allows the probability of an event to be
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randomly sampled from a beta distribution with unit mean.

To account for extra variability within the setting of Poisson and binomial lon-
gitudinal/correlated data, Molenberghs et al. (2007, 2010) proposed the so-called
combined models, which account for clustering of outcomes and incorporate parameters
for overdispersion as well. Del Fava et al. (2014) applied the combined models to a
joint model for a HCV and HIV longitudinal study with binary outcomes, while Milanzi
et al. (2012) assessed the impact of ignoring overdispersion as well as the sensitivity to
misspecification of the underlying distribution for the overdispersion random-effect within
the combined modelling framework. Although there have been many developments and
extensions of the combined model proposed by Molenberghs et al. (2007), the method
has not yet been explored and applied to parallel and crossover dose-response trials
requiring joint modelling of outcomes such as behavioural experiments in drug discovery.

In this chapter, we extend the hierarchical Bayesian model to jointly model the Poisson
and binomial outcomes in the two DRL-72 case studies discussed in Chapter 8. The
proposed model allows for additive or multiplicative overdispersion on the Poisson and
binomial outcomes separately as well as on both outcomes simultaneously. The chapter is
arranged as follows; the statistical methodology and model formulation are presented in
Section 9.2. Application of the statistical methodology to the two case studies is presented
in Section 9.3. Finally, we close with a discussion in Section 9.4.

9.2 A Joint Model for the Number of Responses and
Rewards

9.2.1 Hierarchical Bayesian Binomial-Poisson Model for the DRL-
72 Experiment

The first model we consider in this chapter is a hierarchical Bayesian binomial-Poisson
model. Let nij be the number of times rat i = 1, 2, . . . , I, pressed the lever while
under dose j = 1 . . . J , and Yij be the number of rewards obtained. The distribution
assumptions are

Yij ∼ Binomial(nij , πij),
nij ∼ Poisson(λij).

(9.1)

The linear predictors for the mean response and reward are given, respectively, by

log(λij) = Xiα+ ai,

logit(πij) = Xiβ + bi.
(9.2)

Here, Xi is an ni × p design matrix, α and β are vectors of unknown coefficients
considered to be fixed parameters, while ai and bi are the subject-specific random
intercepts for the ith rat.

The two case studies, based on parallel and crossover designs, differ in their specifica-
tion of model (9.2) for the number of responses and number of rewards obtained. These
differences are highlighted in Sections 9.2.1 and 9.2.1.
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Model Formulation: A DRL-72 Experiment with a Parallel Design

For the parallel design of the DRL-72 experiment, all doses of the drug were administered
to each rat resulting in a set of associated outcomes. As explained in the previous chapter,
in this dissertation, the term "parallel design" refers to the fact that the same sequence
of the four doses was administered to each rat in the study. The fixed effects component
in the linear predictor Xiα and Xiβ in (9.2) can be denoted as

Xiα = α0 +
3∑
j=1

α1jdij ,

Xiβ = β0 +
3∑
j=1

β1jdij .

(9.3)

Here, α0 and β0 are the placebo effects, while αj and βj are the dose effects, j =
1, 2, 3, for the number of responses and number of rewards, respectively, and dij = 1 if
dose j is given to the ith subject and zero otherwise. Note that j = 1, 2, 3, corresponding
to 2.5, 5 and 10 mg/kg, respectively.

Model Formulation: A DRL-72 Experiment with a Crossover Design

The crossover design requires an adjustment in the mean structure for carryover and
the period effects in addition to the dose effect.The mean structures for the number of
responses and reward in the crossover model is denoted as

Xiα = α0 + α1j + α2k + α3`,

Xiβ = β0 + β1j + β2k + β3`.
(9.4)

The linear predictors specified in (9.4) take the form for dose j in period k, with dose
` administered in the preceding period. Moreover, α0 and β0 are the placebo effects in
period 1, α1j and β1j the effects of dose j, j = 0, 1.25, 2.5, 5.0, 10 mg/kg, α2k, and
β2k the effect of period k, k = 1, 2, 3, α3` and β3` the carryover effects of dose `,
` = 0, 1.25, 2.5, 5, 10 mg/kg, which was administered in the preceding period.

A Joint Modelling Approach

A joint model for responses and rewards is formulated to capture the association between
responses and rewards. This can be achieved by imposing a joint distribution on the
random effects: (

ai

bi

)
∼ Normal

([
0
0

]
,D
)
, D =

(
σ2
a σab

σab σ2
b

)
. (9.5)

Under the joint bivariate normal distribution specification of the prior model (9.5), the
resulting correlation coefficient between the random effects is given by

ρab = σab√
σ2
a.σ

2
b

. (9.6)
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A negative correlation implies that, at an individual level, low number of responses cor-
responds to high number of rewards. To complete the model specification, non-informative
priors and hyperpriors (for the precision parameters) are defined as

α ∼ Normal(0, τα),
β ∼ Normal(0, τβ),
τα ∼ Gamma(0.001, 0.001),
τβ ∼ Gamma(0.001, 0.001).

(9.7)

A Wishart prior distribution is specified for the inverse covariance matrix

D−1 ∼Wishart(RD, k). (9.8)

Here, the degrees of freedom k is set to be at least equal to the rank of D−1 and the scale
matrix RD is a 2 × 2 diagonal matrix with off-diagonal elements set to 0.001 (Gelman
and Hill, 2007, Lesaffre and Lawson, 2012).

9.2.2 Hierarchical Bayesian Joint Model with Overdispersion Pa-
rameters

Molenberghs et al. (2007, 2010) and Aregay et al. (2015) reported an additional gain in
accounting for overdispersion in hierarchical models in addition to accounting for cluster-
ing. They proposed the introduction of a set of random effects for overdispersion, which
can be assumed to follow a normal or gamma distribution. It can be shown (see Molen-
berghs et al., 2007, 2010) that a multiplicative random effect in a Poisson model results
in a negative-binomial distribution while in a binomial model, the beta-binomial distribu-
tion is derived. In their model, Molenberghs et al. (2007, 2010) assumed an independent
multiplicative overdispersion random effect and specified the cluster random effects (9.2)
to capture the intra-cluster correlation. On the other hand, Aregay et al. (2015) discussed
the case of additive overdispersion random effects for both outcomes that can be added
to model (9.2) as well. In what follows, we discuss the formulation of combined models
with multiplicative and additive overdispersion parameters in the setting of dose-response
modelling with parallel and crossover designs.

Multiplicative Overdispersion Models

In this section, we reformulate the joint model given in (9.1)-(9.8) by including multi-
plicative overdispersion random effects. Let Θ1ij and Θ2ij be subject and dose-specific
overdispersion parameters with prior specification given by

Θ1ij ∼ Gamma(θ1, θ1),
Θ2ij ∼ Beta(θ2, θ2).

(9.9)

The joint model formulated in (9.1)-(9.8) can be re-written to account for overdispersion
as follows:

Yij ∼ Binomial(nij ,Θ2ijπij),
nij ∼ Poisson(Θ1ijλij),

(9.10)
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The linear predictors for πij and λij remain the same as specified in (9.2). Note that
specifying a gamma distribution with both parameters equal results in an overdispersion
parameter distribution with mean= 1 and variance= 1/θ1. In order to have positive
scale and shape parameters for both the gamma and beta distributions, truncated normal
priors for θ1 ∼ Normal(0, 10−6)T (0, ) and θ2 ∼ Normal(0, 10−6)T (0, ), with precision
10−6 are defined. Alternatively, θ1 ∼ Uniform(0, 100) and θ2 ∼ Uniform(0, 100) may
be specified. Note that Θ1ij ≡ 1 implies lack of overdispersion in the Poisson outcome,
while Θ2ij ≡ 1 is an indication of no overdispersion in the binomial outcome.

Additive Overdispersion Models

Rather than specifying multiplicative random effects at the mean level, the overdisper-
sion random effects can be incorporated to the linear part of the model as an additive
term. Additive overdispersion random effects not only allow for possible correlation be-
tween the Poisson and binomial overdispersion parameters, but also, models with additive
overdispersion are less computationally intensive. The linear predictors for the additive
overdispersion model are given by

log(λij) = Xiα+ ai + Θ1ij ,

logit(πij) = Xiβ + bi + Θ2ij .
(9.11)

Note that we can specify independent priors for Θ1ij and Θ2ij , that is,

Θ1ij ∼ Normal(0, σ2
θ1

),
Θ2ij ∼ Normal(0, σ2

θ2
).

(9.12)

Alternatively, a joint prior distribution for the overdispersion parameters can be spec-
ified by (

Θ1ij

Θ2ij

)
∼ Normal

([
0
0

]
,DΘ

)
, DΘ =

(
σ2
θ1

σθ1θ2

σθ1θ2 σ2
θ2

)
. (9.13)

From (9.13), the correlation between overdispersion parameters in the Poisson and
binomial outcome is obtained from the covariance matrix estimates, DΘ. Note that the
case for which DΘ is a 2× 2 diagonal matrix implies that the models specified in (9.12)
and (9.13) are identical.

9.3 Application to the Data
For each of the two case studies, three types of models were considered: (1) basic
hierarchical Bayesian binomial-Poisson model (BP) without overdispersion, (2) BP
model with additive overdispersion and (3) BP model with multiplicative overdispersion.
Markov Chain Monte Carlo (MCMC) simulation was used to estimate the unknown
parameters via the rjags package (Plummer, 2015). For each model, three chains each
with 60000 iterations from which 30000 were considered as burn-in period, were used.
Diagnostic analysis (Gelman and Rubin, 1992) for the parameters of interest (presented
in the appendix) indicates convergence for all parameters.
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Table 9.1: DIC fit statistics for different overdispersion models. The smaller the value,
the better the model fits the data (the "best" model based on DIC is shown in bold). BP:
basic hierarchical Bayesian binomial-Poisson model.

DIC
Model Parallel Crossover

No OD BP 1070.96 1493.19
Multiplicative OD BP+OD(Poisson) 1052 1445

BP+OD(Binomial) 993.9 1495
BP+OD(Both) 971.9 1445

Additive OD BP+OD(Poisson) 1052 1444
BP+OD(Binomial) 990.3 1496
BP+OD(Both; independent) 967.8 1444
BP+OD(Both; correlated) 900.3 1456

The Deviance Information Criterion (DIC, Spiegelhalter et al., 2002) for assessing
the goodness-of-fit for the models is shown in Table 9.1. In both case studies, models
that accounted for overdispersion performed better than the basic hierarchical Bayesian
binomial-Poisson model (BP) without overdispersion. The model with additive correlated
overdispersion parameters (denoted as BP + OD(Both; correlated)) is the one with
the best goodness-of-fit for the parallel design. For the crossover study, the additive
model that adjust for overdispersion in the Poisson outcome only (denoted as BP +
OD(Poisson)) and the additive model that assumes independent overdispersion random
effects in both outcomes (denoted as BP + OD(Both; independent)) provide better
model fit compared to the BP model ignoring overdispersion. In what follows, we present
results of the best fitting overdispersion models and models without overdispersion for
comparison purposes (additional output for alternative overdispersion models is presented
and discussed in the appendix).

9.3.1 DRL-72 Experiment with Parallel Design
Posterior Means for Log(Odds Ratio) and Log(Relative Intensity)

For the binomial outcome, the posterior means for the log odds ratio, denoted as log(OR),
are presented in Table 9.2 for the BP and BP + OD(Both; correlated) models. The
posterior log(OR) estimates for the two models are similar, although the standard errors
for the overdispersion model were larger. This is expected due to the additional variability
introduced in the model in estimating the overdispersion parameters. Based on the 95%
credible intervals for the BP model, we can conclude that 5.0 mg/kg was the effective
dose, while 10.0 mg/kg was the only effective dose using the additive overdispersion model.

For the Poisson outcome, the posterior means of the log relative intensity, denoted as
log(RI), are presented in Table 9.3. The posterior mean estimates for both models were
found to be relatively similar although standard errors for the overdispersion model were
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Table 9.2: Binomial outcome-parallel design. Posterior estimates of log(OR) for the
contrasts of each dose level against the zero dose. The estimate shown for the zero dose
is the log odd of success versus failure for the zero dose, while for the other doses, the
estimate is a contrast of the log odds for the given dose versus the zero dose. SE: Posterior
mean of the standard error of the mean. CI: credible interval.

Model Dose Estimate (SE) 95% CI
BP 0 -1.446 (0.135) (-1.711, -1.18)
DIC=1070.96 2.5 -0.078 (0.108) (-0.29, 0.132)

5 0.276 (0.105) (0.07, 0.482)
10 0.763 (0.103) (0.563, 0.964)

BP+OD(Add;Correlated) 0 -1.471 (0.178) (-1.823, -1.124)
DIC=900.30 2.5 -0.09 (0.229) (-0.539, 0.363)

5 0.333 (0.231) (-0.124, 0.79)
10 0.851 (0.232) (0.395, 1.31)

Table 9.3: Poison outcome-parallel design. Posterior mean estimates for the contrasts
of the log(RI) with the zero dose. The estimate for zero dose is the log of the risk for
zero dose while for other doses, the estimate denotes the contrast of log risk of the given
dose versus the zero dose. 95% credible intervals (CI) are also included.

Model Dose Estimate (SE) 95% CI
BP 0 4.171 (0.042) (4.086, 4.254)
DIC=1070.96 2.5 0.005 (0.041) (-0.076, 0.086)

5 -0.071 (0.042) (-0.153, 0.011)
10 -0.141 (0.043) (-0.225, -0.058)

BP+OD(Add;Correlated) 0 4.169 (0.055) (4.06, 4.277)
DIC=900.30 2.5 0.007 (0.072) (-0.136, 0.15)

5 -0.075 (0.074) (-0.219, 0.071)
10 -0.155 (0.075) (-0.302, -0.008)

higher. Moreover, the 95% credible intervals for both models infer an effect of only the
high dose.

A graphical summary of the estimated dose effects is presented in Figure 10.10,
which shows that log(OR) increases with dose, while log(RI) decreases with dose. This
implies that as the dose administered increases, the odds of successfully obtaining a re-
ward increases since the risk of pressing the lever before 72 seconds have elapsed decreases.
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Figure 9.1: Parallel DRL-72 experiment. Posterior mean estimates with the 95% cred-
ible intervals (CI) for the response and reward models with no overdispersion (BP) and
correlated additive overdispersion model.

Posterior Means for the Correlation Between the Number of Responses and Re-
wards

As mentioned in Section 9.2, the correlation between the subject-specific random effects,
given in (9.6) is of primary interest since it quantifies the correlation between the number
of responses and rewards at an individual level. For example, the case in which ρab < 0
implies that the number of rewards increases as the number of responses decreases. That
is, if the rat become more relaxed, it has a tendency to wait for at least 72 seconds,
which results in a lower number of times it presses the lever (responses). Subsequently,
the rat will be rewarded more times.

Table 9.4 (upper panel) presents the posterior mean for the clustering correlation
coefficient while Figure 9.2 shows the density estimates for the posterior distributions
obtained for the BP and BP + OD(Both; correlated) models. We notice that there is a
substantial difference between the posterior means of the correlation coefficients for the
two models. For the BP model, ρab = −0.987(−0.998,−0.958), while for the model with
correlated additive overdispersion parameters, ρab = −0.365(−0.712, 0.122). The latter
implies that the correlation between ai and bi diminishes when overdispersion parameters
are included in the model. DIC for the model that assumes that the two random effects
are independent is equal to 967.8 (see Table 9.1) and therefore this model will not be
considered further. For the BP model, the two random effects are highly correlated,
suggesting that a shared random effect can be considered. However, for a shared random
effects model (not shown here), DIC=1240.77. Note that for the model with correlated
additive overdispersion parameters, the posterior mean estimates (shown in the lower
panel of Table 9.4) denote the components of the covariance matrix (9.13).
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Table 9.4: Parallel design. Posterior mean (median) for clustering random effects variance
and correlation ρab, overdispersion parameters and overdispersion correlation ρ

OD
for the

binomial-Poisson (BP) models under different assumptions.

Clustering random effects
σ2
a σ2

b ρab

BP 0.017 (0.016) 0.227 (0.209) -0.988 (-0.987)
BP+OD(Both; Correlated) 0.084 (0.077) 0.298 (0.268) -0.345 (-0.365)

Overdispersion random effects
θ1 θ2 ρ

OD

BP+OD(Both; Correlated) 0.027 (0.026) 0.265 (0.256) -0.990 (-0.993)
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Figure 9.2: Parallel DRL-72 experiment: Kernel density estimate for the clustering ran-
dom effects correlation. The vertical lines marks the 95% credible intervals. This correla-
tion captures the dependency between the number of responses and number of rewards.

The posterior means for the number of response and rewards are shown in Figure 9.3,
which reveals the same inverse relationship between the two outcomes for both models.
For the 5.0 mg/kg and 10 mg/kg doses, the number of responses decrease while the
number of rewards increases.
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Figure 9.3: Parallel DRL-72 experiment. Posterior estimate of the average profiles
for the response and reward models with no overdispersion and with correlated additive
overdispersion parameters. The solid symbols denotes the observed data.

9.3.2 DRL-72 Experiment with a Crossover Design
For the crossover study, models accounting for overdispersion in both the Poisson and bino-
mial outcomes had a smaller DIC compared to a model without overdispersion parameters.
In addition, for the additive overdispersion model, independent overdispersion parameters
were preferred over correlated overdispersion parameters. Note that a model with only
additive overdispersion random effect in the Poisson outcome had the same DIC as the
independent additive overdispersion model. Moreover, the multiplicative overdispersion
counterparts of these two models had similar DIC values (DIC=1445, see Table 9.1). In
what follows, we discuss the results of the hierarchical Bayesian Binomial-Poisson model
(BP), BP with an additive overdipersion parameter in the Poisson outcome (BP+OD(Add,
Poisson)) and BP with independent additive overdipersion parameters in both outcomes
(BP + OD(Both; add_ind)).

Posterior Estimates of the Dose Effects for Resposes and Rewards

For the Poisson outcome, the posterior mean of log(RI) with the corresponding 95%
credible intervals for the BP, BP+OD(Poisson) and BP + OD(Both; add_ind) models
are presented in Table 9.5. Posterior mean estimates for the dose effect revealed the
same pattern in the three models. The independent additive overdispersion model had
higher standard error estimates compared to the BP model. Inference based on the 95%
credible intervals for the dose effect was consistent across the two models. In particular,
as can be seen in Figure 9.4 (right panel), the 95% credible intervals of all contrasts of
the active doses with the control dose do not include the zero line, indicating a reduction
in the log(RI) with increasing dose levels. This implies that rats had a tendency to calm
down and press the lever fewer times as the administered dose of the treatment increased.

The posterior estimates for the log(OR) presented in Table 9.6 and Figure 9.4 (left
panel), reveal the same pattern for both models. Standard errors for the parameters were
larger for the model with overdispersion compared to those of the basic model. The 95%
credible intervals for the two models suggested a non-zero effect of the 5.0 mg/kg and
10.0 mg/kg doses compared to the control dose. In particular, the odds of obtaining a
reward were not different from those obtained under the control dose for 1.25 mg/kg and
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Table 9.5: Poisson outcome. Posterior mean estimates for the contrasts of the log(RI)
with the placebo.

Model Dose Estimate (SE) 95% CI
BP 1.25 -0.187 (0.044) (-0.274, -0.103)

2.5 -0.167 (0.043) (-0.251, -0.084)
5 -0.331 (0.046) (-0.424, -0.242)
10 -0.329 (0.043) (-0.414, -0.246)

BP+OD(Add, Poisson) 1.25 -0.19 (0.065) (-0.316, -0.062)
2.5 -0.146 (0.067) (-0.277, -0.012)
5 -0.322 (0.068) (-0.449, -0.185)
10 -0.333 (0.063) (-0.454, -0.205)

BP+OD(Both; add_ind) 1.25 -0.19 (0.064) (-0.316, -0.064)
2.5 -0.148 (0.065) (-0.277, -0.02)
5 -0.321 (0.067) (-0.451, -0.189)
10 -0.334 (0.062) (-0.456, -0.211)
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Figure 9.4: Crossover DRL-72 experiment. Posterior mean estimates with the 95%
credible intervals for log(RI) and log(OR).
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Table 9.6: Binomial outcome. Posterior estimates of the log(OR) for the contrasts of
each dose level against the zero dose.

Model Dose Estimate (SE) 95% CI
BP 1.25 0.250 (0.134) (-0.008, 0.518)

2.5 0.276 (0.146) (-0.017, 0.556)
5 0.503 (0.145) (0.216, 0.786)
10 0.847 (0.140) (0.575, 1.125)

BP+OD(Add,Poisson) 1.25 0.26 (0.159) (-0.05, 0.575)
2.5 0.217 (0.167) (-0.121, 0.54)
5 0.457 (0.166) (0.125, 0.782)
10 0.862 (0.146) (0.576, 1.143)

BP+OD(Both; add_ind) 1.25 0.276 (0.166) (-0.049, 0.604)
2.5 0.228 (0.174) (-0.113, 0.568)
5 0.464 (0.173) (0.124, 0.804)
10 0.869 (0.158) (0.562, 1.181)

2.5 mg/kg while for higher doses, the odds increased compared to those under the control
dose.

Posterior Means of the Random Effects

Table 9.7 present the posterior estimates of the variance components and the correlation
for the subject-specific random effects and the variance of the overdispersion parameters.
The posterior correlation obtained for the two models (BP: -0.48, BP + OD(Both;
add_ind): -0.462) and the density estimate for the posterior distributions presented in
Figure 9.5 indicates a negative association between the number of rewards and responses
at an individual level. The average predictions for the number of times rats press the
lever and the number of rewards obtained are presented in Figure 9.6 together with
a plot of the observed means. The posterior means obtained for the two models are similar.

9.4 Discussion
The DRL-72 is a standard drug development behavioural experiment in which the
two endpoints of interest, the number of responses and rewards are assumed to
be Poisson and binomial random variables, respectively. In this chapter, a parallel
and a crossover design DRL-72 experiment were discussed. The issues posed by
these case studies were addressed using hierarchical Bayesian joint binomial-Poisson
models. The random effects in the model capture the heterogeneity between rats in
their reaction towards the administered dose. Moreover, by assuming a multivariate
normal distribution on the random effects, the two outcomes were jointly modelled
and the association between them captured by the correlation between the random effects.
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Table 9.7: Crossover design. Posterior mean (median) for clustering and overdispersion
random effects covariance estimates for the binomial-Poisson (BP) models under different
assumptions.

Clustering random effects
σ2
a σ2

b ρab

BP 0.112 (0.105) 0.292 (0.270) -0.480 (-0.500)
BP+OD(Add; Poisson) 0.112 (0.102) 0.296 (0.273) -0.476 (-0.482)
BP+OD(Both; Add_ind) 0.110 (0.102) 0.284 (0.261) -0.463 (-0.482)

Overdispersion random effects
σ2
θ1 σ2

θ2
BP+OD(Add, Poisson) 0.010 (0.010)
BP+OD(Both; Add_ind) 0.010 (0.010) 0.011 (0.007)
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Figure 9.5: Crossover DRL-72 experiment. Kernel density estimate for the clustering
random effects correlation. The vertical lines marks the 95% credible intervals. This
correlation captures the dependency between the number of responses and number of
rewards at an individual level.
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Figure 9.6: Crossover DRL-72 experiment. Observed and predicted average number of
responses and rewards for the BP and independent additive overdispersion random effects
models. The solid symbol denotes the observed data.
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In many practical situations, the variability in the data is larger than that which
could be expected in a standard binomial or Poisson distribution. To adequately address
these potential pitfalls, we extended the classical hierarchical Bayesian binomial-Poisson
models for the analysis of DRL-72 experiments, to the combined modelling framework.
Specifically, we proposed to introduce observation-specific random effects, either at the
mean parameters (multiplicative) or in the linear (additive) part of the Bayesian models,
in order to capture the extra Poisson or binomial variability in both case studies.

In the presence of overdispersion, the variability attributed to clustering is different
than that observed in a model without overdispersion random effects. For instance,
in the parallel design experiment, the clustering correlation coefficient ρab = −0.988
in a model not accounting for overdispersion, while ρab = −0.345 in a model with
overdispersion random effects. Therefore, by incorporating the overdispersion random
effects, the association is decomposed into subject-level (ρab) and observation-level ρ

OD

correlation. In case there is no extra-Poisson or extra-binomial variability, the impact
on the subject-level association (ρab) is minimal as was seen in the crossover DRL-72
experiment. Note that the impact of overdispersion on the posterior means is minimal,
although inference based on models ignoring overdispersion may be invalid since presence
of overdispersion has an impact on the standard errors of the parameter estimates.

In conclusion, combined models are a flexible tool for accounting for over/under-
dispersion in analysis involving Poisson or binomial outcomes. In the joint modelling
context, the flexibility allows us to specify overdispersion random effects in either one
or both outcomes. In cases where there is no overdispersion, the inclusion of the
overdispersion parameters may still improve the individual-level predictions.

9.5 Appendix: Model Diagnostics

9.5.1 DRL-72 Experiment with a Parallel Design
The trace plots shown in Figure 9.7 for the basic hierarchical Bayesian binomial- Poisson
model indicates proper mixing of the three chains of the dose parameters in the Poisson
(Panel a) and binomial (Panel b) outcomes. Formal diagnostic measures presented
in Table 9.8 for the BP model and Table 9.9 for the model with additive correlated
overdispersion parameters all indicated attainment of acceptable convergence. Trace
plots for the model with additive overdispersion parameters for the parallel design
experiment are presented in Figure 9.8.

9.5.2 DRL-72 Experiment with Crossover Design
Figure 9.9 and 9.10 presents the diagnostic plots for dose parameters in the final
crossover models discussed in the chapter. All the parameters of interest attained good
chain mixing and the autocorrelation was negligible by lag 10. Formal diagnostic checks
including the Gelman and Rubin test were performed, results of which are presented in
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Table 9.8: BP model. Diagnostic measures of goodness of fit for the dose contrast
parameters. MCerr: Monte Carlo error. AC.200: autocorrelation at lag 200.

Dose MCerr AC.200 Gelman-Rubin statistic
log(OR) 0 0.002 0.092 1.003

2.5 0.001 -0.01 1
5 0.001 -0.001 1
10 0.001 -0.003 1

log(RI) 0 0.001 0.073 1.002
2.5 0 -0.001 1
5 0 -0.01 1
10 0 -0.008 1

Clustering σ2
a 0 0.033 1
ρab 0 0.004 1.001
σ2
b 0.001 0.013 1

Table 9.9: BP +OD(Both; correlated) additive model. Diagnostic measures of goodness
of fit for the dose contrast parameters. MCerr: Monte Carlo error. AC.200: autocorrela-
tion at lag 200.

Dose MCerr AC.200 Gelman-Rubin statistic
log(OR) 0 0.003 0.109 1

2.5 0.004 0.115 1
5 0.004 0.093 1.001
10 0.004 0.082 1.001

log(RI) 0 0.001 0.087 1
2.5 0.001 0.094 1
5 0.001 0.073 1
10 0.001 0.066 1.001

Clustering σ2
a 0 0.699 1.015
ρab 0.026 0.551 1.013
σ2
b 0.006 0.828 1.019

OD ρOD 0 0.103 1.005
σ2
θ2

0.006 0.481 1.014
σ2
θ1

0 0.381 1.005
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Figure 9.7: Parallel design DRL-72 experiment. Diagnostic plots for dose parameters in
the basic model without overdispersion.
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Figure 9.8: Parallel design with additive overdispersion. BP+OD (Both; correlated)
diagnostic plots for dose parameters.
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Table 9.10: BP model. Diagnostic measures of goodness of fit for the dose contrast
parameters. MCerr: Monte Carlo error. AC.200: autocorrelation at lag 200.

Dose MCerr AC.200 Gelman-Rubin statistic
log(RI) 1.25 0 -0.007 1

2.5 0 0.001 1
5.0 0 -0.003 1
10 0 0 1

log(OR) 1.25 0.001 0.003 1
2.5 0.001 0.004 1
5.0 0.001 -0.001 1
10 0.001 -0.005 1

Clustering σ2
a 0 0.011 1
σ2
b 0.001 0.004 1
ρ 0.001 0.002 1

Table 9.10 and 9.11, all of which indicate good convergence for the parameters of interest.

In the crossover case study, a model with overdispersion in only the Poisson outcome
had the same DIC as a model with independent additive overdispersion parameters.
Moreover, the models with multiplicative overdispersion parameters in either the Poisson
outcome or both outcomes did not significantly differ in DIC from these two additive
overdispersion models. In Table 9.12 and 9.13
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Table 9.11: BP +OD(Both; independent) additive model. Diagnostic measures of good-
ness of fit for the dose contrast parameters. MCerr: Monte Carlo error. AC.160: auto-
correlation at lag 160.

Dose MCerr AC.160 Gelman-Rubin statistics
log(RI) 1.25 0 0.004 1

2.5 0 0 1
5 0 0.005 1
10 0 0.005 1

log(OR) 1.25 0.001 -0.002 1
2.5 0.001 -0.005 1
5 0.001 -0.003 1
10 0.001 0 1

Clustering σ2
a 0 0.028 1
σ2
b 0.001 0.012 1
ρ 0.001 0.007 1

OD σ2
θ1

0 -0.002 1
σ2
θ2

0 0.307 1.003

Table 9.12: Multiplicative model for the binomial outcome. Posterior mean estimates of
log(OR).

Model Dose Estimate (SE) 95% CI
BP+OD(Mult,Poisson) 1.25 0.269 (0.159) (-0.04, 0.579)
DIC=1445 2.5 0.227 (0.166) (-0.101, 0.552)

5 0.466 (0.165) (0.143, 0.789)
10 0.87 (0.15) (0.576, 1.164)

BP+OD(Mult,Both) 1.25 0.322 (0.178) (-0.027, 0.672)
DIC=1445 2.5 0.276 (0.186) (-0.088, 0.64)

5 0.519 (0.186) (0.156, 0.885)
10 0.991 (0.171) (0.658, 1.327)

Table 9.13: Multiplicative model Poisson outcome. Posterior mean estimates of log(RI).

Model Dose Estimate (SE) 95% CI
BP+OD(Mult,Poisson) 1.25 -0.186 (0.07) (-0.323, -0.047)
DIC=1445 2.5 -0.149 (0.071) (-0.288, -0.01)

5 -0.315 (0.073) (-0.457, -0.17)
10 -0.331 (0.068) (-0.464, -0.197)

BP+OD(Mult,Both) 1.25 -0.192 (0.063) (-0.314, -0.067)
DIC=1445 2.5 -0.151 (0.064) (-0.275, -0.025)

5 -0.325 (0.066) (-0.453, -0.195)
10 -0.334 (0.061) (-0.453, -0.213)
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(b) Binomial outcome: log(odds ratio)

Figure 9.9: Crossover design DRL-72 experiment. BP model diagnostic plots for dose
parameters (1.25, 2.5, 5.0 10.0) mg/kg, respectively, for row 1-4, in each panel.
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Figure 9.10: Crossover design DRL-72 experiment with additive overdispersion. BP+OD
(Both; ind) diagnostic plots for dose parameters.





Chapter 10
Bayesian Variable Selection:
Unrestricted Dose-Response
Models

10.1 Introduction
In Chapter 9, we presented an analysis of two dose-response experiments, using models
which took into account possible overdesperion but did not account for model uncertainty.
This chapter extends the models presented in Chapter 9 by including the Bayesian variable
selection component in the models. In particular, for both case studies, we define a set
of plausible dose-response profiles where no prior assumption on the monotonicity of the
profiles is taken (hereby referred to unrestricted dose-response analysis). This results in
a large set of models from which the most plausible model given the data is to be selected.

When the competing models are nested, the choice between the models reduces
to a choice of a subset of predictors. Bayesian Variable Selection (BVS: George and
McCulloch, 1993, O’Hara and Sillanpaa, 2009) allows for a probabilistic selection of
parameters into the model using Gibbs sampling (Dellaportas et al., 2002) whereby,
parameters with higher posterior inclusion probability are incorporated in the model. Lin
et al. (2012) and Otava et al. (2013) applied the BVS methodology to dose-response
microarray data, while Whitney and Ryan (2009) used the methodology to account for
uncertainty due to covariate adjustment in a dose-response bioassay experiment.

In this chapter, we apply the BVS model mentioned above to the two case studies
consisting of a behavioural experiment aimed at testing for clinically active anti-depressant
compounds. The chapter is arranged as follows. The statistical methodology is presented
in Section 10.2, while results of the analysis are presented in Section 10.3. Finally,
Section 10.4 presents concluding remarks.
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10.2 Bayesian Variable Selection Models for the DRL-
72 Experiment

10.2.1 Joint Model for the Responses and Rewards in the DRL-72
Experiment

In this section, we briefly present the joint model for the DRL-72 study. Let nij be the
number of times that the ith rat presses the lever under dose j (i.e. the number of
responses) assumed to follow a Poisson distribution, while the number of rewards (the
number of times that the rat waits 72 seconds before pressing the lever), Yij , obtained
under dose j follows a binomial distribution. That is,

Yij ∼ Binomial(nij , πij),
nij ∼ Poisson(λij).

(10.1)

The linear predictors for the mean response, γij , and reward πij are, respectively,
given by

log(λij) = Xiα+ ai,

logit(πij) = Xiβ + bi.
(10.2)

Here, Xi is an ni × p design matrix, α and β are p× 1 vectors of coefficients, while
ai and bi are the rat-specific intercepts for response and rewards, respectively.

In order to take into account the differences in design between the two case studies,
different specifications for the right hand side of (10.2) is needed. The complete model
formulation is given in Section 9.2. Compared to the mean structure discussed in Chapter
9, the BVS implementation requires reparametrization of the dose parameters in the
model. The configuration of the design matrix is discussed in Section 10.2.2 and 10.2.3
for the mean structure in the parallel and crossover DRL-72 case studies, respectively.

10.2.2 A BVS Model for a DRL-72 Experiment with Parallel De-
sign: Mean Structure

Let Xi be an a × a design matrix and let (γ0, γ1, γ2, γ3) be the parameter vector rep-
resenting the dose effects on the number of responses, while (δ0, δ1, δ2, δ3) are the dose
effects on the number of rewards. Note that, δj and γj are defined as the additional
effects of dose j, j = 1, 2, 3, in the model for response and reward, respectively, while
γ0 and δ0 are the placebo effects. The design matrix X is given by
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X =



1 0 0 0
1 0 0 0
...

...
...

...
1 0 0 0
1 1 0 0
1 1 0 0
...

...
...

...
1 1 0 0
1 1 1 0
1 1 1 0
...

...
...

...
1 1 1 0
1 1 1 1
1 1 1 1
...

...
...

...
1 1 1 1



. (10.3)

Hence, the linear predictor for the responses is given by

log (λij) = γ0 +
3∑
j=1

γjXij + ai. (10.4)

Which implies that, the dose effects are given by

α0 = γ0, if dose = 0.0mg/kg,
α1 = γ0 + γ1, if dose = 2.5mg/kg,
α2 = γ0 + γ1 + γ2, if dose = 5.0mg/kg,
α3 = γ0 + γ1 + γ2 + γ3, if dose = 10.0mg/kg.

(10.5)

The linear predictor for the number of rewards can be formulated in the same way,
from which, the effect of the jth dose is given by

βj =
j∑
`=0

δ`, j = 0, 1, 2, 3. (10.6)

In order to formulate the DRL-72 model as a Bayesian variable selection model, two
random variables are added to the linear predictor. Let W and Z be vectors of indicator
variables such that,

wj =
{

1, if γj is included in the model,
0, if γj is not included in the model.

and

zj =
{

1, if δj is included in the model,
0, if δj is not included in the model.

(10.7)
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Table 10.1: Overview of the model configuration, number of parameters in each model
and the number of models for each configuration in the BVS model for the number of
responses. Similar output for the rewards model can be obtained.

W Parameters Number of possible models
0 0 0 γ0 1
1 0 0 γ0, γ1 2
0 1 0 γ0, γ2 2
0 0 1 γ0, γ3 2
1 1 0 γ0, γ1, γ2 4
1 0 1 γ0, γ1, γ3 4
0 1 1 γ0, γ2, γ3 4
1 1 1 γ0, γ1, γ2, γ3 8

The linear predictor for the number of responses and reward, respectively, is given by,

log(λij) = γ0 +
3∑
j=1

wjγjXij + ai,

logit(πij) = δ0 +
3∑
j=1

zjδjXij + bi.

(10.8)

For the number of responses, in a study with four dose levels,

W = (w1, w2, w3) and αj = γ0 +
3∑
j=1

wjγj . (10.9)

Which implies that,

α0 = γ0, if dose = 0.0mg/kg,
α1 = γ0 + w1γ1, if dose = 2.5mg/kg,
α2 = γ0 + w1γ1 + w2γ2, if dose = 5.0mg/kg,
α3 = γ0 + w1γ1 + w2γ2 + w3γ3, if dose = 10.0mg/kg.

(10.10)

The mean structure in the model for the number of rewards can be formulated in the
same way. Note that, each configuration of the indicator variables W = (w1, w2, w3),
implies different number of parameters. Figure 10.1 shows an illustration of the null model
that assumes no dose effect. For this model, (W = (0, 0, 0)). Figure 10.2 provides an
illustration for the case where W = (1, 0, 0). For this configuration of W, there are
two possible models. For the configuration W = (1, 1, 0), the four models are shown in
Figure 10.3. For the four-doses study, an illustration of the complete set of 27 models is
presented in the appendix. Moreover, as shown in Table 10.1, for a given configuration
of W, it is possible to have different models since the dose parameters are unrestricted.
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Figure 10.1: Illustration of the null model with configuration W = (0, 0, 0).
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Figure 10.2: Illustration of the models with configuration W = (1, 0, 0).
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Figure 10.3: Illustration of the models with configuration W = (1, 1, 0).
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10.2.3 A BVS Model for a DRL-72 Experiment with Crossover
Design: Mean Structure

For the crossover design, the model includes parameters to adjust for possible carryover
and period effects. Similar to Muchene et al. (2016a), the mean structure is given by

log(λij) = α0 + α1j + α2k + α3l + ai,
logit(πij) = β0 + β1j + β2k + β3` + bi.

(10.11)

Here, α0 and β0 are the placebo effects in period 1, αij and β1j , are the effects of
dose j, j = 1, 2, . . . 5 for 0, 1.25, 2.5, 5, 10 mg/kg, respectively, α2k and β2k are the period
effects (k = 1, 2, 3), while α3` and β3` are the carryover effects of the administered
doses (` = 0, 1.25, 2.5, 5, 10 mg/kg). Note that in addition to a placebo which was
administered during the training phase, a control dose (0.0 mg/kg) was one of the doses
administered during the treatment day. Moreover, this model specification allows to
distinguish between the first study period in which there is no carryover effect and the
later periods in which a treatment effect from the previous period could be carried over
onto the following period (Jones and Kenward, 1989).

The primary interest is placed on the dose effects. Thus, the BVS component is
defined only on the dose parameters α1j and β1j in (10.11), which are parametrized as
follows:

α1j =
5∑
j=1

wjγjXij ,

β1j =
5∑
j=1

zjδjXij .

(10.12)

Similar to the mean structure of the parallel design, the dose effects γj and δj , are
defined respectively, for response and rewards model, while the BVS indicator variables
wj and zj are as defined in (10.7). Further, the change from the control dose can be
estimated from contrasts between each dose and the control dose. That is, α1j − α11
and β1j − β11, for j = 2, 3, 4, 5.

10.2.4 Hierarchical Bayesian Binomial-Poisson Joint Model with a
BVS Component

Parallel Design DRL-72 Experiment

Non-informative Gaussian priors for the regression parameters in (10.8) are given by,

γ0 ∼ Normal(0.0, τa0), δ0 ∼ Normal(0.0, τb0),
γj ∼ Normal(0.0, τg), δj ∼ Normal(0.0, τd).

(10.13)

For all parameters, the inverse of the variance is assumed to follow a
Gamma(0.001, 0.001).
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As mentioned in Section 8.1.2, a BVS model requires specifying prior models for the
inclusion parameters. Following the methodology of O’Hara and Sillanpaa (2009), we
assume that the prior for wj and zj are independent. That is,

wj ∼ Bernoulli(ψj),
zj ∼ Bernoulli(υj).

(10.14)

and

ψj ∼ Uniform(0, 1),
υj ∼ Uniform(0, 1).

(10.15)

In order to capture the association between the number of responses and number of
rewards, the prior model for random effects for response and rewards models, is a bivariate
normal distribution given by,(

ai

bi

)
∼ Normal

([
0
0

]
,D
)
, D =

(
σ2
a σab

σab σ2
b

)
. (10.16)

Subsequently, the correlation between the random effects, having corrected for covari-
ate effect is given by,

ρab = σab√
σ2
a × σ2

b

. (10.17)

An Wishart prior distribution is specified for D−1 given by,

D−1 ∼Wishart(RD, k) (10.18)

The degrees of freedom k is set to be at least equal to the rank of D−1. The scale
matrix RD is a 2 × 2 diagonal matrix with off-diagonal elements set to 0.001 (Shkedy
et al., 2005, Gelman and Hill, 2007, Lesaffre and Lawson, 2012, Huang and Wand, 2013).

Crossover Design DRL-72 Experiment

The priors and hyper priors for the dose parameters, random effects, wj and zj are the
same as defined in Section 10.2.4. For the remaining fixed effects parameters in (10.11),
the priors and hyper priors are given by,

α2k ∼ Normal(0.0, τa2), β2k ∼ Normal(0.0, τb2),
α3` ∼ Normal(0.0, τa3), β3` ∼ Normal(0.0, τb3).

(10.19)

10.2.5 Posterior Model Probability and Posterior Means
Posterior Model Probability

Consider a dose-response study with d dose levels. Let Z = (z1, z2, . . . , zd−1) and
W = (w1, w2, . . . , wd−1), be the inclusion vectors. As explained in Section 10.2.1, the
mean structure depends on a specific configuration of W and Z. For an experiment with
d dose levels, there are 2d−1 different configurations of W and Z. The total number of
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unique models without an order constraint on the dose parameters is equal to 3d−1. This
is the reason why the configuration of W and Z does not uniquely define a model. For
example, as shown in Section 10.2.2, for W = (1, 0, 0), there are two possible models.
For a four-dose experiment (d = 4), there are 27 unique models as shown in Table 10.1,
denoted by g0, g1, . . . , g26. Note that g0 corresponds to the configuration W = (0, 0, 0),
hence for the no-dose-effect (the null) model, there is only one configuration of W. For
each model, let P (gr|data, g0, g1, . . . , gR) be the posterior model probability. In contrast
with the order-restricted models for which the configuration of W uniquely defines a
model, i.e., P (gr|data, g0, g1, . . . , gR) = P (W = (ww, w2, w3)|data, g0, g1, . . . , gR), in
the unrestricted setting, this is not the case, since as shown in Table 10.1, Figure 10.2
and 10.3, several models correspond to the same configuration.

In order to estimate the posterior model probability, we need to define a transforma-
tion, Ur which uniquely identifies a model. In this case,

P (Ur|data, g0, . . . gR) = P (gr|data, g0, . . . , gR). (10.20)

We define a transformation Ur = W̃cT with c = (30, 31, . . . , 3[d−2]) and W̃ is a
3d−1 × (d − 1) matrix . For the four-dose experiment, c = (1, 3, 9) and W̃ is given by
(10.22).

Table 10.2 presents the model transformation Ur = W̃cT , with the configuration of
W = (w1, w2, w3).

Using the transformation W̃cT we can uniquely identify each model in the set of all
possible models. For example, for the two models shown in Figure 10.2, model g1 and
g13, the configuration of W is the same, W = (1, 0, 0) but U1 = (1, 0, 0)(1, 3, 9)T = 1
and U14 = (−1, 0, 0)(1, 3, 9)T = −1. Hence,

P (Ur|data, g0, . . . , gR) = P (gr|data, g0, . . . , gR). (10.21)

This implies that we can use the posterior distribution of Ur to estimate the posterior
model probability.
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W̃ = Z̃ =



0 0 0
1 0 0
−1 0 0

0 1 0
0 −1 0
0 0 1
0 0 −1
0 −1 −1
0 1 −1
0 1 1
0 −1 1
1 0 −1
1 0 1
1 −1 0
1 1 0
−1 0 −1
−1 0 1
−1 1 0
−1 −1 0

1 −1 1
1 1 −1
−1 1 −1

1 1 1
−1 1 1

1 −1 −1
−1 −1 1
−1 −1 −1
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. (10.22)

Posterior Mean: Bayesian Model Averaging

As pointed out by Lin et al. (2012), Kasim et al. (2012), and Otava et al. (2013) the
posterior means for all model parameters are a weighted average of the posterior mean
estimates, µ̂r, obtained under each model where the weights are the posterior model
probabilities P (gr|data). That is,

µ̂BV S =
R∑
r=0

P (gr|data)µ̂r. (10.23)

10.2.6 Accounting for Overdispersion in the BVS Model
The BVS model discussed above takes into account potential clustering within a subject
using random effects. In addition to the variability due to clustering, Poisson and binomial
outcomes potentially exhibit extra variability than would be expected of these distribu-
tions. The extra variability is termed as overdispersion and it occurs when the population
mean is larger than the population variance. In Chapter 9, following the methodology
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Table 10.2: Parallel design experiment. Overview of the model configuration for a four-
dose experiment. Parameters: the number of fixed effects parameters in the model.

Model Notation w1 w2 w3 w̃1 w̃2 w̃3 Ur Parameters
1 g(0) 0 0 0 0 0 0 0 1
2 g(1) 1 0 0 1 0 0 1 2
3 g(2) 1 1 0 -1 1 0 2 3
4 g(3) 0 1 0 0 1 0 3 2
5 g(4) 1 1 0 1 1 0 4 3
6 g(5) 1 1 1 -1 -1 1 5 4
7 g(6) 0 1 1 0 -1 1 6 3
8 g(7) 1 1 1 1 -1 1 7 4
9 g(8) 1 0 1 -1 0 1 8 3
10 g(9) 0 0 1 0 0 1 9 2
11 g(10) 1 0 1 1 0 1 10 3
12 g(11) 1 1 1 -1 1 1 11 4
13 g(12) 0 1 1 0 1 1 12 3
14 g(13) 1 1 1 1 1 1 13 4
15 g(14) 1 0 0 -1 0 0 -1 2
16 g(15) 1 1 0 1 -1 0 -2 3
17 g(16) 0 1 0 0 -1 0 -3 2
18 g(17) 1 1 0 -1 -1 0 -4 3
19 g(18) 1 1 1 1 1 -1 -5 4
20 g(19) 0 1 1 0 1 -1 -6 3
21 g(20) 1 1 1 -1 1 -1 -7 4
22 g(21) 1 0 1 1 0 -1 -8 3
23 g(22) 0 0 1 0 0 -1 -9 2
24 g(23) 1 0 1 -1 0 -1 -10 3
25 g(24) 1 1 1 1 -1 -1 -11 4
26 g(25) 0 1 1 0 -1 -1 -12 3
27 g(26) 1 1 1 -1 -1 -1 -13 4



10.3. Application of the Bayesian variable selection methodology 127

proposed by Molenberghs et al. (2007, 2010) and Aregay et al. (2015), we proposed a hi-
erarchical Bayesian binomial-Poisson joint model for the two case studies presented above.

Formulation of overdispersed BVS model is straightforward. The BVS formulation for
the Xiα and Xiβ in (10.8) can be combined with the model formulation for the overdis-
persed models in (9.10) and (9.11) for multiplicative and additive models, respectively.

10.3 Application of the Bayesian Variable Selection
Methodology

10.3.1 DRL-72 Experiment with Parallel Design
The hierarchical models discussed in Section 10.2 were fitted using Markov Chain Monte
Carlo (MCMC) algorithm with 60000 iterations of which 30000 were considered as
burn-in period. Three parallel chains with different starting values were initiated, whose
mixing and convergence was monitored using trace plots and the potential scale reduction
factor (Lesaffre and Lawson, 2012, Gelman and Rubin, 1992). As mentioned in Section
10.2, for this case study, the set of models to be evaluated consists of 27 models for
each outcome (a graphical illustration of the models is presented in Figure 10.13 in the
appendix).

Model Selection

The corresponding posterior probabilities for a subset of the 27 models with non-zero
probability for the expected number of responses and rewards respectively are shown in
Figure 10.4. For the expected number of rewards, model g12 had the highest posterior
probability (Pg12 = 0.86). For this model, Z = (0, 1, 1) which implies that the posterior
mean of the dose parameters are given by

β0 = δ0, if dose = 0.0mg/kg,
β1 = δ0, if dose = 2.5mg/kg,
β2 = δ0 + δ2, if dose = 5.0mg/kg,
β3 = δ0 + δ2 + δ3, if dose = 10.0mg/kg.

(10.24)

Hence, for this model, the minimum effective dose (i.e., the dose for which a first
response is observed) for the number of rewards is 5.0mg/kg. Furthermore, an additional
change is observed in 10.0mg/kg. Note that the configuration of Z for this model implies
that the number of parameters is equal to three. There are 4 possible models satisfying
this configuration. Using the transformation function, we conclude that g12 is a model
for which δ2 > 0 and δ3 > 0. Note that for this model, W̃cT = (0, 1, 1)(1, 3, 9)T = 12.
For all other models, the posterior model probability is less than 10%.

For the number of responses, the model with the highest posterior probability is g16
with P (g16|data, g0, g1, . . . , g26) = 0.55. The configuration of this model, W = (0, 1, 0)
implies a two parameters model, W̃cT = (0,−1, 0)(1, 3, 9)T = −3 = U16. Hence, for
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Figure 10.4: Parallel DRL-72. Posterior model probability for the number of responses
(left panel) and number of rewards (right panel), respectively.

this model, γ2 < 0 and the minimum effective dose is 5mg/kg with no additional effect
at the highest dose level. The mean parameter at each dose level for this model is given
by

α0 = γ0, if dose = 0.0mg/kg,
α1 = γ0, if dose = 2.5mg/kg,
α2 = γ0 + γ2, if dose = 5.0mg/kg,
α3 = γ0 + γ2, if dose = 10.0mg/kg.

(10.25)

Note that model g22, corresponding to a configuration of W = (0, 0, 1)
and W̃cT = (0, 0,−1)(1, 3, 9)T = −9 = U22, has a posterior probability of
P (g22|data, g0, g1, . . . , g26) = 0.31. This model has two parameters which implies that
the highest dose (10mg/kg) is the minimum effective dose. For each dose, the posterior
mean is given by

α0 = γ0, if dose = 0.0mg/kg,
α1 = γ0, if dose = 2.5mg/kg,
α2 = γ0, if dose = 5.0mg/kg,
α3 = γ0 + γ2, if dose = 10.0mg/kg.

(10.26)

The estimates for the posterior mean of the number of responses and number of
rewards were obtained as a weighted average of the estimates per model during the
MCMC simulation as described in Section 10.2.5 and are shown in Figure 10.5. Note
that BVS shrinks the posterior estimates of the dose effects to an average of the dose
effects for the competing models with non zero probability.

Posterior Means for the Dose Effect

Posterior means for the contrasts between the dose effect at each dose level to the
control dose are presented in Table 10.3. Note that, similar to the posterior mean of the
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Figure 10.5: BVS model average of the dose effect in the response and reward models.
Dashed line: the observed data.

Table 10.3: BVS model-averaged posterior mean (95% credible intervals) estimates for
dose effect.

Parameter Dose Estimate (CI)
α1 0.0mg 4.169 (4.092, 4.245)
γ1 2.5mg vs. 0.0mg -0.001 (-0.008, 0)
γ1 + γ2 5.0mg vs. 0.0mg -0.069 (-0.161, 0)
γ1 + γ2 + γ3 10.0mg vs. 0.0mg -0.111 (-0.186, 0)
β1 0.0mg -1.482 (-1.745, -1.247)
δ1 2.5mg vs. 0.0mg -0.007 (-0.138, 0.017)
δ1 + δ2 5.0mg vs. 0.0mg 0.307 (0.000, 0.491)
δ1 + δ2 + δ3 10.0mg vs. 0.0mg 0.794 (0.612, 0.969)

expected values, these are the model-averaged values. Interestingly, although the prior
distributions for all parameters in the model are unconstrained, the posterior distributions
shown in Figure 10.6 (and credible intervals) are bounded by zero. For the number of
responses, the posterior distributions for the parameters γ1, γ2 and γ3 are bounded on
the right side by zero implying that during the MCMC simulation, these parameters were
negative and whenever a positive value was drawn, the parameter was not included in
the model. The same pattern, on the positive scale, is observed for δ2 for the number of
rewards.

Inclusion Probabilities

The posterior inclusion probabilities are shown in Table 10.4. Note that the posterior
inclusion probability is the average of the inclusion indices, where T is the number of
MCMC simulations. That is,
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Figure 10.6: Kernel density estimate for the the posterior distribution of dose parameters.
The solid fill denotes area under the 95% credible interval.

E (w̃j) = 1
T

T∑
b=1

w̃bj and E (z̃j) = 1
T

T∑
b=1

z̃bj . (10.27)

For the number of rewards, the inclusion probability for δ1 is 0.1 which implies that,
in 90% of the models in the MCMC simulation, there was no effect between dose 2.5 and
the zero dose. The inclusion probability of δ2 is 0.971, this explains why the 95% credible
interval for the parameter is bounded by zero; 2.9% of the values on the left side of the
posterior distribution are equal to zero while the non-zero value are always positive. Note
that δ3, the effect of the last dose level was included in 100% of the models within the
MCMC simulation.

For the number of responses, the inclusion probabilities are 0.045, 0.653 and 0.393
for γ1, γ2 and γ3, respectively. The density estimate for the posterior distribution shown
in Figure 10.6 and the credible intervals presented in Table 10.3 indicate that these
parameters were either not included in the models fitted within the MCMC simulation
and whenever they were included, their values were negative; an indication of a decreasing
trend in expected number of responses with increasing dose.

Correlation Between Rewards and Responses

The joint model formulated on Section 10.2 allows for the estimation of the association
between the number of times the rats press the lever and the number of rewards obtained.
Parameter estimates for the element of the covariance matrix D in (10.16) are shown
in Table 10.5, from which, the posterior mean of the correlation between the random
effects, ρ̄ = −0.998, implying that, as the number of lever presses decreases, the number
of rewards obtained increases. A similar result was obtained for the models fitted in
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Table 10.4: Posterior mean of δj and γj and the resulting posterior inclusion probabilities
for the dose components.

Model Parameter Estimate Inclusion Probability
Poisson γ1 0.0043 0.045

γ2 -0.0389 0.653
γ3 0.0048 0.393

Binomial δ1 -0.0074 0.1
δ2 0.3227 0.971
δ3 0.4871 1

Table 10.5: Estimated parameters for the covariance matrix D of random effects for
response and rewards models.

Parameter Estimate
σ2
a 0.017
σ2
b 0.227
ρab -0.988

Chapter 9, (see Table 9.4).

10.3.2 DRL-72 Experiment with Crossover Design
Model Selection

The set of plausible models comprised of 243 models with varying dose-response pro-
files (an illustration of the models is presented in Figure 10.14-10.16 in the appendix).
The posterior probabilities of a subset of the models are shown in Figure 10.7. The
most probable model for the number of rewards had a posterior model probability
P (g31|data, g0, g1, . . . , g243) = 0.20. For this model, the configuration Z = (1, 1, 0, 1, 0)
and W̃cT = (1, 1, 0, 1, 0)(1, 3, 9, 27, 81)T = 31 = U31, which implies that the minimum
effective dose for the rewards is 0.0 mg/kg, with an additional effect of the 1.25 and 5.0
mg/kg doses. The mean number of rewards at each dose level is given by,

β0 = δ0, if dose = Placebo,
β1 = δ0 + δ1, if dose = 0.0 mg/kg,
β2 = δ0 + δ1 + δ2, if dose = 1.25 mg/kg,
β3 = δ0 + δ1 + δ2, if dose = 2.50 mg/kg,
β4 = δ0 + δ1 + δ2 + δ4, if dose = 5.0 mg/kg.
β5 = δ0 + δ1 + δ2 + δ4, if dose = 10.0 mg/kg.

(10.28)

For the number of responses, the model with the highest posterior model probability
is g151 with P (g151|data, g0, . . . g243) = 0.51. The configuration of this model, W =
(0, 1, 0, 1, 0) and W̃cT = (0,−1, 0,−1, 0)(1, 3, 9, 27, 81)T = −30 = U151 , implies that
1.25 mg/kg is the minimum effective dose, while only the 5.0 mg/kg dose has an additional
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Figure 10.7: Posterior model probabilities for the number of responses (left panel) and
number of rewards (right panel), respectively.

effect on the number of responses. The mean dose effect for the number of responses is
given by,

α0 = γ0, if dose = Placebo,
α1 = γ0, if dose = 0.0 mg/kg,
α2 = γ0 + γ2, if dose = 1.25 mg/kg,
α3 = γ0 + γ2, if dose = 2.5 mg/kg,
α4 = γ0 + γ2 + γ4, if dose = 5.0 mg/kg,
α4 = γ0 + γ2 + γ4, if dose = 10.00 mg/kg.

(10.29)

Posterior Means for the Dose Effect

The posterior mean estimates of the contrast between the dose effect at each dose level
and the 0.0 mg/kg effect are shown in Table 10.6. Note that, as explained in Section
10.3.1, although the prior distributions for all the parameters in the model are uncon-
strained, the posterior distribution of the dose effects for the number of rewards shown in
Figure 10.8, have a lower bound of zero.

Inclusion Probabilities

The posterior inclusion probabilities are shown in Table 10.7. For the response model, all
the models in the MCMC simulation contained γ2 and 99.9% of the models contained
γ4. The inclusion probabilities for γ1, γ3 and γ5 were 0.186, 0.231 and 0.201, respectively.
Note that, although γ1, γ3, γ4 and γ5 were not included in the model in some of the
MCMC simulations, the posterior distribution of these parameters contained both positive
and negative values as shown in Figure 10.8. This is different in the model for the number
of rewards whereby, the 95% credible intervals for δ1, δ2, . . . , δ5 had a lower bound of zero.
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Table 10.6: BVS model-averaged posterior mean (95% credible intervals) estimates for
dose effect.

Parameter Dose Estimate (CI)
α12 − α11 1.25mg vs. 0.0mg -0.201 (-0.266, -0.136)
α13 − α11 2.5mg vs. 0.0mg -0.194 (-0.254, -0.124)
α14 − α11 5.0mg vs. 0.0mg -0.354 (-0.416, -0.285)
α15 − α11 10.0mg vs. 0.0mg -0.353 (-0.412, -0.285)
β12 − β11 1.25mg vs. 0.0mg 0.247 (0, 0.61)
β13 − β11 2.5mg vs. 0.0mg 0.275 (0, 0.629)
β14 − β11 5.0mg vs. 0.0mg 0.458 (0, 0.887)
β15 − β11 10.0mg vs. 0.0mg 0.842 (0.512, 1.201)
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Figure 10.8: Posterior kernel density plots for the BVS dose contrasts. The solid fill
denotes the 95% credible intervals.

Table 10.7: The crossover DRL-72 experiment. Posterior inclusion probabilities for the
dose parameters.

Model Parameter Inclusion Probability
Poisson γ1 0.186

γ2 1.000
γ3 0.231
γ4 0.999
γ5 0.201

Binomial δ1 0.842
δ2 0.768
δ3 0.310
δ4 0.653
δ5 0.925
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Table 10.8: Estimated parameters for the covariance matrix D of random effects for
response and rewards models.

Parameter Estimate
σ2
a 0.113
σ2
b 0.291
ρab -0.479

Correlation Between Rewards and Responses

Parameter estimates for the posterior mean estimates of the element of the covariance
matrix D is shown in Table 10.8. The parameter estimate for the posterior mean of the
correlation between the random effects is equal to −0.479, implying that, the number of
rewards increase as the number of responses decrease. A similar pattern was reported in
Section 9.3.2 (see Table 9.7).

10.3.3 Overdispersion in the BVS Models
As mentioned in Section 10.2.6, the BVS mean structure can be included in a model
which accounts for overdispersion. In this section, we present the results obtained from
eight different BVS models (four for the number of responses and four for the number of
rewards):

• Basic BVS model (Section 10.2, model (10.8) and (10.11)).

• BVS model + overdispersion on the Binomial endpoint,

Yij ∼ Binomial(nij , θ2ijπij),
nij ∼ Poisson(γij).

(10.30)

• BVS model + overdispersion on the Poisson endpoint,

Yij ∼ Binomial(nij , πij),
nij ∼ Poisson(θ1ijγij).

(10.31)

• BVS model + overdispersion on both endpoints (Section 9.2.2, model (9.10) and
(9.11)).

For each type of model, both multiplicative and additive models, discussed in Section
9.2.2, were considered. Note that for the additive models, two BVS models with
overdispersion on both endpoints were fitted. The first with independent overdispersion
parameters (Section 9.2.2, model (9.12)) and the second with correlated overdispersion
parameters (Section 9.2.2, model (9.13)).
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Figure 10.9: DRL-72 with parallel design. Posterior model probability for sev-
eral BVS models with and without overdispersion, for competing models with large
P (gr|data, g0, g1, . . . , g27) > 0.001.

DRL-72 Experiment with Parallel Design

Figure 10.9 shows the posterior probabilities for the eight BVS models by endpoint. For
multiplicative overdispersion models, for both endpoints, all models indicate the same
model, g16, for the number of responses and g12 for the number of rewards.

For the models with additive overdispersion parameters, the model with correlated
overdispersion parameters (Section 9.2.2, model (9.13)) estimates the highest posterior
probability for g0 for the number of responses and g9 for the number of rewards. All
other models estimate the highest posterior probability for g16 (number of responses)
and g12 (for the number of rewards). This is in agreement with the results reported in
the previous section, when the BVS model was fitted without overdispersion.

The estimates for the posterior mean for the contrasts between the control dose (0.0
mg/kg) and the treatment doses are shown In Figure 10.10. Although the posterior mean
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Figure 10.10: DRL-72 with parallel design. Posterior mean estimates with the 95%
credible intervals for the contrasts between treatment doses and the control dose (0.0
mg/kg). The error bars are jittered for clarity.

estimates for both additive and multiplicative overdispersion models are similar, the 95%
credible intervals for the multiplicative model were wider.

DRL-72 Experiment with a Crossover Design

Figure 10.11 shows the posterior probabilities for the eight BVS models by endpoint. For
multiplicative overdispersion models, for both endpoints, all BVS models indicate that
model g151 was the most probable model for the number of responses. For the number
of rewards, the models with the highest probability are shown in Table 10.9.

For the models with additive overdispersion parameters, all the BVS models estimate
the highest posterior probability for g151 for the number of responses. For the number
fo rewards, the model g31 which is a BVS model without overdisperion, has the highest
posterior probability.
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Table 10.9: Crossover DRL-72 experiment. Overview of the additive overdispersion
models with the highest posterior probability.

BVS model Dose-response model P (gr|data, g0, . . . , g243)
Basic BVS g31 0.20
BVS+OD(Poisson) g112 0.19
BVS+OD(Binomial) g85 0.14
BVS+OD(Both, independent) g31 0.17
BVS+OD(Both, correlated) g112 0.19
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Figure 10.11: DRL-72 experiment with crossover design. Posterior model probability
for several BVS models with and without overdispersion, for competing models with
P (gr|data, g0, . . . , g243 > 0.001).
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Figure 10.12: DRL-72 experiment with Crossover design. Posterior mean estimates with
the 95% credible intervals for the contrasts between treatment doses and the control dose
(0.0 mg/kg). The error bars are jittered for clarity.

The posterior mean estimates for the contrast between treatment doses and the
control dose (0.0 mg/kg) are presented in Figure 10.12 for all the BVS models. Note
that these estimates are model-averaged estimates with the weights corresponding
to the posterior model probabilities. Only the highest dose was effective for the
number of rewards obtained, while for the response models, the 95% credible intervals
did not include zero for all models apart from the correlated additive overdispersion model.

10.4 Discussion
The analysis presented in this chapter focused on model selection and estimation under
uncertainty. In contrast with the post selection estimation presented in Chapter 9, the
estimation in this chapter was done when multiple models are taken into account.
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The Bayesian variable selection model discussed in the chapter allows us to estimate
the parameters of interest when a set of candidate models is taken into account. For
the analysis we presented in this chapter, we assume that the prior of the parameters of
interest and the prior of the inclusion parameters are independent. The configuration
of the inclusion parameters correspond to the mean structure and in order to uniquely
identify a model from the set of candidate models, we defined a transformation function
that was used to estimate the posterior model probability. Using the posterior model
probability, we can select a model, if model selection is of interest, and calculate
model-averaged estimates for the parameters of interest.

Few issues were not addressed in this chapter. We use non-informative prior proba-
bilities P (gr) = 1/R and the influence of this choice on the posterior probably was not
investigated. Independent priors were used for the parameters of interest and the inclusion
parameters. Other approaches are used in the literature (O’Hara and Sillanpaa, 2009).
These approaches specify a joint distribution for the two parameters. Several BVS models
were used (with and without overdsperion); a question that remains open is how to com-
pare between these models. For example, how can we select between a basic BVS model
and a BVS model with overdispersion? All these issues are topics for future investigation.

10.5 Appendix

10.5.1 Parallel Design DRL-72 Experiment
To uniquely identify the model being fitted, in each iteration, a row of elements of Z̃ =
(z̃1, z̃2, z̃3) and W̃ = (w̃1, w̃2, w̃3) are randomly selected (independent of each other).
For the parallel design case study, let cT = (1, 3, 9) and U = Z̃cT, where U is a
r × 1 vector. Further, let Qr = 1 if Ur ≥ 0 and zero otherwise. The expression
Im = 1 + |Ur|+ (|max(U1, U2, . . . Ur)| × (1−Qr)) provides the unique identifiers for all
the models, I1, . . . , I27, which are used as indices to uniquely identify the models in the
RJAGS package, (Plummer, 2015). Similar output is obtained for W̃. Figure 10.13 shows
an illustration of the 27 models corresponding to a dose-response experiment with four
doses, and unconstrained parameters for the dose effects.

10.5.2 Crossover Design DRl-72 Experiment
In this section, we present an illustration of the 243 models corresponding to a dose-
response model with six doses (Figure 10.14-10.16).
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Figure 10.13: Illustration of the set of all plausible dose response profiles in a four dose
experiment. In this case, three active doses are compared with a control dose resulting in
27 possible set of models.
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Figure 10.14: Illustration of models g0− g23 from a crossover study with five treatment
doses and a placebo (negative offset in the illustration).
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Figure 10.15: Illustration of models g24−g47 from a crossover study with five treatment
doses and a placebo (negative offset in the illustration).
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Figure 10.16: Illustration of models g48−g71 from a crossover study with five treatment
doses and a placebo (negative offset in the illustration).





Chapter 11
Bayesian Variable Selection for
Order Restricted Parameters

11.1 Introduction

In the previous chapters, the parameters in the dose-response models were unconstrained.
Dose-response studies may postulate a trend in the dose-response relationship such
as an increase (decrease) of the effect with increasing dose, up to a point where
toxicity presents. Within the Bayesian framework, Klugkist et al. (2005), Klugkist and
Hoijtink (2007) proposed the use of encompassing priors in modelling order-restricted
dose-response models. For the rat growth data presented in Chapter 8), they formulated
either an unconstrained model in which there is no order-restriction on the dose effect,
or alternatively, a model whose slope coefficients reduce with dose (implying that the
growth rate decreases as the dose increase). Appropriate encompassing priors are defined
from which alternative hypotheses are then defined by restricting the parameter space
according to the constraints imposed by the alternative model. The posterior probability
of each model is then derived using the Bayes factor as shown in Chapter 8, hence taking
into account the presence of other competing hypotheses.

Within the frequentist framework, Pinheiro et al. (2014) proposed a method, imple-
mented in the dosefinding package in R, in which several parametric order-restricted
dose-response models including the Emax, linear and quadratic models are evaluated and
the best model selected using Akaike Information Criterion (AIC). Procedures to control
for multiple test are then applied on the final model. Model averaging (Hoeting et al.,
1999, Cooke, 2009, Claeskens and Hjort, 2008, Burnham and Anderson, 2003) can also
be performed by computing the model weights based on information criteria such as AIC
and BIC.

Pinheiro et al. (2014) suggested that in situations where there is large uncertainty
about the most plausible dose-response shape, the candidate models set should contain

145
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a sufficiently diverse set of plausible models to be reviewed. In this chapter, we present
Bayesian Variable Selection (BVS) methodology in the context of order-restricted
parameters (Lin et al., 2012, Otava et al., 2013). For an order-restricted dose-response
model with d dose levels, there are 2d−1 plausible monotone dose-response profiles
which can be evaluated. The BVS methodology allows fitting all the plausible monotone
dose-response profiles. As shown in Chapter 10, the posterior probability of each model is
simultaneously computed in one model fitting step and subsequently, the final parameters
represents a model-average of estimates from all the models fitted.

In contrast with the modelling approach of Klugkist et al. (2005) that focuses only on
inequality alternatives, the analysis presented in this chapter introduces strict equality
constraints in defining the alternative models of interest. In addition, in all their exam-
ples (Klugkist et al., 2005, Kato and Hoijtink, 2006), the null model comprised of an
unrestricted model, while for all the examples considered in this chapter, the null model
comprises of a "no-dose-effect" hypothesis. In other words, for an experiment with d+ 1
dose levels in which the first dose level is a reference and µj is the mean response at the
jth dose level, the null model defined in (Klugkist et al., 2005, Kato and Hoijtink, 2006)
corresponds to the null hypothesis,

H0 : µ0 6=, . . . , 6= µd, (11.1)

while the null model used in this chapter corresponds to the null hypothesis,

H0 : µ0 =, . . . ,= µd. (11.2)

Furthermore, Klugkist et al. (2005) and Kato and Hoijtink (2006) considered a set
of predefined alternative models while the analysis presented in this chapter focuses on
decomposition of the alternative hypothesis to all plausible order-restricted models fitted
under the alternative.

It is important to mention that, although we use the terminology of null hypothesis
and alternative hypothesis, we do not aim, in this chapter, at proposing an inference
procedure that can be used to test the null hypothesis against an orderred alternative but
rather, we focus on model selection and our aim is to develop a selection procedure in
which all models that are formulated under the null and the order-restricted alternative
are fitted and estimation of the model parameters and selection is done taking into
account all possible models.

This chapter is structured as follows; Section 11.2 presents the methodology and
model formulation for the case studies, while the results of applying the methodology
to the case studies is presented in Section 11.3. Finally, a discussion of is presented in
Section 11.4.
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11.2 Model Formulation

11.2.1 The Rat Data

Linear Mixed-Effects Model with Unrestricted Slopes

For the rat growth data, Verbeke and Molenberghs (2000) proposed a linear mixed-effects
model of the form,

Yjk = (β0 + u1j) + (β1Cj + β2Lj + β3Hj + u2j)tjk + εjk,

tjk = log(1 + (Agejk − 45)/10).
(11.3)

Here, Yjk is the cranial length measured between pre-determined points on the skull
for rat j at age k, β0 is the average response at the start of the treatment and β1 . . . β3
are the average time effects (slopes) for the control, low and high doses, respectively.
Note that Cj , Lj and Hj are all indicator variables that identify the dose group, i.e.,

Cj =
{

1, control,
0, otherwise. , Lj =

{
1, low,
0, otherwise. , Hj =

{
1,high,
0, otherwise. (11.4)

The subject-specific parameters u1j and u2j , are the random intercept and slope
coefficients, respectively, while tjk is a transformation of the follow-up time such that
t = 0 corresponds to the start of the experiment. The measurement error, εjk is assumed
to follow a normal distribution, εjk ∼ Normal(0, σ2).

The model specified in (11.3) implies that the mean response at each dose level is
given by

E(Yjk) =

 (β0 + u1j) + (β1 + u2j)tjk, for control dose,
(β0 + u1j) + (β2 + u2j)tjk, for low dose,
(β0 + u1j) + (β3 + u2j)tjk, for high dose.

(11.5)

The model is implemented as a hierarchical Bayesian model by specifying the following
priors and hyper priors, for r = 0, 1, 2, 3, given by

βr ∼ Normal (0, τ) ,
τ ∼ Gamma (0.001, 0.001) . (11.6)

The random effects follow a joint bivariate normal distribution given by,(
u1j
u2j

)
∼ Normal

([
0
0

]
,Σ
)
. (11.7)

Here, Σ is a 2 × 2 covariance matrix, whose inverse follows a Wishart distribution
Σ−1 ∼Wishart(R, f), where R is a 2× 2 diagonal matrix and f = 3 are the degrees of
freedom.
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Order Restriction in the Slope Parameters

Let us consider the following order-restricted hypotheses:

H0 : β1 = β2 = β3,
H1 : β1 > β2 > β3.

(11.8)

The alternative hypothesis can be decompose into three sub alternatives. That is,

H11 : β2 > β3 = β4,
H12 : β2 = β3 > β4,
H13 : β2 > β3 > β4.

(11.9)

Thus, four different models can be formulated. The first is formulated under the null
hypothesis, assuming no dose effect and the later three models can be formulated under
the alternative. Often, in such cases with several competing models, model selection is
performed using information criteria such as AIC and BIC. The "best" model is then used
for hypothesis testing and inference (inference post-selection), while completely ignoring
the presence of competing models. Rather, Bayesian variable selection uses information
from all the competing models in both estimation and subsequent inference, thus taking
into account the model uncertainty.

Next, we reparametrize the model by introducing δ1 and δ2, for the incremental effect
of the low and high doses, respectively. That is,

Yjk = (β0 + u1j) + (β1X1j + δ1X2j + δ2X3j + u2j) tjk + εjk. (11.10)

Here, β1 is the slope for the control dose, while X1j , X2j and X3j are indicator
variables for control, low and high doses, respectively. Note that the design matrix X, is
given by 

1 0 0
...

...
...

1 0 0
1 1 0
...

...
...

1 1 0
1 1 1
...

...
...

1 1 1


(11.11)

Hence, for a subject randomized to the control dose, X1j = 1, X2j = 0 and X3j = 0.
The mean dose-specific evolution profiles of model (11.10) are given by

E(Yjk) =

 (β0 + u1j) + (β1 + u2j)tjk control dose,
(β0 + u1j) + (β1+δ1 + u2j)tjk, low dose,
(β0 + u1j) + (β1+δ1 + δ2 + u2j)tjk high dose.

(11.12)
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The prior distributions for the model parameters are given by

β0 ∼ Normal (0, τ) ,
δs ∼ Normal (0, τδs)T (, 0.0) , s = 1, 2,
τδs ∼ Gamma (0.001, 0.001) .

(11.13)

Note that in (11.13), a truncated normal prior for δ1 and δ2 is specified. Truncation
ensures that only negative values for delta are sampled, therefore enforcing the order
constraint. Hence, in this stage, the dose-specific slope parameter is equal to β1, β1 + δ1
and β1+δ1+δ2 for the control, low and high dose, respectively. This implies that the slope
is strictly increasing with dose. Hence, using the model specified in (11.10) corresponds
to the one formulated under the alternative hypothesis H13.

Bayesian Variable Selection for the Order-Restricted Model

In this section, we formulate a Bayesian variable selection model which allow us to fit all
sub models under the alternatives in (11.9).

To implement BVS, the order-restricted model (11.10) is re-written as,

Yjk = (β0 + u1j) + (β1X1j + δ1z1X2j + δ2z2X3j + u2j) tjk + εjk. (11.14)

The variables z1 and z2 are Bernoulli random variables such that zk ∼ bern(πk), and
πk ∼ Uniform(0, 1), k = 1, 2. Note that z1 and z2 are the inclusion variables for the
parameters, δ1 and δ2, respectively. That is,

zk =
{

1, if δk in the model,
0, Otherwise. (11.15)

This implies that the mean response as each dose level is given by

E(Yjk) =

 (β0 + u1j) + (β1 + u2j)tjk + εjk, for control dose,
(β0 + u1j) + (β1+δ1z1 + u2j)tjk + εjk, for low dose,
(β0 + u1j) + (β1+δ1z1 + δ2z2 + u2j)tjk + εjk, for high dose.

(11.16)
The priors for all other model parameters are the same as in Section 11.2.1. The BVS

model formulated in (11.14) implies that the mean response depends on the inclusion
variables z1 and z2 and in particular, it allows us to fit all possible order-restricted models
as shown in Table 11.1. Under order restriction, four models can be fitted: the null model
and three models for which the mean response is monotone increasing with dose. In the
next section, we discuss a model selection procedure based on the BVS model.



150 Chapter 11. Bayesian Variable Selection for Order Restricted Parameters

Table 11.1: Rat data. Order-restricted models corresponding to the order-restricted
hypothesis in (11.14).

Hypothesis Configuration Model
z1 z2

β1 = β2 = β3 0 0 g(0)
β1 > β2 = β3 1 0 g(1)
β1 = β2 > β3 0 1 g(2)
β1 > β2 > β3 1 1 g(3)

11.2.2 The Milk Protein Content Trial

An Introduction: The Order Restricted Model in Kato and Hoijtnik et al. (2006)

A linear mixed-effects model has been proposed for the analysis of the milk protein
content trial data by several authors (Verbeke and Molenberghs, 2000, Verbyla and
Cullis, 1990, Diggle, 1990). Let Yjk be the milk protein content measured for the jth
cow, j = 1 . . . 79, in week k, k = 1 . . .Kj . Further, let barj ,mixj and lupj , be indicator
variables for the diet to which cow j was assigned. That is, barj = 1, for barley only diet
and zero otherwise, mixj = 1, for the mixture diet (barley and lupins mixture) and zero
otherwise, lupj = 1, for lupins only diet and zero otherwise. Kato and Hoijtink (2006)
analysed the data using a linear mixed-effects model with diet-specific intercepts, linear
and quadratic parameters, given by

Yjk = π1j + π2jtjk + π3jt
2
jk + εjk. (11.17)

Note that tjk is the rescaled time variable such that, tjk = 0 corresponds to a duration
of 11.5 weeks (Kato and Hoijtink, 2006). Moreover,

π1j = β1barj + β2mixj + β3lupj + u1j ,
π2j = β4barj + β5mixj + β6lupj + u2j ,
π3j = β7barj + β8mixj + β9lupj .

(11.18)

Here, β1, β2 . . . β9 are the regression coefficients, εjk is the measurement error, u1j
and u2j are the random intercept and random linear slope effects, respectively.

In the context of order-restricted hypotheses, Kato and Hoijtink (2006) presented an
analysis of the dataset in which four models were fitted: (M1) an unconstrained model,
(M2) ordered intercepts and linear slope parameters whereby, the milk protein content is
highest for barley only diet, moderate in the mixture diet and lowest in the lupins only
diet, (M3) only the intercepts are ordered such that the milk protein content is highest
for barley only diet, moderate in the mixture diet and lowest in the lupins only diet and
(M4), there is no effect of the diet on milk protein content. The four models represent
four hypothesis (Kato and Hoijtink, 2006), given by
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M1 : β1, β2, β3, β4, β5, β6, β7, β8, β9,
M2 : {β1 > β2 > β3}, {β4 > β5 > β6}, β7, β8, β9,
M3 : {β1 > β2 > β3}, β4, β5, β6, β7, β8, β9,
M4 : {β1 ≈ β2 ≈ β3}, {β4 ≈ β5 ≈ β6}{β7 ≈ β8 ≈ β9}.

(11.19)

In what follow, similar to Kato and Hoijtink (2006), we propose a linear mixed-effects
model for the data in which both the intercept and linear slope fixed effects are order-
restricted, while the quadratic fixed effects are unconstrained. However, in contrast with
Kato and Hoijtink (2006), the proposed model allows for equality constraint and similar
to the models in Section 11.2.1, the null model that implies no dose effect is included in
the set of all possible models.

The Order-Restricted Hierarchical Bayesian Model

As before, in the first step, for the intercept and slope parameters, we formulate two
models, the first assumes equality of the parameters across the diet groups the second
assumes monotonicity among the parameters, i.e. the intercept in the barley group is
strictly larger than the intercept in the mixture group and the intercept in the mixture
group is strictly larger than the intercept in the lupins group. A similar ordering is enforced
for the slope coefficients. The parameters for the quadratic time are unrestricted. Thus,

M0 : {β1 = β2 = β3}, {β4, β5 = β6}, β7, β8, β9,
M1 : {β1 > β2 > β3}, {β4 > β5 > β6}, β7, β8, β9.

(11.20)

To implement order-restriction in the intercepts and linear slope parameters, we rewrite
(11.18) as follows:

π1j = α1X1j + δ1X2j + δ2X3j + u1j ,
π2j = α2X1j + γ1X2j + γ2X3j + u2j ,
π3j = α3X1j + φ1X2j + φ2X3j .

(11.21)

Here, α1, α2 and α3 are the intercept, linear and quadratic effects, respectively, for
cows in the barley diet and u1jk and u2jk are the random effects for intercept and linear
slope, respectively. Further, εjk ∼ Normal(0.0, τ).

Similar to Section 11.2.1, we define δ1 and δ2 as the additional effects of mixture and
lupins diets, respectively, on the intercepts, γ1 and γ2 are the additional effects of mixture
and lupins diets, respectively, on the linear slopes while φ1 and φ2 are the additional
effects of the mixture and lupins diets, respectively, on the quadratic slopes. Note that
X1, X2 and X3 are indicator variables for the diet to which cow j is assigned. If cow j
is assigned to barley, X1j = 1, X2j = 0 and X3j = 0, if assigned to the mixture diet,
X1j = 1, X2j = 1 and X3j = 0 and if assigned to lupins diet, X1j = 1, X2j = 1 and
X3j = 1.

Note that from (11.21), the average milk protein content at 11.5 weeks, denoted by
β1, β2 and β3, for barley, mixture and lupins diet, respectively, is given by,

β1 = α1,
β2 = α1 + δ1,
β3 = α1 + δ1 + δ2.

(11.22)
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Similarly, the average linear (β4, β5, β6) and quadratic β7, β8, β9 effects of barley only,
mixture and lupins only, respectively, are given by,

β4 = α2,
β5 = α2 + γ1,
β6 = α2 + γ1 + γ2,
β7 = α3,
β8 = α3 + φ1,
β9 = α3 + φ1 + φ2.

(11.23)

Order constraints for the fixed intercept and linear slope parameters are implemented
by restricting the priors for δk and γk, k = 1, 2, to be negative as follows,

δk ∼ Normal (0.0, τδ)T (, 0.0) ,
γk ∼ Normal (0.0, τγ)T (, 0.0) ,
τδ ∼ Gamma (0.001, 0.001) ,
τφ ∼ Gamma (0.001, 0.001) .

(11.24)

The truncated priors in (11.24) implies that β1 > β2 > β3 and β4 > β5 > β6. Further-
more, the priors and hyperpriors for αr, r = 1, 2, 3, are given by, αr ∼ Normal (0.0, τα),
where τα ∼ Gamma (0.001, 0.001), while φs ∼ Normal (0.0, τφ) and
τφ ∼ Gamma (0.001, 0.001). A bivariate normal distribution is specified for the
random effects with covariance matrix D, whose inverse follows a Wishart distribution
given by D−1 ∼ Wishart (R, df). The scale matrix R is a 2 × 2 diagonal matrix with
elements equal to 0.001 and df = 3.

Bayesian Variable Selection in the Order-Restricted Model

Although Kato and Hoijtink (2006) explored only four hypotheses for the milk protein
content data, the alternative hypothesis in (11.20) can be decomposed further to 15
monotone sub hypothesis, which are evaluated within the BVS setting. Let wk and zk,
k = 1, 2 be inclusion indicator variables such that,

wk =
{

1, if δk included in the model,
0, otherwise.

and

zk =

 1, if γ
k

included in the model,
0, otherwise.

(11.25)

The BVS model is obtained from (11.21) by including these indicator variables in the
mean structure of the model as follows:

π1j = α1X1j + w1δ1X2j + w2δ2X3j + u1j ,
π2j = α2X1j + z1γ1X2j + z2γ2X3j + u2j ,
π3j = α3X1j + φ1X2j + φ2X3j .

(11.26)

The specification in (11.26) allows to fit all the sub models formulated under the null
hypothesis:



11.3. Application to the data 153

Table 11.2: Milk protein content trial data: Order-restricted models configuration.

Hypothesis Configuration
Intercepts Slopes w1 w2 z1 z2 Model

β1 = β2 = β3 β4 = β5 = β6 0 0 0 0 g(0)
β1 > β2 = β3 β4 = β5 = β6 1 0 0 0 g(1)
β1 = β2 > β3 β4 = β5 = β6 0 1 0 0 g(2)
β1 > β2 > β3 β4 = β5 = β6 1 1 0 0 g(3)
β1 = β2 = β3 β4 > β5 = β6 0 0 1 0 g(4)
β1 > β2 = β3 β4 > β5 = β6 1 0 1 0 g(5)
β1 = β2 > β3 β4 > β5 = β6 0 1 1 0 g(6)
β1 > β2 > β3 β4 > β5 = β6 1 1 1 0 g(7)
β1 = β2 = β3 β4 = β5 > β6 0 0 0 1 g(8)
β1 > β2 = β3 β4 = β5 > β6 1 0 0 1 g(9)
β1 = β2 > β3 β4 = β5 > β6 0 1 0 1 g(10)
β1 > β2 > β3 β4 = β5 > β6 1 1 0 1 g(11)
β1 = β2 = β3 β4 > β5 > β6 0 0 1 1 g(12)
β1 > β2 = β3 β4 > β5 > β6 1 0 1 1 g(13)
β1 = β2 > β3 β4 > β5 > β6 0 1 1 1 g(14)
β1 > β2 > β3 β4 > β5 > β6 1 1 1 1 g(15)

H1 : {β1 ≥ β2 ≥ β3} , {β4 ≥ β5 ≥ β6} , β7, β8, β9. (11.27)

Table 11.2 gives an overview of the configuration of w1, w2, z1 and z2 for the null model
(g0) and all the 15 order-restricted models formulated under the alternative hypothesis.

To complete the BVS model specification, priors and hyperpriors for the indicator
variables are given by

ws ∼ Bernoulli (ϕs) ,
zs ∼ Bernoulli (υs) ,
ϕs ∼ Uniform (0, 1) ,
υs ∼ Uniform (0, 1) .

(11.28)

Note that all the remaining priors and hyperpriors are as defined in Section 11.2.1.

11.3 Application to the Data

11.3.1 Rat Data
Figure 11.1 presents the posterior model probabilities and Table 11.3 present the
posterior means for the inclusion indicator variables, z1 and z2. The model with the
highest posterior probability is g2 with P (g2|data, g0, g1, g2, g3) = 0.58. This model
assumes that β1 = β2 > β3, i.e., the slope for the control and low dose group are equal
and both are larger than the slope in the high dose group. Note that the posterior
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Figure 11.1: Rat data. Posterior model probability.

Table 11.3: Rat data. Posterior mean of the inclusion indicator variables.

Inclusion parameter Inclusion probability
z1 0.20
z2 0.73

inclusion probability of δ1 is equal to 0.21 while the posterior probability of δ2 being in
the model is 0.71. The kernel density plots for the slope coefficients shown in Figure 11.2
indicate that the posterior mean of the slopes for the low and high doses are bimodal
(with mass point at zero for the iterations in which z1 or z2 were equal to zero).

Interestingly, the posterior probability of the null model, which assumes no dose
effect, is P (g0|data) = 0.22.

Table 11.4 presents the posterior mean estimates for the hierarchical Bayesian
model without order-restriction (i.e, a model with mean structure specified in (11.12)
without the order restriction specified in (11.13)), the order-restricted model (11.12)
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Figure 11.2: Rat data: Kernel density plot for the slope coefficients.
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Table 11.4: Rat data. Posterior mean estimates (95% credible intervals) for the
Bayesian hierarchical model (HM), order-restricted model (OR) and BVS model with
order-restriction (BVS+OR).

HM OR BVS+OR
β0 68.61(68, 69.24) 68.6(67.98, 69.22) 68.59(67.97, 69.22)
β1 7.34(6.79, 7.89) 7.56(7.15, 8.02) 7.4(7.01, 7.84)
β2 7.45(7, 7.9) 7.34(6.97, 7.73) 7.35(6.96, 7.75)
β3 6.92(6.46, 7.39) 6.89(6.44, 7.31) 6.99(6.49, 7.45)
σ2
u1

3.1(1.51, 5.5) 3.06(1.66, 5.29) 3.18(1.61, 5.39)
σu1, u2 0.17(-0.49, 0.71) 0.2(-0.47, 0.63) 0.17(-0.34, 0.68)
σ2
u2

0.05(0, 0.22) 0.04(0, 0.16) 0.04(0, 0.22)
σ2
ε 1.47(1.21, 1.79) 1.47(1.21, 1.79) 1.46(1.2, 1.78)

and (11.13) and the BVS model with order-restriction (11.14) . Contrasts performed
on the slope parameters (and 95% credible intervals) are presented in Table 11.5. The
hierarchical model without order-restriction suggests no difference between slopes, while
the order-restricted model postulates a difference in slopes across all three contrasts.
The contrast estimates for the model-averaged order-restricted estimates obtained from
the BVS model are all bounded at zero.

Table 11.5: Rat data. Contrasts (95% credible intervals) for the slope coefficients in the
hierarchical Bayesian model (HM), the order-restricted model (OR) and the BVS model
with order-restriction (BVS+OR).

Contrast Parameters HM OR BVS+OR
β3 − β1 δ1 + δ2 -0.42 (-1.108,0.256) -0.67 (-1.244,-0.178) -0.43 (-1.06,0)
β2 − β1 δ1 0.11 (-0.537,0.755) -0.22 (-0.651,-0.008) -0.05 (-0.475,0)
β3 − β2 δ2 -0.53 (-1.137,0.075) -0.45 (-0.972,-0.041) -0.38 (-1.005,0)

Figure 11.3 shows the fitted profiles for the three models. For all the three models,
the slope for the high dose was the smallest, for the order-restricted models, the slope
for the low dose was smaller than that of the control dose.
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(a) Average profiles plotted against the original time scale.
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(b) Average profiles plotted against the transformed time scale.

Figure 11.3: Rat data. Fitted profiles for the three models. Panel 11.3a shows the
original time scale in weeks, while panel 11.3b shows the transformed time scale. The
symbols denotes the observed average response.

11.3.2 Milk Protein Content Trial

Figure 11.4 shows the posterior model probability of the competing order-restricted
models. Model g2 was the most probable model with P (g2|data, g0, . . . , g15 = 0.63).
Note that the configuration of g2 is w1 = 0, w2 = 1, z1 = 0, z2 = 0, correspond-
ing to the hypothesis of a difference in milk protein content between a lupins only diet
and a diet containing Barley (purely or in mixture with lupins) at 11.5 weeks (inter-
cepts). For this model, the barley only diet does not differ from the mixture diet in
the mean milk protein content. However, the diet composition does not influence the
evolution of the milk protein content over time (no linear slope effects). Other com-
peting models included g3 with P (g3|data, go, . . . , g15) = 0.2, with a configuration of,
w1 = 1, w2 = 1, z1 = 0, z2 = 0 and g1 with P (g1|data, g0, . . . , g15) = 0.12, with a
configuration of, w1 = 1, w2 = 0, z1 = 0, z2 = 0.
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Figure 11.4: Milk protein content trial. Posterior model probability for competing order-
restricted models. Only models with P (gr|data, go, . . . , g15) > 0.01 are shown.

Table 11.6 presents the posterior inclusion probability of δ1, δ2, γ1 and γ2. The poste-
rior inclusion probability was relatively high for the lupins diet for the intercept coefficient,
where it was included in 85.7% of the models. The covariance matrix estimates (see Table
11.7) were similar in the three models, with the correlation between the random intercept
and slopes, ρ̂ab = 0.384.

Table 11.6: Milk protein content trial. Posterior inclusion probabilities (w̄ and z̄).

Inclusion parameter Posterior Mean
w1 0.344
w2 0.857
z1 0.009
z2 0.019

Table 11.7: Milk protein content trial. Posterior mean of the variance and correlation
estimates. HM: unrestricted hierarchical Bayesian model. OR: order-restricted model.
BVS+OR: OR model with Bayesian variable selection.

Parameter HM OR BVS+OR
σ2
a 0.036 0.036 0.037
σ2
b 0.001 0.001 0.001

ρab 0.384 0.384 0.389
σ2
ε 0.04 0.04 0.04

In Table 11.8, the posterior mean estimates of the fixed effects parameters in (11.18),
(11.21) and (11.26) are presented. Although the posterior mean estimates for the intercept
and quadratic slope parameters were similar across the three models, the linear slope
parameters for the BVS model were different and had wider 95% credible intervals.
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Table 11.8: Milk protein content trial. Posterior mean estimates for the fixed effects
regression coefficients in the order-restricted (OR) and BVS model with order-restriction
(BVS+OR) model. CI: Credible interval.

Parameter HM: Mean (95% CI) OR: Mean (95% CI) BVS+OR: Mean (95% CI
β1 3.485 (3.405, 3.566) 3.494 (3.417, 3.57) 3.461 (3.392, 3.547)
β2 3.405 (3.335, 3.476) 3.407 (3.343, 3.471) 3.425 (3.321, 3.496)
β3 3.291 (3.214, 3.37) 3.285 (3.211, 3.361) 3.294 (3.213, 3.386)
β4 -0.004 (-0.02, 0.011) 0.001 (-0.012, 0.015) -0.008 (-0.017, 0.001)
β5 -0.008 (-0.022, 0.008) -0.008 (-0.019, 0.004) -0.008 (-0.018, 0.001)
β6 -0.013 (-0.028, 0.003) -0.017 (-0.03, -0.005) -0.008 (-0.018, 0.001)
β7 -0.002 (-0.004, -0.001) -0.002 (-0.004, -0.001) -0.002 (-0.003, -0.001)
β8 -0.003 (-0.004, -0.002) -0.003 (-0.004, -0.002) -0.003 (-0.004, -0.002)
β9 -0.002 (-0.004, -0.001) -0.002 (-0.004, -0.001) -0.002 (-0.004, -0.001)

11.4 Discussion
In this chapter, we have shown that the Bayesian variable selection framework allows for
the estimation of order-restricted parameters in dose-response studies. Order restrictions
are incorporated in the model using constrained prior distribution for the order restricted
parameters.

When the shape of the dose-response profile is hypothesized to be monotone, but
there are several sets of competing monotone profiles to be evaluated, the posterior
probability of each of the models can be computed. With this, either model selection
can be performed by selecting the dose-response model with the highest posterior model
probability, or a model-average of the model parameters can be obtained by averaging
over the complete model set.

Several issues were not addressed in this chapter:

• We focus on model selection and estimation rather on inference. The main
questions that remain open is how to use the posterior probability of the model
fitted under the null hypothesis, P (g0|data, g0, . . . , gR) to conduct inference and
equally important, how Type I error and power can be controlled.

• Within the hierarchical Bayesian framework, the equivalent number of parameters
can be calculated when a single model is fitted to the data (for example, when the
DIC is calculated for a fitted model, the equivalent number of parameters is a part
of the statistic). The answer to the question-what is the numbers of parameters in
the model when a BVS model is fitted?- is at this stage, not clear. One can argue
that the complexity of the BVS model depends on the model posterior probabilities
and should be averaged over all models in the set of the candidate models. This
point should be investigated further.

• Closely related to the previous item are the following questions: how can we select
between two non-nested BVS models? Which type of information criterion can we
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use?

• It is obvious that model selection based on BVS models provides an attractive
alternative to the use of the DIC simply due to the fact that within the BVS
framework, model selection can be done in one run of the model while for a model
selection based on DIC, all possible models should be fitted. The question is, which
method performs better?





Chapter 12
Finite Mixture Models for
Dose-Response Data

12.1 Introduction

Throughout Chapter 8 to 11, a joint model for the number of responses and number
of rewards, was fitted for the DRL-72 experiment. The two outcomes of interest were
obtained by summarizing the observed time lag between subsequent lever presses during
the study. For each rat, the number of responses is the count of the time lags within
the 60 minutes that the study was performed, while the number of rewards obtained
was obtained by evaluating the number of time lags which were at least 72 seconds.
Both outcomes are a simplification of the actual observed outcome: the Inter-Response
Time (IRT) between subsequent lever presses in the 60 minutes interval. In this chapter,
we propose to use a mixture modelling approach to directly model the IRT instead of
the Poisson and binomial outcomes used in Chapter 8 to 11. Figure 12.1 illustrates
the difference between the variables used in Chapter 8 to 11 and the current Chapter.
The response variable, Yijk, denotes the kth IRT for the ith rat while the jth dose is
administered. From Figure 12.1, for rat 1, the number of responses is 6. The number of
rewards is the sum of Yijk ≥ 72 for the ith rat and jth dose. In this chapter, we model
the length of the IRT (Yijk) directly.

In behavioural studies, several researchers observed that the distribution of the
inter-response time was multi-modal, but proposed simpler analyses which ignore the
multi-modal aspect. For example, Jackson et al. (1995) excluded observations from the
first and last time-bins of their distribution in order to obtain a uni-modal distribution
for which they subsequently performed two-way analysis of variance using treatment and
bin as factors. Jackson et al. (1995) found that there was a shift in the inter-response
time peak (mode) for amphetamines. Richards et al. (1993) performed a peak deviation
analysis of a DRL-72 anti-depressant study from which, they concluded that peak
deviation analysis of the inter-response time distribution may provide a useful tool for
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Figure 12.1: An illustration of the inter-response time (IRT) for two rats.

characterising the effect of the drug of interest.

In this chapter, we apply a finite mixture model to the observed IRT data resulting from
the DRL-72 experiment with parallel design described in Section 8.3.1, (impying that for
each rat, all four doses of the treatment were administered following the same sequence).
The inter-response time distribution consists of two (or more) latent components whose
underlying parameters are possibly dose-dependent. Similar to the models presented in
Chapter 8 to 11, the proposed mixture model accounts for between-rat variability as well.
The IRT data is presented in Section 12.2. The general framework of finite mixture
models as well as the specific formulation for the application to the DRL-72 experiment
is presented in Section 12.3. Subsequently, Section 12.4 provides the results of the final
finite mixture model, while a discussion is provided in Section 12.5.

12.2 The DRL-72 Experiment: Inter-Response Time
Data

As mentioned in Chapter 8, in total, each of the 18 rats received four doses of an active
drug. The number of IRT intervals ranged between 17 and 96. Figure 12.2 shows data
for two randomly selected rats. Panel a shows the histogram of IRT in the four doses
administered. The dotted line marks 72 seconds beyond which, the rats obtain a reward.
For the same rats, Panel b shows the relationship between IRT and the duration in the
study for the four administered doses.

Figure 12.3 presents the histogram of the IRT for each of the doses for all animals.
For all doses, the distribution is clearly bimodal, with the first component corresponding
to very short time intervals (less than approximately 18 seconds) while the second
component has a peak for the IRT of about 56 seconds. This suggests different
distributions for the IRT which are probably driven by different biological processes.
The IRT distribution for individual rats, shown in Figure 12.7 to 12.9 (presented in the
appendix of this chapter), indicate presence of variability between rats which ought to be
accounted for in statistical analysis.
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Figure 12.2: Observed IRT data for two randomly selected rats.
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Figure 12.3: Histogram of the time to pressing the lever (IRT) across different doses for
all animals. The dashed vertical line marks 72 seconds of IRT, while the area under the
curve to the right of the 72 seconds indicates the proportion of lever presses for which a
reward is obtained.
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Figure 12.4: Relationship between IRT and the duration in the study. The vertical dotted
line denotes the first 8 minutes in the study.

The relationship between time spent in the study and the IRT is shown in Figure
12.4. Inference for the slope coefficients across the four treatments allows to detect the
presence (absence) of a treatment effect. Note that for the analysis presented below, the
logarithm of the duration in the study is included as possible covariate. In Figure 12.5,
the observed data is superimposed on the plot for the IRT versus time in study, from
which, it is clear that even for the first 8 minutes stage of the study, some rats obtain
rewards (IRT greater than 72 seconds). In what follows, we describe a finite mixture
model which allow to estimate the parameters for each component of the IRT distribution.

12.3 Statistical Methodology

12.3.1 Finite Mixture Models
Finite mixture models (Lindsay, 1995, McLachlan and Peel, 2000) are a way of quantifying
latent components of a distribution in a heterogeneous population. Let Yi be the IRT for
the ith rat, i = 1, . . . , 18, and let f(y) be the density function of Y , assumed to follow a
finite mixture distribution given by

f(y) = π1f1(y) + . . .+ πgfg(y). (12.1)

Here, fr(y), r = 1, . . . , g, are g density functions which can be the same distribution
with different parameters, θ1, . . . ,θg, or a mixture of different discrete and/or contin-
uous distributions. Note that πr are the mixing weights (mixing proportions or mixing
probabilities) for the finite mixture density satisfying

0 < πr < 1 and
g∑
r=1

πr = 1. (12.2)
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(a) Scatter plot of IRT versus duration in the study with the smoothed dose-specific mean IRT
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(b) Scatter plot of IRT versus the logarithm of the duration in the study with the smoothed
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Figure 12.5: Scatter plot of IRT versus duration in the study with the smoothed dose-
specific mean IRT superimposed. The dashed horizontal line corresponds to 72 seconds
beyond which rats obtain a reward, while the solid vertical line marks the first eight
minutes in the study. The top two quadrants corresponds to time lags of at least 72
seconds for which the rats obtained a reward.
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The term finite mixture refers to the fact that the number of density components in
(12.2) are fixed. The number of components can either be fixed a priori or estimated.
For the analysis presented in this chapter, the number of components g was fixed a priori
hence allowing for classical maximum likelihood estimation to be applied. Sensitivity
analysis was performed by varying the choice of the distribution family for fr(y).
Moreover, the proposed model assumes that some of the density-specific parameters,
θg, depend on both dose and the duration in the study. In order to account for subject
heterogeneity, random effects are included in the model.

We limit the choice of fr(y) to exponential, lognormal and Weibull distributions,
which are commonly used in parametric modelling of time-to-event data. Different
combinations of two-component finite mixtures including lognormal-lognormal, Weibull-
lognormal, Weibull-Weibull, exponential-Weibull and exponential-lognormal finite mixture
were explored.

12.3.2 Model Formulation: The Two-Component Lognormal-
Lognormal

In this section, we formulate a two-component mixture model in which, the IRT follows a
lognormal distribution. The density function for a lognormal distribution (Johnson et al.)
is given by

f(y) = 1
yS
√

2π
e
−0.5

(
log(y)−M

S

)2

.
(12.3)

Here, M is the location parameter while S is the scale parameter (other distributions
are presented in the appendix for this chapter). Let yijk > 0 be the kth IRT, k =
1, . . . ,Kij , for the ith rat, i = 1, . . . , n, under dose j, j = 1, 2, 3, 4 for 0.0 mg/kg
(control), 2.5 mg/kg (low), 5.0 mg/kg (medium) and 10.0 mg/kg (high), respectively. A
two-component lognormal distribution for the IRT is given by

yijk ∼ πj × LogN (M1ijk, S1j) + (1− πj)× LogN (M2ijk, S2j) . (12.4)

Here, LogN() denotes a lognormal distribution with location and scale parameters
M1ijk and S1j , respectively. Similarly, M2ijk and S2j are the location and scale
parameters, respectively, for a lognormal distribution in the second component. Note
that the scale parameters (S1j and S2j) in the mixture model specified in (12.4) are
assumed to be dose dependent. Let Xij be an indicator variable such that

Xij =
{

1, if dose j is administered,
0, otherwise, for j = 2, 3, 4. (12.5)
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Table 12.1: Parametrization for the dose and subject-specific location parameters,M1ijk,
in the first component. A similar parametrization is used for M2ijk.

Dose Location parameter
0 α11 + β11logTstudyijk + ai
2.5 (α11 + α12) + (β11 + β12) logTstudyijk + ai
5.0 (α11 + α13) + (β11 + β13) logTstudyijk + ai
10 (α11 + α14) + (β11 + β14) logTstudyijk + ai

We consider the following mean structure for the location parameters:

M1ijk =
(
α11 +

4∑
j=2

α1jXij

)
+
(
β11 +

4∑
j=2

β1jXij

)
logTstudyijk + ai,

and

M2ijk =
(
α21 +

4∑
j=2

α2jXij

)
+
(
β21 +

4∑
j=2

β2jXij

)
logTstudyijk + bi.

(12.6)

The variable logTstudyijk is the logarithm of the duration the rat has been in the
study, for the corresponding IRT (Yijk). For the first component, The parameters α11
and β11, are the intercept and slope (i.e. the effect of the logarithm of the duration
in the study), respectively, in the control dose. The additional effects of dose j,
j = 2, 3, 4, on the intercept and slope, are given by α1j and β1j , respectively. The
corresponding parameters in the mean structure of M2ijk have the same interpretation.
Table 12.1 presents the parametrization of the location parameter at each dose for
the first component. In addition, ai and bi are subject-specific random intercepts for
each component capturing the rat-specific variability of the location parameter from the
overall mean. It is assumed that the random intercepts follow a bivariate distribution
given by

(
ai
bi

)
∼ Normal

([
0
0

]
,

[
σ2
a σab

σab σ2
b

])
. (12.7)

12.4 Application to the DRL-72 Experiment
In the first stage of the analysis, we compare different combinations of distributions
for the two components. The models were compared based on the Akaike Information
Criterion (AIC, Akaike, 1973) and Bayesian Information Criterion (BIC, Schwarz, 1978)
fit statistics. Maximum likelihood estimation for all parameters of interest was performed
with SAS PROC NLMIXED.

Table 12.2 presents the AIC and BIC values for the two-components finite mixture
models considered in this analysis. The lognormal-lognormal finite mixture has the
smallest values for both AIC and BIC, hence the most preferred of the five mixture
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Table 12.2: AIC and BIC statistics for different two-component finite mixture models.
Smaller values of AIC or BIC are preferred.

Model AIC BIC
lognormal-lognormal 40113 40141
Weibull-lognormal 40819 40844
Weibull-Weibull 41084 41106
Exponential-Weibull 41376 41395
Exponential-lognormal 41494 41513

Table 12.3: Mixing proportions πj and 1 − πj for the lognormal densities in the two
component lognormal-lognormal finite mixture.

Dose Component 1 Component 2
0 mg 0.095 0.905
2.5 mg 0.108 0.892
5.0 mg 0.121 0.879
10 mg 0.172 0.828

models considered in this analysis. In the remaining sections of this chapter, detailed
results of the lognormal-lognormal finite mixture are presented. The observed and fitted
densities of the IRT are presented in Figure 12.6.

12.4.1 Finite Mixture Parameter Estimates
The two-components mixture model specified in (12.3)-(12.7) was applied to the data
and leads to the following results:

• Mixing proportions:
The mixing proportions for the two lognormal densities constituting the finite
mixture are presented in Table 12.3. The proportion of IRT falling in the first
component increases with dose and subsequently, in the second component, the
proportion decreases. One possible interpretation for this could be the fact that
higher doses of the drug result in an adverse event in the rats which manifests
in the form of reduced vigilance, hence the short time intervals between lever presses.

• Location parameters:
The parameter estimates for the location parameters of the two-components
are presented in Table 12.4. For the first component, only the high dose has
a significant effect on the intercept of the location parameter. For the second
component, confidence intervals for the 5.0 mg/kg dose do not cover the value
of zero, in both the intercept and slope coefficients, indicating that the location
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Table 12.4: Parameter estimates for the regression coefficients for the location parame-
ters in the lognormal mixture.

Component 1 Component 2
Dose Parameter Estimate (95% CI) Parameter Estimate ( 95% CI)
0.0 α11 1.533 (0.92, 2.145) α21 3.737 (3.651, 3.824)
2.5 α12 0.108 (-0.518, 0.735) α22 -0.057 (-0.164, 0.05)
5.0 α13 0.252 (-0.357, 0.861) α23 0.262 (0.14, 0.385)
10 α14 -0.764 (-1.32, -0.208) α24 0.125 (-0.03, 0.28)
0.0 β11 0.045 (-0.092, 0.181) β21 0.095 (0.073, 0.117)
2.5 β12 0.062 (-0.14, 0.265) β22 0.016 (-0.017, 0.048)
5.0 β13 -0.072 (-0.276, 0.133) β23 -0.072 (-0.109, -0.035)
10 β14 -0.03 (-0.224, 0.164) β24 -0.011 (-0.056, 0.035)

parameter of the medium dose is different from the control dose.

• The expected values of the location parameters:
The covariance matrix for the random effects (12.7) is estimated to be equal to

D̂ =
(

0.01 0.01
0.01 0.72

)
. (12.8)

The estimated location and scale parameters for the lognormal-lognormal mixture
densities, after 8 minutes and 30 minutes in the study, are presented in Table 12.5.
The first component has a larger scale parameter for each dose, compared to the
second component. Based on the parameters shown in Table 12.5, we estimated
the probability of a rat obtaining a reward, in the first and second component,
respectively. That is,

P1ijk (IRT ≥ 72) =
∞∫
72
f1 (y) dy, and P2ijk (IRT ≥ 72) =

∞∫
72
f2 (y) dy. (12.9)

The probability to obtain a reward in the first component is between 0.2% and 5.6%,
for a rat which had been in the study for 8 minutes and 30 minutes, respectively.
In the second component, the probability to obtain a reward increases with dose for
the first 8 minutes in the study, while after 30 minutes in the study, the probability
was larger but relatively constant.

• Median IRT:
Table 12.5 presents the median time lags for both components. In the first
component, the highest dose level results in the smallest median IRT at both
8 minutes and 30 minutes in the study, an indication that the highest dose
induces reduced vigilance in the rats resulting in very short IRT. In the sec-
ond component, the median IRT for the active doses increases for the active
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Table 12.5: Parameter estimates for the two-components lognormal finite mixture for a
typical rat after 8 minutes and 30 minutes in the study.

Duration Dose Component 1 Component 2 Median P (IRT ≥ 72)
M1j S1j M2j S2j Comp. 1 Comp. 2 Comp.1 Comp. 2

8 0 1.626 1.329 3.935 0.297 5.084 51.163 0.023 0.125
8 2.5 1.864 1.43 3.911 0.308 6.451 49.926 0.046 0.117
8 5 1.729 1.589 4.048 0.316 5.633 57.26 0.054 0.234
8 10 0.799 1.176 4.038 0.44 2.224 56.686 0.002 0.294
30 0 1.686 1.329 4.061 0.297 5.395 58.017 0.026 0.234
30 2.5 2.006 1.43 4.057 0.308 7.434 57.795 0.056 0.238
30 5 1.693 1.589 4.078 0.316 5.436 59.036 0.052 0.265
30 10 0.819 1.176 4.149 0.44 2.268 63.357 0.002 0.386

doses although by a small margin, and the median IRT is larger after 30 minutes
in the study compared to that at 8 minutes in the study for the corresponding doses.
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Figure 12.6: Observed inter-response time distribution with the two-component
lognormal-lognormal finite mixture superimposed.

12.5 Discussion
In this chapter, the inter-response time distribution was observed to be bimodal.
Generally, this is an indicator of the presence of two differentiated behavioural processes,
characterized by latent classes. In order to identify the composition of these latent classes,
finite mixture models were implemented. Another issue that the models discussed here
sought to address was the effect the duration in the study has on the inter-response time.
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This was adjusted for in estimating the parameters of the inter-response time distribution.

A two-component lognormal-lognormal finite mixture provided the best fit for the
data based on information criteria such as AIC and BIC. In the first component, the
median IRT was similar in the control, low and medium doses although the highest dose
resulted in substantially shorter IRT. In the second component however, the high dose
resulted in slightly longer time lags as compared to the low and medium doses. A formal
test for the difference in these median times can be performed following the guidelines
discussed by Stoline (1993).

One of the main goals of this analysis was to assess the gain(loss) resulting from
summarising the inter-response time outcome into a Poisson count of the number of
times the rats press the lever and a binomial outcome (the number of rewards obtained).
In Chapter 9, we presented a Bayesian hierarchical binomial-Poisson joint model (BP)
for the parallel design DRL-72 experiment, which was based on the summarized IRT.
For the Poisson outcome, the log(relative risk) of pressing the lever for the low and
medium doses compared to the control dose was not statistically significant although the
high dose resulted in a significantly lower risk in comparison to that obtained under the
control dose. The log(odds ratio) of successfully obtaining a reward were significantly
higher in the medium and high doses as compared to the control dose.

The probability of successfully obtaining a reward computed from the Bayesian
hierarchical binomial-Poisson model (BP) from Chapter 9 was 0.188, 0.177, 0.235 and,
0.333 for 0.0, 2.5, 5.0 and 10.0 mg/kg, respectively. Comparison with the results from
the finite mixture models indicate that, after the first eight minutes in the study, the
finite mixture model results in a slightly higher estimated probability of a rat obtaining
a reinforcement for all doses. Moreover, the hierarchical model does not provide for a
mechanism to assess the possible adverse effect of the high dose yet as was seen from
the finite mixture analysis, the higher the dose, the higher the proportion of very short
inter-response times.

Another issue that the current analysis addressed was adjusting for the duration in the
study. The hierarchical Bayesian Poisson-binomial model summarises the data in such
a way that it is no longer possible to associate each of the outcomes with the duration
the rat has been in the study. In the finite mixture framework, the duration in the study
was useful in adjusting for the location parameters for the two component finite mixture.
However, the relationship between the scale parameter of the lognormal distribution on
the duration in the study was not investigated in this chapter. The effect of the duration
in the study was only significant for the 5.0 mg dose in the second component’s location
parameter.

On the downside, finite mixture modelling is more complex in terms of numerical com-
putation. For this analysis, SAS PROC NLMIXED was used to obtain maximum likelihood
estimates of the parameters of interest. This however needs specification of appropriate
initial parameter values and a bit of fiddling with different options in order to attain con-
vergence. With increasing model complexity resulting from the introduction of additional
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Figure 12.7: Histogram for the inter-response time distribution for the rat 1-6. The
dashed vertical line denotes 72 seconds. There is clearly variability between rats in their
IRT distribution and subsequently on the number of rewards obtained.

components or alternative distributions in the finite mixture, model convergence becomes
a challenge. Moreover, with the finite mixture analysis, we did not obtain an association
parameter such as the Pearson’s correlation coefficient for the number of responses and
number of rewards obtained as was done by Shkedy et al. (2005).

12.6 Appendix

12.6.1 Subject-Specific Density Plots for IRT
The individual density plots in the DRL-72 experiment are presented in Figure 12.7 to
12.9.
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Figure 12.8: Histogram for the inter-response time distribution for the rat 7-12. The
dashed vertical line denotes 72 seconds. There is clearly variability between rats in their
IRT distribution and subsequently on the number of rewards obtained.
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Figure 12.9: Histogram for the inter-response time distribution for the rat 13-18. The
dashed vertical line denotes 72 seconds. There is clearly variability between rats in their
IRT distribution and subsequently on the number of rewards obtained.
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Table 12.6: Distribution functions evaluated for the finite mixture models.
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12.6.2 Distribution Functions for the Finite Mixture Components
The parametrization adopted for the densities used in fitting the finite mixture model is
shown in Table 12.6. As mentioned in Section 12.4.1, the location parameter depends on
dose, duration in the study and subject-specific effects (see for example, Equation 12.6
for the lognormal model).

12.6.3 Software Issues
In this section, we present the SAS code used to fit the finite mixture,

Yijk ∼ πj ∗ LogN (M1ijk, S1j) + (1− πj) ∗ LogN (M2ijk, S2j) .

First, the data is sorted by the subject ID.
PROC SORT data=survival;BY animal dose;
RUN;

The finite mixture model formulated in Section 12.4.1 can be fitted using PROC
NLMIXED. A general call of the procedure for a two-component mixture model has the
form

PROC NLMIXED DATA = ;

Formulation of the mean structure for the location parameters (per
component);

Definition of the mixing probability;

Definition of the scale parameters for the components;

Definition of the density for the components;

Specification of the finite mixture density;

General likelihood specification;
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For the lognormal-lognormal model, we used:
ODS OUTPUT PARAMETERESTIMATES=lognormal_LOGNORMAL_dose_Fixed_est;

PROC NLMIXED DATA =survival GCONV=0 ;

The mean structure for the location parameters was specified in SAS using the following
statements.

M1=alpha11+alpha12*dose25+alpha13*dose50+alpha14*dose100
+beta11*logtstudy+beta12*dose25*logtstudy+beta13*dose50*logtstudy
+beta14*dose100*logtstudy +a;

M2=alpha21+alpha22*dose25+alpha23*dose50+alpha24*dose100
+beta21*logtstudy+beta22*dose25*logtstudy+beta23*dose50*logtstudy+
beta24*dose100*logtstudy +b;

In order to obtain dose-specific mixing probability and dose-specific scale parameters
for the two components respecitvely, we define,

*Dose specific mixing probabiity;
pi=exp(zp0+zp25*dose25+zp50*dose50+zp10*dose100)/

(1+exp(zp0+zp25*dose25+zp50*dose50+zp10*dose100));

*Dose specific scale parameters for each of the lognormal components;
sigmares1=sigma1_0*(dose=0)+sigma1_25*(dose=2.5)+sigma1_50*(dose=5)+
sigma1_10*(dose=10);

sigmares2=sigma2_0*(dose=0)+sigma2_25*(dose=2.5)+sigma2_50*(dose=5)+
sigma2_10*(dose=10);

The two-component lognormal-lognormal finite mixture likelihood is defined using the
general likelihood specification in PROC NLMIXED:

*Lognormal denstity for the first component;
dens1=( exp(-0.5*((log(time) -u1)**2)/exp(2*sigmares1))/
((time*(2*CONSTANT(’PI’)*exp(2*sigmares1))**0.5)));

*Lognormal density for the second component;
dens2=( exp(-0.5*((log(time) -u2)**2)/exp(2*sigmares2))/
((time*(2*CONSTANT(’PI’)*exp(2*sigmares2))**0.5)));

*Specify the finite mixture density;
fg1 = (pi)*dens1+(1-pi)*dens2;
ll=log(fg1);

*General likelihood specification in SAS PROC NLMIXED;
MODEL time ~ GENERAL(ll);

Random effects variance-covariance matrix is specified using the RANDOM statement as
follows:

RANDOM a b ~ normal([0,0],[sigmaa2,cov,sigmab2]) subject=animal;
OUT=Random_effects_est;





Chapter 13
Discussion and Future Research

13.1 Diffusion Kurtosis Magnetic Resonance Imaging
in Neurodevelopment and Neurodegeneration

One of the growing interests in Alzheimer’s Disease (AD) research is the identification
and validation of appropriate diagnostic tools for early detection of AD. Considering
the fact that AD is an irreversible condition, early diagnosis is paramount if interven-
tions which can improve the patient’s quality of life are to be effective. Moreover, a
validated diagnostic tool for early onset of AD could allow for more targeted disease
management rather than the current situation in which patients are managed for other
dementia-related symptoms and only until later stages, are they diagnosed as AD patients.

Identification and validation of biomarkers for AD should be focused on two main
aspects:

1. The ease of acquisition and safety profile of a biomarker. In the case of AD,
although promising, invasive biomarkers such as cerebral-spinal fluid may hinder
their adoption for clinical follow-up. However, if validated, non-invasive biomarkers
such as the MRI parameters, evaluated in this dissertation, are more appropriate for
clinical follow-up, since they can be taken repeatedly on a patient without causing
excessive discomfort/risks.

2. A good biomarker should be valid in predicting a patient’s disease pathology
(individual-level surrogacy) and also be valid in monitoring the disease progression
(disease-level surrogacy). This implies that, for a particular patient, a biomarker
should not only be good at predicting the true disease pathology at any given
time, but also, based on several biomarker measurements, the biomarker should
predict the true disease progression.

The analysis presented in this dissertation showed that, the validity of MRI parameters
as biomarkers for the true disease pathology depends on the MRI parameter of interest,
the histology stain of interest and the brain region.
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• The specific MRI parameter being evaluated. In general, DKI parameters (especially
MRI-AK) were good surrogates for histology stains.

• The specific histology stain considered. Different histology stains quantify different
aspects of the disease pathology. Therefore, not all MRI parameters are good
biomarkers for all histology stains.

• The brain region of interest. The brain is a heterogeneous organ with white and grey
matter regions. Some of the symptoms of AD include lack of motor coordination and
difficulties with speech. These symptoms do not necessarily manifest simultaneously,
which suggests that the disease pathology spreads heterogeneously across the brain.
Therefore, in evaluating the validity of a given MRI parameter as a biomarker for a
given histology stain, different brain regions should be evaluated.

13.1.1 Topics for Further Research
Although a comprehensive analysis of the MRI data was presented in this dissertation,
several issues, listed below, were encountered but were not fully addressed in this disser-
tation.

Multivariate Classification for the MRI Data

Although longitudinal data for MRI was available at 2, 4, 6 and 8 months of age, the
linear discriminant analysis presented in Chapter 4 was performed for each age separately.
Accounting for the evolution of the MRI parameters in a classification rule may improve
the classification accuracy. In this regard, we propose the following approaches to develop
a classifier with the longitudinal data.

• Functional Linear Discriminant Analysis (FLDA, James and Hastie, 2001) provides
an extension of classical linear discriminant analysis to datasets where the predictor
variables are curves or functions. The procedure uses spline curves and a random
error term to model the individual profiles. Thus, with FLDA, new curves (evolution
profiles) can be classified into one of the latent classes based on a discriminant
function.

• There exists methods for classification of data from multiple sources such as multiple
factor analysis (Kasim et al., 2016). Adoption and extension of such ideas to
longitudinal data may provide alternative tools with better classification accuracy.

Evaluation of MRI Parameters as Biomarkers for AD

• The analysis presented in Chapter 6 and 7 was performed on different brain Re-
gions of Interest (ROI). An illustration of a hypothetical brain region is presented
in Figure 13.1. Within a region of interest, the AD pathology does not necessar-
ily spread homogeneously. Therefore, a ROI-based analysis represents an average
disease effect in that region (averaged over all the voxels in the ROI) and thus
ignores potential "hotspots" within the region. A voxel based analysis could poten-
tially provide additional sensitivity in validating biomarkers for AD. The challenge
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with voxel-based analyis is that, while there is a one-to-one mapping between MRI
parameters and histology staining at the voxel level within an animal, there is no
correspondence of voxel locations across different animals. Therefore, the modelling
approach presented in this dissertation, which relies on data from several animals
cannot be applied to the voxel data.

(a) Illustration of a region of interest (b) Illustration of the ROI divided into voxels

Figure 13.1: Illustration of the ROI and voxel based analysis. The shaded regions
represents disease pathology as quantified by different histology stains
.

• The ROI based analysis presented in this dissertation also ignores the fact that MRI
parameters for a given ROI are an average over all the voxels in that region. This
essentially ignores the variability of the MRI scores within a region. Incorporating
variability of the MRI parameters in the classification and biomarker evaluation
could potentially increase the accuracy. A hierarchical Bayesian approach where
the variance of MRI parameters is incorporated as informative priors or as an extra
hierarchy in the model, can be considered. Alternatively, methods for statistical
analysis for covariates with measurement error can be explored.

• Joint modelling of multiple MRI parameters for one histology stain and vice versa
could also be of interest. The MRI parameters may provide better characterization
of particular disease pathology when evaluated jointly, considering the fact that AD
is a culmination of multiple changes in the disease pathology. While extension of
the joint model presented in chapter 7 to multiple biomarkers is straight forward,
the challenge is to obtain a single summary measure for the surrogacy for the
multivariate case. Alonso et al. (2004) proposed the variance reduction factor for
the case of validation of biomarkers in the context of repeated measures, which can
form a basis for the extension of the analysis presented in this dissertation.

• The methodology presented in Chapter 7 was based on a joint model for the disease
effects in order to evaluate the disease-level surrogacy. Rather than impose a joint
distribution for the disease effects αj and βj , conditional distribution of the effect
of a histology feature given the effect of an MRI parameter can be specified. In
particular, let µcond be the conditional mean and σ2

cond the conditional variance.
The conditional distribution of the disease effect on the histology given the disease
effect on the biomarker is given by,
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βj |αj ∼ Normal
(
µcond, σ

2
cond

)
. (13.1)

13.2 Joint Modelling of Correlated Data: Overdis-
persion, Bayesian Variable Selection and Order-
Restricted Hypotheses

Dose-response modelling is often performed for inference on the parameters of interest.
In most cases, a set of models is considered for a particular dose-response experiment.
Subsequently, the "best" model is chosen based on information criteria and based on the
selected model, inference is conducted.

In this dissertation however, focus was not on hypothesis testing and inference, but
rather, the uncertainty resulting from selection of a "best model" and parameter estimation
following model selection. Instead of selecting one model out of a set of plausible models,
we adapted Bayesian model averaging whereby, estimation of the parameters of interest
is based on a weighted average of the estimates from all the models in the set. Moreover,
to ease model fitting, Bayesian variable selection was adopted, thus allowing the fitting
of all nested models in one run of the model. Additional considerations in dose-response
modelling which we addressed in this dissertation included methods for accounting for
overdispersion in Poisson or binomial dose-response outcomes and modelling approaches
for order-restricted parameters.

13.2.1 Topics for Further Research
Several issues remain unresolved with regards to the dose-response methodology presented
in this dissertation. In the following section, we present an overview of the main issues
that need to be take into consideration in future.

Bayesian Variable Selection Model Comparison

• Classical Bayesian analysis uses DIC (Spiegelhalter et al., 2002) and other mea-
sures such as the penalized expected deviance (Plummer, 2008) for comparison of
competing models. While DIC evaluates an optimal balance between a model’s
goodness-of-fit and complexity, it is unclear how to compute DIC in the BVS con-
text. For BVS models, the model complexity changes within the Multiple Chains
Monte Carlo Simulations, therefore making it difficult to estimate the effective num-
ber of parameters.

• Similarly, for order-restricted models, the prior distribution is constrained for some
parameters. This has an impact on the posterior distribution. Note that DIC is
based on the assumption of the asymptotic multivariate normal distribution of the
deviance which may be violated in such models. A further investigation of the
properties of DIC for order-restricted models ought to be conducted.
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• In the analysis presented in this dissertation, equal prior probabilities were assigned
to the models. The complete influence of the priors on BVS parameter estimation
and posterior model probability should be evaluated, considering the fact that in
some cases, it would be of interest to assign informative priors for some of the
models. Closely related to this point, the impact of specifying correlated priors for
the BVS parameters should be investigated.

• Inference within the BVS framework was out of the scope of this dissertation. We
have shown that model selection can be based on the maximum posterior model
probability. However, the main question that remains unsolved is how to make a
decision based on the posterior probability of the null model P (g0|data, g0, . . . , gR).
Ideally, for a given threshold τ , we would like to "reject" the null hypothesis of no-
dose-effect whenever P (g0|data, g0, . . . , gR) < τ . Neither the method to choose τ ,
nor the property of the decision rule (in terms of power and type I error), is clearly
understood at this juncture.
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Summary

Alzheimer’s Disease (AD) is an age-dependent disease that has recently generated a lot
of interest in the scientific community. The pathological changes induced by AD are
irreversible and impacts on the quality of life of the patient especially because, AD affects
the patient’s motor coordination and cognitive ability, thereby rendering them dependent
on care givers. The impact of AD on the well-being of patients is further complicated by
the fact that, timely and accurate diagnosis of AD is currently lacking. Therefore, the
main goal of most of the ongoing AD research is to identify biomarkers that will allow for
accurate diagnosis of AD and monitoring of the disease progression in the development
of treatments aimed at slowing or inhibiting the spread of AD pathology. For optimum
clinical benefit, such biomarkers ought to be easy to acquire and preferably obtained
non-invasively, or with minimum discomfort to the patient. Further, it is desirable
that such a biomarker can accurately predict the AD pathology progression while the
disease is still at an early stage. Currently, the true status of the disease pathology can
only be known through a post-mortem examination, which is useless for the patient’s
management.

In the first part of this dissertation, we propose to use Magnetic Resonance Imaging
(MRI) diffusion metrics as biomarkers for AD. MRI is an imaging technique that’s already
in clinical use for diagnosis and management of patients with brain trauma amongst
other applications. MRI quantifies the flow of water molecules across the brain tissue.
The diffusion of water molecules in a healthy brain is assumed to follow a Gaussian
distribution, while any tissue malformations may induce deviations from the Gaussian flow
of water molecules. The parameters derived from MRI include Diffusion Tensor Imaging
(DTI) parameters and Diffusion Kurtosis Imaging (DKI) parameters. We used a mouse
model for AD, with Amyloid Precursor Protein gene and Presenilin 1 genetic mutation
(APP/PS1) in order to evaluate if MRI parameters can capture the AD pathology in mice
brains. Note that this mouse model only mimics some aspects of AD in human patients,
thereby allowing us to study specific AD pathology. AD however, is a manifestation of
several pathological changes that sometimes occur simultaneously. The methodology pre-
sented in the first part of this dissertation addresses three broad goals with respect to AD.

First, can the evolution of AD in different regions in the brain be quantified using
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MRI parameters? In Chapter 3, a linear model for the longitudinal MRI data is presented.
The analysis enables us to identify the brain regions and age at which significant
differences between healthy and APP/PS1 mice are observed. The cortex regions and in
particular, the motor cortex was the region in which significant differences are observed
especially at 6 and 8 months of age. In addition, DKI parameters (especially axial kurtosis
and mean kurtosis) are more promising at discriminating between the two mice genotypes.

Secondly, which set of MRI parameters between DTI and DKI parameters can discrim-
inate between diseased and healthy mice? More so, does DKI parameters improve the
classification of disease status compared to classification based on DTI alone? Chapter 4
addresses this classification problem using linear discriminant analysis which is performed
on three classifiers namely; DTI parameters, DKI parameters and a combination of both
DTI and DKI parameters for each of the brain regions separately. As expected, as the
disease pathology develops with age, the misclassification error reduces for the three
classifiers. The classifier based on either DTI or DKI has comparable misclassification
error for all ages while a classifier based on both DTI and DKI substantially reduces the
misclassification error. Note that all these results vary with the brain region although the
motor cortex shows the best discrimination ability between the two mice genotypes.

Finally, Chapters 5-7 are dedicated to the evaluation of MRI parameters as biomarkers
for the AD pathology. We adopt the methodology for surrogate markers evaluation
commonly used in clinical trials. While the setting posed by the MRI experiment presented
in this dissertation is different, the methodology is still useful and is applied with minimal
modifications. In the context of AD, rather than evaluating whether the treatment effect
on the biomarker is predictive for the treatment effect on the true endpoint, we are
interested in evaluating whether the disease effects on the biomarker are predictive for the
disease effects on the true endpoint. Moreover, rather than multiple centres or trials as is
the case in clinical trials, in the MRI experiment, these are substituted with mice cohorts
of ages 2, 4, 6, 8 and 10 months. We present a frequentist and Bayesian approach to
biomarker evaluation which are applied to the different combinations of MRI parameters,
pathological histology stains and brain regions. Results indicate that disease-level sur-
rogacy of different MRI parameters varies with the specific histology stain used and the
brain region. Note that for some regions such as the amygdala and olfactory bulb, none of
the MRI parameters shows evidence of being a good surrogate for the four histology stains.

The results presented in the first part of this dissertation indicate that although
MRI parameters have potential to be surrogates for disease pathology in AD, there are
still issues that ought to be addressed before they can be adopted for clinical use. The
accuracy of disease-level surrogacy measures presented here is relatively low, possibly
due to the small sample sizes. Simulation studies showed that the sample size used
for the estimation of disease-level surrogacy has an impact on the accuracy of the
estimated correlations. We presented a region-level analysis but potentially, a model
based on data at the voxel-level resolution might be more interesting. Moreover, the
brain is heterogeneous and the spatial arrangement of the different regions may have an
impact on the spread of the disease pathology that should be accounted for in the analysis.
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The focus of the second part of this dissertation was on dose-response models. In
dose-response modelling, it is often the case that a choice has to be made of the "best"
model on which to base subsequent estimation and inference. The set of models on
which to choose the best models can result from different formulations of the model, for
instance, linear and non-linear dose-response profiles or in some cases, by the exclusion of
a subset of parameters from the "full" model. Statisticians then use information criteria
such as the Akaike Information Criterion (AIC) , Bayesian Information Criterion (BIC)
or Deviance Information Criterion (DIC) amongst others in order to decide on the best
fitting model for the data. Once this choice of the "best" model is made, subsequent
analysis and inference proceed completely ignoring the uncertainty introduced by model
selection step.

Chapter 8-12 of this dissertation is dedicated to addressing the uncertainty in model
selection in several dose-response experiments. The overarching theme is Bayesian model
averaging whereby, rather than select a single "best" model, we propose to fit the set
of all models simultaneously and compute a model-averaged estimate of the parameters
of interest over all the models. This is implemented within the Bayesian framework
whereby, we propose to use Bayesian Variable Selection (BVS) for the dose-response
case studies presented in this dissertation. Note that the BVS approach presented in
this dissertation is appropriate for cases in which the models are nested within one
“full” model and the parameters for which BVS is to be performed are categorical. By
specifying appropriate indicators, BVS allows for selection of a subset of the parameters
to be included in the model during each iteration of the model fit. For each model, the
posterior model probability is computed which is used as the model weight in computing
the model-averaged estimates. Further, the posterior model probability is a measure of
relative importance of each of the models in the set.

The advantage of BVS is that, the methodology can be applied only to a subset of
the parameters (such as the dose parameters) while some other parameters are always
included in the model (such as the random effects). Moreover, by using BVS other design
considerations, for instance, order restriction of the dose parameters can be incorporated
in the model. We applied BVS to several case studies of varying complexity. Both
univariate models and joint models were considered. The Bayesian framework allows us
to also investigate additional design issues such as overdispersion in Poisson and binomial
distributions as well as order-restriction. Although we only performed estimation for
the dose parameters of interest, inference in the context of BVS can be investigated.
Further, the posterior model probability may be useful in performing model selection
post-estimation, thereby taking into account the uncertainly unlike in the case of model
selection pre-estimation where selection precedes estimation of the parameters of interest.

A few issues still need to be addressed with regards to BVS. First, since the model
fitted changes in each iteration, classical Bayesian measures of goodness of fit such as
DIC are no longer valid hence, an appropriately defined information criterion is needed.
This is especially so when models incorporating BVS have to be compared with models
without BVS. Secondly, while the posterior model probability is an indicator of the relative
importance of the models, it is not clear what the impact of using this measure for model
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selection may have. Finally, there is need for a simulation study to evaluate the impact
of the model priors on the posterior model probability.



Samenvatting

De Ziekte van Alzheimer (ZA) is een leeftijd gerelateerde aandoening die recent aan
enorme belangstelling heeft gewonnen binnen de wetenschappelijke gemeenschap. De
pathologische veranderingen, veroorzaakt door ZA, zijn onomkeerbaar en hebben een
invloed op de kwaliteit-van-leven van de patiënt. Dit komt omdat ZA een impact heeft op
zowel de motorische coördinatie als de cognitieve mogelijkheden van patiënten, waardoor
deze afhankelijk worden van zorgverleners. De invloed van ZA op het welbevinden van
patiënten wordt daarenboven vergroot omdat tijdige en accurate diagnose van de ziekte
voorlopig ontbreekt. Daarom is huidig ZA onderzoek vooral gericht op de identificatie
van biomerkers die zowel een accurate diagnose van ZA als de opvolging van de ziekte
in termen van ziekteprogressie toelaten. Dit heeft als doel om de ontwikkeling van
behandelingen, die de symptomen van ZA kunnen vertragen of zelfs voorkomen, te
faciliteren. Om klinisch optimaal te zijn, dienen zulke biomerkers gemakkelijk en bij
voorkeur non-invasief te bekomen zijn, om zodoende het ongemak van de patiënt tot een
minimum te beperken. Daarnaast is het wenselijk dat zulke biomerkers pathologische ZA
progressie accuraat kunnen voorstellen wanneer de ziekte zich nog in een vroeg stadium
bevindt. Op dit moment kan de ware status van de ziekte pathologie enkel post-mortem
worden vastgesteld. Dit is vruchteloos vanuit een patiëntbeheer standpunt.

In het eerste deel van deze thesis onderzoeken we Magnetic Resonance Imaging
(MRI) diffusie indicatoren als biomerkers voor ZA. MRI is een beeldvormingstechniek
die onder andere al wordt gebruikt voor de diagnose en opvolging van patiënten met
hersentrauma. MRI kwantificeert de stroom van watermoleculen doorheen hersenweefsel.
Van de diffusie van watermoleculen in gezonde hersenen wordt aangenomen dat deze een
Gaussiaanse distributie volgt, terwijl weefsel-misvorming kan zorgen voor deviaties van
de Gaussiaanse stroom van watermoleculen. De parameters bekomen na MRI omvatten
Diffusion Tensor Imaging (DTI) en Diffusion Kurtosis Imaging (DKI). We hebben gebruik
gemaakt van een muismodel voor ZA, met Amyloid Precursor Protein gen en Presenilin
1 genetische mutatie (APP/PS1), om te onderzoeken of MRI parameters ZA pathologie
kunnen oppikken in muishersenen. Merk op dat dit muismodel enkel bepaalde aspecten
van ZA in mensen nabootst en dus toelaat om enkel een specifieke ZA pathologie
te bestuderen. ZA komt tot uiting in verschillende pathologische veranderingen die
mogelijks terzelfdertijd optreden. De besproken methodologie in het eerste deel van de
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thesis richt zich op drie algemene doelen met betrekking tot ZA.

Ten eerste; kan de evolutie van ZA in verschillende delen in de hersenen gekwantifi-
ceerd worden, gebruik makend van MRI parameters? In hoofdstuk 3 wordt een lineair
model voor longitudinale MRI data voorgesteld. Deze analyse laat ons toe om de
hersengebieden te identificeren en de leeftijd te voorspellen, waar en wanneer significante
verschillen tussen gezonde en APP/PS1 muizen geobserveerd worden. De cortex regio’s
in het algemeen, en de motor cortex in het bijzonder, waren de regio’s waar significante
verschillen worden geobserveerd vooral op 6 en 8 maanden. Bijkomend wordt vastgesteld
dat DKI parameters (vooral axiale kurtosis en gemiddelde kurtosis) veelbelovend zijn om
te discrimineren tussen de twee muis genotypes.

Ten tweede; welke verzameling van MRI parameters tussen DTI en DKI parameters
kunnen discrimineren tussen zieke en gezonde muizen? In het bijzonder, leidt de toevoe-
ging van DKI parameters tot een betere classificatie van de ziekte status vergeleken met
de classificatie op basis van enkel DTI. Hoofdstuk 4 behandelt dit classificatie probleem
gebruik makend van lineaire discriminant analyse. Deze analyse wordt toegepast op
drie classificeerders, namelijk; DTI parameters, DKI parameters en een combinatie van
zowel DTI als DKI parameters, apart voor ieder hersengebied. Zoals verwacht verkleint
de misclassificatie fout van alle classificeerders naarmate de ziekte pathologie verergert
met de leeftijd. De classificeerder gebaseerd op enkel DTI of DKI heeft een vergelijkbare
misclassificatie fout voor alle leeftijden. Aan de andere kant verkleint een classificeerder
gebaseerd op zowel DTI als DKI, de misclassificatie fout substantieel. Merk op dat
alle resultaten variëren op basis van hersengebied, hoewel de motor cortex tot de beste
discriminantie tussen de twee muis genotypes leidt.

Tenslotte zijn hoofdstukken 5 tot 7 gewijd aan de evaluatie van MRI parameters
als biomerkers voor ZA pathologie. We nemen de methodologie voor de evaluatie van
surrogaat merkers over. Deze wordt algemeen gebruikt in klinische studies. Hoewel de
setting van het MRI experiment, zoals besproken in deze thesis, hiervan verschilt, is de
methodologie nog steeds nuttig en kan ze worden toegepast na minimale aanpassing. In
de context van ZA gaan we na of de ziekte-effecten op de biomerkers de ziekte-effecten
op het ware eindpunt kunnen voorspellen, in plaats van, of het behandelingseffect op de
biomerker de behandelingseffecten kunnen voorspellen op het ware eindpunt. Meer nog, in
plaats van meerdere centra of studies, zoals gebruikelijk in klinische studies, worden deze
in het MRI experiment vervangen door muiscohorten van 2, 4, 6, 8, en 10 maanden. We
presenteren zowel een Frequentiste als Bayesiaanse benardering tot biomerker evaluatie,
toegepast op de verschillende combinaties van MRI parameters, pathologische histologie
kleuring en hersengebieden. Resultaten tonen aan dat ziekte-niveau surrogaatheid van
verschillende MRI parameters varieert met de specifiek gebruikte histologiekleuring en
het hersengebied. Merk op dat voor sommige regio’s, zoals de amygdala en olfactorische
bulb, geen van de MRI parameters blijk geven goede surrogaten te zijn voor de vier
histologiekleuringen.

De gepresenteerde resultaten in het eerste deel van deze thesis tonen aan dat hoewel
de MRI parameters potentieel hebben om surrogaten voor ziektepathologie in ZA te
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zijn, er nog steeds kwesties zijn die dienen bekeken te worden vooraleer ze kunnen
aangepast worden voor klinisch gebruik. De accuraatheid van de ziekte-niveau surrogaat
maten die hier gepresenteerd worden, zijn relatief laag, mogelijks kan dit toegewezen
worden aan de kleine steekproefgrootte. Simulatiestudies toonden aan dat de gebruikte
steekproefgrootte voor de schatting van ziekte-niveau surrogaatheid een impact had op
de accuraatheid van de geschatte correlaties. We toonden een regio-niveau analyse, maar
mogelijks is een model gebaseerd op data op voxel-niveau resolutie interessanter. Meer
nog, de hersenen zijn heterogeen, en de spatiale schikking van de verschillende regio’s kan
mogelijk een impact hebben op de spreiding van de ziekte pathologie waarmee rekening
gehouden dient te worden in de analyse.

In het tweede deel van deze thesis werd dieper ingegaan op dosis-respons modellen.
In dosis-respons modellen is het vaak het geval dat een ‘best’ model gekozen dient
te worden. Dit model zal dan vervolgens dienen als basis van schatting en inferentie.
De verzameling van modellen waaruit de beste modellen gekozen kunnen worden, kan
gebaseerd zijn op verschillende formuleringen van het model. Dit kan, bijvoorbeeld, door
de aanname van lineaire of non-lineaire dosis-respons profielen of in sommige gevallen,
door de uitsluiting van een subset van de parameters uit het ‘full’ model. Statistici
gebruiken in dit geval informatie criteria, zoals onder andere, het Akaike Informatie
Criterium (AIC), Bayesiaans Informatie Criterium (BIC) of Deviantie Informatie Criterium
(DIC) om tot een best fittend model te komen. Eenmaal de keuze voor het ‘beste’
model gevallen is, gaat men verder met analyse en inferentie, waarbij men de onzekerheid
geïntroduceerd door de model-selectie-stap volledig negeert.

Hoofdstukken 8-12 van deze thesis zijn gewijd aan het in rekening brengen van
de onzekerheid in model selectie in verschillende dosis-respons experimenten. Het
overkoepelende thema is Bayesian model averaging, waarbij in plaats van de selectie
van één ‘beste’ model, we voorstellen om de verzameling van alle modellen simultaan te
fitten, waarna men een model-gemiddelde schatting over alle modellen bekomt voor de
parameters van interesse. Deze methode wordt geïmplementeerd in een Bayesiaans kader,
waarbij we voorstellen om gebruik te maken van Bayesian Variable Selection (BVS) in
de dosis-respons studies gepresenteerd in deze thesis. Merk op dat de voorgestelde BVS
benadering geschikt is voor gevallen waarin de modellen genest zijn binnen één ‘full’
model en de parameters, waarvoor BVS is verreist, categorisch zijn. Door de specificatie
van geschikte indicatoren laat BVS toe om tijdens iedere model fit iteratie een subset
te selecteren van parameters die in het model dienen te worden opgenomen. Voor ieder
model wordt de posterior model kans berekend. Deze kansen worden vervolgens gebruikt
als model gewichten om tot de model-gemiddelde schattingen te komen. Meer nog, de
posterior model kansen zijn een maat voor de relatieve belangrijkheid van elk van de
modellen in de set.

Het voordeel van BVS is dat de methode enkel kan toegepast worden op een
subset van de parameters (zoals bv. dosis parameters) terwijl andere parameters
altijd in het model worden opgenomen (zoals bv random effecten). Daarnaast is
het zo dat door het gebruik van BVS ook andere ontwikkelingsconsideraties, zoals
bijvoorbeeld, volgorde restricties van de dosis parameters kunnen worden geïncorporeerd
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in het model. We hebben het BVS toegepast op verschillende studies van variërende
complexiteit. Zowel univariate als joint modellen werden beschouwd. Het Bayesiaans
kader laat ons toe om ook bijkomende design kwesties, zoals over-dispersie in Poisson
en binomiale distributies, alsook volgorde-restrictie, te onderzoeken. Hoewel we enkel
schattingen bepaalden voor de dosis parameters van interesse, kan inferentie in de
context van BVS ook onderzocht worden. Verder zou ook de posterior model kans
nuttig kunnen zijn in de uitvoering van post-schatting-model-selectie. Hierbij zouden
we al de onzekerheid in rekening kunnen brengen, in vergelijking met het pre-schatting-
model-selectie, in welke selectie voorafgaat aan schatting van de parameters van interesse.

Enkele kwesties dienen nog steeds te worden onderzocht betreffende BVS. Ten eerste,
aangezien het model dat gefit wordt verschillend is in iedere iteratie, zijn de klassieke
Bayesiaanse maten voor goodness-of-fit, zoals DIC, niet meer geschikt. Hierdoor hebben
we nood aan een overeenkomstig gespecifieerd informatie criterium. Dit is vooral
belangrijk wanneer BVS modellen vergeleken worden met modellen niet bekomen met
BVS. Ten tweede, terwijl posterior model kans een indicator is van het relatieve belang
van modellen, is het niet duidelijk wat de impact van het gebruik van deze maat op
model selectie is. Tenslotte is er nood aan een simulatie studie die de impact van model
priors op de posterior model kans onderzoekt.
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