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Chapter 1
Introduction

The work presented in this dissertation is focused on the development of biomarkers
in non-clinical and clinical studies. A biomarker is a characteristic that is objectively
measured and evaluated as an indicator of normal biologic processes, pathogenic pro-
cesses or pharmacological responses to therapeutic or other interventions (Biomarkers
Definitions Working Group, 2001). Recent developments in biotechnology make it
possible to use molecular biomarkers of exposure, toxicity, disease risk, disease status
and response to therapy (Clarke et al., 2004; Baek et al., 2009; Amaratunga et al.,
2014; Göhlmann and Talloen, 2009). The high-throughput genomic, proteomic and
metabolic data are characterized by a large number of variables with relatively small
number of samples. In the drug discovery and development process, this technology
is used to monitor simultaneously the activity of thousands genes and their response
to certain experimental conditions. The identified biomarkers could then be used as
diagnostic tests or decision making tools (Clarke et al., 2004; Amaratunga et al., 2014;
Baek et al., 2009; Göhlmann and Talloen, 2009; Ambroise and McLachlan, 2002).

The research presented in this dissertation is mainly based on the use of existing
methods and models and the novel aspects are related to the introduction of advanced,
up-to-date and sophisticated methods in metabolomics and transcriptomics in drug
discovery.

The first part of the dissertation is focused on metabolic biomarkers that are used
to improve existing diagnostic procedures, screening tools and risk models to identify
patients with high risk of developing lung cancer and breast cancer.
In Chapter 2, a brief introduction about the usage of metabolic data for the detection
of cancer is given and two case studies in lung and breast cancer are introduced.

1



2 Chapter 1. Introduction

In Chapter 3, we present an analysis for the validation of proton nuclear magnetic
resonance (1H-NMR) metabolite profiles for early detection of breast cancer. The
uniqueness of integration regions (IR) signature for classification is presented as well.
Chapter 4 is focused on lung cancer. We present a screening tool based on metabolic
changes measured in blood plasma for the detection of lung cancer. In Chapter 5 we
focus on the question how to test additive value of metabolic data in risk models for
lung cancer that include clinical covariates. In other words, we focus on the question
whether use of metabolic data in addition to clinical covariates does improve the
accuracy of prediction of the risk for cancer.

X

Y

Z

Figure 1.1: The relationship between a condition (Z), a biomarker (X) and a pri-
mary endpoint (Y). The triplet (Y,X,Z) is the basic data structure used in the second
and the third part of the dissertation.

Figure 1.1 illustrates the data structure in the second and the third part of the dis-
sertation. The variable Z represents the treatment (or condition) under study while
the variable X is a potential biomarker for the primary endpoint Y . The blue arrows
represent the condition effects on both biomarker and primary endpoint whereas the
red arrow represents the association between the two endpoints after correcting for
the condition effects.
The second part of the dissertation focuses on integrated analysis of multi-sources data
in the drug discovery experiments. Chapter 6 introduces the use of transcriptomic
data in the drug discovery studies and presents the datasets used for illustration.
Joint modeling approach of the bioassay data and gene expression data using super-
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vised principal component analysis, lasso and elastic net approaches are presented in
Chapter 7. In Chapter 8, we discuss the use of structural equations models for the
identification of causal structures in high dimensional data in the drug discovery.
While the first two parts of the dissertation are focused on the development of high
dimensional biomarkers, the third part is focused on software development that can
be used for the validation of surrogate endpoints in randomized clinical trials.
In Chapter 9, we give a short introduction about the use of surrogate endpoints in
randomized clinical trials and present the datasets used for illustration. In Chapter 10,
we present a set of SAS macros which can be used to evaluate surrogate endpoints in
different settings. R Shiny application is presented in Chapter 11. Chapter 12 offers
concluding remarks and a perspective for future research.





Part I

Development of Metabolic
Biomarkers for Cancer
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Chapter 2
Metabolic Cancer Studies

2.1 Metabolic Studies for Cancer Diagnostic

In this chapter, we introduce the use of metabolic data in the diagnostic of cancer.
Especially, lung and breast cancer are considered. The datasets used, for illustration
in Chapter 3 and 4, are introduced as well.

2.1.1 Lung Cancer

Lung cancer is one of the most common malignancies worldwide. It is the leading cause
of cancer death in North America and worldwide (Tammemagi et al., 2011). Ferlay
et al. (2015) reported that 1.82 million new lung cancer (LC) cases were diagnosed in
2012 and 1.6 million LC-related deaths were recorded. Parkin et al. (2005) estimated
that 1.35 million new lung cancer (LC) cases and 1.18 million LC-related deaths
occur every year. Lung cancer is mostly diagnosed at an advanced disease stage,
when curative treatments are limited, and this is attributed to the lack of symptoms
during the early phases. As a result, the relative five-years survival rate is then very
poor, ranging between 5 to 10% worldwide (Boyle et al., 2008).
Screening for lung cancer at an early stage before a patient develops clinical symptoms
and when the treatment is most effective should benefit the patient by increasing
his/her quality of life and life expectancy (Bourzac, 2014; Shlomi et al., 2014; Wood
et al., 2012). An appropriate screening test should be cost-effective. According to
Field et al. (2013a,b) the benefit-risk balance is maximized when high-risk target
population is selected for screening. Robust methods for risk prediction are essential
to accurately select individuals with high risk of developing lung cancer for screening.

7



8 Chapter 2. Metabolic Cancer Studies

Currently, risk prediction models include mainly epidemiological and clinical risk
factors such as gender, age, and smoking history (Bach et al., 2003; Spitz et al., 2007;
Cassidy et al., 2007). Eighty-five percent of the lung cancers are non-small cell lung
cancer (NSCLC) and fifteen percent are small cell lung cancer (SCLC). The latter
are aggressive malignancy, fast-growing and spread much more quickly (Cuffe et al.,
2011; Wood et al., 2012).
Various techniques are available to screen lung cancer. They include chest radiography
(CXR), sputum cytology and low-dose computed tomography (LDCT, Brett, 1968;
Melamed et al., 1984; Larke et al., 2011). Brett (1968) failed to demonstrate the
beneficial effect of CXR screening alone or in combination with sputum cytology
on lung cancer mortality. Additionally, CXR does not allow to detect lung tumors
smaller than 2 cm (Sone et al., 2000). The LDCT allows to detect lung cancers
at smaller tumors and at earlier stage compared to conventional CXR (Henschke
et al., 1999; Sone et al., 1998; National Lung Screening Trial Research Team, 2011b).
However, these screening methods are characterized by high false positive rates. This
results in emotional stress, needless financial cost, and increased risk for healthy
people (Humphrey et al., 2004). Healthy people might be exposed to unnecessary
radiation, biopsies and surgical procedures which are associated with higher morbidity
and mortality rates (Shlomi et al., 2014; Tammemagi and Lam, 2014).
Because of high false positive rate of LDCT, there is a growing interest in improving
the accuracy of current risk models by incorporating lung cancer related biomarker
for the selection of high-risk individuals eligible for LDCT screening (Raji et al.,
2010; Spitz et al., 2008). Blood samples can be obtained non-invasively and without
risks for patients (Smolinska et al., 2012; Tsay et al., 2014; Mamas et al., 2011). In
some studies DNA repairs markers (Spitz et al., 2008) and genetic factors (Raji et al.,
2010) were added to models containing clinical risk factors. This resulted in prediction
improvement.

2.1.2 Breast Cancer

Breast cancer is the most commonly diagnosed cancer in women and the leading
cause of cancer deaths in women worldwide. In 2008, 1.38 million women were diag-
nosed with breast cancer worldwide, accounting for approximately 23% of all cancers
diagnosed in women (Peter and Bernard, 2008). The incidence of breast cancer is
generally higher in developed countries as compared to developing countries, but due
to differences in population size, the number of cases becomes roughly equal (690.000
for both developed and developing regions). Gender and age are the most important
risk factors for the disease. Breast cancer is diagnosed 100 times more in women than
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in men and the majority of advanced breast cancers are diagnosed in women older
than 50 years. Nevertheless, 89% of women survive five years after the diagnosis in
western countries. This is mainly due to the development of more efficient detection
and treatment methods (Parkin et al., 1999; Howlader et al., 2012). Currently, sev-
eral complementary techniques are available for diagnosis and surveillance of breast
cancer. They include mammography, physical examination, ultrasonography, MRI
and blood-based biomarker tests. Among all these techniques, mammography is still
the gold standard (Sickles, 1991; Gartlehner et al., 2013).
Several new approaches are developed in view of early detection, progression follow-up
and therapy monitoring of breast cancer. They are primarily based on the detection
of blood-based tumor markers and/or genetic profiling (Ebeling et al., 2002; Asiago
et al., 2010; Duffy, 2006).
In this part of the dissertation, we focus on metabolomic biomarkers obtained from
blood samples. In particular, 1H-NMR based metabolomics data is used. Metabolic
phenotype is the end result of genetic and environmental (diet, physical activity)
influences and provides a readout of the metabolic state of an individual (Holmes et al.,
2008). Note that metabolic phenotype is not only affected by disease processes, but
also by confounding factors, such as age, gender, ethnicity, diet, drug administration
and lifestyle (Holmes et al., 2008; Kochhar et al., 2006; Lenz et al., 2004).
Cancer cells have to reorganize their metabolism in order to meet their abnormal
nutrients demand to support growth, proliferation and survival under suboptimal
conditions (Kroemer and Pouyssegur, 2008; Cantor and Sabatini, 2012). 1H-NMR
based metabolomics have great potential in cancer diagnosis, prediction of therapy
response and development of new therapies since cancer cells are characterized by
profound metabolic alterations (Kroemer and Pouyssegur, 2008; Sciacovelli et al.,
2014).

2.2 Case Studies

2.2.1 Breast Cancer Dataset

The Breast cancer dataset contains information on about 139 subjects who are clini-
cally free of breast cancer (termed as healthy controls; HC) and 161 patients who are
newly diagnosed with breast cancer (BC). Since age is a major risk factor for breast
cancer (McPherson et al., 2000; Pike et al., 1993), the subject population was defined
to reflect this aspect and indeed the median age of the HC and BC groups are 56 and
61 years, respectively. Their metabolite patterns are quantitatively profiled by proton
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nuclear magnetic resonance (1H-NMR) spectroscopy. The dataset contains two types
of variables. A vector Yn×1 containing information about the individual labeling (BC
or HC) and a matrix Xn×m containing the individual metabolic profiles.

Yn×1 =



y1

y2

.

.

.

yn


, Xn×m =



x11 x12 · · · x1m

x21 x22 · · · x2m

. . . .

. . . .

. . . .

xn1 xn2 · · · xnm


.

Here, Yi=1 if the subject is a breast cancer patient and zero otherwise, xij is the
metabolite readout of the jth metabolite of the ith subject. Note that we use the
terminology metabolite for an integration region readout. This will be clarified later
in this section.

Blood Sampling and Processing

Venous blood samples (10 ml) were collected in lithium coated tubes and stored at 4◦C
within 5 to 10 minutes after collection. Within 6 hours after collection, blood samples
were transported on crushed ice (4◦C) and centrifuged at room temperature (1600
g, 15 minutes). Subsequently, plasma aliquots of 500µl were transferred into sterile
cryovials and stored at −80◦C until NMR examination. All samples were analyzed
within 3 months. At the time of the 1H-NMR analysis, plasma samples were thawed
and homogenized using a vortex mixer. After centrifugation at 4◦C (13000 g, 4 min-
utes), the samples were further diluted to 800µl with deuterium oxide (D2O, 99.9%,
Cambridge Isotope Laboratories Inc, Andover, USA) containing trimethylsilyl-2,2,3,3-
tetradeuteropropionic acid (TSP, 3.6mg/12ml, Cambridge Isotope Laboratories Inc,
Andover, USA) as a chemical shift reference (0.015 ppm) (Beckonert et al., 2007).
Finally, the samples were transferred into 5 mm NMR tubes and analyzed.

1H-NMR Spectroscopic Analyses

Proton NMR spectra were recorded at 21.2◦C on a 400 MHz NMR spectrometer
(Varian/ Agilent, Nuclear Magnetic Resonance Instruments, USA) with a magnetic
field strength of 9.4 Tesla. Slightly T2-weighted spectra were acquired using the
Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence to attenuate signals of macro-
molecules, such as proteins and polysaccharides (Meiboom and Gill, 1958; Hürlimann
and Griffin, 2000). Additional water suppression allows optimal detection and quan-
tification (integration) of the resonance signals of low molecular weight metabolites.
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The proton NMR spectra were phased properly and divided into 98 fixed integra-
tion regions (IRs) based on the chemical shifts of the metabolites. After a baseline
correction, the integrals of 96 IRs (all except this of remaining water and TSP) were
normalized to the total integration value of all signals except these arising from water,
TSP and the (huge) signals of glucose and fructose. These normalized values of the
96 IRs are referred to as var-1,..var-96. Note that the 96 IRs do represent less than
96 metabolites. This is due to the fact that most metabolites have protons in differ-
ent chemical environments and so give rise to more than one signal in the 1H-NMR
spectrum. Moreover, proton spins are often J-coupled with other proton spins, giving
rise to J-coupling patterns (doublet, triplet,...).

Figure 2.1: A typical proton NMR spectrum of human plasma. Left inset: integra-
tion regions (IRs) between 4.188-4.112 ppm (Var-16) and 4.112-4.060 ppm (Var-17).
The Var-16 IR shows the quadriplet (•) of lactate (CH3CHOHCOOH; J=6.9 Hz) su-
perimposed on the double doublet (�) of the Hα proton of proline (J=8.7 and 6.0 Hz).
The Var-17 IR is composed of signals arising from protons of creatinine, fructose,
inositol and tryptophan. Right inset: integration regions between 1.533-1.510 ppm
(Var-82) and 1.510-1.491 ppm (Var-83), arising from the doublet (�; J=7.2 Hz) of
alanine. Adapted from Bigirumurame et al. (2016).

.

Figure 2.1 illustrates the quantification of the integration regions (Friebolin and Bec-
consall, 1993; Bovey et al., 1988). The amino acid alanine, for example, shows a
doublet around 1.51 ppm arising from the methyl protons (J-coupled to the methine
proton with a coupling constant of J=7.2 Hz) and a quadriplet around 3.81 ppm aris-
ing from the methine protons (J-coupled to the methyl protons with the same coupling
constant of J=7.2 Hz). The inset at the right shows the integration regions of the
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alanine doublet lines (�) between 1.533-1.510 ppm (Var-82) and 1.510-1.491 ppm
(Var-83). Lactate on the other hand gives rise to a quadriplet (CH3CHOHCOOH;
J=6.9 Hz) around 4.145 ppm and a doublet (CH3CHOHCOOH; J=6.9 Hz) around
1.350 ppm. The inset at the left shows the integration region of the lactate quadriplet
(•) between 4.188-4.112 ppm (Var-16). Remark that the latter IR is superimposed on
the double doublet signal (� ) of the Hα proton of proline (J=8.7 and 6.0 Hz). The
other proton J-patterns of proline appear around 2.38 ppm (Hβ), 2.06 ppm (Hγ) and
3.38 ppm (Hδ). The experimental, normalized integration values of the 96 IRs are
shown in Figure 2.2 for all (300) subjects included.
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Figure 2.2: Patient-specific normalized NMR integration values of the 96 integra-
tion regions (IRs). Left panel: 139 healthy controls. Right Panel: 161 breast cancer
patients.

2.2.2 Lung Cancer Dataset

For the lung cancer study, 357 patients were included in the Limburg Positron Emis-
sion Tomography center (273 patients from Hasselt, Belgium) and at the Department
of Respiratory Medicine of University Hospital Leuven (84 patients from Leuven, Bel-
gium) from March 2011 to June 2014. The diagnosis of lung cancer was confirmed
by a pathological biopsy or by a clinician specialized in interpreting radiological and
clinical lung cancer data. Clinical staging of the tumors was performed according
to the 7th edition of the tumor, node, metastasis (TNM) classification of malignant
tumors (Goldstraw et al., 2007). All controls (n=347) were patients with non-cancer
diseases who were included at Ziekenhuis Oost-Limburg (ZOL, Genk, Belgium) be-
tween March 2012 and June 2014. Exclusion criteria were: (1) not fasted for at least
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6 hours; (2) fasting blood glucose concentration ≥ 200 mg/dl; (3) medication intake
on the morning of blood sampling and (4) treatment or history of cancer in the past
5 years. The study was conducted in accordance with the ethical rules of the Helsinki
Declaration and Good Clinical Practice and was approved by the ethical commit-
tees of ZOL, Hasselt University (Hasselt, Belgium) and University Hospital Leuven.
An elaborated discussion about the Blood sampling, sample preparation and NMR
analysis is given in Louis et al. (2015a).

2.2.3 Evaluation of a Given Classifier

In Chapters 3, 4, and 5 we present several methods to classify patients according to
their disease status (cancer/ healthy control). We evaluate the performance of the
classification methods using different statistics presented in this section.
Consider a binary classification problem and let Yi and Ŷi be the true and the predicted
status (class) of a subject, respectively

Yi =
{

1 observed class is cancer
0 observed class is control

and Ŷi =
{

1 predicted class is cancer
0 predicted class is control

The observed and the predicted classes are used to form a confusion matrix from
which performance measures are computed. Table 2.1 shows such a matrix.

Table 2.1: Confusion matrix.

O
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Predicted status

1 0

1
True
Positive
(TP)

False
Negative
(FN)

0
False
Positive
(FP)

True
Negative
(TN)

The following statistics can be computed and used to assess the performance of a
given classifier.

• The misclassification error is the total number of mistakes committed using the
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classification procedure, that is:

MCE = FN + FP

(FN + FP + TP + FP ) .

• The specificity of a classifier measures the proportion of negative cases (controls)
that are correctly classified,

SPE = TN

(TN + FP ) .

• The sensitivity of a classifier measures the proportion of positive cases (cancer
for instance) that are correctly classified,

SEN = TP

(TP + FN) .

• The positive predictive value of a classifier measures the proportions of predicted
positive cases (cancer subjects) that are true positive cases,

PPV = TP

(TP + FP ) .

• The negative predictive value of a classifier measures the proportions of pre-
dicted negative cases (control subjects) that are true negative cases,

NPV = TN

(TN + FN) .



Chapter 3
Analysis and Statistical
Validation of 1H-NMR
Metabolite Profiles for Early
Detection of Breast Cancer

3.1 Introduction

Metabolomics is a rather recent methodology which encompasses the comprehensive
and simultaneous quantitative analysis of small molecules within a given biological
system, the so-called metabolites (Nicholson et al., 1999; Pan and Raftery, 2007; Sit-
ter et al., 2010; Barderas et al., 2011; Bain et al., 2009). These metabolites constitute
the end products of cellular metabolism and therefore changes in their concentrations
may be regarded as functional signatures of the actual state of metabolism, namely
the metabolic phenotype (O’Connell, 2012).
The metabolite profiles are most often derived by means of high-resolution and high-
throughput analytical methods such as proton nuclear magnetic resonance spec-
troscopy (1H-NMR) and mass spectrometry (Oakman et al., 2011). The applications
of metabolic phenotyping are very diverse and include biomarker identification, dis-
ease diagnosis and follow-up, improved insights in biochemical pathways etc. This
explains the broad interest of biomedical, toxicological, nutritional and pharmaceuti-
cal research fields (Eliassen et al., 2012; Cheng et al., 2005).

15
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In this chapter, several methods are explored to rank and select spectral integration
regions and to construct a robust classifier to discriminate between breast cancer pa-
tients (BC) and healthy controls (HC). The statistical analysis and the conclusions are
based on a data set of 300 subjects (161 BC and 139 HC) described in Section 2.2.1.
Last but not least, possibility to define a unique but limited set of integration regions
that can be used in the classifier is discussed in detail. This chapter is organized
as follows: statistical methodology is given in Section 3.2. The ranking of the IR is
given in Section 3.3. Classifiers validation of fixed sets of metabolites are described
in Section 3.4. Uniqueness of the signature is studied in Section 3.5, followed by a
discussion in Section 3.6.

3.2 Statistical Methodology

Several statistical testing procedures were considered to identify differentiating inte-
gration regions (IRs) between both groups. Furthermore, several classification meth-
ods were compared, including partial least squares discriminant analysis (Jansson
et al., 2009; Giskeødeg̊ard et al., 2010; Bryan et al., 2008). All statistical analyses
were performed using the R statistical software package (version 3.2.1, R Development
Core Team, 2015). In particular, the entire analysis for classification was performed
using the R Bioconductor package CMA which allows to perform a wide variety of
cross validations and classification methods (Slawski et al., 2008). The scheme of the
work flow is presented in Figure 3.1.
Firstly, a feature selection is done within the classification loop (Analysis 1 in Fig-
ure 3.1). Secondly, classifiers are built from a fixed list of IRs (Analysis 2 in Fig-
ure 3.1), and lastly, the uniqueness of the metabolic signature in the second analysis
is investigated by building classifiers on a subset of the IRs which are not included in
the second analysis (Analysis 3 in Figure 3.1).

3.2.1 Features Selection

Initially, several statistical tests were conducted (Wilcoxon signed-rank test, t-test,
Lasso test, Elastic Net test and the Limma t-test) in order to rank the 96 IRs according
to their test statistic (Efron and Tibshirani, 1997; Kohavi, 1995).

3.2.2 Cross Validation

In order to select the IRs features for the classifier, a 3-fold cross validation procedure
was set up consisting of 1000 iterations. For each iteration of the 3-fold cross valida-
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Figure 3.1: Work flow used to build classifiers based on different IRs lists.

tion, the total number of patients (300) is randomly split into a training set consisting
of two thirds of the patients (200) and a test set consisting of the remaining one third
of the patients (100). The ratio of BC/HC patients in these two groups is always
equal to the BC/HC ratio of the total data set. Schematically, the cross validation
scheme is shown in Figure A.1.
At each iteration of the cross validation loop, a top-k (k = 2, 3, 4, . . . , 43) list of IRs is
selected based on the feature selection procedure. The selected IRs are then used to
build classifiers by different classification methods. Finally, these trained classifiers
are validated on the test set on the basis of estimated misclassification error (MCE),
sensitivity and specificity.

3.2.3 Classification Methods

Several methods were considered (Statnikov et al., 2005; Ambroise and McLachlan,
2002; Golub et al., 1999; Jansson et al., 2009), including linear discriminant anal-
ysis (LDA), diagonal discriminant analysis (DLDA, Guo et al., 2007), partial least
squares linear discriminant analysis (PLS-LDA, Boulesteix and Strimmer, 2007; Park
and Hastie, 2007; Boulesteix, 2004), support vector machine (SVM, Guyon et al.,
2002), random forest (RF, Breiman, 2001), Fisher’s discriminant analysis (FDA, Rip-
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ley, 1996) and quadratic discriminant analysis (QDA, MacLachlan, 1992). From a
statistical point of view, these methods differ from one another by some assumptions
and the way they construct the class prediction rule.

3.2.4 A Fixed Metabolic Signature

In a further step, we considered to fix two top-k IRs sets (ML1 and ML2) during
the cross validation process. To that end, top-40 IRs were selected in two different
ways, (1) the most frequently selected IRs during the cross validation by the Limma
t-test (because this test is commonly used for feature selection; Smyth, 2005) and (2)
the combination of IRs yielding the best overall performance with respect to lowest
mean classification error (MCE) and highest specificity and sensitivity during the
cross validation. This was done in order to remove the noisy IRs and to improve the
classification (Slawski et al., 2008; Amaratunga et al., 2014).

Finally, we investigated the uniqueness of the best performing ML1 set of IRs by the
’leave one IR out’ cross validation (Friedman et al., 2001) and analyzed the classifi-
cation results obtained by using only the remaining IRs.

3.3 Ranking of IRs and Classification (Analysis 1)

Initially, the 96 integration regions (IRs) of the 1H-NMR spectra were ranked based
on a Limma t-test (Smyth, 2004, 2005). The result for the entire dataset (without
cross validations) is presented in Figure 3.2. It was found that 64 of the 96 IRs
were significantly different between the HC and BC groups and that IR-16 (Var-16)
was the top IR. Figure 3.3 depicts the volcano plot, the unadjusted and adjusted
p-value (FDR, Benjamini and Hochberg, 1995) for all IRs. Note that the differential
expression analysis is presented only to visualize the strength of the signal in the data.
Feature selection for the classifier, as described in the next section, is not based on
the results presented in this section.
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Figure 3.2: Integration regions (IRs) and their estimated Limma t-test statistics.
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Figure 3.3: Left Panel: Volcano plot. Right Panel: Unadjusted and adjusted p-
values for all IRs.

3.3.1 Ranking and Selection of Top IRs

Our first goal was to rank the IRs based on their frequency of selection in one of
the following feature selection tests: the Wilcoxon signed-rank test, t-test, Lasso test,
Elastic Net test and Limma t-test. Next and for each iteration, the (variable) training
group is used to rank the IRs and to select top-k IRs (e.g. a top-3, a top-8, a top-
43,. . .) according to their p-values obtained by one of the statistical tests mentioned
above. At the end of the iteration procedure, the frequency of selection in top-k lists
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of significance was obtained for each IR. For example, Table 3.1 shows the lists of IRs
most frequently selected in a top-15 based signature on the statistical tests mentioned
above. Note that these lists have several IRs in common. For instance, 12 out of 15
IRs have been selected in the top-15 list by the Wilcoxon signed-rank test as well as
by the t-test and the Limma t-test, namely: 1, 8, 16, 42, 43, 44, 78, 79, 80, 82, 83
and 85. The t-test and Limma t-test both select the same IRs as top-15.

Table 3.1: Lists of IRs most frequently selected in a top-15 by applying the Wilcoxon
signed-rank test, t-test, lasso test, elastic net test and the Limma t-test in the 3-
fold cross validation procedure. Note that for each iteration, the HC and BC groups
are compared by the statistical test and that the IRs are ranked based on their test
statistics.

wilcox.test t.test lasso elasticnet limma t-test
1 Var 16 Var 16 Var 58 Var 58 Var 16
2 Var 44 Var 43 Var 47 Var 64 Var 43
3 Var 43 Var 44 Var 64 Var 47 Var 44
4 Var 1 Var 83 Var 16 Var 94 Var 1
5 Var 72 Var 1 Var 83 Var 79 Var 83
6 Var 79 Var 82 Var 14 Var 14 Var 82
7 Var 83 Var 79 Var 94 Var 83 Var 79
8 Var 82 Var 42 Var 79 Var 26 Var 42
9 Var 85 Var 17 Var 19 Var 85 Var 17

10 Var 80 Var 80 Var 92 Var 92 Var 80
11 Var 18 Var 64 Var 26 Var 48 Var 64
12 Var 78 Var 8 Var 74 Var 16 Var 8
13 Var 13 Var 78 Var 85 Var 54 Var 78
14 Var 8 Var 61 Var 44 Var 19 Var 85
15 Var 42 Var 85 Var 54 Var 91 Var 61

For the remainder of this chapter, features selection is based on the Limma t-test.
Figure 3.4 shows, as an example, the frequency of selection of the IRs in a top-3,
top-8, top-15 and top-43, obtained by applying the Limma t-test in the 3-fold cross-
validation procedure. An IR selected in a lower top list is also selected in all higher
top lists. It can be noticed that the more extended is the top-k considered, the more
different IRs become frequently selected. However, it is clear that certain IRs which
have a higher tendency to be selected might differentiate better between the BC and
HC groups.



3.3. Ranking of IRs and Classification (Analysis 1) 21

V
ar

_1
V

ar
_2

V
ar

_3
V

ar
_7

V
ar

_8
V

ar
_1

0
V

ar
_1

3
V

ar
_1

6
V

ar
_1

7
V

ar
_1

8
V

ar
_1

9
V

ar
_3

0
V

ar
_3

8
V

ar
_4

2
V

ar
_4

3
V

ar
_4

4
V

ar
_5

1
V

ar
_6

1
V

ar
_6

4
V

ar
_7

8
V

ar
_7

9
V

ar
_8

0
V

ar
_8

2
V

ar
_8

3
V

ar
_8

5

Top 3 by LIMMA

F
re

qu
en

cy

0

200

400

600

800

1000

V
ar

_1
V

ar
_2

V
ar

_3
V

ar
_7

V
ar

_8
V

ar
_1

0
V

ar
_1

3
V

ar
_1

6
V

ar
_1

7
V

ar
_1

8
V

ar
_1

9
V

ar
_3

0
V

ar
_3

8
V

ar
_4

2
V

ar
_4

3
V

ar
_4

4
V

ar
_4

8
V

ar
_5

1
V

ar
_5

2
V

ar
_6

0
V

ar
_6

1
V

ar
_6

4
V

ar
_6

5
V

ar
_7

7
V

ar
_7

8
V

ar
_7

9
V

ar
_8

0
V

ar
_8

2
V

ar
_8

3
V

ar
_8

5
V

ar
_8

6
V

ar
_9

4

Top 8 by LIMMA

F
re

qu
en

cy

0

200

400

600

800

1000

V
ar

_1
V

ar
_2

V
ar

_3
V

ar
_7

V
ar

_8
V

ar
_1

0
V

ar
_1

1
V

ar
_1

3
V

ar
_1

6
V

ar
_1

7
V

ar
_1

8
V

ar
_1

9
V

ar
_2

0
V

ar
_2

6
V

ar
_3

0
V

ar
_3

1
V

ar
_3

6
V

ar
_3

8
V

ar
_3

9
V

ar
_4

1
V

ar
_4

2
V

ar
_4

3
V

ar
_4

4
V

ar
_4

7
V

ar
_4

8
V

ar
_5

1
V

ar
_5

2
V

ar
_5

4
V

ar
_5

5
V

ar
_5

6
V

ar
_6

0
V

ar
_6

1
V

ar
_6

4
V

ar
_6

5
V

ar
_7

2
V

ar
_7

6
V

ar
_7

7
V

ar
_7

8
V

ar
_7

9
V

ar
_8

0
V

ar
_8

2
V

ar
_8

3
V

ar
_8

5
V

ar
_8

6
V

ar
_9

1
V

ar
_9

2
V

ar
_9

3
V

ar
_9

4
V

ar
_9

5
V

ar
_9

6

Top 15 by LIMMA

F
re

qu
en

cy

0

200

400

600

800

1000

V
ar

_1
V

ar
_2

V
ar

_3
V

ar
_5

V
ar

_6
V

ar
_7

V
ar

_8
V

ar
_1

0
V

ar
_1

1
V

ar
_1

2
V

ar
_1

3
V

ar
_1

4
V

ar
_1

5
V

ar
_1

6
V

ar
_1

7
V

ar
_1

8
V

ar
_1

9
V

ar
_2

0
V

ar
_2

3
V

ar
_2

4
V

ar
_2

5
V

ar
_2

6
V

ar
_2

7
V

ar
_2

8
V

ar
_2

9
V

ar
_3

0
V

ar
_3

1
V

ar
_3

2
V

ar
_3

3
V

ar
_3

4
V

ar
_3

5
V

ar
_3

6
V

ar
_3

7
V

ar
_3

8
V

ar
_3

9
V

ar
_4

0
V

ar
_4

1
V

ar
_4

2
V

ar
_4

3
V

ar
_4

4
V

ar
_4

5
V

ar
_4

7
V

ar
_4

8
V

ar
_4

9
V

ar
_5

0
V

ar
_5

1
V

ar
_5

2
V

ar
_5

3
V

ar
_5

4
V

ar
_5

5
V

ar
_5

6
V

ar
_5

7
V

ar
_5

8
V

ar
_5

9
V

ar
_6

0
V

ar
_6

1
V

ar
_6

2
V

ar
_6

3
V

ar
_6

4
V

ar
_6

5
V

ar
_6

6
V

ar
_6

7
V

ar
_7

0
V

ar
_7

2
V

ar
_7

6
V

ar
_7

7
V

ar
_7

8
V

ar
_7

9
V

ar
_8

0
V

ar
_8

1
V

ar
_8

2
V

ar
_8

3
V

ar
_8

4
V

ar
_8

5
V

ar
_8

6
V

ar
_8

7
V

ar
_8

8
V

ar
_8

9
V

ar
_9

0
V

ar
_9

1
V

ar
_9

2
V

ar
_9

3
V

ar
_9

4
V

ar
_9

5
V

ar
_9

6

Top 43 by LIMMA

F
re

qu
en

cy

0

200

400

600

800

1000

Figure 3.4: Frequency of selection of IRs in a top-k list, obtained by applying the
Limma t-test for the 1000 iterations of the 3-fold cross-validation procedure. For each
of the 1000 iterations, IRs are ranked based on their Limma t-test significance and
the frequency of selection in a top-k is determined. Remark that the top-k IRs can
be different from iteration to iteration. Top left panel: k=3; Top right panel: k=8;
Lower left panel: k=15 and Lower right panel: k=43.

3.3.2 Evaluation of Different Classification Methods

During the 3-fold cross validation procedure, several classification methods were eval-
uated (Dudoit et al., 2002; Statnikov et al., 2005). The top-k IRs, selected for each
iteration of the 3-fold cross-validation on the training group by the Limma t-test, were
used to build ’top-k-based’ classifiers by means of different classification methods. For
each iteration, these trained classifiers were evaluated on the basis of misclassification
error, sensitivity and specificity in the classifier test group (remaining 1/3 of the sub-
jects). Note that, since the training and test groups are variable for each iteration of
the 3-fold cross validation, so will be the selected top-k IRs and resulting ’top-k-based’
classifiers.
In this study, the seven classification methods mentioned in Section 3.2.3 were per-
formed and compared. Table 3.2 and Figure 3.5 present an overview of the median
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overall misclassification error (MCE) obtained by the seven different classification
methods for six ’top-k-based’ classifiers (k=3, 12, 20, 30, 40 and 43) after 1000 it-
erations. Figure 3.5 shows the median overall misclassification error with the corre-
sponding 95% confidence intervals for different top k IRs.

Table 3.2: Median overall misclassification error obtained by the seven different
classification methods for six different ’top-k-based’ classifiers (k=3, 12, 20, 30, 40
and 43; top-k IRs selected by the Limma t-test). The median misclassification error
of BC as HC, sensitivity and specificity are presented in Table A.1, Table A.2 and
Table A.3 in the appendix.

Method 3 12 20 30 40 43
LDA 0.30 0.28 0.27 0.26 0.25 0.25
DLDA 0.31 0.32 0.31 0.31 0.32 0.32
FDA 0.31 0.28 0.27 0.26 0.25 0.25
PLSLDA 0.29 0.28 0.30 0.29 0.29 0.29
SVM 0.26 0.25 0.25 0.24 0.24 0.24
RF 0.29 0.25 0.23 0.23 0.22 0.22
QDA 0.33 0.31 0.28 0.27 0.27 0.28

DLDA FDA LDA PLSLDA QDA RF SVM
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Figure 3.5: The median overall misclassification error with corresponding confidence
intervals per classification method and top k list .

Figure 3.6 presents the median of overall MCE and MCE of BC as HC, as well
as the median sensitivity and specificity for the different classification methods and
several top-k IRs. Concerning the classification methods, it can be noticed that
although most of them perform more or less similarly, the SVM, RF and FDA methods
perform slightly better for this dataset. Based on the overall performance, i.e. yielding
the highest sensitivity and specificity and the lowest misclassification errors, it was
decided to proceed with the SVM classification method. The distribution of the
misclassification errors, sensitivity and specificity, obtained by applying the SVM
classification method during the cross validation, are further visualized in Figure 3.7
for several top-k IRs. For the (variable) top-40 IRs, the median overall MCE, MCE
of BC as HC, sensitivity and specificity obtained by the SVM classification method
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Figure 3.6: Overview of the median overall misclassification error, median misclas-
sification error of BC as HC, median specificity and median sensitivity obtained for
several ’top-k-based’ classifiers (selection method Limma t-test; k = 3 5 7 9 11 12 14
16 18 20 22 24 26 28 30 32 34 36 38 40 42 43) by the different classification methods.

is 0.24, 0.22, 0.78 and 0.76, respectively.

3.4 Classifier Validation for Fixed Sets of IRs
(Analysis 2)

In a next step, we first fixed selected sets of IRs and applied the classification method
using these fixed IRs lists. The idea here is to take out the noisy IRs in order to reduce
the misclassification errors and to improve the sensitivity and specificity. Therefore,
we considered two fixed sets of top-40 IRs, the ML1 and ML2 lists. For the ML1
list, we considered the top-40 IRs with the highest frequency of selection in the 3-
fold cross validations (see Section 3.2.2). This set of top-40 IRs is referred to as
the ML1 list. Figure 3.8 shows the Limma t-test statistics (on the total dataset
without cross validation) versus the frequency of selection in the cross validations.
This figure clarifies that IRs with better Limma t-test statistics have a higher chance
to be selected as top during the 3-fold cross validations.
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Figure 3.7: Distribution of the 3-fold cross validation results for several ’top-k-based’
classifiers (selection method Limma t-test; k = 3 5 7 9 11 12 14 16 18 20 22 24 26 28
30 32 34 36 38 40 42 43) built by the SVM classification method. The bars indicate
the median overall misclassification error, median misclassification error of BC as
HC, median specificity and median sensitivity. Remark that the top-k IRs are not
fixed but variable from iteration to iteration.
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Figure 3.8: Limma t-test statistics versus the frequency of selection in the 3-fold
cross validations. The top-40 IRs are indicated in blue and their corresponding indices
are: 1 2 3 7 8 13 16 17 18 23 26 30 31 38 42 43 44 47 48 49 51 54 55 56 61 64 65
72 76 77 78 79 80 82 83 85 86 93 94 95. This set of top-40 IRs is referred to as the
ML1 list.

For the ML2 list, we considered the ’top-40-based’ SVM classifier yielding the best
overall performance on the criteria considered, being the overall misclassification error,



3.4. Classifier Validation for Fixed Sets of IRs (Analysis 2) 25

misclassification error of BC as HC, specificity and sensitivity during the 3-fold cross
validations (see Section 3.3.2). The classification results obtained by this classifier are
indicated by the red bullets in Figure 3.9. This set of top-40 IRs is referred to as the
ML2 list. It should be noticed that the ML1 and ML2 lists have 32 IRs out of the 40
IRs in common.

MCE MCE BC as HC SPE SEN

0.2

0.4

0.6

0.8

1.0

Figure 3.9: Distribution of the 3-fold cross validation results for the ’top-
40-based’ classifiers (selection method Limma t-test) built by the SVM classi-
fication method. The bars indicate the median overall MCE, median MCE of
BC as HC, median specificity and median sensitivity. The red bullets indi-
cate the classifier with the best overall performance (Overall MCE=0.11, MCE
of BC as HC=0.11, SEN=0.89, SPE=0.89) and consists of IRs with indices:
1,2,3,5,7,8,13,16,17,18,19,20,23,25,26,38,41,42,43,44,48,49,51,54,56,60,61,64,65,
70,72,77,78,79,80,82,83,85,86,96. This set of top-40 IRs is referred to as the ML2
list.

3.4.1 Fixed Set of IRs Based on Highest Frequency of Selec-
tion: ML1

First, the top-40 IRs with the highest frequency of selection in the 3-fold cross vali-
dations (see Section 3.4) were selected. This set of top-40 IRs was fixed and referred
to as ML1 (IRs: 1, 2, 3, 7, 8, 13, 16, 17, 18, 23, 26, 30, 31, 38, 42, 43, 44, 47, 48,
49, 51, 54, 55, 56, 61, 64, 65, 72, 76, 77, 78, 79, 80, 82, 83, 85, 86, 93, 94, 95).
In a next step, a 3-fold cross validation was performed to evaluate the performance
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of ’top-ML1-based’ classifiers built by the different classification methods mentioned
before. The distribution and median overall misclassification error, misclassification
error of BC as HC, sensitivity and specificity obtained by the different classification
methods are shown in Figure 3.10.
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Figure 3.10: Distribution of the 3-fold cross validation results for the ’top-ML1-
based’ classifiers built by the different classification methods. The bars indicate the
median overall misclassification error, median misclassification error of BC as HC,
median specificity and median sensitivity.

Although most of the classification methods perform more or less the same, the SVM
and RF methods result in a slightly better overall performance for this dataset. The
left panel of Table 3.3 presents the median misclassification errors, sensitivity and
specificity of the ’top-ML1-based’ classifiers built by the SVM classification method.
By comparing the performance results shown in Table 3.3 with those in Tables 3.2,
A.1, A.2 and A.3, it is clear that removal of the noisy IRs results in a slightly further
improvement. Receiver Operating Characteristic (ROC) curves are presented in the
left panel of Figure 3.12 to visualize the sensitivity versus specificity performance of
this SVM classifier during the iterations of the 3-fold cross validation procedure.

3.4.2 Fixed Set of IRs Based on Best Overall Performance:
ML2

In Section 3.3.2 ’top-40-based’ SVM classifiers were constructed and evaluated during
the 3-fold cross validation (see Figure 3.7; k = 40). The results of the classifier
yielding the best overall performance (lowest MCE, 0.11 and highest specificity, 0.89
and sensitivity, 0.89) was shown in Figure 3.9 (red bullets). This set of top-40 IRs
was fixed and referred to as ML2 (IRs: 1, 2, 3, 5, 7, 8, 13, 16, 17, 18, 19, 20, 23,
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25, 26, 38, 41, 42, 43, 44, 48, 49, 51, 54, 56, 60, 61, 64, 65, 70, 72, 77, 78, 79, 80,
82, 83, 85, 86, 96). In this section, we further evaluate the performance of classifiers
built with this fixed set of IRs and different classification methods in a 3-fold cross
validation. The median overall misclassification error, misclassification error of BC
as HC and sensitivity and specificity obtained by the different classification methods
are shown in Figure 3.11.
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Figure 3.11: Distribution of the 3-fold cross validation results for the ’top-ML2-
based’ classifiers built by the different classification methods. The bars indicate the
median overall misclassification error, median misclassification error of BC as HC,
median specificity and median sensitivity.

Although most of the classification methods perform more or less the same, the SVM
and RF methods result in a slightly better overall performance for this dataset. The
right panel of Table 3.3 presents the median misclassification errors, sensitivity and
specificity of the ”top-ML2-based” classifiers built by the SVM classification method.
Receiver operating characteristic curves are presented in the right panel of Figure 3.12
to visualize the sensitivity versus specificity performance of the SVM classifier during
the iterations of the 3-fold cross validation procedure.

The results presented here demonstrate that the two ”top-ML-based” SVM classifier
results in comparable performances. As a conclusion, we can state that both top ML1
and top ML2 lists of integration regions allow an efficient classification of patients
between the BC and HC groups, and this by using classification methods different
from the most often used OPLS-DA method.
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Table 3.3: Median misclassification errors, sensitivity and specificity for the ’top-
ML1-based’ (left panel) and ’top-ML2-based’ (right panel) SVM classifiers.

ML1 ML2
Lower 95% C.I Median Upper 95% C.I Lower 95% C.I Median Upper 95% C.I

Overall MCE 0.20 0.23 0.31 0.21 0.23 0.30
MCE BC as HC 0.17 0.22 0.37 0.17 0.22 0.37
Specificity 0.72 0.77 0.89 0.72 0.76 0.87
Sensitivity 0.72 0.78 0.91 0.72 0.78 0.91

Figure 3.12: ROC curves showing the performance of the ’top-ML1-based’ (left
panel) and ’top-ML2-based’ (right panel) SVM classifier at each iteration of the 3-fold
cross validation (gray colored curves). The median ROC curves are indicated by the
red colored curves.

3.5 Uniqueness of a Fixed IR Signature for Group
Classification (Analysis 3)

Based on the results of Section 3.4.1, the ML1 set of IRs was chosen for further
evaluation toward its uniqueness in classifying the BC and HC patients. Our first
goal was to perform 3-fold cross validations while leaving out one of the IRs of the
ML1 list. This is presented for the SVM classification method but other methods
were considered as well. The underlying goal of this particular analysis is to check
whether a certain IR, if left out, exerts a substantial impact on the overall classification
results. For instance, if a substantial decrease in sensitivity and specificity and a
substantial increase in misclassification errors is observed upon leaving out a certain
IR, it highlights the importance of this particular IR in the list.
Our second goal was to judge whether or not we could achieve the same overall
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performance by means of a classifier built with the remaining 56 IRs (96-40), so by
ignoring the IRs of the ML1 list. All the above was investigated in order to find out
whether or not a unique, well performing classifier could be defined based on only a
limited number of IRs. In principle, this means that it should not be possible to find
another combination of IRs that performs as good as the ML1 set.

3.5.1 Leave-one-out IR Analysis

Classification results based on the ’leave-one-out IR’ cross validations (LOOCV) are
shown in Figure 3.13 and 3.14. These analyses were performed on the complete top-
40 ML1 set, as well as on fixed ML1 subsets of 3, 12, 30 and 40 IRs (based on the
frequency of selection as described in Section 3.4). For the top-3 IR set for example,
this means that we left out one IR at a time and performed the 3-fold cross validation
with the remaining two IRs. Figure 3.13 and 3.14 show that the results improve when
more IRs are used in the classifiers.
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Figure 3.13: SVM-based classification results obtained by the LOOCV (leave-one-
out IR cross validations) for the top-3 IRs (top row) and the top-12 IRs (bottom
row). The red dashed horizontal lines indicate the median 3-fold cross validation
results obtained by using all 3 (top row) and 12 (bottom row) fixed IRs. Top-3 IRs
list include IRs with indices:1, 3, 8. Top-12 IRs list include IRs with indices: 1, 3,
8, 16, 17, 18, 38, 42, 43, 44, 48, 64.

This holds for the misclassification error as well as for the sensitivity and specificity.
Results for the top-30 subset and complete top-40 set are shown in Figure 3.14. It is
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further observed that the 95% confidence intervals are wider for the top-3 and top-12
sets as compared to the top-30 and top-40 sets.
For the top-40 ML1 set, all LOOCV’s perform more or less the same. In conclusion,
the impact of ”leaving-out a specific IR” on the classification results becomes sub-
stantial for small subsets but is almost negligible for top-30 and the ML1 set of 40
IRs.
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Figure 3.14: SVM-based MCE (first row), sensitivity (second row), specificity (third
row) results obtained by the LOOCV for the top-30 (first column) and top-40 (second
column) IRs of the ML1 set. The red dashed horizontal lines indicate the median
3-fold cross validation results obtained by using all 30 (first column) or all 40 (second
column) fixed IRs.

3.5.2 Metabolic Signature Excluding the IRs in ML1

Our second goal was to evaluate whether the same classification results could be
achieved by only using the remaining 56 IRs. Therefore, the same analysis proce-
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Figure 3.15: Frequency of selection of the remaining 56 IRs in a top-40, obtained
by applying the Limma t-test for the 100 iterations of the 3-fold cross-validation. For
each iteration, the 56 IRs were ranked according to their Limma t-test significance
and the frequency of selection in a top-40 was determined. Note that the top-40 IRs
can be different from iteration to iteration.

dure was followed as described in Section 3.3.1 and 3.3.2, i.e. for each iteration of
the 3-fold cross validation, top-k IRs (k=3, 5,..., 43) were selected and ’top-k-based’
classifiers were validated by means of the different classification methods. Note that
the composition of the top-k lists can be different from iteration to iteration.

Figure 3.15 presents the frequency of selection of the remaining 56 IRs in a top-40 by
the Limma t-test in the 3-fold cross validation of 100 iterations.

Figure 3.16 presents the median classification results obtained by the different clas-
sification methods for several top-k IRs selected out of the remaining 56 IRs while
Table 3.4 summarizes the median overall misclassification errors.

The median misclassification errors of BC as HC as well as the median sensitivities and
specificities are presented in Table A.4 in the appendix. These results demonstrate
that also with a top-40 list selected out of the 56 remaining IRs, some of the classifi-
cation methods still perform reasonably well. For the SVM method for instance, the
resulting median overall MCE, MCE of BC as HC, sensitivity and specificity are re-
spectively 0.29, 0.25, 0.75 and 0.65 as compared to 0.23, 0.22, 0.78 and 0.77 obtained
by means of the fixed top-40 ML1 list.
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Figure 3.16: Overview of the median classification results obtained by the different
classification methods for several top-k IRs selected out of the remaining 56 IRs (96
IRs - the 40 IRs of the ML1 list) by the Limma t-test. The black line show the SVM
results from all 96 IRs.

Table 3.4: Median overall misclassification error obtained by the different classifi-
cation methods for several ’top-k-based’ classifiers (k = 3, 12, 20, 30, 40, and 43).
Left Panel: the IRs were selected out of the remaining 56 IRs. Right Panel: Most
selected IRs from all 96 IRs. The median misclassification error of BC as HC as well
as median sensitivity and specificity are presented in Table A.4.

Method 3 12 20 30 40 43
LDA 0.47 0.39 0.34 0.31 0.30 0.30
DLDA 0.47 0.42 0.39 0.37 0.37 0.37
FDA 0.48 0.39 0.34 0.31 0.30 0.30
PLSLDA 0.47 0.41 0.39 0.38 0.38 0.38
SVM 0.47 0.39 0.34 0.31 0.29 0.29
RF 0.46 0.38 0.35 0.33 0.33 0.33
QDA 0.46 0.38 0.32 0.29 0.28 0.28

Method 3 12 20 30 40 43
LDA 0.30 0.28 0.27 0.26 0.25 0.25
DLDA 0.31 0.32 0.31 0.31 0.32 0.32
FDA 0.31 0.28 0.27 0.26 0.25 0.25
PLSLDA 0.29 0.28 0.30 0.29 0.29 0.29
SVM 0.26 0.25 0.25 0.24 0.24 0.24
RF 0.29 0.25 0.23 0.23 0.22 0.22
QDA 0.33 0.31 0.28 0.27 0.27 0.28

This strongly indicates that, although the most efficient classifiers to differentiate
between breast cancer patients and healthy controls are based on the IRs of the ML1
list, the ML1 list seems not to be fully unique for the dataset. As a consequence,
it seems not possible to define a limited set of unique metabolites to differentiate
between the two groups. Note that for a ML1 list for which less metabolites are
included (for example top 3, top 8 etc), the classification results using the metabolite
which are not in the ML1 list is expected to improve. For example, if we exclude
the top 3 metabolites from the data, the results from the classification based on
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93 (96–3) remaining metabolites are expected to be similar to the results for the
classification based on the top 3 metabolites. The main reason might be sought in
the interconnection of metabolites in the biochemical pathways, making the signal in
the data very strong.

3.6 Discussion

In this chapter, 1H-NMR metabolomics is statistically evaluated as a complementary
methodology with the potential to early diagnosis of breast cancer, even before it
becomes clinically or radiologically detectable. The study is carried out on the basis
of a blood plasma dataset of 300 subjects, including 161 breast cancer patients and
139 healthy controls, and uses the values of 96 well defined integration regions (IRs)
of the proton spectra which represent the concentration of the low-molecular-weight
plasma metabolites.
By means of a 3-fold cross validation procedure consisting of 1000 iterations, several
feature selection methods were used to rank and select top-k IRs lists and to
build classifiers by different classification methods. The resulting classifiers were
validated in the test group (1/3 of the subjects) on the basis of misclassification
errors (MCE), sensitivity and specificity. It was observed that although most of the
classification methods performed more or less the same, the overall performances
obtained by the SVM and RF methods were slightly better for the dataset examined.
Based on variable sets of top-40 IRs, selected by the Limma t-test in the itera-
tion procedure, the SVM classification method resulted in a median overall MCE,
MCE of BC as HC, sensitivity and specificity of 0.24, 0.22, 0.78 and 0.76, respectively.

In the next step, two fixed sets of top-40 IRs were defined, namely the ML1 and ML2
lists. The goal here was to remove the IR selection bias and the noisy IRs in order
to reduce the misclassification errors and to improve the sensitivity and specificity.
The ML1 list was composed of the top-40 IRs with the highest frequency of selection
by the Limma t-test in the 3-fold cross validation, while the ML2 list was composed
of the top-40 IRs of the SVM classifier yielding the best overall performance. Based
on these two fixed sets of top-40 IRs, classifiers were built by different classification
methods in a 3-fold cross validation and were validated in the test group. It was
found that although most of the classification methods performed more or less the
same, the overall performance obtained by the SVM and RF methods was slightly
better for the dataset. The SVM classifier based on the ML1 list resulted in quite
similar results as the ML2 list. The median overall MCE, and specificity were equal
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to 0.23 and 0.77, respectively. Hence it can be concluded that the two list of IRs are
robust sets to construct a promising classifier for the early detection of breast cancer.

In the final step, the top-ML1 list was evaluated towards its uniqueness for classifica-
tion. The goal was to investigate whether or not the ML1 list was unique with respect
to the construction of a well performing classifier. Here, the same cross validation
procedure was followed to rank and select variable sets of top-40 IRs, but in this
case by selecting IRs only out of the remaining 56 IRs. Based on the resulting SVM
classifiers, a median overall MCE, MCE of BC as HC, sensitivity and specificity of
respectively 0.29, 0.25, 0.75 and 0.65 were obtained. Although the selection out of the
remaining 56 IRs results in a weakening of the classification performance, the outcome
strongly indicates that it will be difficult to define a classifier based on a limited set
of IRs, and thus a limited number of metabolites. The main reason probably has to
be sought in the interconnection of metabolites in the biochemical pathways.



Chapter 4
Development of a Metabolic
Signature for Lung Cancer

Lung cancer is the leading cause of cancer death worldwide with a five-year survival of
only ±15% (Ferlay et al., 2015; Mulshine and Sullivan, 2005). A promising screening
tool for lung cancer is low-dose computed tomography (LDCT), which has been shown
to reduce lung cancer mortality by 20% as compared to chest radiography screening
(National Lung Screening Trial Research Team, 2011b). However, LDCT screening
has some disadvantages such as the high cost associated with screening all patients
at risk according to current risk models, radiation exposure and the low positive
predictive value (high rate of false positive results, Bach et al., 2012). Because of these
limitations, other detection platforms are being evaluated, all with their advantages
and shortcomings (Hasan et al., 2014).
Over the past decade, accumulating evidence has shown that cancer cell metabolism
differs from that of normal cells (Cantor and Sabatini, 2012; Munoz-Pinedo et al.,
2012; Sciacovelli et al., 2014). More specifically, it is reprogrammed to promote cell
proliferation and survival and is driven by aberrant signaling pathways induced by
the activation of oncogenes/inactivation of tumor suppressor genes (Iurlaro et al.,
2014). One of the main adaptations of cancer cells is that, even in the presence of
normal oxygen levels, they rely on anaerobic energy production through glycolysis, a
hallmark known as the Warburg effect (Upadhyay et al., 2013).
As metabolites are the end products of cellular processes, changes in their concentra-
tion reflect alterations in the metabolic phenotype (Holmes et al., 2008). Proton nu-
clear magnetic resonance (1H-NMR) based metabolomics allows a fast, non-invasive
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identification and quantification of complex mixtures of metabolites, as in plasma
(Bervoets et al., 2015; Lindon and Nicholson, 2008; Louis et al., 2015b).
The aim of the analysis presented in this chapter is to establish a metabolic signature
for lung cancer diagnostic. Our gaol is to develop a metabolic classifier that can be
used for lung cancer screening.
The remainder of this chapter is organized as follows: the data is described in Sec-
tion 4.1. Statistical methods are introduced in Section 4.2. Application to data is
given in Section 4.3, followed by a discussion in Section 4.4.

4.1 Data Structure

In total, 233 out of the 357 lung cancer patients and 226 out of the 347 controls (for
an elaborated description see Section 2.2.2) were randomly assigned to the training
cohort, leaving a validation cohort of 98 lung cancer patients and 89 controls. Similar
to Chapter 3, two parts of the dataset are used, the vector Yn×1 containing the indi-
vidual labeling (LC or C) and the matrix Xn×m containing the individual metabolic
profiles.

4.2 Statistical Analysis

4.2.1 Classification and Cross Validation

The analysis presented in this chapter is an initial analysis in which the partial least
squares discriminant analysis (PLS-DA) method was used as a classification method
(Kramer, 1998; Bayne, 1999; Szymańska et al., 2012; Barton et al., 2008). Recall
that PLS-DA is a variant of the PLS regression which constructs a set of orthogonal
X-components th = Xw∗h and Y-components uh = Y ch maximizing the covariance
between the response uh and the linear combination of the predictor variables th
(Höskuldsson, 1988; Pérez-Enciso and Tenenhaus, 2003; Nguyen and Rocke, 2002).
Here, w∗h is a vector containing the weights given to each original variable in the kth
component and ch is the regression coefficient of yk on hth X-component variable.
PLS-DA consists of two steps. The first step is a dimension reduction, which finds m
appropriate linear transformations t1, ..., tm of the vector of predictors X, where m is
a tuning parameter. The second step is the linear discriminant analysis using the new
components t1, ..., tm as predictor variables. To find the optimal components number
m, a cross validation method is applied. The training cohort is divided into an inter-
nal training (2/3 of the observations) and internal test set (1/3 of the observations).
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For each number of the components (m ranging from 1 to 15 ), the cross-validation
step was repeated 1000 times. The value of m, minimizing the misclassification error,
is then used to predict the class of the observations from the validation cohort.
The PLS-DA discussed here is a standard classification procedure within the
metabolomic studies (Gromski et al., 2015; Barton et al., 2008). In addition to the
analysis using the PLS-DA as a classification method, secondary analysis was per-
formed in which different classification methods were used. The second analysis was
conducted in order to investigate whether the results obtained using the PLS-DA
method and other classification methods described in Chapter 3 are comparable. The
workflow of the secondary analysis is shown in Figure 4.1

Figure 4.1: Workflow to build classifiers for the lung cancer data.

Besides the test set obtained via 3-fold CV, an independent validation cohort was used
as well. For the training data, for each step in the CV loop, the ratio of LC/C patients
in the two cross-validated datasets (i.e. the training and test sets) was always equal to
the LC/C ratio of the training cohort data. Lasso (Tibshirani, 1996), random forest
(Breiman, 2001), support vector machine (Guyon et al., 2002), linear discriminant
analysis (Ripley, 1996), quadratic discriminant analysis (MacLachlan, 1992) methods
were used to construct classifiers on both training and validation cohorts.
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4.3 Results

4.3.1 Partial Least Square Discriminant Analysis

Partial Least Square Discriminant Analysis (PLS-DA) was used to train a classifi-
cation model (classifier) in discriminating between lung cancer patients and controls
based on data input from their metabolic phenotype. The resulting model was vali-
dated on an independent cohort. Table 4.1 shows the characteristics of the training
and validation cohorts.

Table 4.1: Characteristics of the subjects included in the study. Data are presented
as mean ± standard deviation and range, unless otherwise indicated. Abbreviations:
BMI: body mass index, C: controls, COPD: chronic obstructive pulmonary disease,
LC: lung cancer patients.

Training cohort Validation cohort
C LC C LC

Number of subjects, N 226 233 89 98
Gender, N (%)
Male 119 (53) 160 (69) 44 (49) 66 (67)
Female 107 (47) 73 (31) 45 (51) 32 (33)
Age, yrs 67 ± 11 68 ± 10 69 ± 10 64 ± 9
(range) (38 - 88) (36 - 88) (47 - 89) (45 - 83)

BMI, kg/m2 28.3 ± 5.0 25.8 ± 4.5 28.4 ± 5.7 26.2 ± 4.7
(range) (18.7-46.7) (17.5- 41.8) (16.2-52.0) (16.8-38.5)
COPD, N (%) 39 (17) 119 (51) 9 (10) 35 (36)
Taking lipid-lowering medication, N (%) 124 (55) 122 (52) 56 (63) 39 (40)
Diabetes, N (%) 23 (10) 40 (17) 20 (22) 12 (12)
Smoking habits
Smoker, N (%) 47 (21) 113 (49) 15 (17) 48 (49)
Ex-smoker, N (%) 102 (45) 110 (47) 36 (40) 46 (47)
Non-smoker, N (%) 77 (34) 10 (4) 38 (43) 4 (4)
Pack years 16 ± 24 33 ± 21 13 ± 18 38 ± 21
(range) (0-175) (0-125) (0-60) (0-150)

The cross validation results are shown in Figure 4.2. The minimum misclassification
error is obtained when the PLS-DA is built with 6 components.
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Figure 4.2: Average performance measures for different components number. Solid
lines: statistics calculated on the test set of the training cohort. Dashed lines: statistics
calculated on the fixed validation cohort.

Applying a PLS-DA with six components on the training set resulted in a model that
allows to classify 82% of the 233 lung cancer patients and 89% of the 226 controls
correctly.
The predictive accuracy of the model was assessed by applying it to the independent
cohort of 98 lung cancer patients and 89 controls, resulting in a sensitivity of 75%
and a specificity of 82%. The sensitivity, specificity, positive predictive value (PPV)
and negative predictive value (NPV) of this model are shown in Table 4.2.

Table 4.2: Characteristics of the trained PLS-DA classification models. Abbrevi-
ations: NPV: negative predictive value, PLS-DA: partial least squares discriminant
analysis, PPV: positive predictive value, SEN: sensitivity: SPE: specificity.

SEN (%) SPE (%) PPV (%) NPV (%)
Training cohort 82 89 89 82

Validation cohort 75 82 82 75

Table 4.3 shows the results obtained when the PLS-DA analysis is repeated 1000
times on both cohorts data with six components.

Table 4.3: Cross validated PLS-DA. Left panel: results from the test set. Right
panel: results from the independent validation cohort. Lower: 25% quantile, Upper:
97.5% quantile.

SEN SPE PPV NPV MCE
Lower 0.68 0.81 0.79 0.72 0.20
Median 0.72 0.85 0.83 0.75 0.22
Upper 0.82 0.93 0.92 0.83 0.28

SEN SPE PPV NPV MCE
Lower 0.63 0.75 0.74 0.66 0.27
Median 0.66 0.78 0.76 0.68 0.28
Upper 0.74 0.84 0.83 0.73 0.34
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4.3.2 Classification Using Other Methods

In this section, five classification methods mentioned in Section 4.2 were also used.
Their performances are compared to PLS-DA performance. Table 4.4 presents an
overview of the median specificity, sensitivity, misclassification error, positive and
negative predictive values (PPV and NPV) obtained by the five classifiers for six
’top-k-based’ classifiers (k=3, 12, 20, 30, 40, 43). Similar to Chapter 3, the top-k
metabolites were selected using Limma t-test Smyth (2005). Table 4.4 shows that for
top40 and top43, LDA, SVM, LASSO methods give comparable results to the results
obtained from PLS-DA method with six components in Table 4.3 (left panel). These
results were obtained on the test set in the cross-validation steps.

Table 4.4: Classification results on the test set. Median specificity, sensitivity, mis-
classification error (MCE), negative predictive value (NPV), positive predictive value
(PPV) obtained by different classification methods based on six ’top-k’ metabolites.
RF: Random forest, SVM: Support vector machine, LDA: linear discriminant analy-
sis, QDA: quadratic discriminant analysis.

Method Top3 Top12 Top20 Top30 Top40 Top43
SPECIFICITY

LASSO 0.65 0.78 0.80 0.83 0.84 0.84
RF 0.71 0.76 0.79 0.79 0.79 0.79
SVM 0.74 0.80 0.82 0.84 0.84 0.84
QDA 0.76 0.73 0.79 0.80 0.76 0.75
LDA 0.76 0.83 0.84 0.85 0.85 0.84

SENSITIVITY
LASSO 0.77 0.71 0.70 0.73 0.76 0.76
RF 0.68 0.69 0.71 0.73 0.73 0.73
SVM 0.72 0.68 0.72 0.75 0.76 0.75
QDA 0.71 0.68 0.64 0.65 0.67 0.68
LDA 0.71 0.66 0.69 0.73 0.74 0.74

MCE
LASSO 0.29 0.25 0.25 0.22 0.21 0.20
RF 0.31 0.27 0.25 0.25 0.24 0.24
SVM 0.27 0.27 0.24 0.21 0.20 0.21
QDA 0.27 0.29 0.29 0.28 0.29 0.29
LDA 0.27 0.26 0.24 0.22 0.21 0.21

NPV
LASSO 0.73 0.72 0.72 0.75 0.77 0.77
RF 0.68 0.71 0.72 0.73 0.74 0.74
SVM 0.72 0.70 0.74 0.76 0.77 0.77
QDA 0.72 0.69 0.68 0.68 0.69 0.69
LDA 0.72 0.70 0.73 0.75 0.76 0.76

PPV
LASSO 0.70 0.77 0.79 0.81 0.82 0.83
RF 0.70 0.75 0.77 0.78 0.78 0.78
SVM 0.74 0.77 0.80 0.82 0.83 0.82
QDA 0.75 0.73 0.76 0.76 0.74 0.73
LDA 0.75 0.79 0.82 0.83 0.83 0.83
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Table 4.5 shows the results obtained on the independent validation cohort data. The
estimated performance measures are very close to the results obtained on the test set.
Among the five classification methods, QDA was giving poor performance.

Table 4.5: Validation cohort data. Median specificity, sensitivity, misclassification
error (MCE), negative predictive value (NPV), positive predictive value (PPV) ob-
tained by different classification methods based on six ’top-k’ metabolites.

Method Top3 Top12 Top20 Top30 Top40 Top43
SPECIFICITY

LASSO 0.65 0.78 0.80 0.83 0.84 0.84
RF 0.71 0.76 0.79 0.79 0.79 0.79
SVM 0.74 0.80 0.82 0.84 0.84 0.84
QDA 0.76 0.73 0.79 0.80 0.76 0.75
LDA 0.76 0.83 0.84 0.85 0.85 0.84

SENSITIVITY
LASSO 0.81 0.78 0.80 0.76 0.71 0.71
RF 0.77 0.80 0.82 0.82 0.82 0.82
SVM 0.76 0.77 0.78 0.72 0.71 0.70
QDA 0.74 0.72 0.73 0.74 0.80 0.81
LDA 0.74 0.73 0.73 0.71 0.72 0.72

MCE
LASSO 0.30 0.27 0.25 0.24 0.21 0.20
RF 0.29 0.25 0.23 0.22 0.24 0.24
SVM 0.29 0.25 0.22 0.24 0.20 0.21
QDA 0.28 0.31 0.26 0.26 0.29 0.29
LDA 0.28 0.25 0.24 0.25 0.21 0.21

NPV
LASSO 0.72 0.73 0.76 0.74 0.72 0.72
RF 0.72 0.76 0.78 0.79 0.78 0.79
SVM 0.71 0.74 0.76 0.73 0.72 0.72
QDA 0.71 0.68 0.72 0.73 0.75 0.76
LDA 0.71 0.72 0.73 0.71 0.72 0.72

PPV
LASSO 0.68 0.73 0.75 0.79 0.80 0.81
RF 0.70 0.75 0.76 0.76 0.76 0.77
SVM 0.71 0.76 0.79 0.81 0.80 0.80
QDA 0.72 0.70 0.77 0.77 0.73 0.73
LDA 0.72 0.78 0.79 0.79 0.78 0.78

4.4 Discussion

The results presented in this chapter demonstrate that (1) the metabolic classifier
allows to classify 82% of the lung cancer patients and 89% of the controls cor-
rectly and (2) the metabolic classifier discriminates between lung cancer patients
and controls of the independent cohort with a sensitivity of 75%, a specificity of 82% .

The metabolic phenotype, which is represented by the relative abundance of plasma
metabolites, has to be seen as a single biomarker that cannot be defined based on a
cut-off value. It is demonstrated that the combination of a series of subtle metabolic
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alterations (metabolites of which the plasma concentration is increased/decreased in
lung cancer patients compared to controls), detected by 1H-NMR spectroscopy and
presented by PLS-DA, enables to diagnose lung cancer.
Recently, many studies have explored lung cancer metabolism, but mostly by mass
spectrometry (MS) techniques rather than by 1H-NMR spectroscopy (Wen et al., 2013;
Hori et al., 2011; Chen et al., 2015). Although MS is without doubt more sensitive, 1H-
NMR spectroscopy requires no invasive extraction procedures, and so minimal sample
preparation (Lindon and Nicholson, 2008). Both techniques are therefore complemen-
tary and of importance in the field of metabolomics. Furthermore, most published
NMR studies focused on the metabolic composition of the lung cancer tissue despite
the fact that metabolic phenotyping of blood plasma has the advantage to assess
more directly complex interaction between tumor and host (Chen et al., 2011; Duarte
et al., 2010). Moreover, blood samples can be obtained non-invasively and with min-
imal risk for the patient (Mamas et al., 2011). According to a review of Duarte et al.
(2013), only Rocha et al. (2011) investigated lung cancer-induced metabolic alter-
ations in plasma by 1H-NMR spectroscopy, demonstrating a discrimination between
85 lung cancer patients and 78 controls with a sensitivity and specificity of ± 90%
but unfortunately without validation in an independent cohort.

Currently, low-dose computed tomography (LDCT) is the most studied tool to screen
for lung cancer. The NELSON trial demonstrates that LDCT screening has a sensi-
tivity of 85% and a specificity of 99% in comparison to no screening (Horeweg et al.,
2014). However, a major limitation of LDCT is the low PPV ranging from 4% in the
National Lung Screening Trial to 40% in the NELSON trial. This means that more
than half of the study participants were referred for further investigations, being not
without cost and risk, on the basis of false-positive results (National Lung Screen-
ing Trial Research Team, 2011b; Horeweg et al., 2014). Strengthening of current risk
models by incorporating metabolic phenotype information might be the way to better
identify patients eligible for LDCT screening. This will be the main issue in Chapter
5, where the added predictive value of metabolic data is studied.

In this respect, 1H-NMR based metabolomics seems to be reasonably able to discrim-
inate between early stage patients and a randomly selected equally populated group
of controls. This indicates that metabolic alterations present in the initial phase of
cancer development can already be detected by 1H-NMR based-metabolomics. Al-
though these results look promising, the number of early stage patients needs to be
increased to confirm.
Next to PLS-DA, different classification methods were used to classify LC and C
patients in a cross validation way. Results showed that about 40 metabolites were
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enough to have comparable performance. The difference between PLS-DA and those
classifiers was the metabolites selection. PLS-DA constructs components without any
selection on the metabolites.
In conclusion, we validated 1H-NMR metabolic phenotype of blood plasma as a com-
plementary tool to discriminate between lung cancer patients and controls.
In the next chapter we focus on a slightly different problem. Our intent is not to use
the metabolome as a separate screening tool but to complement current risk models
with additional parameters to better select high-risk individuals eligible for LDCT
screening. Therefore, the question we discuss in Chapter 5 is related to the benefit
of using metabolic data in addition to epidemiological and clinical variables in a risk
model for lung cancer.





Chapter 5
Risk Models to Select
Individuals Eligible for Lung
Cancer Screening with
Low-Dose Computed
Tomography: Adding the
Metabolic Phenotype

5.1 Introduction

One of the main criteria for a screening test is the cost-effectiveness, meaning that
the number of false positive results should be low to prevent unnecessary surgical
interventions (Tammemagi and Lam, 2014; Wood et al., 2012). To maximize the
benefit-risk balance, accurate selection of high-risk target population for lung cancer
screening programs necessitates robust methods for risk prediction (Field and Duffy,
2008; Field et al., 2013b).
Current risk models for prediction of lung cancer have tended to concentrate on
clinical risk factors, including age, smoking behavior, previous history of cancer and
family history of lung cancer (Cassidy et al., 2008; Spitz et al., 2007; Hoggart et al.,
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2012; Tammemagi et al., 2013; Bach et al., 2003). Since lung cancer predominantly
occurs in elderly people and smoking is an important risk factor, high-risk individuals
in the two largest randomized controlled trials designed to evaluate the impact of
low-dose computed tomography (LDCT) screening on lung cancer mortality were
selected on the basis of age and smoking behavior (National Lung Screening Trial
Research Team, 2011a; Zhaoa et al., 2011). More specifically, eligible participants for
the North-American National Lung Screening Trial (NLST) were aged between 55 and
74 years and had a smoking history of at least 30 pack years. Former smokers were
only included in the study if they had quit smoking within the past 15 years (National
Lung Screening Trial Research Team, 2011a,b). Furthermore, the Dutch-Belgian lung
cancer screening trial (Dutch acronym - NELSON) recruited subjects aged between
50 and 75 years, who smoked 15 or more cigarettes a day for more than 25 years
(≥18.75 pack years) or 10 or more cigarettes a day for more than 30 years (≥15 pack
years). Former smokers were only included in the study if they had quit smoking
for less than 10 years (Zhaoa et al., 2011; van den Bergh et al., 2008). The major
drawback of both LDCT screening studies is the low positive predictive value (PPV),
ranging from 3.8% in the NLST study to 40.4% in the NELSON study. This indicates
that more than half of the study participants were referred for further investigations,
being not without cost and risk, on the basis of false positive results (National Lung
Screening Trial Research Team, 2011b, 2013; Horeweg et al., 2014; Bach et al., 2012).
Consequently, there is an increasing interest to improve the accuracy of risk models
by adding lung cancer risk-related biomarkers. This is done in order to better select
high-risk individuals eligible for lung cancer screening with LDCT and so to lower
false positive rate and corresponding financial burden.
In the previous chapter, we have shown that metabolic signature can be used to predict
the disease status of a subject. In this chapter, we focus on a different question: what
can a metabolic signature add to a risk model in addition to clinical variables? In other
words, can we improve the accuracy when the metabolic data is added to the model?
This can be done by considering the clinical and the metabolic data in different ways.
A first approach is to treat both data types in the same way (naive approach). A
combined prediction model is built by treating clinical and metabolic predictors in
the same way. A second approach is to fit a model on the clinical data, and use
the predicted values from this model as an offset in a model comprising metabolic
data (clinical offset). A third approach is to fit a model using both data types, but
favoring the clinical data. We adopted the third approach in our analyses. This was
achieved by not applying penalty on the clinical risk factors in penalized regression
models using lasso and elastic net penalties. A forth approach that can be used is



5.2. Data and Analysis Setting 47

to summarize the metabolic data in a form of new component (or score) and add
this component in a prediction model comprising clinical variables (Boulesteix and
Sauerbrei, 2011; De Bin et al., 2014).
A blood-based diagnostic biomarker signifies an attractive option to complement risk
models used to select high-risk individuals eligible for lung cancer screening with
LDCT since blood samples can be obtained in a non-invasive way and with minimal
risk for the patient (Mamas et al., 2011; Tsay et al., 2014). Louis et al. (2015a,b, 2016)
have demonstrated that the metabolic phenotype of blood plasma, determined by
1H-NMR spectroscopy, not only enables to discriminate between cancer patients and
controls but also between different cancer types such as lung and breast cancer. 1H-
NMR spectroscopy, one of the main analytical platforms used in metabolomics studies,
is a very reproducible technique which permits a fast and non-invasive identification
and special quantification of complex mixtures of metabolites, as in plasma, with
minimal sample preparation and relatively low cost on a per sample basis (Emwas
et al., 2013; Lindon and Nicholson, 2008). Hence, 1H-NMR-based metabolomics of
blood plasma seems to provide an attractive blood-based diagnostic biomarkers to add
to risk models used for the selection of high-risk individuals eligible for lung cancer
screening with LDCT.
This chapter is organized as follows: in Section 5.2 data and analysis setting are
described. An application to the data is given in Section 5.3, followed by a discussion
in Section 5.4.

5.2 Data and Analysis Setting

5.2.1 Cross Validation Procedure

Blood sampling, samples preparation and NMR analysis protocols used have been
described in detail by Louis et al. (2016, 2015a). For the analysis presented in Sec-
tion 5.3.4, a cross validation loop is used to estimate the performance statistics. The
study population described in Section 2.2.2 was randomly split into two cohorts. A
training cohort (two thirds of the subjects) and a validation cohort (one third of the
subjects, referred to as test cohort 1). The second cohort is a fixed validation cohort
(referred to as test cohort 2). Figure B.1 shows the data splitting scheme.

The subject characteristics of the first cohort of 536 subjects (273 lung cancer patients
and 263 controls) are presented in Table 5.1.
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Table 5.1: Subject characteristics of cohort 1. Data are presented as mean ± stan-
dard deviation, unless otherwise indicated. Univariate logistic regression models were
used to calculate p-values for continuous variables, while a Chi-square test was used
to compute p-values for categorical variables.

Controls (n=263) Patients (n=273) p-value
Gender, n (%)
Male 139 (53) 186 (68) 0.0003Female 124 (47) 87 (32)
Age, yrs 66 ± 11 68 ± 10 0.056
BMI, kg/m2 28.0 ± 5.1 25.8 ± 4.5 <0.0001
Smoking habits, n (%)
Smoker 60 (23) 131 (48) <0.0001
Ex-smoker 111 (42) 131 (48)
Non-smoker 92 (35) 11 (4)
Smoking pack years 16 ± 23 33 ± 21 <0.0001
Previous mine-worker, n (%)
Yes 15 (6) 24 (9) 0.001
No 124 (47) 162 (59)
Not applicable 124 (47) 87 (32)
Prior diagnosis of malignant tumor, n (%)
Yes 9 (3 ) 24 (9 ) 0.016
No 254 (97) 249 (91)
COPD, n (%)
Yes 30 (11) 139 (51) <0.0001
No 233 (89) 134 (49)
Diabetes, n (%)
Yes 47 (18) 47 (17) 0.932
No 216 (82) 226 (83)
Taking lipid-lowering medication, n (%)
Yes 149 (57) 142 (52) 0.322
No 114 (43) 131 (48)
Taking malfunctioning thyroid medication, n (%)
Yes 18 (7) 9 (3) 0.093
No 245 (93) 264 (97)
Taking anti-arrhythmic medication, n (%)
Yes 13 (5) 33 (12) 0.005
No 250 (95) 240 (88)
Taking blood pressure-lowering medication, n (%)
Yes 193 (73) 168 (62) 0.005
No 70 (27) 105 (38)
Taking anti-coagulants medication, n (%)
Yes 163 (62) 155 (57) 0.255
No 100 (38) 118 (43)
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5.2.2 Data Structure

Let X be a n×m data matrix, where n is the sample size and m the number of the
molecular variables (metabolites in our case). The X matrix contains information
about 102 metabolites on 536 samples. Let Z be a n× p clinical variables matrix. It
is assumed that p < n, but no such restriction is put on m. Let Y n× 1 be a vector
in which the ith entry is an indicator variable which is equal to 1 if the patient has
lung cancer (LC) and 0 otherwise. We further assume that:

Yi ∼ Binomial(1, πi), with Yi =
{

1 : Lung cancer (πi),
0 : Otherwise (1-πi).

The three data sources Y, Z and X can be represented as matrices given by:

Y =



y1

y2

.

.

.

yn


, Z =



z11 z12 · · · z1p

z21 z22 · · · z2p

. . . .

. . . .

. . . .

zn1 zn2 · · · znp


, X =



x11 x12 · · · x1m

x21 x22 · · · x2m

. . . .

. . . .

. . . .

xn1 xn2 · · · xnm


.

Figure 5.1: Analysis plan. Left panel: identification and testing of metabolic vari-
ables, Right Panel: Development of a risk models taking metabolic data into account
.

In Section 5.3, we follow the analysis plan depicted in Figure 5.1 in order to construct
risk models taking into account clinical and metabolic data. Firstly, we identify
significant clinical risk factors. Secondly, we investigate if we can find significant
metabolites given clinical risk factors. Next to identification, three different testing
procedures are also used to test the additive predictive value for metabolic data.
Lastly, three different modeling approaches are used to construct risk models including
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clinical variables and metabolic data. These models are used to evaluate the gain, in
terms of accuracy in prediction, when the metabolic data are included in the predictive
model.

5.3 Application to the Data

5.3.1 Risk Model with Clinical Covariates

5.3.1.1 Model Formulation

Following Cassidy et al. (2008) (Liverpool Lung Project model, LLP), we first consider
a model comprising of only clinical covariates. We refer to this model as the baseline
risk model and its linear predictor is given by:

logit(πi) = Zγ,
= γ0 + γ1AGEi + γ2PACKi + γ3BMIi + γ4COPDi + γ5ARRi

+γ6SMOKINGi + γ7COAi + γ8SEXi + γ9PMW.

(5.1)

Here, AGE is the patient’s age , PACK : smoking pack years, BMI : body mass
index, COPD : chronic obstructive pulmonary disease, ARR : taking anti-arrhythmic
medication, SMOKING : smoking status (active, quit, never), COA : taking anti-
coagulant medication, PMW : previous mine worker.

5.3.1.2 Results

Univariate testing, based on a univariate logistic regression model, indicated that 9
clinical risk factors were significantly associated to lung cancer, i.e. gender, body mass
index (BMI), smoking habits, number of smoking pack years, previous mine-worker,
prior diagnosis of a malignant tumor, presence of chronic obstructive pulmonary dis-
ease (COPD), intake of anti-arrhythmic medication and intake of medication against
high blood pressure. All clinical risk factors were then included in a multiple logis-
tic regression model using a stepwise model selection procedure. Table 5.2 shows
that age, smoking habits, number of smoking pack years, BMI, presence of COPD,
intake of anti-arrhythmic medication and intake of anti-coagulants medication were
statistically significant.
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Table 5.2: Odds ratio estimates from a multiple logistic regression model comprising
statistically significant clinical risk factors. Abbreviations: CI: confidence interval,
OR: odds ratio.

OR (95% CI) p-value
(Intercept) 0.103 (0.012-0.835) 0.035
Age 1.035 (1.013-1.059) 0.002
Smoking pack years 1.016 (1.005-1.028) 0.0057
BMI 0.922 (0.879-0.965) 0.0006
COPD 5.466 (3.316-9.248) <0.0001
Taking anti-arrhythmic medication 4.293 (1.932-10.103) 0.0005
Smoker 9.354 (4.031-23.156) <0.0001
Ex-smoker 6.525 (3.052-14.996) <0.0001
Taking anti-coagulants medication 0.406 (0.253-0.642) 0.0001

5.3.2 Feature-by-feature Analysis

5.3.2.1 Model Formulation

In order to test for statistical significance of a single feature, given a set of clinical
risk factors, a feature-by-feature model was formulated and compared to the baseline
risk model in equation (5.1). That is:

M0 : logit(πi) = γ0 +
∑p
l=1 γlZil,

M1 : logit(πi) = α0 +
∑p
l=1 αlZil + βjXij .

(5.2)

The parameter βj is statistically significant whenever the following null hypothesis is
rejected:

H0 : βj = 0, j = 1, 2, ...,m. (5.3)

Since many tests are conducted, the false discovery rate (FDR, Benjamini and
Hochberg, 1995) adjustment procedure is used to correct for multiple testing .

5.3.2.2 Results

Multiple logistic regression models comprising statistically significant clinical risk fac-
tors and one metabolite at a time were fitted to find which metabolites have statis-
tically significant effects on disease status prediction. After adjusting for multiple
testing, 53 out of the 102 metabolites were found to have significant effects on disease
status prediction. Figure 5.2 shows a volcano plot, adjusted and unadjusted p-values
obtained from multiple logistic regression models containing significant clinical risk
factors and one integration value at a time.
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Figure 5.2: Unadjusted and adjusted p-values obtained for the tests of the NMR
integration values. Left panel: volcano plot. Right panel: p-values obtained from a
model containing significant clinical risk factors and one NMR integration region at
a time.

5.3.3 Testing the Added Predictive Value of the Metabolic
Signature

5.3.3.1 The Likelihood Ratio Test

In Section 5.3.2.1, we presented a testing procedure based on models comprising of
significant clinical risk factors and one metabolite at a time. If the sample size is
greater than the total number of all variables (p + m < n), one can test statistical
significance of many metabolites given a set of clinical values using likelihood ratio
test. The linear predictor of the alternative model in equation (5.2) becomes:

logit(πi) = α0 +
p∑
l=1

αlZil +
m∑
j=1

βjXij . (5.4)

The corresponding null hypothesis is given by :

H0 : β1 = β2 = ... = βm = 0. (5.5)

This hypothesis is tested by comparing the baseline model (M0) in equation (5.2)
with the model in equation (5.4) using the likelihood ratio test. The corresponding
test statistic is a χ2

m. A rejection of H0 implies that at least one of the βj ’s is
statistically different from zero.
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5.3.3.2 Global Test I (Goeman et al., 2005)

Although for the case study considered in this chapter, the likelihood ratio test can
be used to test the null hypothesis formulated in equation (5.5) without a problem (
n = 536 and m + p = 109), we use additional tests developed in the context of high
dimensional data. If m + p > n, the model in equation (5.4) cannot be fitted and
the likelihood ratio test is not applicable. Goeman et al. (2004) developed a global
test for a group of high dimension variables to test association with a clinical out-
come. Goeman et al. (2005) extended their method and made it possible to adjust for
presence of covariates. It allows to shift the hypothesis testing from a single variable
test (i.e. feature-by-feature analysis), to a group of variables (genes or metabolites
pathway). It can be applied to high dimensional data such genomic, metabolomic,
proteomic data. Similar to the previous section, Goeman et al. (2005) considered the
null hypothesis formulated in (5.5). To obtain a test that is applicable for any value
of m, they assumed that the regressions coefficients β1, ..., βm are random variables
and a priori independent with mean zero and common variance τ2. A single unknown
parameter τ2 determines how much the regression coefficients can deviate from zero.
The null hypothesis becomes :

H0 : τ2 = 0. (5.6)

Goeman et al. (2004) showed that the global test statistic is given by:

Q = 1
m

m∑
j=1

Qj ,

where, Qj is the test statistic that would have been calculated if a single feature is
included in the model. The test Q is derived in stages. First, it is assumed that
all parameter except τ2 are known, i.e. the regression coefficients for the clinical
covariates. Secondly, the score test for τ2 is derived, and can be generalized to
the situation with unknown parameters. In this latter case, the parameter values of
γ1, . . . , γp are replaced by their estimates. As pointed out by Goeman et al. (2004), the
global test Q for a group of m features is the average of the m statistics calculated for
m features (for example if the score test is used to test the null hypothesis H0 : βj = 0
for the models formulated in equation (5.3)).
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5.3.3.3 Global Test II (Boulesteix and Hothorn, 2010)

In this section, we considered the testing procedure proposed by Boulesteix and
Hothorn (2010) to test the added predictive value for the high dimensional data.
It is based on boosting algorithm in which the high dimension data are selected
given that the clinical variables are set as an offset (clinical offset). Boulesteix and
Hothorn (2010) proposed a two-stage approach, in which in the first stage a logistic
regression is fitted on the clinical variables (for a binary response). At the second-
stage, component-wise fitting is performed using boosting algorithm (Bühlmann and
Hothorn, 2007).
At each boosting iteration, a variable Xj minimizing the log-likelihood loss function
given by:

ρlog−lik(ỹ, f) = log2(1 + exp(−2ỹf)),

where, ỹ = (2y − 1) and f = log(p/(1 − p))/2 enters the model (Bühlmann and
Hothorn, 2007). A permutation based testing procedure is performed to test the
additional predictive value of the Xj ’s variables given the clinical variables. The
model under alternative hypothesis is given by:

logit(πi) = α+
p∑
j=i

γlZil +
m∑
j=1

β∗jXj ,

here, β∗j represents the estimated parameter from a permuted data. The null hypoth-
esis of no added predictive value is formally stated as:

H0 : β∗1 = ... = β∗m = 0.

Note that only columns of X are permuted. The two-stage procedure is applied and
the negative binomial log-likelihood ` is computed for the permuted data set. The
whole procedure is repeated B times, yielding `1, ..., `B . The permutation p-value is
then obtained as

p− value = 1
B

B∑
b=1

I(`b ≤ `obs).

Here, I(.) denotes the indicator function which takes the value of 1 if `b ≤ `obs and
zero otherwise. The main difference between the tests presented in Section 5.3.3.2
and 5.3.3.3 is that the test proposed by Boulesteix and Hothorn (2010) includes a
variable selection step (in the second-stage), whereas there is not variable selection in
the test proposed by Goeman et al. (2005).
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5.3.3.4 Results

The three tests procedures were applied to the 1H-NMR metabolic phenotype data to
test whether they do have an added predictive value for lung cancer status prediction.
All tests indicate that NMR metabolic phenotype data have significant impact on the
disease status prediction. Table 5.3 presents p-values obtained for the three tests.

Table 5.3: P-values obtained from the three testing procedures.
Goeman et al. Boulesteix and Hothorn LRT
p-value p-value p-value
8.1 × 10−5 0 2.2 × 10−16

5.3.4 Metabolic Based Risk Model for Lung Cancer

In the previous section, we showed that metabolic data has a statistical significant
effect if added to clinical covariates in the risk model. However, up to this point we
did not quantify the gain in using the metabolic data in the risk model (in addition
to the clinical covariates). In this section, we investigate what is the gain in terms
of reduction in misclassification error, when the metabolic data is added to the risk
model. Our aim is to use the metabolic data, in addition to the clinical covariate, in a
risk model to predict the disease status. In Section 5.3.4.1, we use predictive models
based on penalized logistic regression and random forest (Breiman, 2001). Note that
since we use models to predict the disease status, a cross validation loop is used to
estimate the performance statistics. For the penalized logistic regression model, the
cross validation procedure was presented in Section 5.2.1. The cross validation for
the random forest procedure is discussed in Section 5.3.4.1.

5.3.4.1 Model Formulation: Lasso and Elastic Net

Multiple logistic regression models comprising significant clinical risk factors defined
in equation (5.1) is used as a baseline model. Predictive models were developed on
a training cohort and evaluated on two independent validation cohorts (test cohort
1 and 2 in Figure B.1). Three different predictive models were used: random forest
(RF, Breiman, 2001), penalized logistic regression models using lasso (Tibshirani,
1996; Friedman et al., 2001) and elastic net penalties (Friedman et al., 2001; Zou
and Hastie, 2005). Given the logistic regression in equation (5.4), the negative log
likelihood with penalty takes the following form:
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− 1
N

N∑
i=1
{yi log Pr(Y = 1|xi, zi) + (1− yi) log Pr(Y = 0|xi, zi)}+ λPα(βj),

= − 1
N

N∑
i=1
{yi(β0 + x′iβ + z′iγ)− log(1 + eβ0+x′

iβ+z′
iγ)}+ λPα(βj),

where, Pα(βj) =
∑m
j=1

[ 1
2 (1− α)β2

j + α|βj |
]

is the elastic net penalty (Zou and
Hastie, 2005). Pα is a compromise between the ridge-regression penalty (α = 0)
and the lasso penalty (α = 1). The penalty parameter λ introduces shrinkage in
βj coefficients. The above notation suggests that only coefficients related to X ma-
trix (metabolic data) are penalized. This is the ’favoring’ approach (Boulesteix and
Sauerbrei, 2011; De Bin et al., 2014).
Random Forest (RF, Breiman, 2001) is an ensemble method for classification that
builds many decision trees based on bootstrap samples from the original data and
aggregates their predictions to improve the predictive accuracy and to control for
over-fitting. The re-sampling scheme used in RF is different from the k-fold cross
validation used so far for other classification methods. RF does not make distinction
between the clinical and metabolic variables, as stated before it uses a ’naive’ approach
to test for added predictive value (De Bin et al., 2014). Figure 5.3 depicts a schematic
representation of RF resampling.
RF has two parameters which have to be fixed before it is run, namely the number
of the trees to grow and the number of features to select at each split.

• Fix the number of trees to grow,

– The dataset is split into a train set and out-of-bag (OOB, test set) using
bootstrap draws (sampling with replacement),

– Randomly select a fixed number of features at each split (on the train set),

– Grow a tree without pruning. Some stopping criteria have to be fulfilled
in order to stop the tree growth,

– Predict class membership of the observations in the OOB,

• At the end of the run, by majority vote, get the final class membership of each
observation when it was in the out-of-bag,

• Compute the OOB error (MCE) and other performance measures such as sen-
sitivity, specificity, positive and negative predictive values.

As pointed out by Breiman (2001), each tree is grown using a different bootstrap
sample from the original data.
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Figure 5.3: Random forest algorithm. Adapted from Boulesteix et al. (2012).

5.3.4.2 Results

Predictive models with and without 1H-NMR metabolic phenotype data were devel-
oped using lasso and elastic net penalties in order to evaluate the added predictive
value of the 1H-NMR metabolic phenotype data. Recall that we used the favoring
approach when the metabolic data was added to the models with penalties (clinical
data are not penalized). For the lasso method, the average misclassification error
(MCE) of test cohort 1 dropped from 24.6% to 18.6% when the 1H-NMR metabolic
phenotype data were included in the model. The average MCE of test cohort 2
dropped from 23.0% to 22.6%. Similar patterns were observed for the models based
on the elastic net penalty. The average MCE of test cohort 1 declined from 24.6% to
17.8% and that of test cohort 2 dropped from 23.0% to 21.4% when the 1H-NMR
metabolic phenotype data were included in the model (Table 5.4).
Density estimates for the distribution of the MCE are shown in Figure 5.4. We
notice, for both test sets, that the distribution of the MCE when the metabolic
data is added to the model is shifted to the left (compared with the distribution of
the MCE when only clinical covariates are used in the risk model). For both test
cohorts, the sensitivity, specificity, positive predictive value (PPV) and negative
predictive value (NPV) of the penalized lasso and elastic net models remain stable
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when 1H-NMR metabolic phenotype data were added to the logistic regression model.

For the RF, the average MCE with only clinical risk factors was 22.7% for test cohort
1 and dropped to 18.2% when the 1H-NMR metabolic phenotype data were added to
the model. The average MCE of test cohort 2 declines from 28.6 to 12.3% when both
clinical and metabolic phenotype data were included in the model. Moreover, the
PPV and the specificity increase for test cohort 1 when the metabolic phenotype data
were included in the model, while the NPV and sensitivity remained quasi stable.
Furthermore, PPV, NPV, sensitivity and specificity increased for test cohort 2 when
the metabolic phenotype data were included in the model (Table 5.4).
Figure 5.5 shows the variable importance plot which indicates that 24 out of the top
28 most discriminating variables constitute 1H-NMR integration values.
These results further confirm that 1H-NMR metabolic phenotype information has
added value for disease prediction. Besides the number of smoking pack years, the
presence of COPD and the smoking habits, the plasma concentration of threonine
(VAR49 and 50), glycerol (VAR45 and 46) and valine (VAR48) contribute the most
to the discriminative power of the model. Thus, in addition to known clinical risk
factors for lung cancer (smoking and the presence of COPD), altered plasma levels of
these metabolites seem to be risk factors for lung cancer as well.

Table 5.4: Prediction performance parameters resulting from the penalized logistic
regression models using lasso and elastic net penalties and the random forests anal-
ysis. Data are presented as percentage ± standard deviation. Abbreviations: MCE:
misclassification error, PPV: positive predictive value, NPV: negative predictive value,
SEN: sensitivity, SPE: specificity.

MCE (%) PPV (%) NPV (%) SENS (%) SPEC (%)
Logistic model
(clinical)

Test 1 24.6 ± 2.7 75.7 ± 4.2 75.4 ± 4.5 76.6 ± 4. 7 74.4 ± 4.8
Test 2 23.0 ± 1.7 80.7 ± 1.2 74.2 ± 2.2 71.0 ± 3.5 83.0 ± 2.1

Lasso
(Clinical + metabolic phenotype)

Test 1 18.6 ± 3.4 76.8 ± 5. 7 74.8 ± 5.4 75.4 ± 5.3 76.2 ± 6.1
Test 2 22.6 ± 3.4 81.5 ± 2.9 74.5 ± 4.0 70.9 ± 5.8 84.0 ± 2.6

Elastic net
(Clinical + metabolic phenotype)

Test 1 17.8 ± 3.5 77.3 ± 5.9 75.2 ± 5.6 75.7 ± 5.5 76,7 ± 6.3
Test 2 21.4 ± 3.4 81.9 ± 2.7 76.1 ± 4.1 73.3 ± 5.8 83.9 ± 2.2

Random Forests
(Clinical)

Test 1 22.7 ± 0.9 76.2 ± 0.6 78.6 ± 1.5 80.6 ± 1.8 73.9 ± 0.8
Test 2 28.6 ± 2.3 73.9 ± 2.2 69.5 ± 2.4 66.3 ± 3.2 76.6 ± 1.9

Random Forests
(clinical + metabolic phenotype)

Test 1 18.2 ± 0.6 84.6 ± 0.7 79.3 ± 0.7 78.6 ± 0.8 85.1 ± 0.8
Test 2 12.3 ± 0.5 88.3 ± 0.8 87.2 ± 0.4 87.1 ± 0.4 88.5 ± 0.9
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Figure 5.4: Density estimates for the distribution of the misclassification error.
Left panel: density plot for test cohort 1. Right panel: density plot for test cohort 2.
Abbreviations: Elnet: elastic net, nopen: not penalized, pen: penalized.

Figure 5.5: Variable importance plot obtained from a single random forests analysis
including both clinical risk factors and 1H-NMR metabolic phenotype data (top 28 im-
portant variables). Abbreviations: BMI: body mass index, COPD: chronic obstructive
pulmonary disease.

The left panel in Figure 5.6 shows that the 28 most discriminating variables were
almost always selected (in the top 30 important variables) in all 1000 runs of the RF
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Figure 5.6: Frequency of the selection of variables in 1000 runs of random forests.
Left panel: variables with the highest importance score in the single run presented in
Figure 5.5; Right panel: All variables selected at least once (in the top 30 important
variables in each run).

5.4 Discussion

In this chapter, we have shown that the addition of 1H-NMR metabolic phenotype
data improves the MCE of classical risk models that only take clinical risk factors
into account. Both penalized logistic regression models using lasso and elastic net
penalties and the RF indicate that the addition of 1H-NMR metabolic phenotype data
to classical risk models that only take clinical risk factors into account reduces the
MCE. These findings are comparable to those found for studies in which the addition
of genetic risk markers and mutagen sensitivity data improved the performance of
risk models including only clinical risk factors (Raji et al., 2010; Spitz et al., 2008).
For the random forest analysis, the improvement in MCE is shown to reach 16%. It is
demonstrated that the inclusion of NMR metabolic fingerprint data has potential to
improve the selection of high-risk individuals eligible for lung cancer screening with
LDCT. The proposed methodology paves the way to a reduction of the false positive
rate and corresponding financial burden.
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Chapter 6
Development of High
Dimensional Biomarkers
Within the QSTAR
Framework

6.1 The QSTAR Framework

The drug discovery and development process are costly and time consuming. The
development of a new drug costs in the order of billion US dollar (depending on the
drug type) and takes about a decade (Adams and Brantner, 2006; DiMasi et al.,
2003). It is crucial to identify early failure and thereby save time and investment.
The decision to continue/stop a development process in drug discovery must be made
during all phases (Cowlrick et al., 2011; Fischer and Heyse, 2005). The decision
should ideally be based on scientific parameters that are predictive of later outcomes,
and which can be determined quickly and at relatively low cost. A major problem
during early drug discovery is the time gap between the compounds selection and the
identification of potential undesirable effects (off target effects) such as toxicity. As
pointed out by Verbist et al. (2015), in many cases the off target effects are discovered
in a late stage of the development which means that a lot of resources could be saved
if the off target effects associated with a new compound could be identified earlier.
Currently, microarray technology is used to monitor simultaneously the activity of
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thousands genes and their response under certain experimental condition(s) (Ama-
ratunga et al., 2014). Therefore, microarray data can be used in order to identify
many new additional targets for drug discovery. The detection of biochemical path-
ways, genes or proteins that are disturbed by a disease, or linked to a certain treat-
ment is made easy by the use of technologies such as chemoinformatics, genomics,
proteomics.
In the second part of the dissertation, we focus on the Quantitative Structure-
Transcriptional-Assay Relationships (QSTAR, Verbist et al., 2015; Perualila et al.,
2016) modeling framework. Early drug discovery research and development process
generates multiple sources of high dimensional data such as high-throughput screen-
ing (HTS), chemical structures, gene expression, image-based high-content screen-
ing (HCS, Grepin and Pernelle, 2000; Mayr and Bojanic, 2009). This type of high-
dimensional data is characterized by a high number of features (variables) and rela-
tively small number of samples. Within the QSTAR framework, transcriptomics data
are integrated with structural compound information as well as bioactivity data in
order to analyze compound effects in biological systems (Verbist et al., 2015).
Perualila et al. (2016) proposed a joint modeling (JM) approach to integrate the three
data types. Their modeling approach allows to (1) identify gene signatures associated
with bioactivity of chemical structures, (2) determine chemical substructures (finger-
print features, FF) of compounds that are related with effects to the bioassay data
for target(s) of interest and (3) to determine whether this effect can also be confirmed
by the gene expression changes. In this part of the dissertation, we propose the use
of Structural Equation Modeling (SEM, Bollen, 1989; Danner et al., 2015; Loehlin,
1998) in combination with model averaging techniques (Burnham and Anderson, 2003;
Kuiper et al., 2014; Lin et al., 2012; Claeskens and Hjort, 2008) to compare and select
the causal structure that best fits the data. SEM allows investigating several causal
models that could explain the relationship between the chemical structure and bio-
logical activity with the gene expression. The JM and SEM modeling approaches are
performed using a gene-by-gene analysis. In case a joint analysis is of interest, we
propose to use supervised principal component analysis (SPCA, Bair et al., 2006),
lasso (Tibshirani, 1996) and elastic net (Zou and Hastie, 2005) methods to combine
information from the three data sources.
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6.2 Case Studies

6.2.1 EGFR Data

The dataset used in this part of the dissertation was obtained from an oncology dis-
covery project (EGFR project), which was focused on the inhibition of the fibroblast
growth factor receptor (FGFR). In total, 35 compounds and one DMSO control com-
pound were profiled on SKOV3 ovarian carcinoma cells and all compounds showed
strong FGFR inhibition in a cellular assay experiment. Different concentration of
the compounds were used. At the end of incubation, cell growth was determined.
The concentration at which the cell growth is reduced by 50% was retained. In all
analyses, the pIC50 scale (-log IC50) is used.
For the microarray experiment, human ovarian carcinoma cells were seeded in flasks
and then compound was added. After the pre-processing steps, the gene expression
data contain 3595 genes. This dataset was used in the analysis of Verbist et al. (2015)
and Perualila et al., (2016). Both publications highlighted a particular chemical
feature that was linked to both cell growth activity and gene down regulation which
was detrimental to biological activity and, in turn, very likely also to the efficacy of
the compound. The identified chemical structure (also referred as fingerprint feature)
was used to demonstrate the gene-by-gene structural equation modeling approach.

6.2.2 ROS Data

The ROS project sought to develop compounds that inhibits ROS1 (reactive oxygen
species). ROS1 is highly-expressed in a variety of tumor cell lines and belongs to the
sevenless subfamily of tyrosine kinase insulin receptor genes. The dataset consists of
89 compounds tested for target inhibition. A total of 7100 genes were used in the
analysis.

6.2.3 Data Structure

As mentioned above, these datasets contained information about: (1) chemical struc-
ture of the compounds (measured by fingerprint features that represent different sub-
structures in the compounds), (2) gene expression data, and (3) biological activity of
the compounds (measured by pIC50 for different bioassays). Our aim is to model the
association between the gene expression and the bioactivity variable(s) taking into
account the chemical structure.
Let xji be the jth gene expression for the ith compound, j = 1, 2, . . . ,m and i =
1, 2, . . . , n; ybi, b = 1, . . . , B, be the bth the bioactivity variable of the ith compound
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measured on the bth assay; and zki , k = 1, . . . ,K, be the kth fingerprint feature in
the ith compound. Note that zki is a binary indicator, zki = 0 represents the absence
of the kth chemical structure in the ith compound while zki = 1 denotes the presence
of the kth chemical structure.
The three data sources can be represented as matrices given by

Y =



y11 y12 . y1n

y21 y22 . y2n

. . . .

. . . .

. . . .

yB1 yB2 . yBn


, Z =



z11 z12 . z1n

z21 z22 . z2n

. . . .

. . . .

. . . .

zK1 zK2 . zKn


,

X =



x11 x12 . x1n

x21 x22 . x2n

. . . .

. . . .

. . . .

xm1 xm2 . xmn


.

Note that for the analysis presented in this part of the dissertation, we used one
fingerprint feature and one bioactivity variable.



Chapter 7
Joint Modeling of Bioassay
Data and Genes Expression in
Drug Discovery Experiments:
A Supervised Principal
Component Analysis, Lasso
and Elastic Net Approaches

7.1 Introduction

Microarray technology is extensively used in biological and medical studies to monitor
simultaneously the activity of thousands of genes and their response under certain
condition(s) (treatment, disease status, time, etc.). In some experiments, in addition
to gene expression, other variables are available and the question of interest is to
identify whether or not the gene expressions can serve as biomarkers for a response
of interest (Perualila et al., 2016; Tilahun et al., 2010; Chen et al., 2008). This
results in high dimensional data characterized by a high number of variables and few
samples. Furthermore, although the number of genes is large, it is expected that only
a small number of genes will be associated with the conditions under investigation or
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with a response variable of interest. In this chapter we aim at developing predictive
models to integrate the different data sources. We first review the joint modeling
approach by Perualila et al. (2016) and the conditional model which are implemented
as gene-specific models. Both modeling approaches allow to identify potential genetic
biomarker for compound efficacy as measured by pIC50. Next to the gene-specific
approach, we study how to combine information from many genes to form a joint
biomarker using methods such as supervised principal component analysis (SPCA,
Bair et al., 2006), lasso (Tibshirani, 1996) and elastic net (Zou and Hastie, 2005).
This chapter is organized as follows: in Section 7.2, we introduce the joint and con-
ditional models. In Section 7.3, the supervised principal component analysis (SPCA)
method is presented. Section 7.4 describes the cross validation procedure used in the
analysis. Predictive models using lasso and elastic net penalties are presented in Sec-
tion 7.5. An application to the data is given in Section 7.6, followed by a discussion
in Section 7.7.

7.2 Joint and Conditional Models for Gene Expres-
sion and Bioassay Data

7.2.1 Gene Specific Approach

Let Xji be the jth gene expression (j = 1, 2, ...,m), of the ith compound (i =
1, 2, ..., n). The measurement for the bioactivity (pIC50 in our setting) is denoted
by Yi. Let Zi be an indicator variable, which takes the value 1 if the fingerprint fea-
ture is present in the ith compound, and 0 otherwise. Perualila et al. (2016) consider
the following gene-specific joint model:(

Xji

Yi

)
∼ N

[(
µXj

+ αjZi

µY + βZi

)
,Σj

]
. (7.1)

The gene-specific covariance matrix Σj is given by:

Σj =
(

σjj σjY

σjY σY Y

)
. (7.2)

The parameters αj and β are the fingerprint feature effects upon the jth gene and
bioactivity variable, respectively. The parameters µXj

and µY are the gene-specific
and bioactivity intercepts, respectively.
The covariance matrix (7.2) can be used to quantify the association between the gene
expression and the bioactivity after correcting for the fingerprint feature effects using
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the adjusted correlation given by:

ρj = σjY√
σjjσY Y

. (7.3)

Note that ρj is the gene-specific correlation coefficient between gene expression and
the bioactivity variable after adjusting for fingerprint feature effect. The joint model
(7.1) implies the following conditional model (Burzykowski et al., 2005):

Yi = µ̃+ β̃jZi + α̃jXji + ε̃ij . (7.4)

Here, µ̃ = µY −σjY σ−1
jj µj , β̃j = β−σjY σ−1

jj αj , α̃j = σjY σ
−1
jj , and ε̃ij ∼ N(0, σY Y −

σ2
jY σ

−1
jj ).

The above models are fitted gene-by-gene and it is expected that only a small number
of genes is associated with the bioactivity variable. In the next section we describe
a method which allows to combine information from many genes to form a joint
biomarker (gene profile) for prediction.

7.3 Supervised Principal Component Analysis Ap-
proach

The gene-specific joint modeling approach in the previous section allows to identify
individual genes associated with pIC50 (the bioactivity variable). The next section
focuses on the question of how to combine information about the expression level from
many genes in order to form a ”gene profile”?
In the microarray setting, the number of predictors (m) is larger than the sample size
(n) and the design matrix X is likely to be singular which makes linear regression
model comprising all predictors (genes) no longer feasible.
One way to overcome this problem is to reduce the dimension of the design matrix
using principal component analysis (PCA) for example. However, a drawback of PCA
is that there is no guarantee that the principal components are associated with the
response of primary interest (Bøvelstad et al., 2007; Alter et al., 2000; Tilahun et al.,
2010).
Bair et al. (2006) proposed the supervised principal components (SPCA) method if
m >> n. SPCA is similar to conventional principal components analysis except that
one only uses predictors with the strongest estimated association with the response.
The SPCA relies on the underlying assumption that there is a latent variable U(X)
(the gene profile), which is associated with the response variable Y .
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SPCA consists of the following steps done using a cross validation:

• The first step consists of fitting a gene-specific conditional model (7.4) to all
genes.

• At the second step, select k genes (k << m) having the strongest estimated
association with the response. Form a reduced gene expression matrix Xk.

• At step three, the first principal component is constructed using the reduced
gene expression matrix (Xk) from second step. To choose the optimal number of
genes to use in the first principal component, step three is an iterative procedure:
the first iteration consists of the top 2 genes selected in the first step, and at
each iteration a new gene is added until all genes in the reduced matrix are used
(2 ≤ i ≤ k).

Let Û(X) be the first principal component of the reduced matrix. We consider the
following linear regression model:

Yi = β0 + β1Zi + β2Û(X)i + εi. (7.5)

Note that the gene profile Û(X) is the estimate for the latent variable U(X). Since
our aim is to construct a predictive model, in step four, the model (7.5) is fitted to
find top k genes from which the first PC maximizes the goodness of fit measure that
will be discussed in Section 7.4.1.

7.4 Cross Validation

The above four steps are run within a 3-fold cross validation repeated 1000 times. At
the end, the genes are ranked based on their selection frequencies. The procedure is
represented schematically in Figure 7.1.
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Figure 7.1: SPCA. Flowchart of the steps involved in the SPCA method.

Features selection and gene profile construction are done using the train set and
evaluation on the test set. The square (broken line) in Figure 7.1 shows the iterative
step (the internal loop), in which at each iteration a new gene is added to build a
new PC. For the analysis presented below, a second cross validation loop is conducted
using fixed list of genes for the signature.

7.4.1 Information-theoretic Approach

Selection of the top k genes and evaluating the quality of the gene profile as a
biomarker to bioactivity variable can be done using a surrogacy measure that was
developed within the information theoretic approach (Alonso and Molenberghs, 2007)
in the context of randomized clinical trials. Following this approach, a gene profile is
called a good biomarker for the bioactivity variable if a ”large” amount of uncertainty
about the bioactivity variable is reduced when the gene profile is known. Consider
the following models:{

M0 : Yi = µY + β1Zi + ε0i,

M1 : Yi = θ0 + θ1Zi + θ2Û(X)i + ε1i.
(7.6)

Note that the first equation in (7.6) relates the expected value of the bioactivity vari-
able only to the fingerprint, while the second connects both the gene profile and the
fingerprint to the expected value of the bioactivity variable. As shown by Alonso and
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Molenberghs (2007), the degree of association between the gene profile and the bioac-
tivity variable can be measured by the squared informational coefficient of correlation
(SICC) given by:

R2
h = 1− exp

(
−G2

n

)
. (7.7)

Here, G2 denotes the likelihood ratio statistic to compare the two models in equa-
tion (7.6), and n is the sample size. R2

h satisfies a number of useful properties: it
ranges in the unit interval and is equal to zero when Û(X) and Y are independent.
The first PC is constructed in order to maximize R2

h, i.e., using surrogacy terminol-
ogy we can say that the gene profile is constructed in order to maximize a surrogacy
measure. From that point of view, given the expression matrix, Û(X) is the ”best”
biomarker for Y . Note that although in our setting Y is assumed to be a normally
distributed variable, R2

h is still valid for other distributions of Y .
Since U(X) is constructed from the high dimensional expression matrix, as shown in
Figure 7.1, R2

h is calculated on the test set and, in addition, we evaluate the gene
profile as a predictor for Y using the mean squared error given by

MSE = mean((Ytest − Ŷtest)2).

7.5 Predictive Models Using the Lasso and the
Elastic Net

7.5.1 Lasso

In this section, we discuss two different approaches for gene selection (while taking
into account the fingerprint feature), namely lasso (Tibshirani, 1996) and elastic net
(Zou and Hastie, 2005). Tibshirani (1996) proposed to minimize the residuals sum
of squares subject to the constraint

∑m
j=1 |βj | ≤ t. The regression coefficients are

estimated in order to minimize the following expression (Hastie et al., 2015):

argmin
(γ,β)


N∑
i=1

(yi − β0 − γzi −
m∑
j=1

xjiβj)2 + λ

m∑
j=1
|βj |

 . (7.8)

Note that the fingerprint feature’s coefficient γ is not penalized. It implies that this
variable will always be included in the model. Due to the penalty term λ

∑m
j=1 |βj |

some of the coefficients are shrunk toward zero resulting in variables selection. The
lasso penalty causes the estimates of the non-zero coefficients to be biased toward zero
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(Hastie et al., 2015). One way to reduce this bias is to use the lasso to identify non-
zero coefficients, and then fit an unrestricted linear model to the selected variables.
Alternatively, one can apply lasso again on the selected variable (i.e., lasso after
lasso). This is known as the relaxed lasso (Meinshausen, 2007; Hastie et al., 2015).
The penalty parameter, λ, is chosen by cross validation and the optimal value of λ is
chosen to be the minimizer of the mean squared error (Hastie et al., 2015). The lasso
method has some limitations. It can only select a number of features (genes) at most
equal to the number of samples. When a group of highly correlated variables exists,
lasso method will only select one of the variables from the group and does not care
which one is selected (Zou and Hastie, 2005).

7.5.2 Elastic Net

To overcome the limitations of the lasso penalty, Zou and Hastie (2005) proposed the
elastic net penalty. This penalty has the following form: λ

∑m
j=1[(1−α)β2

j +α|βj |]. It
is a mixture of the lasso and the ridge regression penalties. The elastic net coefficients
are the minimizer of (Hastie et al., 2015)

argmin
(γ,β)

 1
2N

N∑
i=1

(yi − β0 − γzi −
m∑
j=1

xjiβj)2 + λ

m∑
j=1

[ 12(1− α)β2
j + α|βj |]

 . (7.9)

Similar to lasso, the elastic net provides an automatic variable selection procedure due
to the shrinkage of the parameters toward zero and it can select groups of correlated
variables. Again, the parameter γ corresponding to the fingerprint feature variable in
equations (7.9) is not penalized. The shrinkage and the mixing parameters , λ and α
respectively, are determined by an internal cross validation. Note that for α = 1 the
elastic net solution is identical to the lasso solution while for α = 0 it is identical to
ridge regression. For the predictive model, a cross validation loop of B iterations is
performed (see an illustration in Figure 7.2). At each iteration, the predictive model
consists of k genes with non-zero coefficients selected using lasso or elastic net. These
genes are kept for further analyses.
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Figure 7.2: Penalized regression models. Flowchart of the steps involved in the
development of the predictive model.

7.5.3 Fixed Gene List

At the end of the 3-fold cross validation repeated 1000 times, two lists of genes with
the highest selection frequencies are produced (one list per each penalty). Extra
1000 iterations, with a 3-fold cross validation, are run on each fixed list to assess the
predictive model.
Within the loop, the optimal λ value is determined on the train for fixed k genes
(k = 2, 3, ...11, for lasso and k = 2, 3, ...20, for elastic net). For each value of k, the
process is repeated 1000 times. A grid of the elastic net mixing parameter is also
provided (α = 0, 0.1, ..., 1). The squared correlation (ρ2) between the observed and
predicted values, MSE and the squared informational coefficient of correlation (SICC,
in equation (7.7)) from information theory (Alonso and Molenberghs, 2007) are used
to assess the model fitted on the test set.

7.6 Application to the Data

7.6.1 Supervised Principal Component Analysis

7.6.1.1 Cross Validation Results

The EGFR data described in Section 6.2.1 was used in all analyses performed in
this chapter. For each cross validated sample, the gene-specific models were fitted to
the train dataset to rank genes (based on parameter test statistics). The iterative
procedure starts with top 2 genes, and subsequently the number of the top genes was
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increased by one. In each split, the combination of genes giving the highest R2
h on

the test set were recorded. Figure 7.3 (top left panel) shows the average R2
h with

95% confidence intervals for each top k (k = 2, 3, ...100). The top right panel depicts
selection frequencies for the top 22 genes in all 1000 data splits. MSE and ρ2 measures
are shown in the bottom row.
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Figure 7.3: SPCA: performance measures obtained for models using top k genes
in the gene profile (on the test set); Top left panel: R2

h measures, Top right panel:
Frequency of mostly selected genes, Bottom left:ρ2 measures, Bottom right: MSE. All
measures are obtained from 1000 cross-validated datasets.

From the left panel of Figure 7.3, it can be seen that when 22 to 25 genes are included
in the gene profile, there was not much improvement in R2

h. Next, a list with the
highest selection frequency was identified. The top right panel of Figure 7.3 shows
the top 22 genes. Figure 7.4 shows the density plot for the R2

h and the ρ2.
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Figure 7.4: SPCA. Density plots of R2
h and ρ2 for 1000 cross validated samples.

The red dotted lines present the mean, while the black dotted lines present the median.

7.6.1.2 Fixed Features in a Gene Profile: Leave-one-out Cross Validation

In this Section, we present the results with a fixed list of 22 genes using leave-one-
out cross-validation. Following Tilahun et al. (2010), two approaches were used to
construct the gene profile.

• The first approach consists of taking the first top k genes and constructing the
first principal component. Figure 7.5 (left panel) and Table 7.1 show that R2

hcv

is ranging between 0.68 to 0.744.
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Table 7.1: SPCA results based on top k genes,R2
h, R2

hcv
: The measure of association

without and with leave one cross validation.
Top R2

h R2
hcv

2 0.6800 0.6799
3 0.7089 0.7086
4 0.7080 0.7078
5 0.6990 0.6987
6 0.6991 0.6989
7 0.6971 0.6969
8 0.7076 0.7074
9 0.7153 0.7151
10 0.7219 0.7217
11 0.7262 0.7260
12 0.7286 0.7284
13 0.7280 0.7278
14 0.7310 0.7309
15 0.7299 0.7297
16 0.7262 0.7260
17 0.7210 0.7208
18 0.7251 0.7249
19 0.7254 0.7253
20 0.7351 0.7350
21 0.7405 0.7403
22 0.7442 0.7441

• With the second approach, a gene is included as a part of the joint biomarker
if it results in an increase of the R2

h. For this approach, 12 genes were added in
the construction of the biomarker, giving an R2

hcv
value of 0.78, which is higher

than taking, for example, the top 22 genes at once. Figure 7.5 (right panel)
and Table 7.2 show the results obtained with and without leave-one-out cross
validation.

Table 7.2: SPCA results based on top k genes,R2
h, R2

hcv
. Only genes which increase

R2
h are used to build the first PC.

Top R2
h R2

hcv

2 0.6800 0.6799
3 0.7089 0.7086
4 0.7242 0.7240
5 0.7356 0.7354
6 0.7435 0.7433
7 0.7461 0.7460
8 0.7491 0.7489
9 0.7550 0.7548
10 0.7703 0.7701
11 0.7776 0.7775
12 0.7801 0.7800
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7.6.1.3 Fixed Features in a Gene Profile: 3-fold Cross Validation.

In this section, the analysis was performed using fixed lists of features in gene profile.
For each top k value, a loop of 3-fold cross validation with 1000 iterations was run.
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Figure 7.6: Fixed gene profile. R2
h for top k genes. Left panel: all top 22 genes;

Right panel: genes from the list with increasing R2
h.

Figure 7.6 shows the quantiles (25th, median, 97.5th) of R2
h measures for different

values of top k. The left panel shows the quantiles for the top 22 genes, while the
right panel shows the quantiles for the top 12 genes used in the second approach.
As expected, for the short list, the association measures increase as the number of
features increases in the first principal component.

7.6.2 Lasso and Elastic Net

7.6.2.1 Cross Validation Results

For each iteration, features having non-zero coefficients were kept. Figure 7.7 (top left
panel) shows the selection frequencies for top 11 genes. The top left panel and lower
panel depict the density plots for both MSE and the squared correlation between the
observed and the predicted values on the test set .
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Figure 7.7: Lasso. Upper left panel: selection frequency for top genes; Upper
right panel: MSE density plot; Bottom left panel: ρ2 density plot (red dotted lines
present the mean, the black dotted lines present the median). Results from 3-fold
cross-validation repeated for 1000 times with lasso.
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Figure 7.8: Elastic net. Upper left panel: selection frequency for top genes; Upper
right panel: MSE density plot; Bottom left panel: ρ2 density plot (red dotted lines
present the mean, the black dotted lines present the median). Results from 3-fold
cross-validation repeated for 500 times with elastic net.
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Similar to lasso, the elastic net penalty parameters were tuned in 3-fold cross valida-
tion procedure. A range of values for the mixing parameter α was defined and, for
each value, the 3-fold cross validation was repeated 500 times. For each optimal α
value, genes with non zero coefficients were kept in order to find the most selected
features. Figure 7.8 (top left panel) shows the selection frequencies for the top 20
genes for an elastic net model with α = 0.89 (Figures for other α values are presented
in the appendix C). The top right panel depicts the density plot for MSE. The left
bottom panel shows the density plot for the squared correlation between the observed
and the predicted on the test set.
As expected, the elastic net penalty, has a tendency to select more genes compared
to lasso.

7.6.2.2 Fixed List of Genes

Final prediction models were constructed using top 11 and top 20 genes, for lasso
and elastic net, respectively. For each top k value, the data were cross-validated 1000
times. The squared correlation (ρ2) between the observed and predicted values and
the squared informational coefficient of correlation (SICC) were used to assess the
model fitted on the test set. Figure 7.9 shows the distribution of R2

h, ρ2 and MSE for
lasso.
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Figure 7.9: Lasso with fixed gene list. R2
h (Left panel), ρ2 (Middle panel) and MSE

(right panel) distributions with top k genes (k = 2, 3, ..., 11).

We notice that the variability in R2
h, ρ2 and MCE are relatively high when the

number of genes used to build the predictive model is relatively small.

Similar analyses were performed for models with elastic net penalties. A grid of α
values was provided (α = 0, 0.1, 0.2, ...., 1). As before, for a given values of α and k, the
3-fold cross validation was repeated 1000 times. Figure 7.10 presents the distributions
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of R2
h, ρ2 and MSE for the mixing parameter α = 0.5. Results for other α values are

presented in the appendix C.
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Figure 7.10: Elastic net with fixed gene list. R2
h (Left panel), ρ2 (Middle panel)

and MSE (right panel) distribution for top k genes (k = 2, 3, ..., 20). The mixing
parameter α = 0.5.

7.7 Discussion

The starting point of this chapter was a gene-specific model, either a joint model or a
conditional model was used to identify genes which are associated with the bioactivity
of the compound (measured by pIC50). Our aim in this chapter was to construct a
biomarker that includes information from multiple genes. Of course, when such a
biomarker is constructed the next question is how to evaluate it.
Alonso and Molenberghs (2007) argue that ”a variable is a valid surrogate for a true
endpoint at the individual level, if uncertainty about true endpoint is reduced by a
”large” amount when the surrogate endpoint is known”.
In this chapter, we proposed to use a measure which is often used for the evaluation
of surrogate endpoint in randomized clinical trials, namely the R2

h. We have shown
that, using data reduction methods such as SPCA, or penalized regression models,
we can construct biomarkers which maximize R2

h.
An issue that was not addressed in this chapter is inference. The question is not just
how good is the biomarker but if the value of the R2

h is unlikely to be observed in
random data. For this, a resampling based inference procedure should be developed.
This is a topic for future investigation.





Chapter 8
Identification of Causal
Structures in
High-Dimensional Data Using
Structural Equation Models

8.1 Introduction

The drug discovery and development process is typically costly and time consuming.
This is largely attributed to the time gap between the lead compounds selection
and the identification of their off target effects in later toxicity studies (Hughes et al.,
2011; DiMasi et al., 2003; Adams and Brantner, 2006). As a consequence, a compound
development project could be terminated at a time when substantial resources have
already been spent. Therefore, it is crucial to identify early failure of candidate
compounds in order to save time and investment in a later stage. In this regard,
high-dimensional biological data, which can be determined quickly and at relatively
low cost, could be useful to speed up the understanding of the molecular basis of
disease and to examine efficacy and toxicity response of candidate drugs (Lennon,
2000; Kraljevic et al., 2004; Starkuviene and Pepperkok, 2007). Recently, Verbist et al.
(2015) demonstrated the use of transcriptomic biomarkers for compound’s activity
providing an early insight to the mechanism of action of a specific (or a specific set
of) compound(s). Perualila et al. (2016) presented a joint modeling approach to

83



84 Chapter 8. Causal Structures in High-Dimensional Data

identify genes that are associated with the efficacy data accounting for the chemical
structure of the compounds.
In this chapter, we further exploit the relationship of the three data sources in drug
discovery studies presented by Perualila et al. (2016) via structural equation modeling
(SEM). Similar to the joint modeling approach, SEM allows for the simultaneous
estimation and testing of the effect of chemical structure on the bioactivity data and
the gene expression data. The SEM allows to investigate several causal models that
could explain the relationship between the chemical structure and biological activity
with the gene expression as the proposed mediator (Danner et al., 2015; Li et al.,
2006). Specifically, SEM decomposes the total effect of the chemical structure on
biological activity variable into direct and indirect effects. An indirect effect is the
effect of the chemical structure on the bioactivity variable via the gene expression.
Danner et al. (2015) showed that statistical test of indirect effect (or mediation effect)
can be improved by assessing the fit of all possible structural models in order to avoid
spurious mediation effects and to gain more scientific insights. Note that given the
experimental variable in our setting, the fingerprint feature is treated only as an
explanatory variable and some causal structures originally proposed by Danner et al.
(2015) were not considered. This point is further discussed in Section 8.2.2. In this
chapter, we extend the approach presented in Danner et al. (2015) and propose the use
of SEM in combination with model averaging techniques (Burnham and Anderson,
2003, 2004; Claeskens and Hjort, 2008) to compare and select causal structures that
best fit the data. A gene specific SEM is fitted with an aim to classify genes according
to the causal structure between the bioactivity variable, chemical structure and gene
expression.
This chapter is organized as follows: in Section 8.2.1 we present the path analysis
model and describe how the chemical structure effect can be decomposed into the
direct and indirect effects. The model averaging technique to compare between dif-
ferent causal structures and select the most plausible is presented in Section 8.2.3.
The proposed method is applied to the data in Section 8.3, followed by a discussion
in Section 8.4.

8.2 Methodology

8.2.1 Structural Equation Modeling

Structural equation modeling (SEM) approach has been widely used in many fields,
such as economics, sociology and psychology (Bollen, 1989; Loehlin, 1998; Jöreskog,
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1993). The key idea behind SEM is that the causal relationships among the variables
determine the expected pattern of correlation (Li et al., 2006).

Figure 8.1: Path diagram. Fingerprint feature indirect effect on the pIC50 through
the gene expression (red arrows). Direct effect is represented by the blue arrow.

In this chapter, a path analysis model is considered, i.e., a SEM with three observed
variables: (1) the jth gene expression of the ith compound, Xji, j = 1, 2, . . . ,m,
and i = 1, 2, . . . , n; (2) the bioactivity variable (pIC50) denoted by Yi, and (3) the
chemical structure or fingerprint (FP) feature denoted by Zi, an indicator variable,
which takes value 1 if the fingerprint feature is present in the ith compound, and 0
otherwise. Figure 8.1 presents a path diagram, an example of a directed acyclic graph
(DAG), displaying the causal relation between the three variables (Greenland et al.,
1999). The path diagram shown in Figure 8.1 corresponds to the two models given
by:

Xji = λ1jZi + ε1i,

Yi = λ3jZi + λ2jXji + ε2i.
(8.1)

Here, λ1j and λ3j are the fingerprint effects on the jth gene expression and the pIC50,
respectively. The parameter λ2j is the gene-specific effects on the pIC50. It is further
assumed that (Bollen, 1989):
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εki ∼ N(0, δ2
k), k=1,2,

cov(ε1i, ε2i) = 0,
var(Z) = φ.

(8.2)

The path analysis model specified in equation (8.1) allows to distinguish direct, in-
direct, and total effects of the fingerprint feature Z on the pIC50. Three possible
direct effects can be seen from Figure 8.1: λ3j , the direct effect of the FP feature
on the pIC50: λ1j , a gene-specific direct effect of the FP feature on the expression
level of jth gene, and λ2j , a gene-specific direct effect of the jth gene on the pIC50.
A variable Z is said to have an indirect effect on the variable Y if the effect of Z
on Y is mediated by at least one intervening variable (Bollen, 1989). In the path
analysis model formulated in equation (8.1), the fingerprint feature has an indirect
effect on the bioactivity variable through the jth gene expression. This indirect effect
is marked by red arrows in Figure 8.1, and equals to λ1j ×λ2j . The sum of the direct
and indirect effects is equal to the total effect of the variable Z on the variable Y
(Bollen, 1989).

8.2.2 Causal Structure

Hypothesis tests for coefficients in equation (8.1) allow to investigate whether the FP
feature has a significant direct and indirect effect on pIC50. However such statistical
tests are based on the structural model specified in equation (8.1) while other causal
structures are not considered (Danner et al., 2015; Fiedler et al., 2011). For some
genes, a path analysis model containing indirect effect might not be the best model
and there is no reason to exclude alternative models which represent different causal
structures.
Note that there is a fundamental difference between the approach presented by Danner
et al. (2015) and the approach we present in this chapter. With three-variate struc-
tures (gene expression, FP feature and pIC50), there are 27 possible causal structures
for the triplet (Xij , Yi, Zi). In the drug discovery setting, the FP feature variable is
a design variable and it is not affected by neither the gene expression nor the bioac-
tivity variable. These constraints reduce the number possible causal structures to 12.
Figure 8.2 left panel shows one of the discarded structures.
In addition, since the primary interest is placed on the effect of gene expression and
fingerprint feature on the bioactivity variable (i.e. QSAR and QSTAR), four extra
causal structures are excluded. Figure 8.2 right panel shows a typical structure which
is not consider (arrow labeled a). If both directions (a and b) are of interest the joint
model formulated in equation (7.1) can be used.
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Figure 8.2: Some of the causal structures ruled out by the experiment design

Figure 8.3 shows a set of 8 causal models considered in our analysis.

• The causal structure represented by Model 1, the independent model, assumes
that none of the variables affects each other. Given that the FP feature was
chosen in a such way to maximize the difference on pIC50, this structure is less
probable to be found.

• For Model 2, the causal structure corresponds to genes for which the FP feature
affects the pIC50, but this effect is not mediated via the gene expression. The
only effect in this causal structure is a direct effect from Z to Y .

• In Model 3, the FP feature only affects the gene expression but not the pIC50.

• The causal structure in Model 4 corresponds to genes which only affect the
pIC50. The FP feature does not effect neither the gene expression nor the
pIC50.

• The causal structure in Model 5 corresponds to a complete mediation which
means that the FP feature affects the gene expression, which in turn affects
the pIC50. In the drug discovery setting, genes having this causal structure are
of interest since they could provide an understanding about the mechanism of
action of a given class of compounds having the specific FP feature.

• The causal structure in Model 6, the conditional independence model, corre-
sponds to genes for which the FP feature affects both the expression level and
the pIC50 but given the FP level, gene expression and pIC50 are not correlated.
Hence, gene expression level and the pIC50 are mutually caused by the presence
or absence of the FP feature (Morgan and Winship, 2007; Pearl, 2009).

• The causal structure in Model 7 corresponds to genes for which the expression
level as well as the FP feature affect the pIC50. However, FP feature does
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Figure 8.3: Illustration of possible causal structure for the triplet (Xji, Yi, Zi). Model
1: independent model, Model 2— Model 4: single effect models, Model 5: complete
mediation model, Model 6: common cause model, Model 7: common effect on Y,
Model 8: Partial mediation.
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not affect the gene expression. This structure corresponds to genes for which
the gene expression and the FP feature would collide at the pIC50. According
to Greenland et al. (1999), a collider is a variable that blocks the association
between the variables that influence it.

• This causal structure presented in Model 8 corresponds to genes for which the
expression level are affected by the presence or absence of the FP feature. The
expression level in turn affects the pIC50. In addition, the FP feature affects
the pIC50. This model is formulated in equation (8.1).

The eight causal structures represented by the 8 path models are fitted for each gene
separately and can be used to select the best causal structure for each gene and to
classify genes according to their causal structures.

8.2.3 Model Averaging Techniques

The modeling approach of Danner et al. (2015) requires to fit all possible structural
models (8 in our setting) and to choose the structural model which best fits the data
using model selection criteria such as Akaike’s information criterion (AIC, Akaike,
1974) or the Bayesian information criterion (BIC, Schwarz, 1978). Following this
approach, estimation and inference are based on the selected model (a procedure
called post selection inference and estimation). Such a procedure does not take into
account model uncertainty (i.e., the fact that more than one model was fitted to
the data). In this chapter, we propose to use the model averaging technique for this
purpose (Lin et al., 2012; Kuiper et al., 2014; Claeskens and Hjort, 2008; Kuiper et al.,
2011). All candidate models are fitted and their corresponding information criterion
(IC) are computed. The IC, which takes into account both the goodness-of-fit and
the model complexity, is used to calculate the posterior probability of the model. Let
M1, . . . ,MR, be a set of R candidate models fitted to the data. The posterior model
probability P (Mr|data), r = 1, . . . , R, derived from the IC can be used to select causal
structure (model) which better fits the observed data for a given gene. The posterior
probability of the model Mr given the data (Burnham and Anderson, 2003) is given
by

P (Mr|data) = P (data|Mr)P (Mr)∑R
r=1 P (data|Mr)P (Mr)

, r = 1, . . . , R. (8.3)

Here, P (data|Mr) and P (Mr) are the model likelihood and the prior probabilities of
the rth model, respectively. Following Lin et al. (2012) non informative prior are used,
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i.e. P (Mr) = 1/R for all models. The model likelihood P (data|Mr) is approximated
by (Burnham and Anderson, 2003)

PIC(data|Mr) = exp(−1
2∆ICr), (8.4)

where, ∆ICr = ICr − ICmin, with ICmin = min(IC1, . . . , ICR). Hence, combining
equations (8.3) and (8.4) together and assuming equal prior probabilities, we get

wr = PIC(Mr|data) =
exp(− 1

2 ∆ICr)∑R
r=1 exp(− 1

2 ∆ICr)
. (8.5)

The weight, wr, can be considered as an approximation of the posterior probability of
a given model to be the best model among all fitted models given the data. AIC and
BIC can be used in equation (8.5). The BIC penalty is higher than the AIC when
there are more than seven observations (i.e., it favors simpler models as the sample
size increases).

8.3 Application to the Data

Two case studies, EGFR and ROS, presented in Chapter 6, are used for illustration
of the methodology presented above.

8.3.1 EGFR Data Overall Results

The model averaging technique described in the previous section was applied to the
EGFR dataset assigning each gene to one of the causal structures based on the highest
weight defined in equation (8.5).
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Figure 8.4: Classification of genes to different
casual structures based on AIC and BIC. Genes
are classified based on the maximum posterior
model probability.

Table 8.1: Classification of
genes into different casual struc-
tures according to the maximum
posterior probability.

Structure AIC BIC
Model 1 0 0
Model 2 967 1359
Model 3 0 0
Model 4 0 0
Model 5 7 17
Model 6 286 174
Model 7 419 480
Model 8 1916 1565

It is evident from Figure 8.4 and Table 8.1 that, compared to the AIC, BIC assigns
more genes to Model 2 and less genes to Model 8. This is because BIC favors simpler
structures as pointed out in the previous section. Moreover, for this case study,
some causal structures are less likely exhibited such as Models 1, 3 and 4. This is
expected since the FP feature used has been previously shown to be linked to the
pIC50 (Model 2 as the simplest). The AIC and BIC criteria identified most of the
genes as having the causal structures represented by Model 2 (27% and 38% using AIC
or BIC, respectively) and Model 8 (53% and 44% using AIC or BIC, respectively).
Recall that genes having the causal structure represented by Model 2 are not of
interest in the drug discovery process. The FP feature has an effect on the pIC50,
but this effect is not mediated via the gene expression.

8.3.2 Example of Specific Genes

8.3.2.1 CAP1

The left panel in Figure 8.5 shows the posterior model probability of the 8 causal
models for the gene CAP1. The highest posterior model probability is obtained for
the causal structure in Model 2 (w2 = 0.73). The expression level of this gene is
plotted against the pIC50 as shown in the right panel of Figure 8.5. Note how the
pIC50 level is different across the FP groups but the gene expression is not affected
by the FP.
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Figure 8.5: Structural models for gene CAP1. Left panel: Posterior model proba-
bilities; Right Panel: gene expression versus pIC50.

8.3.2.2 FOSL1

Genes having the causal structure represented by Model 8 are of interest in the drug
discovery process since the FP feature affects the gene expression level, which in turn
affects the pIC50. In addition, the FP feature affects the pIC50.
Figure 8.6 shows the posterior model probabilities (left panel) and the scatter plot
showing the relationship pattern of the three variables (right panel) for the gene
FOSL1. For this gene, the highest posterior probability is obtained for Model 8
(w8 = 0.89).
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Figure 8.6: Structural models for gene FOSL1. Left panel: Posterior model proba-
bilities; Right Panel: gene expression versus pIC50.

8.3.2.3 PNISR

In total, 17 genes were identified as having the causal structure represented by Model
5. For this structure, a complete mediation is observed. The FP feature affects the
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gene expression level, which in turn affects the pIC50. Figure 8.7 shows the posterior
model probabilities (left panel) for the gene PNISR.
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Figure 8.7: Structural models for gene PNISR. Left panel: Posterior model proba-
bilities; Right Panel: gene expression versus pIC50.

In the drug discovery process, this type of genes is of interest since total effect of the
FP feature on the bioactivity is absorbed by the indirect effect via the gene expression.

8.3.2.4 YY1

The causal structure represented by Model 6 was observed for 8% of the genes using
AIC ( 5% of the genes using BIC). It is an interesting causal structure with respect
to drug discovery since the FP feature has an effect on both gene expression and
pIC50, but the gene expression level does not affect the pIC50. Figure 8.8 shows one
example, the gene YY1, that follows this causal structure.

P
os

te
rio

r 
pr

ob
ab

ili
ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

m
od

el 
1

m
od

el 
2

m
od

el 
3

m
od

el 
4

m
od

el 
5

m
od

el 
6

m
od

el 
7

m
od

el 
8

11.20 11.25 11.30 11.35

5.
0

5.
5

6.
0

6.
5

7.
0

Gene expression

pI
C

50

absent
present

Figure 8.8: Structural models for gene YY1. Left panel: Posterior model probabili-
ties; Right Panel: gene expression versus pIC50.

Figure 8.9 summarizes the causal structures for the above-mentioned genes with their
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corresponding parameter estimates.

Figure 8.9: The EGFR case study, SEM parameter estimates of the four genes
exhibiting different causal structures.

8.3.3 Application to ROS Data

The 8 SEMs were fitted to the ROS data and the classification to the different causal
structures is presented in Table 8.2 and Figure 8.10.
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Figure 8.10: Classification of gene to differ-
ent casual structures based on AIC and BIC.
Genes are classified based on the maximum pos-
terior model probability.

Table 8.2: Classification of
genes into different casual struc-
tures according to the maximum
posterior model probability.

Structure AIC BIC
Model 1 0 0
Model 2 955 2100
Model 3 0 0
Model 4 0 0
Model 5 0 0
Model 6 1132 1188
Model 7 1953 2285
Model 8 3060 1527

For gene LRRTM2, the highest model probability (w2=0.82) was obtained for Model
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2 which implies that for this gene the most probable causal structure assumes only
an effect of the chemical structure on pIC50 as it can be clearly seen in Figure 8.11.
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Figure 8.11: Structural models for gene LRRTM2. Left panel: Posterior model
probabilities; Right Panel: gene expression versus pIC50.

As mentioned in the previous section, the conditional independence model (Model 6),
which has the highest model probability for gene PFKFB3 (w6=0.95, see Figure 8.12)
is of primary interest in drug discovery. This causal structure implies that the asso-
ciation between gene expression and pIC50 is derived by the chemical structure (and
conditional on the chemical structure the two variables are independent).
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Figure 8.12: Structural models for gene PFKFB3. Left panel: Posterior model
probabilities; Right Panel: gene expression versus pIC50.

For gene EXPH5, shown in Figure 8.13, the highest model probability was observed
for model 7 (w7=0.90) for which the causal structure includes only direct effects.
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Finally, model 8, with w8=0.97, is the most probable model for gene MPPL17 (see
Figure 8.14) implying that in addition to the chemical structure effect, the expression
level and pIC50 are correlated.
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Figure 8.13: Structural models for gene EXPH5. Left panel: Posterior model prob-
abilities; Right Panel: gene expression versus pIC50.
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Figure 8.14: Structural models for gene MRPL17. Left panel: Posterior model
probabilities; Right Panel: gene expression versus pIC50.

Figure 8.15 displays parameter estimates for the above genes and their corresponding
causal structure.
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Figure 8.15: The ROS project, SEM parameter estimates of the four genes exhibiting
different causal structures.

8.4 Discussion

In this chapter, we discussed how structural equation models can be used for the
integration of multi-source high-dimensional data in the drug discovery process. SEM
allows to classify genes according to their causal structures with the bioactivity and
chemical structure data in the early phase of drug discovery.
The selection of causal structure per gene is done via model comparison. To this
end, for each gene, different causal structures are assumed, and the structure giving
the highest posterior model probability is retained. Recall that some of the causal
structures were not considered due to the experiment constraints. Genes are then
grouped depending on the causal structure that gives the best fit.
The genes FOSL1, PNISR, YY1 (EGFR data) are of interest in the drug discovery
studies since they can be used to establish the relationship between chemical structure
and bioactivity. Selection and evaluation of genes which can be used as potential
biomarkers in drug discovery can help the development team to better understand the
mechanism of action of a new set of compounds and therefore substantially shorten
development time or the time to reach a critical decision point, such as candidate
selection, in drug development.
The analysis presented in this chapter was done gene by gene, and genes identified
by this approach could be combined in further analyses to construct joint biomarkers
using different methods. Methods such as supervised principal component analysis
(SPCA), lasso and elastic net can also be used if the interest is to identify a set of
multiple genes that could be used to predict the response.
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Chapter 9
Surrogacy in Randomized
Clinical Trials: An
Introduction and Case
Studies

In the first and the second part of this dissertation, we discussed different methods
that can be used for the identification of metabolomics and genomic biomarkes. In
this part of the dissertation we focus on the evaluation of surrogate endpoints in the
clinical trial setting.
Clinical trials are designed to evaluate therapeutic efficacy of new drugs using clinical
endpoints that reflect concrete benefits for patients. Such endpoints include disease
outcome, survival time, death, etc. However, in many cases these trials require large
number of patients and long time to complete. Surrogate endpoints, which would
shorten the duration of assessment and allow to evaluate the effectiveness of new
drugs, are of interest for both researchers and patients (Burzykowski et al., 2005).
For example, considerable reduction in sample size and trial duration can be achieved
by replacing rare or late-occurring clinical endpoints with frequent or short-term sur-
rogate endpoints (Lin et al., 1997).
As discussed by Ellenberg and Hamilton (1989), in some cases the investigator must
rely on a surrogate endpoint since the clinical endpoint is not available, is difficult
to measure, requires expensive, invasive or uncomfortable procedure. Ellenberg and
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Hamilton (1989) define a surrogate endpoints as: ”an endpoint that can be used in
lieu of other endpoints in the evaluation of experimental treatments or other inter-
ventions”. This endpoint is useful when it can be measured earlier, more conveniently
or more frequently than the endpoints of interest (clinical endpoint). It should also
be clinically relevant and biologically plausible (De Gruttola et al., 1997; Lonn, 2001;
Weir and Walley, 2006). Before a surrogate endpoint can replace a final endpoint
in the evaluation of an experimental treatment, it must be formally ’validated’, a
process that has caused much controversy and has not been fully elucidated so far
(Burzykowski et al., 2005).
As pointed out by Buyse et al. (2000), the main reason to validate a surrogate endpoint
is to be able to predict the effect of treatment on the true endpoint, based on the
observed effect of the treatment on the surrogate endpoint, with sufficient precision
to distinguish safely between effects that are clinically worthwhile and effects that are
not.
In this part of the dissertation, we focus on software development and introduce two
softwares products, in SAS and R, for the analysis of surrogate endpoint in randomized
clinical trials. The development of both products was done keeping in mind that the
users will not be necessary statisticians. Therefore, both products provide a user-
friendly and easy to interpret standard output which contains only the main results
of the analysis. The SAS product requires a SAS license, basic knowledge about the
SAS software but no knowledge in statistics. The R shiny App, an online application,
does not require from the user anything except a dataset ready for the analysis. The
user can run the analysis from his/her smartphone (or any other mobile device) and
does not need to install or know any statistical software.

9.1 Case Studies

Several datasets are used for illustration in this part of the dissertation. A short
description of each case study is given below.

9.1.1 ARMD Study

The ARMD trial is a clinical trial for patients with age-related macular degeneration
(ARMD), a condition in which patients progressively lose vision (Pharmacological
Therapy for Macular Degeneration Study Group, 1997). In the ARMD trial, visual
acuity was examined using standardized vision charts that display lines with five
letters of decreasing sizes. The patients had to read these letters from top (largest
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letters) to bottom (smallest letters). Visual acuity was quantified as the total number
of letters that were correctly read by a patient.
A total of 181 patients from N = 36 centers participated in the ARMD trial. There
were two treatment conditions: interferon-α and placebo (coded as 1 = interferon-α
and −1 = placebo). The true endpoint (T ) is the change in visual acuity 52 weeks
after the start of the treatment. The candidate surrogate endpoint (S) is the change in
visual acuity 24 weeks after starting the treatment. A total of 84 and 97 patients were
enrolled in the placebo and interferon-α treatment conditions, respectively. The aim
of the ARMD trial was to show that interferon-α is superior to the placebo treatment
(using visual acuity as the primary endpoint).

9.1.2 Ovarian Cancer Study

The method was applied to a data from a meta-analysis for four multicenter trials in
advanced ovarian cancer (Omura et al., 1991). The aim of this study was to compare
two treatments: cyclophosphamide plus cisplatin (CP) versus cyclophosphamide plus
adriamycin plus cisplatin (CAP). The binary indicator for treatment is equal to 0 for
CP and 1 for CAP. The surrogate endpoint was the progression free survival time,
defined as the time (in years) from randomization to clinical progression of the disease
or death, whereas the true endpoint was the survival time, defined as the time (in
years) from randomization to death from any cause.
Technically, the ovarian cancer study is a meta-analysis but it contains only four
trials. Thus the center was used as the unit of analysis for larger two trials, and the
trial as the unit of analysis for the two small trials. A total of 50 ”units” are then
available for the analysis, with a number of individual patients per unit ranging from
2 to 274. The analysis was restricted to centers with at least three patients on each
treatment arm due to estimability constraints (Burzykowski et al., 2001). As a result,
data for 39 centers were used with a total sample size of 1153 patients (569 in the
treatment arm and 584 in the control arm).
Figure 9.1 displays the Kaplan Meier curves of the survival time (true endpoint) and
progression free survival time (surrogate endpoint).

9.1.3 Colorectal Cancer Study

The colorectal data was from 28 advanced colorectal cancer trials (Advanced Colorec-
tal Cancer MetaAnalysis Project, 1992, 1994; Meta-Analysis Group in Cancer, 1996,
1998). The individual patients data were collected by the Meta-Analysis Group in
Cancer between 1990 and 1996 to obtain an overall quantitative assessment of the
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Figure 9.1: Advanced ovarian data. Kaplan Meier curves for the survival time (true
endpoint) and progression free survival (surrogate endpoint) for the two treatment
groups CP and CAP.

value of several experimental treatments in advanced colorectal cancer. In the four
meta-analyses, the comparison was between an experimental treatment and a con-
trol treatment. The control treatments, referred to hereafter as ’FU bolus’, were
similar across the four meta-analyses and consisted of fluoropyrimidines (5FU or
FUDR) given as a bolus intravenous injection. The experimental treatments, referred
to hereunder as ’experimental FU’, differed across the four meta-analyses and con-
sisted of 5FU modulated by leucovorin (Advanced Colorectal Cancer Meta-Analysis
Project, 1992), of 5FU modulated by methotrexate (Advanced Colorectal Cancer
Meta-Analysis Project, 1994), of 5FU given in continuous infusion (Meta-Analysis
Group in Cancer, 1998) and of hepatic arterial infusion of FUDR for patients with
metastases confined to the liver (Meta-Analysis Group in Cancer, 1996). As noted
by Daniels and Hughes (1997), the use of an ’experimental’ treatment that varies
among the trials can be defended on the grounds of generalizability of the results
of the validation process to future clinical trials and treatments. The experimental
treatments in our example might be considered as representatives of ’the modifica-
tions of the standard fluoropyrimidine-based regimen’ in advanced colorectal cancer.
Several of the 28 trials were multiarmed. In total, 33 randomized comparisons were
considered in the four meta-analyses. Individual patient data were available for 27 of
the comparisons (in 24 studies). Each of the comparisons is considered as a separate
’trial’.
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9.1.4 Schizophrenia Study

This dataset combines the data that were collected in five double-blind randomized
clinical trials. In these trials, the objective was to examine the efficacy of risperi-
done to treat schizophrenia. Schizophrenia is a mental disease that is hallmarked by
hallucinations and delusions (Association, 2000).
In each trial, the Clinical Global Impression (CGI; Guy (1976)), the Brief Psychiatric
Rating Scale (BPRS; Overall and Gorham (1962)), and the Positive and Negative Syn-
drome Scale (PANSS; Singh and Kay (1975)) were administered. These instruments
are clinical rating scales that are routinely used to assess symptom severity in pa-
tients with schizophrenia (Mortimer (2007)). The patients in the different trials were
administered risperidone or an active control (e.g., haloperidol, levomepromazine, or
perphenazine) for four to eight weeks. The main endpoints of interest were the change
in the CGI score (= CGI score at the end of the treatment - CGI score at the start of
the treatment), the change in the PANSS score, and the change in the BPRS score.
A total of 2, 128 patients participated in the five trials (1, 591 patients received risperi-
done and 537 patients were given an active control). The patients were treated by a
total of N = 198 psychiatrists. Each of the psychiatrists treated between ni = 1 and
52 patients. In the subsequent sections, different combinations of the endpoints (CGI
and PANSS) in various forms (binary, continuous) was considered as the candidate
surrogate and the true endpoint.

9.1.5 Prostate Cancer Study: A Meta-analysis of Two Trials

This dataset comprises two trials that compared oral liarozole, an experimental
retinoic acid metabolism-blocking agent (Z = 1), with an antiandrogenic drug con-
sidered as control (Z = 0): cyproterone acetate in the first trial and flutamide in the
second (Buyse et al., 2003). In both trials, patients were in relapse after first-line
endocrine therapy. The trials accrued 312 and 284 patients, respectively.
Each trial was multinational and multicentric, and the unit of analysis for the surro-
gacy analysis was chosen to be the country in which the patients were treated. There
were 19 countries containing between 4 to 69 patients. The primary endpoint of the
trials was overall survival from the start of treatment. In both trials, patients were
assessed at baseline (before the start of treatment), at 2 weeks, monthly for 6 months,
at 3-month intervals until the second year, and at 6-month intervals until treatment
discontinuation or death. The assessments included measurement of the prostate-
specific antigen (PSA) level. PSA is a glycoprotein that is found almost exclusively
in normal and neoplastic prostate cells. Changes in PSA often antedate changes in
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bone scan, and they have been used as an indicator of response in patients with
androgen-independent prostate cancer. For the surrogacy analyses, overall survival
(OS) was considered the true endpoint (T ). In the analysis the logarithm of PSA,
measured at about 28 days, was used as a surrogate for overall survival (OS). The
data were analyzed before by Buyse et al. (2003), but without considering the value
of PSA at a particular time point as a candidate surrogate for OS. For the analysis
purposes, patients were grouped by trial and by country. Treatment with flutamide
or cyproterone acetate was considered as the experimental treatment, while liarozole
was regarded as the control treatment.
Among the 596 patients included in the dataset, 421 had a PSA measurement ob-
tained at about 28 days (±6 days). There are 19 trial-by-country groups containing
between 2 to 55 patients per group. Two groups (one with two and one with seven
patients) have to be eliminated from the analysis, because at least one of the treat-
ment arms within the group does not contain any deaths. Consequently, the analysis
included 412 patients spread across 17 groups. The data were provided by the Janssen
Research Foundation (see Buyse et al., 2003).



Chapter 10
Surrogacy Validation Using
SAS

10.1 Introduction

The ability to conduct any statistical analysis on large scale and by many users de-
pends on the availability of a software product with the capacity to conduct the
analysis of interest. In this chapter, we present a SAS product for the analysis of
surrogate endpoint in randomized clinical trials. Table 10.1 presents different surro-
gacy settings and corresponding models implemented in the SAS macros. The usage
of each SAS macro is illustrated using a case study for a specific setting. The SAS
macros presented in this chapter do not require from the user to formulate a model
in SAS but rather to specify a surrogacy model and the macro formulate the model
in SAS automatically.

10.2 General Structure of the SAS Macros Avail-
able for the Analysis of Surrogate Endpoints

The SAS macros, developed for the analysis presented in this chapter, have the same
general form. Depending on the surrogacy setting, the macros require from the user
to prepare a dataset with a specific structure. Note that, different macros require
different dataset structures. A generic call of a surrogacy SAS marco has the following
form:
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% macroname (data=,true=,surrog=,trial=,treatment=,patid=,

optional-arguments)

The following arguments are used in all macros:

• data: a dataset containing one record per patient with measurements for both
the true and the surrogate endpoints.

• true: a measurement of the true endpoint.

• surrog: a measurement of the surrogate endpoint.

• treatment: treatment indicator variable (1= active, -1=control ).

• trial: the unit of the study for which trial-level surrogacy will be estimated.

• patid: patient’s identification number.

• optional-arguments: optional arguments that should be provided to conduct
a specific analysis, for example, a leave-one-out trial analysis discussed in Sec-
tion 10.3.1.

Graphical and numerical outputs are customized in such a way that users only see
relevant information depending on the surrogacy setting. Note that the standard SAS
output tables are not produced and it is recommended to check the SAS log window
for possible problems.
For the remainder of the chapter, we present different surrogacy settings, their corre-
sponding macros, case studies and outputs. For all surrogacy settings the models are
only briefly presented.

10.3 Validation of Surrogacy Using a Joint Model-
ing Approach for Two Normally Distributed
Endpoints

In this section we presented SAS macros for surrogacy setting in which both endpoints
are continuous. For all models discussed in this section the ARMD data were used for
illustration. Visual acuity at week 52 (Diff52) and visual acuity at week 24 (Diff24)
are the true and the surrogate endpoints, respectively. Each line in the data contains
information about one patient. A partial print of the data is shown below.
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10.3.1 The Full Fixed-effects Model

Model Formulation

This approach is based on a hierarchical two-stage model used by Buyse et al. (2000)
to validate a surrogate endpoint, when both endpoints are assumed to be normally
distributed. Briefly, the first-stage consists of a joint model for the surrogate and true
endpoints given by: {

Sij = µSi + αiZij + εSij ,

Tij = µTi + βiZij + εTij ,
(10.1)

where, µSi and µTi are trial-specific intercepts for S and T , αi and βi are trial-specific
treatment effects upon the surrogate and the true endpoint, respectively. The error
terms, εSij and εTij , are bivariate normally distributed with zero mean and covariance
matrix given by:

Σ =
(
σSS σST

σTT

)
. (10.2)

The individual-level surrogacy is assessed by the squared correlation between S and
T after adjusting for trial-specific treatment effects, that is

R2
indiv = σ2

ST

σSSσTT
. (10.3)

For the full fixed-effects model, the trial-level surrogacy is estimated using the coeffi-
cient of determination obtained by fitting the following model:
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β̂i = λ0 + λ1µ̂Si + λ2α̂i + εi, (10.4)

where, β̂i, µ̂Si, and α̂i are the parameter estimates obtained from the joint model
specified in equation (10.1).
This approach ignores the fact that the estimated treatment effects α̂i and β̂i will
typically come from trials with large variations in sizes. One way to address this issue
is by weighing the contributions according to trial size, resulting in a weighted linear
regression (Tibaldi et al., 2003). Such an approach may account for some but not all
of the heterogeneity in information content between trial-specific contributions. We
adopt this correction in all two-stage approaches presented in this chapter. Standard
errors for R2

indiv and R2
trial can be calculated using the delta method.

Sensitivity Analysis: Leave-one-out Evaluation

The surrogacy measures estimated in the previous section are derived using all units
in the study (i.e, all trials, centers, etc.). To check the stability of the estimated
measures, we propose to use a ”leave-one-out” evaluation procedure as a sensitivity
analysis approach. It is an iterative procedure in which at each iteration one trial is
left out and the surrogacy measures are estimated using the remaining trials in the
data. The procedure is shown in Figure 10.1.

Data with
the ith trial
excluded

Fit the model
on the data

Surrogacy
evaluation

R
2(−i)
trial , R

2(−i)
indiv

Repeated as
many times
as trials in
the data set

Figure 10.1: A leave-one-out evaluation procedure.
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At the end of the run, parameter estimates for both R2
trial and R2

indiv are obtained
for each trial and influential trials can be identified.

The SAS Macro %CONTCONTFULL

The SAS macro %CONTCONTFULL can be used to conduct the analysis for a setting with
two normally distributed endpoints using the full fixed-effects model. The following
macro call is used:

%CONTCONTFULL(data=armd,true=diff52,surrog=diff24,trt=treat,

trial=center,patid=patientId,weighted=1,

looa=1)

The optional arguments that we use are:

• weighted: an option which allows to use weighted regression (weighted=1) in
the computation of the trial-level surrogacy. The number of patients in the trial
is used as the weight.

• looa: an option to perform a leave-one-out trial analysis (looa=1). Both surro-
gacy measures are computed by leaving out each trial so as to check the influence
of the trial on the surrogacy measures.

Data Analysis and Output

The macro %CONTCONTFULL produces default numerical and graphical outputs. The
first part of the output, shown in Figure 10.2, consists of two descriptive plots which
show the distribution of the patients in the trials by treatment arms (left panel) and
a scatter plot between the true and the surrogate endpoints (right panel).
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Figure 10.2: ARMD study. Descriptive plots. Left Panel: Patients distribution
in the trials by treatment arm. Right Panel: Scatter plot between the true and the
surrogate endpoints.
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As shown in the panel below, individual- and trial-level surrogacy are equal to
R̂2
indiv = 0.4866 (0.3814, 0.5919) and R̂2

trial = 0.7031 (0.5333, 0.8730), respectively.
Both surrogacy measures indicate that the change in visual acuity after 24 weeks is
a surrogate of moderate value for the visual acuity at 52 weeks after starting the
interferon-α treatment.

The results for the leave-one-out sensitivity analysis are presented in Figure 10.3.
Note how the value of R2

trial decreased when center ”13830” was left out (R̂2(−13830)
trial =

0.6295). We can see in Figure 10.2 (left panel) that this trial is the one with highest
number of patients in both treatment arms. Leaving out this center has an impact
on the estimated trial-level surrogacy, since it has the highest weight.
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Figure 10.3: ARMD study. Sensitivity analysis. Left Panel: trial-level surrogacy.
Right Panel: individual-level surrogacy.

A table containing the surrogacy measures estimated using the leave-one-out sensi-
tivity analysis is presented below.
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SAS Codes for the First-stage

Although, not visible to the users, the analysis implemented in the %CONTCONTFULL

macro is based on procedure MIXED. In this section we discuss in more details the
implementation of the joint model specified in equation (10.1) in SAS. Using procedure
MIXED, the following code can be used to fit the joint model in equation (10.1).

proc mixed data=dataset covtest;

class endp patid trial;

model outcome = endp*trial endp*treat*trial / solution noint ;

repeated endp / type=un subject=patid(trial) ;

ods output solutionF=eb CovParms=covar ;

RUN;

The above code presumes that there are two records per subject in the input data
set, the first one corresponding to the surrogate endpoint and the second one to the
true endpoint. The variable endp (endpoint) is an indicator variable for the endpoint
(coded -1 for surrogate and 1 for true endpoint), the variable outcome contains mea-
surements obtained from each endpoint and the variable treat is assumed to be -1/1
coded (Burzykowski et al., 2005).
The repeated statement is used for the estimation of the residual covariance matrix
Σ in equation (10.2). For the mean structure, the interaction term endp*trial in
the model statement allows to fit trial-specific intercepts on both endpoints while the
three-way interaction endp*treat*trial produces the trial-specific treatment effects
on the both endpoints. The options solutionF and CovParms in the ods output

statement allow to output datasets containing fixed-effects estimates and the errors
covariance matrix, respectively, for further analysis. The estimated covariance matrix
is shown below.
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Individual-level surrogacy measure is estimated by:

R̂2
indiv = 133.262

166.77× 218.80 = 0.4866. (10.5)

Note that the nesting notation in the subject=patid(trial) option is necessary
for SAS to recognize the nested structure of the data (subjects are clustered within
trials). The hierarchical nature of the data enables SAS to build a block-diagonal
covariance matrix, with diagonal blocks corresponding to different trials, which speeds
up computations considerably.

SAS Codes for the Second-stage

The second-stage model, from which trial-level surrogacy is estimated, is based on
procedure REG.

proc reg data=secondstage;

model true=surrinterc surrogate;

weight n;

ods output FitStatistics=rsq;

run;

Here, true is the parameter estimate for the treatment effect on the true endpoint (β̂i),
surrinterc, surrogate are the parameter estimates for trial-specific intercept (µ̂Si

)
and treatment effects (α̂i) on the surrogate endpoint, respectively. The statement
weight is used to account for the variability in trials sizes as discussed in Section
10.3.1. SAS output from the second-stage model is shown in the panel below.
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The estimated regression line is β̂i = −0.22 + 0.07µ̂Si + 1.18α̂i with the trial-level
surrogacy R̂2

trial(f) = 0.7031.

10.3.2 The Reduced Fixed-effects Model

Model Formulation

The reduced fixed-effects model assumes common intercepts for S and T in equa-
tion (10.1). Hence, trial-specific µSi and µTi are replaced by µS and µT respectively.
The full fixed-effects model in equation (10.1) can be rewritten as:{

Sij = µS + αiZij + εSij ,

Tij = µT + βiZij + εTij .
(10.6)

The term µ̂Si is dropped at the second-stage. This implies that trial-level surrogacy
is assessed using the coefficient of determination obtained from the model:

β̂i = λ0 + λ1α̂i + εi. (10.7)

Individual-level surrogacy can be assessed using the adjusted association in equation
(10.3).

The SAS Macro %CONTCONTRED

The SAS macro %CONTCONTRED can be used to fit the reduced joint model specified in
equation (10.6). For the ARMD data we use:

%CONTCONTRED(data=armd,true=diff52,surrog=diff24,trt=treat,

trial=center,patid=patientId,weighted=1,

looa=1)
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The specification of the macro’s arguments is the same as the specification presented
in Section (10.2).

Data Analysis and Output

Surrogacy measures obtained from the reduced fixed-effects model are shown below.
Similar to the results presented in Section 10.3.1, the surrogacy measures R2

indiv =
0.5318 (0.4315, 0.6321) and R2

trial(r) = 0.6585 (0.4695, 0.8476) indicated that visual
acuity 24 weeks after starting the interferon-α treatment is a surrogate of moderate
value for the visual acuity at 52 weeks after starting the interferon-α treatment.

Trial-specific parameter estimates for treatment effects are shown in Figure 10.4. The
regression line fitted at the second-stage is added. The circle sizes in the plot are
proportional to the number of patients from each trial.
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Figure 10.4: ARMD study. Estimation of trial-level surrogacy using a two-stage
model. Trial-specific treatment effects obtained from the reduced fixed-effects model.
Circle areas are proportional to the trial size.

Similar to the analysis presented in the previous section, if the argument looa=1 is
used, a ”leave-one-out” analysis is performed .

SAS Codes for the First-stage

The joint model formulated in equation (10.6) can be fitted using SAS procedure
MIXED in the following way:
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proc mixed data=dataset covtest;

class endp patid trial;

model outcome = endp endp*treat*trial / S noint ;

repeated endp / type=un subject=patid(trial) ;

ods output solutionF=eb CovParms=covar ;

run;

Note that the two-way interaction term endp*treat is dropped from the model state-
ment and instead we use the variable endp, as result, a common intercept is fitted to
the two endpoints. The panel below shows the parameter estimates for the first-stage
model.

The individual-level surrogacy measure can be estimated using the residual covariance
matrix shown in the panel below.

R̂2
indiv = 144.752

165.15× 238.56 = 0.5318. (10.8)

The second-stage model, from which trial-level surrogacy is estimated, can be fitted
in the same way as in Section (10.3.1).

10.3.3 The Full Mixed-effects Model

The first-stage proposed in equation (10.1) assumed trial-specific intercepts (µSi and
µTi ), trial-specific treatment effects of Z on the endpoints (αi and βi) and error
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terms covariance matrix in equation (10.2). At the second-stage, it is assumed that
µSi

µTi

αi

βi

 =


µS

µT

α

β

+


mSi

mTi

ai

bi

 , (10.9)

where the second term on the right hand side is assumed to follow a zero-mean normal
distribution with covariance matrix:

D =


dSS dST dSa dSb

dTT dTa dTb

daa dab

dbb

 . (10.10)

The random effects representation is obtained by combining the first-stage in equa-
tion (10.1) and the second-stage in equation (10.9):{

Sij = µS +mSi + (α+ ai)Zij + εSij ,

Tij = µT +mTi + (β + bi)Zij + εTij .
(10.11)

Here, µS and µT are fixed intercepts, α and β are the fixed treatment effects on
the two endpoints, mSi and mTi are random intercepts, ai and bi are trial-specific
random treatment effects. The vector of random effects (mSi,mTi, ai, bi) follows a
normal distribution with zero-mean and covariance matrix in equation (10.10). The
error terms, εSij and εTij , are assumed to follow a bivariate normal distribution with
the covariance matrix in equation (10.2).

The quality of the surrogate at the trial-level may then be calculated as the coefficient
of determination for predicting the effect of Z on T , given the effect of Z on S:

R2
trial(f) = R2

bi|mSi,ai
=

(
dSb

dab

)T (
dSS dSa

dSa daa

)−1(
dSb

dab

)
dbb

. (10.12)

Coefficient in equation (10.12) is unitless and ranges in the unit interval if the corre-
sponding variance-covariance matrix is positive definite, two desirable features for its
interpretation (Buyse et al., 2000).
At the individual-level, the association between endpoints is the squared correlation
coefficient between S and T after adjusting for the trial and treatment effects:
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R2
indiv = R2

εT ij |εSij
= σ2

ST

σSSσTT
. (10.13)

The SAS Macro %CONTRANFULL

The %CONTRANFULL macro can be used to perform the analysis and it can be invoked
using the following call:

%CONTRANFULL(data=simdata,true=true,surrog=surr,trt=treat,

trial=trial,patid=patientId,looa=1).

The macro’s arguments are the same as those presented in Section 10.2.

Data Analysis and Output

Due to convergence problems with the full random effects, a simulated set of data
was used to generate numerical and graphical outputs. The following parameters
were used to simulate the data: 1000 observations from 50 trials were generated from
a multivariate normal distribution with the mean vector (µS , µT , α, β) = (5, 5, 5, 5),
and covariance matrices given by:

D =


10 8 0 0

10 0 0
10 9

10

 , Σ =
(

10 8
10

)
.

As shown in the panel below, the surrogacy measures are equal to R̂2
indiv = 0.6260

(0.5893, 06628) and R̂2
trial = 0.7655 (0.6483, 0.8828).

Figure 10.5 shows the empirical Bayes estimates for the trial-specific random treat-
ment effects.

SAS Codes for the Full Mixed-effects Model

The full mixed-effects model can be fitted using SAS procedure MIXED. A possible
code is given below.
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Figure 10.5: Trial-specific random effects plot.

proc mixed data=dataset covtest;

class endp patid trial;

model outcome = endp endp*treat / solution noint ;

random endp endp*treat/subject=trial type=un ;

repeated endp / type=un subject=patid(trial) ;

ods output solutionF=fix CovParms=covar SolutionR=eb;

run;

The data structure and variables are identical to those outlined in Section 10.3.1. The
model statement defines the four fixed-effects in the mean structure, (µT , µS , α, β),
while the random statement defines the structure of the covariance matrix D for the
random effects. The repeated statement builds up the error covariance matrix Σ in
equation (10.2). The estimated covariance matrices are shown in the panel below.

The lower panel presents the parameter estimates of the covariance matrix D (given
in equation 10.10).
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D̂ =


12.4363 9.0861 −0.4732 −0.3845

9.6945 −0.4146 −0.2926
9.6047 8.7171

10.3347

 . (10.14)

The trial-level surrogacy measure is estimated using equation (10.12):

R̂2
trial(f) =

(
−0.3845
8.7171

)T (
12.4363 −0.4732
−0.4732 9.6047

)−1(
−0.3845
8.7171

)
10.3347 = 0.7655. (10.15)

The estimated covariance matrix for the residuals, defined in equation 10.2, is given
by:

Σ̂ =
(

9.3313 7.4406
9.4772

)
, (10.16)

The individual-level surrogacy is derived using equation (10.13).

R̂2
indiv = 7.44062

9.3313× 9.4772 = 0.6260. (10.17)

10.3.4 Reduced Mixed-effects Model

A special case of matrix in equation (10.10) is obtained when the random effects
models in equation (10.11) do not contain the random intercepts mSi and mTi at
all. Using a simplified two-stage representation, the first-stage model can then be
simplified to: {

Sij = µS + αiZij + εSij ,

Tij = µT + βiZij + εTij ,
(10.18)

where, εSij and εTij are zero-mean normally distributed error terms with covariance
matrix given in equation (10.2). The second-stage model is reduced to:(

αi

βi

)
=
(
α

β

)
+
(
ai

bi

)
, (10.19)

with, (ai, bi)T following a zero-mean normal distribution with covariance matrix

Dr =
(
daa dab

dbb

)
. (10.20)
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Combining the above two-stage, we have reduced mixed-effects given by :{
Sij = µS + (α+ ai)Zij + εSij ,

Tij = µT + (β + bi)Zij + εTij .
(10.21)

With reduced random effects models in equation (10.21), the trial-level surrogacy is
given by:

R2
trial(r) = R2

bi|ai
= d2

ab

daadbb
, (10.22)

and the individual-level surrogacy is given by:

R2
indiv = d2

ST

dSSdTT
. (10.23)

The SAS Macro %CONTRANRED

The macro %CONTRANRED is used to perform the analysis.

%CONTRANRED(data=simreduced,true=true,surrog=surr,trt=treat,

trial=trial,patid=patientId,looa=0).

The macro’s arguments were presented in Section 10.2.

Data Analysis and Output

Similar to full random effects models, convergence problems arise. Simulated data
were used to generate numerical and graphical outputs. The following parameters
were used to simulate the data: 1000 observations from 50 trials were generated from
a multivariate normal distribution with the mean vector (µS , µT , α, β) = (5, 3, 5, 4),
and covariance matrices given by:

D =
(

10 9
10

)
, Σ =

(
3 2.4

3

)
.

Parameter estimates for trial- and individual-level surrogacy measures obtained for
the reduced mixed-effects model are equal to R̂2

trial(r) = 0.8144 (0.7186, 0.9102) and
R̂2
indiv = 0.6241 (0.5872, 0.6609), respectively (Panel below).
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Figure 10.6 shows the empirical Bayed estimates for the random effects.
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Figure 10.6: Empirical Bayes estimates for the trial-specific random effects.

SAS Codes for the Reduced Mixed-effects Model

The SAS code to fit the reduced mixed-effects model is:

proc mixed data=dataset covtest;

class endp patid trial;

model outcome = endp endp*treat / solution noint ;

random endp*treat/subject=trial type=un ;

repeated endp / type=un subject=patid(trial) ;

ods output solutionF=fix CovParms=covar SolutionR=eb;

run;

Note that, compared to the full mixed-effects model, the random statement
was changed from random endp endp*treat/subject=trial type=un to random

endp*treat/subject=trial type=un while the model and repeated statements
remain the same. This implies that the covariance matrix for the trial-specific treat-
ment effects is a 2 × 2 covariance matrix, while the repeated statement defines the
error covariance matrix Σ in equation (10.2). The estimated matrices are shown
below.
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Trial-level surrogacy is estimated using equation (10.22),

R̂2
trial(r) = 10.97022

12.6148× 11.7144 = 0.8144, (10.24)

and individual-level surrogacy is derived as follows (see equation (10.23)):

R̂2
indiv = 2.18592

2.7696× 2.7644 = 0.6241. (10.25)

10.4 Analysis of a Surrogacy Setting with Two Sur-
vival Endpoints

In this section, we discuss about settings in which the two endpoints are time-to-
event variables. We focus on three applications. Two of the applications are based
on a two-stage approach while the third application is based on a joint modeling of
two time-to-event endpoints. For illustration we used the ovarian cancer study with
overall survival time and progression-free survival as the true and surrogate endpoint,
respectively. See Section 9.1.2 for more information about the data. A partial printout
of the data is given below. The data for each patient appear in a single line.
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10.4.1 A Two Stage Approach(I)

In case the true endpoint Tij and the surrogate Sij endpoint are time-to-event end-
points, the approach used in Section 10.3.1 have to be replaced by model for two
correlated time-to-event random variables (Burzykowski et al., 2001). The chosen
model should provide an association measurement between the two time-to-event
variables. We start our discussion with a two-stage approach. It is assumed that the
data from a single trial with many centers (or data from many trials, where trial is
considered as unit of analysis) are available. With this setting, Buyse et al. (2011)
proposed a validation approach in which the estimated treatment effects on both end-
points must be correlated. To test this condition, the center-specific (trial-specific)
Cox proportional hazard models in equation (10.26) were used:{

Sij(t) = Si0(t)exp(αiZij),
Tij(t) = Ti0(t)exp(βiZij),

(10.26)

where, Si0(t) and Ti0(t) are trial-specific baseline hazard functions, Zij is a treatment
indicator for the jth individual in the ith trial. The parameters βi and αi are trial-
specific treatment effects.
One way to account for variation in trials size is to use the number of patients in each
trial in a weighted linear regression of the form:

β̂i = λ0 + λ1α̂i + εi. (10.27)

A second approach to account for the variability between trials is to use a robust
sandwich estimate of Lin and Wei (1989) for the covariance matrix of the parameter
estimates for treatment effects in equation (10.26) and follow the approach proposed
by Van Houwelingen et al. (2002). The two approaches are implemented in the macro
%TWOSTAGECOX discussed below. As before, the coefficient of determination from equa-
tion (10.27) is used as a trial-level surrogacy measure. A leave-one-out analysis can
be performed in order to asses stability of the estimated trial-level surrogacy measure.

The SAS Macro %TWOSTAGECOX

The model in equation (10.26) can be fitted using the SAS macro %TWOSTAGECOX. It
has the following generic form:

%TWOSTAGECOX(data=ovarian,true=surv,trueind=survind,

surrog=pfs,surrogind=pfsind,trt=treat,
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trial=center,patid=patient,common=1,

robust=1,looa=1);

The macro’s specific arguments are

• trueind: censoring indicator for the true endpoint (1=event, 0=censoring).

• surrogind: censoring indicator for the surrogate (1=event, 0=censoring).

• common: an option allows the user to choose between trial-specific baseline haz-
ard function (common=0), or common baseline hazard function (common=1)
in the first-stage.

• robust: an option allows the user to obtain the robust (or adjusted) R2
trial in

the output (1 for the robust; 0 for non-robust).

The rest of the arguments were discussed in Section 10.2.

Data Analysis and Output

The macro %TWOSTAGECOX produces two exploratory plots: the patients’ distribution
in the trials by treatment arms (shown in Figure 10.7 left panel) and the Kaplan-Meier
curves for the true and surrogate endpoints (shown in Figure 10.7 right panel).
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Figure 10.7: The Ovarian Cancer study. Left Panel: Patients’ distribution by
treatment arms within centers . Right Panel: Kaplan Meier curves for the survival
time (true endpoint) and progression-free survival (surrogate endpoint) for the two
treatment groups CP and CAP.

As shown below, the estimated trial-level surrogacy is equal to R̂2
trial = 0.9184 (0.8674,

0.9695). This implies that progression-free survival time is a good surrogate for the
overall survival time. This can be clearly seen from the left panel of Figure 10.8.
Leave-one-out analysis results are shown in the right panel of Figure 10.8.
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Figure 10.8: The Ovarian Cancer study. Left Panel: Parameter estimates from the
second-stage model. Right Panel: Leave-one-out analysis plot.

SAS Code for the First-stage Model

The Cox proportional hazard model formulated in equation (10.26) can be fitted using
SAS procedure PHREG.

proc phreg data=firststage covs(aggregate) covout outest=mat;

class center endpoint/param=glm;

model outcome*status(0)= endpoint*treat*center ;

strata center endpoint;

id patid ;

run;

It is assumed that there are two records per subject in the input dataset, the first one
corresponds to the surrogate endpoint and the second one to the true endpoint. The
option covs(aggregate) applies the robust sandwich estimate of Lin and Wei (1989)
for the covariance matrix that can be used in the second-stage to correct for the
uncertainty in the estimated parameters. The outest option creates an output SAS
data set containing estimates of the regression coefficients and the option covout

adds the estimated covariance matrix of the parameter estimates to the outest data
set. In the model statement, status is the censoring indicator variable (0=censoring,
1=event). In the strata statement we specify the variables that determine the
stratification.
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The parameter estimates obtained from model in equation (10.26) are shown in the
panel below.

10.4.2 A Two Stage Approach(II)

In this section, we discuss the evaluation approach, proposed by Buyse et al. (2011),
to compute the individual-level surrogacy. The underlying idea behind this evaluation
approach is that Sij can be considered as a valid surrogate for Tij with respect to
a new treatment if the pair of endpoints scores sufficiently highly on the validations
measures. Buyse et al. (2011) proposed to use the Kaplan Meier (KM) estimates (for
both endpoints) at fixed time points and to estimate the correlation between the KM
estimates of the two endpoints. Kaplan Meier estimates per trial and per endpoint
are estimated using the following formula:

S(ti) =
∏
ti≤t

(1− di
ni

). (10.28)

Here, S(ti) is the estimated survival probability, di is the number of patients who had
an event at time ti, and ni is the number of patients who are at risk at that time.
The estimated values are denoted by β̂i , α̂i for the true and surrogate endpoints
respectively. Figure 10.9 shows schematically how to choose the time points used to
compute the KM estimates on both endpoint (for a given trial).
KM estimates on the true and the surrogate endpoints at given time tT , and tS ,
with tT > tS , are used to fit the following linear regression in order to test for their
association.

β̂i = λ0 + λ1α̂i + εi. (10.29)

The effective sample size at the time point considered for KM estimates (the number
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Figure 10.9: KM courves for the true and the surrogate endpoints for a given time
point.

of deaths prior to the time point plus the number of patients at risk at the time
point) can be used for each trial as a weight. The coefficient of determination, R2,
obtained from the linear regression model in equation (10.29) can be used to quantify
the surrogacy measure at individual-level.

The SAS Macro %TWOSTAGEKM

The model discussed in this section can be fitted using the SAS macro %TWOSTAGEKM.
The macro has the following general form:

%TWOSTAGEKM (data=ovarian,true=surv,trueind=survind,surrog=pfs,

surrogind=pfsind,trt=treat,trial=center,

upsurr=1,uptrue=2)

The macro’s arguments are:

• upsurr: the time point at which the KM estimates are computed on the surro-
gate endpoint.

• uptrue: the time point at which the KM estimates are computed on the true
endpoint.

The rest of the arguments have been defined in Sections 10.2 and 10.4.1.

Data Analysis and Output

The %TWOSTAGEKM macro produces the Kaplan-Meier curves for both endpoints (Fig-
ure 10.10).
For the example in this section, we use the KM estimates at one year for progression-
free survival and the KM estimates at two years for overall survival. The estimated
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Figure 10.10: Kaplan-Meier curve for the true endpoint at 2 years and for the
surrogate endpoint at 1 year.

individual-level surrogacy measure for the ovarian cancer study is shown in the
panel below and is equal to R̂2

indiv = 0.6540 (0.6217, 0.6864). This indicates that
progression-free survival at one year is a surrogate of moderate value for the overall
survival at two years. This can be seen in Figure 10.11 which presents the KM
estimates of progression-free survival at one year versus the KM estimates for overall
survival at two years.

SAS Codes for Trial Specific KM Estimates (At a Given Time Point)

The survival probability based on the KM curves can be estimated using SAS proce-
dure lifetest in the following way:

proc lifetest data=ovar;

time surv * survind(0);

strata treat;

where surv<=2;

by trial;

run;
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Figure 10.11: KM estimates at 2 years on the true endpoint vs KM estimates at 1
year on the surrogate endpoint.

The variables surv and survind are the survival time and the censoring indicator,
respectively. The statement strata produces the results for the active treatment and
control groups separately. The statement where statement allows to select observa-
tions for which the survival time is less or equal to 2 years (for the true endpoint).
The panel below shows KM estimates from one trial.

10.4.3 A Joint Model for Survival Endpoints

In this section, a bivariate copula model proposed by Burzykowski et al. (2001) is used
to measure the association between the true endpoint and the surrogate endpoint.
This model is more satisfactory in that the correlations reflect the whole time axis
instead of Kaplan-Meier estimates at specific time points.
More specifically, Burzykowski et al. (2001) used a joint survival function for (Sij , Tij)
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given by:

F (s, t) = P (Sij ≥ s, Tij ≥ t) = Cθ{FSij(s), FTij(t)}, s, t ≥ 0, (10.30)

where, FSij and FTij denote marginal survival functions for both endpoints (overall
survival and progression-free survival) and Cθ is a copula, i.e., a bivariate distribution
function on [0, 1]2 which allows correlated probabilities to be modeled. The marginal
survival functions are given by:{

FSij
(s) = exp{−

∫ s
0 λSi(x)exp(αiZij) dx},

FTij
(t) = exp{−

∫ t
0 λTi(x)exp(βiZij) dx},

(10.31)

where, λSi and λTi are trial-specific marginal baseline hazard functions and αi and βi
are trial-specific treatment effects. At the second-stage, a joint model is formulated
to the treatment effects (

αi

βi

)
=
(
α

β

)
+
(
ai

bi

)
, (10.32)

where the second term on the right hand side of equation (10.32) is assumed to follow
a zero-mean normal distribution with a covariance matrix given by:

D =
(
daa dab

dbb

)
. (10.33)

The quality of the surrogate S at the trial-level is assessed based on the coefficient of
determination given by:

R2
trial = d2

ab

daadbb
. (10.34)

To assess the quality of the surrogate at the individual-level, a measure of association
between Sij and Tij , calculated while adjusting the marginal distributions of the two
endpoints for both the trial and treatment effects, is needed. Burzykowski et al.
(2001) proposed to use Kendall’s τ as it only depends on the copula function Cθ and
is independent of the marginal distribution of Sij and Tij :

τ = 4
∫ 1

0

∫ 1

0
Cθ(FSij , FTij )Cθ(dFS , dFT )− 1. (10.35)

It describes the strength of the association between the two endpoints remaining after
adjustment, through the marginal models in equation (10.31), for the trial and the
treatment effects.
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The SAS Macro %COPULA

The SAS macro %COPULA can be used to conduct the analysis discussed in this section
in the following way:

%COPULA(data=covar,true=Surv,trueind=survind,surrog=pfs,

surrogind=pfsind,trt=treat,center=center,trial=center,

vars=,patid=patientid,copula=clayton,adjustment=Weighted)

The macro’s arguments are :

• center: unique id (continuous) for units, for which specific treatment effects
are estimated.

• trial: unique id (continuous) for groups of the units, for which common ”base-
lines” are used.

• vars: macro variable containing possible covariates for adjustment of the
Weibull and proportional odds models. The names of these covariates have
to be passed to the program trough the macro variable "vars".

• copula: variable allowing the user to choose one of the three different copulas
(clayton, houggard, placket).

• adjustment: Adjustment method used to compute the R2
trial (Weighted, Un-

weighted, adjustedr2, adjustedrcorr, adjustedr2f).

Data Analysis and Output

The exploratory plots produced by the macro %COPULA are shown in Figure 10.7.

For the ovarian cancer study, the surrogacy measures R̂2
indiv = 0.8711 (0.8596, 0.8826)

and R̂2
trial = 0.8733 (0.7989, 0.9476) indicate that the progression-free survival is a

valid surrogate for the overall survival time at both trial- and individual-level surro-
gacy. The treatment effects plot in Figure 10.12 can be used to visualize trial-level
surrogacy.
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Figure 10.12: The Ovarian Cancer study. Treatment effects on the true endpoints
(survival time) versus treatment effects on the surrogate endpoints (Progression free
survival). Circles areas are proportional to trial size.

10.5 A Continuous (Normally-Distributed) and a
Survival Endpoint

Model Formulation

In this section, it is assumed that the true endpoint, T , is a failure-time random
variable and the surrogate, S, is a normally-distributed continuous variable. Note
that the described approach is applicable also in the reverse case, i.e., with a failure-
time surrogate and a continuous true endpoint.
Alonso et al. (2016) assumed that the true endpoint T is a failure-time random variable
and the surrogate S is a normally-distributed, continuous variable. For each of j =
1, . . . , ni patients from trial i (i = 1, . . . , N) the quadruplets (Xij ,∆ij , Sij , Zij) is
obtained, where Xij is a possibly censored version of survival time Tij and ∆ij is the
censoring indicator assuming value of 1 for observed failures and 0 otherwise.
The marginal model for Sij is the classical linear regression model:

Sij = α0,i + αiZij + εij , (10.36)

where, εij is normally distributed with mean zero and variance σ2
i .

For Tij , the proportional hazard model is given by:

λij(t|Zij) = λi(t)exp(βiZij), (10.37)
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here, βi are trial-specific effects of treatment Z and λi(t) is a trial-specific baseline
hazard function.
If a parametric (e.g., Weibull-distribution-based) baseline hazard is used in equa-
tion (10.37), the joint distribution function defined by the copula and the marginal
models in equation (10.36) and (10.37) allows to construct the likelihood function for
the observed data and obtaining estimates of the treatment effects αi and βi.
The individual-level surrogacy can be evaluated by using Kendall’s τ or Spearman’s
ρ (see Section 10.4.3). The trial-level surrogacy is assessed using the correlation
coefficient between the estimated treatment effects αi and βi.
If the individual-level association is not of immediate interest, one may base analy-
sis on the marginal models in equation (10.36) and (10.37), without specifying the
baseline hazards in the latter. When fitting the models, it is worth to estimate the
variance-covariance matrix of the estimated treatment effects α̂i and β̂i while taking
into account the association between S and T .

Data Structure

The advanced prostate cancer data described in Section 9.1.5 was used for illustration.
The true endpoint is overall survival time and the surrogate endpoint is the logarithm
of prostate specific antigen (PSA) measured at about 28 days. The data structure for
the survival-normal setting is shown below. The data for each subject appears in a
single line.

The SAS Macro %NORMSURV

The SAS macro %NORMSURV can be used in order to fit the models specified in equa-
tion (10.36) and (10.37). For the Prostate cancer data we use:
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%NORMSURV(data=prostate,true=surv,trueind=survind,surrog=cont,

trt=treat,trial=center,patid=patientId,copula=houggard,

adjustement=weighted)

The specification of the macro’s arguments is the same as the specification presented
in Section (10.4.3).

Data Analysis and Output

The exploratory plots produced by the macro %NORMSURV are shown in Fig-
ure 10.13. The histogram in the upper right panel suggests that the logarithm of
PSA at 28 days is normally distributed. The scatter plot for the survival time and
the continuous surrogate in the lower panel reveals a weak association (ignoring cen-
soring on the true endpoint).
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Figure 10.13: Prostate Cancer study. Descriptive plots for the. Upper Left Panel:
Patients distribution by treatment arms across trials. Upper Right Panel: Histogram
for the continuous surrogate endpoint. Lower Panel: Scatter plot between the survival
time (ignoring censoring) true endpoint and the continuous surrogate endpoint.

Individual and trial-level surrogacy, Kendall’s τ = 0.2763 (0.2124, 0.3403) andR2
trial =

0.0066 (-0.0724, 0.0856), shown in the panel below indicate that the logarithm of PSA
after 28 days is a weak surrogate to overall survival time for the prostate cancer data.
The Houggard copula parameter is presented in the output as well.
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Figure 10.14 shows the parameter estimates for the treatment effects for both surro-
gate and true endpoints that were used to estimate trial-level surrogacy.
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Figure 10.14: Prostate Cancer study. Evaluation of trial-level surrogacy . Treat-
ment effects upon the true endpoints (log hazard ratio) versus treatment effects upon
the continuous surrogate. The circle areas are proportional to the sample size of the
trial.

10.6 Validation Using Joint Modeling of Time-to-
event and a Binary Endpoint

The setting we consider in this section consists of a binary surrogate endpoint and a
time-to-event true endpoint. A joint model, proposed by Burzykowski et al. (2004),
is formulated for the true endpoint Tij and a latent normally distributed variable S̃ij .
The binary surrogate is defined by:

Sij =
{

1 if S̃ij > 0,
0 if S̃ij ≤ 0.

(10.38)

For the surrogate endpoint, Sij , a logistic regression model is assumed.

logit{P (Sij = 1|Zij)} = γi + αiZij . (10.39)
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The marginal cumulative distribution function of S̃ij , given Zij = z, is denoted by
FS̃ij

(s; z) .
To model the effect of treatment on the marginal distribution of Tij , Burzykowski
et al. (2004) proposed to use a proportional hazard model of the form:

λij(t|Zij) = λi(t)exp(βiZij), (10.40)

where, βi are trial-specific treatment effects, λi(t) is a trial-specific baseline hazard
function. The marginal cumulative distribution function of Tij , with Zij = z, is
denoted by FTij (t; z). The joint cumulative distribution of Tij and S̃ij , given Zij = z,
is generated by one parameter copula function Cθ (Burzykowski et al., 2004):

FTij ,S̃ij
(t, s; z) = Cθ{FTij

(t; z), FS̃ij
(s; z), θ}. (10.41)

Here, Cθ is a distribution function on [0, 1]2 with θ ∈ R1.
The two-stage approach proposed by Burzykowski et al. (2004) consists of maximum
likelihood estimation for θ and the trial-specific treatment effects αi and βi at the
first-stage while at the second-stage, it is assumed that:(

αi

βi

)
=
(
α

β

)
+
(
ai

bi

)
. (10.42)

The second term on the right hand side of equation (10.42) is assumed to follow a
bivariate normal distribution with zero-mean and covariance matrix given by:

D =
(
daa dab

dbb

)
. (10.43)

Hence, the trial-level surrogacy is estimated by:

R2
trial = d2

ab

daadbb
. (10.44)

To assess the quality of the surrogate endpoint at the individual-level, a measure of
association between Sij and Tij is needed. Burzykowski et al. (2004) proposed to use
the bivariate Plackett copula. This particular choice was motivated by the fact that,
for the Plackett copula, the association parameter θ takes the form of a (constant)
global odds ratio.

θ = P (Tij > t, Sij > k)P (Tij ≤ t, Sij ≤ k)
P (Tij > t, Sij ≤ k)P (Tij ≤ t, Sij > k) . (10.45)
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For a binary surrogate, it is just the odds ratio for responders versus non-responders
(assuming k=2 indicates the response).

Data Structure

We use the Colorectal cancer study for illustration (see Section 9.1.3). The true end-
point is overall survival and the surrogate endpoint is a two-category tumor response:
patients with complete or partial response are considered as responders and patients
with stable or progressive disease are considered as non-responders.
The data structure for the survival-binary setting is shown below. The data for each
subject appears in a single line in which time-to-event (surv) and censoring status
(survind) are given to the true endpoint and the response status (binresp) is the
surrogate endpoint. The unit for the analysis is the trial.

The SAS Macro %SURVCAT

The joint model discussed above is implemented in the macro %SURVCAT that, for the
Colorectal cancer data, is called as follows:

%SURVCAT(data=colorectal,true=Surv,trueind=survind,

surrog=responder,trt=treat,center=center,

trial=center,vars=,patid=patientid)

The macro’s arguments were discussed in Section 10.2 and 10.4.1. The argument
surrog: measurement of the ordinal categorical surrogate (levels 1, 2, ..., K).
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Data Analysis and Output

The %SURVCAT macro produces three default exploratory plots shown in Figure 10.15.
The Kaplan-Meier curves (by endpoint, for only binary surrogate) in the upper left
panel indicates that there is no difference between the treatment arms across the level
of the surrogate endpoint. The box plots for the survival times in the upper right
panel reveal the same pattern. The number of patients per trial and treatment arms
is shown in the lower panel.
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Figure 10.15: Colorectal Cancer study. Descriptive plots. Upper Left Panel: KM
curves stratified by the binary surrogate endpoint. Upper Right Panel: Survival time
distribution by treatment arm across the levels of the binary surrogate. Lower Panel:
distribution of patients per trial and treatment arm.

Individual- and trial-level surrogacy, Global odds = 4,9108 (4.15794, 5.6638) and
R2
trial = 0.4417 (0.1564, 0.7269), shown in the panel below indicate that two-category

tumor response is a surrogate of moderate value to overall survival for the colorectal
cancer data.
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Figure 10.16 shows the parameter estimates for the treatment effects for both surro-
gate and true endpoints that were used to estimate trial-level surrogacy.
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Figure 10.16: Colorectal Cancer study. Evaluation of trial-level surrogacy. Treat-
ment effects upon the true endpoints (log hazard ratio) versus treatment effects upon
the binary surrogate (log odds ratio). Circle areas are proportional to the trial size.

10.7 Validation Using a Joint Model for Continuous
and Binary Endpoints

Similar to the previous section, we assume an underlying latent normally distributed
surrogate endpoint, S̃ij , and an observed surrogate given by (Van Sanden et al., 2012):

Sij =
{

1 if S̃ij > 0,
0 if S̃ij ≤ 0.

(10.46)

A joint model is assumed for the latent surrogate variable S̃ij and the true endpoint
Tij , {

Tij = µTi + βiZij + εTij
,

S̃ij = µSi + αiZij + εS̃ij
.

(10.47)

Here, (
εTij

εS̃ij

)
∼ N

[(
0
0

)
,

(
σTT σST

1

)]
. (10.48)

Model formulation for the observed binary outcome Sij and the continuous outcome
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Tij are given by: {
Tij = µTi + βiZij + εTij ,

logit{P (Sij = 1|Zij)} = µSi + αiZij .
(10.49)

The correlation between the measurements of the two outcomes can be modeled di-
rectly using the covariance matrix of the residuals, specified in equation (10.48) and
a measure for individual-level surrogacy is given by:

R2
indiv = σ2

ST

1× σTT
. (10.50)

Note that for this surrogacy setting, the measure for individual-level surrogacy is the
adjusted association between the true endpoint and the latent surrogate endpoint.
Trial-level surrogacy is estimated using a second-stage model (see for example Sec-
tion 10.3.2).

Data Structure

For the analysis presented in this section we use the Schizophrenia study for illustra-
tion (Section 9.1.4). The true endpoint is the PANSS score. For the binary surrogate
we use the CGI score which was dichotomized in the following way:

Sij =
{

1 if CGIij changed 3 points from baseline,
0 otherwise.

(10.51)

Patient’s data appears in a single line.

The SAS Macro %NORMALBIN

The SAS macro %NORMALBIN can be used to fit the joint model specified in equa-
tion (10.49). For the Schizophrenia study the macro is called as follows:
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%NORMALBIN(data=schizo,true=panss,surrog=cgi,trt=trtmnt,

trial=investid,patid=patientid)

The macro’s arguments have been defined in sections 10.2.

Data Analysis and Output

Descriptive plots produced by the macro include the distribution of the patients by
treatment arms (shown in Figure 10.17 left panel) and the distribution of PANSS score
per treatment arms across the levels of the surrogate endpoint in the right panel of
Figure 10.17.
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Figure 10.17: The schizophrenia study. Exploratory plots for a normal-binary sur-
rogacy setting. Left Panel: Patients distribution by treatment arm. Right Panel:
PANSS score distribution by treatment arm across the levels of CGI scores.

Individual- and trial-level surrogacy measures are equal to R̂2
ind = 0.3761 (0.3403,

0.4119) and R̂2
trial= 0.3747 (0.2216, 0.5279), respectively, implying that CGI is a

poor surrogate to PANSS score.

Figure 10.18 shows a scatter plot of the trial-specific parameter estimates for the
treatment effects used in the second-stage model for the evaluation of trial-level sur-
rogacy.
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Figure 10.18: The Second stage model for the schizophrenia study. Parameter
estimates for the treatment effects upon the surrogate (log(odds ratio)) and the true
endpoints.

SAS Codes for the First-stage Model

In this section, we discuss the implementation of the first-stage model using SAS
procedure GLIMMIX. Note that the macro %NORMALBIN uses the same implementation,
although, it is not visible for the user. The joint model in equation (10.49) is fitted
using the following code.

proc glimmix data=norbin ;

class patientid endp trial;

model response(event=’1’) = endp endp*treat*trial /

noint s dist=byobs(endp) link=byobs(lin) cl;

random _residual_ / subject=patientid type=un cl;

run;

It is assumed that there are two records per subject in the input data set, the first
one corresponding to the surrogate endpoint and the second one to the true endpoint.
The response variable contains the observed measurements on the continuous true
endpoint and the binary surrogate endpoints for each patients. The statement
event=1 specifies the event category for the binary surrogate. The probability of
the event category (event=1) is modeled.
For the mean structure, the variable endp allows to obtain endpoint specific intercepts
(common intercepts), while the interaction term endp*treat*trial allows to obtain
trial-specific treatment effects for both surrogate and true endpoints. The option
noint requests that no intercept be included in the mean structure (since these are
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defined by endp).
The argument dist specifies the built-in (conditional) probability distribution of the
data (normal distribution for the true endpoint, and the binomial distribution for the
surrogate endpoint). The statement dist=byobs(endp) designates a variable whose
values identify the distribution to which an observation belongs while the statement
link=byobs(variable) designates a variable whose values identify the link function
associated with each endpoint (i.e. identity link for the continuous endpoint and logit
link for the binary endpoint).
The statement and argument random residual specify residuals covariance struc-
tures. Finally, subject argument identifies subject for the analysis while type is used
to define the covariance matrix (a 2×2 matrix in our case). The panel below displays
the covariance matrix and parameter estimates for the fixed-effects for some trials.

10.8 Validation Using Joint Model for Two Binary
Endpoints

To extend the methodology used for continuous endpoints to the case of binary end-
points, Renard et al. (2002) adopted a latent variable approach. They assumed that
the observed binary variables (Sij , Tij) are obtained from dichotomizing unobserved
continuous variables (S̃ij , T̃ij). The realized value of Sij (Tij) equals 1 if S̃ij > 0
(T̃ij > 0), and 0 otherwise. It is assumed that the latent variables, representing
the continuous underlying values of the surrogate and the true endpoints for the jth
subject in the ith trial, follow a random effects model at latent scale given by:
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{
S̃ij = µS +mSi

+ (α+ ai)Zij + ε̃Sij
,

T̃ij = µT +mTi
+ (β + bi)Zij + ε̃Tij

.
(10.52)

Here, µs and µT are fixed intercepts, α and β are fixed treatment effects, mSi and mTi

are random (i.e., trial-specific) intercepts, ai and bi are random treatment effects and
ε̃Sij

and ε̃Tij
are error terms. The random effects are zero-mean normally distributed

with covariance matrix D (see equation 10.10). The error terms are assumed to follow
a bivariate normal distribution with zero-mean and covariance matrix given by:

∑
=
(

1 ρST

1

)
. (10.53)

The model formulated in equation (10.52) leads to a joint probit model:{
Φ−1(P [Sij = 1|Zij ,mSi, ai,mTi, bi]) = µs +mSi + (α+ ai)Zij ,
Φ−1(P [Tij = 1|Zij ,mSi, ai,mTi, bi]) = µT +mTi + (β + bi)Zij .

(10.54)

Where, Φ denotes the standard normal cumulative distribution function. Similar
to the normal-normal setting, a reduced fixed-effects model in which the random
intercepts and slopes are excluded and assuming common intercepts can be formulated
as: {

Φ−1(P [Sij = 1|Zij ]) = µs + αiZij ,

Φ−1(P [Tij = 1|Zij ]) = µT + βiZij .
(10.55)

Individual-level surrogacy can be estimated using the adjusted association based on
the covariance matrix in equation (10.53). This implies that for the binary-binary
setting this level of surrogacy should be interpreted at the scale of the linear predictors.
Trial-specific treatment effects upon the true and the surrogate endpoints can be used
in the second-stage to fit a linear regression model of the form:

β̂i = γ0 + γ1α̂i + εi. (10.56)

Similar to previous sections, the trials sizes are used as weights in order to account
for the variability due to difference in trial sizes. The trial-level surrogacy measure is
equal to the coefficient of determination from model in equation (10.56).

Data Structure

The schizophrenia study was used for illustration in this setting (see Section 9.1.4).
The true endpoint is the PANSS score and the surrogate endpoint is the CGI score.
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The binary endpoints PANSS/CGI reflect the presence or absence of clinically rele-
vant change in schizophrenic symptomatology. Clinically relevant change is defined as
a reduction of 20% or more in the PANSS scores, i.e, 20% reduction in post-treatment
scores relative to baseline scores, or a change of 3 points in the original CGI scale
(Kane et al., 1988; Leucht et al., 2005). Hence, the true and surrogate binary end-
points are defined, respectively, as:

Tij =
{

1 if PANSSij reduced at least 20% from baseline,
0 otherwise,

Sij =
{

1 if CGIij changed of 3 points from baseline,
0 otherwise.

A partial printout of the data is given below.

The SAS Macro %BINBIN

The reduced fixed-effects model formulated in equation (10.55) can be fitted using
the SAS macro %BINBIN that has the following general call:

%BINBIN (data=schizo,true=cgi,surrog=panss,trt=trtmnt,

trial=investid,patid=patientid,looa=1)

The macro’s arguments have been defined in sections 10.2.

Data Analysis and Output

Parameter estimates for individual- and trial-level surrogacy are equal to R̂2
ind= 0.7108

(0,6852, 0.7364) and R̂2
trial= 0.7363 (0.6227, 0.8499), respectively. This indicates that
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CGI is a surrogate of moderate value for PANSS at both individual- and trial-level
surrogacy.

Figure 10.19 shows the estimated treatment effects upon both endpoints with the
fitted regression line.
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Figure 10.19: Schizophrenia study. Estimation of trial-level surrogacy.

SAS Codes for the First-stage Model

The SAS code to fit reduced fixed-effects model formulated in equation (10.52) can
be written as follows:

proc glimmix data=binbin ;

class patientid endp trial;

model response(event=’1’) = endp endp*treat*trial /

noint s dist=byobs(endp) link=byobs(lin) cl;

random _residual_ / subject=patientid type=un cl;

run;

It is assumed that there are two records per subject in the input dataset, the first one
corresponding to the surrogate endpoint and the second one to the true endpoint.
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The response variable contains the observed categories on both endpoints for each
patients. The statement event=1 specifies the event category for both endpoints. The
statement dist=byobs(endp) defines the distribution for each endpoint and the link
function to be used is specified by link=byobs(lin).
The statement random residual specifies the residuals covariance structures from
which individual-level surrogacy is derived. The output from the above codes is shown
in the panel below for some trials.

For the schizophrenia study, the estimated covariance matrix is given by:

Σ̂ =
(

1.0000 0.8431
1.0000

)
. (10.57)

Hence, individual-level surrogacy is equal to R̂2
indiv = 0.84312 = 0.7108.

10.9 Validation Using the Information-theoretic
Approach

10.9.1 Individual-level Surrogacy

In this Section, the information-theoretic approach for the evaluation of surrogate
endpoints proposed by Alonso and Molenberghs (2007) is briefly discussed. This ap-
proach allows to evaluate surrogacy at individual- and trial-level in a general surrogacy
setting. We concisely present the setting and illustrate the use of a SAS macro for
a normal-normal setting. We consider a multi-trial setting and the following models
for the true endpoint:
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{
M0 : gT {E(Tij |Zij)} = µTi

+ βiZij ,

M1 : gT {E(Tij |Zij , Sij)} = θ0i
+ θ1iZij + θ2iSij .

(10.58)

Let, G2
i be the likelihood ratio test statistic to compare models M0 and M1 in equa-

tion (10.58) within the ith trial. The association between both endpoints is quantified
using the likelihood reduction factor (LRF) given by:

LRF = 1− 1
N

∑
i

exp
(
−G

2
i

ni

)
, (10.59)

here, N is the total number of the trials, ni is trial-specific sample size. As pointed
out by Alonso and Molenberghs (2007), the LRF ranges between 0 and 1. The case
with LRF=0 indicates that the surrogate and the true endpoint are independent in
each trial.

10.9.2 Trial-level Surrogacy

Trial-level surrogacy can be estimated using a two-stage approach. At the first-stage,
the following models are formulated for the two endpoints.{

gT {E(Sij |Zij)} = µSi
+ αiZij ,

gT {E(Tij |Zij)} = µTi
+ βiZij .

(10.60)

Here, µTi
and µSi

are trial-specific intercepts, αi and βi are trial-specific treatment
effects. Note that the models can be fitted with common intercepts (i.e., reduced
fixed-effects models). At the second-stage, the parameter estimates obtained from
equation (10.60) are used to fit two linear regression models given by:{

M0 : β̂i = γ0 + ε0i,

M1 : β̂i = θ0 + θ1µ̂si + θ2α̂i + ε1i.
(10.61)

The error terms ε0i and ε1i are normally distributed with zero-mean and constant
variances σ2

0 and σ2
1 , respectively. When the reduced fixed-effects models are used in

equation (10.60), µ̂Si
is dropped from equation (10.61). The trial-level surrogacy is

estimated by:

R2
ht = 1− exp

(
−G

2

N

)
. (10.62)

Where, G2 is the likelihood ratio test statistic comparing the two models in equa-
tion (10.61).
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10.9.3 Evaluation of Surrogacy for Two Continuous Endpoints

We use the ARMD study to illustrate the analysis for the normal-normal surrogacy
setting using the information-theoretic approach. As before, the true endpoint is
visual acuity 52 weeks after the start of the treatment (Diff52) and the surrogate
endpoint is the visual acuity 24 weeks after the start of the treatment (Diff24).

The SAS Macro %NORMNORMINFO

The models for two normally distributed endpoints can be fitted using the SAS macro
%NORMNORMINFO. The macro fit the models formulated in equations (10.58) and (10.61)
in order to estimate both individual- and trial-level surrogacy.

%NORMNORMINFO(data=ARMD,true=Diff54,surrog=Diff24,

treat=treat,trial=center,patid=patientid,weighted=1,

model="full",boot=10)

Arguments specific for the %NORMNORMINFO are:

• model: the model used in equations (10.60) and (10.61) (”reduced” or ”full”).

• boot: is the number of bootstrap samples used to construct the confidence
intervals for the parameter estimates of the surrogacy measures.

Other arguments have been defined in sections 10.2.

Data Analysis and Output

The %NORMNORMINFO macro produces exploratory plots displaying the distribution of
the patients per trial (see, for example, left panel in Figure 10.2). Parameter estimates
for the LRF and trial-level surrogacy are shown in the panel below.

The estimated individual- and trial-level surrogacy are equal to R̂2
h = 0.5297 (0.3785,

0.6809), and R̂2
ht = 0.7119 (0.5074, 0.8550), respectively. Both surrogacy measures
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Figure 10.20: Trial-specific likelihood reduction factor (the horizontal line: the
overall LRF).

indicate that the visual acuity 24 weeks after the start of the treatment is a surrogate
of moderate value for the visual acuity 52 weeks after the start of the treatment.
As a sensitivity analysis, trial specific LRF is presented in Figure 10.20.
Note that the macro %NORMNORMINFO uses the same model formulation as the R func-
tion FixedContContIT (i.e, fixed effects models for two continuous endpoints).

10.9.4 Other Surrogacy Settings

SAS macros that were developed for the evaluation of surrogacy using the information-
theoretic approach are presented in Table 10.2. Note that, as discussed in previous
sections in the chapter, data structure depends on the surrogacy setting.

Surrogacy Setting SAS Macro Data structure
Normal-Normal %NORMNORMINFO 10.3.1
Normal-Binary %NORMBININFO 10.7
Survival-Survival %SURVSURVINFO 10.4
Survival-Binary %SURVBININFO 10.6
Binary-Binary %BINBININFO 10.8

Table 10.2: SAS macros available for analyses using the information-theoretic ap-
proach.





Chapter 11
Surrogacy in Cloud
Computing

11.1 The Surrogate Shiny App

Shiny is an R package (available on CRAN) developed by RStudio which allows to
create web-based applications from R-code. The surrogate Shiny App was developed
as an online shiny application for the evaluation of surrogate endpoints in randomized
clinical trials and has the same capacity, in terms of the methods implemented in the
App, as the surrogate R package.
The surrogate Shiny App can be used on a local computer or online using the shiny
cloud platform. Other cloud platforms, such as Amazon Web Service or google cloud
platform can be used as well. In contrast with the surrogate R package, the user
does not need to install R in order to conduct the analysis. The surrogate Shiny App
is a graphical user interface (GUI) and the user is not exposed to the R code behind
the analysis.
The surrogate Shiny App can be found on the Shiny Cloud at:

https://uhasselt.shinyapps.io/surrogate

In addition, the App is available as a stand alone version in a SurrShiny.zip file
that can be downloaded from:

http://ibiostat.be/online-resources

In this chapter we briefly illustrate the capacity of surrogate Shiny App for selected
methods that were discussed in Chapter 10. For each method, we present the GUI
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screen that can be used to conduct the analysis and the corresponding R code from
the surrogate package to perform an identical analysis. The code is presented only
for clarity and it is not needed for the surrogate Shiny App. The capacity of the
surrogate Shiny App is illustrated using case studies for three surrogacy settings: two
continuous endpoints (Section 11.2 and 11.4.2), two survival endpoints (Section 11.3)
and two binary endpoints (Section 11.4.3).
The first-step of the analysis requires to upload the data to the App. Figure 11.1
shows the data loading screen for the ARMD data. Similar to Chapter 10, we need
to specify the true and surrogate endpoints (Diff52 and Diff24, respectively), the
treatment (Treat), the unit of analysis for which R2

trial will be calculated (center),
and the patient’s identification number (Id).

Figure 11.1: The ARMD data and variables for the analysis are specified in the left
panel. A short summary of the data and a partial printout are shown in the right
panel.

11.2 Two Continuous Endpoints: The Reduced
Fixed-effects Model

In Chapter 10, we discussed the reduced fixed-effects model for two continuous end-
points. The model can be formulated as:{

Sij = µS + αiZij + εSij ,

Tij = µT + βiZij + εTij .
(11.1)
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For the reduced fixed-effects model, as shown in Chapter 10, trial-level surrogacy is

assessed using the coefficient of determination obtained by fitting a linear regression
model of the form:

β̂i = λ0 + λ1α̂i + εi, (11.2)

where, β̂i and α̂i are the trial-specific estimated treatment effects upon Tij and Sij ,
respectively. The error terms, εi, are normally distributed with mean zero and a
constant variance. Individual-level surrogacy is assessed by the squared correlation
between S and T after adjusting for trial-specific treatment effects and is given by:

R̂2
indiv = σ2

ST

σSSσTT
. (11.3)

Once the variables specification is complete (see the left panel in Figure 11.1), we can
choose the model to be fitted using the command bar in the upper part in Figure 11.1.
The surrogate Shiny App produces a default output shown in Figure 11.2. For the
ARMD study, R̂2

indiv = 0.5318 (0.4315, 0.6321) and R̂2
trial = 0.6585 (0.4695, 0.8476).

In case that other statistics are of interest we can use the R package surrogate to
produce them.

Figure 11.2: The ARMD study. Default output for the reduced fixed-effects model.

The reduced fixed-effects model specified in equation (11.1) and in the surrogate
Shiny App in Figure 11.1 are identical to the model fitted using the function
BifixedContCont below:
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Sur<-BifixedContCont(Dataset=ARMD, Surr=Diff24, True=Diff52,

Treat=Treat, Trial.ID=Center,

Pat.ID=Id,Model="Reduced", Weighted=TRUE)

11.3 Two Time-to-event Endpoints: A Two-stage
Approach

The analysis for the surrogacy setting of two time-to-event endpoints was discussed
in Chapter 10, where a joint modeling and two-stage approach were used to estimate
individual- and trial-level surrogacy. The two-stage approach is implemented in the
surrogate Shiny App. We use the Ovarian study for illustration (see Section 9.1.2).
The specification of the data is shown in the upper panel of Figure 11.3. In the
same screen, we select the tab Two-stage (Survival-Survival) in order to perform
the analysis, to select the censoring indicators and to choose the model used at the
second stage (weighted or unweighed). The output is presented in the lower panel of
Figure 11.3. The estimated trial-level surrogacy is equal to R̂2

trial = 0.9184 (0.8674,
0.9695).
For the Ovarian data, the two-stage model discussed above is identical to the model
specified in the function TwoStageSurvSurv.

Sur<-TwoStageSurvSurv(Dataset=ovarian, Surr=pfs,

SurrCens=PfsInd,True=surv,TrueCens=SurvInd,

Treat=Treat,Trial.ID=Center)

11.4 Information-theoretic Approach

11.4.1 Individual- and Trial-level Surrogacy

The information theoretic approach was discussed in Chapter 10. For a multi-trial
setting, we consider two models for the true endpoint Tij ,{

M0 : g{E(Tij |Zij)} = µTi + βiZij ,

M1 : g{E(Tij |Zij , Sij)} = δ0i + δ1iZij + δ2iSij .
(11.4)

Here, g is an appropriate link function. For the remainder of this section we briefly
discuss the surrogacy measures implemented in the surrogate Shiny App. For an
elaborate discussion about the modeling approach and the derivation of the surrogacy
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Figure 11.3: The Ovarian study. Evaluation of trial-level surrogacy (using a two-
stage model) for a surrogacy setting with two time-to-event endpoints. Upper Panel:
Loading the data for the Ovarian study. True endpoint: overall survival. Surrogate
endpoint: progression free survival. Lower Panel: Estimation of trial-level surrogacy.

measures we refer to Chapter 10. An information theoretic measure for individual-
level surrogacy for a multi-trial setting is given by:

R2
h = 1− 1

N

N∑
i=1

exp

(
L1i
− L0i

ni

)
,

where, Lki is the -2 log likelihood of model Mk, k = 0, 1 defined in equation (11.4)
and ni is the sample size of the ith trial. For a single trial setting (i.e., N = 1) the
surrogacy measure is reduced to:

R2
h = 1− exp

(
L1 − L0

n

)
.

To estimate the trial-level surrogacy measure, the following models are fitted:

{
g{E(Sij |Zij)} = µSi + αiZij ,

g{E(Tij |Zij)} = µTi + βiZij .
(11.5)
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At the second stage, the trial-specific parameter estimates from the model defined in
equation (11.5) are used to fit the following linear regression models:

{
M0 : β̂i = γ0 + ε0i,

M1 : β̂i = γ0 + γ1µ̂Si
+ γ2α̂i + ε1i.

(11.6)

A trial-level surrogacy measure is given by:

R2
ht = 1− exp

(
−G

2

N

)
, (11.7)

where, G2 is the likelihood ratio test statistic comparing the models M0 and M1 in
equation (11.6) and N is the number of trials.

11.4.2 Information-theoretic Approach for Two Continuous
Endpoints

The information theoretic approach for two continuous endpoints was applied to the
ARMD data. The function FixedContContIT was used in order to estimate both
individual- and trial-level surrogacy in the following way:

Sur<-FixedContContIT(Dataset=ARMD, Surr=Diff24,

True=Diff52, Treat=Treat,

Trial.ID=Center, Weighted=TRUE,

Pat.ID=Id, Model="Reduced",

Number.Bootstraps=500,Seed=1)

An identical model can be fitted using the surrogate Shiny App. Figure 11.1 shows
the specification of the variables for the ARMD data in the data loading screen of
the surrogate App. Note that this specification is identical to the one used in the
previous section since both examples use the same data. Figure 11.4 presents the
output. The number of bootstrap samples (Number.Bootstraps=500) and the seed
(Seed=1) are specified in the left side of Figure 11.4. As shown in Chapter 10, for the
ARMD data, trial-level surrogacy and individual-level surrogacy measures are equal
to R̂2

ht = 0.6788 (0.4655, 0.8338) and R̂2
h = 0.5297 (0.4876, 0.5718), respectively.
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Figure 11.4: Analysis if the ARMD study using the information-theoretic approach
for two continuous endpoints.

11.4.3 Information-theoretic Approach for Two Binary End-
points

For the Schizophrenia study, presented in Chapter 10, the two binary endpoints were
defined as:

Tij =
{

1 PANSS reduction ( at least -20%),
0 otherwise,

Sij =
{

1 CGI change of 3 points,
0 otherwise.

In R, using the surrogate package, for a multi-trial setting with two binary endpoints,
the function FixedBinBintIT can be used in order to estimate both individual- and
trial-level surrogacy measures. For the Schizophrenia study, the function is called in
the following way:

Sur<-FixedBinBinIT(Dataset=Schizo, Surr=Panss_Bin,

True=CGI_Bin, Treat=Treat,

Trial.ID=InvestId, Weighted=TRUE,

Pat.ID=Id, Model="Reduced",

Number.Bootstraps=500,Seed=1)

With the surrogate Shiny App, the following specifications should be used in the
data loading screen in Figure 11.1: the true (CGI bin) and the surrogate endpoints
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(PANSS bin), the treatment variable (Treat), the unit for which R2
ht will be calculated

(InvestId), and the patient’s identification number (Id). In the same screen, the tab
Fixed effects information theory (Binary-Binary) is selected in order to perform the
analysis. The number of bootstrap samples (Number.Bootstraps=500) and the seed
(Seed=1) are specified in the left side of Figure 11.5. For the Schizophrenia study,
trial- and individual-level surrogacy measures are equal to R̂2

ht = 0.8213 (0.7469,
0.87864) and R̂2

h = 0.3305 (0.2992, 0.3623), respectively.

Figure 11.5: Analysis of the Schizophrenia study using the information-theoretic
approach for two binary endpoints.



Chapter 12
Discussion and Future
research

12.1 Part I: Development of Metabolic Biomarker
for Cancer

In the first part of the dissertation, we discussed the use of metabolic data for the
detection of lung and breast cancer. As stated before, screening for cancer (lung or
breast) at an early stage before a patient develops clinical symptoms and when the
treatment is most effective should benefit the patient by increasing his/her quality
of life and life expectancy (Bourzac, 2014; Shlomi et al., 2014; Wood et al., 2012).
An appropriate screening test should be cost-effective. According to Field et al.
(2013a,b) the benefit-risk balance is maximized when high-risk target population is
selected for screening. In Chapter 3 and 4, we applied several classification methods
to construct metabolic signatures for early detection of cancer. PLS-DA became a
standard method for classification based on metabolic data mainly due to the fact
that friendly-user softwares are available for this particular method. Other methods
for classification are implemented in R software but the application requires a knowl-
edge in R programing. Therefore, development of a publicly available software, which
include more classification methods but does not require a deep knowledge of R pro-
graming will benefit the scientific community who are interested in the development
of metabolic signatures. Our intention is to develop an R shiny app which will offer
a friendly-user software tool.
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In chapter 5, we studied the added predictive value of metabolic data, in addition
to the clinical variables, to predict the lung cancer status of a patient. Current risk
models are of the form:

log[P (Y = 1|Z)] = γ0 +
p∑
j=1

γjzij ,

where, Z is a matrix containing clinical risk factors. In chapter 5, the above risk
model was extended by adding the metabolic data:

log[P (Y = 1|Z,X)] = γ0 +
p∑
j=1

γjzij +
m′∑
k=1

βkxik,

Since the matrix X might contain more variables than observations, penalized models
were used in order to select a subset of the metabolic variables. Random forest method
was used as well in order to select important variables. Applications on real data
showed that the omics data improve performance measures.

12.2 Part II: High Dimensional Biomarkers in Drug
Discovery

In chapters 6, 7, and 8, we focused on integrated analysis of multi-source data in
the drug discovery experiments. A gene-by-gene analysis was used to identify causal
structures in high-dimensional data. For each gene, different causal structures were
assumed and the causal structure corresponding to the highest posterior probability
was retained. Selection and evaluation of genes which can be used as potential
biomarkers in the drug discovery process can help the development team to better
understand the mechanism of action of a new set of compounds and substantially
shorten the development time. This approach can be implemented in the production
pipeline to different number of chemical structure of interest, genes and biological
assays (efficacy or toxicity related).

In chapter 7, we discussed different methods which can be used if the interest is to
identify set(s) of genes that could be used to predict the outcome of interest. Super-
vised principal component analysis (SPCA), penalized regression models using the
lasso and the elastic net penalties were used to construct gene signature. We have
shown that the feature selection procedure can be done in order to maximize a sur-
rogacy measure. For example, for the SPCA, the squared informational coefficient of



12.3. Part III: Software Development 165

correlation (SICC, Alonso and Molenberghs, 2007) was used. R2
h(U(X)) is calculated

by comparing models:

M0 : E(Yi|Zi) = γ0 + γ1Zi,

M1 : E(Yi|Zi, U(X)) = α0 + α1Zi + α2U(X).

Here, U(X) is latent and can be estimated using SPCA.

R2
h(Û(X)) = 1− exp

(
−G2

n

)
,

where, G2 is the likelihood ratio statistic comparing models M0 and M1, n is the
sample size. We have shown that a similar approach can be implemented when lasso
or elastic net are used as well. Note that in case lasso or elastic net penalties are
used, only the genes are penalized.
The analysis presented in Chapter 7 was focused on the construction of the predic-
tive model and not on inference. A re-sampling based inference procedure can be
developed in order to test the following null hypothesis:

H0 : R2
h = 0.

A rejection of the null hypothesis implies that the omics signature has an added
predictive value.

12.3 Part III: Software Development

In the third part of the dissertation, we focused on the validation of surrogate end-
points in randomized clinical trials. We presented new software tools, both SAS and
R, that can be used for validation of surrogate endpoints in different settings.
The SAS macro system was written in a generic way so it can be developed in the
future to a SAS procedure which will focus on surrogacy. Furthermore, the macros
system was written for a wide range of users starting with those who are familiar
with surrogacy but may have a limited knowledge about statistical modeling and
SAS programing.
The surrogate Shiny App does not require any knowledge in programing. It can be
used on a local computer or online (smartphone, tablet, laptop or pc) using the shiny
cloud platform. Other cloud platforms, such as Amazon Web Service or google cloud
platform are possible as well. In contrast to the surrogate R package, the user does
not need to install R in order to conduct the analysis. The surrogate shiny app was
written in order to increase the accessibility of surrogate software to users who are
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interested to preform an analysis for a validation a surrogate endpoints but do not
have the expertise in both statistical modeling and software. The shiny app offers an
easy tool to use for the data analysis and standard outputs and allows the user to
conduct a high quality analysis in the same surrogacy settings which are included in
the R package surrogate.
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Supplementary for Chapter 3

Figure A.1: Scheme of the 3-fold cross validation procedure.

3 12 20 30 40 43
LDA 0.28 0.24 0.24 0.24 0.24 0.24
DLDA 0.28 0.26 0.26 0.26 0.26 0.26
fda 0.22 0.21 0.21 0.22 0.22 0.22
PLSLDA 0.28 0.24 0.28 0.28 0.28 0.30
SVM 0.26 0.24 0.22 0.22 0.22 0.23
RF 0.33 0.28 0.26 0.26 0.24 0.26
QDA 0.17 0.17 0.17 0.22 0.28 0.30

Table A.1: Median misclassification error of BC as HC obtained for the seven
different classification methods and different ’top-k-based’ classifiers (build by the top
3, 8, 20, 30, 40, and 43 IRs selected by the Limma t-test).
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3 12 20 30 40 43
LDA 0.72 0.76 0.76 0.76 0.76 0.76
DLDA 0.72 0.74 0.74 0.74 0.74 0.74
FDA 0.78 0.79 0.79 0.78 0.78 0.78
PLSLDA 0.72 0.76 0.72 0.72 0.72 0.70
SVM 0.74 0.76 0.78 0.78 0.78 0.77
RF 0.67 0.72 0.74 0.74 0.76 0.74
QDA 0.83 0.83 0.83 0.78 0.72 0.70

Table A.2: Median sensitivity obtained for the seven different classification methods
and different ’top-k-based’ classifiers (build by the top 3, 8, 20, 30, 40, and 43 IRs
selected by the Limma t-test).

3 12 20 30 40 43
LDA 0.69 0.70 0.72 0.74 0.74 0.74
DLDA 0.66 0.63 0.64 0.64 0.63 0.63
FDA 0.63 0.67 0.69 0.70 0.72 0.74
PLSLDA 0.70 0.69 0.69 0.70 0.72 0.72
SVM 0.74 0.74 0.74 0.75 0.76 0.76
RF 0.74 0.78 0.79 0.80 0.81 0.81
QDA 0.55 0.58 0.62 0.68 0.74 0.74

Table A.3: Median specificity obtained for the seven different classification methods
and different ’top-k-based’ classifiers (build by the top 3, 8, 20, 30, 40, and 43 IRs
selected by the Limma t-test).

3 12 20 30 40 43
MCE

LDA 0.39 0.37 0.33 0.30 0.30 0.30
DLDA 0.40 0.41 0.40 0.41 0.40 0.40
FDA 0.48 0.43 0.37 0.33 0.30 0.31
PLSLDA 0.38 0.37 0.35 0.34 0.34 0.34
SVM 0.34 0.31 0.30 0.26 0.25 0.26
RF 0.41 0.34 0.30 0.26 0.26 0.25
QDA 0.43 0.48 0.37 0.30 0.22 0.22

SPECIFICITY
LDA 0.61 0.63 0.67 0.70 0.70 0.70
DLDA 0.60 0.59 0.60 0.59 0.60 0.60
FDA 0.52 0.57 0.63 0.67 0.70 0.69
PLSLDA 0.62 0.63 0.65 0.66 0.66 0.66
SVM 0.66 0.69 0.70 0.74 0.75 0.74
RF 0.59 0.66 0.70 0.74 0.74 0.75
QDA 0.57 0.52 0.63 0.70 0.78 0.78

SENSITIVITY
LDA 0.45 0.59 0.65 0.67 0.68 0.68
DLDA 0.46 0.57 0.61 0.64 0.66 0.66
FDA 0.54 0.64 0.67 0.70 0.72 0.70
PLSLDA 0.43 0.52 0.57 0.57 0.57 0.57
SVM 0.38 0.53 0.59 0.63 0.65 0.64
RF 0.48 0.57 0.57 0.59 0.59 0.60
QDA 0.50 0.77 0.76 0.74 0.67 0.65

Table A.4: Median misclassification error of BC as HC (top), sensitivity (bottom)
and specificity (middle) obtained by the different classification methods for several
’top-k-based’ classifiers (k = 3, 8, 20, 30, 40, and 43) for which the IRs were selected
by the Limma t-test out of the remaining 56 IRs.
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Figure B.1: Illustration of the cross validation procedure using lasso and elastic net
penalties.
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Figure C.1: R2
h and ρ2 distribution for models with elastic net penalty. The mixing

parameter α = 0, 0.1.

189



190 Appendix C. Supplementary Results for Chapter 8

0.
3

0.
5

0.
7

0.
9

Top k genes

R
h2

2 4 6 8 10 12 14 16 18 20

0.
3

0.
5

0.
7

0.
9

Top k genes

ρ2

2 4 6 8 10 12 14 16 18 20

0.
3

0.
5

0.
7

0.
9

Top k genes

R
h2

2 4 6 8 10 12 14 16 18 20

0.
3

0.
5

0.
7

0.
9

Top k genes

ρ2

2 4 6 8 10 12 14 16 18 20

Figure C.2: R2
h and ρ2 distribution for models with elastic net penalty. The mixing

parameter α = 0.2, 0.3.
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Figure C.3: R2
h and ρ2 distribution for models with elastic net penalty. The mixing

parameter α = 0.4, 0.6.
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Figure C.4: R2
h and ρ2 distribution for models with elastic net penalty. The mixing

parameter α = 0.7, 0.8.
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Figure C.5: R2
h and ρ2 distribution for models with elastic net penalty. The mixing

parameter α = 0.9, 1.





Samenvatting

Een biomerker is een eigenschap die objectief gemeten en geëvalueerd wordt als
een indicator van normale of pathogene biologische processen of als farmacologische
respons op therapeutische of andere interventies Biomarkers Definitions Working
Group (2001). In deze thesis werd eerst ingegaan op metabolische biomerkers gericht
op de verbetering van bestaande diagnostische procedures, screening instrumenten
en modellen met als doel de identificatie van patiënten met een verhoogd risico op de
ontwikkeling van borst- en longkanker.

Wereldwijd is borstkanker de meest gediagnosticeerde kanker en voornaamste oor-
zaak van kankergerelateerde sterfte bij vrouwen. Borstkanker wordt 100 maal meer
gediagnosticeerd bij vrouwen dan bij mannen en de meerderheid van vergevorderde
borstkankers wordt vastgesteld bij vrouwen ouder dan 50. Momenteel zijn er
verschillende complementaire technieken voor de diagnose en opvolging van borst-
kanker voorhanden. Deze technieken betreffen mammografie, lichamelijk onderzoek,
ultrasonografie, MRI en biomerker tests op basis van bloed. Van deze technieken
wordt mammografie nog steeds beschouwd als gouden standaard. In hoofdstuk
3 werd nucleic magnetic resonance metabolomics (NMRM) als complementaire
methode statistisch onderzocht. NMRM heeft de mogelijkheid om de diagnose
van borstkanker te vervroegen tot vóór klinische of radiologische detectie van de
symptomen. Verschillende classificatie methoden werden vergeleken om de test op
te bouwen. Een classificatie test opbouwen, gebaseerd op slechts een beperkt aantal
metabolieten, bleek zeer moeilijk. De belangrijkste oorzaak van deze beperking zal
gezocht moeten worden in de verwevenheid van de metabolieten in de biochemische
routes.
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In hoofdstuk 4 werd dieper ingegaan op longkanker. Longkanker is wereldwijd
één van de meest voorkomende kwaadaardige weefsels en wordt meestal pas vast-
gesteld in een geavanceerd stadium. Dit wordt verklaard door het uitblijven van
symptomen tijdens de vroege stadia van de ziekte, waarin behandeling het meest ef-
fectief zou zijn. Hierdoor zijn curatieve behandelingen voor longkanker eerder schaars.

Het screenen naar longkanker in een vroeg stadium, vóór patiënten klinische
symptomen ontwikkelen, zou patiënten dus ten goede komen door de verbetering
van zijn/haar levenskwaliteit en -verwachting. De kosten-baten verhouding wordt
gemaximaliseerd wanneer de hoog-risico doelgroep geselecteerd kan worden voor
screening.

Screeningstechnieken voor longkanker, zoals radiografie van de borstkas (CXR),
sputum cytologie en low-dose computed tomography (LDCT), worden gekenmerkt
door hoge vals-positieve ratio’s. Dit leidt tot emotionele stress, nodeloze financiële
kosten en zelfs gezondheidsrisico’s voor gezonde personen. Blootstelling aan onnodige
straling, biopsie en chirurgische procedures zijn namelijk gerelateerd aan verhoogde
ziekte en sterfte kansen.

Omwille van de hoge vals-positieve ratio, is er zeer veel interesse in de verbetering
van de accuraatheid van de huidige risico modellen. Dit kan door de opname van
aan longkanker gerelateerde biomerkers in de test, die de selectie van hoog-risico
individuen geschikt voor LDCT screening mogelijk maken. Een metabolische
signatuur voor longkanker werd ontwikkeld op basis van verschillende classificatie
methoden. Deze signatuur liet ons toe om 82% van de longkanker patiënten en
89% van de controle groep correct te classificeren. Bovendien onderzochten we
in hoofdstuk 5 het voordeel van metabolische data bovenop epidemiologische en
klinische variabelen in een risico model voor longkanker. De resultaten tonen aan dat
de toevoeging van metabolische data potentieel tot de verbetering van de identificatie
van hoog-risico individuen leidt. Deze individuen kunnen vervolgens geselecteerd
worden voor longkanker screening.

In hoofdstukken 7 en 8 beschouwden we het gebruik van biomerkers in de vroege
stadia van geneesmiddelenontdekking en ontwikkeling. Deze fasen zijn typisch zeer
tijdrovend en duur. Hierdoor wordt een project, gericht op de ontwikkeling van
een compound, niet zelden pas stopgezet nadat er al substantiële middelen aan
gespendeerd zijn. Daarom is het cruciaal om onbruikbare compounds zo vroeg
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mogelijk in het ontwikkelingsproces te identificeren om tijd en financiële middelen,
in overbodige volgende fases, te kunnen besparen. Hoog-dimensionale biologische
data, dewelke snel en relatief goedkoop kunnen vergaard worden, zouden in dit
geval nuttig kunnen blijken om het inzicht in de moleculaire basis van ziekten te
versnellen. Deze data laten daarenboven ook toe de efficiëntie en toxiciteit van
kandidaat geneesmiddelen te onderzoeken.

Het ontdekkings- en ontwikkelingsproces van geneesmiddelen genereert verschillende
bronnen van hoog-dimensionale data zoals onder meer high-troughput screening
(HTS), chemical structures gene expression en image-based high-content screening
(HCS). In onze studie hebben we door middel van structural equation modeling
(SEM) gebruik gemaakt van de relatie tussen drie courante data bronnen in genees-
middelen ontdekking studies (gen expressie data, bio-activiteitsdata en chemische
structuur data). Recent, heeft Verbist et al. (2015) aangetoond dat het gebruik van
transciptomic biomerkers voor de activiteit van een bepaalde compound een vroeg
inzicht geeft in het actiemechanisme van een specifieke (of specifieke verzameling van)
compound(s). SEM laat toe om verschillende oorzakelijke modellen te onderzoeken,
die de relatie beschrijven tussen de chemische structuur en biologische activiteit met
gen expressie als de voorgestelde mediator. In het bijzonder, SEM ontbindt het totale
effect van de chemische structuur op de biologische activiteitsvariabele in directe en
indirecte effecten. Een indirect effect is het effect van de chemische structuur op
de bio-activiteitsvariabele via gen expressie. De zo verkregen resultaten lieten ons
toe om genen te groeperen in verschillende oorzakelijke structuren gebaseerd op de
hoogste a-posteriori kansen.

In hoofdstukken 10 en 11 richten we ons op de evaluatie van surrogaat eindpunten
in klinische studies. Klinische studies zijn studies die opgezet worden om de thera-
peutische effectiviteit van nieuwe geneesmiddelen te evalueren. Tijdens zulke studies
wordt gebruik gemaakt van eindpunten die de concrete voordelen voor patiënten
zoveel mogelijk weerspiegelen. Onder zulke eindpunten wordt ziekte uitkomst, tijd
tot een bepaalde gebeurtenis, dood, enz., gerekend. In vele gevallen vereisen deze
studies een zeer groot aantal patiënten en omvatten deze een lange periode van
studie. Surrogaat eindpunten zijn daarom zeer interessant voor zowel onderzoekers
als patiënten, daar ze de beoordelingstijd aanzienlijk kunnen verminderen terwijl ze
toelaten om de effectiviteit van een nieuw medicijn vast te stellen Burzykowski et al.
(2005).
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In sommige gevallen dient de onderzoeker een beroep te doen op een surrogaat
eindpunt omdat het klinische eindpunt niet beschikbaar is, moeilijk te meten is of
een kostelijke, invasieve of oncomfortabele procedure vereist. Ellenberg and Hamil-
ton (1989) definiëren een surrogaat eindpunt als: ëen eindpunt dat kan gebruikt
worden als alternatief voor andere eindpunten in de evaluatie van experimentele
behandelingen of andere interventies”. Dit eindpunt is nuttig wanneer het vroeger,
gemakkelijker of frequenter kan gemeten worden dan de eindpunten van interesse
(het zo genoemd klinisch eindpunt). Maar, het dient uiteraard ook klinisch relevant
en biologisch plausibel te zijn. Alvorens een surrogaat eindpunt een klinisch eindpunt
kan vervangen in de evaluatie van een experimentele behandeling, moet het formeel
’gevalideerd’ worden. De belangrijkste reden voor validatie van een surrogaat
eindpunt is om toe te laten een voorspelling van het behandelingseffect te maken.
Deze voorspelling gebeurt in termen van het ware eindpunt gebaseerd op het effect
van de behandeling op het surrogaat eindpunt. Uiteraard dient dit met voldoende
precisie te gebeuren om een veilig onderscheid te kunnen maken tussen effecten die
klinisch van belang zijn en effecten die dat niet zijn. Desondanks is er geen standaard
software voorhanden om zulke validatie analyses uit te voeren. In hoofdstukken
10 en 11 introduceren we twee software producten, SAS en R gebaseerd, voor
de analyse van surrogaat eindpunten in gerandomiseerde klinische studies. Deze
software is ontwikkeld vanuit het standpunt dat de eindgebruikers niet noodzakelijk
statistici zullen zijn. Beide producten voorzien gebruiksvriendelijke en eenvoudig te
interpreteren standaard output die enkel de hoofdresultaten van de analyse bevat.

Het R product (surrogate Shiny App) kan gebruikt worden op een lokale computer of
online, enkel gebruik makend van het shiny cloud platform. Andere cloud platformen,
zoals Amazon Web Service of google cloud platform, kunnen ook gebruikt worden. Het
is een graphical user interfase (GUI) waardoor de gebruiker niet wordt blootgesteld
aan de achterliggende R code.


