
Faculty of Sciences

Topics in Data Mining: Pattern Enumeration, XML
Key Inference and Big Data Query Optimization

Doctoral dissertation submitted to obtain the degree of

Doctor of Science: Information Technology, to be defended by

Jonny Daenen

Promoter: Prof. Dr Frank Neven

Co-promoters: Prof. Dr Tony Tan

Prof. Dr Jan Van den Bussche

September 16th, 2016

D/2016/2451/49

“To infinity . . . and beyond!”

— Buzz Lightyear

Acknowledgments

During the past seven years, I had the opportunity to explore one of the most
interesting fields in computer science: data mining. I was given the chance
to participate in academic research, discovered my passion for teaching and
picked up a lot of extra’s along the way: organizing events, teaching people
how to program, building robots with LEGO, explaining my research to a
broad audience, etc. All of this could not have been accomplished without the
support I received from numerous people.

First and foremost, I would like to thank my advisor Frank Neven, for
being my guide on this journey and for the general discussions related to
“productivity” tools and Apple products. I thank my co-advisors Jan Van
den Bussche, whose enthusiasm got me excited about theoretical computer
science, and Tony Tan, for allowing me to take part in distributed systems
research, which sparked (pun intended) my own enthusiasm. Special thanks
go to Stijn Vansummeren and to Mart́ın Ugarte for the enriching collaborations
that resulted in several important insights.

I would like to extend my gratitude to my colleagues and all people I have
cooperated with, especially those of the InfoLab (DBTI) research group, who
helped at making this an unforgettable experience—especially during the trav-
els. Extra credits go to (in order of appearance) Joris Gillis, Robert Brijder,
Jelle Hellings and Bas ‘The Boss’ Ketsman, who helped me figuring out re-
sults, supplied writing tips and found various ways of distracting me; and to
Jeroen Dello, who was always thrilled to talk about anything.

I’m especially thankful towards my parents Benny Daenen and Justine
Vandewauw for allowing me to make my own decisions and supporting me in
all possible ways, and towards my whole family as they motivated me and
were always ready to help. Towards my friends for being there, for providing
moments of relaxation and distraction, and for showing interest in whatever
strange projects I was doing. Mark Fontaine, my former guitar teacher, de-
serves a special mention here, as he planted the seed from which my interest
in computer science has grown.

Finally, I would like to thank my girlfriend Michelle Gybels for her patience
and understanding, cheering me up when necessary, acting as a sounding board

i

ii

for my thoughts, and most of all for being there.
There is not enough space here to encode the entire dataset of those who

have supported me. Hence, to everyone who has contributed in a direct or
indirect way to this work: Bedankt!

Diepenbeek, September 2016

Abstract

In this work, we identify three challenging subtopics in regard to optimizing
Big data mining workflows. First, we focus on pattern mining and investi-
gate the problem of enumerating string patterns described by a context-free
language. We derive guarantees on the delay between generated items when
using a naive algorithm. Our results contribute to the foundational aspects of
computer science and provide a basis for obtaining similar guarantees in more
complex enumeration problems. The second topic remains in the domain of
pattern mining: we study the pattern mining problem applied to XML keys.
We discuss the complexity of several important decision problems and devise
an algorithm for discovering XML keys from a given set of XML data. The
presented algorithm leverages previous results from search space exploration
and relational key mining and is experimentally validated. For our final topic,
we shift our attention to Big data mining, where query engines answer ques-
tions about data that exceeds the capacity of traditional relational database
systems. To construct answers within a reasonable amount of time, we focus
on parallel evaluation. We present a two-tiered strategy for optimizing query
plans for a collection of strictly guarded fragment queries. The nature of these
queries allows for a low-cost MapReduce evaluation (in terms of total and
net time) that takes up to two rounds per subquery. We provide an imple-
mentation in our system called Gumbo and extensively compare it to existing
systems.

iii

Samenvatting

Tijdens de laatste decennia merken we een enorme toename op van de hoe-
veelheid data die verzameld, bijgehouden en verwerkt moet worden. De lage
prijzen van zowel sensoren, rekenkracht en opslagcapaciteit, alsook de toename
van gebruikersgegenereerde content hebben hier mede voor gezorgd. Deze
grote hoeveelheid beschikbare data kan gebruikt worden om nieuwe inzichten
te verkrijgen die bijvoorbeeld belangrijke beslissingen kunnen ondersteunen.
Het ontdekken en extraheren van deze informatie of inzichten noemt men data
mining en situeert zich binnen het domein van knowledge discovery.

Omdat het handmatig verwerken van grote hoeveelheden informatie vaak
niet haalbaar is, wegens te tijdrovend, worden computers ingezet om data
aan hoge snelheden te verwerken. Echter zijn zowel de processorsnelheid en
leessnelheid van harde schijven onvoldoende meegeëvolueerd met de opslagca-
paciteit. Daarom moeten we op zoek naar nieuwe technologieën en algoritmen
die snelle data-analyses mogelijk maken. Niet alleen moeten we de eigenschap-
pen en limieten van dergelijke technologieën en algoritmen goed begrijpen, we
dienen hierbij ook rekening te houden met de karakteristieken van moderne
data. Deze zogenaamde “Big data” wordt vaak omschreven met termen als
velocity (snelheid), variety (diversiteit) en volume (grootte), al wordt tegen-
woordig veracity (accuraatheid) als vierde “V” aangeduid [67, 104]. Elk van
deze karakteristieken komt samen met nieuwe uitdagingen m.b.t. data mana-
gement en analyse.

In dit werk bestuderen we enkele kernproblemen binnen het minen van
data. De eerste twee problemen situeren zich in de context van pattern mining,
terwijl het laatste onderwerp de nadruk legt op query evaluatie en optimalisatie
binnen het gebied van Big data.

Enumeratie van Patronen

Een interessante data mining techniek is pattern mining, waar het de bedoeling
is om interessante patronen te ontdekken in een berg data. Eén van de meest
eenvoudige manieren om dit probleem op te lossen bestaat eruit alle mogelijke

v

vi

patronen één voor één op te sommen en voor elk van hen te testen of het
voorkomt in de data. Dit is een vrij näıeve techniek, maar wel één die in
de meeste gevallen gebruikt kan worden. Een centraal probleem binnen deze
aanpak is het opsommen van patronen. In deze thesis gaan we na hoe zulke
patronen opgesomd kunnen worden indien deze voorhanden zijn in de vorm
van een contextvrije grammatica. Een contextvrije grammatica beschrijft een
(mogelijk oneindige) verzameling strings en kan dienen om de voorkeur voor
bepaalde patronen uit te drukken.

We tonen aan dat een näıef algoritme voor het enumereren van de strings
in een contextvrije taal voldoet aan de incremental polynomial time (IPT) ei-
genschap. Dit houdt in dat de tijd tussen een gegenereerd patroon n en n+ 1
begrensd wordt door p(n), waarbij p een veelterm is die afhankelijk is van de
grammatica. Dit is een vrij verrassend resultaat aangezien we geen beperkin-
gen leggen op de grammatica zelf. Een tweede resultaat bestaat uit het bewijs
dat bestaande algoritmes voor het opsommen van strings met een gegeven
lengte (zoals dat van Dömösi [72]) eenvoudig omgevormd kunnen worden naar
een IPT-algoritme voor de gehele taal.

De bekomen resultaten zijn enerzijds van een didactisch nut, maar de ge-
bruikte aanpak en bewijstechnieken dienen ook als basis voor het afleiden van
gelijkaardige eigenschappen voor meer complexe talen. Hierbij denken we aan
boom- of graaftalen [61], dewelke ingezet kunnen worden voor het beschrijven
van meer complexe patronen.

XML Key Mining

Het tweede onderwerp gaat dieper in op pattern mining, maar dit keer met als
doel het ontdekken van alle XML-keys in gegeven XML-documenten. XML-
documenten zijn interessant omdat ze een flexibeler datamodel hanteren (semi-
gestructureerd) dan hetgeen we terugvinden in relationele databases (gestruc-
tureerd). Dit houdt in dat de structuur van XML in de data zelf aanwezig is,
in plaats van dat deze vooraf opgelegd wordt. Deze flexibiliteit heeft van XML
een veelgebruikt datatype gemaakt voor zowel het uitwisselen als het opslaan
van data.

Omdat structuur in sommige situaties toch vereist is (optimalisaties [51],
verificatie en validatie [38]) zijn er schematalen zoals XML Schema Definitions
(XSDs) [161] in het leven geroepen. Deze laten toe om beperkingen te leggen
op de toegelaten structuur van XML-documenten. Een weinig gebruikt me-
chanisme dat reeds aanwezig is in XSD’s zijn XML-keys. In tegenstelling tot
in het relationele model is er slechts weinig onderzoek verricht naar XML-keys
in de aanwezigheid van een schema. Ons werk brengt hier verandering in.

XML-keys laten toe om in een XML-document aan te geven welke no-

vii

des uniek gëıdentificeerd moeten worden. Beschouw bijvoorbeeld een XML-
document dat bestellingen van boeken bevat. We kunnen dan uitdrukken dat
ieder boek binnen een bestelling uniek gëıdentificeerd kan worden door de
combinatie van zijn titel- en jaar-veld. Merk op dat we niets zeggen over de
aanwezigheid van hetzelfde boek in verschillende bestellingen. Het is hierbij
wel belangrijk dat deze laatste velden (titel en jaar) gegarandeerd aanwezig
zijn, en maximaal éénmaal voorkomen.1

We geven een algoritme dat alle XML-keys kan afleiden uit een gegeven
document en tonen aan dat dit bruikbaar is in de praktijk. Verder bestuderen
we enkele belangrijke beslissingsproblemen die de kwaliteit van de gevonden
keys moet verhogen, daar de kwaliteit van resultaten een typisch probleem is
binnen data mining. Het belangrijkste probleem dat we onderzoeken is dat
van consistentie (consistency): zal een key op elk document dat voldoet aan
het schema altijd de juiste velden selecteren? We tonen aan dat dit probleem
zich in de complexiteitsklasse ptime bevindt.

Ons inferentiealgoritme steunt op reeds bestaande algoritmen die toelaten
om de zoekruimte efficiënt af te lopen en om de geldigheid van relationele
keys na te gaan. Het kan verder uitgebreid worden naar keys die bijna gelden
(zogenaamde approximate keys) en kan mogelijk dienen als basis voor keys in
graafdata, een vorm van data die de laatste jaren steeds populairder geworden
is door o.a. de opkomst van sociale netwerken.

Big Data Query Optimalisatie

In dit laatste deel bestuderen we de parallelle evaluatie van strictly guarded
fragment queries. We maken hiervoor gebruik van het MapReduce program-
meermodel, dat eenvoudige parallellisatie toelaat op een cluster van alledaagse
machines.

Er zijn reeds heel wat systemen op de markt die trachten om te gaan
met de karakteristieken van moderne data. Een belangrijke techniek is het
parallelliseren van berekeningen zodat de kost gedeeld kan worden over ver-
schillende machines en er eenvoudig meer rekenkracht toegevoegd kan worden.
Vaak worden hiervoor MapReduce systemen zoals Hadoop gebruikt, met daar
bovenop een extra query interface voor de gebruiker. De queries die worden in-
gegeven worden typisch vertaald naar het onderliggende MapReduce systeem.
Echter, voor queries die join-operaties bevatten, of queries waarbij de data
niet mooi verdeeld kan worden over de machines levert dit niet altijd snelle
uitvoeringstijden omdat sommige machines meer werk moeten verrichten.

Wij bestuderen een variant op de relationele algebra (SQL) waarbij we
joins in essentie vervangen door semi-joins: strictly guarded fragment queries

1Bijgevolg dienen de velden precies één keer voor te komen voor ieder boek.

viii

of SGF-queries. Een semi-join Rn S heeft als resultaat de R-tupels die voor-
komen in de join R 1 S. De reden voor deze keuze is dat veel queries nog
steeds uitgedrukt kunnen worden in deze beperkte taal en dat join-queries in
bepaalde gevallen versneld kunnen worden door eerst een semi-join query uit
te voeren. SGF-queries laten toe om parallele queryplannen te construeren en
om in bepaalde gevallen de totale resource-kost van de queries (hetgeen even-
redig is met de prijs van een query) significant te verlagen. Tezamen zorgt dit
voor snelle resultaten aan een lage kostprijs in een vrij flexibele querytaal.

We presenteren een vernieuwd kostmodel voor MapReduce, dat ons in
staat stelt om de kost van een berekening in te schatten en gebaseerd hierop
ontwikkelen we een tweedelig algoritme dat een optimaal MapReduce query
plan berekent. We tonen aan dat het optimalisatieprobleem np-compleet is en
geven de nodige heuristieken. Uit onze experimentele studie blijkt dat onze
heuristieken goed werken, dat onze optimalisaties hun dienst bewijzen en dat
ons systeem (Gumbo) efficiënter is dan de bestaande systemen Pig en Hive
wanneer het gaat om SGF queries.

Gumbo kan uitgebreid worden op verschillende vlakken waaronder onder-
steuning voor specifieke query elementen, maar kan ook dienen als subsysteem
voor het evalueren van SGF queries in bestaande systemen. De optimalisa-
ties die we voorstellen kunnen nog uitgebreid geëvalueerd worden en kunnen
mogelijk dienen voor het optimaliseren van andere MapReduce programma’s,
zelfs buiten de context van dit werk.

Discussie

De deelonderwerpen behandeld in dit werk kaderen allemaal binnen data mi-
ning. We hebben zowel theoretische als praktische resultaten gegeven, alsook
bruikbare implementaties hiervan. We zijn van mening dat dergelijke bijdra-
gen zeer nuttig zijn in het domein van informatica en zeker binnen Big data,
aangezien ze enerzijds meer inzicht geven in de beschouwde problemen, maar
anderzijds ook oplossingen aanreiken die gebruikt kunnen worden in een prak-
tische context.

Contents

Acknowledgments i

Abstract iii

Samenvatting v

1 Introduction 1
1.1 Knowledge Discovery & Data Mining 1

1.1.1 A Pattern Mining Workflow 2
1.1.2 Pattern Enumeration Speed 4
1.1.3 Data-driven Enumeration and Interestingness 4

1.2 Big Data . 8
1.2.1 Parallel Query Evaluation 9
1.2.2 SGF Queries . 15

1.3 Outline . 15
1.4 Contributions . 16

2 Context-free Language Enumeration in IPT 19
2.1 Introduction . 19
2.2 Preliminaries . 21
2.3 Naive Enumeration Algorithm 24
2.4 Bounds on Intermediate String Number and Length 27

2.4.1 String Properties . 27
2.4.2 Start-up Phase . 28
2.4.3 Generation Pace . 30
2.4.4 Length Bound . 38
2.4.5 Intermediate String Bound 39

2.5 IPT Proof for the Naive Algorithm 42
2.6 From Given-Length to Infinite Enumeration 44
2.7 Semi-Naive Optimization . 46

2.7.1 The Semi-Naive Concatenation Scheme 46
2.7.2 Unambiguous Grammars 48

ix

x CONTENTS

2.8 Discussion . 48

3 Discovering XSD Keys from XML Data 51

3.1 Introduction . 51

3.2 Related work . 55

3.3 Definitions . 57

3.3.1 Trees & XML . 57

3.3.2 XSDs . 58

3.3.3 XML Keys . 60

3.3.4 XML Key Mining Problem 62

3.4 Key Quality Complexity . 62

3.4.1 Consistency & XPath Cardinality 63

3.4.2 ∀=1,SE
tree is in ptime . 66

3.4.3 Other Quality Measures 77

3.5 XML Key Mining Algorithm 79

3.5.1 Prefix Tree and Context Miner 80

3.5.2 Target Path Miner . 81

3.5.3 One-Key Path Miner . 88

3.5.4 Minimal Key Path Set Miner 90

3.6 Experiments . 91

3.6.1 Prefix Tree . 94

3.6.2 Contexts . 95

3.6.3 Target Paths . 96

3.6.4 One-Key Paths . 97

3.6.5 Keys . 98

3.6.6 Quality . 99

3.6.7 Running Time . 100

3.6.8 Optimizations . 102

3.7 Discussion . 104

4 Parallel Evaluation of Multi-Semi-Joins 107

4.1 Introduction . 107

4.2 Related Work . 110

4.3 Preliminaries . 112

4.3.1 Strictly Guarded Fragment Queries 112

4.4 A Cost Model for Hadoop MapReduce 114

4.4.1 The MapReduce Computation Model 115

4.4.2 MapReduce in Hadoop 116

4.4.3 Cost Model . 122

4.5 Parallel MSJ and SGF Evaluation 129

4.5.1 Evaluating One Semi-join 129

4.5.2 Evaluating a Collection of Semi-joins 131

CONTENTS xi

4.5.3 Evaluating Boolean Combinations 133
4.5.4 Evaluating BSGF Queries 135
4.5.5 Evaluating Multiple BSGF Queries 137
4.5.6 Evaluating SGF Queries 137
4.5.7 Evaluating Multiple SGF Queries 140

4.6 Decision Problems . 141
4.6.1 SGF-Opt is NP-complete 141
4.6.2 Minimizing Reads . 143

4.7 Extensions . 148
4.7.1 Additional Atom Support 148
4.7.2 Bag Semantics . 149

4.8 Discussion . 149

5 MSJ Evaluation in Practice 151
5.1 Contributions & Outline . 151
5.2 Algorithm Revision . 152
5.3 Optimizations . 153

5.3.1 Message Compression 153
5.3.2 Message Packing . 157
5.3.3 Confirm Reduction . 159
5.3.4 Streaming Reducers . 159
5.3.5 Mapper Shaping . 160
5.3.6 Reducer Shaping . 161
5.3.7 Single-Job Evaluation 162

5.4 Gumbo . 162
5.4.1 Internal Structure . 162
5.4.2 Map Output Estimation 165
5.4.3 Low-level Optimizations 165
5.4.4 Spark & Tez Support 166

5.5 Experimental Validation . 166
5.5.1 Experimental setup . 167
5.5.2 Multi-Semi-Join Queries 168
5.5.3 BSGF Queries . 171
5.5.4 SGF Queries . 176
5.5.5 System Characteristics 181

5.6 Discussion . 182

6 Discussion & Future Work 185

Bibliography 189

Index 205

List of Figures

1.1 A basic workflow for pattern mining problems. 3

1.2 Example book order XML document. 6

1.3 Tree representation of the XML document in Figure 1.2. 6

1.4 Abstract depiction of the MapReduce pipeline. 11

2.1 Parse tree example. 24

2.2 Dependency graph example. 24

2.3 A filled context for a recursive non-terminal A. 31

2.4 A minimal depth filled context for a recursive non-terminal S. . 32

2.5 An R-filled context for a leeching non-terminal A. 34

3.1 XML tree example. 53

3.2 Schematic representation of an XML key. 55

3.3 Type automaton of XSD Xbookshop. 58

3.4 Prefix tree for the XML tree in Figure 3.1. 80

3.5 Two documents that yield the same prefix tree. 89

3.6 Length distribution of all and canonical target paths. 93

3.7 Target paths found for different support thresholds. 94

3.8 Document vs. prefix tree size. 95

3.9 Behavior of the target path miner. 96

3.10 Behavior of the one-key path miner. 97

3.11 Key Miner running time breakdown. 101

3.12 Key Miner running time boxplots. 101

3.13 Effect of equivalence optimizations on running time. 103

3.14 Effect of different optimizations on running time. 103

4.1 Overview of the MapReduce computation model. 115

4.2 Overview of the MapReduce pipeline in Hadoop. 117

4.3 Detailed overview of the Map phase. 118

4.4 Illustration of an external-memory merge for 16 spill files. . . . 124

4.5 MapReduce query plan alternatives. 136

4.6 Example SGF queries. 140

xiii

xiv LIST OF FIGURES

4.7 Query dependencies for single-colored vertices. 145
4.8 Query dependencies for different colored connected vertices. . . 146

5.1 Effect of tuple id compression. 157
5.2 The SGF workflow in Gumbo. 163
5.3 Example Gumbo input. 164
5.4 Results for the semi-join queries in Table 5.5 170
5.5 Results for the regular BSGF queries in Table 5.6. 173
5.6 Results for the large BSGF queries in Table 5.6. 177
5.7 Results for the SGF queries in Figure 5.8. 178
5.8 SGF queries. 179
5.9 Results for data and node variation tests in Gumbo. 180

List of Tables

1.1 Nine steps of the KDD process. 2
1.2 Example relational database instance. 13
1.3 Transition from map output to reduce output. 13
1.4 Overview of chapters and the associated articles. 16

2.1 Overview of symbols used in Chapter 2. 26
2.2 First iterations of the naive scheme on example grammar G2. . 27

3.1 Complexity of ∀•k,Ptree . 64
3.2 Relational table for example XML key. 92
3.3 Effect of equivalence (without schema) on target paths. 93
3.4 Effect of equivalence (without schema) on key paths. 93
3.5 Target path search space breakdown. 97
3.6 Key path search space breakdown. 98
3.7 XML key statistics without consistency test. 99
3.8 XML key statistics with consistency test. 100

4.1 Description of constants used in the cost model. 122

5.1 Applicability of Gumbo optimizations and techniques. 155
5.2 Effect of optimizations on MSJEVAL. 156
5.3 Hadoop settings used in the experiments. 167
5.4 Values for constants used in the cost model. 168
5.5 Queries used in the MSJ experiment. 169
5.6 Queries used in the BSGF experiment. 172
5.7 Effect of selectivity on net and total time. 182

xv

List of Algorithms

1 Total expenditure calculation in MapReduce. 12
2 Naive concatenation scheme for context-free grammars. 25
3 Infinite enumeration algorithm EnumerateG,∞. 44
4 Semi-naive concatenation scheme for context-free grammars. . . 47
5 XML key mining algorithm. 79
6 Basic algorithm for levelwise search. 82
7 Target path miner. 85
8 Single semi-join in MapReduce. 130
9 Multi-semi-join calculation in MapReduce. 133
10 Boolean combination evaluation in MapReduce. 134
11 Iteration of Greedy-SGF. 140
12 Final 2-round MapReduce algorithm for BSGF queries. 154

xvii

1
Introduction

As we are recording millions of petabytes every day [63], storing and analysing
this information has become a major challenge. While the data itself is broadly
available, we need technology that facilitates dealing with it on a daily ba-
sis and methodologies and algorithms that can extract the most valuable
parts [104]. In this work, we identify several important challenges in knowl-
edge discovery and provide theoretical and practical results that contribute
to both the algorithmic and the technological aspect. This results into usable
data mining tools of which the capabilities are fully understood and which can
be readily plugged into modern Big data mining workflows.

1.1 Knowledge Discovery & Data Mining

Maletic and Marcus [124] give the following clear description of knowledge
discovery:

Knowledge Discovery in Databases (KDD) is an automatic, explo-
ratory analysis and modeling of large data repositories. KDD is
the organized process of identifying valid, novel, useful, and under-
standable patterns from large and complex data sets.

Table 1.1 shows the major steps that are involved in this KDD process. Each
of the steps in this pipeline comes with its own challenges, but we focus on
the selection and employment of the data mining algorithm, which is a crucial
part of this pipeline [124]:

1

2 Introduction

Step Description

1 Developing an understanding of the application domain

2 Selecting and creating a data set

3 Preprocessing and cleansing

4 Data transformation

5 Choosing the appropriate Data Mining task

6 Choosing the Data Mining algorithm

7 Employing the Data Mining algorithm

8 Evaluation

9 Using the discovered knowledge

Table 1.1: Nine steps of the KDD process [124].

Data Mining (DM) is the core of the KDD process, involving the
inferring of algorithms that explore the data, develop the model
and discover previously unknown patterns. The model is used for
understanding phenomena from the data, analysis and prediction.

Data Mining tasks can be subdivided into two major categories: verifica-
tion and discovery. The goal of the first is mainly to confirm a hypothesis,
where the latter aims at finding new insights, i.e., to actually construct a
hypothesis from the data. There are many different techniques available and
each of them aims to discover other concepts in/of the data. For example,
there are classification algorithms that aim to learn how to label new data
items, there is association rule mining where connections between different
features are exposed, there is clustering, where groups of similar data items
are grouped together, there is numeric prediction that allows us to estimate
numeric values, etc.

When a specific data mining task is chosen, a suitable algorithm and imple-
mentation needs to be selected to perform the actual analysis. It is paramount
to be aware of the properties of the algorithm at hand in order to understand
its output and to estimate the time needed for the analysis. The latter is of
major importance in situations where time is a crucial factor. This illustrates
the need for a thorough understanding of the limitations of the algorithms and
the guarantees that they provide.

1.1.1 A Pattern Mining Workflow

A certain class of data mining algorithms involves finding interesting patterns
in a dataset that can be used to understand or describe it. The term ‘pat-
tern’ should be considered in a very broad sense, as it can mean a diversity

1.1. Knowledge Discovery & Data Mining 3

Data

Pattern Language

Enumerate
Pattern

Find
Pattern

Determine
Interestingness

Inform
Data Analyst

Possible Patterns

Figure 1.1: A basic workflow for pattern mining problems.

of things. In general, a pattern is a potential feature of a dataset; some ex-
amples are: an association rule expressing that two products are often bought
together [13], a subnetwork on Facebook that matches the structure of a crim-
inal organization [77] or a decision tree that classifies job candidates. We focus
on the abstract problem of pattern mining, a problem that involves generating
candidate patterns, and testing whether they appear in a given dataset. We
zoom in on a selection of interesting theoretical and practical challenges. The
following is a very basic ‘generate-and-test’ workflow that tackles the problem
of finding patterns in a dataset:

1. generate candidate pattern;

2. check whether the pattern appears in the dataset;

3. if the pattern appears interesting, output it;

4. repeat.

This workflow is visualized in Figure 1.1. We can already identify the impor-
tant components of this framework:

• defining and generating the pattern space;

• finding a method to test whether the pattern is present; and,

• deciding when a pattern should be considered interesting.

We study the following different subproblems, where each of them provides
insight in one or more of the components of the generic framework presented
above:

4 Introduction

• generating candidate patterns with speed guarantees from a user-defined
pattern language; and

• identifying high-quality, unique substructures in semi-structured data.

In the remainder of this section, we provide a top-level view of these two
problems and provide a motivation on why they are interesting.

1.1.2 Pattern Enumeration Speed

In the generate-and-test method described above, the search space is defined
by the user, and all potentially interesting patterns must be enumerated. As
exploring the entire search space is often not practically feasible, pruning opti-
mizations are often required to speed up the discovery process. An example of
this approach can be seen in the well-known Apriori algorithm [13]. In other,
more data-driven methods, the data itself is used to construct a search space,
as is done in the FP-growth algorithm [97].

In Chapter 2, we study the problem of generating a set of candidate pat-
terns based on directives from the user, and characterize the speed of the
enumeration process. We limit our attention to string pattern languages that
are described by a context-free grammar and study a naive enumeration al-
gorithm, which iteratively constructs new strings from smaller, intermediate
strings. We show that even the naive algorithm exhibits the incremental poly-
nomial time (IPT) property, which guarantees that the time between two
generated patterns is bounded by a polynomial in the number of already gen-
erated strings. Surprisingly, as we pose only a few restrictions on the form of
the grammar, the result even holds for ambiguous grammars where patterns
may have different internal representations.

This result on strings is a fundamental one and can be used to derive
bounds for other pattern description formalisms that describe more complex
properties. For example, when mining graph data, a pattern language can
be given in the form of a graph language that describes a set of interesting
graphs. Indeed, Costa Florêncio et al. [61] give an example of how a context-
free language of graph expressions can be used to enumerate classes of graphs
corresponding to, e.g., cycles and trees. The results can also be directly applied
to data mining scenarios such as sequence mining, where context-free or regular
languages can be used to improve the result set quality [17, 112]. However,
enumeration might not be the best strategy here, as more data-driven methods
are used in the referenced work.

1.1.3 Data-driven Enumeration and Interestingness

We continue the study of pattern enumeration, but this time in the context
of semi-structured data. This particular form of data is very interesting as it

1.1. Knowledge Discovery & Data Mining 5

diverges from the more standard relational model, where data is represented
using fixed-size tuples. Indeed, since the advent of the Internet, several new
data models have been used that facilitate the exchange of information in
machine-machine and human-machine communication. The semi-structured
data corresponds to a data model where the schema is part of the data itself;
it is hence considered to be self-describing [50]. In the No-SQL community,
which aims to provide alternatives for relational database management systems
(RDBMSs), we find that several solutions operate on semi-structured data to
offer a flexible data model (see, e.g., [20, 135]). In No-SQL solutions, the
typical requirements for an RDBMS are weakened in favor of other properties
such as scalability.

The eXtensible Markup Language, or XML, is a specific type of semi-
structured data. Figure 1.2 shows an example XML document that consists of
tags (between angular brackets) and actual data. XML data exhibits a tree-
like structure. For the XML document in Figure 1.2, the corresponding tree
is shown in Figure 1.3. Although XML data and other semi-structured data
types are self-describing, using a schema offers several advantages. This can
be seen in the opportunities that arise for query decomposition and optimiza-
tion [51] and, for example, in regard to validation and verification of incoming
data in webservices [38]. Hence, some form of structural rules could be ben-
eficial. For XML, two very popular methods for constraining the structure
of the allowed documents are XML Document Type Definitions [160] (DTDs)
and XML Schema Definitions [161] (XSDs).2 Both provide a means to define
a grammar that describes the language of allowed documents.

While XSDs are more powerful than DTDs and allow for enforcing struc-
tural constraints, e.g., “every book must have an ISBN number”, or “a book
has at least one author” they are also able to enforce more complex data-
oriented constraints in the form of, e.g., XML keys, a feature that is rarely
used. The concept of keys arises from the relational model, where a key is
a set of fields that enables us to identify each tuple by using only its values
for the key fields. To illustrate the intuition behind XML keys, consider the
book order example from Figure 1.2, where it seems only logical to disallow
an order that contains multiple items with the same ISBN number while still
allowing ISBN repetition across different orders. Hence, we want to be able
to express the following:

In every set of orders, all ISBN numbers that appear inside one
order must be unique.

This constraint can easily be expressed by an XML key, as we will now il-
lustrate. Informally, an XML key has three major components: (i) a scope

2Other formalisms are available such as DSD, Relax NG and Schematron [58, 71, 149],
but these are outside the scope of this work.

6 Introduction

<orders>

<order>

<userid>08051986182</userid>

<item>

<isbn>978-0425228227</isbn>

<amount>3</amount>

</item>

<item>

<isbn>978-1847371263</isbn>

<amount>1</amount>

</item>

</order>

<order>

<userid>0805198641</userid>

<item>

<isbn>978-1847371263</isbn>

<amount>54</amount>

</item>

<order>

<orders>

Figure 1.2: Example XML document containing book orders of two different
users.

orders

order

userid

08051986182

item

isbn

978-0425228227

amount

3

item

isbn

978-1847371263

amount

1

order

userid

0805198641

item

isbn

978-1847371263

amount

54

Figure 1.3: Tree representation of the XML document in Figure 1.2.

1.1. Knowledge Discovery & Data Mining 7

in the XML document, (ii) a selection of nodes within the scope, and (iii)
a method that constructs a ‘label’ for each node. A key holds in an XML
document when inside each scope, all selected nodes are uniquely identified
by their label. For the desired constraint above, we could have the following
key components: (i) the scope is limited to each order element, (ii) the nodes
that should be unique are the items, (iii) which should be identifiable by their
ISBN number.

Although this type of constraint can be embedded in current XSDs in the
form of an XML key, as defined in the W3C specification [161], they are often
omitted. What is even more worrisome is that a lot of XML documents refer
to low quality schemas or even omit the XSD reference entirely: Grijzenhout
and Marx [92] studied a corpus of 180.640 online XML documents in 2013 and
found that in 86.7% of the cases no schema information was available. But,
there exist methods for automatic schema extraction [38], which can be used
to gain understanding about the XML data at hand.

In Chapter 3, we aim to complement the previous work by describing an
inference method for XML keys which leverages several existing techniques.
The discovered keys can then be used to improve the quality of the existing
schema.

The desired inference method is clearly a data mining task that can be de-
scribed using the pattern mining workflow defined above. Indeed, the patterns
we are looking for are XML keys that hold in the considered document(s). As
the number of potential keys may become extremely large, we need an algo-
rithm for exploring the search space in an efficient way.

As a lot of keys might hold in a document, identifying good quality results
becomes an important problem.3 We therefore propose a set of key quality cri-
teria that allows us to decide whether a key is (un)interesting. Some examples
of uninteresting keys are those that

• can never be satisfied (satisfiability);

• always hold (universality);

• can identify only a bounded amount of elements (boundedness);

• will only sometimes yield ‘labels’ (data values) for elements (consis-
tency); or

• are equivalent to an already discovered key (equivalence).

As the quality criteria should be embedded in the mining algorithm, it is
important to understand the implications of activating them. We therefore

3In fact, this is one of the major difficulties in the field of data mining.

8 Introduction

characterize the complexity of the decision problems associated with verifying
each quality criterion.

Unfortunately, and in strong contrast to, for instance, the relational model,
the automatic discovery of XML keys has been left largely unexplored. A ma-
jor obstacle here is the unavailability of a theory on reasoning about XML keys
in the presence of XML schemas, which is needed to validate the quality of
candidate keys. Chapter 3 embarks on a fundamental study of such a theory
and classifies the complexity of the crucial quality measures mentioned above
in the presence of an XSD. As it turns out, some of the proposed measures are
tractable, while others are not. We develop a mining algorithm within the
framework of levelwise search. The algorithm leverages known discovery algo-
rithms for functional dependencies in the relational model, but incorporates
the properties mentioned to assess and refine the quality of derived keys. An
thorough experimental study on an extensive body of real world XML data
evaluating the effectiveness of the proposed algorithm is provided.

1.2 Big Data

Variety, velocity and volume, also known as the “3 Vs”, are often seen as the
major characteristics of “Big data”, a term that has become very popular over
the last years [104].4 The rise of Big data is caused by numerous factors that
are all connected to the characteristics mentioned above.

Since the advent of digital storage in the 1980’s, the cost of storing data
has become significantly cheaper. Today, storing 1GB of data on Google
Cloud, for example, only costs around $0.02 per month5. Together with the
ubiquity of sensors in everyday devices such as smartphones, thermometers,
smart watches, GPS systems, etc., it has led to the generation of vast volumes
of data each day. Especially since most devices are now connected to the
Internet (Internet of Things, or IoT devices), collecting data has never been
easier. This data comes in different types and varieties. Think of click logs
from websites, Facebook posts, sensor readings, security cameras, etc. All of
these have different sizes, are collected at different rates, are stored in different
formats, have special security and privacy requirements, etc. If one desires to
aggregate data from different sources, they face great challenges. Finally,
there is velocity; an indicator of the data generation speed. The low hardware
and energy cost of sensors and data storage, and the availability of a fast
networking infrastructure have enabled the generation and ingestion of data
at a high frequency.

In different fields, it has become important to extract information from the

4In practice, additional characteristics such as veracity are often used [67].
5See, e.g., https://cloud.google.com/storage/pricing.

https://cloud.google.com/storage/pricing

1.2. Big Data 9

available data with the purpose of understanding it better and making justified
decisions. When information needs to be extracted from Big data, however,
the typical characteristics described above may become a major obstacle:

• when the data is too large to store on one normal device, we are con-
fronted with infrastructural challenges;

• when multiple data types need to be combined we need to think carefully
about coping with their different properties; or

• when data arrives at high speeds we may need to examine it in a stream-
ing fashion, i.e., process it and never look at it again, as it may not be
possible to store it on disk.

These examples illustrate the possible challenges that arise when we are con-
fronted with Big data and they illustrate the need for tools and techniques
to manage and process data that allow us to extract new knowledge. This
knowledge can take a lot of different forms, a few examples:

• product recommendations on online shopping websites such as Ama-
zon [120];

• trending topics on social networking websites such as Twitter [101, 132];

• discovering drug trafficking in social networks [77]; or

• detecting fraudulent bank transactions [143].

As questions about the data may take different forms, the need of a query
engine that provides an understandable query interface and calculates the
answers in the most optimal way is clear. Relational databases have been
mostly using SQL as the standard query language, which is translated to an
actual query plan based on statistical information about the data. When we
need to deal with Big data, these traditional systems do not always scale well.
Therefore, as we will see next, distributed computing has been used to tackle
this issue.

1.2.1 Parallel Query Evaluation

We study the problem of query evaluation in the context of Big data. It
should be obvious that, whenever the input size grows, algorithms that process
the entire dataset will operate slower. This is no different for data mining
algorithms. As time is often important in a knowledge discovery context, e.g.,
for decision-makers, it is paramount to develop query methods that are scalable
so that they can be used with actual Big data that has the characteristics
presented at the beginning of this chapter.

10 Introduction

To a certain extent, scalability can be obtained by adding faster comput-
ing hardware, but this has its limits since the cost involved quickly becomes
very large. Furthermore, there are limits to the speed of computers [129,
162]. Another way to speed up an algorithm is to apply a divide and conquer
mechanism and parallelize the computations that need to be performed. The
idea behind parallelization is to split up a problem into subproblems that can
be solved independently. In practice, this corresponds to parallel calculations
that do not need to exchange data and can hence be executed in isolation of
one another. Afterwards, the results need to be combined into a final form.
With the rise of multiprocessor and multi-core systems, which enable the ac-
tual parallel execution of different tasks, the idea of splitting up tasks suddenly
becomes very interesting. Indeed, the number of cores on computer chips –
which can execute tasks concurrently – has drastically increased in the last
decade, while the clock frequency has not [88]. Even more parallelization can
be obtained by utilizing a computer cluster consisting of commodity machines
interconnected through a high-speed network. As it turns out, these set-ups
are especially suited for dealing with Big data workflows.6

The ultimate goal of parallelization is that when we have n calculations and
m processors, we can divide the work among the processors and obtain a factor
m speedup. In an ideal situation, this would mean that if the calculations take
up n time when executed sequentially, the parallel version would only take up
n/m time. Sadly, parallelization always incurs some overhead due to start-up
and coordination, and not all tasks or algorithms can be entirely parallelized.
Therefore, a factor m speedup is infeasible in practice. Amdahl’s law [15]
provides a model for determining the amount of speedup that can be obtained
through parallelization for a particular problem.

We make use of a programming model called MapReduce for describing
parallel computations. The framework is relatively simple and has gained in
popularity since it was introduced by Dean and Ghemawat [69] and imple-
mented in Hadoop [94], an open-source system for processing Big data. The
core idea behind MapReduce is simple: users write a map function that maps
data values to key-value pairs, and a reduce function that maps key-valueset
pairs to values. The framework applies the map function to the input tuples,
groups the output tuples by their key and then applies the reduce function to it
to produce output values. Figure 1.4 shows an abstract version of MapReduce
that indicates its most important components.

Example 1.1 (MapReduce program). Suppose the manager of a restau-
rant wants to analyze the sales data, which is stored in a database having the
following schema:

6There are other hardware infrastructures that support parallel computations, we refer
the reader to Hager and Wellein [95] for more information on this topic.

1.2. Big Data 11

Map

Shuffle

Reduce

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

In
pu

t
M
ap

O
ut
pu

t
Re

du
ce

In
pu

t
Re

du
ce

O
ut
pu

t

Figure 1.4: Abstract depiction of the MapReduce pipeline. Here, four ma-
chines are used to each process one input file containing data of different colors.
The map function extracts certain features of this data in order to determine
its shape, which functions as the key. The objects are then shuffled and passed
on to four reduce tasks, which each process one type of shape (or key) and
assemble the final solution.

12 Introduction

Users(name, id)
Orders(userid, cost, description)

Some basic examples of useful information are the money spent per user, the
top 10 best-selling items, which items have the highest chance of being bought
together, or which people dine together frequently. Suppose we want to calcu-
late how much money each user has spent; this requires determining the sum
of the orders for each user. A naive way of doing this in a relational database
is to join a table of customer ids with the table of orders and aggregate the
result. In SQL, this would resemble the following query:

SELECT SUM(cost), userid

FROM users, orders

WHERE users.id = orders.id

GROUP BY userid

In MapReduce, we can calculate the total spending per user using Algo-
rithm 1. For the database in Table 1.2, the result of the map function, the
subsequential grouping of its output (shuffling) and the result of the reduce
function are shown in Table 1.3. Clearly, both the map and reduce function
can be applied to each of their inputs in parallel, as the results are independent
of the other inputs. M

Algorithm 1 MapReduce program that calculates the total expenditure per
user.

1: function Map1(Fact f)
2: if f is a user then
3: emit 〈f.id : f.name〉
4: if f is an order then
5: emit 〈f.userid : f.cost〉

6: function Reduce1(〈k : V 〉)
7: name ← extract name from V
8: cost ← 0
9: for all costs c in V do

10: cost ← cost + c

11: output name, cost

The MapReduce programming model promises to be an ideal solution for
calculating queries related to Big data mining, as it allows for easy scaling of
embarrassingly parallel computations, which can be accompished by adding

1.2. Big Data 13

Users.id Users.name

1 Bas
2 Jelle
3 Joris
4 Dimitri
5 Tom

Orders.userid Orders.cost Orders.descr

1 30 rabbit
1 15 wine
2 30 rabbit
5 10 fries

Table 1.2: Example relational database instance containing users and meal
orders.

map−−→

key value

1 Bas
1 30
1 15
2 Jelle
2 30
3 Joris
4 Dimitri
5 Tom
5 10

shuffle−−−−→

key valueset

1 {Bas, 30, 15}
2 {Jelle, 30}
3 {Joris}
4 {Dimitri}
5 {Tom, 10}

reduce−−−−→

key values

Bas 45
Jelle 30
Joris 0
Dimitri 0
Tom 10

Table 1.3: Transition from map output to reduce output for the example data
in Table 1.2.

14 Introduction

more compute nodes to a system (also called scale-out). Especially since the
availability of cloud platforms such as Google Cloud Platform (GCP), or Ama-
zon AWS, we can easily activate thousands of compute nodes on demand, and
rent them for a very reasonable price. But, while the availability of these
services makes computing power abundantly available, adding more comput-
ing nodes can incur high costs in, for instance, pay-as-you-go plans while not
always significantly improving the net running time (or wall-clock time) of
queries. Indeed, computing query results using a sequential query plan may
not always result in a decrease in net time when more nodes are added, as
the calculations in each step of the sequence only require a limited amount of
resources. This is why we focus on parallel query plans, where more calcula-
tions can be performed in parallel, making scale-outs more useful. Further-
more, we aim to minimize the resources that are necessary for these parallel
plans without significantly affecting the net time. This is accomplished by
exploiting overlap between different queries and/or query parts. For example,
when queries contain similar subqueries that have (partially) identical input
relations, we can combine these operations to avoid excessive input reads.

The (extended) relational algebra [59, 85] can be seen as the core query
language for relational database systems. Its operators can be expressed easily
in the MapReduce framework [167]. We provide a simplified overview:

selection map function that checks if a given predicate holds;

projection map function that eliminates a field of the tuple;

join map function that projects the tuples on the join key. The output con-
sists of this projection (key) and the original tuple (value). The reducer
receives all tuples that have the same value for the join key and calculates
the cross product;

group by map function that sends a tuple to the reducer that corresponds
to the reduce key;

having a reducer that is applied on the grouped tuples.

This means that queries over relational databases can be easily evaluated using
MapReduce. Hence, it seems an ideal solution for querying Big data. Indeed,
well-known systems such Hive [21, 156] use an SQL-like language that is trans-
lated to MapReduce operations internally.7 A lot of work has been put into
the study of join algorithms and accompanying skew (see, e.g., [117]), which
is a main source of problems in MapReduce systems. Skew is the problem
where the load of different tasks in the system is unbalanced. This may cause

7Others systems, such as HBase [100], lack an easy-to-use query language and may require
an additional query engine.

1.3. Outline 15

underutilization of cluster resources or long wait times. Join calculations are
very susceptible to skew as it the number of tuples from a relation that will
match with a given tuple from another relation may fluctuate.

1.2.2 SGF Queries

In Chapter 4, we study a slightly different class of queries: strictly guarded
fragment (SGF) queries. These can be seen as the relational algebra, where
we replace the join operator with the semi-join operator. The reason for this
is that SGF’s are a class of queries for which we can find efficient evaluation
mechanisms, as they only allow a restricted form of joins. They are, on the
other hand, more expressive than acyclic conjunctive queries as they may
involve disjunction and negation as well as arbitrary levels of nesting. An
important aspect of SGF queries is that they can specify all semi-join reducers,
which can be used to reduce the communication in join calculations [36, 37,
119].

We focus on finding the right balance between timing constraints (net time)
and resource costs (total time), which are important problems that arise when
querying Big data. We study MapReduce query execution optimization for
SGF queries, i.e., we provide algorithms for parallel evaluation of SGF queries
in MapReduce that optimize total time, while retaining low net time. Since
SGF queries can be seen as Boolean combinations of (potentially nested) semi-
joins, we introduce a novel multi-semi-join (MSJ) MapReduce operator that
enables the evaluation of a set of semi-joins in one job. We use this operator to
obtain parallel query plans for SGF queries that outperform sequential plans
w.r.t. net time and provide additional optimizations aimed at minimizing total
time without severely affecting net time. Even though the latter optimizations
are np-hard, we present effective greedy algorithms and several optimizations
that are not restricted to our setting.

Chapter 5 gives the implementation details of these algorithms in our open-
source tool called Gumbo and presents the results of our experimental valida-
tion. The experiments confirm the usefulness of parallel query plans and the
effectiveness and scalability of the optimizations present in Gumbo, all with
a significant improvement over Pig [22, 142] and Hive [21, 156]. Finally, the
optimizations that make it possible to achieve a high performance are fully
documented as they might benefit other MapReduce programs.

1.3 Outline

Each chapter provides a thorough introduction to the specific subtopic, gives
a more detailed overview of the specific contributions and defines the neces-
sary preliminaries. Table 1.4 shows on overview of the publications that are

16 Introduction

Chapter Articles

Chapter 2 Costa Florêncio et al. [60, 61]

Chapter 3 Arenas et al. [25, 26]

Chapter 4 Daenen et al. [65]

Chapter 5 Daenen et al. [64, 65] and Daenen and Tan [66]

Table 1.4: Overview of chapters and the associated articles published in the
context of this thesis.

associated with each chapter.

In Chapter 2 the IPT enumeration problem for context-free languages is
studied. The main results of this chapter were published in [60], the final goal is
outlined in [61]. The chapter expands on the paper as it contains more detailed
proofs and adds more details on semi-naive evaluation and unambiguity.

Chapter 3 discusses the key inference and interestingness (quality) prob-
lem for XML data. The results were published in [25, 26]. My contributions
are centered around the development of the key inference algorithm and ac-
companying experimental study. The chapter therefore omits results that are
not directly related to these contributions.

Chapter 4 studies the optimization of SGF query evaluation in a MapRe-
duce setting, while Chapter 5 discusses the actual implementation of the pro-
posed techniques and the experimental validation thereof. The results in Chap-
ter 4 were published in [65] and expand on the paper in several ways: a more
detailed explanation of MapReduce and the associated cost model as well as
the addition of np-hardness proof of a related problem. The results in Chap-
ter 5 were published in [64–66]. The chapter contains a more detailed version
of the final algorithm, elaborates on all significant optimizations and includes
new experimental results.

In Chapter 6, we conclude and also indicate possible directions for future
work.

1.4 Contributions

The contributions of this work can be summarized as follows.

• Regarding context-free language enumeration:

– We show that the infinite enumeration problem for context-free
languages can be solved in incremental polynomial time with a naive
enumeration algorithm.

1.4. Contributions 17

– We establish a relation between enumeration of given-length strings
of a context-free language in polynomial delay and infinite enumer-
ation enumeration.

– We provide basic foundations and supply methods that are useful
for obtaining similar results for regular tree languages and graph
languages.

• Regarding XML key quality/interestingness measures and mining:

– We propose several measures to determine the quality/interesting-
ness of XML keys: consistency, boundedness, satisfiability, univer-
sality, and implication of XML keys, as well as equivalence of target
paths.

– We characterize the complexity of the consistency problem for XML
keys w.r.t. an XSD for different classes of target and key paths.

– We develop a novel key mining algorithm leveraging on algorithms
for the discovery of relational functional dependencies and on the
framework of levelwise search by employing an optimal one-step
specialization relation for which the search relation can be com-
puted, if not completely, then at least partly on a prefix tree rep-
resentation of the document.

– We experimentally assess the effectiveness of the proposed algo-
rithm on an extensive body of real world XML data and derive suit-
able values for several parameters for controlling the search space
of the different components.

• Regarding MapReduce in general:

– We provide an updated cost model that can be used to estimate
the cost of MapReduce jobs.

– We show that the general problem of minimizing input reads for a
set of interdependent MapReduce jobs is np-complete.

• Regarding parallel SGF query evaluation in MapReduce:

– We introduce the multi-semi-join operator n·(S) to evaluate a set
S of semi-joins and present a corresponding MapReduce implemen-
tation MSJ(S).

– We present 2-round MapReduce query plans for basic, that is, un-
nested, SGF queries. As computing the optimal plan for a given
basic SGF query is np-hard, we utilize an existing greedy heuristic
which we refer to as Greedy-BSGF.

18 Introduction

– We show that the evaluation of (possibly nested) SGF queries can
be reduced to the evaluation of a set of basic SGF queries in an
order consistent with the dependencies induced by the former. In
this way, computing an optimal plan for a given SGF query (which
is np-hard as well) can be tackled by a two-tier strategy, where
first an optimal ordering of the basic SGF subqueries is determined,
followed by an optimal evaluation of each of these basic subqueries.
Greedy algorithms are provided for the np-hard problems.

– We describe a list of optimizations that allow our algorithm to be
efficient in practice. Furthermore, these optimizations can be useful
for other applications as well.

– We give a high-level description of our open-source system called
Gumbo, which can be used on top of an existing Hadoop 2.x cluster.

– We experimentally assess the effectiveness of Greedy-BSGF and
Greedy-SGF and obtain that backed by an updated cost model
these algorithms successfully manage to bring down total times
of parallel evaluation, especially in the presence of commonalities
among the atoms of queries and outperform Pig and Hive in all
aspects when it comes to parallel evaluation of SGF queries.

2
Context-free Language
Enumeration in IPT

In the generic pattern mining framework presented in Chapter 1, the traversal
of the pattern space is an important component. Furthermore, guarantees
on the time between each candidate are desirable when generating candidate
patterns one by one. In this chapter, we show that the naive bottom-up con-
catenation scheme for a context-free string language satisfies the incremental
polynomial time property. Next, we show that a polynomial delay solution for
a sublanguage containing strings of a given length can easily be transformed
into an incremental polynomial time solution for the entire (infinite) language.

2.1 Introduction

Let G be a context-free grammar that is arbitrary but fixed, i.e., G is not
considered as part of the input. Hence, we may suppose G is in a conve-
nient normal form, in particular Chomsky Normal Form. We define two basic
enumeration problems concerning the language L(G) generated by G:

1. Given-length enumeration with polynomial delay. Given a natu-
ral number n, output all strings of length n belonging to L(G), without
duplicates, with polynomial delay . By “polynomial delay” we mean that
the first output, and every next output, is produced within p(n) time,
for some fixed polynomial p. Technically, the output is ended by an “end
of output” (EOO) message, and the time spent between the last output

19

20 Context-free Language Enumeration in IPT

string and EOO should also be bounded by p(n). Moreover, if there
are no strings of length n in L(G), then the algorithm should output an
EOO right away, again in time bounded by p(n).

2. Infinite enumeration in incremental polynomial time. Output
all of the strings in L(G), without duplicates, in incremental polynomial
time (IPT), meaning that the time spent between the mth and the (m+
1)th output is bounded by p(m) for some fixed polynomial p. Here,
m is not directly related to string length, but is simply a count of the
number of strings that have been output so far. For finite languages, the
problem becomes trivial. Hence, we consider only infinite languages and
refer to this problem as infinite enumeration. In principle, an algorithm
for infinite enumeration runs forever, (although one may of course abort
it at any time) but the incremental polynomial-time bound guarantees
that the time for every next output grows only polynomially.

The notions of polynomial delay and incremental polynomial time were origi-
nally introduced (in a setting unrelated to context-free languages) by Johnson
et al. [111].

Basic as the above two problems are, the literature on them is relatively
scarce. Given-length enumeration was first discussed by Mäkinen [123], but
not solved completely; then Dömösi [72] presented a polynomial-delay solu-
tion to the same problem by a modification of the well-known CYK parsing
algorithm (see, e.g., [108]). Notably, for the special case of regular languages,
very efficient algorithms are available [4]. The solutions of both Mäkinen and
Dömösi have the additional benefit of enumerating the strings in lexicographic
order. Later, Dong [73] reported linear-time improvements to Dömösi’s algo-
rithm. A related problem which has received quite some attention in the
literature is the efficient generation of a true random sample of a context-free
language [29, 83, 89].

Hence, efficient algorithms for given-length enumeration are already avail-
able. In this chapter, we consider infinite enumeration. We will show, perhaps
unsurprisingly, that any algorithm for given-length enumeration with poly-
nomial delay can be adapted to perform infinite enumeration in incremental
polynomial time.

The main topic of this chapter, however, is the naive, bottom-up concate-
nation scheme that enumerates strings not by length, but by depth of their
parse tree. While this scheme is not as efficient as the above algorithms, it is
still important because it is basic and natural. Indeed, it is a natural ques-
tion to ask: does the naive bottom-up concatenation scheme already have the
IPT property? We answer this question affirmatively. We believe this result
is interesting from a theoretical perspective, as it adds to our fundamental

2.2. Preliminaries 21

understanding of enumerating context-free languages. The proof of our main
result is elementary and is based on detailed pumping-lemma-like arguments.
An important property is that the gap in lengths between two consecutive
strings in a context-free language is bounded by a constant (which depends
on the grammar). Our proofs bound important parameters that govern the
amount of work done in one iteration of the concatenation scheme in terms
of the number of unique strings generated up to the previous iteration. In
particular, ambiguous grammars do not pose a problem.

Infinite enumeration may have practical applications in software testing
(see, e.g., Sommerville [154]), where a language of test-inputs can be described
by a context-free grammar [29, 74, 134]. In this situation, exhaustive testing
of the software on all inputs of the language (e.g., up to a certain length,
or until the time budget for testing is exhausted) can be driven by infinite
enumeration of a tailor-made context-free language.

Conversely, infinite enumeration may also have applications in verification
of context-free languages. While this task is decidable for some properties [31],
it is undecidable for many other ones, e.g., containment of one context-free
language in another is undecidable [108]. In such cases, infinite enumeration
may be useful to detect counterexamples to conjectured properties, or, when
no counterexample is found after a sufficiently long time, it may provide con-
fidence in the conjecture, after which the verifier may start an attempt to find
a proof by other methods.

Also, there has been interest in tools for testing and debugging the gram-
mars themselves [118, 145, 166], where again infinite enumeration may be
helpful.

Outline. This chapter is organized as follows. In Section 2.2 we first give the
necessary background on context-free grammars, followed by a formal speci-
fication of the naive algorithm in Section 2.3. Regarding this algorithm, we
present five important results in Section 2.4 which are then used in Section 2.5
to show that the IPT property holds. In Section 2.6 a general method is given
for transforming a given-length enumeration algorithm with polynomial de-
lay to an algorithm for infinite enumeration in incremental polynomial time.
Section 2.7 introduces an alternative semi-naive evaluation scheme that has
practical benefits. We conclude in Section 2.8.

2.2 Preliminaries

A context-free grammar G is a tuple (N ,Σ,P, S), where

• N is a finite set of non-terminals;

• Σ is a finite set of terminals, disjoint from N ;

22 Context-free Language Enumeration in IPT

• P is a set of productions of the form X → α with X ∈ N and α ∈
(Σ ∪N)∗;

• S ∈ N is the start symbol .

In the remainder of this chapter, we assume that all grammars are in Chom-
sky Normal Form (CNF) [108] without ε-productions, i.e., all productions are
of the following form:

• A→ BC, a non-terminal production or

• A→ a, with a ∈ Σ, a terminal production

where A,B and C are non-terminals. As we mentioned, the empty string ε
cannot be used. Importantly, this implies that we will only deal with nonempty
strings.

We say a non-terminal A derives a string s, written as A ⇒∗ s, if one of
the following holds:

• s ∈ Σ and A→ s ∈ P (one-step derivation); or

• ∃B,C ∈ N : u, v ∈ Σ∗ : A→ BC ∈ P ∧B ⇒∗ u ∧ C ⇒∗ v ∧ s = uv.

The language of a non-terminal A belonging to a CGF G, is defined by
L(GA) = {s | A ⇒∗ s}. The language of the start symbol S is also called
the language of G and is defined by L(G) = L(GS). The set of strings of some
length n belonging to a language is also known as a “cross-section” of that
language [4].

The dependency graph of a context-free grammar (in CNF) is a directed
graph having N as its set of nodes. There is an edge from A to B if there exists
a production of the form A→ BC or A→ CB, for some non-terminal C. Note
that it is possible for the dependency graph to contain self-loops. When we
speak of reachability in a directed graph, we always mean reachability by a
directed path. A directed path in a graph is a list of nodes such that there
exists a directed edge between two successive nodes. The length of a path π is
equal to the number of edges it contains and is denoted by l(π). We classify
the nodes/non-terminals in the dependency graph as follows:

recursive a node belonging to a directed cycle;

leeching a node that can reach a recursive node, but is not recursive itself;

restricted a node that is neither recursive nor leeching.

We denote the set of recursive non-terminals by Nrec , the set of leeching non-
terminals by Nleech and the set of restricted non-terminals by Nres . Observe

2.2. Preliminaries 23

that, in order to obtain an infinite language, the start symbol must be either
recursive or leeching. Indeed, when the start symbol is restricted, the context-
free language described by the grammar is finite and the enumeration problem
becomes trivial. See Example 2.1 for an example of an infinite language.

Furthermore, without loss of generality, we consider proper grammars only,
i.e., we assume that all nodes in the dependency graph are reachable from S,
and that all non-terminals are productive8 (see [108] for an algorithm to clean
up a grammar). Next, we need the concept of a parse tree. A parse tree is a
tree representation that indicates the derivation process for a string from the
start symbol. The root is labeled with the start symbol S, and the children of
a node A are labeled with B and C iff a production A→ AB was used, or with
a terminal symbol a iff a terminal production A → a was used. This means
that the leafs of a parse tree are terminal symbols. See Example 2.1 below
for an illustration of this concept. For each string s ∈ L(GA), where A is a
non-terminal of grammar G, there exists at least one parse tree that yields s
and in which the root of the parse tree is labeled with A. The depth of a parse
tree τ equals the length of a longest path (number of edges) from the root to
a leaf and is denoted by d(τ). Note that we do not restrict the grammar in
terms of ambiguity: ambiguous grammars are allowed, which means that each
string may have multiple parse trees. This leads to the notion of a minimal
parse tree of a string: a parse tree of minimum depth. Note that a string
may have more than one minimal parse tree rooted at a non-terminal A. A
parse tree is called non-recursive if no path contains two nodes labeled with
the same non-terminal.

Example 2.1 (Dependency graph). Consider the following context-free
grammar G1:

S → AG C → c

A→ BD D → d

B → CE E → e

C → AF F → f

G→ g.

The corresponding dependency graph is shown in Figure 2.2. An example
parse tree for the string cedg is shown in Figure 2.1. We observe the following
classification of the non-terminals:

• Nrec = {A,B,C};

• Nleech = {S};
8A non-terminal is called productive when its language is nonempty, i.e., when a string

can be derived from it.

24 Context-free Language Enumeration in IPT

S

A

B

C

c

E

e

D

d

G

g

Figure 2.1: The parse tree for the string cedg w.r.t. grammar G1from Ex-
ample 2.1.

A

BC

E

F

S

D

G

Figure 2.2: The dependency graph of context-free grammar G1 from Exam-
ple 2.1.

• Nres = {D,E, F,G}.

Note that all non-terminals are reachable and productive, and that L(G1) is
infinite. It is intuitively clear that L(G) is infinite: let’s start at non-ter-
minal C, for which the string c can be generated directly; using this string,
we can generate ce for B and then ced for A. Now, using the strings from
A and F , we can generate cedf for C. This whole process of passing strings
through the cycle C,B,A can be repeated an arbitrary number of times, where
each iteration generates longer – and therefore new – strings for the recursive
non-terminals. M

2.3 Naive Enumeration Algorithm

We now present a basic iterative algorithm that generates the language de-

2.3. Naive Enumeration Algorithm 25

Algorithm 2 Naive concatenation scheme for context-free grammars.

A0 = {a ∈ Σ | A→ a ∈ P};
Ai+1 = Ai ∪ {u · v | ∃B,C ∈ N : A→ BC ∈ P ∧ u ∈ Bi ∧ v ∈ Ci};
∆A0 = A0;

∆Ai+1 = Ai+1 \Ai.

scribed by a given, fixed grammar G. The iterations are computed according
to the standard inductive concatenation scheme shown in Algorithm 2.

During the execution of this algorithm, every non-terminal is associated
with a set of terminal strings. For a non-terminal A, Ai denotes the set of all
terminal strings generated in iterations 0 to i. It is easy to see that Ai ⊆ Ai+1

for each A ∈ N and all i ∈ N. The strings in Si, where S is the start symbol,
are called the output strings and make up the language L(G). Again for a non-
terminal A, the set ∆Ai denotes the set of all terminal strings generated in
iteration i. It contains all strings that can be obtained by combining previously
generated strings, according to the production(s) associated with A, except for
those that have already been generated. Note that we are working with sets:
duplicates are removed, but it is still possible that in the same iteration, or in
two different iterations, two identical strings are generated for a non-terminal
A (see Example 2.3 below). Finally, note that the terminal productions are
only used in iteration 0 and the non-terminal productions are only used in the
subsequent iterations.

Remark 2.2 (Optimized scheme). In the second rule of the scheme, the use of
A0 instead of Ai would yield equivalent definitions. 3

We denote the length of a string s by |s| and the maximal length of a string
in Ai by ωiA. Note that it is possible for Ai to be empty when i < |N | − 1
(this will be shown in Section 2.4.2), in which case ωiA is undefined. Clearly,
ωi+1
A ≥ ωiA holds for i ≥ |N | − 1.

For convenient reasoning about all strings that are produces in one itera-
tion, we define

T i =
⋃
A∈N

Ai, and

∆T i =
⋃
A∈N

∆Ai.

In addition to the output strings, these sets also contain the strings that are
only used as building blocks for the output strings, and are not output strings
themselves. These are called the intermediate strings. The maximal length

26 Context-free Language Enumeration in IPT

Symbol Meaning

|N | number of non-terminals
|P| number of productions
d(τ) depth of tree τ
|s| length of string s
|X| number of elements in set X

Nrec set of recursive non-terminals
Nleech set of leeching non-terminals
Nres set of restricted non-terminals

Ai strings for non-terminal A generated up through iteration i
∆Ai strings for non-terminal A first generated in iteration i
T i intermediate strings generated up to and including iteration i

∆T i intermediate strings first generated in iteration i
ωiA maximal length of a string in Ai

ωiT maximal length of a string in T i

Table 2.1: Overview of symbols used in this chapter.

of a string in T i is denoted by ωiT . Note that the same string might be
generated for multiple non-terminals, i.e., the union

⋃
A∈N A

i that defines T i
is generally not a disjoint union. For completeness, Table 2.1 gives an overview
of the symbols used in this chapter.

Example 2.3 (Concatenation scheme). Consider the following grammar
G2:

S → AB A→ a

S → CB B → b

A→ AB C → a.

Table 2.2 shows the results of the concatenation scheme applied on G2

for the first few iterations. Observe that the string ab is generated both by
S → CB and by S → AB in two different iterations. In iteration 2 the
string is already present in S1, hence it is not in ∆S2, even though it is in
S2. The output strings shown in the table (S3) are ab, abb and abbb. The
intermediate strings shown in the table are a, b, ab, abb and abbb (this set
equals T 3). M

Remark 2.4 (Semi-naive scheme). An equivalent, but more efficient inductive
concatenation scheme that avoids duplicate concatenations is the well-known
“semi-naive” scheme [54], which we will discuss in Section 2.7. Although this
semi-naive scheme can give practical improvements in terms of performance,

2.4. Bounds on Intermediate String Number and Length 27

Non-terminal N ∆N0 ∆N1 ∆N2 ∆N3 . . .

S {} {ab} {abb} {abbb} . . .
A {a} {ab} {abb} {abbb} . . .
B {b} {} {} {} . . .
C {a} {} {} {} . . .

Table 2.2: Generated output and intermediate strings in the first iterations
of applying the naive concatenation scheme to the context-free grammar G2.

e.g., in applications to databases [32], the theoretical worst-case complexity
is of the same order as that of the standard scheme. This is why, in this
chapter, we focus on the standard scheme and prove that it runs in polynomial
incremental time. 3

2.4 Upper and Lower Bounds on the Number and
Length of Generated Strings

Our main result is that the naive algorithm satisfies the IPT property. In order
to prove this (Section 2.5), we obtain five important results in this section:

• a bound on the length of strings that can be generated in a certain
iteration i (Section 2.4.1);

• a formalization of the start-up phase (Section 2.4.2);

• a lower bound on the number of intermediate strings, expressed in the
iteration number (Section 2.4.3);

• an upper bound on the size of the maximum string, expressed in terms
of the number of intermediate strings (Section 2.4.4); and,

• an upper bound on the number of intermediate strings in terms of the
number of output strings (Section 2.4.5).

2.4.1 String Properties

Lemma 2.5. For any non-terminal A, the set ∆Ai consists precisely of the
strings that can be derived from A and have a minimal parse tree depth of
i+ 1.

Proof. We prove the lemma by induction on i.

28 Context-free Language Enumeration in IPT

Base For i = 0, ∆A0 contains all strings that can be derived from A in one
step. It is obvious that all these strings have a parse tree of depth 1
and no smaller parse tree exists. Clearly, no other strings can be derived
from A with a parse tree of depth 1.

Induction Step For i > 0, suppose the lemma holds for all values smaller
than i. Consider a string s = u · v ∈ ∆Ai with u ∈ Bi−1, v ∈ Ci−1

and A → BC ∈ P for some B,C ∈ N . By induction u and v have
minimal parse trees τu and τv of depth at most i. Note that these parse
trees cannot both have a depth smaller than i, because then we could
create a parse tree for s of depth smaller than i+1; this would imply (by
induction) that s ∈ Ai−1, which contradicts s ∈ ∆Ai. We thus obtain
that s has a minimal parse tree of depth i+ 1.

It remains to show that all strings with a minimal parse tree of depth
i+1, that can be derived from A, belong to ∆Ai. Thereto, consider such
a string s ∈ L(GA) that has a minimal parse tree τ of depth i+ 1.

We first show that s ∈ Ai. Since i > 0, τ has the form of an A-root
with two children τB and τC and A→ BC ∈ P for some B,C ∈ N . Let
u and v be the strings yielded by τB and τC respectively, so s = u · v.
Since τ has depth i+ 1, we have d(τB) ≤ i and d(τC) ≤ i. By induction,
u ∈ ∆Bj and v ∈ ∆Ck, for some j, k < i. In particular, u ∈ Bi−1 and
v ∈ Ci−1. It is now obvious from the definition of Ai that s = u · v ∈ Ai.
Finally, we show that s ∈ ∆Ai = Ai \ Ai−1 by proving that s /∈ Ai−1.
Suppose that s ∈ Ai−1. By induction, s has a minimal parse tree of
depth smaller than or equal to i, which contradicts our assumption. �

Knowledge about the iteration in which a string is generated gives us
information about the length of the string. Because the yield of a parse tree of
depth i+ 1 has length at least i+ 1 and at most 2i, the lemma above implies
the following:

Lemma 2.6. ∀i ∈ N : ∀s ∈ ∆Ai : i+ 1 ≤ |s| ≤ 2i.

Proof. Lemma 2.5 shows that the minimal parse tree of a string s ∈ ∆Ai has
depth i+ 1. The yield of a parse tree of depth i+ 1 has length at least i+ 1
and at most 2i as the Chomsky Normal Form implies a maximum branching
factor of 2. �

2.4.2 Start-up Phase

We look at the first |N | iterations of the algorithm: the start-up phase. After
this initial start-up, we show that all non-terminals will have generated at

2.4. Bounds on Intermediate String Number and Length 29

least one (intermediate) string. Thereto, we consider the following definitions:

N 0 = {A ∈ N | ∃a : (A→ a) ∈ P};
N i+1 = N i ∪ {A ∈ N | ∃B,C ∈ N i : (A→ BC) ∈ P};
∆N 0 = N 0;

∆N i+1 = N i+1 \ N i.

Note that N i ⊆ N i+1 for all i. Intuitively, a non-terminal A is in ∆N i iff it
generates its first string in iteration i.

Lemma 2.7. ∀i ≥ 0 : ∀A ∈ N : A ∈ N i ⇔ Ai 6= ∅.

Proof. We prove the lemma by induction on i.

Base Let i = 0. If A ∈ N 0, there is a production A → a ∈ P, and by
definition a ∈ A0. When A0 6= ∅, we know (from the concatenation
scheme) there must be a A→ a ∈ P. Now, by definition, A ∈ N 0.

Induction Step When i > 0, assume the lemma holds for all smaller values
of i. Suppose A ∈ N i and consider the following two cases:

1) If A ∈ N i−1, by induction we know that Ai−1 6= ∅. It follows that
Ai 6= ∅, because Ai−1 ⊆ Ai.

2) Otherwise, there exists a production A→ BC ∈ P, for some B,C ∈
N i−1. Then by induction Bi−1 6= ∅ and Ci−1 6= ∅. Consider two
strings u ∈ Bi−1 and v ∈ Ci−1. By definition u · v ∈ Ai, which shows
Ai 6= ∅.

Now suppose Ai 6= ∅. Consider again two cases:

1) If Ai−1 6= ∅, by induction we know that A ∈ N i−1 ⊆ N i.

2) Otherwise, there exists a production A→ BC ∈ P, for some B,C ∈
N . There exist strings u ∈ Bi−1 and v ∈ Ci−1 and therefore Bi−1 6= ∅
and Ci−1 6= ∅. By induction B,C ∈ N i−1 and therefore A ∈ N i, by
definition of N i. �

As these definitions capture the dependency structure of the different non-
terminals, they can be used to show that each non-terminal will be included
after a finite amount of iterations, as the following lemma shows.

Lemma 2.8. N |N |−1 = N .

30 Context-free Language Enumeration in IPT

Proof. Consider a non-terminal A and a non-recursive parse tree τ rooted at
A. We know τ exists because for each non-terminal B there exists a non-
recursive parse tree rooted at B (recall the assumption that no non-terminal
is useless). As it is non-recursive, the depth of τ is at most |N |. Therefore,
τ ∈ Ai−1 and by Lemma 2.7, it follows that A ∈ N |N |−1. Hence, all non-ter-
minals are contained in N |N |−1. The reverse containment is immediate. �

The following corollary shows that every non-terminal contains at least
one string in iteration |N | − 1.

Corollary 2.9 (Start-up phase bound). ∀A ∈ N : A|N |−1 6= ∅.

Proof. From Lemma 2.8 we knowA ∈ N |N |−1, for eachA ∈ N . After applying
Lemma 2.7 we obtain A|N |−1 6= ∅. �

For completeness, we mention the following two properties that hold for
the naive concatenation scheme. The proofs are immediate.

Property 2.10. If A ∈ ∆N i, then the first string of A is generated in itera-
tion i, i.e.,

∀A ∈ N : A ∈ ∆N i ⇔ ∆Ai = Ai 6= ∅.

Property 2.11. After iteration |N |−1, restricted non-terminals do not gen-
erate any new strings:

A ∈ Nres , j ≥ |N | : ∆Aj = ∅.

2.4.3 Generation Pace

In this section we discuss the “speed” or generation pace at which strings are
generated when using the naive concatenation scheme in order to establish a
lower bound on the number of intermediate strings that are generated in one
iteration.

Recursive Non-terminals

The following definition is illustrated in Figure 2.3.

Definition 2.12 (Filled context). Let A ∈ Nrec . A filled context τ for A
is a parse tree rooted at A with the following properties:

1. A occurs at least twice (note that the root node is already labeled with
A);

2.4. Bounds on Intermediate String Number and Length 31

non-recursive subtree

A

A
distinguished node

distinguished path

right context yieldleft context yield

Figure 2.3: A filled context for a recursive non-terminal A.

2. some non-root A-node is called the distinguished node. The path from
the root to the distinguished node is called the distinguished path. No
non-terminal occurs more than once on the distinguished path, except
for A, which appears exactly twice on the distinguished path;

3. for any non-terminal node x not lying on the distinguished path, the
subtree rooted at x is non-recursive; and

4. the subtree rooted at the distinguished node is non-recursive.

The context yield of τ is the yield of τ without the yield of the distinguished
node. The left context yield (resp. right context yield) is the yield of τ before
(resp. after) the yield of the distinguished node. The context length is the
length of the context yield.

Remark 2.13 (Context depth). Every filled context τ for a recursive non-ter-
minal has a depth of at most 2|N |. This can be easily seen: Consider a path
π in τ from root to leaf. There are now two options:

1. An initial segment of π equals the distinguished path, followed by a path
below the distinguished node. By definition, the distinguished path con-
tains at most |N | edges. The path continues in a non-recursive subtree,
and therefore has an additional length of at most |N |. Hence, in this
case, the length of π is at most 2|N |.

2. The path π diverges from the distinguished path. This means π has at
most |N | − 1 edges in common with the distinguished path, after which
it follows 1 edge to a non-recursive subtree of depth at most |N |. Hence,
in this case, the length of π is at most |N | − 1 + 1 + |N | = 2|N |.

32 Context-free Language Enumeration in IPT

S

A

BB

A A A

a a aS

A A

a a

S

BB

A

a

A

a

A A

a a

BB

A

a

A

a

distinguished node

distinguished path

Figure 2.4: A minimal depth filled context for a recursive non-terminal S.

To see that this bound can actually be reached, consider the following gram-
mar:

S → BB

B → AA

A→ SS

A→ a.

In this case, |N | = 3. Hence, a filled context has depth at most 6. In Figure 2.4,
a filled context of minimal depth for S that reaches this bound is depicted.3

Lemma 2.14. For each A ∈ Nrec there exists a filled context.

Proof. Consider a simple path π from A to itself in the dependency graph.
The length of π is at most |N | (only A may appear twice). We now show that
we can expand π to a filled context for A.

Denote the second occurrence of A on π by xA. Consider a node xB on π
labeled with a node B that is followed directly by a node labeled with C (also
on π). There must exist a production B → CD or B → DC for some non-
terminal D. We know (see Lemma 2.8) that D has a non-recursive parse tree
τD of depth at most |N |. Add τD as a child of xB (left or right as indicated
by the production). Apply this construction to all nodes on π except for xA.
Replace xA with a non-recursive parse tree for A. Denote the resulting tree
with τ .

It is clear that τ is a parse tree for A and that it contains A at least twice.
Because π is simple it contains no repetition (except for A), it can serve as

2.4. Bounds on Intermediate String Number and Length 33

the distinguished path with xA as the distinguished node. By construction
all non-terminal nodes not on the distinguished path are the root of a non-
recursive subtree. Finally, again by construction, the subtree rooted at the
distinguished node xA is non-recursive.

It is now clear that τ can serve as a filled context for A, with π playing
the role of the distinguished path. �

Lemma 2.15. Let A ∈ Nrec, let τ be a filled context for A of depth δ and
distinguished path length ζ. For all i ≥ 0, there exists a parse tree τi for A,
such that

d(τi) = δ + i · ζ.

Furthermore,
|si| = γ + i · ρ,

where si is the yield of τi, γ is the length of the yield of τ and ρ is the context
length of τ .

Proof. We first prove the existence of the parse trees τi by induction on i.

Base For τ0, we can take τ itself. By definition this parse tree has depth δ.

Induction Step Now let i > 0 and suppose τi−1 exists: τi−1 is a parse tree
rooted at A of depth δ + (i− 1) · ζ. Now replace the distinguished node
of τ , which has label A, with τi−1 to obtain a parse tree τi. We write
this as τi = τ [τi−1]. This is clearly a parse tree for A. Consider a path
π from root to leaf. There are two possibilities:

1) The path lies fully in τ . This means the length is at most δ.

2) The path goes through the distinguished node and the τi−1-subtree.
This means the first part of the path equals the distinguished path,
and the second part has length at most the depth of τi−1, which equals
δ+(i−1)·ζ. Hence, the length of π is at most ζ+δ+(i−1)·ζ = δ+i·ζ.

Note that there always is a path of length δ + i · ζ, because τi−1 has
depth δ + (i− 1) · ζ. Hence d(τi) = δ + i · ζ.

It only remains to show that |si| = γ + i · ρ. We show this again by
induction.

Base When i = 0, obviously |s0| = γ, because τ0 = τ .

Induction Step When i > 0, suppose the lemma holds for i − 1. Denote
the left and right context yields of τ by ul and ur, and their respective
lengths by ρl and ρr. Because τi = τ [τi−1], it holds that

si = ulsi−1ur,

34 Context-free Language Enumeration in IPT

leeching non-terminal

(recursive non-terminal)

A

R
distinguished node

distinguished path

Figure 2.5: An R-filled context for a leeching non-terminal A.

where si−1 is the yield of τi−1. Hence:

|si| = |ul|+ |si−1|+ |ur|
= ρl + (γ + (i− 1) · ρ) + ρr (by induction hypothesis)

= γ + (i− 1) · ρ+ ρ (ρl + ρr = ρ)

= γ + i · ρ. �

We conclude with the following lower bound on the number of strings
generated by recursive non-terminals.

Lemma 2.16. There exists a constant c, such that:

∀A ∈ Nrec ,∀i ≥ 0 : |Ac+|N |·i| > i.

Proof. Let τ be a filled context for A (by Lemma 2.14) of depth δ with a
distinguished path length of ζ. By Lemma 2.15, for each i ≥ 0, we have a
different string si with a parse tree τi of depth δ + i · ζ, where δ ≤ 2|N | and
ζ ≤ |N |. Hence, each τi yields a new string lastly in iteration 2|N | + i · |N |.
Therefore, |A2|N |+i·|N || − 1 ≥ i, or |A2|N |+i·|N || > i, for i ≥ 0. �

Leeching Non-terminals

In Definition 2.12, we defined the notion of filled context for a recursive non-
terminal. We now define the analogous notion for a leeching non-terminal;
this is illustrated in Figure 2.5.

Definition 2.17 (Filled context). Let A ∈ Nleech . A filled context for A is
a parse tree for A with the following properties:

1. it contains at least one recursive non-terminal;

2. it is non-recursive; and

2.4. Bounds on Intermediate String Number and Length 35

3. some recursive node is called the distinguished node. The path from the
root to the distinguished node is called the distinguished path.

When the distinguished node is labeled with a recursive non-terminal R, we
call the tree a R-filled context for A. The notions of (left and right) context
yield, and of context length are defined in the same way as in Definition 2.12.

In analogy to Lemma 2.14, Lemma 2.15 and Lemma 2.16, we have the
following.

Lemma 2.18. For each A ∈ Nleech there exists a filled context.

Proof. Consider a simple path π from A to a recursive non-terminal R that
consists of only leeching non-terminals (π must exist, because A is leeching).
The path has length at most |N | − 1. We now show that we can expand π to
an R-filled context for A.

Consider a node xB on π labeled with a (leeching) node B which is fol-
lowed by a node labeled with C. There must exist a production B → CD
or B → DC for some non-terminal D. We know that D has a non-recursive
parse tree τD of depth at most |N |. In particular, we know that τD does
not contain any non-terminals that appear before B on π, else these would
be recursive, contradicting our assumption. Add τD as a child of xB (left or
right as indicated by the production). Apply this construction to all leeching
nodes on π and replace R with a non-recursive parse tree τR for R. By similar
reasoning, τR does not contain any non-terminals that appear before R on π.
Denote the resulting tree with τ .

It is obvious that τ is a parse tree for A, which is non-recursive and contains
at least one recursive non-terminal (R). Hence, τ is an R-filled context for
A. �

Remark 2.19 (Context depth). Every filled context τ for a leeching non-ter-
minal has a depth of at most 2|N |. 3

Lemma 2.20. Let A ∈ Nleech and let τ be a B-filled context for A having
depth δ and distinguished path length ζ. Let τB be a filled context for B having
depth δB and distinguished path length ζB. For all i ≥ |N | there exists a parse
tree τi for A, such that

d(τi) = ζ + δB + i · ζB.

Furthermore
|si| = ρ+ γB + i · ρB,

where si is the yield of τi, ρ is the context length of τ , γB is the length of the
yield of τB and ρB is the context length of τB.

36 Context-free Language Enumeration in IPT

Proof. We know from Lemma 2.14 and Lemma 2.15 that B has parse trees
τB,j , for j > 0, such that d(τB,j) = δB + j · ζB and |sB,j | = γB + j · ρB,
where sB,j is the yield of τB,j . Now, construct the parse tree τi, for i ≥ 0, as
follows: replace the distinguished node of τ by a parse tree τB,i for B of depth
δB + i · ζB. We write this as τi = τs[τB,i].

To see that actually d(τi) = ζ + δB + i · ζB, consider a path π in τi from
root to leaf. There are two possibilities:

1) π is fully contained in τ and hence has a maximal depth of |N |.

2) π contains the distinguished node and ends in a leaf in τB,i. In this case,
π consists of the distinguished path, followed by a path of length at most
δB + i · ζB. The total length of π is at most ζ + δB + i · ζB.

Because d(τB,i) = δB + i · ζB, there exists at least one path in τi that
has length ζ + δB + i · ζB. Hence d(τi) ≥ ζ + δB + i · ζB. Since clearly
ζ + δB + i · ζB ≥ |N | for i ≥ |N |, we obtain d(τi) ≤ ζ + δB + i · ζB. We may
now conclude that d(τi) = ζ + δB + i · ζB.

Finally, by construction, it is clear that |si| = ρ+ |sB,i| = ρ+ γB + i · ρB.�

Remark 2.21 (Small parse trees). From Lemma 2.20, we can use the same
construction to get a different parse tree for each i < |N |, all yielding different
strings. But, when i < |N |, the depth of the parse tree is equal to max(d(τ), ζ+
δB + i · ζB) as the tree that is plugged into the context might not increase the
overall depth of the new tree. 3

Lemma 2.22. There exists a constant c, such that:

∀A ∈ Nleech , ∀i ≥ 0 : |Ac+|N |·i| > i.

Proof. Consider a recursive non-terminal R, reachable by A, having a context
of depth δR with a distinguished path length of ζR. By Lemma 2.20, for each
i ≥ |N |, we have a different string with a parse tree of depth ζ + δR + i · ζR,
where ζ ≤ |N | − 1, δR ≤ 2|N | and ζR ≤ |N |. Hence, each τi yields a new
string lastly in iteration

|N | − 1 + 2|N |+ i · |N | = 3|N |+ i · |N | − 1.

Therefore,
|A3|N |+i·|N |−1| − 1 ≥ i− |N |, or

|A3|N |+i·|N |−1| > i− |N |,
for i ≥ |N |. By substituting i′ for i− |N | we obtain that, for i′ ≥ 0,

|A3|N |+(i′+|N |)·|N |−1| > i′, or

|A3|N |+i′·|N |+|N |2−1| > i′. �

2.4. Bounds on Intermediate String Number and Length 37

Non-restricted non-terminals

The bounds obtained above for recursive and restricted non-terminals can be
generalized as follows for all but the restricted non-terminals.

Corollary 2.23 (Non-terminal lower bound). There exists a constant c,
such that:

∀A ∈ Nrec ∪Nleech ,∀i ≥ 0 : |N | · |Ai+c| > i.

Proof. Consider the constants c1 and c2 from Lemma 2.16 and Lemma 2.22,
respectively. We can choose c3 as the maximum of c1 and c2 and get:

∀A ∈ Nrec ∪Nleech , ∀k ≥ 0 : |Ac3+|N |·k| > k.

Now let A ∈ Nrec∪Nleech and i be an arbitrary natural number. We distinguish
the following two cases to show that the corollary holds:

1) i is a multiple of |N |, i.e., i = |N | · k for some natural number k. We can
now argue as follows:

|Ac3+|N |·k| > k ⇔ |Ac3+|N |· i|N| | > i

|N |
⇔ |N | · |Ac3+i| > i.

2) i is not a multiple of |N |. Then let i′ be the next multiple of |N | larger
than i. We have i < i′ < i + |N | and by case 1 we know that i′ <
|N | · |Ac3+i′ |. Also |Aj | ≤ |Aj′ | when j ≤ j′, since Aj ⊆ Aj

′
. Combining

these observations we get:

i < i′ < |N | · |Ac3+i′ | < |N | · |Ac3+i+|N ||.

When we choose c = c3 + |N |, we have |N | · |Ai+c| > i, for i ≥ 0. �

The corollary above readily implies the following.

Corollary 2.24 (Intermediate lower bound). There exists a constant c
such that

∀i ≥ 0 : |N | · |T i+c| ≥ i.

Proof. Fix some arbitrary A ∈ Nrec ∪ Nleech . Clearly |T j | ≥ |Aj | for all j.
Then, by Corollary 2.23 there exists a constant c such that:

|N | · |T i+c| ≥ |N | · |Ai+c| ≥ i. �

38 Context-free Language Enumeration in IPT

2.4.4 Length Bound

In this section, we establish a relation between the length of the longest string
and the total number of generated strings up to an iteration. We begin by
stating the following lemma, which expresses the existence of a shorter string
of bounded length.

Lemma 2.25. Let s ∈ Ai with |s| ≥ 2|N |. Then Ai also contains a shorter
string s′ with

|s| − 2|N | < |s′| < |s|.

Proof. Consider a parse tree τ for s of depth δ. Since |s| ≥ 2|N |, it follows
from Lemma 2.6 that δ ≥ |N |+ 1.

Let π be a path of maximal length from root to leaf in τ . Let π′ be the
final segment of π of length |N |+1 (π has length ≥ |N |+1 since δ ≥ |N |+1).
On π′, some non-terminal B occurs more than once; let nodes x and y, in that
order on π′, be labeled with B. The yields of the subtrees rooted at x and y
are denoted by sx and sy respectively.

In τ we can now replace the subtree τx rooted at x with the subtree τy
rooted at y. Since the depth of τ ′ is at most that of τ , and s ∈ Ai, it follows
from Lemma 2.5 that also s′ ∈ Ai. The resulting parse tree τ ′ has a yield s′

with length

|s′| = |s| − |sx|+ |sy|. (2.1)

Every node on the path from x to y (x included, y excluded) has precisely
two non-terminal children: one ancestor of y and one non-ancestor of y. Each
subtree rooted at a non-ancestor of y has a non-empty yield. It follows that
the yield of τy is a strict substring of the yield of τx and hence |sy| − |sx| < 0.
It now follows from (2.1) that

|s′| < |s|. (2.2)

Furthermore, since the depth of τx is at most |N |+1, the string yielded by
τx has length at most 2|N |: |sx| ≤ 2|N|. We also know that τy yields a string
of at least length 1. It now follows from (2.1) that

|s′| ≥ |s| − 2|N | + 1 ≥ |s| − 2|N |. (2.3)

Combining (2.2) and (2.3) gives us the desired length bounds for s′. �

The existence of shorter strings of bounded size makes it possible to bound
the size of the maximum string.

Lemma 2.26. ∀A ∈ N , ∀i ≥ |N | − 1 : ωiA < 2|N | · |Ai|.

2.4. Bounds on Intermediate String Number and Length 39

Proof. Since i ≥ |N | − 1, we know by Corollary 2.9 that there exists some
s ∈ Ai. If ωiA < 2|N | then the lemma is trivial. Else, let j =

⌊
ωiA/2

|N |⌋.
Lemma 2.25 can be repeatedly applied at least j times, starting from s0 = s,
yielding j additional distinct strings s1, s2, . . . , sj ∈ Ai. Hence, |Ai| ≥ j + 1,
and therefore |Ai| > ωiA/2

|N |. �

Lemma 2.26 readily implies the bound on the length of the maximum
string that was announced at the beginning of this subsection. We establish
a relation between the length of the longest string and the total number of
strings generated:

Corollary 2.27 (Length bound). ∀i ≥ |N | − 1 : ωiT < 2|N | · |T i|.

Proof. For a given i ≥ |N | − 1, let s ∈ T i be a string of maximal length:
s = ωiT . By definition, s ∈ Ai and |s| = ωiA, for some A ∈ N (otherwise s
could not have maximal length). Now by Lemma 2.26 we know obtain the
desired inequality:

ωiT = |s| = ωiA < 2|N | · |Ai| ≤ 2|N ||T i|. �

2.4.5 Intermediate String Bound

In this section we bound the number of intermediate strings by the number of
output strings.

Lemma 2.28 (Past bound). ∀i ≥ 0 : ∀0 ≤ k ≤ i : |T i| ≤ 22k−1 · |T i−k|2k .

Proof. We prove the lemma by induction on i.

Basis For i = 0, the only possible value for k is 0 and the inequality |T 0| ≤
220−1 · |T 0|20 becomes trivial.

Induction Step For i > 0, assume the lemma holds for i− 1:

|T i−1| ≤ 22k−1 · |T i−1−k|2k (0 ≤ k ≤ i− 1).

By the remark made after introducing the concatenation scheme in Sec-

40 Context-free Language Enumeration in IPT

tion 2.3, we have for all j ≥ 0 : T j+1 ⊆ (T j · T j) ∪ T 0. We get:

|T i| ≤ |(T i−1 · T i−1) ∪ T 0|
≤ |T i−1| · |T i−1|+ |T 0|
= |T i−1|2 + |T 0|
≤ 2 · |T i−1|2 (T 0 ⊆ T i−1)

≤ 2 ·
(

22k−1 · |T i−1−k|2k
)2

(by induction hypothesis, 0 ≤ k ≤ i− 1)

= 22k+1−1 · |T i−(k+1)|2k+1
(0 ≤ k ≤ i− 1)

= 22k−1 · |T i−k|2k (1 ≤ k ≤ i)

= 22k−1 · |T i−k|2k (0 ≤ k ≤ i, k = 0 is immediate).

Hence, for 0 ≤ k ≤ i, we obtain

|T i| ≤ 22k−1 · |T i−k|2k . �

Lemma 2.29 (String Growth). For each edge A → B in the dependency
graph the following holds:

∀i ≥ |N | − 1 : ∀s ∈ Bi : ∃s′ ∈ Ai+1 : s is a strict substring of s′.

Proof. In iteration i ≥ |N |− 1, every non-terminal contains at least one non-
empty string (Corollary 2.9). The edge from A to B indicates the presence
of either a rule A → BC or A → CB for some non-terminal C. The string
s ∈ Bi will be concatenated with a string u ∈ Ci to form some string s′ ∈ Ai+1,
where s′ = s ·u or s′ = u · s, depending on the production. Clearly s is a strict
substring of s′. �

We are now in a position to formulate the Future and Present bounds,
which will be important in the proof of our main theorem. The future bound
gives an upper bound for the number of intermediate strings in terms of the
number of output strings in a later iteration. This is subsequently used to-
gether with the past bound to obtain the present bound which bounds the
number of intermediate strings in terms of the number of output strings in the
same iteration.

Lemma 2.30 (Future bound). ∀i ≥ |N | − 1 : |T i| ≤ (ω
i+|N |
S)2 · |Si+|N ||.

Proof. We first prove that every intermediate string will appear as a substring
of an output string, several iterations later. Next, we bound the number of
substrings of these output strings to obtain the desired bound.

2.4. Bounds on Intermediate String Number and Length 41

Any string s ∈ T i appears in Ai for some A. Consider a simple path
π from S to A in the dependency graph; π has length at most |N |. By
repeatedly applying Lemma 2.29 we know that Si+l(π) contains a string s′ that
is a superstring of s. Because l(π) ≤ |N | it holds that s′ ∈ Si+l(π) ⊆ Si+|N |.
Hence, each string in T i has a superstring in Si+|N |.

The number of substrings of a string s′ is bounded by |s′|2. Consequently,
the number of substrings we can create using strings in Si+|N | is bounded by

(ω
i+|N |
S)2 · |Si+|N ||. Together with the first observation, this yields

|T i| ≤ (ω
i+|N |
S)2 · |Si+|N ||. �

Theorem 2.31 (Present bound). ∃c ∈ N : ∀i ≥ |N | − 1 : |T i| ≤ c ·
|Si|2|N|+2

.

Proof. We combine the Future and Past bounds to bound |T i|:

|T i| ≤ 22|N|−1 · |T i−|N||2|N| (Past bound)

≤ 22|N|−1 ·
(
(ωiS)2 · |Si|

)2|N|
(Future bound)

= 22|N|−1 · (ωiS)2|N|+1 · |Si|2|N|

≤ 22|N|−1 · (2|N | · |Si|)2|N|+1 · |Si|2|N| (Lemma 2.26)

≤ c · |Si|2|N|+2
. �

Although we will not make use of the following, we find that we can also
bound the size of the maximum intermediate string in the size of the maximum
output string of the same iteration.

Lemma 2.32 (Present length bound). ∀i ≥ |N | − 1 : ωiT ≤ (ωiS)2|N| .

Proof. Consider a string s in T i having a length of ωiT , with s ∈ Ai. In the
dependency graph, there exists a simple path π from S to A having a length
at most |N |. This means there exists a string s′ ∈ Si+|N | that is a strict
superstring of s (Lemma 2.29). Therefore:

ωiT < ω
i+|N |
S .

On the other hand, it is obvious that in the worst case, the maximal string
length doubles each iteration, therefore:

ωiT ≤ (ω
i−|N|
T)2|N| .

Combining the inequalities above gives us:

ωiT ≤ (ω
i−|N|
T)2|N| < (ω

i−|N|+|N |
S)2|N| = (ωiS)2|N| . �

42 Context-free Language Enumeration in IPT

2.5 IPT Proof for the Naive Algorithm

In order to prove that our naive generation algorithm yields an enumeration
in incremental polynomial time in the sense of Johnson et al. [111], we only
require the following proposition, which we prove using the results obtained
above:

Proposition 2.33. There exists a fixed polynomial p such that after each
iteration i, the total time spent by the naive algorithm described in Algorithm 2
so far is bounded by p(|Si−1|).

Proof. We will first look at the time necessary to generate one string, then at
the time necessary to generate one iteration and finally at the time needed to
generate strings up to an iteration i.

Consider an intermediate string s ∈ Ai. When i = 0, the only thing that
needs to happen is to store s, given that there are no duplicate productions.
When i > 0, the following steps need to be performed:

1. concatenate two strings to form s;

2. check if the string has already been generated for A (duplicate check);

3. save the string in order to check for duplicates later.

The concatenation of two strings, resulting in s, can be done in time O(|s|).
A lookup and insertion, to keep track of the set of generated strings, can both
be done in time O

(
|Ai| · |s|

)
.9

Next, we construct a bound for the total number of intermediate strings
calculated in iteration i > 0. In the worst case, all strings in T i−1 will be
pairwise combined, for each production. Hence, the total number of candidates
in iteration i is bounded by |P| · |T i−1|2, where |P| is equal to the number of
productions in the grammar.

Combining the two observations above gives us an upper bound on the total
work in iteration i: O

(
ωiT · |T i| · |T i−1|2

)
. From the Past bound we know that

|T i| = O
(
|T i−1|2

)
. The total work done up to and including iteration i is

therefore bounded by

O

 i∑
j=1

ωjT · |T
j−1|4

 .

Note that the work in iteration 0 is constant, since it requires storing just one
string for each terminal production. The work in the first |N | iterations is

9Actually, a much better bound can be obtained. However, to avoid being overly technical
we stick to the bound given here, as this does not compromise the desired polynomial bound.

2.5. IPT Proof for the Naive Algorithm 43

also bounded by a constant:

|N |−1∑
j=1

ωjT · |T
j−1|4 ≤ |N | · ω|N |T · |T |N |−1|4 = O(1) .

Hence, the total time spent up to and including iteration |N |−1 is considered
constant.

In the remainder of the proof, we bound O
(∑i

j=|N | ω
j
T · |T j−1|4

)
by a

polynomial in |Si−1|. First, observe the following:

i∑
j=|N |

ωjT · |T
j−1|4 ≤ i · ωiT · |T i−1|4

< c1 · i · |T i| · |T i−1|4 (Corollary 2.27)

≤ c2 · |T i+c3 | · |T i| · |T i−1|4 (Corollary 2.24)

≤ c4 · |T i−1|c5 (Past bound)

≤ c6 · |Si−1|c7 (Present bound)

for constants c1, . . . , c7. Note that the applied lemmas only hold from iteration
|N | − 1 on. This is not a problem as they are only applied for j ≥ |N |. From
the above we can conclude:

i∑
j=1

ωjT · |T
j−1|4 = O

(
|Si−1|c

)
,

for some constant c. Therefore, the time needed by the algorithm to calcu-
late all intermediate strings up to and including interation i is bounded by
O
(
|Si−1|c

)
, which is clearly polynomial in the size of Si−1, as desired. �

We are now ready to prove the result central to this chapter:

Theorem 2.34 (Naive algorithm is IPT). There is a fixed polynomial p
such that the entire language L(G) can be enumerated without duplicates in
such a way that the time needed to output the (m+1)th output string is bounded
by p(m).

Proof. Consider the (m + 1)th output string s. We know that s ∈ ∆Si for
some i and we also know, by Proposition 2.33 that the time needed to calculate
all strings up to and including iteration i is bounded by O

(
|Si−1|c

)
, for some

constant c. Since |Si−1| ≤ m, we obtain a polynomial in m as desired. �

44 Context-free Language Enumeration in IPT

Remark 2.35 (IPT correspondence). Theorem 2.34 states that the time be-
tween the start of the enumeration process and the (m+1)th string is bounded
by a polynomial in m. This does not fully correspond to the original definition
of IPT (see Section 2.1), where the elapsed time is measured between output
m and m + 1. It should be clear that both characterizations are equivalent,
as the time since the previous string was output is even shorter. 3

2.6 From Given-Length to Infinite Enumeration

The purpose of this section is to establish a link between two types of prob-
lems: given-length enumeration with polynomial delay (GLEPD) and infinite
enumeration in incremental polynomial time (IEIPT). We show that we can
always use an algorithm for GLEPD to obtain an algorithm for IEIPT.

For a fixed context-free grammar G, consider a GLEPD-algorithm that,
given a natural number n, enumerates all strings w ∈ L(G) with |w| = n.
We treat the algorithm as a black box and denote it by EnumerateG(n).
The polynomial delay property holds for the algorithm: there exists a fixed
polynomial pD such that, on input n, the time before the first output, the time
between two outputs and the time after the last output until the algorithm
terminates, is bounded by pD(n).

From this algorithm, we can immediately derive Algorithm 3, which is
denoted by EnumerateG,∞. We now prove that EnumerateG,∞ enumerates
the entire language L(G) in IPT.

Algorithm 3 Infinite enumeration in incremental polynomial time (IEIPT)
algorithm EnumerateG,∞, based on a given-length enumeration in polyno-
mial delay (GLEPD) algorithm EnumerateG(i).

for i := 1→∞ do
EnumerateG(i)

Lemma 2.36. For each infinite context-free language L, there exist two con-
stants c ∈ N \ {0} and d ∈ N such that for each l ∈ N the language L contains
at least one string of length c · l + d.

Proof. Consider a context-free grammar G such that L(G) = L. Let S be
the start symbol of G. We know S must be recursive or leeching for L(G) to
be infinite. From Lemma 2.15 and Lemma 2.20 we know that there exist two
constants c, d ∈ N such that for each l ∈ N there is a string s ∈ L(G) with
|s| = c · l + d. �

2.6. From Given-Length to Infinite Enumeration 45

Theorem 2.37 (EnumerateG,∞ is IPT). Let G be a context-free gram-
mar. There exists a fixed polynomial p such that in EnumerateG,∞ the time
spent between the mth output and the (m + 1)th output is bounded by p(m),
where m > 0.

Proof. Consider the mth and the (m+ 1)th output strings that are generated
consecutively by the algorithm and denote them by sm and sm+1, respectively.
For algorithm EnumerateG(n) we have the polynomial pD(n), guaranteed by
the polynomial delay property. We may assume pD is monotonically increasing
over the natural numbers.10

There are two cases to consider:

1) |sm| = |sm+1|.
This means that the strings are generated in the same iteration i. Let c
and d be the constants given by Lemma 2.36. We consider two additional
subcases:

(a) i ≤ d.
Let c0 be the total time performed by algorithm EnumerateG,∞ in
the iterations up to and including iteration d. Then clearly the time
between the outputs sm and sm+1 is bounded by c0.

(b) i > d.
Let l = b i−1−d

c c. By Lemma 2.36, at least l+1 strings have already been

generated before iteration i. Hence l+1 < m. As l = b i−1−d
c c < m, we

obtain i ≤ m · c+ d. As the time between sm and sm+1 is bounded by
pD(i), it is also bounded by pD(m · c+ d), because pD is monotonically
increasing. This is clearly a polynomial in m.

2) |sm| < |sm+1|.
This means that the strings are generated in different iterations. Let i be
the iteration in which sm was generated and j be the iteration in which
sm+1 was generated. Clearly, 1 ≤ i < j. The total time spent between
outputs sm and sm+1 consists of three parts:

• the time spent in iteration i after the generation of sm;

• the time spent in iteration j before the generation of sm+1;

• the time spent in iterations i+ 1, . . . , j − 1.

The first two parts are bounded by pD(i) and pD(j) respectively. In every
iteration k between i and j, the time needed to verify that there is no

10If this is not the case, pD can be made monotonically increasing by converting all negative
coefficients to positive.

46 Context-free Language Enumeration in IPT

string of length k in L(G) is bounded by pD(k). Hence, the total time
spent between sm and sm+1 is bounded by

pD(i) + pD(j) +

j−1∑
k=i+1

pD(k) ≤ pD(j) + pD(j) + (j − 2) · pD(j) = j · pD(j).

We know from Lemma 2.36 that the maximal number of consecutive lengths
for which no string exists is bounded by a constant. Hence, for some
constant cwait we have j − i ≤ cwait. The total time spent between sm and
sm+1 is therefore bounded by

p′(i) := (i+ cwait) · pD(i+ cwait), �

which is clearly a polynomial in i. As in the previous case, i ≤ c ·m + d,
so we obtain p′(c ·m+ d) as a polynomial in m.

The proof is completed by taking for p(m) the larger of the two polynomials
from the two cases and adding the constant c0.

2.7 Semi-Naive Optimization

We consider the semi-naive concatenation scheme that allows for faster enu-
meration in practice and show that the class of unambiguous grammars allows
for an accurate prediction of the number of new strings in each iteration when
used with this scheme.

2.7.1 The Semi-Naive Concatenation Scheme

The algorithm performs a lot of redundant concatenations. Consider, e.g., a
production A→ BC. In iteration i+ 1, all strings in Bi and Ci are combined
with each other and the new strings are added to ∆Ai+1. But, in iteration i,
the strings of Bi−1 and Ci−1 have already been combined. Because Bi−1 ⊆
Bi and Ci−1 ⊆ Ci it is obvious that |Bi−1| · |Ci−1| concatenations are not
new strings for A. This means in each iteration more and more redundant
calculations are performed. A solution to this problem consists of using a
so-called semi-naive scheme [54], which is often utilized in datalog evaluation
where it serves the same purpose: avoiding repeated calculations [3, 6, 151].

The idea behind semi-naive evaluation is to only concatenate the new
strings with each other and with the old strings and hereby avoiding old-old
combinations. For a production A → BC, we perform the following concate-
nations in iteration i+ 1:

2.7. Semi-Naive Optimization 47

Algorithm 4 Semi-naive concatenation scheme for context-free grammars.

A0 ={a ∈ Σ | A→ a ∈ P};
Ai+1 =Ai ∪ {u · v | ∃A→ BC ∈ P :

(u ∈ Bi ∧ v ∈ ∆Ci) ∨ (u ∈ ∆Bi ∧ v ∈ Ci−1)}; and,

∆Ai+1 =Ai+1 \Ai.

• ∆Bi with ∆Ci;

• ∆Bi with Ci−1; and,

• Bi−1 with ∆Ci.

This yields the inductive scheme depicted in Algorithm 4, which we call the
semi-naive concatenation scheme. The main advantage is summarized in the
following theorem.

Theorem 2.38. When applying the semi-naive concatenation schema, each
pair of strings is concatenated at most once for each production, during the
execution of the entire algorithm.

Proof. Consider a production A→ BC, the strings u ∈ ∆Bi and v ∈ Ci and
let s = uv ∈ Ai+1. Now consider a concatenation in iteration j ≥ i + 1 for
this production and two string u′ and v′. This is only possible in the following
situations

1. u′ ∈ Bj ∧ v′ ∈ ∆Cj , or

2. u′ ∈ ∆Bj ∧ v′ ∈ Cj−1.

Note that from the first case v′ 6= v and from the second case u′ 6= u, hence,
u and v cannot be concatenated again. The proof is analogous when u ∈ Bi

and v ∈ ∆Ci, which covers the other case. �

Remark 2.39 (Duplicate string exception). Note that it is possible that the
string s = uv is generated multiple times by a certain production. This is the
case when two other strings can be concatenated to yield s, i.e., s = uv = u′v′

with u 6= u′ and v 6= v′. Note that the parse tree for such strings is different.3

This result allows us to conclude that up to iteration i at most |T i−1|2 · |P|
concatenations have been performed using the semi-naive scheme, instead of
i · |T i−1|2 · |P| when using the original scheme. This has no influence on the
IPT property that was shown in Proposition 2.33 as it only enables us to
construct a lower-order polynomial to bound the work.

48 Context-free Language Enumeration in IPT

2.7.2 Unambiguous Grammars

A context-free grammar G is called unambiguous when every string in L(G)
has exactly one parse tree rooted at S. If we use the semi-naive concatenation
scheme with an unambiguous grammar, it is easy to see that every string that
is generated for a non-terminal A is a previously unseen (i.e., new) string for
A. Indeed, two productions of the same non-terminal cannot yield the same
string anymore (only one parse tree per string) and one production can only
yield the same string once (each parse tree is generated exactly once). These
findings are summarized in the following lemma.

Lemma 2.40. When using an unambiguous grammar in combination with
the semi-naive scheme, every string calculated by the algorithm for a non-ter-
minal A is unique for A.

This makes it unnecessary check to see if the string has already been gener-
ated. Another advantage is that the depth of a string’s parse tree now reflects
the iteration it was generated. Previously, this was not the case, as multiple
parse trees of different depths were allowed to represent the same string.

The lemma above allows us to calculate exactly how many strings will be
concatenated for each production.

Theorem 2.41. For an unambiguous grammar, enumerated using the semi-
naive concatenation scheme, the number of new strings introduced in iteration
i+ 1 for a production A→ BC equals

|Bi| · |∆Ci|+ |∆Bi| · |Ci−1|.

Proof. Immediate from the scheme in Algorithm 4 and Lemma 2.40. �

2.8 Discussion

The fact that the simple algorithm, based on the naive bottom-up concate-
nation scheme and described in Section 2.3, already achieves the Incremental
Polynomial Time criterion, is, we hope, an interesting theoretical (if not di-
dactical) contribution, as we have not seen this mentioned elsewhere. An
important caveat is that the context-free grammar G is considered fixed and
not part of the input. An interesting question to investigate is what happens
when G is part of the input.

An elementary approach as presented here has the best chances of being
generalizable. Indeed, the insights developed here can possibly be extended
to apply to the more general setting of context-free sets of arbitrary combi-
natorial objects as introduced by Courcelle and Engelfriet [62] and Flajolet
et al. [81] and Flajolet and Sedgewick [82]. A major additional problem in

2.8. Discussion 49

this context is to keep the duplicate check (step 2 in the proof of Proposi-
tion 2.33) polynomial. Fortunately, in the HR approach to graph rewriting,
every context-free graph language has bounded treewidth. In combination
with imposing connectedness and a degree bound [133] this may produce a
polynomial duplicate check.

We also note that for unambiguous grammars, the methods of Flajolet
and Sedgewick [82] can be used to count exactly the number of strings (or
derivation trees, which coincides for unambiguous grammars) of a given size.

3
Discovering XSD Keys from
XML Data

We study the problem of XML key inference in the presence of a schema (XSD),
which corresponds to an instance of the pattern mining problem. We discuss
several other criteria for assessing the interestingness of a key and show that
the key consistency problem is in ptime. We present a key mining algorithm
that follows a level-wise approach to discover all keys in XML documents and
experimentally validate its performance and applicability using a real-world
dataset.

3.1 Introduction

The automatic discovery of constraints from data is a fundamental problem
in the scientific database literature, especially in the context of the relational
model in the form of key, foreign key, and functional dependency discovery (see,
e.g., [127]). Although the absence of DTDs and XML Schema Definitions
(XSDs) for XML data occurring in the wild has driven a multitude of research
on learning of XML schemas [39–43, 87], the automatic inference of constraints
has been left largely unexplored (we refer to Section 3.2 for a discussion on
related work). In this chapter, we address the problem of XML key mining
whose core formulation asks to find all XML keys valid in a given XML docu-
ment. We use a formalization of XSD keys (defined in Section 3.3) consistent
with the definition of XML keys by W3C [161]. We develop a key mining
algorithm within the framework of levelwise search that additionally leverages

51

52 Discovering XSD Keys from XML Data

discovery algorithms for functional dependencies in the relational model. Our
algorithm iteratively refines keys based on a number of quality requirements;

To illustrate the challenges of key mining in the presence of a schema, we
first introduce the following example.

Example 3.1 (Basic XML key). Consider the key

φ := ((order, qorder)︸ ︷︷ ︸
context c

, .//book︸ ︷︷ ︸
target path τ

, (.//title, .//year)︸ ︷︷ ︸
key paths p1, p2, . . .

).

Here, the pair (order, qorder) is a context consisting of the label ‘order’ and the
state or type11 qorder, which identifies the context-nodes for which φ is to be
evaluated. Furthermore, .//book is an XPath-expression, called target path,
selecting within every context node a set of target nodes. The key constraint
now states that every target node within a context must be uniquely identified
by the record determined by the key paths .//title and .//year, which are
XPath-expressions as well. In other words, no two target nodes should have
both the same title and the same year. A schematic representation of the
semantics of a key is given in Figure 3.2. So, over the XML document t
displayed in Figure 3.1, the key φ gives rise to the table Rφ,t:

(order, qorder) .//book .//title .//year

(o1, b1, ‘Movie analysis’ , 2012)
(o1, b2, ‘Programming intro’ , 2012)
(o2, b3, ‘Programming intro’ , 2012)

In Figure 3.1, the names of the order and book nodes from left to right are o1,
o2, and b1, b2, b3, respectively, and every order node has type qorder. Then, φ
holds in t if the functional dependency

(order, qorder), .//title, .//year → .//book

holds in Rφ,t. That is, within the same order node (a context node), ‘title’
and ‘year’ uniquely determine the ‘book’ element. M

As a necessary condition for a key to be valid on a tree t, the XML key
specification [161, Section 3.11.4] requires every key path to always select
precisely one node carrying a data-value.12 The key is then said to qualify on
t. As an example,

φ′ :=
(
(bookshop, qbookshop), .//order, (.//address)

)
,

11Types are defined in the accompanying schema which is not given here but discussed in
Section 3.3.2.

12Actually, the specification is a bit more general in allowing the use of attributes. For
ease of presentation, we disregard attributes and let leaf nodes carry data values. We note
that all the results in this chapter can be easily extended to include attributes.

3.1. Introduction 53

bookshop

order

id

0001

person

Mr. Black

address

Sun City

items

book

title

Movie analysis

year

2012

price

5.63

quantity

63

book

title

Programming intro

year

2012

price

6.72

quantity

74

order

id

0004

person

Mr. White

address

Sin City

items

book

title

Programming intro

year

2012

price

5.63

quantity

150

Figure 3.1: XML tree example (order and book nodes are named o1, o2 and
b1, b2, b3 from left to right, respectively).

qualifies for the particular tree given in Figure 3.1 (assuming every node la-
beled ‘bookshop’ has type qbookshop) since every target node o1 and o2 has
precisely one address node. But, the accompanying XSD might allow XML
documents without an address or with multiple addresses, for which φ′ would
clearly not qualify. So, qualifying for the given document does not necessar-
ily entail qualifying for every document in the schema. We say that a key
is consistent w.r.t. an XSD if the key qualifies on every document satisfying
the XSD. As a quality criterion for keys, we want our mining algorithm to
only consider consistent keys. We therefore study the complexity of deciding
consistency and obtain the pleasantly surprising result that consistency can
be tested in polynomial time for keys disallowing disjunction on the topmost
level.

In addition to consistency, we want to enforce a number of additional
quality requirements on keys. In particular, we want to disregard keys that
can only select an a priori bounded number of target nodes independent of
the size of the input document. Since the main purpose of a key is to ensure
uniqueness within a collections of nodes, it does not make sense to consider
bounded keys for which the size of this collection is fixed in advance and can
not grow with the size of the document. Similarly, we want to ignore so-called
universal keys that hold in every document.

After laying the groundwork above, we turn to the theme of mining. Ex-
ample 3.1 indicates how XML key mining can leverage algorithms for the
discovery of functional dependencies (FDs) over a relational database. In-
deed, once a context c and a target path τ are determined, any FD of the
form c, p1, . . . , pn → τ that holds in the relational encoding R(c,τ,P),t entails

the key (c, τ, (p1, . . . , pn)) in t where P is a sequence consisting of all possible
consistent key paths. Of course, it remains to investigate how to efficiently

54 Discovering XSD Keys from XML Data

explore the search space of candidate contexts c, target paths τ , and consis-
tent key paths p. To this end, we embrace the framework of levelwise search
(as, e.g., described by Mannila and Toivonen [128]) to enumerate target and
key paths. The components of this framework consist of a search space U , a
Boolean search predicate q, and a specialization relation � that is a partial
order on U and monotone w.r.t. q. In particular, the partial order arranges
objects from most general to most specific and when q holds for an object
then q should also hold for all generalizations of that object. The solution
then consists of all objects u ∈ U for which q(u) holds, enumerated according
to the specialization relation while avoiding testing objects for which q cannot
hold anymore given already obtained information.

We define a target path miner within the framework above as follows: the
search predicate holds for a target path when the number of selected target
nodes (the support) exceeds a predetermined threshold value; and, the partial
order � is determined by containment among target paths. To streamline
computation, we utilize a syntactic one-step specialization relation ≺1 that
we prove to be optimal w.r.t. the considered partial order. Furthermore, the
search predicate can be solely evaluated on a much smaller prefix tree repre-
sentation of the input document and, therefore, does not need access to the
original document. In addition, we define a one-key path miner which searches
for all consistent single key paths p (w.r.t. the already determined context and
target path). Specifically, the search predicate holds for a key path p when
p selects at most one key node (w.r.t. the given context and target path).
Even though consistency requires the selection of exactly one key node, this
mismatch can be solved by confining the search space to all key paths that
appear as paths from target nodes in the prefix tree. Even though the search
predicate can not always be computed on the much smaller prefix tree without
access to the original document, we provide sufficient conditions for when this
is the case. The partial order is defined as the set inclusion relation defined
on key paths for which the one-step specialization relation is the inverse of
≺1. Once all consistent one-key paths are determined, as explained above, a
functional dependency miner (e.g., [44, 125, 126]) can be used to determine
the corresponding XML key.

Contributions. To summarize, our contributions are as follows.

1. We propose several measures to determine the interestingness of XML
keys: boundedness, satisfiability, universality, and implication of XML
keys, as well as equivalence of target paths (Theorem 3.26).

2. We characterize the complexity of the consistency problem for XML
keys w.r.t. an XSD for different classes of target and key paths (Theo-
rem 3.15).

3.2. Related work 55

bookshop

order

items

book

quantity

150

price

5.63

year

2012

title

Programming intro

address

Sin City

person

Mr. White

id

0004

order

items

book

quantity

74

price

6.72

year

2012

title

Programming intro

book

quantity

63

price

5.63

year

2012

title

Movie analysis

address

Sun City

person

Mr. Black

id

0001

Figure 1: An example XML tree (order and book nodes are named o1, o2 and b1, b2, b3 from left to right).

paths by allowing several occurrences of the descendant operator.
Context paths, however are less expressive since W3C keys allow
the context to be defined by an arbitrary DFA, while Buneman et
al.’s keys limit themselves to path expressions. Furthermore, Bune-
man et al.’s key paths are allowed to select several nodes whereas
W3C keys paths are restricted to select precisely one node. We
stress that in this paper we follow the W3C-specification for the
definition of keys. As is the case for the relational model, much is
known about the complexity of key inference for Buneman et al.’s
keys [14, 15, 20]. Unfortunately, these results do not carry over to
W3C keys as the latter are defined w.r.t. an XML Schema but the
former are not.

Decision problems in the presence of a schema. A number of
consistency problems of XML keys w.r.t. a DTD have been consid-
ered by Fan and Libkin [17]. They have shown, for instance, that
key implication in the presence of a DTD is decidable in polyno-
mial time. The keys that they consider, however, are much simpler
than the W3C keys considered in the present paper. Basically, a key
in their setting is determined by an element name and a number of
attributes. Their model is subsumed by ours since each such key
can be defined by an XML key and every DTD can be represented
by an XSD. We point out that [17] contains many more results on
the interplay between keys, foreign keys, inclusion dependencies
and DTDs. Arenas et al. [4] discuss satisfiability3 of XML keys
w.r.t. a DTD. The result most relevant to the present paper is NP-
hardness of satisfiability w.r.t. a non-recursive DTD and for keys
with only one key path. We show that the problem becomes hard
for EXPTIME in the presence of XSDs.

XML constraint mining. The automatic discovery of Buneman
et al.’s keys from XML data has previously been considered by a
number of researchers. Grahne and Zhu [19] considered mining of
approximate keys and proposed an Apriori style algorithm which
uses the inference rules of [15] for optimization. Necaský and
Mlýnková [28] ignore the XML data but present an approach to
infer keys and foreign keys from element/element joins in XQuery
logs. Fajt et al [16] consider the inference of keys and foreign keys
building further on algorithms for the relational model. The above
algorithms can not be used for W3C keys since they do not take
the presence of XSDs into account and keys are not required to be
consistent. Yu and Jagadish [32] consider discovery of functional
dependencies (FDs) for XML. Similar to Buneman et al.’s keys, the
considered FDs have paths that can select multiple data elements,
and contexts are defined w.r.t. a selector expression as opposed to
w.r.t. a DFA. For these reasons, W3C keys can not be encoded as
a special case of FDs. Barbosa and Mendelzon [5] proposed algo-
rithms to find ID and IDREFs attributes in XML documents. They
show that the natural decision problem associated to this discovery

3We note that satisfiability is called consistency in [4].

problem is NP-complete, and present a heuristic algorithm. Abite-
boul et al. [2] consider probabilistic generators for XML collections
in the presence of integrity constraints but do not consider mining
of such constraints.

root

context node

target node

key node

︸ ︷︷ ︸
unique key tuple

Figure 2: Schematic representation of a key.

3. DEFINITIONS
In this section we introduce the required definitions concerning

trees, XSDs, and XML keys, and formally define the XML key
mining problem. The correspondence between our definition of
XML keys and the W3C definition is discussed in Section 3.3.

For a finite set R, we denote by |R| the cardinality of R.

3.1 Trees and XML
As is standard, we represent XML documents by means of la-

beled trees. Formally, for a set S, an S-tree is a pair (t, labt) where
t is a finite tree and labt maps each node of t to an element in S.
To reduce notation, we identify each tree simply by t and leave
labt implied. We assume the reader to be familiar with standard
common terminology on trees like child, parent, root, leaf, and so
on. For a node v, we denote by anc-stringt(v) the string formed
by the labels on the unique path from t’s root to (and including) v,
called the ancestor string of v. By child-stringt(v), we denote the
string obtained by concatenating the labels of the children of v. If
v is a leaf then child-stringt(v) is the empty string, denoted by ε.
Here, we assume that trees are sibling-ordered. We fix a finite set
of element names Σ and an infinite set Data of data elements. An
XML-tree is a (Σ ∪ Data)-tree where non-leaf nodes are labeled
with Σ and leaf nodes are labeled with elements from (Σ∪Data).
As the XSD specification does not allow mixed content models for
fields in keys [31], we ignore ‘mixed’ content models altogether
to simplify presentation, and assume that when a node is labeled
with a Data-element it is the only child of its parent. We then

Figure 3.2: Schematic representation of an XML key.

3. We develop a novel key mining algorithm leveraging on algorithms for the
discovery of relational functional dependencies and on the framework of
levelwise search by employing an optimal one-step specialization relation
for which the search relation can be computed, if not completely, then at
least partly on a prefix tree representation of the document (Section 3.5).

4. We experimentally assess the effectiveness of the proposed algorithm on
an extensive body of real world XML data and derive suitable values
for several parameters for controlling the search space of the different
components. (Section 3.6)

Outline. In Section 3.2, we discuss related work. In Section 3.3, we introduce
the necessary definitions. In Section 3.4, we study key quality and investigate
the complexity of key consistency w.r.t. an XSD. In Section 3.5, we discuss
the XML key mining algorithm. In Section 3.6, we experimentally validate
our algorithm. We conclude in Section 3.7.

3.2 Related work

XML Keys. One of the first definitions of keys for XML was introduced by
Buneman et al. [52, 53]. These keys are of the form (Q, (Q′, P)) where Q is
the context-path, Q′ is the target path and P is a set of key paths. Although
the W3C definition of keys was largely inspired by this work, there are some
important differences. First, Buneman et al.’s keys allow for more expres-
sive target and key paths by allowing several occurrences of the descendant
operator. Context paths, however are less expressive since W3C keys allow

56 Discovering XSD Keys from XML Data

the context to be defined by an arbitrary Deterministic Finite State Automa-
ton (DFA), while Buneman et al.’s keys limit themselves to path expressions.
Furthermore, Buneman et al.’s key paths are allowed to select several nodes
whereas W3C keys paths are restricted to select precisely one node. We stress
that, in this work, we follow the W3C-specification for the definition of keys.
As is the case for the relational model, much is known about the complexity
of key inference for Buneman et al.’s keys [52, 53, 98]. Unfortunately, these
results do not carry over to W3C keys as the latter are defined w.r.t. an XML
Schema but the former are not.

Decision problems in the presence of a schema. A number of consistency
problems of XML keys w.r.t. a DTD have been considered by Fan and Libkin
[80]. They have shown, for instance, that key implication in the presence of a
DTD is decidable in polynomial time. The keys that they consider, however,
are much simpler than the W3C keys considered in this chapter. Basically,
a key in their setting is determined by an element name and a number of
attributes. Their model is subsumed by ours since each such key can be defined
by an XML key and every DTD can be represented by an XSD. We point out
that Fan and Libkin [80] provide many more results on the interplay between
keys, foreign keys, inclusion dependencies and DTDs. Arenas et al. [27] discuss
satisfiability13 of XML keys w.r.t. a DTD. The result most relevant to this
chapter is the np-hardness of satisfiability w.r.t. a non-recursive DTD and for
keys with only one key path. In the presence of XSDs, the problem becomes
exptime-hard (see Arenas et al. [25]).

XML constraint mining. The automatic discovery of Buneman et al.’s keys
from XML data has previously been considered by a number of researchers.
Grahne and Zhu [91] considered mining of approximatekeys and proposed
an Apriori style algorithm which uses the inference rules of Buneman et al.
[53] for optimization. Nečaský and Mlýnková [137] ignore the XML data but
present an approach to infer keys and foreign keys from element/element joins
in XQuery logs. Fajt et al. [76] consider the inference of keys and foreign keys
building further on algorithms for the relational model. The algorithms above
can not be used for W3C keys since they do not take the presence of XSDs
into account and keys are not required to be consistent. Yu and Jagadish
[169] consider discovery of functional dependencies (FDs) for XML. Similar to
Buneman et al.’s keys, the considered FDs have paths that can select multiple
data elements, and contexts are defined using a selector expression as opposed
to using a DFA. For these reasons, W3C keys can not be encoded as a special
case of FDs. Barbosa and Mendelzon [33] proposed algorithms to find ID and
IDREFs attributes in XML documents. They show that the natural decision

13We note that satisfiability is called consistency in [27].

3.3. Definitions 57

problem associated to this discovery problem is np-complete, and present a
heuristic algorithm. Abiteboul et al. [2] consider probabilistic generators for
XML collections in the presence of integrity constraints but do not consider
mining of such constraints.

3.3 Definitions

In this section, we introduce the required definitions concerning trees, XSDs,
and XML keys, and formally define the XML key mining problem. The cor-
respondence between our definition of XML keys and the W3C definition is
discussed in Section 3.3.3.

3.3.1 Trees & XML

As is standard, we represent XML documents by means of labeled trees. For-
mally, for a set S, an S-tree is a pair (t, labt) where t is a finite tree and labt
maps each node of t to an element in S. To reduce notation, we identify each
tree simply by t and leave labt implied. We assume the reader to be famil-
iar with standard common terminology on trees like child, parent, root, leaf,
and so on. For a node v, we denote by anc-stringt(v) the string formed by
the labels on the unique path from t’s root to (and including) v, called the
ancestor string of v. By child-stringt(v), we denote the string obtained by
concatenating the labels of the children of v. If v is a leaf then child-stringt(v)
is the empty string, denoted by ε. Here, we assume that trees are sibling-
ordered. We fix a finite set of element names Σ and an infinite set Data of
data elements. An XML-tree is a (Σ ∪Data)-tree where non-leaf nodes are
labeled with elements from Σ and leaf nodes are labeled with elements from
(Σ∪Data). As the XSD specification does not allow ‘mixed’ content models14

for fields in keys [161], we ignore mixed content models altogether to simplify
presentation, and assume that when a node is labeled with a Data-element,
it is the only child of its parent. We then denote by valuet(v) the Data-label
of v’s unique child when it exists; otherwise we define valuet(v) = ⊥, with ⊥
a special symbol not in Data. When valuet(v) ∈ Data, we also say that v is
a Data-node.

Example 3.2. Figure 3.1 displays an XML-tree t. In this tree,

anc-stringt(b1) = bookshop order items book,

and also
child-stringt(b1) = title year price quantity.

14A mixed content model allows nodes to have a mixture of Data-elements and normal
nodes as its children.

58 Discovering XSD Keys from XML Data

q0 qbookshop

qorder

qaddressqid qperson

qitems

qbook

qtitle qprice qquantity qyear

qdata

bookshop

order

id
address

person

items

book

title price quantity

year

data
data

data
data

data
data

data

Figure 3: The type automaton of Xbookshop.

denote by valuet(v) the Data-label of v’s unique child when it
exists; otherwise we define valuet(v) = ⊥ with ⊥ a special sym-
bol not in Data. When valuet(v) ∈ Data, we also say that v is
a Data-node.

EXAMPLE 3.1. Figure 1 displays an XML-tree t. In this tree,
anc-stringt(b1) = bookshop order items book, and also
child-stringt(b1) = title year price quantity. Fur-
thermore, every node labeled id, person, address, title.
year, price, or quantity is a Data-node, while, for instance,
b1 is not.

3.2 XSDs
XML keys are defined within the scope of an XSD. We make use

of the DFA-based characterization of XSDs introduced by Martens
et al. [25]. An XSD is a pair X = (A, λ) where A = (Types, Σ ∪
{data}, δ, q0) is a Deterministic Finite Automaton (or DFA for
short) without final states (called the type-automaton) and λ is a
mapping from Types to deterministic4 regular expressions over the
alphabet Σ ∪ {data}. Here, Types is the set of states; data is
a special symbol, not in Σ, which will serve as a placeholder for
Data-elements; δ : Types ×Σ∪{data} → Types is the (partial)
transition function; and q0 ∈ Types is the initial state. Additionally,
the labels of transitions leaving q should be precisely the symbols in
λ(q). That is, for every q ∈ Types, Out(q) = Symb(λ(q)), where
Out(q) = {σ ∈ Σ | δ(q, σ) is defined} and Symb(r) consists of all
Σ-symbols in regular expression r.

A context c = (σ, q) is a pair in Σ×Types. By CNodest(c), we
denote all nodes v of t for which labt(v) = σ and A halts in state
q when started in q0 on the string anc-stringt(v). Let L(r) denote
the language defined by the regular expression r. We say that the
tree t adheres to X , if for every context c = (σ, q) and every v in
CNodest(c) one of the following holds.

• valuet(v) ∈ Data and data ∈ L(λ(q)); or

• valuet(v) = ⊥ and child-stringt(v) ∈ L(λ(q)).

Intuitively, A determines the vertical context of a node v by the
state q it reaches in processing anc-stringt(v). When v is a Data-
node, the content model specified by q, that is λ(q), should con-
tain the placeholder data. Otherwise, when v is not a Data-
node, child-stringt(v) should satisfy the content-model λ(q). We
stress that this DFA-based characterization of XSDs corresponds
precisely to the more traditional abstraction in terms of single-type
grammars [26, 27]. We let L(X) denote the set of all trees adhering
to XSD X .

4Also referred to as 1-unambiguous regular expressions [13].

EXAMPLE 3.2. Let Xbookshop = (A, λ) be the XSD where A is
given in Figure 3 and λ is defined as follows.

q0 &→ bookshop

qbookshop &→ order
+

qorder &→ id person address items
+

qitems &→ book
+

qbook &→ title year? price quantity

For all other types q, λ(q) = data.
Then tree t in Figure 1 adheres to Xbookshop. Moreover, b1 ∈

CNodest(book, qbook) and child-stringt(b1) ∈ L(λ(qbook)).

3.3 XML keys
A selector expression is a restricted XPath-expression of one of

the three forms ‘.’ (the dot symbol) or ./l1/l2/ . . . /lk (starting
with the child axis) or .//l1/l2/ . . . /lk (starting with the descen-
dant axis), where k ≥ 1, and l1, . . . , lk are element names or the
wildcard symbol ‘*’. A string w = w1 · · · wk, where each wi is
an element name, is said to match ./l1/l2/ . . . /lk when wi = li or
li = * for each i. For selector expressions starting with the descen-
dant axis, we say that w matches .//l1/l2/ . . . /lk if a suffix of w
matches ./l1/l2/ . . . /lk. For a tree t, a node v of t, and a selector
expression τ , the set τ(t, v) is defined as follows. If τ = ‘.’, then
τ(t, v) = {v}. Otherwise τ is of the form either ./l1/l2/ . . . /lk
or .//l1/l2/ . . . /lk, and τ(t, v) contains all nodes v′ such that v′

is a descendant of v and the path of labels from v (but excluding
the label of v) to (and including) v′ matches τ . A disjunction of
selector expressions is of the form τ = τ1 | · · · | τm where each τi

is a selector expression. In this case, τ(t, v) is defined as the union
of all τi(t, v). When v is the root of the document, we simply write
τ(t) for τ(t, v). We denote by SE and DSE the class of selector
expressions and disjunctions of selector expressions, respectively.

DEFINITION 3.3. An XML key, defined w.r.t. an XSD X , is a
tuple φ = (c, τ, P), where (i) c is a context in X; (ii) τ ∈ DSE
is called the target path, and (iii), P is an ordered sequence of
expressions in DSE called key paths.

To emphasize that φ is defined w.r.t. X , we sometimes write a key
simply as a pair (φ, X).

We stress that the definition of XML keys given above, corre-
sponds to the definition of keys in XML Schema [31]. In particular,
the context is given implicitly by declaring a key inside an element
and an element has a label and a certain type. Target paths are called
selector paths [31, Section 3.11.6.2] and key paths are called fields.
They obey the same grammar as used here with the difference that
we do not make use of attributes but require key paths to select data
nodes.

The semantics of an XML key is as follows. The context c de-
fines a set of context nodes which divides the document into sepa-
rate (but not necessarily disjoint) parts. Specifically, each node in
CNodest(c) = {v1, . . . , vn} can be considered as the root of a
separate tree. For each of those trees, i.e., for each i ∈ {1, . . . , n},
every node in τ(t, vi) should uniquely define a record. Such a
record is determined by the key paths in P = (p1, . . . , pk). That is,
each v in τ(t, vi) defines the record [valuet(u1), . . . , valuet(uk)],
denoted by recordP (t, v), where pj(t, v) = {uj} for all j ∈
{1, . . . , k}. We graphically illustrate the above in Figure 2.

Note that pj(t, v) might select more than one node or might se-
lect a node u for which valuet(u) is undefined; both are disallowed
by the XML Schema specification:

Figure 3.3: Type automaton of XSD Xbookshop.

Furthermore, every node labeled id, person, address, title, year, price,
or quantity is a Data-node, while, for instance, b1 is not. M

3.3.2 XSDs

XML keys are defined within the scope of an XSD. We make use of the DFA-
based characterization of XSDs introduced by Martens et al. [130]. An XSD is
a pair X = (A, λ) where A = (Types,Σ∪{data}, δ, q0) is a Deterministic Finite
Automaton (or DFA for short) without final states (called the type-automaton)
and λ is a mapping from Types to deterministic15 regular expressions over the
alphabet Σ∪{data}. Here, Types is the set of states; data is a special symbol,
not in Σ, which will serve as a placeholder for Data-elements; δ : Types×Σ∪
{data} → Types is the (partial) transition function; and q0 ∈ Types is the
initial state. Additionally, the labels of transitions leaving q should be precisely
the symbols in λ(q). That is, for every q ∈ Types, Out(q) = Symb(λ(q)),
where Out(q) = {σ ∈ Σ ∪ {data} | δ(q, σ) is defined} and Symb(r) consists of
all (Σ ∪ {data})-symbols in regular expression r.

A context c = (σ, q) is a pair in Σ × Types. By CNodest(c), we denote
all nodes v of t for which labt(v) = σ and A halts in state q when started in
q0 on the string anc-stringt(v). Let L(r) denote the language defined by the
regular expression r. We say that the tree t adheres to X, if for every context
c = (σ, q) and every v in CNodest(c) one of the following holds:

15Also referred to as 1-unambiguous regular expressions [48].

3.3. Definitions 59

• valuet(v) ∈ Data and data ∈ L(λ(q)); or

• valuet(v) = ⊥ and child-stringt(v) ∈ L(λ(q)).

Intuitively, A determines the vertical context of a node v by the state q it
reaches in processing anc-stringt(v). When v is a Data-node, the content
model specified by q, that is λ(q), should contain the placeholder data. Oth-
erwise, when v is not a Data-node, child-stringt(v) should satisfy the content-
model λ(q). Recall that we do not allow mixed content models. We stress that
this DFA-based characterization of XSDs corresponds precisely to the more
traditional abstraction in terms of single-type grammars [131, 136]. We let
L(X) denote the set of all trees adhering to XSD X. We assume that an XSD
always defines trees with the same root label. In this way, the root is always
assigned the same context, also referred to as the root context croot.

Example 3.3 (XSD example). Let Xbookshop = (A, λ) be the XSD where
A is given in Figure 3.3 and λ is defined as follows:

q0 7→ bookshop

qbookshop 7→ order+

qorder 7→ id person address items+

qitems 7→ book+

qbook 7→ title year? price quantity

For all other types q, λ(q) = data. Here, r+ and r? are the usual abbre-
viations for rr∗ and r + ε, where r is a regular expression. Then, tree t in
Figure 3.1 adheres to Xbookshop. Moreover, b1 ∈ CNodest(book, qbook) and
child-stringt(b1) ∈ L(λ(qbook)). M

In some cases, it will be convenient to work with trimmed XSDs. In-
tuitively, we call an XSD trimmed if it does not contain useless states or
transitions. The formal definition is as follows:

Definition 3.4 (Trimmed XSD). Let X be an XSD and let q0 be its initial
state. We call a context c = (σ, q) well-formed (with respect to X) if there
exists a type q′ in X such that δ(q′, σ) = q, where δ is the transition function
of the type-automaton of X. For type q in X, let Xq be the XSD obtained
from X by replacing its start state by q. Then X is trimmed if (i) L(Xq) 6= ∅
for all q 6= q0; and, (ii) there is a tree t ∈ L(X) with CNodest(σ, q) 6= ∅, for
every well-formed context (σ, q) of X.

Hence, in a trimmed XSD, there can be no state (except possibly the initial
state q0) that defines the empty tree language, and every well-formed context
in A should be realized in at least one tree in L(X). The next lemma states
that we can restrict attention to trimmed XSDs.

60 Discovering XSD Keys from XML Data

Lemma 3.5. Every XSD can be converted in ptime to a trimmed XSD defin-
ing the same language [25].

3.3.3 XML Keys

A selector expression is a restricted XPath-expression [57] of the form

• ./l1/l2/ . . . /lk (starting with the child axis) or

• .//l1/l2/ . . . /lk (starting with the descendant axis),

where k ≥ 1, and l1, . . . , lk are element names or the wildcard symbol *. A
string w = w1 · · ·wk, where each wi is an element name, is said to match
./l1/l2/ . . . /lk when wi = li or li = * for each i. For selector expressions
starting with the descendant axis, we say that w matches .//l1/l2/ . . . /lk if a
suffix of w matches ./l1/l2/ . . . /lk. For a tree t, a node v of t, and a selector
expression τ , the set τ(t, v) contains all nodes v′ such that v′ is a descendant
of v and the path of labels from v (but excluding the label of v) to (and
including) v′ matches τ . A disjunction of selector expressions is of the form
τ = τ1 | · · · | τm where each τi is a selector expression. In this case, τ(t, v) is
defined as the union of all τi(t, v). When v is the root of the document, we
simply write τ(t) for τ(t, v). We denote by SE and DSE the class of selector
expressions and disjunctions of selector expressions, respectively. In proofs,
we sometimes omit the leading dot in selector expressions and simply write
/l1/l2/ . . . /lk (or even l1/l2/ . . . /lk) or //l1/l2/ . . . /lk to denote ./l1/l2/ . . . /lk
and .//l1/l2/ . . . /lk, respectively.

Definition 3.6 (XML key). An XML key , defined w.r.t. an XSD X, is a
tuple φ = (c, τ, P), where (i) c is a context in X; (ii) τ ∈ DSE is called the
target path, and (iii), P is an ordered sequence of expressions in DSE called
key paths. To emphasize that φ is defined w.r.t. X, we sometimes write a key
simply as a pair (φ,X).

We stress that the definition of XML keys given above corresponds to the
definition of keys in XML Schema [161]. In particular, the context is given
implicitly by declaring a key inside an element which has a label and a certain
type. Target paths are called selector paths and key paths are called fields [161,
Paragraph 3.11.1]. They adhere to the same grammar as used here with the
difference that we do not make use of attributes but require key paths to select
data nodes.

The semantics of an XML key is as follows. The context c defines a set of
context nodes which divides the document into separate (but not necessarily
disjoint) parts. Specifically, each node in CNodest(c) = {v1, . . . , vn} can be
considered as the root of a separate tree. For each of those trees, i.e., for each

3.3. Definitions 61

i ∈ {1, . . . , n}, every node in τ(t, vi) should uniquely define a record. Such a
record is determined by the key paths in P = (p1, . . . , pk). That is, each v in
τ(t, vi) defines the record [valuet(u1), . . . , valuet(uk)], denoted by recordP (t, v),
where pj(t, v) = {uj} for all j ∈ {1, . . . , k}. We graphically illustrate the above
in Figure 3.2.

Note that it is possible that pj(t, v) selects more than one node, selects a
node u for which valuet(u) is undefined, or selects nothing; these three cases
are disallowed by the XML Schema specification as a key is required to qualify
in a document.

Definition 3.7 (Key qualification). A key φ = (c, τ, P) qualifies in a doc-
ument t if for every v ∈ CNodest(c), every u ∈ τ(t, v) and every p ∈ P , p(t, u)
is a singleton containing a Data-node.

Finally, following the W3C specification, we define satisfaction of an XML
key w.r.t. a document as follows.

Definition 3.8 (Key satisfaction). An XML tree t satisfies a key φ =
(c, τ, P) or a key is valid w.r.t. t, denoted by t |= φ, iff (i) φ qualifies in
t; and, (ii) for every node v in CNodest(c), recordP (t, u) 6= recordP (t, u′), for
every two different nodes u and u′ in τ(t, v).

Notice that there can be two causes for a key to be invalid : (i) the key does
not qualify in the document and actually is ill-defined w.r.t. the document; or
(ii) the data values in the document invalidate the key. The first cause can be
seen as structural invalidation, while the second cause is semantical and more
informative. We are mainly interested in inferring keys that always qualify in
a document that satisfies the schema. We call such keys consistent. Deciding
consistency is intractable when target and key paths are in DSE (proofs can
be found in Arenas et al. [25]). However, when target and key paths are both
in SE , the problem becomes tractable, as we show in Section 3.4.

Definition 3.9 (Key consistency). A key is consistent w.r.t. a schema if
the key qualifies in every document adhering to the schema.

Example 3.10 (Consistency). Consider the key from Example 3.1:

φ := ((order, qorder), .//book, (.//title, .//year))

Then φ is valid w.r.t. the tree in Figure 3.1 but φ is not consistent w.r.t.
Xbookshop. Indeed, Xbookshop defines the ‘year’-element of a ‘book’-element to
be optional. Hence, it is possible to construct a document that adheres to
Xbookshop for which the key does not qualify. M

62 Discovering XSD Keys from XML Data

3.3.4 XML Key Mining Problem

Given an XML document t adhering to a given XSD, we want to derive all
supported XML keys φ that are valid w.r.t. t.16 We define the support of a key
as the quantity measuring the number of nodes captured by the key. Define
TNodest(φ) as the set of target nodes selected by φ = (c, τ, P) on t. That is,

TNodest(φ) =
⋃

v∈CNodest(c)

τ(t, v).

Then, following Grahne and Zhu [91], we define the support of φ on t to be
the total number of selected target nodes: supp(φ, t) = |TNodest(φ)|. Since
this support only depends on the context c and the target path τ of φ, we also
write supp(c, τ, t) for supp(φ, t).

Example 3.11 (Support measure). Consider the document t depicted in
Figure 3.1 and the key φ from Example 3.1. The context nodes are those
that match the context (order, qorder). There are two such nodes in t, both
are labeled order and are direct children of the root node. The target nodes
are those that can be selected from the two context nodes, using a path that
matches .//book. There are three such target nodes, two for the first and one
for the second context node. Therefore, the support of φ on t equals 3, that
is, supp(φ, t) = 3. M

We are now ready to define the problem central to this chapter:

Definition 3.12 (XML key mining problem). For an XSD X, an XML
document t adhering to X and a minimum support threshold N , the XML
key mining problem consists of finding all keys φ consistent with X such that
t |= φ and supp(φ, t) > N .

The above is only the core definition of the XML key mining problem. We
will discuss some quality requirements that apply to the keys in Section 3.4.3.

3.4 Key Quality Complexity

A basic problem in data mining is the abundance of found patterns. In this
section, we discuss several key quality measures that can be used to indicate
low quality keys; these keys can then be removed from the output of the
key mining algorithm or from the intermediate results. We focus on consis-
tency testing and show that this problem becomes tractable when top-level

16W.l.o.g. and to simplify presentation, we restrict attention to a single document as
multiple XML-documents can always be combined into one by introducing a common root.

3.4. Key Quality Complexity 63

disjunction is disallowed. In Section 3.4.1, we first define the main consistency
problem and the XPath cardinality problem and show how we can use the
latter to prove our main result. Section 3.4.2 contains the complexity analysis
for the XPath cardinality problem in regard to the relevant XPath fragment.
Finally, in Section 3.4.3, we give an overview of several alternative key qual-
ity measures that can be used to refine mining results and summarize the
complexity classes of the associated decision problems.

3.4.1 Consistency & XPath Cardinality

As detailed in Section 3.3.3, the W3C specification requires keys to be con-
sistent. We therefore define Consistency as the problem to decide whether
φ is consistent w.r.t. X, given a key φ and an XSD X. In this section, we
show that Consistency is in fact solvable in ptime when patterns in keys are
restricted to SE . Actually, the ptime result is also surprising since a minor
variation of consistency is known to be exptime-hard, as we explain below.

Consistency requires that on every document adhering toX, every key path
should select precisely one data node for every target node. This is related
to deciding whether an XPath selector expression selects at least and at most
a given number of nodes, on every document satisfying a given XSD. Indeed,
define ∀•ktree with k ∈ N and • ∈ {<,=, >} to be the problem of deciding, given
an XSD X and a selector expression p, whether it holds that |p(t)| • k, for
every t ∈ L(X). We show in Lemma 3.14 that Consistency can be easily
reduced to ∀=1

tree. Although Björklund et al. [45] showed that ∀>ktree is exptime-
complete, we obtain below that ∀=1

tree can in fact be solved in polynomial time
through an intricate translation to the equivalence test for unambiguous tree
automata [150].

XPath Cardinality Complexity

Because of its relevance to cardinality estimation of XPath result sets, we
extend the problem ∀•ktree by restricting target and key paths to different frag-
ments of XPath. To obtain a more complete picture, we also consider the
class of all regular expressions, denoted by RE .17 For a regular expression r
and a tree t, r(t) then selects all nodes whose ancestor string18 matches r.
Furthermore, denote by SE the set of all selector expressions and by SE//
and SE∗, the set of all selector expressions without descendant and wildcard,
respectively (recall that SE denotes the set of all selector expressions without

17Hopcroft and Ullman [108] and Sipser [153] provide more information on regular lan-
guages and expressions.

18Defined in Section 3.3.2 as the string formed by the labels on the path from the root to
the considered node.

64 Discovering XSD Keys from XML Data

P ∀>k,Ptree ∀<k,Ptree ∀=k,P
tree

RE exptime-complete in ptime
in exptime

pspace-hard (k ≥ 1)

CSE exptime-complete in ptime
in exptime

pspace-hard (k ≥ 1)

DSE exptime-complete in ptime
in exptime

conp-hard (k ≥ 1)

SE exptime-complete in ptime in ptime

SE∗ in exptime in ptime in ptime

SE// in ptime in ptime in ptime

Table 3.1: Complexity of ∀•k,Ptree .

disjunction). In addition, we consider concatenations of selector expressions,
as it is a natural extension to selector expressions. Denote by CSE the class of
all expressions of the form p1p2 · · · pn where each pi (1 ≤ i ≤ n) is a selector
expression (this allows for arbitrarily many descendant axes). The semantics
for this fragment is inherited from the semantics for regular expressions. For
a class of patterns P ∈ {RE ,DSE , CSE ,SE ,SE//, SE∗}, we denote by ∀•k,Ptree

the problem ∀•ktree where expressions are restricted to the class P.

Theorem 3.13. The complexity of the problem ∀•k,Ptree is as stated in Table 3.1.

Note that these results also provide an upper bound for testing whether the
number of nodes selected by a selector expression always lies within a fixed
interval [k, k′].

Notice that the problem ∀=k,RE
tree is pspace-hard for every value k ≥ 1, while

∀=k,DSE
tree is conp-hard for every value k ≥ 1. On the other hand, ∀=0,RE

tree =

∀<1,RE
tree and ∀=0,DSE

tree = ∀<1,DSE
tree and, thus, these two problems can be solved

in polynomial time given the results in the second column of Table 3.1. In
Section 3.4.2 we show that ∀=1,SE

tree can be solved in polynomial time, which is
a key problem in our study of consistency. The proofs for the other results
can be found in Arenas et al. [25].

Consistency Complexity

For a class of patterns P, we denote by Consistency(P) the problem Con-
sistency restricted to keys using expressions19 in P. Thereto, we introduce
the following definition. Let k ∈ N, • ∈ {<,=, >}, and R,S be two pattern

languages. We denote by ∀•k,R,Skey the problem to decide whether for a given

19This restriction applies both on the target path and the key paths.

3.4. Key Quality Complexity 65

XSD X and a key φ = (c, τ, (p)) with τ ∈ R and p ∈ S, it holds that |p(t, u)|•k
for every t ∈ L(X), every node v in CNodest(c), and for every node u in τ(t, v).

Let root stand for the class containing only the selector expression ‘.’, that
is, the expression which selects the root. The following lemma now allows us
to transfer the upper and lower bounds from the previous section.

Lemma 3.14. Let P ∈ {RE ,DSE , CSE ,SE ,SE//,SE∗}, let k ∈ N, and let
• ∈ {<,>,=}. Then

1. ∀•k,RE,Pkey is polynomial time reducible to ∀•k,Ptree ; and,

2. ∀•k,Ptree is polynomial time reducible to ∀•k,root ,Pkey .

Proof. We prove the two claims separately:

1. Let φ = (c, τ, (p)) be a key and let X = (A = (QX ,Σ, δX , q
X
0), λ) be an

XSD. Now, define Qτ,c as the maximal subset of states q ∈ QX for which
there is a tree t ∈ L(X), a node v in CNodest(c) and a node u in τ(t, v)
such that A when executed on the ancestor-string of u ends in state q.
This means that q is a state of the XSD which can be reached when
evaluating τ from a node in CNodest(c), for some t ∈ L(X). Intuitively,
Qτ,c contains all states in the XSD that can correspond to a target node.
Denote by Xq the XSD X with start type q. Then

⋃
q∈Qτ,c L(Xq) is the

set of trees on which the number of matches of p needs to be tested.
Therefore, (X,φ) is in ∀•k,RE,Pkey iff (Xq, p) is in ∀•k,Ptree for every q ∈ Qτ,c.
It remains to explain how to compute Qτ,c. We can assume that X is
trimmed (Lemma 3.5). We also assume that c = (qc, σc) is well-formed,
which means that there is a state q′ such that δ(q′, σc) = qc. Let τ ∈ RE
and let Aτ = (Qτ ,Σ, δτ , q

τ
0 , Fτ) be the DFA accepting L(τ). Define

Γ0 = {(qc, qτ0)} and Γi = {(δX(q1, σ), δτ (q2, σ)) | (q1, q2) ∈ Γi−1, σ ∈ Σ}∪
Γi−1. Then, Qτ,c = {q | ∃(q, q′) ∈ Γ|QX |×|Qτ | and q′ ∈ Fτ}. Essentially,
an incremental product-construction [109] is performed to identify the
states in the XSD DFA that are equivalent to the accepting states in the
target path DFA.

2. Assume given (X, p). Let #1 be a new symbol and let X# be the

XSD defining the set {#1(t) | t ∈ L(X)}. Then (X, p) ∈ ∀•k,Ptree iff

(X#, (croot, ./∗, (p))) is in ∀•k,SE,Pkey where croot is the root context. �

The main result of this section immediately follows from Theorem 3.13
and Lemma 3.14:

Theorem 3.15. For the Consistency problem, the following results hold:

1. Consistency(SE) is in ptime;

66 Discovering XSD Keys from XML Data

2. Consistency(DSE) is conp-hard and in exptime;

3. Consistency(RE) is pspace-hard and in exptime;

3.4.2 ∀=1,SE
tree is in ptime

We will make use of unranked tree automata in what follows. A non-deter-
ministic unranked tree automaton (UTA) is a tuple A = (Q,∆, δ, F) where
Q is a finite set of states; ∆ is a finite alphabet, F ⊆ Q is the set of final
states, and δ : Q×∆→ 2(Q∗) is a function mapping each (q, σ) ∈ Q×∆ to a
regular language over Q. A run of A = (Q,∆, δ, F) on a tree t is a function
λ : nodes(t) → Q that assigns a state in Q to each node v of t such that for
every v ∈ nodes(t) with children v1, v2, . . . , vn (noted in the order in which
they appear in t) it is the case that λ(v1)λ(v2) · · ·λ(vn) ∈ δ(λ(v), labt(v)). A
run is accepting if the root of t is labeled by a state in F . If an accepting
run of A exists for tree t then we say that t is accepted by A. The set of all
trees accepted by A is denoted by L(A). We say that A is deterministic iff
δ(q, a) ∩ δ(q′, a) = ∅ for all q 6= q′ ∈ Q and a ∈ ∆.

We will also make use of binary tree automata which operate in a top-
down fashion over trees where every inner node has precisely two children. As
this type of automaton has the same expressive power as the UTA’s described
above and complexity results can be easily transferred when NFA’s are used
to describe regular languages [138], we will use binary tree automata where
convenient. Formally, a binary (top-down) tree automaton (BTA) is a tuple
A = (Q,∆, q0, δ, F) where Q is the set of states, ∆ is the alphabet, q0 ∈ Q
is the start state, δ : Q × ∆ → 2Q×Q is the transition function, and F ⊆ Q
is the set of final states. A run of A on a tree t is a function λ : nodes(t) →
Q that assigns a state in Q to each node v of t such that the root of t is
labeled by q0 and for every inner node v with children v1 and v2 it is the case
that (λ(v1), λ(v2)) ∈ δ(λ(v), labt(v)). A run is accepting if for every leaf v,
δ(λ(v), labt(v)) ∈ (F × F). If an accepting run of A exists for tree t then we
say that t is accepted by A. The set of all trees accepted by A is denoted by
L(A). We say that A is deterministic iff |δ(q, a)| ≤ 1 for all a ∈ ∆ and q ∈ Q.
Finally, A is k-ambiguous, for a natural number k, if for every t ∈ L(A), there
are at most k distinct accepting runs of A on t. We call A unambiguous if it
is 1-ambiguous.

The following theorem lists well-known results on the complexity of tree
automata that will be used in what follows.

Theorem 3.16. Let A and A′ be two tree automata which are either both
unranked or both binary.

1. Deciding whether L(A) = ∅ is in ptime.

3.4. Key Quality Complexity 67

2. A tree automaton B with L(B) = L(A) ∩ L(A′) can be constructed in
time polynomial in the sizes of A and A′. Furthermore, when A and A′

are deterministic binary automata, then so is B.

3. Deciding whether L(A) = L(A′) is exptime-complete [150].

4. Assume k to be fixed. When A and A′ are binary tree automata and
k-ambiguous, then deciding whether L(A) = L(A′) is in ptime [150].

Note that the tree automaton B computing L(A) ∩ L(A′) is simply the usual
product construction between A and A′ which we also denote by A×A′.

For an XML tree t, we denote by fcns(t) the usual first-child next-sibling
encoding of t, defined as follows. To facilitate the definition, we define fcns
on ordered forests which consists of concatenations of trees.20 By ε we denote
the empty forest. By h := t1 · · · tn, we denote the concatenation of the trees
t1, . . . , tn. Then, define

• fcns(ε) = #; and,

• fcns(a(h)h′) = a(fcns(h), fcns(h′)), for forests h and h′.

Note that fcns(t) is always a binary tree. We denote Σ ∪ {#} by Σ#. Intu-
itively, the fcns encoding of a tree t is a binary tree such that for every node
v of t:

1) v is a node in fcns(t);

2) the left child of v in fcns(t) is the first child of v in t (if v is a leaf in t, then
a node with label # is placed as the left child of v in fcns(t)); and

3) the right child of v in fcns(t) is the next sibling of v in t (if such a sibling
does not exist in t, then a node with label # is placed as the right child of
v in fcns(t)).

The following proof sketch gives an overview of the upcoming lemma’s and
their place in the overall idea of the proof.

Proof Sketch. In order to show that ∀=1,SE
tree ∈ ptime, we first need the follow-

ing results:

1. given an XSD X, one can construct in polynomial time a deterministic
BTA AX such that for every tree t: fcns(t) ∈ L(AX) if and only if
t ∈ L(X) (Lemma 3.17);

2. there is a deterministic BTA A# such that t′ ∈ L(A#) if and only if
t′ = fcns(t) for some XML tree t (Lemma 3.18);

20This simplifies the definition as children of a node form a concatenation of trees.

68 Discovering XSD Keys from XML Data

3. given a selector expression p, one can construct in polynomial time a non-
deterministic BTA Bp such that for every XML tree t: fcns(t) ∈ L(Bp)
if and only if |p(t)| > 0 (Lemma 3.23); and

4. given an XSD X and a selector expression p, testing whether (X, p) ∈
∀<k,SEtree can be done in ptime (Theorem 3.21).

With these ingredients, a polynomial time algorithm for ∀=1,SE
tree works as fol-

lows. Let X be an XSD and p a selector expression. In order to test whether
(X, p) ∈ ∀=1,SE

tree , we first verify whether (X, p) ∈ ∀<2,SE
tree , which can be done in

polynomial time. If this is not the case, then we know that (X, p) 6∈ ∀=1,SE
tree , so

the algorithm returns False. Otherwise, we still need to determine whether
(X, p) 6∈ ∀=0,SE

tree or (X, p) 6∈ ∀=1,SE
tree . The algorithm continues by computing

the deterministic BTAs AX , A# and the non-deterministic BTA Bp. Then,

to check whether (X, p) ∈ ∀=1,SE
tree , the algorithm needs to verify whether in

all trees that adhere to the given XSD X at least one node is selected by
the given selector expression p. This can be verified by checking whether
L(AX × A#) ⊆ L(Bp), where AX × A# is the usual product of BTAs that
accepts L(AX) ∩ L(A#) and can be computed in polynomial time. The key
observations to make here are:

1. containment for BTAs is an intractable problem, but it becomes tractable
for unambiguous BTAs [150];

2. testing whether L(AX ×A#) ⊆ L(Bp) is equivalent to verifying whether
L(AX ×A#) ⊆ L(AX ×Bp);

3. AX ×A# is an unambiguous BTA as it is deterministic; and

4. although AX × Bp is non-deterministic, by using the fact that (X, p) ∈
∀<2,SE

tree , it is possible to prove that AX ×Bp is an unambiguous BTA.

Therefore, we can test in polynomial time whether L(AX×A#) ⊆ L(AX×Bp)
and, thus, we can test in polynomial time whether (X, p) ∈ ∀=1,SE

tree . �

In the remainder of this section, to simplify notation, we assume that data
always belongs to Σ and therefore write Σ rather than Σ ∪ {data}.

The next lemma states that we can always assume that an XSD is repre-
sented as a deterministic tree automaton.

Lemma 3.17. Let X be an XSD. A deterministic binary tree automaton AX
can be constructed in time polynomial in the size of X such that for every
XML tree t:

t ∈ L(X) if and only if fcns(t) ∈ L(AX).

3.4. Key Quality Complexity 69

Proof. Let X = (A, λ) be an XSD with A = (S,Σ, s0, δA). As every de-
terministic regular expression can be transformed into an equivalent DFA in
polynomial time (see, e.g., Brüggemann-Klein and Wood [48]), we assume that
λ is a function that assigns to each s ∈ S a DFA As = (Qs,Σ, qs, δs, Fs). Then
define AX = (Q,Σ#, q0, δ, F) as follows. The set Q of states is defined as(⋃

s∈S
({s} ×Qs)

)
∪ {q0, q#},

while the set F of final states is defined as {q#}. Furthermore, the transition
function δ is defined as follows.

• For every a ∈ Σ: δ(q0, a) =
(
(δA(s0, a), qδA(s0,a)), q#

)
.

• For every s ∈ S, q ∈ Qs and a ∈ Σ:

δ((s, q), a) =

(
(δA(s, a), qδA(s,a)), (s, δs(q, a))

)
.

• For every s ∈ S and q ∈ Fs: δ((s, q),#) = (q#, q#).

• Finally, δ(q#,#) = (q#, q#).

With input fcns(t), AX mimics the way the XSD X works with input t. Fur-
thermore, AX is deterministic as each As is a DFA. �

The next lemma shows that the set of fcns-encodings of all trees is in fact
a regular tree language (is recognized by a binary tree automaton).

Lemma 3.18. There is a deterministic binary tree automaton A# such that
t′ ∈ L(A#) if and only if t′ = fcns(t) for some XML tree t.

Proof. Let AX = ({q0, q1, qstop, qf},Σ#, q0, {qf , qstop}). Then define δ as fol-
lows:

δ(a, q0) = (q1, qstop) for every a ∈ Σ,

δ(a, q1) = (q1, q1) for every a ∈ Σ,

δ(#, q1) = δ(#, qstop) = (qf , qf).

Basically, the automaton enforces the right child of the root to be a #-labeled
node. It also enforces every Σ-labeled node distinct from the root to have two
children, and every leaf to be #-labeled. �

It should be noticed that the following lemma is a well-known result about
tree automata. Nevertheless, we show its proof as some of the results in the
next section use the given construction.

70 Discovering XSD Keys from XML Data

Lemma 3.19. Let k ≥ 2 be a fixed constant. There is a polynomial-time
algorithm that, given the UTAs A1, A2, . . . , Ak, returns an UTA B such that
L(B) =

⋂k
i=1 L(Ai).

Proof. We begin by showing that there is a polynomial-time algorithm that,
given two regular expressions r1, r2 over alphabets Σ and ∆, respectively,
returns an automaton Ar1,r2 over Σ×∆ accepting the set of strings

(a1, b1)(a2, b2) · · · (a`, b`),

such that a1a2 · · · a` ∈ L(r1) and b1b2 · · · b` ∈ L(r2).
Let Ar1 = (Q,Σ, δ, q0, Fr1) and Ar2 = (P,∆, ρ, p0, Fr2) be two automata

accepting the languages L(r1) and L(r2) respectively. It is well known that
these automata can be constructed in polynomial time. Define Ar1,r2 as (Q×
P,Σ×∆, µ, (p0, q0), Fr1 × Fr2), where µ is defined as:

µ((q, p), (a, b)) = δ(q, a)× ρ(p, b).

Then, it is easy to prove that this automaton accepts the set of strings
(a1, b1) · · · (a`, b`) such that a1a2 · · · a` ∈ L(r1) and b1b2 · · · b` ∈ L(r2).

We use the previous construction in the proof of the lemma. More pre-
cisely, given two UTA A1, A2, we show how to construct an UTA B such
that L(B) = L(A1) ∩ L(A2). The extension of this construction for a fixed
k > 2 can be easily obtained by associating automata in pairs. Assume that
A1 = (Q,∆, δ1, F1) and A2 = (P,∆, δ2, F2). The new automaton accepting
L(A1) ∩ L(A2) is denoted by B = (Q × P,∆, µ, F1 × F2), where µ is defined
by including the transition

µ((q, p), σ) = L
(
Aδ1(q,σ),δ2(p,σ)

)
for every (p, q) ∈ P ×Q and σ ∈ ∆.

It is clear that all the above can be done in polynomial time. Now we
prove that a tree t is accepted by B if and only if it is accepted by both A1

and A2. Suppose that t is accepted by B. Then there is an accepting run
ρ : nodes(t) → Q × P of B on t. By the definition of transition function µ,
we know that for every node v ∈ nodes(t), it is the case that child-stringt(v)
belongs to δ1(ρ1(v), labt(v)), where ρ1 denotes the projection of ρ over its
first component. Thus, the projection of ρ to its first component is a run for
the automaton accepting L(A1). Moreover, it is an accepting run given that
the first coordinate of ρ(root) belongs to F1, from which we conclude that
t ∈ L(A1). For A2 the proof is analogous by taking the projection over the
second component. The converse is proved analogously. Let t be a tree and
ρ1, ρ2 be accepting runs of A1 and A2 on t, respectively. Then it is clear that
ρ : nodes(t) → Q × P defined by ρ(v) = (ρ1(v), ρ2(v)) is an accepting run of
B on t. �

3.4. Key Quality Complexity 71

The next lemma shows that we can construct a UTA to check whether a
regular expression selects at least k nodes in a given tree.

Lemma 3.20. Let k ≥ 1 be a fixed constant. There is a polynomial time
algorithm that, given a regular expression r over an alphabet ∆, constructs an
UTA Ar,k such that for every ∆-tree t, it holds that t ∈ L(Ar,k) if and only if
|r(t)| ≥ k.

Proof. Let r be a regular expression. We first construct an automaton Ar
accepting every tree t for which |r(t)| > 0. Then we take a small variation
of the tree automata product between k copies of Ar in order to achieve the
desired result.

Let Br = (Qr,∆, q
r
0, δr, {qr}) be an NFA accepting L(r). This automaton

can be constructed in polynomial time and, moreover, we can assume that Br
has only one final state qr for which no outgoing transitions are defined and
that qr0 has no incoming transitions. There is a slight mismatch between NFAs
and UTAs: an NFA starts in the initial state and assigns a state to the first
symbol of the string depending on its label; an UTA immediately ‘assigns’
a state to the root without knowing its label. In this sense, the UTA when
simulating an NFA is always one step behind. We therefore modify Br into
B′r to initially process two symbols at the same time: Br will simply guess the
next label and verify later whether it has guessed correctly. As a consequence,
B′r can not accept any string of length one. We deal with this later. Formally,
B′r = (Q′r,∆, q

r
0, δ
′
r, {qr}). Here, Q′r = (Qr \{qr}×∆)∪{qr0, qr}. Furthermore,

for all a ∈ ∆, δ(qr0, a) = {(q, b) | q ∈ δr(qr0, ab), b ∈ ∆}. We abuse notation
here and write δr(q

r
0, ab) for the set of states that can be reached by Br from

the initial state when reading the string ab. For all (q, a) ∈ Qr×∆ and b ∈ ∆:

δ((q, a), b) =


δr(q, a)×∆ if a = b and qr 6∈ δr(q, a);
((δr(q, a) \ {qr})×∆) ∪ {qr} if a = b and qr ∈ δr(q, a);
∅ if a 6= b.

Notice that B′r guess the next symbol and only proceeds when that guess was
correct. Furthermore, for all strings w of length greater than 1, w ∈ L(Br) iff
w ∈ L(B′r).

Next, we create an UTA Ar that will (non-deterministically) choose a path
matching the regular expression r. Define the UTA Ar as (QAr ,∆, δ, {qr0}),
where QAr = Q′r ∪ {q#} and δ is defined as follows: (we make use of regular
expressions to define the regular languages defining the transitions)

• For every pair (τ, a) ∈ (QAr \ {qr, q#})×∆, if δ′r(τ, a) = {τ1, τ2, . . . , τn},
then

– if qr 6∈ δ′r(τ, a), define the transition

δ(τ, a) = q∗#τ1q
∗
| q∗#τ2q

∗
| · · · | q∗#τnq∗#;

72 Discovering XSD Keys from XML Data

– if qr ∈ δ′r(τ, a), define the transition

δ(τ, a) = q∗#τ1q
∗
| q∗#τ2q

∗
| · · · | q∗#τnq∗# | q∗#;

• For all a ∈ ∆ define the transitions

δ(qr, a) = q∗# and δ(q#, a) = q∗#.

We need to prove some properties of Ar. Assuming that t is a ∆-tree, we show
that (1) there is an injective mapping from the set r(t) to the set of accepting
runs of Ar on t, and (2) if there is an accepting run of Ar on t assigning state
qr to a node v, then v ∈ r(t). Recall that we assume r does not select the first
position of the string.

(1) If v is a node in t is selected by r, then there exists an accepting run ρ
of B′r on anc-stringt(v) (by definition of Ar). We use this run to define
the run ρv of Ar on t:

ρv(u) =

{
ρ(u) if u ∈ anc-stringt(v)

q# otherwise

By definition of Ar, it is clear that ρv is an accepting run of Ar on t.
Moreover, given two distinct nodes x, y ∈ r(t), we have that ρx is distinct
from ρy. This can be proved by noticing that ρx assigns state qr only to
x and ρy assigns state qr only to y. We conclude that the function that
maps every v ∈ r(t) to ρv is injective.

(2) Assume that t ∈ L(Ar), and let ρ be an accepting run of Ar on t assigning
qr to a node v. By definition of δ, if ρ assigns a state in QAr \{qr, q#} to
a node u of t, then u has exactly one child u′ such that ρ(u′) ∈ Q′r \{qr}.
Moreover, if ρ assigns state q# to a node u of t, then every child of u is
assigned state q# by ρ. This implies that every node in anc-stringt(v) is
assigned a state of Q′r \{qr}. Moreover, by definition of δ and given that
ρ(v) = qr, the states assigned to the ancestors of v define an accepting
run of B′r over anc-stringt(v). Thus, we conclude that the node v is
selected by r.

By using k copies of UTA Ar, we construct a tree automaton accepting every
tree t for which |r(t)| ≥ k. More precisely, denote by Air the i-th copy of Ar,
and use superscript i when denoting its state qir. Now define a tree automaton
A′r,k = A1

r × A2
r × · · · × Akr , where × denotes the product of tree automata

defined in Lemma 3.19. Notice this product can be computed in polynomial
time as k is fixed.

3.4. Key Quality Complexity 73

By the definition of the tree automata product in Lemma 3.19, we have
that each state of A′r,k is a k-tuple q̄, being the i-th component of q̄ a state

of Air (1 ≤ i ≤ k). Notice that L(A′r,k) = L(A1
r) ∩ · · · ∩ L(Akr) = L(Ar),

which is not the desired result. Then let Ar,k be the automaton obtained from

A′r,k by removing every state q̄ having as components qir and qjr , where i 6= j.
Intuitively, automaton Ar,k forces each copy of Ar to select a different node
of a tree by using selector expression r. Next we prove that Ar,k satisfies the
statement of the lemma.

Let t be a tree. If |r(t)| ≥ k, then by property (1) there exist pairwise
distinct accepting runs ρ1, . . ., ρk of Ar on t. Moreover, we have by definition
of Ar that these accepting runs assign state qr to pairwise distinct nodes of t.
Thus, if ρ is a function defined as ρ(s1, . . . , sk) = (ρ1(s1), . . . , ρk(sk)) for every
tuple (s1, . . . , sk) of nodes from t, then we have that ρ is an accepting run
of Ar,k on t. Therefore, we conclude that t ∈ L(Ar,k). Conversely, if ρ is an
accepting run of Ar,k on t, then there exists a sequence ρ1, . . ., ρk of accepting
runs of Ar on t such that these runs assign state qr to pairwise distinct nodes
of t (by definitions of Ar and Ar,k). Thus, by property (2), we have that r(t)
contains at least k distinct nodes. We conclude that |r(t)| ≥ k.

As we do not consider the empty tree, it remains to deal with expressions r
which can select the first position in a string. Let S ⊆ ∆ be the set of symbols
σ for which σ ∈ L(r). Then A′r,k is modified to accept any tree with a root in
S when already k− 1 copies of Ar accept (as opposed to requiring k copies to
accept). �

We now study the complexity of the problem ∀<k,Ptree . The results in Ta-
ble 3.1 concerning this decision problem all follow from the next theorem.

Theorem 3.21. For every k ≥ 0, ∀<k,REtree is in ptime.

Proof. For k = 0 the theorem trivially holds. Thus, assume that k ≥ 1.
Let X be an XSD and r a regular expression. From Lemma 3.20, we can
construct in polynomial time an UTA Ar,k accepting every tree t for which

|r(t)| ≥ k. Then verifying whether (X, r) ∈ ∀<k,REtree reduces to testing whether
L(Ar,k)∩L(X) = ∅ which by Lemma 3.19 and Theorem 3.16 can be tested in
ptime. �

We conclude this section by showing that ∀=k,SE
tree is in ptime which implies

membership of ∀=k,SE∗
tree and ∀=k,SE//

tree in ptime as well. In this proof, we need
the following two technical lemmas.

Lemma 3.22. There exists a polynomial time algorithm that, given a selector
expression p, computes a binary tree automaton Ap such that for every XML
tree t, it holds that |p(t)| is equal to the number of accepting runs of Ap on
fcns(t).

74 Discovering XSD Keys from XML Data

Proof. Let p be a selector expression of the form either /σ1/σ2/ · · · /σ` or
//σ1/σ2/ · · · /σ`. Then define the binary tree automaton

Ap = (Q,Σ ∪ {#}, q0, δ, F)

as follows. The set Q of states is defined as {q0, q1, . . . , q`, q#}, while the set
F of final states is defined as {q#}. Furthermore, the transition function δ is
defined as follows.

• If p = /σ1/σ2/ · · · /σ` and σ1 = ∗, then for every a ∈ Σ:

δ(q0, a) = {(q1, q#)}.

• If p = /σ1/σ2/ · · · /σ` and σ1 6= ∗, then:

δ(q0, σ1) = {(q1, q#)}.

• If p = //σ1/σ2/ · · · /σ` and σ1 = ∗, then for every a ∈ Σ:

δ(q0, a) = {(q0, q#), (q1, q#), (q#, q0)}.

• If p = //σ1/σ2/ · · · /σ` and σ1 6= ∗, then:

δ(q0, σ1) = {(q0, q#), (q1, q#), (q#, q0)}
δ(q0, a) = {(q0, q#), (q#, q0)} for every a ∈ Σ \ {σ1}.

• Let i ∈ {2, . . . , `}. If σi = ∗, then for every a ∈ Σ:

δ(qi−1, a) = {(qi, q#), (q#, qi−1)}.

• Let i ∈ {2, . . . , `}. If σi 6= ∗, then:

δ(qi−1, σi) = {(qi, q#), (q#, qi−1)}
δ(qi−1, a) = {(q#, qi−1)} for every a ∈ Σ \ {σi}.

• For every a ∈ (Σ ∪ {#}): δ(q`, a) = (q#, q#).

• For every a ∈ Σ: δ(q#, a) = {(q#, q#)}.

• Finally, δ(q#,#) = {(q#, q#)}.

The resulting automaton has as many different runs as there are nodes that
match to p in a given tree. �

3.4. Key Quality Complexity 75

Lemma 3.23. Let k ≥ 1 be a fixed constant. There is a polynomial time
algorithm that, given a selector expression p, computes a binary tree automaton
Bk
p such that for every XML tree t:

1) fcns(t) ∈ L(Bk
p) if and only if |p(t)| ≥ k, and

2) if t ∈ L(Bk
p), then the number of accepting runs of Bk

p on t is

|p(t)|!
(|p(t)| − k)!

.

Proof. We want to create an automaton accepting every XML tree for which
p selects at least k distinct nodes starting from the root. Intuitively, given the
automaton Ap described in the proof of Lemma 3.22, we will construct the
product of k copies of this automaton, and then we will remove some states
of this product to obtain the desired result. Let {Aip}ki=1 be k copies of Ap.
The states of Aip will be denoted as in Ap but with a superscript i (that is,

qi0, qi1, . . ., qi`, q
i
#). Moreover, let Bp = A1

p × A2
p × · · · × Akp, where × denotes

the usual product of binary tree automata. It is important to notice that this
product can be constructed in polynomial time as k is assumed to be fixed.

By the definition of Bp, we have that each state of Bp is a k-tuple q̄, being
the i-th component of q̄ a state of Aip (1 ≤ i ≤ k). Notice that L(Bp) =

L(A1
p) ∩ · · · ∩ L(Akp) = L(Ap), which is not the desired result. Then let Bk

p

be the automaton obtained from Bp by removing every state q̄ having as

components qi` and qj` , where i 6= j. Intuitively, automaton Bk
p forces each

copy of Ap to select a different node of a tree by using selector expression p.
Next we prove that Bk

p satisfies the statement of the lemma.

1) Let t be an XML tree. If |p(t)| ≥ k, then by Lemma 3.22 we have that
there exist pairwise distinct accepting runs ρ1, . . ., ρk of Ap on fcns(t).
Moreover, we have by definition of Ap that each of these accepting runs
assigns state q` to a distinct node of fcns(t). Thus, if ρ is a function
defined as ρ(s1, . . . , sk) = (ρ1(s1), . . . , ρk(sk)) for every tuple (s1, . . . , sk)
of nodes from fcns(t), then we have that ρ is an accepting run of Bk

p on

fcns(t). Therefore, we conclude that fcns(t) ∈ L(Bk
p). Conversely, if ρ is

an accepting run of Bk
p on fcns(t), then there exists a sequence ρ1, . . ., ρk

of accepting runs of Ap on fcns(t) such that: (a) each of these runs assigns
state q` to a distinct node of fcns(t) (by definitions of Ap and Bk

p), and
(2) ρ(s1, . . . , sk) = (ρ1(s1), . . . , ρk(sk)) for every tuple (s1, . . . , sk) of nodes
from fcns(t) (given that Bk

p is defined as the product A1
p×· · ·×Akp). Thus,

given that ρ1, . . ., ρk is a sequence of pairwise distinct accepting runs of
Ap on fcns(t), we conclude by Lemma 3.22 that |p(t)| ≥ k.

76 Discovering XSD Keys from XML Data

2) Assume that t is an XML tree accepted by Bk
p . From the discussion in the

previous paragraph, we have that ρ is an accepting run of Bk
p on fcns(t) if

and only if there exists a sequence ρ1, . . ., ρk of pairwise distinct accepting
runs of Ap on fcns(t) such that ρ(s1, . . . , sk) = (ρ1(s1), . . . , ρk(sk)) for every
tuple (s1, . . . , sk) of nodes from fcns(t). Thus, in order to count the set of
accepting runs of Bk

p on fcns(t), we first need to choose accepting run ρ1, for
which we have |p(t)| possibilities by Lemma 3.22. Then we need to choose
a different accepting run ρ2, for which we have (|p(t)| − 1) possibilities.
More generally, when selecting ρi we have (|p(t)| − i + 1) possibilities, as
ρi has to be different from all the previously selected accepting runs. We
conclude that the number of accepting runs of Bk

p on fcns(t) is equal to:

|p(t)| × (|p(t)| − 1)× · · · × (|p(t)| − k + 1) =
|p(t)|!

(|p(t)| − k)!
.

The binary tree automaton Bk
p constructed above therefore satisfies the desired

properties. �

We are now ready to prove our main tractability result.

Theorem 3.24. For every k ≥ 0, ∀=k,SE
tree is in ptime.

Proof. If k = 0, then the property is a corollary of Theorem 3.21, as ∀<1,RE
tree

and hence ∀<1,SE
tree as well are in ptime. Thus, assume that k ≥ 1. Let X be an

XSD and p a selector expression. By Lemma 3.23, we know that it is possible
to construct in polynomial time a binary tree automaton Bk

p such that for every

XML tree t, it holds that fcns(t) ∈ L(Bk
p) if and only if |p(t)| ≥ k. Moreover,

by Lemma 3.17, we know that it is possible to construct a deterministic binary
tree automaton AX such that for every XML tree t, it holds that fcns(t) ∈
L(AX) if and only if t ∈ L(X). Let A# be the deterministic binary tree
automaton such that t′ ∈ L(A#) if and only if t′ = fcns(t) for some XML tree

t, as shown in Lemma 3.18. Now, to know whether (X, p) is in ∀=k,SE
tree , it suffices

to check whether (X, p) ∈ ∀<k+1,SE
tree and L(A#×AX) ⊆ L(Bk

p). Notice that the

latter condition is equivalent to checking whether L(A#×AX) ⊆ L(AX×Bk
p).

With this in mind, we can decide in polynomial time whether (X, p) ∈ ∀=k,SE
tree

by using the following algorithm:

1) Check whether (X, p) ∈ ∀<k+1,SE
tree . If this condition holds, then go to step

(2). Otherwise return False. Notice that this step can be executed in poly-
nomial time by Theorem 3.21, since every selector expression is a regular
expression.

2) Compute A# ×AX and AX ×Bk
p .

3.4. Key Quality Complexity 77

3) Check whether L(A#×AX) ⊆ L(AX ×Bk
p). Given that (X, p) ∈ ∀<k+1,SE

tree ,
we have that for every XML tree t in L(X), it holds that |p(t)| ≤ k.
Moreover, by Lemma 3.23 we have that for every XML tree t accepted by
Bk
p , it holds that |p(t)| ≥ k and the number of accepting runs of Bk

p on t
is:

|p(t)|!
(|p(t)| − k)!

.

Therefore, for every XML tree t that belongs to L(AX ×Bk
p), it holds that

|p(t)| = k and the number of accepting runs of AX × Bk
p on t is bounded

by (given that AX is a deterministic binary tree automaton):

k!

(k − k)!
= k!

We conclude that AX ×Bk
p is k!-ambiguous. Thus, given that A# ×AX is

a deterministic binary tree automaton, we have that A# × AX is also k!-
ambiguous and, hence, we can verify whether L(A# ×AX) ⊆ L(AX ×Bk

p)
by using the polynomial time algorithm mentioned in Theorem 3.16. �

3.4.3 Other Quality Measures

We give an overview of a number of additional criteria that can be used to
determine the quality of keys. The complete proofs of all complexity results
that are presented in the remainder of this section (Theorems 3.25 and 3.26)
can be found in Arenas et al. [25]. Since the number of keys mined from a
given document can be quite large, we are interested in identifying irrelevant
keys that can be disregarded from the output of any key mining algorithm.
Examples are keys that hold in any document, that only address a bounded
number of target nodes, and keys that are implied by keys that have already
been found. Thereto, let X be an XSD, φ a key and Ψ be a set of keys such
that every key in Ψ ∪ {φ} is consistent w.r.t. X. Then,

• Universality is the problem to decide whether t |= φ for every tree in
t ∈ L(X);

• Boundedness is the problem to decide whether there is an N ∈ N, such
that for every tree t ∈ L(X) : |TNodest(φ)| ≤ N.

• Key Implication , denoted by Ψ v φ, is the problem to decide whether
for all trees t ∈ L(X) such that

∧
ψ∈Ψ t |= ψ it holds that t |= φ.

• Satisfiability is the problem to decide whether there is a tree t ∈ L(X)
with t |= φ;

78 Discovering XSD Keys from XML Data

Intuitively, a bounded key can only select a bounded number of target
nodes independent of the size of the input document. Since the main purpose
of a key is to ensure uniqueness of nodes within a collection of nodes, bounded
keys are not very interesting.

It turns out that identifying universal and bounded keys is algorithmically
feasible, while determining implication (and even satisfiability) of keys is in-
tractable [25]. Therefore, determining a smallest set of keys (aka, a cover) is
practically infeasible. Note that, while the exptime-completeness of Satisfi-
ability is discouraging, it does not pose a problem for key mining algorithms
in practice. Indeed, by Definition 3.12 a key mining algorithm will, on input
(X, t) with t ∈ L(X) only return keys φ with t |= φ (which can efficiently be
checked). As such, the keys φ it returns are necessarily satisfiable.

Similar to the previous section, we parametrize the problems above by
a class P of expressions, to restrict attention to input keys that only use
expressions in P. We can summarize the complexity results for these problems
as follows:

Theorem 3.25 (Key Quality Complexity). The complexity of the deci-
sion problems related to key quality is as follows:

1. Universality (DSE) is in ptime.

2. Boundedness (DSE) is in ptime.

3. Key Implication (SE) is exptime-hard.

4. Satisfiability (SE) is exptime-complete.

Next, we consider target path containment and equivalence. Given an
XSD X, a context c, and two selector expressions τ and τ ′, Target Path
Containment is the problem to decide whether for every tree t ∈ L(X) and
every node v ∈ CNodest(c), τ(t, v) ⊆ τ ′(t, v). We denote the latter condition
by τ ⊆X,c τ ′. By Target Path Equivalence we denote the corresponding
equivalence problem.

Theorem 3.26. Target Path Containment and Target Path Equiv-
alence are in ptime.

Target Path Equivalence is a particularly relevant problem for key
mining since it allows identifying, within the discovered set of keys, the se-
mantically equivalent but distinct keys (c, τ, P) and (c, τ ′, P) with τ target
path equivalent to τ ′. In this sense, target path equivalence is a sufficient
condition for key implication that can be solved efficiently.

3.5. XML Key Mining Algorithm 79

Algorithm 5 XML key mining algorithm.

for all c ∈ ContextMinert,X do
for all τ ∈ TargetPathMinert,X(c) do

S = OneKeyPathMinert,X(c, τ)
P = MinimalKeyPathSetMinert,X(c, τ, S)
for each P ∈ P return (c, τ, P)

3.5 XML Key Mining Algorithm

In this section, we provide an algorithm for solving the XML key mining
problem. Recall from Definition 3.12 that the input to this algorithm is an
XSD X, an XML tree t and a minimum support threshold N , and that it
should output keys that are consistent with X, are satisfied by t, and whose
support exceeds N .21 In what follows, let X = (AX , λX) with the type-
automaton AX = (Types,Σ ∪ {data}, δ, q0).

The overall structure of the XML key mining algorithm is outlined in
Algorithm 5. Basically, the algorithm consists of four components:

• ContextMinert,X returns a list of possible contexts based on t and X;

• TargetPathMinert,X(c) returns a list of target paths that exceed the
support threshold in t for a given context c;

• OneKeyPathMinert,X(c, τ) returns a maximal set S of key paths for
which (c, τ, {p}) is consistent for every p ∈ S; and,

• MinimalKeyPathSetMinert,X(c, τ, S) returns a set P of minimal subsets
P of S for which t |= (c, τ, P).

Both TargetPathMinert,X(c) and OneKeyPathMinert,X(c, τ) are different
instantiations of levelwise search [128]. MinimalKeyPathSetMinert,X(c, τ, S)
leverages on discovery algorithms for functional dependencies in the relational
model. In the remainder of this section, we explain each function in detail. We
will only consider target and key paths up to a given length kmax which can be
at most the maximum depth of the document. Since the presence of top-level
disjunction renders testing for consistency intractable (see Theorem 3.15), we
focus on a key mining algorithm that disregards the union operator, i.e., we
consider path expression from the class SE .

To illustrate the different parts of the mining algorithm, we will use the
XML document t depicted in Figure 3.1 as a running example.

21If no XSD is available, one can be derived, e.g., using algorithms from [42].

80 Discovering XSD Keys from XML Data

bookshop
(qbookshop, 1)

order
(qorder, 2)

id
(qid, 2)

person
(qperson, 2)

address
(qaddress, 2)

items
(qitems, 2)

book
(qbook, 3)

title
(qtitle, 3)

quantity
(qquantity, 3)

price
(qprice, 3)

year
(qyear, 3)

Figure 3.4: Prefix tree for the XML tree in Figure 3.1. Each node has an
associated state and number of matches.

3.5.1 Prefix Tree and Context Miner

We first define a basic data structure that is used to speed-up various parts
of the mining algorithm. Denote by PT(t) the prefix tree obtained from t by
collapsing all nodes with the same ancestor string. Recall that the ancestor
string of a node is the string obtained by concatenating all labels on the
unique path from the root to (and including) that node. Let h be the function
mapping each node in t to its corresponding node in PT(t). Then, we label
every node m in PT(t) with a pair (q, i) where q is the state assigned to m by
the type-automaton AX and i is the number of nodes in t mapped to m, i.e.,
|h−1(m)|. Note that this is made possible by the fact that the node type only
depends on its ancestor string. As only nodes with identical ancestor strings
are grouped together in the prefix tree, they all share the same type. Also note
that PT(t) does not contain data nodes. The prefix tree can be computed in
time linear in the size of t (see, e.g., Grahne and Zhu [91]).

We next discuss the context miner. Clearly, the set of all contexts c = (σ, q)
with σ ∈ Σ and q ∈ Types, can be directly inferred from the given XSD. But,
since only contexts that are effectively materialized in t can give rise to a non-
zero support, the context miner enumerates all unique contexts c occurring in
PT(t) through a depth-first traversal.

Example 3.27 (Prefix tree). The prefix tree for the XML tree in Fig-
ure 3.1 is shown in Figure 3.4. The type automaton depicted in Figure 3.3
is used to assign a unique state to each node in the prefix tree. The set of

3.5. XML Key Mining Algorithm 81

materialised contexts can now be derived by combining for each node its label
with the assigned context. In this case the context miner yields the following
set:

{(qbook,book), (qbookshop,bookshop), (qorder, order), (qquantity, quantity),

(qyear, year), (qtitle, title), (qperson, person), (qprice,price), (qid, id),

(qaddress, address), (qitems, items)}.

Note that, in this example, all contexts that appear in the type automaton of
the XSD effectively materialize in the XML document. M

3.5.2 Target Path Miner

Next, we describe the target path miner which finds all target paths exceed-
ing the support threshold for a given context c. The algorithm follows the
framework of levelwise search described by Mannila and Toivonen [128]. In
brief, the algorithm is of a generate-and-test style that starts from the most
general target path, .//* in our case, and generates increasingly more specific
paths while avoiding paths that cannot be interesting given the information
obtained in earlier iterations.

The components of any levelwise search algorithm consist of a set U called
the search space; a predicate q on U called the search predicate; and a partial
order � on U called the specialization relation. The goal is to find all elements
of U that satisfy the search predicate. Obviously, in our case, U is the set of
selector expressions up to a length kmax. A standard approach is to use a
support threshold for the search predicate. Accordingly, we define the search
predicate as q(τ) := supp(c, τ, t) > N , for the given input threshold N . That
is, τ is deemed interesting when its support exceeds N .

For levelwise search to work correctly, q should be monotone (actually,
monotonically decreasing) with respect to �, meaning that if τ ′ � τ and
q(τ) holds, then q(τ ′) holds as well. The intuition behind τ ′ � τ is that τ
is more specific than τ ′, or in other words, that τ ′ is more general than τ .
For our purposes, it would be ideal to use the semantic containment relation
τ ⊆X,c τ ′ in context c (as defined in Section 3.4). Although this containment
relation is shown to be tractable (see Theorem 3.26), through a translation
to the inclusion test of unambiguous string automata, it is not well-suited to
be used within the framework of levelwise search which requires fast testing
of specialization due to the large number of such tests. In strong contrast,
as we show below, the containment of selector expressions that disregards the
presence of a schema, has a syntactic counterpart which can be implemented
efficiently. Therefore, we define τ ′ � τ if and only if for every XML tree t, the
set τ(t) is a subset of τ ′(t). With respect to this definition it is obvious that

82 Discovering XSD Keys from XML Data

Algorithm 6 Basic algorithm for levelwise search [128].

C0 := set of most general elements of U ;
i := 0;
while Ci 6= ∅ do

Fi := {τ ∈ Ci | q(τ)};
Ci+1 := {τ ∈ U | ∀τ ′ ∈ U : τ ′ ≺ τ ⇒ τ ′ ∈

⋃
j≤i Fj} \

⋃
j≤iCj ;

i := i+ 1;
return

⋃
j<i Fj ;

the search predicate q is monotone, as the support of τ will be at least the
support of τ ′. Notice also that τ ⊆ τ ′ implies τ ⊆X,c τ ′.

Now, levelwise search computes sets Fi iteratively as shown in Algorithm 6.
Here, ≺ is the strict version of �, so τ ′ ≺ τ if τ ′ � τ and τ ′ 6= τ . The step
computing Ci+1 is called candidate generation; those candidates that satisfy
q then end up in the corresponding set Fi+1 (the letter F is a shorthand for
“frequent”, referring to the support threshold). It can formally be shown that
the union of all sets Fi indeed equals the set of all elements of U satisfying
q [128]. Moreover, the algorithm is terminated as soon as Ci is empty, because
then all later sets Fj and Cj with j ≥ i will be empty as well.

The abstract framework above, however, leaves a number of questions to
be answered:

1. How can we efficiently evaluate the search predicate q(τ)?

2. How can we efficiently generate candidate sets Ci+1?

We will next answer these questions in detail.

Search Predicate Evaluation

The search predicate supp(c, τ, t) can be entirely evaluated on the prefix tree
PT(t) and does not need access to the original document t. A single XPath-
expression can be used to aggregate the counts of all nodes matching τ below
nodes in context c.22 Indeed, for c = (σ, q), the support can be obtained from
PT(t) using the following XPath-expression:

sum(//σ[@state=idq]/τ/@matches),

where idq is the internally used id of the state q. The attributes @state and
@matches contain respectively the state id assigned to the node in the prefix
tree and the number of nodes with the same ancestor path in t.

22Recall that in the prefix tree every node contains its corresponding context and the
number of matching nodes from the original XML document.

3.5. XML Key Mining Algorithm 83

Specialization Relation and Candidate Generation

Recall that our specialization relation corresponds to the following: τ ′ � τ
iff τ(t) ⊆ τ ′(t) for every XML tree t. Since our chosen specialization relation
is purely semantic, we need an equivalent algorithmic definition to show that
containment can be effectively decided. Thereto, we define a “one-step spe-
cialization relation”, whose repeated application corresponds to the semantic
specialization relation, as follows: τ ′ ≺1 τ if τ is obtained from τ ′ by one of
the following operations:

(a) if τ ′ starts with the descendant axis, replace it by the child axis;

(b) if τ ′ starts with the descendant axis, insert a wildcard step right after
it; or,

(c) replacing a wildcard with an element name.

We establish that τ ′ � τ if and only if τ ′ can be transformed into τ by a
sequence of ≺1-steps, or, more formally:

Proposition 3.28. The relation � equals the reflexive and transitive closure
of the relation ≺1.

Proof. We denote the reflexive-transitive closure of ≺1 by ≺∗1. It is quite clear
that ≺1 is included in � (meaning that τ ′ ≺1 τ implies τ ′ � τ), whence ≺∗1 is
included in � as well, since � is transitive. Hence we only have to show that,
conversely, � is included in ≺∗1.

So, consider arbitrary sequences of child steps π = `1/ . . . /`p and π′ =
`′1/ . . . /`p′ and selector expressions τ and τ ′ where τ equals either ./π or .//π
and τ ′ equals either ./π′ or .//π′. Now assume τ ′ � τ ; we must show τ ′ ≺∗1 τ .
We begin by contemplating the possibility that p′ > p. Consider any XML
tree t in the form of a linear chain of p nodes, where the ith node is labeled `i
if `i is an element name, and is labeled arbitrarily if `i is the wildcard. Clearly
the last node of t belongs to τ(t); on the other hand, if p′ > p, the set τ ′(t) is
empty, contradicting τ ′ � τ . We may thus conclude that p′ ≤ p.

Now consider again a tree t that is a linear chain of p nodes, but now the
node labels must be defined more carefully. The ith node of t must be labeled
ai, where ai is defined as follows:

• If `i is an element name then ai equals `i;

• if `i is the wildcard we further distinguish the following cases:

– if i does not belong to the p′ last positions of {1, . . . , p}, i.e., if
i < p− p′ + 1, then ai can be chosen arbitrarily;

84 Discovering XSD Keys from XML Data

– otherwise, let j be the position number of i in {1, . . . , p} when
counting backwards from p to 1, i.e., j = p − i + 1. Note that in
{1, . . . , p′}, the corresponding element at position j from the back
is k = p′ − j + 1 = i− (p− p′). We distinguish two final cases:

∗ if `′k is an element name, say a, then ai equals some element
name different from a;

∗ otherwise, ai can again be chosen arbitrarily.

To understand the definition above it helps to think of π and π′ as being
aligned at their ends. The following is an example for p = 6 and p′ = 4:

π = a / ∗ / b / c / ∗ / ∗
π′ = ∗ / c / b / ∗
t = a → c → b → c → a → c

Now we note again that the last node of t belongs to τ(t), so it must also
belong to τ ′(t) by τ ′ � τ . This implies that for each i ≥ p − p′ + 1, letting
k = i − (p − p′) as above, if `i is a wildcard then also `′k must be a wildcard.
Indeed, if not, we would have set ai to a different element name and τ ′ would
fail to select the last node of t. Furthermore, if `′k is an element name, then
`i must be the same element name. Indeed, ai equals `i, so `′k different from
ai would again fail τ ′ to select the last node of t. We conclude that, when
aligning π and π′ at their ends, and looking at the p′ last steps of π, each step
of π is either equal to the corresponding step of π′, or the corresponding step
of π′ is a wildcard. As to the p− p′ first steps of π, they are unrelated to π′.
We conclude that π can be obtained from π′ by first, if necessary, filling up π′

on the left so as to become of the same length as π, and then replacing some
wildcards by element names.

This is almost what we need to conclude that τ ′ ≺∗1 τ except that we still
have to rule out the possibility that τ ′ might start with a child axis whereas τ
starts with a descendant axis. This is indeed impossible: consider now a tree
t that is a linear chain of p + 1 nodes. The first node is arbitrarily labeled,
while for i = 1, . . . , p, the i + 1th node is labeled with `i if `i is an element
name and is labeled arbitrarily otherwise. Then the last node of t belongs to
τ(t) but cannot belong to τ ′(t) since τ ′ is not long enough and starts with a
child axis. This is again in contradiction with τ ′ � τ . �

Note that the definition of ≺1 makes it impossible that τ ′ ≺1 τ ′′ ≺1 τ
while at the same time τ ′ ≺1 τ . Hence, Proposition 3.28 implies that ≺1 as
defined above really is the “successor” relation of �. More formally, τ ′ ≺1 τ
holds precisely if and only τ ′ ≺ τ and there exists no intermediate τ ′′ such that
τ ′ ≺ τ ′′ ≺ τ . Moreover, ≺1 is very efficient to compute. Thus armed, we can
perform candidate generation in a effective manner as given in Algorithm 7.

3.5. XML Key Mining Algorithm 85

Algorithm 7 TargetPathMinert,X(c).

C0 := set of minimal elements of U ;
i := 0;
while Ci 6= ∅ do

Fi := {τ ∈ Ci | q(τ)};
Gi+1 := {τ ∈ U | ∃τ ′ ∈ Fi : τ ′ ≺1 τ};
Ci+1 := {τ ∈ Gi+1 | ∀τ ′ : τ ′ ≺1 τ ⇒ τ ′ ∈

⋃
j≤i Fj};

i := i+ 1;
return

⋃
j<i Fj ;

Here, candidate generation is split up in two steps, which in practice can be
interleaved. The set Gi+1 takes all successors of the current set Fi; the set Ci+1

then prunes away those elements that have a predecessor that does not satisfy
q. We will formally show below that the sets Fi computed in this concrete
manner are exactly the same as those prescribed by the levelwise algorithm.
Note that each candidate is generated in only one level, which explains the
omission of the extra candidate deletion step.

Theorem 3.29. Algorithms 6 and 7 are equivalent.

We begin by noting the following property which is folk knowledge but for
which no rigorous proof seems to be available in the literature. Define the
depth of an element x ∈ U as the maximal number n such that there is a chain
of n strict inequalities x0 ≺ x1 ≺ · · · ≺ xn = x where x0 is minimal. The
depth of a minimal element is defined to be zero. We have:

Proposition 3.30. For any natural number i, consider the set Qi of all el-
ements of U that satisfy q and that have depth i. Then for each i, we have
Fi = Qi where Fi is as specified by Algorithm 6.

Proof. By induction on i. For i = 0, the claim holds by definition of F0. For
i > 0, let i = i′ + 1. We must show that Fi = {x ∈ Ci′+1 | q(x)} = Qi.

For the inclusion from left to right, let x ∈ Ci′+1 such that q(x). We must
show that x has depth i′ + 1. By definition of Ci′+1, every y ≺ x is in Fj for
some j ≤ i′ By induction, elements of Fj are in Qj and thus have depth j ≤ i′.
Hence, the depth of x is at most i′ + 1. The depth of x cannot be strictly
less. Indeed, suppose the depth of x would be j ≤ i′; then x would belong
to Qj = Fj ⊆ Cj . But x ∈ Ci′+1, so, by definition, x /∈

⋃
j≤i′ Cj , which is a

contradiction.

For the inclusion from right to left, let x be of depth i′+ 1 such that q(x).
We must show that x ∈ Ci′+1, so we must show two things:

86 Discovering XSD Keys from XML Data

(a) Every y ≺ x is in Fj for some j ≤ i′.
In proof, assume y ≺ x. Since x has depth i′ + 1, the depth j of y is at
most i′. Since q(x) and y ≺ x, also q(y) holds because q is monotone
w.r.t. ≺. Hence, y ∈ Qj = Fj .

(b) x /∈
⋃
j≤i′ Cj .

In proof, suppose for the sake of contradiction that x ∈ Cj for some
j ≤ i′. Then, since q(x) holds, x ∈ Fj = Qj . Hence, the depth of x
would be j ≤ i′, contradicting that the depth of x equals i′ + 1. �

We can now show what is claimed by Theorem 3.29. Let us denote the
sets Ci and Fi as computed by Algorithm 7 by C ′i and F ′i , to distinguish them
from the computation of Algorithm 6. Then, the claim is the following:

Proposition 3.31. For each i, the sets F ′i and Fi are equal.

Proof. We show by induction that for every i, the sets Fi and F ′i are equal.
For i = 0, the equality is trivial. For i > 0, let i = i′ + 1. We must show
Fi′+1 = F ′i′+1.

For the inclusion from left to right, let x ∈ Fi′+1. Since q(x), showing
x ∈ F ′i′+1 amounts to showing x ∈ C ′i′+1, which in turn amounts to two
things:

(a) x ∈ Gi′+1. To show this, we must show that there exists y ∈ F ′i′ such
that y ≺1 x. Since x ∈ Fi′+1, the depth of x equals i′ + 1, so there
exists a sequence x0, x1, . . . , xi′ , xi′+1 with x0 minimal and xi′+1 = x
and xj ≺ xj+1 for j ∈ {0, . . . , i′}. Take y = xi′ . Since y ≺ x and ≺∗1=�,
there exists a path in ≺1 from y to x. This path cannot be of length
more than one, as this would imply that the depth of x is strictly more
than i′ + 1. Hence, we have y ≺1 x. The depth of y is clearly at least i′,
and also at most i′ because the depth of x equals i′ + 1. Finally, since
q(x), also q(y). So, y has depth i′ and satisfies q from which we conclude
that y ∈ Fi′ as desired.

(b) Every y ≺1 x belongs to F ′j for some j ≤ i′. This is shown using similar
arguments as above. Let j be the depth of y. Since y ≺1 x, also y ≺ x,
so j ≤ i′ since the depth of x is i′ + 1. Moreover, since q(x), also q(y).
Hence y ∈ Fj with j ≤ i′ as desired.

For the inclusion from right to left, let x ∈ F ′i′+1. Since q(x), showing
x ∈ Fi′+1 amounts to showing x ∈ Ci′+1, which in turn amounts to two
things:

(a) Every y ≺ x is in Fj for some j ≤ i′. This is again shown using the same
arguments as above.

3.5. XML Key Mining Algorithm 87

(b) x /∈
⋃
j≤i′ Cj . Indeed, if x would be in Cj for some j ≤ i′, then x ∈ Fj ,

since q(x) holds. But then the depth of x would be j, a contradiction.

Since both inclusions hold, we conclude that the sets F ′i and Fi are equal for
each i. �

To conclude we note that the proof above is valid not just for ≺1 but for
any relation ≺′ whose reflexive and transitive closure equals ≺, which we have
indeed shown to hold for ≺1 in Proposition 3.28.

Example 3.32 (Specialization relation). We now illustrate the first iter-
ation of Algorithm 7. Consider the context c = (order, qorder) from our running
example, together with a support threshold of 3.

The target miner starts with the minimal elements as a set of candidates.
In this case this corresponds to the most general path: C0 = {.//*}. The
predicate q is then checked for .//*. As this path selects all 23 non-data nodes
below the order nodes, it is supported and the predicate evaluates to True.
Hence, F0 = {.//*}. Next, the specialization relation is used to generate the
next level. Applying the 3 possible specialization operations on .//* yields
the following set:

G1 = {./*, .//*/*, .//items, .//book, . . .}.

For each of these paths it is checked whether all the parent paths are supported
(only .//* in this case). In the next iteration, the predicate will be evaluated
for these new candidates, and a new level will be generated (if possible). Note
that the sets Ci in Algorithm 6 would contain the same items. M

Duplicate Expression Elimination (Canonization)

Often, a nuisance in mining logical formulas such as selector expressions is
duplicate elimination: different expressions may be logically equivalent. For-
tunately, in our setting, it follows from Proposition 3.28 that only identical
selector expressions can be equivalent. Indeed, two expressions can only be
equivalent when they can be transformed in to one another through a series of
allowed transformations. As a transformation yields a more specific expression
that is not equivalent, equivalent expressions must be identical.

Regardless, it can happen that two derived, and therefore, non-equivalent,
target paths τ and τ ′ select precisely the same set of target nodes on the given
document t. As these paths are equivalent from the perspective of t, it holds
that t |= (c, τ, P) iff t |= (c, τ ′, P) for all sets P . Therefore, w.r.t. the genera-
tion of key paths P , it does not make sense to consider all of these equivalent
paths separately. Rather, we should choose among them one canonical path.
One possibility, e.g., is to opt for the most specific path according to ≺1 by

88 Discovering XSD Keys from XML Data

preferring non-descendent paths, and by minimizing the length and number
of wildcards. Notice that equivalence of target paths on t can be tested on
the prefix tree PT(t) without access to the original document. This is accom-
plished by evaluating the expression on the prefix tree and comparing the sets
of selected nodes. When these are equivalent, the target paths will select the
same nodes in the underlying XML document as well.

Example 3.33 (Path equivalence). Consider the context qorder and the
target paths .//book and ./items/book. When evaluating these target paths
on the small prefix tree in Figure 3.4, we notice that the same nodes are
selected. We can therefore conclude that they are equivalent on the document.
Indeed, both target paths will select all the book nodes in the larger XML
document depicted in Figure 3.1. M

Boundedness Elimination

The quality of the mining result can be improved using the results of Sec-
tion 3.4. Indeed, target paths that are bounded but that have still passed
the support threshold N , which may happen with low values of N , may be
eliminated at this stage.

Example 3.34 (Boundedness). Suppose the XSD in our running example
would limit the number of order nodes in a document to a maximum of 10.
We could then eliminate the target paths that select (descendants of) these
nodes. M

3.5.3 One-Key Path Miner

The job of the one-Key path miner is to find all key paths p for which (c, τ, (p))
is consistent on the given document: that is, for every v ∈ CNodest(c) and
every u ∈ τ(t, v), it holds that p(t, u) is a singleton containing a Data-node.
In a second step, the key paths p for which (c, τ, (p)) is consistent w.r.t. X,
are selected for further processing. The reason for this two-step approach
is to reduce the number of costly consistency tests. Although testing for
consistency w.r.t. a schema can be done in polynomial time (see Theorem 3.15),
it can be slow for large schemas and is ill-suited to be used directly as a
search predicate. This will be made apparent in the experiments described in
Section 3.6. Therefore, we test for document consistency (qualification) in a
first step and make use of the fact that inconsistency on t implies inconsistency
on X. That is, key paths which are not consistent on t (do not qualify on t)
and which are therefore pruned in the first step, can never be consistent w.r.t.
X.

The main idea here is that we look for paths that select at most one leaf
per target node and that we start using very specific paths that are generalized

3.5. XML Key Mining Algorithm 89

a

b

d

b

d

(a) Document t1.

a

b

d d

b

(b) Document t2.

Figure 3.5: Two documents that yield the same prefix tree.

in each step to select more nodes. When a path selects too many nodes, it is
discarded. It turns out that again a levelwise search may be used, utilizing
the converse of the specialization relation � for target-path mining. So, define
p′ �key p iff p � p′. That is, p′ �key p iff p′ ⊆ p. The search predicate qkey

τ (p) is
now defined to hold if p selects at most one node in t for each of the target nodes
selected by τ in context c. This qkey

τ is indeed monotonically decreasing w.r.t.
the converse of containment among selector expressions: p′ �key p ≡ p′ ⊆ p
and qkey

τ (p) together imply qkey
τ (p′). We note that consistency requires the

selection of exactly one node, rather than at most one. However, this mismatch
can be solved by confining the search space Ukey to all selector expressions up
to length kmax that from a target node select a leaf node in the prefix tree:
these expressions select at least one node by virtue of their being present in
the prefix tree. The “most general” elements from which the levelwise search
is started are in this case the specific paths in the prefix tree from target nodes
to leafs. Obviously, Ukey can be computed directly from PT(t).

It remains to discuss how to compute qkey
τ efficiently. Unfortunately, qkey

τ

can not always be computed solely on PT(t). Indeed, consider the documents
in Figure 3.5: t1 = a(b(d), b(d)) and t2 = a(b(d, d), b), where each d-node is a
Data-node. Then, PT(t1) = PT(t2), yet φ is consistent on t1 but inconsistent
on t2 for φ = (croot, ./b, (./d)) with croot the root context.

We next present a sufficient condition for inconsistency which can be tested
on the prefix tree. Thereto, consider φ = (c, τ, (p)) and let t′ = PT(t). For a
node m in t′, we denote by #t′(m) the number assigned to m in t′, that is,
|h−1(m)| for h as defined in Section 3.5.1. Define the following conditions:

C1 There exists a v ∈ CNodest′(c) and a u ∈ τ(t′, v) such that #t′(u) <∑
w∈p(t′,u) #t′(w).

C2 There exists a v ∈ CNodest′(c), a u ∈ τ(t′, v), a w ∈ p(t′, u), and a node
m on the path from u to w such that #t′(m) < #t′(w).

Here, C1 says that the number of target nodes u is strictly smaller than the
number of nodes selected by p, and C2 says that there is a leaf node selected

90 Discovering XSD Keys from XML Data

by p and an ancestor with a smaller number of corresponding nodes in t. Both
conditions imply that there are at least two nodes selected by p which belong
to the same target node in t and which contradict consistency. The following
proposition hence follows:

Proposition 3.35. Given φ = (c, τ, (p)) and a document t. If condition C1
or C2 holds on PT(t), then φ is inconsistent on t.

So, only when the tests for the two conditions above fail, we evaluate p on t
to determine the value of qkey

τ (p).

Finally, define ≺key
1 as the inverse of ≺1, that is, p′ ≺key

1 p iff p ≺1 p
′. Then,

the first step of OneKeyPathMinert,X(c, τ) is the same algorithm as depicted in

Algorithm 7 with U , q, and ≺1, replaced by Ukey, qkey
τ , and ≺key

1 , respectively.
The second step in OneKeyPathMinert,X(c, τ) retains from all the returned
key paths p, those for which (c, τ, (p)) is consistent w.r.t. X employing the
algorithm of Theorem 3.15. A duplicate elimination step similar to the one of
the previous section is performed as well, resulting in the removal of equivalent
path expressions.

Example 3.36 (Key path miner). For the context (order, qorder) and the
target path .//book the one-key path miner will generate candidate paths
starting from the paths to leaf nodes in the prefix tree:

{./quantity, ./title, ./year, ./price}.

None of these are found to be inconsistent by either C1 or C2, nor by the XML
document itself (see Figure 3.1). This is because all of them appear exactly
once. But, after the XSD consistency check, the path ./year is removed.
Indeed, when we inspect the XSD more closely (see Example 3.3), we see that
year is optional. This means that there are XML documents that satisfy the
XSD, but for which the key is inconsistent. In the next iterations, the algo-
rithm will generate more general paths by applying the converse specialization
relation, as described above. In this case, paths such as ./* will violate the
consistency requirement, while paths of the form .//quantity are equivalent
to their non-descendant counterparts. Both types are removed. The final
output of this phase is therefore:

{./quantity, ./title, ./price}. M

3.5.4 Minimal Key Path Set Miner

At this point, we have computed the maximal set S for which holds that for
every p ∈ S, (c, τ, (p)) is consistent w.r.t. X. Next, we are looking for minimal

3.6. Experiments 91

and meaningful sets P ⊆ S such that t |= (c, τ, P), that is, such that (c, τ, P)
is a key for t. Note that such a set P can be trivially converted to a sequence
to satisfy the definition of an XML key, as defined in Section 3.3.3.

We capitalize on existing relational techniques for mining functional de-
pendencies (see, e.g., [44, 125, 126]). To this end, we define a relation RS,t
with the following schema

(CID,TID, p1, p2, . . . , p|S|),

where CID and TID are columns for the selected context nodes and target
nodes, respectively, and every pi corresponds to the unique Data-value se-
lected by the corresponding key path pi. Then, (v, u, ō) ∈ RS,t if and only
if v ∈ CNodest(c), u ∈ τ(t, v) and recordS(t, u) = ō. Now, it follows that
t |= (c, τ, P) iff CID, p1, p2, . . . , pn → TID is a functional dependency in RS,t
for P = (p1, . . . , pn). This means that when the values for the attributes
CID, p1, p2, . . . , pn are identical for two tuples, the value for TID must be
identical as well. We can now plug in any existing functional dependency
discovery algorithm.

Example 3.37 (Key path set miner). Suppose we obtain the following
consistent candidate key from the previous phases:

((order, qorder), .//book, {./title, ./price, ./quantity}),

yielding the relation in Table 3.2. We observe the following:

CID, title→ TID,

CID,price→ TID,

CID, quantity 6→ TID,

and can hence derive the following final XML keys for the considered context
and target path:

((order, qorder), .//book, (./title)),

((order, qorder), .//book, (./price)). M

3.6 Experiments

In this section, we analyse the performance of different parts of the mining
algorithm. We also look at different optimizations to understand their impact
on the execution time and number of derived keys.

For our experiments, we use a corpus of 90 high quality XML documents
and associated XSDs obtained from Grijzenhout and Marx [93]. The input

92 Discovering XSD Keys from XML Data

CID TID title price quantity

o1 b1 Movie analysis 5.63 63
o1 b2 Programming intro 6.72 63
o2 b3 Programming intro 5.63 150

Table 3.2: Relational table for the key used in Example 3.37 and the XML
document in Figure 3.1.

can therefore be seen as 90 pairs, each consisting of a unique XML-document
and a unique XSD. The maximal and average number of elements occurring in
documents is 91K and 5K, respectively, while the maximal and average number
of elements occurring in XSDs is 532 and 52, respectively. All experiments are
w.r.t. to this corpus; the time-related experiments were run on a 3GHz Mac
Pro with 2GB of RAM, while others made use of the HPC-infrastructure of
the VSC23. In all experiments, we set kmax to 4 for target paths and to 2 for
key paths, unless explicitly mentioned otherwise.

Choosing Constants

We need to determine meaningful values for kmax and the support threshold.
In this section we derive suitable bounds. To determine kmax, we examine
the distribution of the target path lengths. To this end, we generated for all
documents the set of target paths up to length 10, having a minimal support
of 1, i.e., each target path must select at least one node in the XML docu-
ment. Already 88.03% of the (canonical) target paths have a length up to 4,
and 96.39% have a length up to 6. But, more importantly, when looking at
the removal rates from canonization (removal of equivalent target paths) in
Table 3.3, we see that larger paths have a much higher removal rate.24 For
example, for paths of length 6, 98.35% of the paths are covered by the canon-
ical paths of length 6 or smaller. This means that, especially for larger path
lengths, a significant portion of the candidate target paths are superfluous.
The latter is exemplified in Figure 3.6, which shows the distribution of the
target path length before and after canonization. This huge amount of un-
necessarily generated paths motivates us to pick 2 and 4 as values for kmax.
Finally, we think that, together with all possible contexts, paths of length up
to 4 will provide enough freedom for selecting nodes in the XML document
(recall that the use of wildcards and descendant axes is allowed).

For key paths, we make similar observations. The percentage of key paths
that are pruned away using path equivalence is depicted in Table 3.4. These

23Flemish Supercomputer Center.
24Note that the total number of paths differs from the one presented in [25] as the article

contained a small calculation error.

3.6. Experiments 93

length target paths canonical rem. rate

1 10974 3799 65.38%
2 17500 3344 80.89%
3 21929 2318 89.43%
4 27212 1584 94.18%
5 27379 784 97.14%
6 29771 491 98.35%
7 28942 280 99.03%
8 29178 170 99.42%
9 24349 73 99.70%

10 21492 28 99.87%

Total 238726 12871 94.61%

Table 3.3: The fraction of target paths that is removed after a path equivalence
test (without a schema).

length key paths canonical rem. rate

1 1505 681 54.75%
2 638 130 79.62%
3 421 38 90.97%
4 436 20 95.41%

Total 3000 869 71.03%

Table 3.4: The fraction of key paths that is removed after a path equivalence
test (without a schema).

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

0 1 2 3 4 5 6 7 8 9 10

N
u
m

b
er

 o
f
p
at

h
s

Target path length

Target Paths
Canonical Target Paths

Figure 3.6: Length distribution of the target paths and their canonical ver-
sions for a support threshold of 1 and a maximal length of 10.

94 Discovering XSD Keys from XML Data

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

12 10 50

N
u
m

b
er

 o
f
p
at

h
s

Support value

Target Paths
Canonical Target Paths

Figure 3.7: Total amount of target paths found for support thresholds 1,2,10
and 50 and a maximal length of 6.

observations motivate us to restrict to maximal key path lengths of 2 and 4.

Next, we derive a suitable value for the support threshold . Recall that the
support of a key equals the number of target nodes that are selected by the
target path. In Figure 3.7, we see the effects of an increasing support threshold
on the number of target paths and on the number of canonical target paths.
For larger values, the number of target paths passing the support threshold
stabilizes quickly. This indicates that a large number of paths only selects
a few target nodes and that even small support thresholds will prune away
significant parts of the XML key search space. To decide on a good support
value, we should strike a balance between removing paths with low support,
while still keeping paths that select a significant portion of small documents.
Indeed, small documents can yield low support values for a large portion of
paths. For this reason, we mostly use support values of 2 and 10.

Finally, based on the observations made, we may already conclude that
path equivalence without a schema, in conjunction with our canonization al-
gorithm is an effective way of limiting an explosion of paths.

3.6.1 Prefix Tree

As different parts of the algorithm can avoid access to the input document t by
operating directly on PT(t), it is instrumental to investigate the compression
rate of PT(t) over t. Figure 3.8 plots the number of nodes in documents versus
the number of nodes in the corresponding prefix trees. Note that the scale is
logarithmic. In essence, every document is compressed to a prefix tree with
at most 200 nodes, even the large documents which contain up to 91K nodes.

3.6. Experiments 95

 1

 10

 100

 1000

 1 10 100 1000 10000 100000 1e+06

N
u
m

b
er

 o
f
p
re

fi
x

tr
ee

 n
od

es

Number of document nodes

Figure 3.8: Number of document nodes versus number of nodes in prefix trees.
The prefix trees are considerably smaller than their full-sized counterparts.

3.6.2 Contexts

A key φ = (c, τ, P) consists of three interdependent components: target paths
need only to be considered w.r.t. a context, and key paths need only to be
considered w.r.t. a context and a target path. To avoid an explosion of the
size of the search space it is paramount to reduce the number of considered
contexts, target paths and key paths. We next assess the effectiveness of the
algorithm in this respect.

We start with the number of contexts considered by the algorithm. An
analysis comparing the number of contexts allowed by XSDs with the number
of contexts actually used in the XML documents, shows that for 40% of the
documents all allowable contexts materialize in the corresponding XML docu-
ments, i.e., there is no improvement as no allowable contexts can be omitted.
More specifically, this means that considering only materialized contexts would
not prune the search space for these documents. Nevertheless, it appears that
this mostly happens for smaller XSDs. Indeed, the total sum of allowable
contexts over all 90 documents is 4639 while the total sum of contexts found
in actual documents is 2217 which indicates that over the complete data set
52% of all possible contexts do not have to be considered. Keeping in mind
that every context that can be removed in this step eliminates a call to the
target path and key path miner underlines the effectiveness of context search
driven by the XML data at hand. In practice, the set of used contexts can be
build during prefix tree construction (see Section 3.5.1), as type information is
derived for each node anyway. This avoids additional inspection of the XSD.

96 Discovering XSD Keys from XML Data

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

N
u
m

b
er

 o
f
ta

rg
et

 p
at

h
s

Documents (ordered on XSD filesize)

Candidate
Supported
Non-equivalent supported

Figure 3.9: Behavior of the target path miner. Number of candidate, sup-
ported and non-equivalent target paths per document for kmax = 4 and support
threshold of 10.

3.6.3 Target Paths

Next, we discuss the behavior of the target path miner when the support
threshold N equals 10. The results are illustrated in Figure 3.9 (cases with
kmax = 5 and/or lower support threshold were also tested but yield similar
results and are therefore not shown). For presentation purposes, the x-axis
enumerates all document-XSD pairs increasingly ordered by the size of the
XSD. The figure then shows per pair, the number of candidate, supported,
and non-equivalent derived target paths. Its purpose is to provide a visual
inspection on the considered quantities on a per document basis. By candidate
target paths we mean those that occurred in a candidate set Ci during the
execution of Algorithm 7. Non-equivalent target paths are those that remain
after duplicate elimination (as explained in Section 3.5.2). The number of
possible target paths to consider (that is, the cardinality of the search space U
times the number of allowable contexts) is not shown as the target path miner
only considers a small fraction of those, to be precise, only 3% on average.
Hence, when using a naive enumeration scheme to enumerate all the target
paths, only 3% would actually be useful. Furthermore, on average, only 7%
of all candidate target paths turn out to be supported and of all supported
paths only 27% remains after duplicate elimination. To get a feeling for the
magnitude of the reduction in target paths (TPs) provided by the algorithm,
Table 3.5 shows the absolute numbers, which are summed up over the whole
data set of document-XSD pairs.

3.6. Experiments 97

 1

 10

 100

 1000

 10000

N
u
m

b
er

 o
f
ke

y
p
at

h
s

Documents (ordered on keypaths considered)

Candidate
Not inconsistent on prefix tree
Consistent on document
Consistent on XSD

Figure 3.10: Behavior of the one-key path miner for support threshold 10,
max target path length 4 and max key path length 2.

possible TPs 2.4× 1011

candidate TPs 6.7× 106

supported TPs 8.4× 104

unique TPs 1.3× 104

Table 3.5: Target path breakdown. This image shows the number of target
paths in the search space and those that are effectively considered in different
stages of the target path miner. The values shown are summed over the entire
dataset.

3.6.4 One-Key Paths

Figure 3.10 provides a visual interpretation of the reduction in number of
key paths by the consecutive steps of the one-key path miner as described
in Section 3.5.3. Again, for presentation purposes, the x-axis enumerates all
document-XSD pairs increasingly ordered by the number of resulting can-
didate key paths. Specifically, the figure plots on a per document basis the
following numbers: candidate key paths, paths for which the inconsistency test
fails on the prefix tree, paths that are consistent on the document, and paths
that are consistent w.r.t. the XSD. We first discuss the average improvement
on a per document basis. Specifically, on average 39% of candidate paths are
inconsistent over the prefix tree. This means that for 61% of the remaining
key paths consistency needs to be tested on the document. On average (per
document), only 6% of the key paths are consistent w.r.t. the document (qual-
ify) and of these 68% turn out to be consistent w.r.t. the XSD. Table 3.6 shows

98 Discovering XSD Keys from XML Data

candidate KPs 48144

inconsistent KPs on prefix tree 29190

consistent KPs on document 484

consistent KPs on XSD 288

Table 3.6: This image shows the number of key paths (KPs) that are ef-
fectively considered in different stages of the one-key path miner. The values
shown are summed over the entire dataset.

the absolute numbers summed up over the whole data set of document-XSD
pairs, to give an indication of the effectiveness of the different stages of the
one-key path miner.

It is interesting to observe that on the considered sample of real-world doc-
uments, consistency on the document does not always imply consistency w.r.t.
the associated XSD. Specifically, Table 3.6 shows that overall only roughly 60%
of key paths that are consistent w.r.t. the document are consistent w.r.t. the
XSD as well.

3.6.5 Keys

Next, we discuss the actual keys returned by our algorithm. We use the
hypergraph transversal algorithm to mine relational functional dependencies
as, for instance, described by Mannila and Räihä [127], but any such algorithm
can be readily plugged in. We consider keys with target path length at most 4
and key path length at most 2. In the following, we refer to testing consistency
of a key w.r.t. its XSD (i.e., by applying the algorithm of Theorem 3.15) as
the schema consistency test. Tables 3.7 and 3.8 then gather some statistics
of discovered keys with and without the schema consistency test. First of all,
it can be observed that not every document contains a key with the required
support: only 30% and 16% of all documents have at least one key with
support 10 and 100, respectively (Table 3.7). The latter might seem strange
at first sight, but note that not all XML documents are in fact databases and
that the requirement for a key to qualify (see Definition 3.7) is a severe one.
Indeed, even lowering the support threshold to a value of two (experiment
not shown here) only provides a key for 60% of the documents, but of course
a key with support two is not likely to be very relevant. We note that the
average support for discovered keys in this experiment equals 404 and 612
for support thresholds equal to 10 and 100, respectively, while the maximum
support encountered is 2011, indicating that the discovered keys do cover a
large number of elements.

The figures in the two tables nicely illustrate the effectiveness of schema
consistency as a quality measure. Indeed, without schema consistency Ta-

3.6. Experiments 99

sup10 sup100

derived keys 107 54

docs with keys 27 15

avg keys per doc 4 3.6

max keys per doc 23 23

avg key paths in a key 1.3 1.3

max key paths in a key 2 2

Table 3.7: Statistics of mined keys for support thresholds 10 and 100 without
the requirement to be consistent w.r.t. the associated XSD.

ble 3.8 shows that 107 and 54 keys are derived for support threshold 10 and
100, respectively. Interestingly, in both cases, there is a document with a
rather large number of keys: 23 to be specific. But, after the schema con-
sistency test, each of these keys is removed as they all contain a key path
that selects elements that are declared optional in the schema. Of course, one
could debate about whether the schema is actually always correct or may be
too liberal. One could always opt to offer keys that do not pass schema con-
sistency to the user. However, after an inspection of the derived keys from our
corpus, it becomes apparent that in many cases keys rejected by the schema
are probably not keys at all. As an illustrative example, consider the three
derived keys (all with support 340, and where root refers to the root context):

(root, ./Products, (./ID))

(root, ./Products, (./Other Information, ./Catalogue-Name))

(root, ./Products, (./Type, ./Other Information))

After the schema consistency test only the first key remains. In this case, it
should be clear that the second and third keys are not accurate, but are a
glitch in the data as they both contain the field “other information”, which is
a generic field that only happens to be unique when combined with another
field. Therefore, one could say that the reduction from 107 to 43 and from 54
to 16 keys in Tables 3.7 and 3.8 actually improves the quality at the expense
of lowering the quantity which in our opinion can be seen as a good thing as
most data mining techniques suffer from an explosion in derived patterns.

3.6.6 Quality

It remains to discuss the quality of the keys. When the provided schema is
accurate, the schema consistency test, as discussed above, provides a quality
criterion in its own. A second quality criterion can be the high support of de-
rived keys: as mentioned above, the support of the derived keys is on average

100 Discovering XSD Keys from XML Data

sup10 sup100

derived keys 43 16

docs with keys 19 10

avg keys per doc 2.2 1.6

max keys per doc 9 4

avg key paths in a key 1.3 1.2

max key paths in a key 2 2

Table 3.8: Statistics of mined keys for support thresholds 10 and 100 with
the requirement to be consistent w.r.t. the associated XSD.

404 and 612 for support thresholds equal to 10 and 100, respectively, while
the maximum support encountered is 2011.25 Furthermore, when inspecting
the discovered keys it appeared that in many cases keys select elements whose
name contains ‘ID’. Sometimes it is desirable to further refine the set of result-
ing keys, additional quality criteria such as the ones introduced in Section 3.4.3
may be utilized.

We finish with a discussion on implication of keys. Usually, in key dis-
covery, the goal is to find a minimal set of keys, called a cover , from which
all other keys can be derived. For instance, to this end, Grahne and Zhu [91]
make use of the inference algorithms for XML keys that were investigated and
shown to be polynomially computable by Buneman et al. [53]. Unfortunately,
Theorem 3.25 shows that key implication in the presence of a schema is ex-
ptime-hard. Still, there are opportunities for detecting duplicate keys. For
instance, the next pair of discovered keys turns out to be equivalent (both
with support 90):

((State: 188, Symbol: ConstraintID), ./*, (./*))
((State: 167, Symbol: PureOrMixtureData),

./Constraint/ConstraintID/*, (./*))

Note that ConstraintID can only occur under a Constraint-element. We can
therefore consider the keys to be equivalent as they select precisely the same
set of target nodes.

3.6.7 Running Time

We next discuss the running time of the algorithm. Of course, the previous
sections have already illustrated how the different mining steps succeed in

25Both thresholds impose a lower bound on the support value, hence the maximum values
are not affected.

3.6. Experiments 101

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

ti
m

e
(s

)

Documents (ordered on total time)

Overall time
Time for schema consistency test

Figure 3.11: Part of the overall running time that is spent on the schema
consistency test; support threshold 2, max target path length 2 and max key
path length 2.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

Schema Cons. Test Mining Overall Mining no Schema Cons.

ti
m

e
(s

)

Figure 3.12: Boxplots indicating average running times for schema consis-
tency by itself, the entire mining algorithm and mining without schema consis-
tency; support threshold 2, max target path length 2 and max key path length
2. The plots presented use 1.5 times the interquartile range for determining
the whiskers. The black dots are outliers, each one depicting a document-XSD
pair.

102 Discovering XSD Keys from XML Data

reducing the number of considered contexts, target paths and key paths and
every such reduction induces a gain in speed. Figure 3.12 gives insight in the
overall running time. Here, we can see that a large fraction of the time is
taken up by the schema consistency test. Furthermore, Figure 3.11 gives an
indication of the proportion of time taken by the schema consistency test w.r.t.
the overall running time. For presentation purposes, the x-axis enumerates all
document-XSD pairs increasingly ordered by the time required for the schema
consistency test. Note that the figure does not imply an exponential growth
of the running time. In fact, as the x-axis does not correspond to a quantity,
no inference can be made about the asymptotic growth of the running time.

To gain more insight in what part of the input controls the running time,
we checked several metrics of the data and the schemas:

• XML metrics: number of nodes, depth, average children, number of
labels, number of leafs, number of prefix tree nodes;

• XSD metrics: number of labels, number of states, number of contexts.

For the target miner, we found the number of nodes in the prefix tree to be
correlated to the running time and the number of target paths. This is as
expected, since the prefix tree is used for support calculation and equivalence
tests; both are used continuously during in this part. For the key miner, we
found that without XSD consistency tests, the same correlation is observed.
Also, there is a correlation between the number of labels used in the document
and the running time. Sadly, none of these metrics showed a clear connection
to the running time when XSD consistency is used. We stress that key discov-
ery is not a time critical task and that the algorithm only has to be run once
for an XML-document and XSD. Nevertheless, the figures also show that the
most room for improvement lies within a speedup of the schema consistency
test and less in other components of the algorithm.

3.6.8 Optimizations

The execution of the algorithm can be tailored by switching several optimiza-
tions on or off. In this section, we take a look at some key optimizations and
their effect on the running time.

We first focus on optimizations in the target miner. One of the most im-
portant optimizations is the duplicate elimination, described in Section 3.5.2.
We consider three options:

1) no duplicate elimination;

2) duplicate elimination without a schema; and,

3) using duplicate elimination with a schema.

3.6. Experiments 103

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07
ti
m

e
(m

s)

documents (ordered on default time)

Equivalence w.r.t. Schema
Equivalence On (default)
Equivalence Off

Figure 3.13: Effect of equivalence optimizations on running time. Per-
document running time of equivalence optimizations in the target miner; XSD
consistency off, support threshold 10, max target path length 4.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

ti
m

e
(m

s)

documents (ordered on default time)

(C1)-check Off
Target Path Equivalence Off
default
XSD-consistency Off

Figure 3.14: Effect of different optimizations on running time. Per-
document running time obtained by switching off different optimizations of
the key path miner; support threshold 2, max target path length 2, max key
path length 2.

104 Discovering XSD Keys from XML Data

Figure 3.13 shows the running times for each of these, per document, ordered
by (2). Option (1) is the fastest in almost every case, while (3) is the slowest
in almost every case, sometimes even by several orders of magnitude. Notice
that the time for options (2) and (3) does not exceed 10 seconds.

Although (1) may seem the best option for the target miner, it will produce
a very large set of target paths (see above), each of them invoking a new run of
the key path miner. Figure 3.14 shows the running time of the key miner, for
the same documents, this time ordered by the default key miner time. When
we compare the default time to the time where duplicate elimination of the
target miner is switched off, we see the running time increase a lot, sometimes
even by an order of magnitude. Note that the key path miner typically takes
up a lot more time, hence it is advised to retain the duplicate elimination
check (2), especially since duplicate elimination also improves the quality of
the resulting keys.

As we have seen before, the XSD consistency test takes up a large portion
of the running time. When switching this test off and resorting to XML con-
sistency, we see that the running time improves by several orders of magnitude
(Figure 3.14). Because of the applicability of the XSD consistency measure as
a quality measure, however, we conclude that future work on the key miner
software should make optimizing this part a priority.

3.7 Discussion

In this chapter, we initiated a fundamental study of properties of W3C XML
keys in the presence of a schema and introduced an effective novel key mining
algorithm leveraging on the formalism of levelwise search and on algorithms
for the discovery of functional dependencies in the relational model.

An observed bottleneck of the proposed approach is to check consistency
of a derived key w.r.t. the associated schema, even though the number of keys
which have to be tested is greatly reduced by testing for inconsistency on
the XML document, it should be investigated how schema consistency can be
accelerated in practice. Another approach would be to try to find fast heuristic
algorithms or to study the problem for subclasses of XSDs.

Another possible direction would be to investigate how the mining frame-
work could be extended to top-level union in keys. It would be especially
important to avoid an explosion of the size of the search space. The latter
would also require finding heuristics for consistency testing in the presence of
disjunction and a schema as this problem is conp-hard.

It would also be interesting to see how the present framework can be ex-
tended to discover approximate XML keys. Grahne and Zhu [91] already
provide a mechanism for doing this for other XML key formalisms. For this,

3.7. Discussion 105

we need a measure f over multisets which expresses how closely a multiset
resembles a set. Then the confidence of the key φ = (c, τ, P) can for instance
be obtained by

aggv∈CNodest(c) f({recordP (u) | u ∈ τ(t, v)}),

where agg is an aggregate operator (as, e.g., sum). Our framework would then
allow to plug in any algorithm for deriving relational approximate functional
dependencies (see, for example King and Legendre [114] and Kivinen and
Mannila [115]).

4
Parallel Evaluation of
Multi-Semi-Joins

In this chapter, we study query evaluation and optimization in Big data sys-
tems. We introduce the multi-semi-join operator that allows for a reduction
in total time for parallel MapReduce query plans for strictly guarded frag-
ment queries. We provide an updated MapReduce cost model, show that the
problem of finding an optimal query plan is np-complete and give heuristic
algorithms as an alternative solution.

4.1 Introduction

The problem of evaluating joins efficiently in massively parallel systems is an
active area of research (e.g., [7, 10, 12, 34, 35, 56, 75, 116, 140, 148]). Here,
efficiency can be measured in terms of different criteria, including net time,
total time, amount of communication, resource requirements and the number
of synchronization steps. As parallel systems aim to bring down the net time,
i.e., the difference between query end and start time, it is often considered
the most important criterium. Indeed, the amount of computing power itself
seems to be no longer an issue because of the availability of services such as
Amazon AWS. However, in pay-as-you-go plans, the cost is determined by the
total time, that is, the aggregate sum of time spent by all computing nodes.
On the other hand, for data analysts, a low net time, which consitutes the
time between query submission and result collection, is of high importance.
Hence, we focus on parallel evaluation of queries that minimizes total time

107

108 Parallel Evaluation of Multi-Semi-Joins

while retaining a low net time. The low net time is achieved through the
use of parallel query plans, while commonalities between different query parts
are used to bring down the total time as redundant calculations can often
be removed. In Chapter 5, we compare different parallel approaches with a
sequential approach and study their properties in terms of total and net time
using our own system called Gumbo.

Semi-joins have played a fundamental role in minimizing communication
costs in traditional database systems through their role in semi-join reduc-
ers [36, 37], facilitating the reduction of communication in multi-way join
computations. Using the relational algebra, the semi-join operator can be de-
fined as RnS = πR.∗(R 1 S). More specific, the result of a semi-join between
two relations is the result of their natural join, projected on the schema of
the first relation. This corresponds to the tuples of R for which a joining
tuple exists in S. This is especially interesting in the context of a join: if
we know which tuples will participate in the join, we can potentially avoid
a lot of communication overhead. This is illustrated by the following query
equivalence:

R 1 S = R 1 (S nR) = (Rn S) 1 (S nR).

Avoiding communication overhead is important as this is a major bottleneck
in distributed systems. Of course, this only holds if the semi-join can be
calculated much more efficiently than the join itself. In more recent work,
Afrati et al. [7] provide an algorithm for computing n-ary joins in MapReduce-
style systems in which semi-join reducers play a central role. Furthermore,
Nykiel et al. [139] and Wang and Chan [163] have demonstrated that combining
multiple jobs in MapReduce can lead to significant cost reductions.

Motivated by the general importance of semi-joins and the cost reduction
opportunities describe above, we study the system aspects of implementing
semi-joins in a MapReduce context. In particular, we introduce a multi-semi-
join operator n· that enables the evaluation of a set of semi-joins in one Mapre-
duce job while reducing resource usage like total time and requirements on
cluster size, without sacrificing net time. We then use this operator to effi-
ciently evaluate Strictly Guarded Fragment (SGF) queries [16, 84]. Not only
can this query language specify all semi-join reducers, but also more expressive
queries involving disjunction and negation.

We illustrate our approach by means of a simple example. Consider the
following SGF query Q:

SELECT (x, y) FROM R(x, y)
WHERE

(
S(x, y) OR S(y, x)

)
AND T (x, z)

Intuitively, this query asks for all pairs (x, y) in R for which there exists some
z such that

4.1. Introduction 109

1. (x, y) or (y, x) occurs in S; and

2. (x, z) occurs in T .

To evaluate Q it suffices to (1) compute the following semi-joins

X1 := R(x, y) n S(x, y);
X2 := R(x, y) n S(y, x);
X3 := R(x, y) n T (x, z);

(2) store the results in the binary relations X1, X2, or X3; and (3) subsequently
compute ϕ := (X1 ∪X2)∩X3. Our multi-semi-join operator n·(S) (defined in
Section 4.5.2 and implemented as the algorithm MSJ) takes a number of semi-
join-equations as input and exploits commonalities between them to optimize
evaluation. In our framework, a possible query plan for query Q is of the form:

EVAL(R,ϕ)

MSJ(X1, X2) MSJ(X3)

In this plan, the calculation of X1 and X2 is combined in a single MapRe-
duce job, X3 is calculated in a separate job; and EVAL(R,ϕ) is a third job
responsible for computing the subset of R that adheres to ϕ. The combined
evaluation of X1 and X2 makes it possible to exploit the overlap (R and S) be-
tween them. As numerous grouping options are possible in general, we provide
a method that uses a cost model to determine the best26 query plan for SGF
queries. Note that, unlike the simple query Q illustrated here, SGF queries
can be nested in general. In addition, we also show how to generalize the
method to the simultaneous evaluation of multiple SGF queries.

The contributions of this chapter can be summarized as follows:

1. We introduce the multi-semi-join operator n·(S) to evaluate a set S of
semi-joins and present a corresponding 1-round MapReduce implemen-
tation MSJ(S).

2. We present query plans for basic, that is, unnested, SGF queries and
propose an improved version of the cost model presented in [139, 163]
for estimating their cost (total time). As computing the optimal plan
for a given basic SGF query is np-hard, we utilize an existing greedy
heuristic which we refer to as Greedy-BSGF.

26One that is parallel and has a minimal total cost.

110 Parallel Evaluation of Multi-Semi-Joins

3. We show that the evaluation of (possibly nested) SGF queries can be
reduced to the evaluation of a set of basic SGF queries in an order
consistent with the dependencies induced by the former. In this way,
computing an optimal plan for a given SGF query (which is np-hard
as well) can be tackled by a two-tier strategy, where first an optimal
ordering of the basic SGF subqueries is determined, followed by an opti-
mal evaluation of each of these basic subqueries. We present the greedy
algorithm Greedy-SGF.

While this chapter focuses on the above topics, the next chapter provides
more practical details on the implementation of the presented techniques in a
system called Gumbo, describes practical optimizations and gives insights in
the performance of our methods through an extensive experimental evaluation.

Outline. This chapter is organized as follows. We discuss related work
in Section 4.2. We introduce the strictly guarded fragment (SGF) queries in
Section 4.3.1. Section 4.4 introduces the MapReduce computation model and
the revised version of an existing cost model. In Section 4.5, we consider the
evaluation of multi-semi-joins and SGF queries using MapReduce. Section 4.7
discusses the addition of new atom types and using bag semantics; we conclude
in Section 4.8.

4.2 Related Work

Guarded Fragment Queries. Recall that first-order logic (FO) queries are
equivalent in expressive power to the relational algebra (RA) [59] and form the
core fragment of SQL queries (see, e.g., Abiteboul et al. [3]). Guarded fragment
(GF) queries have been studied extensively by the logicians in the 1990s and
2000s, and they emerged from the intensive efforts to obtain a syntactical
classification of FO queries with decidable satisfiability problems. For more
details, we refer the reader to the highly influential paper by Andréka et al. [16],
as well as survey papers by Grädel [90] and Vardi [159]. In traditional database
terms, GF queries are equivalent in expressive power to semi-join algebra [119].
Closely related are freely acyclic GF queries, which are GF queries restricted
to using only the ∧ operator and guarded existential quantifiers [144]. Flum
et al. [84] introduced the term strictly guarded fragment queries for queries
of the form ∃ȳ(α ∧ ϕ). That is, guarded fragment queries without Boolean

combinations at the outer level. We consider a slight generalization of these
queries as explained in Remark 4.5.

Query Optimization. In general, obtaining the optimal plan in SQL-like
query evaluation, even in centralized computation, is a hard problem Chaud-
huri [55] and Ioannidis [110]. Classic works by Yannakakis and Bernstein advo-

4.2. Related Work 111

cate the use of semi-join operations to optimize the evaluation of conjunctive
queries [36, 37, 168]. A lot of work has been invested to optimize query eval-
uation in Pig [1, 141], Hive [19, 105–107, 156] and SparkSQL [28, 152, 165]
(previously called Shark) as well as in MapReduce settings in general [46].
Nykiel et al. [139] develop a method for optimally grouping MapReduce jobs
that share map input and/or output based on a cost model. They show that
the optimal grouping problem is np-hard and provide a greedy heuristic. Wang
and Chan [163] built upon this work by generalizing the technique and adding
new optimizations. They also refine the proposed cost model. None of the
work referenced above targets SGF queries directly.

Semi-joins in MapReduce. Tao et al. [155] studied minimal MapReduce
algorithms, i.e., algorithms that scale linearly to the number of servers in all
significant aspects of parallel computation such as reduce compute time, bits of
information received and sent, as well as storage space required by each server.
They show that, among many other problems, a single semi-join query between
two relations can be evaluated by a one-round minimal algorithm. This is
a simpler problem, as a single basic SGF query may involve multiple semi-
join queries. Some other related work is the following: efficient MapReduce
algorithms to evaluate recursive Datalog queries [6, 11] and handling skew in
multiway joins [12]. Afrati et al. [7] introduced a generalization of Yannakakis’
algorithm (using semi-joins) to a MapReduce setting. Note that Yannakakis’
algorithm starts with a sequence of semi-join operations, which is a (nested)
SGF query in a very restricted form. Hassan and Bamha [99] present a semi-
join evaluation algorithm in the Map-Reduce-Merge framework (see Yang et
al. [167]), and address the problem of skew by sending only histograms of the
data over the network to bring down communication costs. This technique
closely resembles our tuple id optimization presented in Section 5.3.1.

Query Evaluation in MapReduce. Afrati, Sarma, Salihoglu and Ullman
obtained that the input to the reducer, i.e., the number of key-value pairs
generated are crucial factors in determining the efficiency of a MapReduce
program [8]. They defined the notion of replication rate, i.e., the average
number of key-value pairs generated by the map function from each input
tuple, and derive an interesting trade-off between replication rate and reduce
input size for specific problems such as Hamming distance 1 and triangle find-
ing. For a nice illustration, we refer the reader to Ullman’s example of drug
interaction [157]. This work was then extended to include similar tradeoffs
for some other problems [5, 148]. Afrati and Ullman introduced a MapReduce
algorithm for evaluating some specific n-ary queries in one round [9, 10]. Their
algorithm later became the precursor to the Hypercube algorithm for evaluat-
ing join queries, studied extensively by Beame, Koutris and Suciu [34, 35, 116]
in various settings such as a load-balanced setting, matching databases and

112 Parallel Evaluation of Multi-Semi-Joins

skewed databases. Some interesting lower bounds are obtained, and a system
called Myria has been developed based on their study [96]. MyriaL, the lan-
guage of Myria, consists of SQL, Datalog, and PigLatin syntaxes, which are
incompatible with the syntax of SGF queries that we consider here.

4.3 Preliminaries

4.3.1 Strictly Guarded Fragment Queries

In this section, we define the strictly guarded fragment queries (SGF) [84], but
use a non-standard, SQL-like notation for ease of readability.

We assume given a fixed infinite set D = {a, b, . . . } of data values and a
fixed collection of relation symbols S = {R,S, . . . }, disjoint with D. Every
relation symbol R ∈ S is associated with a natural number called the arity of
R. An expression of the form R(ā) with R a relation symbol of arity n and
ā ∈ Dn is called a fact. A database DB is then a finite set of facts. Hence,
we write R(ā) ∈ DB to denote that a tuple ā belongs to the R relation in
DB. Alternatively, we say a relation is a set of facts with a common relational
symbol. The number of tuples in a relation R is denoted by ‖R‖, while the
total number of bytes belonging to a relation is denoted by |R|. We also
assume given a fixed infinite set V = {x, y, . . . } of variables, disjoint from D
and S. A term is either a data value or a variable. An atom is an expression of
the form R(t1, . . . , tn) with R a relation symbol of arity n and each of the ti a
term, i ∈ [1, n]. Note that every fact is also an atom. A basic strictly guarded
fragment (BSGF) query (or just a basic query for short) is an expression of
the form

Z := SELECT x̄ FROM R(t̄) [WHERE C]; (4.1)

where x̄ is a sequence of variables that all occur in the atom R(t̄), and the
WHERE C clause is optional. If it occurs, C must be a Boolean combination of
atoms. Furthermore, to ensure that queries belong to the guarded fragment,
we require that for each pair of distinct atoms S(ū) and T (v̄) in C it must
hold that all variables in ū ∩ v̄ also occur in t̄. (See also Remark 4.5 below.)
The atom R(t̄) is called the guard of the query, while the atoms occurring in
C are called the conditional atoms. We interpret Z as the output relation of
the query.

On a database DB, BSGF query (4.1) defines a new relation Z containing
all tuples ā for which there is a substitution σ for the variables occurring in
t̄ such that σ(x̄) = ā, R(σ(t̄)) ∈ DB, and C evaluates to True in DB under
substitution σ. Here, the evaluation of C in DB under σ is defined by recursion
on the structure of C. If C is C1 OR C2, C1 AND C2, or NOT C1, the semantics
correspond to the usual Boolean interpretation. If C is an atom T (v̄) then C

4.3. Preliminaries 113

evaluates to True if σ(t̄) ∈ R(t̄) n T (v̄), i.e., if there exists a T -atom in DB
that equals R(σ(t̄)) on those positions where R(t̄) and T (v̄) share variables.

Example 4.1 (Semi-join applications). The intersection Z1 := R∩S and
the difference Z2 := R − S between two relations R and S are expressed as
follows:

Z1 := SELECT x̄ FROM R(x̄) WHERE S(x̄);

Z2 := SELECT x̄ FROM R(x̄) WHERE NOT S(x̄);

The semi-join Z3 = R(x̄, ȳ) n S(ȳ, z̄) and the antijoin Z4 = R(x̄, ȳ) � S(ȳ, z̄)
are expressed as follows:

Z3 := SELECT x̄, ȳ FROM R(x̄, ȳ) WHERE S(ȳ, z̄);

Z4 := SELECT x̄, ȳ FROM R(x̄, ȳ) WHERE NOT S(ȳ, z̄);

The following BSGF query selects all the pairs (x, y) for which (x, y, 4) occurs
in R and either (1, x) or (y, 10) is in S, but not both:

Z5 := SELECT (x, y) FROM R(x, y, 4)

WHERE (S(1, x) AND NOT S(y, 10))

OR (NOT S(1, x) AND S(y, 10));

Finally, the traditional star semi-join between R(x1, . . . , xn) and relations
Si(xi, yi), for i ∈ [1, n], is expressed as follows:

Z6 := SELECT (x1, . . . , xn) FROM R(x1, . . . , xn)

WHERE S(x1, y1) AND . . . AND S(xn, yn);

These queries illustrate the applicability of semi-joins in different types of
queries. M

Remark 4.2 (Semi-join algebra syntax). The BSGF query in Equation (4.1)
can be rewritten in semi-join algebra syntax by replacing each atom T (v̄) in
C by R(t̄)nT (v̄), and projecting the end result of C onto the coordinates x̄.3

A strictly guarded fragment (SGF) query is a collection of BSGFs of the
form

Z1 := ξ1; . . . ;Zn := ξn;

where each ξi is a BSGF that can mention any of the predicates Zj with j < i.
On a database DB, the SGF query then defines a new relation Zn where every
occurrence of Zi is defined by evaluating ξi.

114 Parallel Evaluation of Multi-Semi-Joins

Example 4.3 (Basic queries). Let Amaz, B&N, and BD be relations
containing tuples (title,author,rating) corresponding to the books found at
Amazon, Barnes and Noble, and Book Depository, respectively. Let Upcom-
ing contain tuples (newtitle, author) of upcoming books. The following query
selects all upcoming books (newtitle, author) of authors that have not yet
received a “bad” rating for the same title at all three book retailers (Z2 is the
output relation):

Z1 := SELECT aut FROM Amaz(ttl, aut, ‘bad’)

WHERE B&N(ttl, aut, ‘bad’) AND BD(ttl, aut, ‘bad’);

Z2 := SELECT (new, aut) FROM Upcoming(new, aut)

WHERE NOT Z1(aut);

Note that this query cannot be written as a basic query, since the atoms in
the query computing Z1 must share the ttl variable, which is not present in
the guard of the query computing Z2. M

Remark 4.4 (Atom types). For ease of exposition, we only allow filters that
test the equality between attributes, or between an attribute and a constant
(e.g., ‘bad’ in Amaz(ttl, aut, ‘bad’)). It is straightforward to add more ad-
vanced filters including inequalities and Boolean combinations of filters. In
Section 4.7.1 we outline how the algorithms presented in this chapter can be
extended to work with these additional atom types. 3

Remark 4.5 (Syntax and nesting depth). The syntax we use here differs from
the traditional syntax of the Guarded Fragment [84], and is actually closer in
spirit to join trees for acyclic conjunctive queries [37], although we do allow
disjunction and negation in the where clause. In the traditional syntax, a
projection in the guarded fragment is only allowed in the form ∃w̄R(x̄)∧ϕ(z̄)
where all variables in z̄ must occur in x̄. One can obtain a query in the
traditional syntax of the guarded fragment from our syntax by adding extra
projections for the atoms in C. For example,

SELECT x FROM R(x, y) WHERE S(x, z1) AND NOT S(y, z2)

becomes
∃y(R(x, y) ∧ (∃z1)S(x, z1) ∧ ¬(∃z2)S(y, z2)).

We note that this transformation increases the nesting depth of the query. 3

4.4 A Cost Model for Hadoop MapReduce

As our aim is to reduce the total cost of already parallel query plans and our
algorithms will search for the most cost-effective way to combine MapReduce

4.4. A Cost Model for Hadoop MapReduce 115

Shuffle

Map Task 1

Map Reduce

Map Task 2

Map Task n

…

Red. Task 1

Red. Task 2

Red. Task m

…

Figure 4.1: Overview of the MapReduce computation model. We identify
three different phases: map, shuffle and reduce.

jobs, we need a cost model that is able to estimate this metric for a given job.
Therefore, we first recall the MapReduce computation model (MR for short)
that we can find in a variety of frameworks that are available today. Next,
we discuss the details of the MR pipeline in the popular open-source Hadoop
framework [69, 70, 164], and present an adaptation of an existing MR cost
model [163], which is used in the algorithms discussed in Section 4.5.

4.4.1 The MapReduce Computation Model

An MR job is a pair (µ, ρ) of functions, where µ is called the map and ρ the
reduce function. The execution of an MR job on an input dataset I proceeds
in three stages, which are shown in Figure 4.1.

1. In the first stage, called the map stage, each fact f ∈ I is processed by
µ, generating a collection µ(f) of key-value pairs of the form 〈k : v〉.

2. The next stage, called the shuffle stage, is responsible for grouping
the key-value pairs generated by the map phase, i.e., the collection⋃
f∈I µ(f), by their key. The result is a collection of groups

〈k1 : V1〉 , . . . , 〈kn : Vn〉 ,

where each Vi is a set of values. We also refer to these groups as key-
valueset pairs.

3. In the final stage, called the reduce stage, each group 〈ki : Vi〉 is processed
by the reduce function ρ resulting again in a collection of values per
group. The total collection

⋃n
i=1 ρ(〈ki : Vi〉) is the final output of the

MR job.

116 Parallel Evaluation of Multi-Semi-Joins

MR jobs can be easily parallelized. Indeed, the maps can be applied in
parallel to all facts f ∈ I as the computations can be performed independently.
The same holds for the reduce function, which can be applied in parallel to
all key-valueset pairs 〈k1 : V1〉 , . . . , 〈kn : Vn〉. Hence, the amount of parallel
operations in the map phase is bounded by the number of input facts |I|; in
the reduce phase this amount is bounded by the number of distinct keys n. As
the input for a reduce function may originate from different mappers, a reduce
function cannot be applied before all map output is shuffled. Hence, the shuffle
phase serves as a synchronization point between the map and reduce phases
and could hinder the overall job progress when certain map tasks take too
long.

An MR program is a directed acyclic graph of MR jobs, where an edge from
job (µ, ρ) to (µ′, ρ′) indicates that (µ′, ρ′) operates on the output of (µ, ρ). We
refer to the length of the longest path in an MR program as its number of
rounds. Since each job must complete before the jobs that depend on it can
start, each dependency serves as an additional synchronization point (next to
the shuffle phase). Hence, when equivalent MR programs are available, those
that have less rounds may result in lower net or total times as they exhibit
less successive synchronization points.

4.4.2 MapReduce in Hadoop

While the idea behind the MR computation model is simple, executing an
MR program on a real system requires an enviroment that manages cluster
resources in a scalable way and fills in the necessary details: how are map/re-
duce functions applied? how is data transferred during the shuffle phase?
where do the input and output reside? Also, the environment should provide
a way of controlling the amount of parallelization in the map and reduce phases
to find a good balance between parallel execution and job overhead. The open-
source framework Apache Hadoop [94] is the system of our choice. We will
now discuss the internals of this system that are necessary to understand the
details of the cost model we present in Section 4.4.3.

Hadoop provides an environment for executing MR programs. Hadoop
runs on a cluster of compute nodes and offers an environment where the user
only needs to define the input data, a map function and a reduce function;
by default, everything else is handled by the framework itself. As of Hadoop
version 2, the system consists of two major components: a distributed file
system called HDFS and a resource manager called Yarn. We now briefly
discuss both components. For more details we refer to White [164].

Hadoop’s default file system offers fault-tolerant distributed file storage
and is called HDFS. Its fault-tolerance is accomplished by replicating each file
across a given number of compute nodes (3 by default). When a node fails,

4.4. A Cost Model for Hadoop MapReduce 117

︸ ︷︷ ︸
Input

︸ ︷︷ ︸
Intermediate Data

︸ ︷︷ ︸
Output

Map Phase︷ ︸︸ ︷
read→ map→ sort→ merge→

Reduce Phase︷ ︸︸ ︷
transfer→ merge→ reduce→ write

Figure 4.2: Overview of the MapReduce pipeline in Hadoop.

spare copies are still be available at alternative locations and can be used to
resume or restart calculations. As HDFS is designed to work with large files,
each file is split into so-called blocks of a predefined size (128MB by default).
These blocks can be managed (e.g., replicated) in an independent way.

Yarn is Hadoop’s resource manager and controls the scheduling of jobs.
While Yarn is also capable of executing non-MapReduce programs, we only
focus on MapReduce in this work. Yarn supports the execution of MR jobs
by first starting the required amount of map tasks. After completing the map
tasks, Yarn creates a user-defined number of reduce tasks that each fetch their
data from the mappers (shuffle phase) and apply the reduce function to it.
Both map and reduce tasks run in a Java Virtual Machine (JVM) and have
a fixed amount of memory at their disposal, which is used to read, process
and buffer the data that is operated on. It is possible to fine-tune Hadoop’s
parameters to configure it specifically for a given application or node setup.

In the remainder of this section, we discuss the individual components of
the entire Hadoop MR pipeline, which is depicted in Figure 4.2 and focus
on the parts that are important to construct an accurate cost model in the
next section. We choose to split up the pipeline into only two global phases
that correspond to the type of tasks supported by Hadoop: a map and a
reduce phase. The “missing” shuffle phase is spread across different parts
of the pipeline (sort, map-side merge, transfer and reduce-side merge). The
internals of the map phase are shown in Figure 4.3; we refer to White [164,
Figure 7-4, Chapter 7] for more details on the different stages.

Input Read

For each MR job, a set of files is associated with the map function(s). Recall
that these files are stored on HDFS in blocks of 128MB in size. For each
input split , which maps to one HDFS block by default, a map task is created.
The map task is responsible for applying the map function to the data that
resides in the aforementioned split. The map task itself will apply the map
function to the input values sequentially. This way of operation allows task
overhead to be minimized, while at the same time a sufficiently large degree
of parallelization can be obtained as multiple map tasks can run in parallel

118 Parallel Evaluation of Multi-Semi-Joins

HDFS

Input Split
(128 MB)

Key
(offset)

Value
(line contents)

Map Input Record

Map

Circular Output Buffer

Meta
Data

Record
Data

Spill Threshold

Sort

Input File
(>128 MB)

Spill
file

Spill
file Combine

External Memory Merge

Sorted
map

output

Key
(offset)

Value
(line contents)

Map Output Record

Spill
file

Local File System

Figure 4.3: Detailed overview of the Map phase.

(typically about ten per compute node, depending on the available resources).

Hadoop prefers map tasks that run on the nodes that store their input data.
These tasks are denoted data-local map tasks and aid to avoid data transfer
between nodes over the network, which is typically a costly operation.

Hadoop allows adjusting the split size, i.e., the amount of data assigned to
one map task. Care should be taken when making this change as this may have
undesired side-effects. Indeed, when an input split is bigger than an HDFS
block, the mapper may need to fetch input data from one or more different
nodes, as we cannot guarantee data locality in this case. When the split size
is too small, this may lead to a high number of mappers which cannot be
scheduled to run in parallel due to resource constraints. This may in turn lead

4.4. A Cost Model for Hadoop MapReduce 119

to increased job overhead and higher net times. We further explore this in the
form of the map shaping optimization in Section 5.3.5.

Remark 4.6 (Small input files). Sometimes, it may not be possible to avoid
small splits, e.g., when the input files all contain a tiny amount of data and are
significantly smaller than the block size. Hadoop provides several solution to
this problem such as the CombineTextInputFormat or SequenceFiles, which
can serve as a wrapper or container for a set of small files. In this work we
assume only files of significant size are considered. 3

Map

A map task (or mapper) reads input records (facts) from its corresponding
HDFS input block one by one and applies the user-defined map function to it.
By default, an input record is a key-value pair where the key is the records’s
byte position in the file and the value is a string containing the contents of
the current line.27 The user-defined map function generates a set of records
(key-value pairs) for each input. These records are collected into the map
output buffer, which has a fixed size28.

Sort, Combine & Spil

When the map output buffer fills up beyond a given threshold29, its contents
are spilled (written) to local disk (See Figure 4.3). An important caveat is
that, besides being used for the raw map output records, the buffer also stores
metadata, amounting to 16 bytes per output record [103]. This metadata is
used to indicate the boundaries of the raw key and value bytes. When output
records are relatively small, the metadata can take up a large part of the
buffer, which may lead to unexpected spilling.

Before the buffer is spilled to disk, an in-memory sort is applied to the
records to guarantee that those that have the same key and/or are destined
for the same reducer, are grouped together. More details on how the groups
are formed are given by White [164]. It is important to understand that, in
general, multiple groups/keys will be processed by the same reducer to find
a balance between parallelization and task overhead. A hash function is used
to determine the reduce task for a given key. This hash function should be
carefully chosen in order to avoid skew.

Remark 4.7 (Types of skew). Kwon et al. [117] give an overview of different
types of skew that can appear in a MapReduce application. Map-side skew can

27This behaviour can be modified to obtain a better performance.
28Hadoop setting: mapreduce.task.io.sort.mb
29Hadoop setting: mapreduce.map.sort.spill.percent

120 Parallel Evaluation of Multi-Semi-Joins

arise due to input records that take too long to process, or multiple types of
input data that each must be treated in a different way. Reduce-side skew can
arise when the records are not evenly distributed across all reducers, or when
certain key-valueset pairs require more processing time then others (expensive
input). As map and reduce code can contain arbitrary user logic, it is possible
to see the reduce-side skew methods in mappers too. 3

After sorting, an optional combiner is applied to the result of the sort.
The task of a combiner is to process the values that have the same key and
reduce the number of records and/or their size before they are written to
disk or transmitted over the network, as this reduces overhead. Often, the
combiner strongly resembles the reduce function, but the availability and the
effectiveness of a combiner both depend on the application.

Merge (Map-side)

During the map phase, the buffer contents may be spilled to disk several
times, leading to a number of different spill files that are internally sorted. To
obtain one final output file for the map task that contains a partition for each
reducer, all the spill files need to be merged. This is accomplished through
the use of an external-memory merge that operates with a merge factor30 D
in a number of rounds. When n spill files need to be merged, each round will
perform a sequence of n/D merges. Each merge step processes D spill files and
results in n/D spill files. This process repeats for dlogD ne rounds and results
in one final sorted file, containing a partition for each reducer. As each stage
involves reading and writing all map output from and to local disk, merging
is an expensive operation that, as we will see later, has a definite impact on
both net and total time. It is therefore of high importance that the number
of spill files is kept low.

When more than three spill files are present, the combiner (if specified) is
run on the intermediate outputs of a merge in order to further reduce the size
of the map output data [164, p. 198].

Transfer

When all map tasks are completed, a user-defined number of reduce tasks
(or reducers) is started. Each reducer contacts the nodes where the map
output data resides and requests its data partition.31 This phase is sometimes
called the shuffle phase. Clearly, a too high number of mappers or reducers
is undesired, as each reducer possibly needs to fetch data from every mapper,

30Hadoop setting: mapreduce.task.io.sort.factor
31The actual data is sent over the http-protocol.

4.4. A Cost Model for Hadoop MapReduce 121

creating a high overhead. On the other hand, a too low number will cause
each task to last longer, causing an increased net time. This indicates that
the number of reducers needs to be carefully chosen.

Hadoop offers an optimization that allows reducers to start when a given
percentage of mappers has been completed32. This makes data transfer pos-
sible before all mappers are finished. Note that the actual application of the
reduce function on the data values cannot start before all map tasks finish,
as all map output data for each particular reducer needs to be available to
ensure all values belonging to a particular key are present. This may lead to
reducers that are idle for a long time.

Merge (Reduce-side)

When a reduce task has received the relevant data from all mappers, the data
needs to be sorted again to ensure every key is associated with the correct
values, possibly originating from different mappers. Therefore, all map out-
puts that are received are again merged together into one sorted file using an
exernal-memory merge.

Hadoop offers an extra optimization that removes the need for the last
merge round. Indeed, the final read-write step can be removed as the output
of the final merge step can be delivered directly to the reduce function. This
is possible only when the memory requirements for the reduce function itself
are significantly low. For our reducers, this is generally the case.

Reduce

In this stage, the user-defined reduce function is applied to all key-valueset
pairs. In Hadoop, the output is again a set of key-value pairs that are writ-
ten to an output buffer. Hadoop allows output from one task to be directed
to different files, which makes it possible for the reducer to perform different
tasks on the same data and write output related to separate tasks to a sep-
arate location on HDFS. This functionality is used in our implementation in
Gumbo to calculate the result of multiple queries using only one job. The
algorithm for evaluating multiple semi-join queries in the same job (described
in Section 4.5.2) requires this behaviour.

Output Write

The output buffer for a certain reducer is written to HDFS when a threshold is
exceeded. The process of writing to HDFS consists of replicating each output
block the required number of times across nodes of the cluster. This happens

32Hadoop setting: mapreduce.job.reduce.slowstart.completedmaps

122 Parallel Evaluation of Multi-Semi-Joins

lr local disk read cost (per MB)

lw local disk write cost (per MB)

hr hdfs read cost (per MB)

hw hdfs write cost (per MB)

t transfer cost (per MB)

p penalty for map-reduce task pairs

cb map buffer metadata per record (16 bytes)

co map output metadata per record (2 bytes)

M j
i map output bytes for partition i, split j

M̂ j
i map output records for partition i, split j

Ri reduce i input bytes

R̂i reduce i input records

Ki reduce i output size (in MB)

mi number of map tasks for Ii
r number of reduce tasks

D external sort merge factor

buf map map task buffer limit (in MB)

buf red reduce task buffer limit (in MB)

Table 4.1: Description of constants used in the cost model.

through the use of a write pipeline that spans multiple nodes. For more details
on this process, we refer to White [164]. It is important to realize that this
procedure causes the cost of writing output to become significantly larger than
reading from HDFS, or reading from or writing to local disk.

4.4.3 Cost Model

As the previous section implies, the inner workings of Hadoop’s MapReduce
are more intricate than the generic map-reduce procedure. Based on the dis-
cussion of the components of Hadoop MR above, we now introduce a cost
model for analyzing the I/O complexity of an MR job based on the one intro-
duced by Nykiel et al. [139] and Wang and Chan [163] but with a distinctive
difference. The most important adaptation we introduce, and that is elab-
orated upon below, takes into account that the map function may have a
different input/output ratio for different parts of the input data.

4.4. A Cost Model for Hadoop MapReduce 123

Map Phase

The cost of a single map task consists of (i) reading the data from HDFS and
applying the map function to it, (ii) sorting, combining and merging the local
key-value pairs produced by the map function, and (iii) writing the result to
local disk. Let I1∪· · ·∪Ik denote the partition of the input tuples. Let Ni be
the size (in MB) of Ii, Mi be the size (in MB) of the intermediate data output

by the mapper on Ii and M̂i be the number of output records produced by the
mapper on Ii. For a partitioning of Ii into l input splits I1

i , . . . , I li , we denote

by N j
i the size (in MB) of Iji , by M j

i be the size (in MB) of the intermediate

data output by the mapper on Iji , and by M̂ j
i the number of output records

produced by the map function on Iji . Finally, we assume I1 ∪ · · · ∪ Ik are
chosen in such a way that the map function behaves uniformly on all facts in
each Ii, which is defined as

∀i, j : M j
i =

Mi

li
, (4.2)

where li is the number of input splits of Ii.
The cost of map task mj

i that processes input split Iji can be approximated
by the following calculation:

Cmap(N j
i ,M

j
i , M̂

j
i) = hrN

j
i + mergemap(M j

i , M̂
j
i) + lw(M j

i + coM̂
j
i). (4.3)

Here, hrN
j
i is the cost of reading the data and lw(M j

i + M̂ j
i) is the cost of

storing the output (and meta) data to local disk. The cost of map-side sorting
and merging, denoted by mergemap(Mi), is expressed by

mergemap(M j
i , M̂

j
i) = (lr + lw)M j

i logD

⌈
M j
i + cbM̂

j
i

buf map

⌉
. (4.4)

Table 4.1 gives an overview of the meaning of the variables that are used
here. Note that the costs for executing the map function, sorting the data and
applying the combiner are omitted from the calculation as they are generally
not the dominant part of the total cost. If desired, they can easily be integrated
into the existing constants or added separately.

The merge cost calculation is explained as follows. The total output of a
map task equals M j

i + cbM̂
j
i , which means that S = Mj

i +cbM̂
j
i/bufmap spill files

are created. In order to merge these files together, logD S rounds are necessary
for a merge factor D. In each round, all data is read from and written back to
local disk, explaining the (lr+ lw)M j

i factor. The following example illustrates
the calculation.

124 Parallel Evaluation of Multi-Semi-Joins

a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15a3a2a1 a16

b1 b2 b3 b4 b5 b6 b7 b8

c1 c2 c3 c4

d1 d2

e1

Figure 4.4: Illustration of an external-memory merge for 16 spill files. Each
box represent a sorted file and contains all data from the leafs below it. For
example, c1 contains all data from a1-a4. In this case, all data is read from
and written to disk four times.

Example 4.8 (Merge-cost calculation). Consider a map task whose map
output buffer threshold is exceeded (see Section 4.4.2) 16 times. This leads to
16 spill files being written to disk. We assume a merge factor of D = 2. Hence,
after the map function finishes, the files are merged in groups of two. This
means the number of files are reduces by a factor 2 after each merge-round.
In total log2 16 = 4 rounds are necessary to obtain one final output file.

In one merge-round all data from the original 16 spill files will read from
and written back to local disk. As four rounds are necessary, the merge-cost
equals 4(lr + lw)M , where M is the size of the output produced by the current
map task, or equivalently, the total size of the original spill files. Note that
the initial spill is not included in this calculation as this is covered by the lwM
term in the overall cost (Equation (4.3)).

Finally, note that
∑logD n

i=1
n
Di

= 8 + 4 + 2 + 1 = 15 groups are merged,
leading to 15 sequential (!) merge operations. M

Remark 4.9 (Rounding of logD). As opposed to the cost model used by Wang
and Chan [163], the logD factor is not rounded in the cost calculation above.
The reason for this is to compensate for Hadoop’s desire to achieve the merge
factor in the last round [164]. This means that in the first round(s), some
spill files may not be read, leading to an overestimate when rounding the log
factor upwards. For a small number of spill files not rounding leads to more
accurate results. When a large number of spill files is expected, rounding the
result may be preferable. 3

4.4. A Cost Model for Hadoop MapReduce 125

The total cost for an input partition Ii can now be calculated as follows:∑
j

Cmap(N j
i ,M

j
i , M̂

j
i),

where j ranges over the input splits of Ii. This can be further simplified:

Cmap(Ni,Mi, M̂i) =
∑
j

Cmap(N j
i ,M

j
i , M̂

j
i)

=
∑
j

(
hrN

j
i + mergemap(M j

i , M̂
j
i) + lw(M j

i + coM̂
j
i)
)

=
∑
j

hrN
j
i +

∑
j

mergemap(M j
i , M̂

j
i) +

∑
j

lw(M j
i + coM̂

j
i)

= hrNi +
∑
j

mergemap(M j
i , M̂

j
i) + lw(Mi + coM̂i).

As we assume that the map function behaves uniformly on Ii (and hence on
all input splits of Ii), we can simplify the merge cost function as follows:

mergemap(Mi, M̂i) =
∑
j

mergemap(M j
i , M̂

j
i)

=
∑
j

(
(lr + lw)M j

i logD

⌈
M j
i + cbM̂

j
i

buf map

⌉)

=
∑
j

(
(lr + lw)

Mi

mi
logD

⌈
(Mi+cbM̂i)/mi

buf map

⌉)
(Eq. 4.2)

= mi(lr + lw)
Mi

mi
logD

⌈
(Mi+cbM̂i)/mi

buf map

⌉
= (lr + lw)Mi logD

⌈
(Mi+cbM̂i)/mi

buf map

⌉
,

where mi equals the number of input splits for partition Ii. This leads to a
final map task cost calculation of

Cmap(Ni,Mi, M̂i) = hrNi + mergemap(Mi, M̂i) + lw(Mi + coM̂i), with

mergemap(Mi, M̂i) = (lr + lw)Mi logD

⌈
(Mi+cbM̂i)/mi

buf map

⌉
.

The total cost incurred in the map phase equals the sum

k∑
i=1

Cmap(Ni,Mi, M̂i). (4.5)

126 Parallel Evaluation of Multi-Semi-Joins

Note that the cost model in [139, 163] defines the total cost incurred in the
map phase as

Cmap

(
k∑
i=1

Ni,
k∑
i=1

Mi,
k∑
i=1

M̂i

)
. (4.6)

The latter is not always accurate. Indeed, consider for instance an MR job
whose input consists of two relations R and S where the map function outputs
many key-value pairs for each tuple in R, while only one or zero key-value
pairs for each tuple in S, e.g., because of filtering. This difference in map
output may lead to a non-proportional contribution of both map functions
to the total cost. Hence, as shown by Equation (4.5), we opt to consider
different inputs separately. This cannot be captured by map cost calculation
of Equation (4.6), as it considers the global average map output size in the
calculation of the merge cost. In Section 5.5, we confirm the effectiveness of
the proposed adjustment by means of an experiment. The following example
illustrates the difference between the two approaches.

Example 4.10 (Cost model differences). For this example we use a split
size of 100MB, a sort buffer of 100MB and a merge factor of 10. Suppose we
have a dataset of 1100 records, each taking up 1MB, with the following map
function: the first 100 of these records are duplicated 10 times and of the 1000
remaining records, 99% is removed. More concretely, let I = (I1, I2) with

N1 = 100, N2 = 100, M1 = 1000,M2 = 10 and M̂1 = 1000, M̂2 = 10. Then
Equation (4.5) gives us a total map cost of approximately

100hr + 1000lw + (lr + lw)1000 + 1000hr + 10lw

= 1100hr + 1010lw + (lr + lw)1000,

while Equation (4.6) only yields 1100hr+1010lw. Clearly, the averaging of the
map output in the second case fails to account for the merge cost, which is
rather significant in this case. Admittedly, this is an extreme example, but
even in more common scenario’s this may lead to significant errors in the cost
estimations. M

Reduce Phase

Recall that the reduce stage involves (i) transferring the intermediate data
(i.e., the output of the map function) to the correct reducer, (ii) merging the
key-value pairs locally for each reducer, (iii) applying the reduce function, and
(iv) writing the output to HDFS.

In order to analyze the cost in the reduce phase, let J denote the map
output data, R =

∑k
i=1Mi denote the total reducer input size (in MB), K the

total reducer output size (in MB). Furthermore, Let r be the number of reduce

4.4. A Cost Model for Hadoop MapReduce 127

tasks that is created for the MR job and let J1, . . . ,Jr denote a partition of
J such that the key-value pairs in Ji are processed by reduce task i. Also,
let Ri denote the size of Ji (in MB) and Ki the number of output bytes (in
MB).

The cost of a reduce task can now be calculated as follows:

Cred(Ri,Ki) = tRi + pmr + mergered(Ri) + hwKi,

where the cost of merging equals

mergered(Ri) = (lr + lw)Ri logD

⌈
Ri

buf red

⌉
.

The main cost consists of three parts. Transferring the input from the mappers
to the reducer takes tRi + pmr, merging the map outputs takes mergered(Ri),
and writing the final output to HDFS takes hwKi. The cost for transferring
has an extra term pmr, which is the penalty for a high number of mappers m
and/or reducers r. We omit the cost for applying the reduce function, as its
cost is generally not dominant. If desired, it can easily be incorporated into
the existing constants or added as a separate term.

Note that there is a slight difference in the merge part when compared
to the map phase. When n chunks need to merged using an external merge
with factor D, the process is as follows. First, all data is written to disk.
Next, logD n levels are necessary to obtain a final sorted file on disk. In
order to apply the reduce function on this data, the file is read one final time.
Hence, all n chunks are written and read logD n + 1 times. Hadoop offers an
optimization33 that causes the final merge step to be skipped. The result of
the merge is then fed directly to the reduce function, avoiding an additional
read and write. Hence, when this optimization is active, all data is read and
written logD n times. In what follows, we assume the optimization is active.
When this is not the case, an extra read cost can easily be added to the cost
calculation by re-adding 1 to the log factor.

Remark 4.11 (Reduce-side merge skip). The optimization that skips the final
merge step is not activated by default in Hadoop. The reason for this is that
Hadoop assumes the reduce function needs all memory made available to the
reduce task. However, most of the time this is not the case and enabling
the optimization offers a significant increase in reducer performance. For the
algorithms presented in Section 4.5, the reduce function has a low memory
footprint and can therefore benefit from the optimization. 3

When the intermediate data is divided equally among the reduce tasks,
i.e., ∀i, j : Ri = Rj , or ∀i : M ′i = R/mi the total cost for the reduce phase

33Hadoop setting: mapreduce.reduce.merge.inmem.threshold

128 Parallel Evaluation of Multi-Semi-Joins

becomes:

Cred(R,K) =
∑
i

Cred(Ri,Ki)

=
∑
i

(tRi + mergered(Ri) + hwKi)

=
∑
i

tRi +
∑
i

mergered(Ri) +
∑
i

hwKi

= tR+ mergered(R) + hwK,

with

mergered(R) =
∑
i

mergered(Ri)

=
∑
i

(
(lr + lw)Ri logD

⌈
Ri

buf red

⌉)
=
∑
i

(
(lr + lw)

R

r
logD

⌈
R/r

buf red

⌉)
= r(lr + lw)

R

r
logD

⌈
R/r

buf red

⌉
= (lr + lw)

R

r
logD

⌈
R/r

buf red

⌉
.

Hence, the total cost incurred in the reduce phase equals

Cred(R,K) = tR+ mergered(R) + hwK, with

mergered(R) = (lr + lw)R logD

⌈
R/r

buf red

⌉
.

Total Cost

The total cost of an MR job can be approximated by

Chead +
k∑
i=1

Cmap(Ni,Mi, M̂i) + Cred(
k∑
i=1

Mi,K),

where Chead is the overhead cost of starting an MR job.

We can briefly summarize the differences with the cost model in [163] as fol-

lows. First, we explicitly incorporate the meta-data M̂i into the cost mergemap.
Second, we characterize the reduce function in a slightly different way. Third,
we offer a way of penalizing a large number of mappers and/or reducers, which

4.5. Parallel MSJ and SGF Evaluation 129

may cause significant overhead during the transfer stage. Fourth, we incorpo-
rate the cost of writing the output of reduce phase, which in [163] is omitted
as the focus is one-round MR jobs. When estimating the cost of MR programs
that consists of a sequence of jobs this cost can be significant as different MR
jobs may yield a different amount of data passed from one round to the next.
Furthermore, this data is written to HDFS, which incurs a higher cost than
writing to the local file system, or reading from HDFS. Finally, we offer a
partition of map input to account for non-uniform applications of the map
function. This can greatly affect the total cost in certain situations as was
demonstrated in Example 4.8.

4.5 Parallel MSJ and SGF Evaluation

In this section, we describe how SGF queries can be evaluated using MapRe-
duce (MR). We start by introducing some necessary building blocks in Sec-
tion 4.5.1 to 4.5.3, and describe the evaluation of BSGF queries and multiple
BSGF queries in Sections 4.5.4 and 4.5.5, respectively. These are then gener-
alized to the full fragment of SGF queries in Sections 4.5.6 and 4.5.7.

First, we introduce some additional notation. We say that a tupleā =
(a1, . . . , an) ∈ Dn of n data values conforms to a vector t̄ = (t1, . . . , tn) of
terms, if

1. ∀i, j ∈ [1, n], ti = tj implies ai = aj ; and,

2. ∀i ∈ [1, n] if ti ∈ D, then ti = ai.

For instance, (1, 2, 1, 3) conforms to (x, 2, x, y). Likewise, a fact T (ā) conforms
to an atom U(t̄) if T = U and ā conforms to t̄. We write T (ā) |= U(t̄) to
denote that T (ā) conforms to U(t̄). If f = R(ā) is a fact conforming to an
atom α = R(t̄) and x̄ is a sequence of variables that occur in t̄, then the
projection πα;x̄(f) of f onto x̄ is the tuple b̄ obtained by projecting ā on the
coordinates in x̄. For instance, let f = R(1, 2, 1, 3) and α = R(x, y, x, z).
Then, R(1, 2, 1, 3) |= R(x, y, x, z) and hence πα;x,z(f) = (1, 3).

4.5.1 Evaluating One Semi-join

As a warm-up, let us explain how single semi-joins can be evaluated in MR.
A single semi-join is a query of the form

Z := SELECT w̄ FROM α WHERE κ; (4.7)

where both α and κ are atoms. For notational convenience, we will denote
this query simply by πw̄

(
αn κ

)
.

130 Parallel Evaluation of Multi-Semi-Joins

Algorithm 8 SJ
(
πw̄
(
αn κ

))
– Single semi-join calculation in MapReduce.

1: function Map(fact f)
2: if f |= α then
3: emit 〈πα;z̄(f) : [Reqκ;Outπα;w̄(f)]〉
4: if f |= κ then
5: emit 〈πκ;z̄(f) : [Assertκ]〉

6: function Reduce(〈k : V 〉)
7: if V contains [Assertκ] then
8: for all [Reqκ;Out ā] in V do
9: output ā

To evaluate Query (4.7), one can use the following one-round repartition
join [46], which is depicted in Algorithm 8. The mapper distinguishes between
guard facts (i.e., facts in DB conforming to α) and conditional facts (i.e., facts
in DB conforming to κ). Specifically, let z̄ be the join key, i.e., those variables
occurring in both α and κ. For each guard fact f such that f |= α, the mapper
emits the key-value pair

〈πα;z̄(f) : [Reqκ;Outπα;w̄(f)]〉 .

Intuitively, this pair is a request message sent by guard fact f to request
whether a conditional fact g |= κ with πκ;z̄(g) = πα;z̄(f) exists in the database,
stating that if such a conditional fact exists, the tuple πα;w̄(f) should be
output. Conversely, for each conditional fact g |= κ, the mapper emits a
message of the form

〈πκ;z̄(g) : [Assertκ]〉 ,

asserting the existence of a κ-conforming fact in the database with join key
πκ;z̄(g). On input

〈
b̄ : V

〉
, the reducer outputs all tuples ā to relation Z

for which [Reqκ;Out ā] ∈ V , provided that V contains at least one assert
message. The final MR program is shown in Algorithm 8.

Example 4.12 (Single semi-join in MapReduce). Consider the query

Z := πx(R(x, z) n S(z, y))

and let I contain the facts {R(1, 2), R(4, 5), S(2, 3)}. Then the mapper emits
the key-value pairs

〈2 : [ReqS(z, y);Out 1]〉 ;
〈5 : [ReqS(z, y);Out 4]〉 ; and,
〈2 : [AssertS(z, y)]〉 ;

4.5. Parallel MSJ and SGF Evaluation 131

which after reshuffling result in the groups

〈5 : {[ReqS(z, y);Out 4]}〉 ; and,
〈2 : {[ReqS(z, y);Out 1], [AssertS(z, y)]}〉 .

Only the reducer processing the second group produces an output, namely the
fact Z(1). M

The algorithm outlined above can be improved in several aspects. First,
notice that both guard and conditional tuples are sent over the network exactly
once. It is possible for multiple messages, originating from different facts, to
share the same key and sometimes even the same value. When this is the
case, a combiner can be used for packing messages together and reducing
the map output. Secondly, the reducer for this algorithm needs to store all
messages in its memory before processing can begin. It can be transformed
into a constant memory (streaming) reducer by ensuring that assert messages
always appear first. These optimizations are called packing and streaming
reducers, respectively, and are discussed more in-depth in Section 5.3.4.

Cost analysis. To compare the cost of separate and combined evaluation
of multiple semi-joins in the next section, we first illustrate how to analyze
the cost of evaluating a single semi-join using the cost model described in
Section 4.4. Hereto, let |α| and |κ| denote the total size of all facts that
conform to α and κ, respectively. Five values are required for estimating the
total cost: N1, N2,M1,M2 and K. We can now choose M1 = |α| and M2 = |κ|.
For simplicity, we assume that key-value pairs output by the mapper have the
same size as their corresponding input tuples, i.e., N1 = M1 and N2 = M2.34

Finally, the output size K can be approximated by its upper bound N1.

4.5.2 Evaluating a Collection of Semi-joins

Since a BSGF query is essentially a Boolean combination of semi-joins, it can
be computed by first evaluating all semi-joins followed by the evaluation of
the Boolean combination. In the present section, we introduce a single-job
MR program MSJ that evaluates a set of semi-joins in parallel using only one
MR job. In the next section we introduce the single-job MR program EVAL
to evaluate the Boolean combination.

We introduce a unary multi-semi-join operator n·(S) that takes as input
a set of expressions S = {X1 := πx̄1

(
α1 n κ1

)
, . . . , Xn := πx̄n

(
αn n κn

)
}. It

is required that the Xi are all pairwise distinct and that they do not occur

34It is important to note that Gumbo, the system used in our experiments, does not make
this simplifying assumption, but uses sampling to estimate M1 and M2 (see Section 5.4.2).

132 Parallel Evaluation of Multi-Semi-Joins

in any of the right-hand sides. The semantics are straightforward: the oper-
ator computes every semi-join πx̄i

(
αi n κi

)
in S and stores the result in the

corresponding output relation Xi.

We now expand the MR job described in Section 4.5.1 into a job that
computes n·(S) by evaluating all semi-joins in parallel. Let z̄i be the join key
of semi-join πx̄i

(
αi n κi

)
. Algorithm 9 shows the single MR job MSJ(S) that

evaluates all n semi-joins at once. More specifically, MSJ simulates the repar-
tition join [46] of Algorithm 8, but outputs all request messages for the guard
facts at once (i.e., those facts conforming to one of the αi for i ∈ [1, n]). Simi-
larly, all assert messages are generated simultaneously for the conditional facts
(i.e., those facts conforming to one of the κi for i ∈ [1, n]). The reducer then
reconciles the messages concerning the same κi. That is, on input

〈
b̄ : V

〉
, the

reducer outputs the tuple ā to relation Xi for which [Req (κ, i);Out ā] ∈ V ,
provided that V contains at least one assert message of the form [Assertκ].
The output therefore consists of the relations X1, . . . , Xn, with each Xi con-
taining the result of evaluating πx̄i

(
αi n κi

)
. Recall that the MapReduce

framework in Hadoop allows for writing output to different files from a single
reduce task, which is necessary to obtain the desired behavior.

Combining the evaluation of a collection of semi-joins into a single MSJ
job avoids the overhead of starting multiple jobs, reads every input relation
only once and can reduce the amount of communication by packing similar
messages together (see Section 5.3.2). At the same time, grouping all semi-
joins together can potentially increase the average load of map and/or reduce
tasks, which directly leads to an increased net time. These trade-offs are made
more apparent in the cost analysis below and are taken into account in the
algorithm Greedy-BSGF introduced in Section 4.5.4.

As was the case for the single semi-join MR program, this algorithm can
also benefit from streaming optimizations (see Section 5.3), next to the packing
optimization mentioned above.

Cost analysis. We consider the scenario where one relation is semi-joined
with a set of relations, i.e., κi’s are all different atoms, but α1 = · · · = αn = α.
This scenario will be useful for our later analysis. Similar calculations can be
performed for other scenarios. As before, to avoid clutter, we assume that the
size of the key-value pair is the same as the size of the conforming input fact,
and that every input tuple in the relation of α conforms to α, and every input
tuple in the relation of κi conforms to κi. Then, for a set of input expressions

4.5. Parallel MSJ and SGF Evaluation 133

Algorithm 9 MSJ(X1 := πx̄1
(
α1nκ1

)
, . . . , Xn := πx̄n

(
αnnκn

)
) Multi-semi-

join calculation in MapReduce.

1: function Map(fact f)
2: buff = []
3: for every i such that f |= αi do
4: add 〈παi;z̄i(f) : [Req (κi, i);Outπαi;x̄i(f)]〉 to buffer

5: for every i such that f |= κi do
6: add 〈πκi;z̄i(f) : [Assertκi]〉 to buffer

7: emit buffer

8: function Reduce(〈k : V 〉)
9: for all [Reqκi;Out ā] in V do

10: if V contains [Assertκi] then
11: output ā to Xi

S, the cost of MSJ(S), denoted by C(MSJ(S)), equals

Chead + Cmap(|α|, n|α|, n‖α‖) +
n∑
i=1

Cmap(|κi|, |κi|, ‖κi‖)

+ Cred
(
n|α|+

n∑
i=1

|κi|,
n∑
i=1

|Xi|
)
, (4.8)

where |Xi| equals the size of the output relation Xi in MB and ‖Xi‖ equals
the number of records in Xi. If we evaluate each Xi in a separate MR job, the
total cost equals

n∑
i=1

(
Chead + Cmap(|α|, |α|, ‖α‖) + Cmap(|κi|, |κi|, ‖κi‖)
+ Cred(|α|+ |κi|, |Xi|)

)
. (4.9)

So evaluating all Xi’s in one MR job is more efficient than evaluating each Xi

in a separate MR job if and only if the resulting cost obtained using Equa-
tion (4.8) is less than that of Equation (4.9).

4.5.3 Evaluating Boolean Combinations

Let X0, X1, . . . Xn be relations with the same arity and let ϕ be a Boolean
formula over X1, . . . Xn. Algorithm 10 depicts the straightforward MR pro-
gram that evaluates X0 ∧ ϕ in a single job: on each fact Xi(ā), the mapper
emits 〈ā : i〉. The reducer hence receives pairs 〈ā : V 〉 with V containing all
the indices i for which ā ∈ Xi, and outputs ā only if the Boolean formula,

134 Parallel Evaluation of Multi-Semi-Joins

obtained from X0 ∧ ϕ by replacing every Xi with True if i ∈ V and False

otherwise, evaluates to True. For instance, if ϕ = X1 ∧X2 ∧¬X3, it will emit
ā only if V contains 0, 1 and 2 but not 3.

We denote this MR job as EVAL(X0, ϕ). We emphasize that multiple
Boolean formulas Y1 ∧ ϕ1, . . . , Yn ∧ ϕn with distinct sets of variables can be
evaluated in one MR job which we denote as EVAL(Y1, ϕ1, . . . , Yn, ϕn). The
resulting algorithm can be obtained from Algorithm 10 by adding an iteration
over the formula’s ϕ1, . . . , ϕn in the reducer. It should be clear that atoms
that appear multiple times, possibly in different formulas, generate at most
one message per input fact, as opposed to multiple when the formulas are
evaluated by separate MR jobs.

Algorithm 10 EVAL(ϕ) – MapReduce program for evaluating one Boolean
combination.

Require: ϕ = BC(X1, . . . , Xn)

1: function Map(Fact f)
2: for all Xi do
3: if f |= Xi then
4: emit 〈f : i〉

5: function Reduce(〈k : V 〉)
6: for all Xi do
7: if i ∈ V then
8: Xi ← True

9: else
10: Xi ← False

11: if eval(ϕ) then
12: output k

Cost analysis. Let |Xi| be the size of relation Xi in MB and ‖Xi‖ be the
number of records in Xi. The cost of an EVAL job with input relations
X1, . . . , Xn can then be approximated as follows:

C(EVAL(ϕ)) = Chead +
n∑
i=0

Cmap(|Xi|, |Xi|, ‖Xi‖)

+ Cred
(n∑
i=0

|Xi|, |ϕ|
)
, (4.10)

where |ϕ| is the size of the output.

4.5. Parallel MSJ and SGF Evaluation 135

4.5.4 Evaluating BSGF Queries

We now have the building blocks to discuss the evaluation of basic strictly
guarded fragment (BSGF) queries. Consider the following BSGF query Q:

Z := SELECT w̄ FROM R(t̄) WHERE C.

Here, C is a Boolean combination of conditional atoms κi, for i ∈ [1, n],
that can only share variables occurring in t̄. Note that it is implicit that
κ1, . . . , κn are all different atoms. Furthermore, let S be the set of equations
{X1 := πw̄

(
R(t̄) n κ1

)
, . . . , Xn := πw̄

(
R(t̄) n κn

)
} and let ϕC be the Boolean

formula obtained from C by replacing every conditional atom κi by Xi. Then,
for every partition {S1, . . . ,Sp} of S, the following MR program computes Q:

EVAL(R,ϕC)

MSJ(S1) . . . MSJ(Sp)

We refer to any such program as a basic MR program for Q. Notice that all
MSJ jobs can be executed in parallel. So, the above program consists in fact
of two rounds, but note that there are p + 1 MR jobs in total: one for each
MSJ(Si), and one for EVAL(ϕC).

Example 4.13 (Alternative query plans). Figure 4.5 shows three alter-
native basic MR programs for the following query:

Z := SELECT x, y FROM R(x, y)

WHERE S(x, z) AND (T (y) OR NOT U(x)) (4.11)

In alternative (a), all semi-joins X1, X2, X3 are evaluated as separate MR
jobs. In alternative (b), X1 and X3 are computed in one MR job, while
X2 is computed separately. In alternative (c), all semi-joins X1, X2, X3 are
computed in a single MR job. M

Cost analysis. When S is partitioned into S1 ∪ · · · ∪ Sp, the cost of the MR
program is:

C(EVAL(R,ϕC)) +

p∑
i=1

C(MSJ(Si)), (4.12)

where C(MSJ(Si)) is as in Equation (4.8).

Computing the optimal partition. By BSGF-Opt we denote the problem
that takes a BSGF query Q as above and computes a partition S1∪· · ·∪Sp of S

136 Parallel Evaluation of Multi-Semi-Joins

EVAL
Z := X1 ∧ (X2 ∨ ¬X3)

MSJ
X1 := R(x, y) n S(x, z)

MSJ
X2 := R(x, y) n T (y)

MSJ
X3 := R(x, y) n U(x)

(a)

EVAL
Z := X1 ∧ (X2 ∨ ¬X3)

MSJ
X1 := R(x, y) n S(x, z)
X3 := R(x, y) n U(x)

MSJ
X2 := R(x, y) n T (y)

(b)

EVAL
Z := X1 ∧ (X2 ∨ ¬X3)

MSJ
X1 := R(x, y) n S(x, z)
X2 := R(x, y) n T (y)
X3 := R(x, y) n U(x)

(c)

Figure 4.5: Some MapReduce query plan alternatives for the query given in
Example 4.13.

such that its total cost as computed in Equation (4.12) is minimal. The Scan-
Shared Optimal Grouping, which is known to be np-hard, is reducible to
this problem (see Nykiel et al. [139]). Stating it formally, we have:

Theorem 4.14. The decision variant of BSGF-Opt is np-complete.

Greedy heuristic. While for small queries the optimal solution can be found
using a brute-force search, for larger queries we adopt the fast greedy heuristic
introduced by Wang et al. [163]. For two disjoint subsets Si,Sj ⊆ S, define:

gain(Si,Sj) = C(Si) + C(Sj)− C(Si ∪ Sj).

That is, gain(Si,Sj) denotes the reduction in cost obtained by evaluating
Si ∪ Sj in one MR job rather than evaluating each of them separately. For
a partition S1 ∪ · · · ∪ Sp, our heuristic algorithm greedily finds a pair i, j ∈
[1, p] × [1, p] such that i 6= j and gain(Si,Sj) > 0 is the greatest. If there is
such a pair i, j, we merge Si and Sj into one set. We start with the trivial
partition S1∪ · · ·∪Sn, where each Si = {Xi := πw̄

(
R(t̄)nκi

)
} and repeat this

procedure until there is no pair i, j for which gain(Si,Sj) > 0. We refer to this
algorithm as Greedy-BSGF. For a BSGF query Q, we denote by OPT(Q)
the optimal (least cost) basic MR program for Q, and by GOPT(Q) we denote
the program computed by Greedy-BSGF.

4.5. Parallel MSJ and SGF Evaluation 137

4.5.5 Evaluating Multiple BSGF Queries

The approach presented in the previous section can be readily adapted to
evaluate multiple BSGF queries. Indeed, consider a set of n BSGF queries,
each of the form

Zi := SELECT w̄i FROM Ri(t̄i) WHERE Ci

where none of the Ci can refer to any of the Zj . A corresponding MR program
is then of the following form:

EVAL(R1, ϕC1 , . . . ,Rn, ϕCn)

MSJ(S1) . . . MSJ(Sp)

The EVAL job is as described in Section 4.5.3. The child nodes constitute a
partition of all the necessary semi-joins. Again, ϕCi is the Boolean formula
obtained from Ci. We assume that the set of variables used in the Boolean
formulas are disjoint. For a set of BSGF queries F , we refer to any MR
program of the above form as a basic MR program for F , whose cost can
be computed in a similar manner as above. The optimal basic MR program
for F and the program computed by the greedy algorithm of Section 4.5.4 are
denoted by OPT(F) and GOPT(F), respectively, and their costs are denoted
by C(OPT(F)) and C(GOPT(F)).

Remark 4.15 (Parallel EVAL jobs). While it is technically possible to exe-
cute parallel eval jobs, we choose not to focus on this optimization as (i) the
round 1 reducers would need to output to multiple files, causing more overhead
and smaller files, and (ii) the round 2 mappers would need to read in multiple
smaller files, potentially causing the load of a map task to drop. Note that
this reasoning assumes that Hadoop is used for MapReduce evaluation and
other systems may not exhibit these disadvantages. Hence, parallelization of
the EVAL job is worthwile to consider it as possible future work. 3

4.5.6 Evaluating SGF Queries

Next, we turn to the evaluation of SGF queries. Recall that an SGF query Q
is a sequence of basic queries of the form:

Z1 := ξ1; . . . ;Zn := ξn; (‡)

where each ξi can refer to the relations Zj with j < i. We denote the BSGF
Zi := ξi by Qi. The most naive way to compute Q is to evaluate the BSGF

138 Parallel Evaluation of Multi-Semi-Joins

queries in Q sequentially, where each ξi is evaluated using the approach de-
tailed in the previous section. This leads to a 2n-round MR program. We
would like to have a strategy that aims at decreasing the total time by allowing
parallel evaluation and by combining the evaluation of different independent
subqueries.

To this end, let GQ be the dependency graph induced by Q. That is, GQ
consists of n nodes (one for each BSGF query) and there is an edge from Qi
to Qj if relation Zi is mentioned in ξj . A multiway topological sort (MTS) of
the dependency graph GQ is a sequence (F1, . . . , Fk) such that

1. {F1, . . . , Fk} is a partition of the nodes in GQ;

2. if there is an edge from node u to node v in GQ, then u ∈ Fi and v ∈ Fj
such that i < j.

Notice that any multiway topological sort (F1, . . . , Fk) of GQ provides a valid
ordering to evaluate Q, i.e., all the queries in Fi are evaluated before Fj when-
ever i < j.

Example 4.16. Let us illustrate the latter by means of an example. Consider
the following SGF query Q:

Q1 : Z1 := SELECT x, y FROM R1(x, y) WHERE S(x)

Q2 : Z2 := SELECT x, y FROM Z1(x, y) WHERE T (x)

Q3 : Z3 := SELECT x, y FROM Z2(x, y) WHERE U(x)

Q4 : Z4 := SELECT x, y FROM R2(x, y) WHERE T (x)

Q5 : Z5 := SELECT x, y FROM Z3(x, y) WHERE Z4(x, x)

The dependency graph GQ is as follows:

Q5

Q4

Q3 Q2 Q1

There are four possible multiway topological sorts of GQ:

1. ({Q1, Q4}, {Q2}, {Q3}, {Q5}),
2. ({Q1}, {Q2, Q4}, {Q3}, {Q5}),
3. ({Q1}, {Q2}, {Q3, Q4}, {Q5}), and
4. ({Q1}, {Q2}, {Q3}, {Q4}, {Q5}). M

Let F = (F1, . . . , Fk) be a topological sort of GQ. Since the optimal pro-
gram OPT(Fi), defined in Section 4.5.5, is intractable (due to Theorem 4.14),

4.5. Parallel MSJ and SGF Evaluation 139

we will use the greedy approach to evaluate Fi, i.e., GOPT(Fi) as defined in
Section 4.5.5. The cost of evaluating Q according to F is

C(F) =

k∑
i=1

C(GOPT(Fi)) (4.13)

We define the optimization problem SGF-Opt that takes as input an SGF
query Q and constructs a multiway topological sort F of GQ with minimal
C(F). Unfortunately, SGF-Opt is also hard (proof is given in Section 4.6.1):

Theorem 4.17. The decision variant of SGF-Opt is np-complete.

Greedy heuristic. In the following, we present a novel heuristic for com-
puting a multiway topological sort of an SGF query that tries to maximize
the overlap between queries. To this end, we define the overlap between a
BSGF query Q and a set of BSGF queries F , denoted by overlap(Q,F), to be
the number of relations occurring in Q that also occur in F . For instance, in
Example 4.16, the overlap between Q2 and {Q1, Q3, Q4, Q5} is 1 as they share
only relation T .

Consider the following algorithm Greedy-SGF that computes a multi-
way topological sort F of an SGF query Q. Initially, all the vertices in the
dependency graph GQ are colored blue and X = (). The algorithm repeatedly
performs the iteration shown in Algorithm 11 with the invariant that X is a
multiway topological sort of the red vertices in G. The iteration stops when
every vertex in GQ is red, and hence, X is a multiway topological sort of GQ.
Clearly, the number of iterations is n, where n is the number of vertices in GQ.
Each iteration takes O(n2), which means that our heuristic algorithm above
runs in O(n3) time.

As mentioned above, the resulting partition of BSGF queries can then
be evaluated using the MapReduce plan obtained from GOPT. Note that a
dynamic evaluation strategy may consists of re-running Greedy-SGF after
each BSGF evaluation, in order to obtain an updated MR plan. While this
naive approach of re-calculating the MR plan certainly works, an incremental
approach that avoids redundant calculation costs is preferred.

Remark 4.18 (Future overlap). Note that it is possible for multiple red ver-
tices to have maximal overlap. In this case, an arbitrary node can be chosen.
A possible improvement consists of using an extra measure called future over-
lap, which is defined as follows. The future overlap of a vertex v ∈ D equals
overlap(v,D′), where D′ contains all vertices v′ of GQ such that v′ /∈ D and
there is no path from v′ to v in GQ. This corresponds to the overlap that exists
with independent queries that will be scheduled at a later point. Intuitively,

140 Parallel Evaluation of Multi-Semi-Joins

Algorithm 11 One iteration of Greedy-SGF.

1. Suppose X = (F1, . . . , Fm), and GQ still contains blue vertices.

2. Let D be the set of those blue vertices in GQ for which none of the
incoming edges are from other blue vertices.

(Due to the acyclicity of GQ, the set D is non-empty if GQ still has blue
vertices.)

3. Find a pair (u, Fi) such that u ∈ D, (F1, . . . , Fi ∪ {u}, . . . , Fm) is a
topological sort of the vertices {u}∪

⋃
Fi, and overlap(u, Fi) is non-zero.

4. If such a pair (u, Fi) exists, we pick one with maximal overlap(u, Fi),
and set X = (F1, . . . , Fi ∪ {u}, . . . , Fm).

Otherwise, we set X = (F1, . . . , Fm, {u}).

5. Color the vertex u red. root

Z2(t2, a) := Upcoming(t2, a) n ¬Z1(a)

Z1(a) := Amaz(t1, a, ‘bad
′) n B&N(t1, a, ‘bad

′) ∧ BD(t1, a, ‘bad
′)

Y2(t4) := Amaz(t4, a, r) n Y1(a)

Y1(a) := Upcoming(t3, a) n Movie(t3)

Figure 4.6: Example SGF queries.

a larger future overlap indicates more overlap possibilities at a later stage.
For this reason, among all queries that have maximal overlap, the ones with
minimal future overlap are preferred. 3

4.5.7 Evaluating Multiple SGF Queries

Evaluating a collection of SGF queries can be done in the same way as evalu-
ating one SGF query. Indeed, we can simply consider the union of all BSGF
subqueries. Note that evaluating multiple subqueries in parallel allows for ex-
ploiting potential overlaps between the queries, potentially bringing down the
overall total and/or net time.

Example 4.19 (Multiple SGF queries). Consider the two SGF queries in
Figure 4.6. The first query is the same as the one in Example 4.3 and selects
the titles of authors of upcoming books that don’t have a bad rating on all
websites. The second query selects the books of Amazon authors that have
an upcoming book that is going to become a movie.

We can evaluate the queries all in parallel or one at a time (sequentially).
But, as the queries have common input relations, we can treat them as one

4.6. Decision Problems 141

collection of BSGF queries and take advantage of the techniques above. One
possible grouping of the BSGF queries is

({Z1, Y1}, {Z2, Y2}), (4.14)

which leads to groups that have no common input relations. Two other pos-
sibilities are

({Z1}, {Z2, Y1}, {Y2}), or

({Y1}, {Z1, Y2}, {Z2}),

which both show overlap in the queries in their second group that can possibly
benefit the total execution time. Note, however, that the net time will prob-
ably increase, as the dependencies between the queries require both of these
plans to take 3 × 2 = 6 MapReduce rounds, as opposed to 2 × 2 = 4 rounds
for the grouping in Equation (4.14). M

4.6 Decision Problems

In this section, we first show that the SGF-Opt problem is np-complete. Next,
for completeness, we focus on a related problem that involves minimizing the
number of input reads, and show that this problem too is np-complete.

4.6.1 SGF-Opt is NP-complete

To prove Theorem 4.17, we consider a more general problem. The same tech-
nique can then be used to prove the original theorem. We define the opti-
mization problem Subset Cost-Opt that takes as input a set S and a cost
function w : 2|S| → N, and constructs a partition S = {S1, . . . , Sn} of S such
that

∑
Si∈S w(Si) is minimized. The decision version of Subset Cost-Opt,

denoted by Subset Cost, corresponds to deciding, for a given positive in-
teger k, whether there exists a partition S = {S1, . . . , Sn} of S such that∑n

i w(Si) = k. We now prove the np-completeness of Subset Cost.

Theorem 4.20. The Subset Cost problem is np-complete.

Proof. The problem is clearly in np, as a given solution can be verified in
polynomial time. We prove that this problem is np-complete by a providing a
polynomial time reduction from the Subset Sum problem, which consists of
deciding, for given an integer k and a set of positive integers A, whether there
exists a set B ⊆ A such that

∑
b∈B b = k. This problem is np-complete [86].

The reduction is as follows. Given an instance of the subset sum problem,
i.e., a set of integers A and an integer k, we construct the following instance

142 Parallel Evaluation of Multi-Semi-Joins

of Subset Cost: The set of items S equals A ∪ {◦}, where ◦ is an element
not present in A, and the cost function w : 2S → S is defined as

w(X) =

{
γ if ◦ ∈ X∑

a∈X a otherwise
(4.15)

Here, γ is an arbitrary constant. Intuitively, w takes the sum of all items in
a given set, except when the set contains the special item ◦. In that case, the
value will be a fixed number γ.

In the remainder of this proof, we show that there exists a B ⊆ A such
that

∑
b∈B b = k iff there exists a partition S = {S1, . . . , Sn} of S such that∑n

i w(Si) = k + γ.
Suppose there exists a partition S = {S1, . . . , Sn} of S such that

n∑
i

w(Si) = k + γ.

Now, select the element of the partition that contains ◦, say S◦, and remove it
from the partition to obtain a partition S ′ for S \ S◦. Now, let B =

⋃
S ′ and

note that B ⊆ A. Clearly, the sum of the elements in B equals k+ γ − γ = k,
as the cost of the removed element equals γ by Equation (4.15). Hence, B is
a k-cost subset of A.

Suppose there exists aB ⊆ A such that
∑

b∈B b = k. Consider the partition
S = {B,C} of S, where C = (A \ B) ∪ {◦}. As w(B) = k and w(C) = γ, we
have a total cost of k + γ. �

We conclude this section by providing a proof for Theorem 4.17. Consider
the decision version of SGF-Opt, which we will denote by SGF: for a DAG
of BSGF queries GQ and a positive integer k, determine whether there exists
a multiway topological sort F of GQ with C(F) = k. We obtain the following:

Theorem 4.21. The SGF problem is np-complete.

Proof. We can verify a solution for this problem in the following way: given
a multiway topological sort F and a positive integer k, we can calculate its
total cost using Equation (4.13), i.e.,

C(F) =

k∑
i=1

C(GOPT(Fi)),

and check whether it equals k. As the greedy algorithm Greedy-BSGF for
GOPT runs in polynomial time, the total cost can be calculated in polynomial
time as well and hence the problem is in np.

4.6. Decision Problems 143

We now provide a polynomial time reduction from Subset Sum to SGF.
Given an instance of the Subset Sum problem consisting of a set of positive
integers A = {a1, . . . , an} and a positive integer k, we construct the following
instance for SGF. Let R1, . . . , Rn, R

◦ be a set of binary relations containing no
tuples, a set of relations S1, . . . , Sn be a set of binary relations where |Si| = ai,
each tuple has a size of 1MB and every second field has value 0. Also, consider
a set of BSGF queries F = {f1, . . . , fn, f

◦}, where fi equals Ri(xi, yi)nSi(xi, 1)
and

f◦ = R◦(x, 1) nR1(x1, y1) ∧ . . . ∧Rn(xn, yn) ∧ S1(x1, 1) ∧ . . . ∧ Sn(x1, 1).

Notice that there are no dependencies between the queries. Finally, for the
Hadoop system, we choose all I/O constants equal to 0, except hr = 1.

Using Equation (4.12) and our cost model, we obtain that the cost of
calculating each individual BSGF query fi equals ai:

C(GOPT({fi})) = C(EVAL(Ri, ϕCi)) + C({fi})
= 0 + Cmap(|fi|, |fi|) + Cred(|fi|, |fi|)
= 0 + hr · ai + 0

= ai.

Note that the EVAL job has cost 0, as no output is provided by the MSJ job.
We also find that the cost of two jobs equals their individual sums, regard-

less whether or not they are grouped in the query plan provided by GOPT:

C(GOPT({fi, fj})) = ai + aj .

Finally, we note that GOPT will always group fi with f◦ as all relations of
fi appear in f◦. This leads to a cost of:

C(GOPT({fi, f◦})) = γ,

where γ =
∑n

i=1 ai.
Let GF be the dependency graph that has nodes F and no edges (as there

are no query dependencies). Now, there exists a multiway topological sort for
GF of cost k + γ iff there exists a B ⊆ A such that

∑
b∈B b = k.

Observe that the cost function behaves completely analogous to the one
used in the proof of Theorem 4.20. Hence, the same reasoning can now be
applied to complete the proof. �

4.6.2 Minimizing Reads

The main idea behind the Greedy-SGF algorithm is to avoid spreading
queries with high overlap over different partitions in the multiway topolog-
ical sort, as grouping them may have a beneficial effect on the total time. The

144 Parallel Evaluation of Multi-Semi-Joins

problem SGF-Opt involves finding a partitioning of the query such that the
total cost is minimized, where the total cost is estimated by the cost model
we presented in Section 4.4. In this section, we consider the related problem
of minimizing the number of input reads and show that this problem too is
np-hard.

Let Q be an SGF query consisting of BSGF queries Q1, . . . , Qn, the depen-
dency graph induced by Q denoted by GQ and F = (F1, . . . , Fk) a multiway
topological sort of GQ. As before, Qi denotes a BSGF query Zi := ξi. The
spread of a BSGF query Qi in a multiway topological sort F is defined as the
sum of all spreads:

spread(Qi, F) = |{Fi ∈ F | ∃Zi ∈ Fi : Zi occurs in ξj}|.

Intuitively, this is the number of partitions that read the output of Qi. The
spread of SGF query Q in a multiway topological sort F is then defined as
follows:

spread(Q,F) =
∑
i

spread(Qi, F).

Recall that our BSGF evaluation strategy Greedy-BSGF aims to group
queries with similar input relations into one MR job as this can improve over-
lap. Similarly, it makes sense to reduce the total spread as this reduces the
number of distinct partitions a relation appears in. We define the optimization
problem SPREAD-Opt that takes as input an SGF query Q and constructs
a multiway topological sort F of GQ that minimizes spread(Q,F). Similar to
SGF-Opt, SPREAD-Opt is also np-hard, as the following theorem shows.

Theorem 4.22. The decision variant of SPREAD-Opt is np-hard.

Proof. We provide a reduction from the 3-coloring problem [86]. Given an
undirected graph G = (V,E), we construct an SGF query QG such that G is
3-colorable if and only if there is an MTS F for QG whose spread is optimal,
i.e., it equals 3|V |+ 5|E|+ 8. For readability, instead of writing the query QG
explicitly, we construct the dependency graph of QG. This graph can then be
used to construct an actual query QG.

Let v1, . . . , vn be the vertices in G. The vertices in the dependency graph
of ϕG correspond to the following subqueries:

• one bottom-level subquery Q0;

• one top-level subquery QT ;

• two subqueries QU and QV ;

• subqueries QR, QG, QB which correspond to the colors red (R), green
(G) and blue (B), respectively;

4.6. Decision Problems 145

QT

Q0

QB

QG

QR

QU

QV

Q1

Q′1

Q′′1

Q2

Q′2

Q′′2

Qn

Q′n

Q′′n

. . .

. . .

. . .

Figure 4.7: Query dependencies introduced to ensure that every vertex is
associated with exactly one color.

• three subqueries Qi, Q
′
i, Q
′′
i for each vertex vi.

The dependencies among these queries are depicted in Figure 4.7. This con-
struction guarantees that each vertex is assigned exactly one color. In order to
minimize the spread, each Qi must appear in the same partition Fi as either
QG, QB, or QR. Indeed, Qi cannot appear together with Q0 because of the
dependency, and will not appear together with QU or QV because it would
increase the spread. Indeed, Q1 can be in the same group as QR, QG or QB
without causing a spread increase, as these nodes all depend on Q0; this is
not the case for nodes QU and QV . Intuitively, the co-appearance of Qi with
either QR, QG, or QB represents the color assignment of vertex vi. Hence, as
desired, exactly one color is possible per vertex. The additional nodes Q′i and
Q′′i will help us to enforce a different color assignment to neighboring vertices,
as we explain below.

Next, for each edge (vi, vj) ∈ E, we add the following nodes to the de-

pendency graph: two subqueries Q
(1)
i,j and Q

(2)
i,j . The dependencies associated

to these nodes are depicted in Figure 4.8. This dependency construction en-
forces a different color assignment for vertices vi and vj by making sure these
assignments have a lower spread.

It can be verified that the following properties hold for every MTS F for
the dependency graph:

• spread(Q0) ≥ 3;

146 Parallel Evaluation of Multi-Semi-Joins

Qi

Q′i

Q′′i

Qj

Q′j

Q′′j

Q
(1)
i,j Q

(2)
i,j

Figure 4.8: Query dependencies introduced to ensure that every vertex to
ensure that different colors are assigned to connected vertices.

• the spread of QB, QG, QR equals 1;

• the spread of QU , QV equals 1;

• the spread of Qi, Q
′
i, Q
′
i equals 1;

• for each edge (vi, vj) ∈ E,

spread(Q
(1)
i,j ,F) + spread(Q

(2)
i,j ,F) ≥ 5.

Hence, we may conclude that for every MTS F for QG, we have spread(Q,F) ≥
3|V |+ 5|E|+ 8.

We claim that G is 3-colorable if and only if there exists an optimal MTS F
with spread(Q,F) = 3|V |+5|E|+8. Suppose G is 3-colorable and let ϕ : V →
{R,G,B} be the legitimate coloring. The optimal MTS F = (F1, . . . , F7) is
defined as follows. First,

Q0 ∈ F0

QB ∈ F1 QG ∈ F2 QR ∈ F3

QU ∈ F4 QV ∈ F5 QT ∈ F6,

for each edge (vi, vj) ∈ E,

Q
(1)
i,j , Q

(2)
i,j ∈ F0, and

4.6. Decision Problems 147

for each vertex vi ∈ {v1, . . . , vn},

Qi ∈


F1 if ϕ(vi) = B,
F2 if ϕ(vi) = G,
F3 if ϕ(vi) = R,

Qi ∈ Fj → Q′i ∈ Fj+1,

Q′i ∈ Fj → Q′′i ∈ Fj+1.

Note that Qi ∈ Fj ↔ QB ∈ Fj , if vertex vi is colored with B; Qi ∈ Fj ↔
QG ∈ Fj , if it is colored with G, and Qi ∈ Fj ↔ QR ∈ Fj , if it is colored
with R. Furthermore, since for each (vi, vj) ∈ E, ϕ(vi) 6= ϕ(vj), we have Qi ∈
Fj ↔ ¬(Qj ∈ Fj). This means that either Qi, Q

′
j , Q

′′
j ∈ Fk or Qj , Q

′
i, Q
′′
i ∈ Fk,

for some k, which implies:

spread(Q
(1)
i,j ,F) + spread(Q

(2)
i,j ,F) = 5.

It is now easy to verify that spread(Q,F) = 3|V |+ 5|E|+ 8.

For the converse, suppose that we have an MTS F for QG such that

spread(QG,F) = 3|V |+ 5|E|+ 8.

This means that spread(Q0) = 3 and for each edge (vi, vj) ∈ E,

spread(Q
(1)
i,j ,F) + spread(Q

(2)
i,j ,F) = 5.

The coloring ϕ : V → {R,G,B} is defined as follows.

ϕ(vi) =


B if Qi ∈ F1,
G if Qi ∈ F2,
R if Qi ∈ F3.

Since spread(Q0) = 3, the MTS F assigns each Qi at the same level as one of
QG, QB and QR. Hence, the function ϕ is well-defined. Moreover, for each

edge (vi, vj) ∈ E, we have spread(Q
(1)
i,j ,F) + spread(Q

(2)
i,j ,F) = 5. This means

that for each (vi, vj) ∈ E, the MTS F does not assign Qi and Qj to the same
level, as otherwise the spread would be larger than 5. Hence, as ϕ(vi) 6= ϕ(vj)
for each (vi, vj) ∈ E, we obtain a valid 3-coloring for G.

We have proven that each coloring corresponds to an MTS that has min-
imal spread and that each minimal spread corresponds to a coloring, which
completes the proof. �

148 Parallel Evaluation of Multi-Semi-Joins

4.7 Extensions

4.7.1 Additional Atom Support

The MR programs described in this chapter only supports relational atoms,
but they can be easily expanded to deal with equalities and inequalities. We
now give a brief sketch on how to incorporate support for additional atom
types.

First, we revise the definition of BSGF queries that was given in Sec-
tion 4.3.1. A basic strictly guarded fragment (BSGF) query is an expression
of the form

Z := SELECT x̄ FROM R(t̄) [WHERE C]; (4.16)

Now, C is a Boolean combination of atoms of one of the following forms:

1. R(t1, . . . , tn) with R a relation symbol of arity n and each of the ti a
term, i ∈ [1, n],

2. x op y, where op ∈ {=, 6=}, or

3. x op const, where x is a variable, op ∈ {≤,≥,=, <,>} and const ∈ D.

Furthermore, when S(x̄) is an atom in C, then all variables in x̄ are a subset
of those in t̄.

Clearly, atoms of form 1 dictate the input relations. Atoms of forms 2 and 3
serve as a filtering mechanism, which can easily be checked by the EVAL
reducer when evaluating the query.

Note that the query from Remark 4.5 is not allowed anymore, as variables
z1 and z2 do not appear in the guard atom. Rewriting the query using the
“traditional” notation yields a query which can be solved using one more
round:

Z1 := SELECT x FROM S(x, y);

Z2 := SELECT x FROM R(x, y) WHERE Z1(x) AND NOT Z1(y).

As we were able to calculate the anwer to this query in two rounds before,
this signifies there are opportunities to evaluate BSGF queries more efficiently.
Consider, for example, the following query:

Z1 := SELECT x FROM S(x, y)WHERE y > 100;

Z2 := SELECT x FROM R(x, y) WHERE Z1(x) AND T (y) AND y < 10.

Here, the first query is only a projection. This can be done perfectly by the
MSJ mapper. Furthermore, the y < 10 atom is handled by the EVAL reducer,

4.8. Discussion 149

but can also be used as a filter in the MSJ mapper to reduce the size of the
intermediate data. Clearly, the newly added atoms open up opportunities
to reduce the intermediate data. But, one has to be careful as the Boolean
combinations may sometimes complicate these optimizations. For example, in
the query

Z := SELECT x FROM S(x, y) WHERE y > 100 OR (x = 10 AND y = 3000) OR T (y),

the Boolean OR operations makes it impossible to perform a filtering step in
the MSJ mapper. Instead, it might be interesting to define syntactical classes
which can be evaluated more efficiently in practice.

4.7.2 Bag Semantics

In this entire chapter, we worked with set semantics, as this was the way
we defined the semantics of strictly guarded fragment queries. It is possible,
however, to work with bag semantics as well. The single semi-join and multi-
semi-join (MSJ) algorithms need no adjustment, as the reducers output a
result for every request message (if necessary, of course). The EVAL algorithm
needs to be adjusted in such a way that the number of output tuples correspond
to those in the first (guard) relation. Therefore, the reducer needs to record the
number of X0 facts that arrived and change the number of outputs accordingly.
Our system Gumbo can deal with bag semantics as the optimizations allow
every tuple to be uniquely identified (see Section 5.3.1).

4.8 Discussion

We provided a framework for evaluating SGF queries in a distributed setting
using the MapReduce computation model. Our framework uses an updated
cost model and the newly introduced multi-semi-join operator to detect and
exploit overlap between queries. This allows us to transform 2-round parallel
query plans for BSGF queries to be transformed into an equivalent version that
potentially has a lower cost. As obtaining an optimal MapReduce program
turned out to be np-hard, we provided intuitive heuristics. We also showed
that the simpler problem of minimizing the number of input reads is np-hard as
well. In the next chapter, we experimentally validate the proposed algorithms
using our system called Gumbo and discuss the necessary implementation
details.

5
Multi-Semi-Join Evaluation in
Practice

In this chapter, we present Gumbo, an open-source system built on top of
Hadoop in which we implemented the techniques proposed in the previous
chapter. We use Gumbo to experimentally validate the algorithms by com-
paring them to standard techniques and to existing systems such as Hive and
Pig. We find that our techniques are superior in several situations.

5.1 Contributions & Outline

With the necessary theoretical background in place, we are now ready to exper-
imentally assess the effectiveness of Greedy-BSGF and Greedy-SGF and
obtain that, backed by an updated cost model, these algorithms successfully
manage to bring down total times of parallel evaluation, making it comparable
to that of sequential query plans, while still retaining low new times. This is
especially true in the presence of commonalities among the atoms of queries,
i.e., atoms or relations that are re-used in different (parts of) queries.

Our open-source system called Gumbo contains a query compiler and exe-
cution engine that both support the methods described in the previous chapter.
Alongside the basic implementations, we also find a multitude of optimizations
that make the system usable in practice. As a lot of these optimizations can
used in other MapReduce programs that serve a different purpose, we provide
a thorough description of the ones that are most significant. Furthermore, we
show through extensive experiments that Gumbo outperforms Pig and Hive

151

152 MSJ Evaluation in Practice

in all aspects when it comes to parallel evaluation of SGF queries. Finally,
as modern Big data systems need to scale well, we also provide insights in
Gumbo’s scaling abilities.

The contributions of this chapter are as follows:

1. We devise a 2-Round MapReduce algorithm based on the methods de-
scribed in Chapter 4.

2. We describe a list of optimizations which allow our algorithm to be
efficient in practice. Furthermore, these optimizations can be useful for
other applications as well.

3. We give a high-level description of our open-source system called Gumbo,
which can be used on top of an existing Hadoop 2.x cluster.

4. We experimentally assess the effectiveness of both greedy algorithms
(Greedy-BSGF and Greedy-SGF) and find that these algorithms
successfully manage to bring down total times for parallel query plans
where common atoms appear and demonstrate that Gumbo outperforms
Pig and Hive in all aspects when it comes to evaluation of SGF queries.

Outline. This chapter is organized as follows. First, we restate the BSGF
evaluation algorithm in a more convenient form (MSJEVAL) in Section 5.2
and provide a list of optimizations that aim to improve its performance in
Section 5.3. Next, in Section 5.4, we discuss the implementation of the algo-
rithms in our own system called Gumbo, which runs on top of Hadoop. In
Section 5.5, we perform an experimental evaluation using Gumbo. We con-
clude in Section 5.6.

5.2 Algorithm Revision

In order to thoroughly discuss the details of the 2-round BSGF evaluation
algorithm outlined in the previous chapter, we provide a revision of the com-
plete algorithm. Algorithm 12 shows the resulting algorithm, which is called
MSJEVAL. An set of input BSGF queries needs to decomposed in to the re-
quired semi-joins, and the Boolean expressions. The former are used as input
for the first round (MSJ), while the latter serve as input for the second round
(EVAL).

The reworked algorithm follows a request-response model in which the
main data consists of messages. Indeed, the mappers of the first round generate
facts (Assert) and requests (Request), which are transformed into answers
(Confirm or Deny). In the second round, these answers are “delivered” to
the tuple that emitted the initial request and they are combined into a final
query answer. We note the following:

5.3. Optimizations 153

• The number of BSGF queries (n) may not correspond precisely with the
number of semi-joins (k) as multiple semi-joins may appear in one BSGF
query and at the same time identical semi-joins may appear in different
BSGF queries.

• Confirm and deny messages are used to signal the presence or absence
of a conditional fact. These messages replace the EVAL map output,
which explains why Map2 is an identity mapper.

• In Map1, the projection of guard atoms onto the output key is removed
and now happens in Red2 for the simple reason that a “reply address”
is needed to redirect the confirm messages.

• It is possible to evaluate multiple BSGF queries at once using this algo-
rithm. This becomes apparent in Red2 where we find an iteration over
all BSGF queries.

• The first mapper and reducer may be applied to a partition of S that
is computed using Greedy-BSGF. As before, a partition of size m will
lead to m+ 1 MR jobs: m round 1 jobs and one round 2 job.

5.3 Optimizations

Most MR algorithms can greatly benefit from optimizations that allow a more
efficient handling of the data (compression, sorting, avoiding redundant reads)
or provide special solutions for certain input types. The optimizations we
introduce in this section generally aim to reduce total and/or net times of
MSJEVAL in Gumbo. Table 5.1 gives an overview of the optimizations, as
well as an indication of their applicability to MR jobs in general. Table 5.2
shows which part of the MR pipeline is affected by the different optimizations.

5.3.1 Message Compression

Most MR jobs are I/O-bound, which means that the majority of time is spent
in reading, writing or transmitting data. Therefore, it is of high importance to
only store and transmit the data that is necessary and to choose an appropriate
format.

In MSJEVAL, the information required by the final reducer consists of a
truth value for each conditional atom and the (projected) tuple that needs to
be output. In MSJEVAL, this information is supplied through the key, which
contains the original fact. As this information is incorporated in all request,
confirm and deny messages, this contributes to a significant data overhead in
both rounds. When multiple conditional atoms are involved, the overhead of

154 MSJ Evaluation in Practice

Algorithm 12 MSJEVAL – 2-round MR algorithm for computing a set of
BSGF queries.

Require: S = {X1 := πx̄1(α1 n κ1), . . . , Xk := πx̄k(αk n κk)}

1: function Map1(fact f)
2: buffer = []
3: for every i such that f |= αi do
4: add 〈παi;z̄i(f) : [Req (κi, i);Reply f]〉 to buffer

5: for every i such that f |= κi do
6: add 〈πκi;z̄i(f) : [Assertκi]〉 to buffer

7: emit buffer

8: function Reduce1(〈k : V 〉)
9: for all [Reqκi;Reply f] in V do

10: if V contains [Assertκi] then
11: emit 〈f : [Confirmκi]〉
12: else
13: emit 〈f : [Denyκi]〉

Require: P = {Z1 := (α1, ϕ1), . . . , Zn := (αn, ϕn)}

14: function Map2(fact 〈k : v〉)
15: emit 〈k : v〉

16: function Reduce2(〈k : V 〉)
17: f ← k
18: for all κi do
19: if [Confirmκi] ∈ V then
20: κi ← True

21: else
22: κi ← False

23: for all Zi do
24: if f |= αi ∧ eval(ϕi) then
25: output παi;x̄i(f) to Zi

5.3. Optimizations 155

Optimization Applicable to general MR

Mapper shaping 3

Reducer shaping 3

Message compression ?
Packing ?
Confirm Reduction 7

Streaming Reducers 7

Single Job Evaluation 7

Map output estimation 3

SequenceFiles 3

Static Packing 7

Table 5.1: An overview of Gumbo’s optimizations (top part) and specialized
techniques (bottom part) with an indication of their applicability to general MR
applications.

the tuple data becomes even larger as multiple messages carry the same —
and hence redundant — information.

A solution to this problem is to transmit tuple ids instead of actual tuples.
In Gumbo, a tuple id is a pair consisting of the file id that contains the tuple
and its offset within the file. Intuitively this serves the purpose of a tuple
“address”, allowing tuples to indicate where the response should be delivered.
Tuples ids can have a variable-sized representation ranging from 2 to 18 bytes
(two control bytes and maximum 64 bits per component). In most scenarios,
this provides a smaller (and more predictable) representation of a tuple.

Recall that the final output tuples, generated by Map1, are the result of
projecting the original guard tuple. Hence, in order to compensate for the loss
of the actual tuple inside the messages, we re-read the guard relation in the
second round and emit a new type of message that delivers the actual tuple
data to its unique tuple id or “address”. This process is depicted in Figure 5.1.

Remark 5.1 (Tuple ids and bag semantics). When the tuple id optimization
is enabled, a key-valueset pair that is processed by the second reducer is as-
sociated to precisely one guard input fact. This is not the case in the general
MSJEVAL algorithm, where identical tuples are processed together. This
makes it impossible in the general algorithm to assess the number of final
outputs that should be generated for bag semantics and requires extra in-
formation to be transmitted in the messages. Using tuple ids resolves this
issue. Note that because of this optimization, Gumbo offers bag semantics as
opposed to the set semantics proposed in Chapter 4 (see also Section 5.3.1).
Set semantics are available in a non-optimized version of Gumbo where tuple
ids can be disabled; this requires using gumbo.engine.hadoop.HadoopEngine

156 MSJ Evaluation in Practice

M
es

sa
ge

C
om

p
re

ss
io

n

S
tr

ea
m

in
g

R
ed

u
ce

rs

M
ap

p
er

S
h

ap
in

g

R
ed

u
ce

r
S

h
a
p

in
g

P
a
ck

in
g

(M
a
p

p
er

)

P
a
ck

in
g

(C
o
m

b
in

er
)

P
a
ck

in
g

(R
ed

u
ce

r)

C
o
n

fi
rm

R
ed

u
ct

io
n

read

map � �
sort • • •
merge • • • • •
combine • • (�) �
transfer • • H H • •
merge • • • • •
reduce • • � � � �
write • • •
read � • •
map • • •
sort • • •
merge • ◦ • •
combine • • •
transfer • H H • •
merge • ◦ • •
reduce � � �
write

Table 5.2: Overview of the effects of different optimizations on different parts
of the 2-round algorithm (MSJEVAL). Necessary implementation changes
are indicated with �, affected parts with • or ◦, where the latter is not im-
plemented in Gumbo. An optional implementation change is shown as (�),
possible negative side-effects are shown as H.

5.3. Optimizations 157

HDFS HDFSMap1 Red1 HDFSMap2 Red2

HDFS

↵

i

↵

ASSERT
REQUEST CONFIRM CONFIRM CONFIRM

DENY DENY DENY

Figure 5.1: Effect of tuple id compression on different stages of MSJEVAL.
The dotted arrows indicate a data size reduction, while the bold arrow indicates
a data increase.

instead of the newer gumbo.engine.hadoop2.HadoopEngine2. 3

Finally, a more obvious technique that reduces the size of messages is to
use atom ids to refer to atoms inside the messages, instead of using their full
representation. This can further reduce the size of the messages.

5.3.2 Message Packing

When messages that are send around in the MSJEVAL algorithm are rel-
atively similar, this opens up opportunities for data compression. We use
message packing, as also used in [163], which reduces network communication
by combining messages associated with the same key into one message. In
Gumbo, packing is used in three different forms:

• map output packing, or fact-based packing;

• combiner packing, or cross-fact packing;

• reduce output packing, or reply packing.

Map output packing or fact-based packing is applied to the map output
of one input fact. Observe that Map1 may emit multiple messages per fact
f . A useful optimization that reduces network communication is to buffer all
messages emitted per fact, and to pack the messages as follows. First, let us
slightly generalize the format of a Request message to be [Request (ā, κ)],
where (ā, κ) denotes a sequence of (ā, κ) pairs with ā a tuple of data values
and κ an atom. Likewise, let us generalize the format of Assert messages to
be [Assert κ] with κ a list of atoms. Then, for two messages with the same
key, m1 = 〈c̄ : [lab; list1]〉 , and m2 = 〈c̄ : [lab; list2]〉 , that also have the same

158 MSJ Evaluation in Practice

message label lab (either Request or Assert) and where list1 and list2 are
corresponding lists, we define

pack(m1,m2) = 〈c̄ : [lab; list1 ∪ list2]〉 .

Packing reduces both the number of output tuples and the total output size
of the mapper, which can positively impact sort, merge and transfer times.
Of course, if message packing is enabled, the reducer needs to unpack the
messages before processing them. In particular, consider a fact f conforming
to two conditional atoms κi and κj . Without packing, two Assert messages
would be emitted. If, however, the join key z̄i of κi with αi is the same as the
join key z̄j of κj with αj , then the key of both emitted messages is πz̄i(f) and
we can pack both messages in a single message

〈πz̄i(f) : Assertκi, κj〉 .

The same reasoning holds when f conforms to two guard atoms αi and αj and
multiple Request messages are normally emitted. If the join keys z̄i = z̄j are
equal, again a single Request message of the form〈

πz̄i(f) : [Requestπx̄i(f), κi, πx̄j (f), κj]
〉

suffices. Note that this is especially true in the specific case where αi = αj .

Remark 5.2 (Static vs. dynamic packing). The example above implies that an
static inspection of the query (detecting common join keys) will reveal packing
opportunities that are applicable for every fact. This allows for early optimiza-
tions that may improve map time as less data inspection is necessary. Gumbo
incorporates this optimization by precalculating the packing opportunities (see
Section 5.4.3). The more general version of packing, which is defined above,
also allows packing of “accidental” projections that produce identical keys,
even for different join keys. For example, R(x, y) ∧ S(x) ∧ S(y) will produce
two request messages with identical keys when x = y. 3

A second form of packing is called combiner-based packing or cross-fact
packing . Here, the packing technique that was described above is applied to
the entire output of one map task in the form of a combiner. Recall that
a combiner is applied to a group of key-value pairs that have the same key.
Hence, this creates the opportunity of packing messages that originate from
different facts but still have an identical key. Note that the effectiveness of
this technique strongly depends on both the join keys appearing in the query
and the actual data characteristics.

This more aggressive form of packing is not always beneficial: we learned
through our experiments that the additional overhead of using a combiner

5.3. Optimizations 159

does not positively influence the total or net time. In contrast, packing
the messages emitted per fact in an individual map task can be efficiently
implemented and can significantly decrease the size of the communicated data
as we will see in the experimental results (see Section 5.5).

Remark 5.3 (Fact-based vs. cross-fact packing). Note that fact-based packing
can also be accomplished by using a combiner. The downside of this method
is that the unpacked map output, which contains more messages, participates
in the sort process and hereby causes an increase in sort time. Also, more
spills are initiated, which can potentially increase map-side merge times. 3

The final form of packing is called reduce output packing , or reply packing .
Recall that round 1 reduce tasks output confirm and deny messages in order
to send the truth values for atoms to the tuples that requested it. As we
saw in fact-based packing, multiple request messages that have the same key
may originate from the same fact and can hence be replied to using only one
message. The same packing approach can be used here.

5.3.3 Confirm Reduction

Greedy-SGF uses confirm messages in the second round to indicate whether
an atom should be set to True or False. These messages originate form
Red1, are written to HDFS, and pass through almost every component of the
EVAL job. At least half of these messages can be avoided by only sending one
type of reply message. In Gumbo, only confirm messages are sent. Further
improvement can consist of estimating the frequency of confirm and deny
messages and only emitting the type that occurs the least.

5.3.4 Streaming Reducers

Another major challenge for MR programs is skew. Skew arises for example
when key-value pairs are not distributed uniformly across all reducers (see
Remark 4.7 on page 119). This may cause some reducers to take up more
time then others, or even exceed the allowed resource usage. Especially the
latter problem is undesired as this would cause the MR job to fail. For Red2,
the number of confirm messages cannot exceed the number of request messages
that were generated for a given input fact. Hence, the memory required only
depends on the query structure (number of distinct atoms) and not on the
input size. For Red1, on the other hand, the number of request and assert
messages assigned to a reducer is not limited by the query structure. Indeed,
one can always create a dataset that sends n messages to the same reducer
by duplicating a fact n times (recall that we assume bag semantics in Gumbo,
see Remark 5.1). This will cause n identical messages to be created by the

160 MSJ Evaluation in Practice

mapper.35 Recall that Red1 searches for the presence of assert messages,
record the atoms linked to them (bounded by the size of the query) and needs
to store all request messages. This means we can always create a data-set that
causes the reducer to exceed its memory constraints for any query. Note that
these constraints are not an issue for Hadoop itself as it uses external memory
algorithms for the data operations.

A solution to this problem consists of using streaming reducers. The mem-
ory requirements of a streaming reducer only depend on the query size and not
on data size, and it only performs one pass over the input. For MSJEVAL,
we can transform Red1 into a streaming reducer: if we can assume all assert
messages appear before the request messages, we only need to store the atom
ids of the asserted conditional atoms, after which the request messages can be
processed in a streaming fashion. Clearly, this defines a streaming reducer as
the number of stored atom ids is data independent (linear in the size of the
query). Fortunately, Hadoop allows user-overridden sort functions that make
it possible to re-arrange the messages based on their type. As sorting is part
of the MR pipeline anyway (see Section 4.4.2), this adjustment comes — in
theory — at no additional cost. However, we found through our experiments
that a highly optimized version of the sorting function is necessary in order to
obtain a good performance of the sort step. For the details of this function,
we refer to the Gumbo implementation [66].

5.3.5 Mapper Shaping

Another bottleneck in MR jobs is map spilling. When mappers produce too
much output, this will be spilled to multiple files that have to be merged
into one single sorted file. Possible causes for high spilling include a high
replication factor,36 large key-value pairs or incorrect configuration settings.
The cost model of Section 4.4 clearly shows that a high number of spill files can
significantly impact the total cost. Therefore, we propose an optimization that
adjusts the input size of the mappers in such a way that spilling is avoided.

Recall from Section 4.4.2, in Hadoop, the number of map tasks created
for a job equals its number of input splits. By default, one split corresponds
to one HDFS block, but this can be adjusted by changing the maximum37

and/or minimum38 split size to a value that can be calculated as follows. Let
N be the total input size, M the total map output size and B the size of
the map output buffer (see Section 4.4.2). In order to avoid multiple spill

35Note that combiner-based packing (see Section 5.3.2) may help in some specific situa-
tions.

36Also called replication rate obtained by dividing map output size by map input size.
37Hadoop setting: mapreduce.input.fileinputformat.split.maxsize
38Hadoop setting: mapreduce.input.fileinputformat.split.minsize

5.3. Optimizations 161

files, each map task can only output a maximum of B bytes. Therefore, at
least m = dM/Be mappers are required and each mapper can process at most
S = bN/mc input bytes, where S equals the desired split size. More information
on how to control the split size is given by White [164, p. 225].

Remark 5.4 (Split-block ratio). One has to be careful with split sizes that are
larger than the block size, as extra blocks may need to be fetched from different
nodes, possibly having an adverse effect on map performance [164, p. 224–226].
On the other hand, when the block size is not a multiple of the split size, similar
undesired effects can occur.39 Hence, it is recommended to correct the split
size S such that the block size is a multiple of S.

5.3.6 Reducer Shaping

Similar to excessive spilling at the map-side, the reduce-side can also be trou-
bled by the side-effects caused by a data overload. The task of the reduce-side
merge step is to consolidate outputs from the different map tasks into one
sorted file. As opposed to the number of mappers, which is based on the num-
ber of splits, the number of reducers has to be set directly by the user. Popular
systems such as Hive and Pig use set the number of reducers in function of the
input size. For example, Pig allocates 1 GB of input per reducer [164, p. 467].
As map input size has no direct relation to map output size, this strategy
can be suboptimal. Indeed, when the replication factor (see Section 5.3.5)
approaches 0, i.e., most input tuples are filtered out, individual reducers will
operate on a tiny amount of data. When the replication factor far exceeds
1, i.e., a lot of outputs are generated for every input tuple, each reducer will
operate on a large amount of data, possibly leading to excessive spilling. This
illustrates the need for a better, and preferably automatic, way to determine
the number of reducers. We therefore propose a more flexible mechanism,
similar to mapper shaping, that automates this process and aims to eliminate
spilling.

To obtain the desired number of reducers, Gumbo uses the total map
output size40 and divides this by the memory available per reduce task. This
way, under the assumption that the partition function uniformly divides map
output data over the reduce tasks, no reducer needs to perform excessive spills
to merge the data.

39See http://stackoverflow.com/a/14540272/787036 for a good example.
40The total map output sized can be estimated using basic sampling and simulation tech-

niques (see Section 5.4.2).

http://stackoverflow.com/a/14540272/787036

162 MSJ Evaluation in Practice

5.3.7 Single-Job Evaluation

Instead of the 2-round MSJEVAL algorithm, an equivalent 1-round (and
single-job) algorithm can be applied in certain situations. When the atoms
that appear in the conditional part all have the same (or equivalent) join
key, the reducers in the first round have all the required information at their
disposal for providing an answer to the conditional part of the query. This
is also the case when the conditional part of the query is a disjunction of
(negated) atoms. In the latter case, an extra pass is necessary to guarantee
unique results, if required.

The general 1-round MR program operates as follows. Consider an SGF
query Q where all the join keys in the conditional atoms are the same, say
v̄. Then Q can be evaluated in a single MR round by combining MSJ and
EVAL as follows. The mapper emits 〈πα;v̄(f) : [Req ;Outπα;w̄(f)]〉 messages
for all α-conforming facts f , and

〈
πXi(v̄);v̄(g) : [AssertXi]

〉
messages for all

Xi(v̄)-conforming facts g, i ∈ [1, n]. On input
〈
b̄ : V

〉
the reducer uses the

[AssertXi] messages in V to verify that ϕ is satisfied, and, if so, outputs ā
for every [Req ;Out ā] in V .

This algorithm can be used for multiple BSGF queries; only the addition
of a query id is needed. Tuple-ids can be used as well. For this optimization
to work, we can send the guard tuples as separate messages. This makes the
one-round optimization typically a bit more expensive than the first round of
the 2-round strategy, but this is more than compensated for by the omission
of the second MR job. The resulting algorithm is denoted by MSJEVAL-1.

5.4 Gumbo

In order to validate the performance of the algorithms presented in Chapter 4,
we implemented the MSJEVAL algorithm and the associated optimizations
op top of Hadoop in a system called Gumbo. The resulting system is able
to construct an optimized MR query plan, as well as execute this plan. We
briefly discuss Gumbo’s internal structure, its map output estimation method
and possible extensions.

5.4.1 Internal Structure

Figure 5.2 shows the different components of Gumbo that are used to process
an SGF query. SGF queries are provided together with the location of input
and output relations. Figure 5.3 shows an example input file example which
clarifies the structure. This input is processed by the compiler, which extracts
the set of BSGF queries and creates a dependency graph as wel as a multiway
topological sort. These are used by the execution engine to create actual MR

5.4. Gumbo 163

Link

Decompose

Parse

Partition

Greedy-BSGF

Estimate

Sample

Hadoop
Execution

Compiler Execution Engine

Result on
HDFS

Input
Query

BSGF queries
Dep. Graph

MTS
Rewrite

Figure 5.2: The SGF workflow in Gumbo.

jobs which are run using Hadoop. Aside from highlighting the most important
aspects of the compiler and execution engine, we also outline how sampling is
done in Gumbo to provide estimates for the cost model. Finally, we discuss
some low-level optimizations and indicate how Gumbo could be ported to
similar systems.

Compiler. The task of the compiler is to convert a set of SGF queries into
a set of BSGF queries, determine their dependencies and provide a way of
grouping the queries in the form of an multiway topological sort. For sim-
plicity, we assume only one SGF query is given. This has no influence on the
procedure of the compiler.

First, a Parser converts the raw input query into a GumboQuery, which con-
tains the actual SGF queries, a relation-input file mapping, an output directory
and temporary (or scratch) directory. The SGF query is then passed to the
Decomposer, which breaks up the SGF query into a set of BSGF queries. Next,
the optional Rewriter rewrites the BSGF queries into the desired form.41

Then, the Linker determines the dependencies between the BSGF queries,
based on their atoms, and constructs the corresponding dependency graph.
Finally, the Partitioner creates a multiway topological sort (MTS, see Sec-
tion 4.5.6) using the selected algorithm. Gumbo offers five strategies to create
an MTS:

Unit no grouping is performed, i.e., all MTS subsets have size 1.

Depth groups BSGF queries based on the depth of their query subtree.

Height groups BSGF queries based on their distance to the top-level query.

41The rewriter can be used to, for example, unnest BSGF queries in such a way that no
conjunctions appear in the conditional part.

164 MSJ Evaluation in Practice

Output -> output/EXP_033/

Scratch -> scratch/EXP_033/

R,4 <- input/experiments/EXP_033/1/R, CSV

S,1 <- input/experiments/EXP_033/1/S, CSV

T,1 <- input/experiments/EXP_033/1/T, CSV

U,1 <- input/experiments/EXP_033/1/U, CSV

V,1 <- input/experiments/EXP_033/1/V, CSV

#Out1(x,y,z,w)&R(x,y,z,w)&S(x)&T(y)&U(z)V(w);

Figure 5.3: An example Gumbo input that contains the output directory, a
temporary (scratch) directory, input relations (name, arity, location, format)
and the actual query in prefix notation. Different input formats (infix, SQL-
like) are also supported by Gumbo.

Optimal brute-force implementation of SGF-Opt.

Greedy implementation of Greedy-SGF.

Even though Optimal implements brute-force search, the running time is still
acceptable for small inputs, but of course grows quickly with the number of
BSGF queries, as expected. For larger queries, one may choose to use an SMT
solver (e.g. Microsoft’s Z3 system [68]) to obtain the optimal schedule more
quickly.

Execution engine. Given a set of BSGF queries, their dependency graph
and an MTS that gives a grouping for the BSGF queries, the execution engine
creates suitable MR jobs that calculate the query anwer. For every group in
the MTS, at least two MR jobs are created that correspond to the MSJEVAL
algorithm. The greedy grouping algorithm (see Section 4.5.4) is used to obtain
a good strategy for the first round, which consists of MSJ jobs. The resulting
set of GREEDY jobs is then passed to Hadoop and executed. When these
are all completed, the EVAL job is executed to calculate the final output.
When the EVAL job is finished, the next MTS group is processed. During
this entire process, Gumbo provides map output size estimates that are used
for the cost model in the grouping algorithm (see below), manages the input
and output paths associated to the jobs, creates the necessary (temporary)
file paths, makes sure the final data ends up in the correct output directory,
and enables certain optimizations, depending on the user settings.

5.4. Gumbo 165

5.4.2 Map Output Estimation

The cost model presented in Section 4.4 requires knowledge on map input,
map output and reduce output sizes. We now outline a technique to obtain
an accurate estimate for the map output size. Providing a precise value for
this metric would require performing the map calculation on the entire set of
input records. As this is infeasible in a practical setting, Gumbo uses basic
sampling and estimation techniques to obtain an estimate. The reduce output
size is omitted in Gumbo as it is more difficult to obtain in the presence of
several optimizations and it does not play a major role in the overall cost
when we disregard the packing optimization. Also, when multiple successive
applications of MSJEVAL are required, the output is accounted for in the
input cost of the next stage.

We assume that the map function behaves uniformly on all data of a given
relation (see Section 4.4). If not, the relation can be split into different parts.
Furthermore, we assume that there is a linear relation between the input size
and the output size of the map function. This is a reasonable assumption for
our algorithm, as it mainly consists of replicating messages and adding a con-
stant amount of data. Gumbo aims to approximate this linear relation using
the following basic extrapolation method. First, the input data is sampled.
These samples are divided into two sets: a small and a large sample set. Next,
the map function is applied to these samples to discover the corresponding
map output sizes. Using linear extrapolation, we can obtain an estimate for
the total map output size. We found that in our experiments the estimated
values closely resembled the actual values.

Remark 5.5 (Possible sampling issues). The round 1 map function in our al-
gorithm involves a projection operation. When all fields of a relation have a
fixed size, this does not pose any problems, but, if fields have a variable size
the linearity assumption may not hold. Also, when a lot of tuples are filtered
out, it is important that a large enough set of samples is used. 3

5.4.3 Low-level Optimizations

Static packing. When a map or reduce task is initialized, the input queries
are transformed into a series of transformations that contain a condition and
an actual transformation that is directly applied on input tuples. When con-
ditions are equal, and the transformations allow packing, they are merged
together into one transformation that directly applies packing (see also Re-
mark 5.2). This opens the door for more advanced pre-processing optimiza-
tions.

Job output compression. Gumbo compresses the output of the first job
in the MSJEVAL algorithm (the MSJ job) by using a SequenceFile as the

166 MSJ Evaluation in Practice

output type. This allows for a reduction in output size and faster input parsing
in the second (EVAL) job.

5.4.4 Spark & Tez Support

Apache Spark is gaining more popularity as it provides quicker and more
flexible query execution when compared to Hadoop. The power of Spark
mainly resides in the use of its RDD datastructure, which enables data to
reside in memory [170] as opposed to being read from and written to disk. As
it only executes MR jobs, Gumbo’s execution engine can be easily adjusted to
operate with Spark. The input data would need to be stored in Spark’s RDD
data structure and the jobs should be translated to RDD transformations and
actions such as flatMap() and groupByKey(). Assuming that the necessary
relations are all stored in a single RDD A, a straightforward skeleton for our
2-round algorithm in Spark is as follows:

B = A.flatMapToPair(<Mapper 1>);

C = B.groupByKey();

D = C.flatMap(<Reducer 1>);

E = D.flatMapToPair(<Mapper 2>);

F = E.groupByKey();

G = F.flatMap(<Reducer 2>); // G is the output

To make this Spark algorithm more efficient, we can apply some optimiza-
tions. For example, Mapper 2 is actually just an identity mapper, so it can be
omitted.

The observation above indicates that the second mapper in the Hadoop
execution engine adds overhead to the job execution. Indeed, after round one,
the “intermediate” data is written to HDFS. This is costly because the data is
replicated and needs to be re-read by the next MR job. Tez [147] offers a way
of avoiding this overhead by skipping all but the first map functions. More
specifically, it allows reduce steps to immediate follow a previous reduce step
without the need for intermediary maps. This way, the overhead of temporarily
storing the inter-job data to HDFS is removed. This can greatly reduce the
cost of multi-round MR programs such as MSJEVAL. Tez is implemented on
top of Hadoop as well, which makes it easier to port Gumbo to this alternative
framework.

5.5 Experimental Validation

In this section, we experimentally validate the effectiveness of our algorithms.
First, we discuss our experimental setup in Section 5.5.1. In Section 5.5.2, we
discuss the effectiveness of the MSJ program and compare it to Pig and Hive.

5.5. Experimental Validation 167

Hadoop Setting Value

io.file.buffer.size 131072

dfs.replication 3

mapred.child.java.opts -Xmx1024m

mapreduce.map.memory.mb 1280

mapreduce.reduce.memory.mb 1280

mapreduce.task.io.sort.mb 512

mapreduce.reduce.merge.inmem.threshold 0

mapreduce.reduce.input.buffer.percent 0.5

mapreduce.job.reduce.slowstart.completedmaps 1

mapred.map.tasks.speculative.execution false

mapred.reduce.tasks.speculative.execution false

yarn.nodemanager.resource.memory-mb 49152

yarn.scheduler.minimum-allocation-mb 4096

yarn.scheduler.maximum-allocation-mb 49152

yarn.nodemanager.resource.cpu-vcores 10

Table 5.3: Hadoop settings used in the experiments.

In Section 5.5.3, we discuss the evaluation of BSGF queries. In particular, we
compare with Pig and Hive and address the effectiveness of the cost model.
The experiments concerning nested SGF queries are presented in Section 5.5.4.
Finally, we discuss various scaling characteristics of Gumbo in Section 5.5.5.

5.5.1 Experimental setup

All experiments are conducted on the HPC infrastructure of the Flemish Su-
percomputer Center (VSC). Unless otherwise noted, each experiment was run
on a cluster consisting of 10 compute nodes. Each node features two 10-core
“Ivy Bridge” Xeon E5-2680v2 CPUs (2.8 GHz, 25 MB level 3 cache) with 64
GB of RAM and a single 250GB hard disk. The nodes are linked to a IB-
QDR Infiniband network. We used Hadoop 2.6.2, Pig 0.15.0 and Hive 1.2.1.
Table 5.3 lists the settings for the Hadoop cluster that was utilized for our
experiments. Table 5.4 shows the values that are used for the constants in the
revised MapReduce cost model. The values were obtained using benchmark
tests on the system used for the experiments. All experiments are run three
times; average results are reported.

Queries typically contain a multitude of relations and the input sizes of
our experiments go up to 100GB depending on the query and the evaluation
strategy. The data that is used for the guard relations consists of 100M tuples
that add up to 4GB per relation. For the conditional relations we use the same

168 MSJ Evaluation in Practice

Constant Description Value

lr local disk read cost (per MB) 0.03

lw local disk write cost (per MB) 0.085

hr hdfs read cost (per MB) 0.15

hw hdfs write cost (per MB) 0.25

t transfer cost (per MB) 0.017

D external sort merge factor 10

buf map map task buffer limit (in MB) 409MB

buf red reduce task buffer limit (in MB) 512MB

Table 5.4: Values for constants used in the cost model.

number of tuples that add up to 1GB per relation; 50% of the conditional
tuples match those of the guard relation, unless otherwise noted.

We use the following performance metrics:

1. total time: the aggregate sum of time spent by all mappers and reducers;

2. net time: elapsed time between query submission to obtaining the final
result;

3. input cost : the number of bytes read from hdfs over the entire MR plan;

4. communication cost : the number of bytes that are transferred from map-
pers to reducers.

5.5.2 Multi-Semi-Join Queries

We start with the evaluation of sets of semi-joins. Table 5.5 lists the type of
semi-join queries that are used in this section. We consider two evaluation
strategies in Gumbo. The first strategy serves as the baseline and evaluates
all semi-joins separately (SJ-PAR). That is, for a set of n semi-joins there are
n MSJ jobs that are evaluated in parallel. The second strategy is the naive
application of MSJ that groups all semi-join queries together into one MSJ job
(SJ-GROUP). We also compare to Hive and Pig, for which we consider two
approaches: using the semi-join operator in Hive and using the COGROUP
operator in Pig. The results are depicted in Figure 5.4 and are discussed next.

SJ-PAR versus SJ-GROUP. Figure 5.4 shows that SJ-GROUP can, for
certain queries, provide benefits over SJ-PAR in terms of total time. Indeed,
for queries S3, S4 and S6, we find a decrease in total time of 72%, 49% and
89% respectively. This is caused by the reduction of both the input data (up
to 75% less) and intermediate data (up to 58% less). The latter is a direct

5.5. Experimental Validation 169

QID Query Type of query

S1 R(x, y, z, w) n S(x) baseline

S2 R(x, y, z, w) n S(x)
R(x, y, z, w) n T (y)
R(x, y, z, w) n U(z)
R(x, y, z, w) n V (w)

guard name sharing

S3 R(x, y, z, w) n S(x)
R(x, y, z, w) n S(y)
R(x, y, z, w) n S(z)
R(x, y, z, w) n S(w)

guard & conditional
atom name sharing

S4 R(x, y, z, w) n S(x)
R(x, y, z, w) n T (x)
R(x, y, z, w) n U(x)
R(x, y, z, w) n V (x)

guard & conditional
atom key sharing

S5 R(x, y, z, w) n S(x)
G(x, y, z, w) n T (y)
H(x, y, z, w) n U(z)
I(x, y, z, w) n V (w)

no sharing

S6 R(x, y, z, w) n S(x)
G(x, y, z, w) n S(y)
H(x, y, z, w) n S(z)
I(x, y, z, w) n S(w)

conditional atom name
sharing

Table 5.5: Queries used in the MSJ experiment.

170 MSJ Evaluation in Practice

200

400

600
N

et
 T

im
e

(s
) SJ-PAR

 4
9 8

3

 6
6

 7
9

 6
7

 7
0

SJ-GROUP

 4
9 1

68

 1
35

 6
5

 8
5

 7
6

Hive

 1
24

 5
29

 5
20

 5
27

 5
48

 5
66

Pig

 1
55

 1
66

 1
63

 1
64

 1
68

 1
64

 5k

 10k

 15k

To
ta

l T
im

e
(s

)

 9
68

 5
k

 5
k

 5
k

 5
k

 5
k

 9
95

 6
k

 4
k

 3
k

 6
k

 5
k

 1
k

 5
k

 5
k

 5
k

 5
k 5
k

 2
k

 7
k 9

k

 7
k 8
k

 7
k

 10

 20

 30

 40

In
pu

t (
G

B)

 5

 2
0

 2
0

 2
0

 2
0

 2
0

 5

 8

 5

 8

 2
0

 1
7

 5

 2
0

 2
0

 2
0

 2
0

 2
0

 5

 2
0

 3
0

 2
0

 2
0

 2
0

 10

 20

 30

 40

S1 S2 S3 S4 S5 S6

C
om

m
un

ic
at

io
n

(G
B)

 7

 2
8

 2
8

 2
8

 2
8

 2
8

 7

 2
8

 2
4

 1
2

 2
8

 2
4

 8

 3
0

 3
0

 3
0

 3
0

 3
0

 7

 2
8

 2
8

 2
8

 2
8

 2
8

(a) Absolute values.

 100%
 300%
 500%
 700%
 900%
1100%

N
et

 T
im

e

SJ-PAR

 1
00

%

 1
00

%

 1
00

%

 1
00

%

 1
00

%

 1
00

%

SJ-GROUP

 1
00

%

 2
01

%

 2
04

%

 8
3%

 1
26

%

 1
09

%

Hive

 2
52

%

 6
34

%

 7
83

%

 6
70

%

 8
16

%

 8
10

%

Pig

 3
16

%

 1
99

%

 2
46

%

 2
08

%

 2
50

%

 2
34

%

 50%
 100%
 150%
 200%
 250%

To
ta

l T
im

e

 1
00

%

 1
00

%

 1
00

%

 1
00

%

 1
00

%

 1
00

%

 1
03

%

 1
15

%

 7
2%

 4
9%

 1
24

%

 8
9% 1

21
%

 9
3%

 9
3%

 9
3%

 9
4%

 1
06

%

 1
78

%

 1
42

%

 1
72

%

 1
41

%

 1
49

%

 1
44

%

 50%

 100%

 150%

 200%

In
pu

t

 1
00

%

 1
00

%

 1
00

%

 1
00

%

 1
00

%

 1
00

%

 1
00

%

 4
0%

 2
5% 4

0%

 1
00

%

 8
5% 1
00

%

 1
00

%

 1
00

%

 1
00

%

 1
00

%

 1
00

%

 1
00

%

 1
00

% 1
51

%

 1
00

%

 1
00

%

 1
00

%

 50%

 100%

 150%

 200%

S1 S2 S3 S4 S5 S6

C
om

m
un

ic
at

io
n

 1
00

%

 1
00

%

 1
00

%

 1
00

%

 1
00

%

 1
00

%

 1
00

%

 1
00

%

 8
5%

 4
2%

 1
00

%

 8
5% 1

07
%

 1
07

%

 1
07

%

 1
07

%

 1
07

%

 1
07

%

 1
01

%

 1
01

%

 1
01

%

 1
01

%

 1
01

%

 1
01

%

(b) Relative values.

Figure 5.4: Results for SJ-PAR, SJ-GROUP, Hive and Pig for the semi-
join queries in Table 5.5

5.5. Experimental Validation 171

consequence of the packing optimization, which can be applied when either
keys or relation names are shared among the conditional atoms.

For queries S2 and S5, we find that SJ-GROUP causes an increase in
total time. This is caused by an increased amount of spilling that cannot
be compensated for by packing, as no commonalities are present among the
conditional atoms.

In regard to net time we find that SJ-GROUP, in general, increases the
net time. This effect is most visible for queries S2 and S3 where the guard has
to emit four request messages per tuple, hereby increasing the average duration
of the map tasks by 155% on average because of spilling. For query S4, the
net time even decreases, mainly due to the high decrease in communication
bytes. Finally, queries S5 and S6 show net times that are 26% and 9% higher,
respectively. The main cause of this is the lack of separate synchronization
points between map and reduce phases, as all tasks are now collected into one
job.

Hive & Pig. We find that Hive exhibits total times similar to SJ-PAR, but
net times that are more than 6 times higher in all cases. This is due to Hive
blocking the different semi-join jobs to run in parallel, even though parallel
execution is enabled. For Pig, we find that total time is on average 49,6%
higher than for SJ-PAR and net times are on average 127,4% higher. The
latter result is better than Hive’s and is caused by the fact that Pig does allow
for parallel execution of its COGROUP operations.

Conclusion. The naive implementation of semi-join queries Gumbo already
outperforms Pig and Hive. Grouping all queries in one job affects total and
net time in different ways, depending on the query. Together with the fact
that these results can fluctuate even more depending on the actual input, this
indicates the need for a cost-based approach.

5.5.3 BSGF Queries

Table 5.6 lists the type of BSGF queries used in this section. The results
obtained here generalize to non-conjunctive BSGF queries. Conjunctive BSGF
queries were chosen to simplify the comparison with sequential query plans.
Figures 5.5 and 5.6 show the results that are discussed next.

Sequential vs. Parallel. We first compare sequential and parallel evaluation
of queries A1–A5 to highlight the major differences between sequential and
parallel query plans and to illustrate the effect of grouping. In particular, we
consider three evaluation strategies in Gumbo: (i) evaluating all semi-joins
sequentially by applying a semi-join to the output of the previous stage (SEQ),
where the number of rounds depends on the number of semi-joins; (ii) using
the 2-round strategy with algorithm Greedy-BSGF (GREEDY); and, (iii)

172 MSJ Evaluation in Practice

QID Query Type of query

A1 R(x, y, z, w)n
S(x) ∧ T (y) ∧ U(z) ∧ V (w)

guard sharing

A2 R(x, y, z, w)n
S(x) ∧ S(y) ∧ S(z) ∧ S(w)

guard & conditional
atom name sharing

A3 R(x, y, z, w)n
S(x) ∧ T (x) ∧ U(x) ∧ V (x)

guard & conditional
atom key sharing

A4 R(x, y, z, w)n
S(x) ∧ T (y) ∧ U(z) ∧ V (w)

G(x, y, z, w)n
W (x)∧X(y)∧Y (z)∧Z(w)

no sharing

A5 R(x, y, z, w)n
S(x) ∧ T (y) ∧ U(z) ∧ V (w)

G(x, y, z, w)n
S(x) ∧ T (y) ∧ U(z) ∧ V (w)

conditional atom name
sharing

B1 R(x, y, z, w)n
S(x) ∧ T (x) ∧ U(x) ∧ V (x) ∧
S(y) ∧ T (y) ∧ U(y) ∧ V (y) ∧
S(z) ∧ T (z) ∧ U(z) ∧ V (z) ∧
S(w) ∧ T (w) ∧ U(w) ∧ V (w)

large conjunctive query

B2 R(x, y, z, w)n
(S(x)∧¬T (x)∧¬U(x)∧¬V (x))∨
(¬S(x)∧T (x)∧¬U(x)∧¬V (x))∨
(S(x)∧¬T (x)∧U(x)∧¬V (x))∨
(¬S(x)∧¬T (x)∧¬U(x)∧ V (x))

uniqueness query

Table 5.6: Queries used in the BSGF experiment.

5.5. Experimental Validation 173

300

600

900

1200
N

et
 T

im
e

(s
) SEQ

 2
33

 2
40

 2
34 2
85

 2
48

PAR

 1
37

 1
29

 1
59

 1
79

 1
56

GREEDY

 1
40 2

36

 1
30

 1
73

 1
83

HPAR

 5
62

 5
83

 3
03

 5
94

 1
15

3HPARS

 3
23

 3
22

 3
23

 3
28

 1
17

9

PPAR

 5
06 5

89

 4
72 5

39

 5
87

1-ROUND

 1
01

 10k

 20k

 30k

To
ta

l T
im

e
(s

)

 3
k

 3
k

 3
k

 7
k

 5
k 7
k

 7
k

 7
k

 1
4k

 1
4k

 6
k

 5
k

 4
k

 1
3k

 1
0k

 6
k

 6
k

 4
k 6

k 1
1k

 9
k

 9
k

 9
k

 9
k

 3
4k

 1
4k 1

7k

 1
3k

 2
8k 3

1k

 3
k

 25

 50

 75

100

In
pu

t (
G

B)

 1
2

 1
2

 1
2 2

3

 1
9 2

8

 2
8

 2
8

 5
5

 5
5

 2
0

 1
3

 1
4

 3
0

 2
6 2
8

 2
8

 1
4

 3
2

 5
7

 4
2

 4
2

 4
2

 4
2

 8
3

 4
0 5

0

 4
0

 7
9

 1
02

 8

 25

 50

 75

100

A1 A2 A3 A4 A5

C
om

m
un

ic
at

io
n

(G
B)

 1
6

 1
6

 1
6

 3
3

 2
7

 2
2

 2
2

 2
2

 4
4

 4
4

 2
2

 1
8

 1
5

 3
9

 3
3

 3
3

 3
3

 2
0 3

3

 6
6

 5
3

 5
3

 5
3

 5
3

 1
05

 5
0

 5
0

 5
0

 9
9

 9
9

 1
2

(a) Absolute values.

 100%
 200%
 300%
 400%
 500%
 600%

N
et

 T
im

e

SEQ

 1
00

%

 1
00

%

 1
00

%

 1
00

%

 1
00

%
PAR

 5
9%

 5
4%

 6
8%

 6
3%

 6
3%

GREEDY

 6
0% 9

8%

 5
6%

 6
0%

 7
4%

HPAR

 2
41

%

 2
43

%

 1
29

%

 2
08

%

 4
65

%HPARS

 1
39

%

 1
34

%

 1
38

%

 1
15

%

 4
76

%

PPAR

 2
17

%

 2
45

%

 2
01

%

 1
89

%

 2
37

%

1-ROUND

 4
3%

 200%

 400%

 600%

 800%

To
ta

l T
im

e

 1
00

%

 1
00

%

 1
00

%

 1
00

%

 1
00

% 2
53

%

 2
42

%

 2
45

%

 1
91

%

 2
65

%

 2
38

%

 1
70

%

 1
49

%

 1
68

%

 1
86

%

 2
25

%

 2
18

%

 1
42

%

 7
8% 2

11
% 3
24

%

 3
17

%

 3
19

%

 1
17

%

 6
40

%

 5
40

%

 6
14

%

 4
90

%

 3
73

%

 5
76

%

 1
20

%

 200%

 400%

 600%

In
pu

t

 1
00

%

 1
00

%

 1
00

%

 1
00

%

 1
00

% 2
40

%

 2
40

%

 2
40

%

 2
40

%

 2
91

%

 1
71

%

 1
10

%

 1
20

%

 1
32

%

 1
39

% 2
46

%

 2
46

%

 1
24

%

 1
40

%

 2
98

%

 3
61

%

 3
61

%

 3
61

%

 1
81

%

 4
37

%

 3
44

% 4
33

%

 3
44

%

 3
44

%

 5
35

%

 7
0%

 100%
 200%
 300%
 400%
 500%

A1 A2 A3 A4 A5

C
om

m
un

ic
at

io
n

 1
00

%

 1
00

%

 1
00

%

 1
00

%

 1
00

%

 1
33

%

 1
33

%

 1
33

%

 1
33

%

 1
61

%

 1
33

%

 1
08

%

 9
0%

 1
20

%

 1
24

% 2
02

%

 2
02

%

 1
22

%

 1
01

%

 2
44

% 3
22

%

 3
22

%

 3
22

%

 1
61

%

 3
89

%

 3
04

%

 3
04

%

 3
04

%

 3
04

%

 3
67

%

 7
0%

(b) Values relative to SEQ.

Figure 5.5: Results for evaluating the BSGF queries in Table 5.6 using dif-
ferent strategies.

174 MSJ Evaluation in Practice

a more naive version of GREEDY where no grouping occurs, i.e., every semi-
join is evaluated separately in parallel (PAR). As semi-join algorithms in MR
have not received significant attention, we choose to compare to two extreme
approaches: no parallelization (SEQ) and parallelization without grouping
(PAR). Relative improvements of PAR and GREEDY w.r.t. SEQ are shown
in Figure 5.5b.

Recall that parallel query plans aim to minimize net time. As expected, we
find that both PAR and GREEDY result in lower net times. In particular,
we see average improvements of 39% and 31% over SEQ, respectively. On
the other hand, the total times for PAR are much higher than for SEQ:
132% higher on average. This is explained by the increase in both input and
communication bytes, whereas the data size can be reduced after each step in
the sequential evaluation. For GREEDY, total times vary depending on the
structure of the query. Total times are significantly reduced for queries where
conditional atoms share join keys and/or relation names. This effect is most
obvious for queries A2, A3 and A5 where we observe reductions in total time
of 30%, 29% and 30%, respectively, w.r.t. PAR.

For query A3, all conditional atoms have the same join key, making 1-round
evalation possible. This is denoted by 1-ROUND42 and further reduces the
total and net time to only 49% and 63% of those of PAR, respectively.

Hive & Pig. We now examine parallel query evaluation in Pig and Hive and
show that Gumbo outperforms both systems for BSGF queries. For this test,
we implement the 2-round query plans of Section 4.5.4 directly in Pig and Hive.
For Hive, we consider two evaluation strategies: one using Hive’s left-outer-
join operation (HPAR) and one using Hive’s semi-join operations (HPARS).
For Pig, we consider one strategy that is implemented using the COGROUP
operation (PPAR). We also studied sequential evaluation of BSGF queries in
both systems but choose to omit the results here as both performed drastically
worse than their Gumbo equivalent (SEQ) in terms of net and total time.

First, similar to the semi-join experiment, we find that HPAR lacks par-
allelization. This is again caused by Hive’s restriction that certain join opera-
tions are executed sequentially, even when parallel execution is enabled. This
leads to net times that are 238% higher on average, compared to PAR. Note
that query A3 shows a better net time than the other queries. This is caused
by Hive allowing some form of grouping on certain join queries, effectively
bringing the number of jobs (and rounds) down to 2.

Next, we find that HPARS performs better than HPAR in terms of net
time but is still 126% higher on average than PAR. The lower net times
w.r.t. HPAR are explained by Hive allowing parallel execution of semi-join
operations, without allowing any form of grouping. This effectively makes

42See also MSJEVAL-1 in Section 5.3.7.

5.5. Experimental Validation 175

HPAR the Hive equivalent of PAR. The high net times are caused by Hive’s
higher average map and reduce input sizes, which lead to higher average map
and reduce times, unavoidably increasing the overall net time.

Finally, Pig shows an average net time increase of 254% w.r.t. PAR. This
is mainly caused by the lack of reduction in intermediate data and in input
bytes, together with the strategy of determining the number of reducers based
on the input size (1GB of map input data per reducer). For these queries, this
leads to a low number of reducers, causing the average reduce time, and hence
overall net time, to go up.

As the reported net times for Hive and Pig are much higher than for
sequential evaluation in Gumbo (SEQ), we conclude that Pig and Hive, with
default settings, are unfit for parallel evaluation of BSGF queries. For this
reason, we restrict our attention to Gumbo in the following sections.

Large Queries. Next, we compare the evaluation of two larger BSGF queries
B1 and B2 from Table 5.6. The results are shown in Figure 5.6. Query B1
is a conjunctive BSGF query featuring a high number of atoms. Its structure
ensures a deep sequential plan that results in a high net time for SEQ. We
find that PAR only takes 22% of the net time, which shows that parallel
query plans can yield significant improvements in this aspect. Conversely,
PAR takes up 261% more total time than SEQ, as the latter is more efficient
in pruning the data at each step. Here, GREEDY is able to successfully
parallelize query execution without sacrificing total time. Indeed, GREEDY
exhibits a net time comparable to that of PAR and a total time comparable
to that of SEQ.

Query B2 consists of a large Boolean combination and is called the unique-
ness query. This query returns the tuples that can be connected to precisely
one of the conditional relations through a given attribute. The number of
distinct conditional atoms is limited, and the disjunction at the highest level
makes it possible to evaluate the four conjunctive subexpressions in parallel
using SEQ. Still, we find that the net time of PAR improves that of SEQ by
66%. As PAR only needs to calculate the result of four semi-join queries in
its first round, we also find a reduction of 57% in total time. The GREEDY
strategy further reduces both numbers.

Finally, for query B2, a 1-round evaluation denoted again by 1-ROUND
can be considered, as only one key is used in the conditional atoms. This
evaluation strategy brings down both the net and total time of SEQ by more
than 80%.

Cost Model. As explained in Section 4.4, the major difference between our
cost model and that of Wang et al. [163] (referred to as Cgumbo and Cwang ,
respectively, from here onward) concerns identifying the individual map cost
contributions of the input relations. For queries where the map input/output

176 MSJ Evaluation in Practice

ratio differs greatly among the input relations, we notice a vast improvement
for the GREEDY strategy. We illustrate this using the following query:

R(x, y, z, w) n S1(x̄1, c) ∧ . . . ∧ S1(x̄12, c) ∧
S2(x̄1, c) ∧ . . . ∧ S2(x̄12, c) ∧
S3(x̄1, c) ∧ . . . ∧ S3(x̄12, c) ∧
S4(x̄1, c) ∧ . . . ∧ S4(x̄12, c),

where x̄1, . . . , x̄12 are all distinct keys and c is a constant that filters out all
tuples from S1, . . . , S4. The results for evaluating this query using GREEDY
with Cgumbo and Cwang are unmistakable: Cgumbo provides a 43% reduction
in total time and a 71% reduction in net time. The reason is that Cwang
does not discriminate between different input relations as it averages out the
intermediate data and therefore fails to account for the high number of map-
side merges and the accompanying increase in total time. Note that these
merges also have an adverse effect on the net time, which is reflected by our
measurements.

For queries A1–A5 and B1–B2, where input relations have a contribution
to map output that is proportional to their input size, we find that both cost
models behave similarly. Indeed, when comparing two random jobs from our
experiments, the cost models are capable of correctly identifying the highest
cost job in 72.28% (Cgumbo) and 69.37% of the cases (Cwang). The slight advan-
tage for Cgumbo can be attributed to the small set of jobs having unbalanced
map contributions. Hence, we find that Cgumbo provides a more robust cost
estimation as it can isolate input relations that have a non-proportional map
output contribution, while it automatically resorts to Cwang in the case of an
equal contribution.

Conclusion. We conclude that parallel evaluation effectively lowers net times,
at the cost of higher total times. The GREEDY strategy, backed by an
updated cost model, successfully manages to bring down the total times of
parallel evaluation, especially in the presence of commonalities among the
atoms of BSGF queries. For larger queries, total times similar to SEQ are
obtained. Finally, Gumbo outperforms Pig and Hive in all aspects when it
comes to parallel evaluation of BSGF queries.

5.5.4 SGF Queries

In this section, we show that the algorithm Greedy-SGF succeeds in lowering
the total time while avoiding significant loss in net time. Figure 5.8 gives
an overview of the type of queries that are used. Results are depicted in
Figure 5.7. Note that these queries all exhibit different properties. Queries C1
and C2 both contain a set of SGF queries where a number of atoms overlap;

5.5. Experimental Validation 177

300
600
900

1200
N

et
 T

im
e

(s
) SEQ

 9
87

 3
63

PAR

 2
17

 1
61

GREEDY

 1
73

 1
32

HPAR 8
24

 2
49

HPARS

 5
80

 3
32

PPAR

 8
01

 4
75

1-ROUND

 6
5

 20k

 40k

 60k

To
ta

l T
im

e
(s

)

7k

15
k26

k

7k8k 4k

61
k

9k

35
k

9k

48
k

13
k

3k
 50
100
150
200

In
pu

t (
G

B)

24

54

99

2819 14

18
0

43

13
7

42

16
5

40
8

 50
100
150
200
250

B1 B2

C
om

m
un

ic
at

io
n

(G
B)

Absolute values

35

7972

2227 15

21
7

53

17
7

53

16
3

50
12

 50%

100%

150%

 1

00
%

 1

00
%

 2

2%
 4

4%

 1

7%
 3

6%

 8

3%

 6

9%

 5

9%
 9

2%

 8

1%

 1

31
%

 1

8%

100%

400%

700%

1000%

 1

00
%

 1

00
%

 3
61

%

 4

3%

 1

06
%

 2

7%

 8

44
%

 6

1%

 4

79
%

 5

8%

 6

64
%

 8

7%

 1
8%

100%

400%

700%

 1

00
%

 1

00
%

 4

11
%

 5

1%

 8

0%

 2

5%

 7

49
%

 8

0%

 5

70
%

 7

7%

 6

86
%

 7

3%

 1
8%

100%

300%

500%

700%

B1 B2

Relative w.r.t. SEQ

 1

00
%

 1

00
%

 2

06
%

 2

8%

 7

6%

 1

8%

 6

20
%

 6

7%

 5

05
%

 6

6%

 4

65
%

 6

3%

 1
8%

Figure 5.6: Results for the large BSGF queries in Table 5.6.

query C3 is a complex query that contains a multitude of different atoms;
query C4 consists of two levels and many overlapping atoms.

We consider the following evaluation strategies in Gumbo: (i) sequen-
tially, i.e., one at a time, evaluating all BSGF queries in a bottom-up fashion
(SEQUNIT); (ii) evaluating all BSGF queries in a bottom-up fashion level by
level where queries on the same level are executed in parallel (PARUNIT);
and, (iii) using the greedily computed multiway topological sort combined
with Greedy-BSGF (Greedy-SGF). Note that in both SEQUNIT and
PARUNIT all semi-joins are evaluated using separate jobs. For all tests con-
ducted here, we found that Greedy-SGF yields multiway topological sorts
that are identical to the optimal topological sort (computed trough brute-force
methods). Hence, we omit the results for the optimal plans.

Similar to our observations for BSGF queries, we find that full sequential
evaluation (SEQUNIT) results in the largest net times. Indeed, PARUNIT
exhibits 55% lower net times on average. We also observe that PARUNIT
exhibits significantly larger total times than SEQUNIT for queries C1 and
C2, while this is not the case for C3 and C4. The reason is that for C3 and
C4, queries on the same level still share common characteristics, leading to a
lower number of distinct semi-joins.

178 MSJ Evaluation in Practice

 25%
 50%
 75%
 100%
 125%
 150%

N
et

 T
im

e

SEQ-UNIT

 1
00

%

 1
00

%

 1
00

%

 1
00

%

PAR-UNIT

 3
1% 5

1% 7
3%

 3
2%

GREEDY-SGF

 5
6% 7

1%

 7
8%

 4
2%

 25%
 50%
 75%
 100%
 125%
 150%

To
ta

l T
im

e

 1
00

%

 1
00

%

 1
00

%

 1
00

%

 1
07

%

 1
21

%

 1
08

%

 6
7%

 5
8% 7

4% 9
2%

 5
7%

 25%
 50%
 75%
 100%
 125%

In
pu

t 1
00

%

 1
00

%

 1
00

%

 1
00

%

 1
04

%

 1
08

%

 1
00

%

 7
9%

 5
2% 6

1%

 6
4%

 5
0%

 25%
 50%
 75%
 100%
 125%

C1 C2 C3 C4

C
om

m
un

ic
at

io
n

 1
00

%

 1
00

%

 1
00

%

 1
00

%

 1
05

%

 1
05

%

 9
5%

 7
6%

 6
9% 7

9%

 8
5%

 7
2%

Figure 5.7: Results for the SGF queries in Figure 5.8. Values are relative to
SEQUNIT.

For Greedy-SGF, we find that it exhibits net times that are, on average,
42% lower than SEQUNIT, while still being 29% higher than PARUNIT.
The main reason for this is the fact that Greedy-SGF aims to minimize
total time, and may introduce extra levels in the MR query plan to obtain
this goal. Indeed, we find that total times are down 27% w.r.t. SEQUNIT,
and 29% w.r.t. PARUNIT.

Finally, for these queries, the absolute savings in net time that can be
obtained by using Greedy-SGF over SEQUNIT range from 115s to 737s,
far outweighing the overhead cost of calculating the query plan itself, which
typically takes around 10s (sampling included).43 Hence, we conclude that
Greedy-SGF provides an evaluation strategy for SGF queries that manages
to bring down the total time (and hence, the resource cost) of parallel query
plans, while still exhibiting low net times when compared to sequential ap-
proaches.

43Note that query plan calculation and sampling are not executed on the compute nodes
themselves.

5.5. Experimental Validation 179

root

Z3(x) := G(x̄) n Z1(z) ∨ Z1(w)

Z1(x) := R(x̄) n S(x) ∧ S(y)

invis

Z2(x) := G(x̄) n T (x) ∧ T (y)

Z4(x) := H(x̄) n Z3(z) ∨ Z3(w)

Z3(x) := H(x̄) n U(x) ∧ U(y)

(a) Query Set C1
root

Z4(x̄) := G(x̄) n Z1(x) ∧ Z1(y)

Z1(x̄) := R(x̄) n S(x) ∧ S(y)

Z5(x̄) := H(x̄) n Z2(x) ∧ Z2(y)

Z2(x̄) := G(x̄) n T (x) ∧ T (y)

Z6(x̄) := R(x̄) n Z3(x) ∧ Z3(y)

Z3(x̄) := H(x̄) n U(x) ∧ U(y)

(b) Query Set C2

Z31(z) := I(x̄) n Z22(x) ∧ T (x) ∧ V (y)

Z21(z) := G(x̄) n Z11(x) ∧ U(y)

Z11(z) := R(x̄) n S(x) ∧ T (y)

Z22(z) := H(x̄) n U(y) ∨ V (y) ∧ Z12(x)

Z12(z) := R(x̄) n T (y)

Z23(z) := R(x̄) n U(x) ∧ T (y) ∧ V (z) ∧ Z13(w)

Z13(z) := I(x̄) n ¬S(w)

(c) Query C3

Z21(x̄) := H(x̄) n Z11(x) ∨ Z12(y) ∨ Z23(z) ∨ Z24(w)

Z11(y) := R(x̄) n S(x) ∨ T (y)

Z12(y) := R(x̄) n U(z) ∨ S(x)

Z13(y) := G(x̄) n U(x) ∨ V (y)

Z14(y) := G(x̄) n S(z) ∨ U(x)

(d) Query C4

Figure 5.8: Queries used in the SGF experiment. Each node represents one
BSGF subquery (x̄ = x, y, z, w).

180 MSJ Evaluation in Practice

 300

 600

 900

 1200

N
et

 T
im

e
(s

) SEQ
PAR

GREEDY
1-ROUND

 0
 50k
 100k
 150k
 200k
 250k

200M 400M 800M 1600M

To
ta

l T
im

e
(s

)

Data Size

(a) Varying data size (10 nodes).

 250
 500
 750

 1000
 1250

N
et

 T
im

e
(s

) SEQ
PAR

GREEDY
1-ROUND

 0
 25k
 50k
 75k

 100k
 125k

 5 10 20

To
ta

l T
im

e
(s

)

Nodes

(b) Varying cluster size (800M tuples).

 100
 200
 300
 400
 500

N
et

 T
im

e
(s

) SEQ
PAR

GREEDY
1-ROUND

 0

 15k

 30k

 45k

 60k

200M/5 400M/10 800M/20

To
ta

l T
im

e
(s

)

Data Size/Nodes

(c) Varying data and cluster size.

 200
 400
 600
 800

 1000

N
et

 T
im

e
(s

) SEQ
PAR

GREEDY
1-ROUND

 10k

 20k

 30k

 40k

 0 2 4 6 8 10 12 14 16 18

To
ta

l T
im

e
(s

)

Conditional Atoms

(d) Varying the number of atoms.

Figure 5.9: Results for data and node variation tests in Gumbo.

5.5. Experimental Validation 181

5.5.5 System Characteristics

In these final experiments, we study the behavior of Gumbo under the change
of several parameters. We study the effect of growing data size, cluster size,
query size, and selectivity. We consider queries similar to A3 as these allow us
to (i) incorporate 1-ROUND in our results, and (ii) gain insights in the best
possible scenario. Aside from GREEDY and 1-ROUND being faster than
the other strategies, all conclusions hold for the other query types as well.

Data & Cluster Size. Figures 5.9a to 5.9c show the result of evaluating A3
using SEQ, PAR, GREEDY and 1-ROUND under the presence of variable
data and cluster size. We summarize the most important observations:

1. in all scenarios, 1-ROUND performs best in terms of net and total time;

2. due to its lack of grouping, PAR needs a high number of mappers, which
at some point exceeds the capacity of the cluster. This causes a large
increase in net and total time, an effect that can be seen in Figure 5.9a.

3. with regard to net time, adding more nodes is very effective for the
parallel strategies PAR, GREEDY and 1-ROUND (see Figure 5.9b).
In contrast, adding more nodes does not improve SEQ substantially
after some point. The reason for this is that the number of map tasks
is lower in SEQ, as they are spread across multiple rounds. Therefore,
less nodes are required to run all tasks in parallel and no improvement
can be seen beyond 10 nodes. If desired, all strategies can be further
parallelized by lowering the split size.

4. when scaling data and cluster size at the same time (see Figure 5.9c),
all strategies are able to maintain their net times in the presence of an
increasing total time. But, we find that w.r.t. total time PAR is the
most sensitive for this type of scaling.

Query Size. We consider a set of queries similar to A3, where the number
of conditional atoms ranges from 2 to 16. Results are depicted in Figure 5.9d.
With regard to net time, we find that SEQ shows an increase in net time that is
strongly related to the query size, while PAR, GREEDY and 1-ROUND are
less affected. For total time, we observe the converse for PAR, as this strategy
cannot benefit from the packing optimization in the same way as GREEDY
and 1-ROUND can. This again shows that the GREEDY approach, which
incorporates grouping, offers the best properties of both sequential and parallel
evaluation strategies for this type of queries.

Selectivity. For a conditional relation, we define its selectivity rate as the
percentage of guard tuples it matches. We tested queries A1–A3 for selectivity

182 MSJ Evaluation in Practice

Net time Total time
A1 A2 A3 A1 A2 A3

SEQ 10% 9% 8% 79% 95% 88%
PAR 33% 46% 69% 41% 47% 58%

GREEDY 23% 30% 13% 45% 57% 15%

Table 5.7: Increase in net and total time when increasing the selectivity rate
from 0.1 to 0.9 for queries A1–A3.

rates 0.1 (high selectivity), 0.3, 0.5, 0.7 and 0.9 (low selectivity). The increase
in net time and total time between selectivity rates 0.1 and 0.9 is summarized
in Table 5.7. In general, we find that the selectivity has the most influence on
the net times of PAR and GREEDY, and on the total times of SEQ. This
can be explained by the structure of the query plans: at high selectivity rates,
sequential query plans loose their filtering advantage. The jobs typically use
less resources and can therefore increase their resource usage (reflected in total
time) without sacrificing net time. For parallel query plans, the selectivity
affects both metrics mainly because a low selectivity rate reduces the input to
the EVAL job when only confirm messages are used. Finally, we observe that
the filtering characteristics of SEQ disappear in the presence of low selectivity
data, causing total times to become comparable to GREEDY for queries
where packing is possible, such as A3. This can be explained by GREEDY
being less sensitive to selectivity for queries where conditional atoms share
a common join key, making an effective compression of intermediate data
possible through packing.

5.6 Discussion

We have shown that, when compared to sequential evaluation, naive parallel
evaluation of semi-join and (B)SGF queries can greatly reduce the net time
of query execution. But, as expected, this generally comes at a cost of an
increased total time. We presented several methods that aim to reduce the
total cost (total time) of parallel MR query plans, while at the same time
avoiding a too high increase in net time. The greedy approach was shown to be
effective for evaluating (B)SGF queries in practice through several experiments
that were performed using our own implementation called Gumbo. For certain
classes of queries, our approach makes it even possible to evaluate (B)SGF
queries in parallel with a total time similar to that of sequential evaluation.
We have also shown that the profuse number of optimizations that are offered
in Gumbo allow it to outperform Pig and Hive in several aspects. Detailed
study of these optimization techniques could be the topic of future work.

5.6. Discussion 183

A more general observation that can be derived from the experiments is
that the input is not always the most important factor for determining the total
or net time. Other factors such as communication cost, replication rate, etc.
have to be taken into account. This backs up the choice of our cost model in
Section 4.4.3 and the study of the decision problem in Section 4.6.1. Although,
for completeness, we also provided a study of minimizing the number of input
reads in Section 4.6.2.

We note that the techniques introduced in this chapter generalize to any
map/reduce framework (as, e.g., [165]) given an appropriate adaptation of the
cost model. Also, a large number of the proposed optimizations can be directly
applied to any MR job.

Even though the algorithms in this chapter do not directly take skew into
account, the presented framework can readily be adapted to do so when in-
formation on so-called heavy hitters is available or can be computed at the
expense of an additional round (see, e.g., [1, 142, 146, 156]).

6
Discussion & Future Work

At the start of this work, we identified data mining as the core component
of the knowledge discovery process and focused on two subtopics: pattern
mining and big data query optimization. In regard to pattern mining, we
studied the problem of enumerating all strings in a context-free language as
well as the XML key mining problem which requires finding all keys that hold
in an XML document in the presence of a schema (XSD). For Big data query
optimization, we focused on optimizing the evaluation of parallel MapReduce
query plans for multi-semi-join (or SGF) queries. In this final chapter, we
attempt to draw some general conclusions and indicate possible directions for
future work which complement the more topic-specific directions that were
already presented at the end of each chapter.

Candidate Generation

For candidate generation, we studied a way of characterizing the generation
speed of enumeration schemes: the incremental polynomial time property,
which provides an upper bound on the time between two pattern outputs.
We found that simple methods such as the naive concatenation scheme for
context-free languages already abide by this property. In practice, a semi-naive
approach is preferred in conjunction with a non-ambiguous grammar, as this
allows for more accurate bounds to be obtained. As indicated in Chapter 2, the
results could be generalizable to more complex types of pattern languages, such
as graph languages. With the advent of social networks, this is a topic that we
think deserves some special attention. We provide a mechanism for describing
graph languages in Costa Florêncio et al. [61]. Here, the enumeration scheme

185

186 Discussion & Future Work

could be used in conjunction with a matching algorithm such as subgraph
isomorphism [158], or a more flexible notion of simulation [77, 79, 102, 121,
122] to find patterns from a predefined graph pattern language in large data
graphs. In the context of distributed systems, it is also worth looking at
the parallelization possibilities for this and other generation schemes and the
type of guarantees we can expect in this setting. A practical evaluation and
comparison of different schemes would then be advised.

A data-driven candidate generation procedure was developed for the XML
Key Mining problem. This is an example where the naive search space is too
large, requiring smart ways of exploring and pruning. Indeed, the naive enu-
meration of all possible XPath expressions would be too time-consuming, even
if we could provide guarantees on the time between two candidate expressions.
The proposed algorithm leverages both existing and new techniques to accom-
plish this: prefix trees, an efficient ordering of path expressions, levelwise
search and relational FD mining techniques. We also indicated that extending
our algorithm with a notion of approximate keys might be an interesting path
to follow, as this could easily be plugged into our mining framework. Another
interesting direction would be to transfer the notion of keys to the slightly
different semi-structured data format called JavaScript Object Notation, or
JSON [47]. This data format has taken an important place next to XML in
the last few years, and a schema language has also been developed for it [113].
Together with the fact that many No-SQL solutions offer the storage of JSON
documents, a key mining algorithm may provide additional insight in the data,
which could lead to more advanced optimization techniques (e.g., indexing).
Another interesting direction in this research is situated within the topic of
graph keys, which can be used in, e.g., entity resolution [78]. Indeed, several
methods are already in place, but it should be studied whether the XML key
definition can be ported to graphs in a way that allows the mining algorithm
to be reused.

Quality

In regard to data quality, we have devised several measures for XML Keys
that allow us to decide whether a key should be considered interesting or not.
These quality measures have the potential to positively affect the performance
as they might allow for early pruning of the search space (e.g., boundedness).
Hence, it is important to understand the meaning of these measures and to
understand the impact of incorporating them in a key mining algorithm. Al-
though incorporating them is often easy, this can also cause a major slowdown
of the data mining process either due to the hard complexity class of the prob-
lem, or due to inefficient implementations. Consistency is an example of the
latter, as we found that a large part of the running time of our mining algo-

187

rithm can be attributed to the consistency check, despite the fact that this
was proven to be in ptime.

The cardinality estimation problem complexities, which were derived for
different fragments of XPath and lie at the basis of the complexity of the
consistency quality measure, might find use in areas outside XML or XML
key mining. These results have already been transferred to similar string
problems in Arenas et al. [25].

Querying Big Data

We believe that our extensive study of SGF query optimization and evalua-
tion is a major contribution in cost-based optimization techniques for modern
Big data systems. As an open-source implementation of our methods is avail-
able [66], we hope that our results will be incorporated into newly developed
optimizers for established MapReduce-based systems such as Hive and Pig, as
we have shown that there are possibilities for achieving a great speedup and
reduction in resource requirements and/or costs.

The Big Picture

The growing interest in Big data has led to the development of new technolo-
gies and has boosted several research areas. The number of “Data Scientist”
positions that are available today is still growing, indicating a high interest
from the industry as well. This has caused the community to look for what
is beyond MapReduce: new technologies and new data modeling methods
are needed to bring order to the chaos of rapidly emerging solutions. In-
deed, a lot of advanced frameworks under development and try to overcome
the shortcomings of the MapReduce computation model (e.g., the multitude
synchronization steps, its inability to operate on streaming data, lack of iter-
ation support). A few popular examples include Spark [23, 170], HaLoop [49],
Tez [24, 147], and Google Dataflow [14]. The latter is now available as the
open-source Apache Beam [18] and aims to provide methods to model both
batch and streaming data. Babu and Herodotou [30] give a thorough overview
of the existing systems and the upcoming challenges.

As the results presented in this work are both fundamental and practical
in nature, we hope that they will contribute to the development of this next
generation of Big data systems. While it is difficult to forsee all possible uses,
our results could be used as, for example, part of data mining toolkits, indexing
mechanisms or optimization techniques.

For each of the topics we addressed in this work, fundamental theoretical
problems were studied and used to devise practical algorithms. Both the the-
oretical background and the transfer of this knowledge to a practical setting,

188 Discussion & Future Work

as well as the reuse of existing results are what the author considers to be one
of the core principles of computer science, which are paramount in the quickly
evolving Big data community.

Bibliography

[1] A. Gates, J. Dai, and T. Nair. Apache Pig’s Optimizer. IEEE Data
Engineering Bulletin, 36(1):34–45, 2013.

[2] S. Abiteboul, Y. Amsterdamer, D. Deutch, T. Milo, and P. Senel-
lart. Finding Optimal Probabilistic Generators for XML Collections.
In Proceedings of the 15th International Conference on Database The-
ory (ICDT 2012). ACM, 2012, pages 127–139. doi: 10.1145/2274576.
2274591.

[3] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.
Addison-Wesley, 1995.

[4] M. Ackerman and E. Mäkinen. Three New Algorithms for Regular
Language Enumeration. In Proceedings of the 15th Annual Interna-
tional Conference on Computing and Combinatorics (COCOON 2009).
Springer-Verlag, 2009, pages 178–191. doi: 10.1007/978- 3- 642-

02882-3_19.

[5] F. N. Afrati, D. Fotakis, and J. D. Ullman. Enumerating Subgraph
Instances Using MapReduce. In Proceedings of the 2013 IEEE 29th
International Conference on Data Engineering (ICDE 2013). IEEE,
2013. doi: 10.1109/icde.2013.6544814.

[6] F. N. Afrati, V. Borkar, M. Carey, N. Polyzotis, and J. D. Ullman. Map-
Reduce Extensions and Recursive Queries. In Proceedings of the 14th
International Conference on Extending Database Technology (EDBT
2011). ACM, 2011. doi: 10.1145/1951365.1951367.

[7] F. N. Afrati, M. Joglekar, C. Ré, S. Salihoglu, and J. D. Ullman. GYM:
A Multiround Join Algorithm in MapReduce. 2014. arXiv: 1410.4156.

[8] F. N. Afrati, A. D. Sarma, S. Salihoglu, and J. D. Ullman. Vision Paper:
Towards an Understanding of the Limits of Map-Reduce Computation.
2012. arXiv: 1204.1754.

189

http://dx.doi.org/10.1145/2274576.2274591
http://dx.doi.org/10.1145/2274576.2274591
http://dx.doi.org/10.1007/978-3-642-02882-3_19
http://dx.doi.org/10.1007/978-3-642-02882-3_19
http://dx.doi.org/10.1109/icde.2013.6544814
http://dx.doi.org/10.1145/1951365.1951367
http://arxiv.org/abs/1410.4156
http://arxiv.org/abs/1204.1754

190 BIBLIOGRAPHY

[9] F. N. Afrati and J. D. Ullman. Optimizing Joins in a Map-Reduce
Environment. In Proceedings of the 13th International Conference on
Extending Database Technology (EDBT 2010). ACM, 2010, pages 99–
110. doi: 10.1145/1739041.1739056.

[10] F. N. Afrati and J. D. Ullman. Optimizing Multiway Joins in a Map-
Reduce Environment. IEEE Transactions on Knowledge and Data En-
gineering, 23(9):1282–1298, 2011. doi: 10.1109/tkde.2011.47.

[11] F. N. Afrati and J. D. Ullman. Transitive Closure and Recursive Data-
log Implemented on Clusters. In Proceedings of the 15th International
Conference on Extending Database Technology (EDBT 2012). ACM,
2012. doi: 10.1145/2247596.2247613.

[12] F. N. Afrati, J. D. Ullman, and A. Vasilakopoulos. Handling Skew in
Multiway Joins in Parallel Processing. 2015. arXiv: 1504.03247.

[13] R. Agrawal and R. Srikant. Fast Algorithms for Mining Association
Rules in Large Databases. In Proceedings of the 20th International Con-
ference on Very Large Data Bases (VLDB 1994). Morgan Kaufmann,
1994, pages 487–499.

[14] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernández-
Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, and
S. Whittle. The Dataflow Model: A Practical Approach to Balancing
Correctness, Latency, and Cost in Massive-scale, Unbounded, Out-of-
Order Data Processing. Proceedings of the 41st International Confer-
ence on Very Large Data Bases (VLDB 2015), 8(12):1792–1803, 2015.
doi: 10.14778/2824032.2824076.

[15] G. M. Amdahl. Validity of the Single Processor Approach to Achieving
Large Scale Computing Capabilities. In Proceedings of the April 18-20,
1967, Spring Joint Computer Conference (AFIPS 1967). ACM, 1967,
pages 483–485. doi: 10.1145/1465482.1465560.

[16] H. Andréka, I. Németi, and J. van Benthem. Modal Languages and
Bounded Fragments of Predicate Logic. Journal of Philosophical Logic,
27(3):217–274, 1998. doi: 10.1023/a:1004275029985.

[17] C. Antunes and A. Oliveira. Using Context-free Grammars to Constrain
Apriori-based Algorithms for Mining Temporal Association Rules. In
Proceedings of the Workshop on Temporal Data Mining in the ACM
International Conference on Knowledge Discovery and Data Mining
(TDM@KDD 2002), 2002, pages 11–24.

[18] Apache Beam (incubating). url: http://beam.apache.org (visited
on 08/21/2016).

http://dx.doi.org/10.1145/1739041.1739056
http://dx.doi.org/10.1109/tkde.2011.47
http://dx.doi.org/10.1145/2247596.2247613
http://arxiv.org/abs/1504.03247
http://dx.doi.org/10.14778/2824032.2824076
http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1023/a:1004275029985
http://beam.apache.org

BIBLIOGRAPHY 191

[19] Apache Calcite - Dynamic Data Management Framework. url: http:
//calcite.apache.org (visited on 08/21/2016).

[20] Apache CouchDB. url: https://couchdb.apache.org (visited on
08/21/2016).

[21] Apache Hive. url: http://hive.apache.org (visited on 08/21/2016).

[22] Apache Pig. url: https://pig.apache.org (visited on 08/21/2016).

[23] Apache Spark - Lightning-Fast Cluster Computing. url: http : / /

spark.apache.org (visited on 08/21/2016).

[24] Apache Tez - Welcome to Apache Tez. url: https://tez.apache.org
(visited on 08/21/2016).

[25] M. Arenas, J. Daenen, F. Neven, M. Ugarte, J. Van den Bussche, and
S. Vansummeren. Discovering XSD Keys from XML Data. ACM Trans-
actions on Database Systems (TODS), 39(4):28:1–28:49, 2014. doi: 10.
1145/2638547.

[26] M. Arenas, J. Daenen, F. Neven, M. Ugarte, J. Van den Bussche, and S.
Vansummeren. Discovering XSD keys from XML data. In Proceedings of
the ACM SIGMOD International Conference on Management of Data
(SIGMOD 2013), 2013, pages 61–72. doi: 10.1145/2463676.2463705.

[27] M. Arenas, W. Fan, and L. Libkin. What’s Hard about XML Schema
Constraints? In Database and Expert Systems Applications: 13th In-
ternational Conference (DEXA 2002). Springer, 2002, pages 269–278.
doi: 10.1007/3-540-46146-9_27.

[28] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia.
Spark SQL: Relational Data Processing in Spark. In Proceedings of
the 2015 ACM SIGMOD International Conference on Management of
Data (SIGMOD 2015). ACM, 2015, pages 1383–1394. doi: 10.1145/
2723372.2742797.

[29] D. B. Arnold and M. R. Sleep. Uniform Random Generation of Bal-
anced Parenthesis Strings. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 2(1):122–128, 1980. doi: 10.1145/
357084.357091.

[30] S. Babu and H. Herodotou. Massively Parallel Databases and MapRe-
duce Systems. Foundations and Trends in Databases, 5(1), 2013. doi:
10.1561/1900000036.

http://calcite.apache.org
http://calcite.apache.org
https://couchdb.apache.org
http://hive.apache.org
https://pig.apache.org
http://spark.apache.org
http://spark.apache.org
https://tez.apache.org
http://dx.doi.org/10.1145/2638547
http://dx.doi.org/10.1145/2638547
http://dx.doi.org/10.1145/2463676.2463705
http://dx.doi.org/10.1007/3-540-46146-9_27
http://dx.doi.org/10.1145/2723372.2742797
http://dx.doi.org/10.1145/2723372.2742797
http://dx.doi.org/10.1145/357084.357091
http://dx.doi.org/10.1145/357084.357091
http://dx.doi.org/10.1561/1900000036

192 BIBLIOGRAPHY

[31] J. C. M. Baeten, J. A. Bergstra, and J. W. Klop. Decidability of Bisim-
ulation Equivalence for Process Generating Context-free Languages.
Journal of the ACM, 40(3):653–682, 1993. doi: 10 . 1145 / 174130 .

174141.

[32] F. Bancilhon and R. Ramakrishnan. An Amateur’s Introduction to Re-
cursive Query Processing Strategies. ACM SIGMOD Record, 15(2):16–
52, 1986. doi: 10.1145/16856.16859.

[33] D. Barbosa and A. Mendelzon. Finding ID Attributes in XML Docu-
ments. In Database and XML Technologies. Springer, 2003, pages 180–
194. doi: 10.1007/978-3-540-39429-7_12.

[34] P. Beame, P. Koutris, and D. Suciu. Communication Steps for Parallel
Query Processing. In Proceedings of the 32nd Symposium on Princi-
ples of Database Systems (PODS 2013). ACM, 2013. doi: 10.1145/
2463664.2465224.

[35] P. Beame, P. Koutris, and D. Suciu. Skew in Parallel Query Processing.
In Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Sympo-
sium on Principles of Database Systems (PODS 2014). ACM, 2014.
doi: 10.1145/2594538.2594558.

[36] P. A. Bernstein and D.-M. W. Chiu. Using Semi-Joins to Solve Rela-
tional Queries. Journal of the ACM, 28(1):25–40, 1981. doi: 10.1145/
322234.322238.

[37] P. A. Bernstein and N. Goodman. The Power of Inequality
Semijoins. Information Systems, 6(4):255–265, 1981. doi:
10.1016/0306-4379(81)90002-8.

[38] G. J. Bex. Discovering Structure in Semi-Structured Data. PhD thesis.
Hasselt University, 2008.

[39] G. J. Bex, W. Gelade, W. Martens, and F. Neven. Simplifying XML
Schema. In Proceedings of the 35th SIGMOD International Conference
on Management of Data (SIGMOD 2009). ACM, 2009. doi: 10.1145/
1559845.1559922.

[40] G. J. Bex, W. Gelade, F. Neven, and S. Vansummeren. Learning Deter-
ministic Regular Expressions for the Inference of Schemas from XML
Data. ACM Transactions on the Web, 4(4):1–32, 2010. doi: 10.1145/
1841909.1841911.

[41] G. J. Bex, F. Neven, T. Schwentick, and S. Vansummeren. Inference
of Concise Regular Expressions and DTDs. ACM Transactions on
Database Systems, 35(2):1–47, 2010. doi: 10.1145/1735886.1735890.

http://dx.doi.org/10.1145/174130.174141
http://dx.doi.org/10.1145/174130.174141
http://dx.doi.org/10.1145/16856.16859
http://dx.doi.org/10.1007/978-3-540-39429-7_12
http://dx.doi.org/10.1145/2463664.2465224
http://dx.doi.org/10.1145/2463664.2465224
http://dx.doi.org/10.1145/2594538.2594558
http://dx.doi.org/10.1145/322234.322238
http://dx.doi.org/10.1145/322234.322238
http://dx.doi.org/10.1016/0306-4379(81)90002-8
http://dx.doi.org/10.1145/1559845.1559922
http://dx.doi.org/10.1145/1559845.1559922
http://dx.doi.org/10.1145/1841909.1841911
http://dx.doi.org/10.1145/1841909.1841911
http://dx.doi.org/10.1145/1735886.1735890

BIBLIOGRAPHY 193

[42] G. J. Bex, F. Neven, and S. Vansummeren. Inferring XML Schema
Definitions from XML Data. In Proceedings of the 33rd International
Conference on Very Large Data Bases (VLDB 2007). VLDB Endow-
ment, 2007, pages 998–1009.

[43] G. J. Bex, F. Neven, and S. Vansummeren. SchemaScope. In Proceed-
ings of the 2008 ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD 2008). ACM, 2008, pages 1259–1262. doi:
10.1145/1376616.1376750.

[44] D. Bitton, J. Millman, and S. Torgersen. A Feasibility and Performance
Study of Dependency Inference. In Proceedings of the International
Conference on Data Engineering (ICDE 1989), 1989, pages 635–641.
doi: 10.1109/icde.1989.47271.

[45] H. Björklund, W. Martens, and T. Schwentick. Validity of Tree Pattern
Queries with Respect to Schema Information. In Mathematical Founda-
tions of Computer Science (MFCS 2013). Volume 8087. Springer, 2013,
pages 171–182. doi: 10.1007/978-3-642-40313-2_17.

[46] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and Y. Tian.
A Comparison of Join Algorithms for Log Processing in MapReduce.
In Proceedings of the 2010 International Conference on Management of
data (SIGMOD 2010). ACM, 2010. doi: 10.1145/1807167.1807273.

[47] T. Bray. The JavaScript Object Notation (JSON) Data Interchange
Format. 2014. url: https://tools.ietf.org/html/rfc7159 (visited
on 08/21/2016).

[48] A. Brüggemann-Klein and D. Wood. One-Unambiguous Regular Lan-
guages. Information and Computation, 140(2):229–253, 1998. doi: 10.
1006/inco.1997.2688.

[49] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. HaLoop: Efficient
Iterative Data Processing on Large Clusters. Proceedings of the VLDB
Endowment, 3(1):285–296, 2010. doi: 10.14778/1920841.1920881.

[50] P. Buneman. Semistructured Data. In Proceedings of the Sixteenth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS 1997). ACM, 1997, pages 117–121. doi:
10.1145/263661.263675.

[51] P. Buneman, S. B. Davidson, M. F. Fernandez, and D. Suciu. Adding
Structure to Unstructured Data. In Proceedings of the 6th International
Conference on Database Theory (ICDT 1997). Springer-Verlag, 1997,
pages 336–350.

http://dx.doi.org/10.1145/1376616.1376750
http://dx.doi.org/10.1109/icde.1989.47271
http://dx.doi.org/10.1007/978-3-642-40313-2_17
http://dx.doi.org/10.1145/1807167.1807273
https://tools.ietf.org/html/rfc7159
http://dx.doi.org/10.1006/inco.1997.2688
http://dx.doi.org/10.1006/inco.1997.2688
http://dx.doi.org/10.14778/1920841.1920881
http://dx.doi.org/10.1145/263661.263675

194 BIBLIOGRAPHY

[52] P. Buneman, S. Davidson, W. Fan, C. Hara, and W.-C. Tan. Keys for
XML. Computer Networks, 39(5):473–487, 2002. doi: 10.1016/s1389-
1286(02)00223-2.

[53] P. Buneman, S. Davidson, W. Fan, C. Hara, and W.-C. Tan. Reasoning
about Keys for XML. Information Systems, 28(8):1037–1063, 2003. doi:
10.1016/s0306-4379(03)00028-0.

[54] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases.
Springer, 1990. doi: 10.1007/978-3-642-83952-8.

[55] S. Chaudhuri. An Overview of Query Optimization in Relational
Systems. In Proceedings of the Seventeenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS
1998). ACM, 1998. doi: 10.1145/275487.275492.

[56] S. Chu, M. Balazinska, and D. Suciu. From Theory to Practice: Efficient
Join Query Evaluation in a Parallel Database System. In Proceedings of
the 2015 ACM SIGMOD International Conference on Management of
Data (SIGMOD 2015). ACM, 2015. doi: 10.1145/2723372.2750545.

[57] J. Clark and S. DeRose. XML Path Language (XPath). url: http:
//www.w3.org/TR/xpath (visited on 08/23/2016).

[58] J. Clark and M. Murata. Relax NG Specification. url: http://www.
relaxng.org/spec-20011203.html (visited on 08/21/2016).

[59] E. F. Codd. A Relational Model of Data for Large Shared Data Banks.
Communications of the ACM, 13(6):377–387, 1970. doi: 10 . 1145 /

362384.362685.

[60] C. Costa Florêncio, J. Daenen, J. Ramon, J. Van den Bussche, and
D. Van Dyck. Naive Infinite Enumeration of Context-free Languages in
Incremental Polynomial Time. Journal of Universal Computer Science,
21(7):891–911, 2015. doi: 10.3217/jucs-021-07-0891.

[61] C. Costa Florêncio, J. Ramon, J. Daenen, J. Van den Bussche, and D.
Van Dyck. Context-free Graph Grammars as a Language-Bias Mecha-
nism for Graph Pattern Mining. In Proceedings of the 7th International
Workshop on Mining and Learning with Graphs (MLG 2009). Extended
Abstract, 2009.

[62] B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-
Order Logic: A Language-Theoretic Approach. Cambridge University
Press, 1st edition, 2012.

[63] A. Cron, H. L. Nguyen, and A. Parameswaran. Big Data. XRDS,
19(1):7–8, 2012. doi: 10.1145/2331042.2331045.

http://dx.doi.org/10.1016/s1389-1286(02)00223-2
http://dx.doi.org/10.1016/s1389-1286(02)00223-2
http://dx.doi.org/10.1016/s0306-4379(03)00028-0
http://dx.doi.org/10.1007/978-3-642-83952-8
http://dx.doi.org/10.1145/275487.275492
http://dx.doi.org/10.1145/2723372.2750545
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.relaxng.org/spec-20011203.html
http://www.relaxng.org/spec-20011203.html
http://dx.doi.org/10.1145/362384.362685
http://dx.doi.org/10.1145/362384.362685
http://dx.doi.org/10.3217/jucs-021-07-0891
http://dx.doi.org/10.1145/2331042.2331045

BIBLIOGRAPHY 195

[64] J. Daenen, F. Neven, and T. Tan. Gumbo: Guarded Fragment Queries
over Big Data. In Proceedings of the 18th International Conference on
Extending Database Technology (EDBT 2015), 2015, pages 521–524.
doi: 10.5441/002/edbt.2015.48.

[65] J. Daenen, F. Neven, T. Tan, and S. Vansummeren. Parallel Evaluation
of Multi-Semi-Joins. Proceedings of the VLDB Endowment, 9(10):732–
743, 2016. doi: 10.14778/2977797.2977800.

[66] J. Daenen and T. Tan. Gumbo v0.4. 2016. url: http://dx.doi.org/
10.5281/zenodo.51517.

[67] A. De Mauro, M. Greco, and M. Grimaldi. A Formal Definition of Big
Data Based on Its Essential Features. Library Review, 65(3):122–135,
2016. doi: 10.1108/LR-06-2015-0061.

[68] L. De Moura and N. Bjørner. Z3: An Efficient SMT Solver. In Tools and
Algorithms for the Construction and Analysis of Systems: 14th Inter-
national Conference (TACAS 2008). Springer-Verlag, 2008, pages 337–
340. doi: 10.1007/978-3-540-78800-3_24.

[69] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. In Proceedings of the 6th Conference on Symposium
on Opearting Systems Design & Implementation - Volume 6. USENIX
Association, 2004, pages 10–10.

[70] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing
on Large Clusters. Communications of the ACM, 51(1):107–113, 2008.
doi: 10.1145/1327452.1327492.

[71] Document Structure Description (DSD). url: http://www.brics.dk/
DSD (visited on 08/21/2016).

[72] P. Dömösi. Unusual Algorithms for Lexicographical Enumeration. Acta
Cybernetica, 14(3):461–468, 2000.

[73] Y. Dong. Linear Algorithm for Lexicographic Enumeration of CFG
Parse Trees. Science in China Series F: Information Sciences,
52(7):1177–1202, 2009. doi: 10.1007/s11432-009-0132-7.

[74] A. G. Duncan and J. Hutchinson. Using Attributed Grammars to Test
Designs and Implementations. In Proceedings of the 5th International
Conference on Software Engineering (ICSE 1981). IEEE Press, 1981,
pages 170–178.

[75] M. Elseidy, A. Elguindy, A. Vitorovic, and C. Koch. Scalable and Adap-
tive Online Joins. Proceedings of the VLDB Endowment, 7(6):441–452,
2014. doi: 10.14778/2732279.2732281.

http://dx.doi.org/10.5441/002/edbt.2015.48
http://dx.doi.org/10.14778/2977797.2977800
http://dx.doi.org/10.5281/zenodo.51517
http://dx.doi.org/10.5281/zenodo.51517
http://dx.doi.org/10.1108/LR-06-2015-0061
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1145/1327452.1327492
http://www.brics.dk/DSD
http://www.brics.dk/DSD
http://dx.doi.org/10.1007/s11432-009-0132-7
http://dx.doi.org/10.14778/2732279.2732281

196 BIBLIOGRAPHY

[76] S. Fajt, I. Mlynkova, and M. Necasky. On Mining XML Integrity Con-
straints. In Sixth IEEE International Conference on Digital Informa-
tion Management (ICDIM 2011). IEEE, 2011, pages 23–29. doi: 10.
1109/icdim.2011.6093314.

[77] W. Fan. Graph Pattern Matching Revised for Social Network Analysis.
In Proceedings of the 15th International Conference on Database The-
ory (ICDT 2012). ACM, 2012, pages 8–21. doi: 10.1145/2274576.
2274578.

[78] W. Fan, Z. Fan, C. Tian, and X. L. Dong. Keys for Graphs. Proceed-
ings of the VLDB Endowment, 8(12):1590–1601, 2015. doi: 10.14778/
2824032.2824056.

[79] W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, and Y. Wu. Graph Pattern
Matching. Proceedings of the VLDB Endowment, 3(1-2):264–275, 2010.
doi: 10.14778/1920841.1920878.

[80] W. Fan and L. Libkin. On XML Integrity Constraints in the Presence
of DTDs. Journal of the ACM, 49(3):368–406, 2002. doi: 10.1145/
567112.567117.

[81] P. Flajolet, B. Salvy, and P. Zimmermann. Automatic Average-Case
Analysis of Algorithm. Theoretical Computer Science, 79(1):37–109,
1991. doi: 10.1016/0304-3975(91)90145-R.

[82] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge Uni-
versity Press, 2009. doi: 10.1017/CBO9780511801655.

[83] P. Flajolet, P. Zimmermann, and B. Van Cutsem. A Calculus for the
Random Generation of Labelled Combinatorial Structures. Theoretical
Computer Science, 132(1):1–35, 1994. doi: 10.1016/0304-3975(94)
90226-7.

[84] J. Flum, M. Frick, and M. Grohe. Query Evaluation via
Tree-decompositions. Journal of the ACM, 49(6):716–752, 2002. doi:
10.1145/602220.602222.

[85] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database Systems: The
Complete Book. Prentice Hall Press, 2nd edition, 2008.

[86] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., 1979.

[87] M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and K. Shim.
XTRACT: Learning Document Type Descriptors from XML
Document Collections. Data Mining and Knowledge Discovery,
7(1):23–56, 2003. doi: 10.1023/a:1021560618289.

http://dx.doi.org/10.1109/icdim.2011.6093314
http://dx.doi.org/10.1109/icdim.2011.6093314
http://dx.doi.org/10.1145/2274576.2274578
http://dx.doi.org/10.1145/2274576.2274578
http://dx.doi.org/10.14778/2824032.2824056
http://dx.doi.org/10.14778/2824032.2824056
http://dx.doi.org/10.14778/1920841.1920878
http://dx.doi.org/10.1145/567112.567117
http://dx.doi.org/10.1145/567112.567117
http://dx.doi.org/10.1016/0304-3975(91)90145-R
http://dx.doi.org/10.1017/CBO9780511801655
http://dx.doi.org/10.1016/0304-3975(94)90226-7
http://dx.doi.org/10.1016/0304-3975(94)90226-7
http://dx.doi.org/10.1145/602220.602222
http://dx.doi.org/10.1023/a:1021560618289

BIBLIOGRAPHY 197

[88] D. Geer. Industry Trends: Chip Makers Turn to Multicore Processors.
Computer, 38(5):11–13, 2005. doi: 10.1109/MC.2005.160.

[89] V. Gore, M. Jerrum, S. Kannan, Z. Sweedyk, and S. Mahaney. A Quasi-
polynomial-time Algorithm for Sampling Words from a Context-Free
Language. Information and Computation, 134(1):59–74, 1997. doi: 10.
1006/inco.1997.2621.

[90] E. Grädel. Description Logics and Guarded Fragments of First Order
Logic. In Proceedings of the 1998 International Workshop on Descrip-
tion Logics (DL 1998), 1998.

[91] G. Grahne and J. Zhu. Discovering Approximate Keys in XML data.
In Proceedings of the Eleventh International Conference on Informa-
tion and Knowledge Management (CIKM 2002). ACM Press, 2002,
pages 453–460. doi: 10.1145/584792.584867.

[92] S. Grijzenhout and M. Marx. The Quality of the XML Web. In Pro-
ceedings of the 20th ACM International Conference on Information and
Knowledge Management (CIKM 2011). ACM, 2011, pages 1719–1724.
doi: 10.1145/2063576.2063824.

[93] S. Grijzenhout and M. Marx. University of Amsterdam XML Web Col-
lection. 2010. url: http://data.politicalmashup.nl/sgrijzen/
xmlweb/ (visited on 08/21/2016).

[94] Hadoop. url: http://hadoop.apache.org (visited on 08/21/2016).

[95] G. Hager and G. Wellein. Introduction to High Performance Computing
for Scientists and Engineers. CRC Press, 1st edition, 2010.

[96] D. Halperin, V. Teixeira de Almeida, L. L. Choo, S. Chu, P. Koutris,
D. Moritz, J. Ortiz, V. Ruamviboonsuk, J. Wang, A. Whitaker, S. Xu,
M. Balazinska, B. Howe, and D. Suciu. Demonstration of the Myria Big
Data Management Service. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data (SIGMOD 2014).
ACM, 2014, pages 881–884. doi: 10.1145/2588555.2594530.

[97] J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns Without Can-
didate Generation. ACM SIGMOD Record, 29(2):1–12, 2000. doi: 10.
1145/335191.335372.

[98] S. Hartmann and S. Link. Efficient Reasoning about a Robust XML Key
Fragment. ACM Transactions on Database Systems (TODS), 34(2):1–
33, 2009. doi: 10.1145/1538909.1538912.

[99] M. A. H. Hassan and M. Bamha. Semi-Join Computation on Dis-
tributed File Systems Using Map-Reduce-Merge Model. In Proceed-
ings of the 2010 ACM Symposium on Applied Computing (SAC 2010).
ACM, 2010, pages 406–413. doi: 10.1145/1774088.1774174.

http://dx.doi.org/10.1109/MC.2005.160
http://dx.doi.org/10.1006/inco.1997.2621
http://dx.doi.org/10.1006/inco.1997.2621
http://dx.doi.org/10.1145/584792.584867
http://dx.doi.org/10.1145/2063576.2063824
http://data.politicalmashup.nl/sgrijzen/xmlweb/
http://data.politicalmashup.nl/sgrijzen/xmlweb/
http://hadoop.apache.org
http://dx.doi.org/10.1145/2588555.2594530
http://dx.doi.org/10.1145/335191.335372
http://dx.doi.org/10.1145/335191.335372
http://dx.doi.org/10.1145/1538909.1538912
http://dx.doi.org/10.1145/1774088.1774174

198 BIBLIOGRAPHY

[100] HBase - Apache Software Foundation project home page. url: https:
//hbase.apache.org/ (visited on 08/21/2016).

[101] S. Henderson, J. Kolb, B. Lehman, and J. Montague. Trend Detec-
tion in Social Data. Whitepaper. 2014. url: https://github.com/
jeffakolb/Gnip-Trend-Detection/raw/master/paper/trends.pdf

(visited on 08/21/2016).

[102] M. Henzinger, T. Henzinger, and P. Kopke. Computing Simulations
on Finite and Infinite Graphs. In Proceedings of IEEE 36th Annual
Foundations of Computer Science. IEEE, 1995. doi: 10.1109/sfcs.
1995.492576.

[103] H. Herodotou. Hadoop Performance Models. 2011. arXiv: 1106.0940.

[104] M. Hilbert. Big Data for Development: A Review of Promises and
Challenges. Development Policy Review, 34(1):135–174, 2015. doi: 10.
1111/dpr.12142.

[105] Hive 0.14 Cost Based Optimizer (CBO) Technical Overview. url:
http : / / hortonworks . com / blog / hive - 0 - 14 - cost - based -

optimizer-cbo-technical-overview (visited on 08/21/2016).

[106] Hive - Language Manual Join Optimization. url: https :

//cwiki.apache.org/confluence/display/Hive/LanguageManual+

JoinOptimization.

[107] Hive - Language Manual Join Optimization. url: https://cwiki.
apache.org/confluence/display/Hive/LanguageManual+Joins

(visited on 08/21/2016).

[108] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1st edition, 1979.

[109] S. C. Hsieh. Product Construction of Finite-State Machines. In Pro-
ceedings of the World Congress on Engineering and Computer Science
2010 Vol I (WCECS 2010). Newswood Limited, 2010, pages 141–143.

[110] Y. E. Ioannidis. Query Optimization. ACM Computing Surveys,
28(1):121–123, 1996. doi: 10.1145/234313.234367.

[111] D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou. On Gener-
ating All Maximal Independent Sets. Information Processing Letters,
27(3):119–123, 1988. doi: 10.1016/0020-0190(88)90065-8.

[112] S. Joshi, R. Jadon, and R. Jain. Sequential Pattern Mining Using For-
mal language Tools. IJCSI International Journal of Computer Science
Issues, 9(5):316–325, 2012.

[113] JSON Schema and Hyper-Schema. url: http://json-schema.org
(visited on 08/21/2016).

https://hbase.apache.org/
https://hbase.apache.org/
https://github.com/jeffakolb/Gnip-Trend-Detection/raw/master/paper/trends.pdf
https://github.com/jeffakolb/Gnip-Trend-Detection/raw/master/paper/trends.pdf
http://dx.doi.org/10.1109/sfcs.1995.492576
http://dx.doi.org/10.1109/sfcs.1995.492576
http://arxiv.org/abs/1106.0940
http://dx.doi.org/10.1111/dpr.12142
http://dx.doi.org/10.1111/dpr.12142
http://hortonworks.com/blog/hive-0-14-cost-based-optimizer-cbo-technical-overview
http://hortonworks.com/blog/hive-0-14-cost-based-optimizer-cbo-technical-overview
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+JoinOptimization
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+JoinOptimization
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+JoinOptimization
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Joins
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Joins
http://dx.doi.org/10.1145/234313.234367
http://dx.doi.org/10.1016/0020-0190(88)90065-8
http://json-schema.org

BIBLIOGRAPHY 199

[114] R. S. King and J. J. Legendre. Discovery of Functional and Approxi-
mate Functional Dependencies in Relational Databases. Journal of Ap-
plied Mathematics and Decision Sciences, 7(1):49–59, 2003. doi: 10.
1155/s117391260300004x.

[115] J. Kivinen and H. Mannila. Approximate Inference of Functional De-
pendencies from Relations. Theoretical Computer Science, 149(1):129–
149, 1995. doi: 10.1016/0304-3975(95)00028-u.

[116] P. Koutris and D. Suciu. Parallel Evaluation of Conjunctive Queries. In
Proceedings of the 30th Symposium on Principles of Database Systems
of Data (PODS 2011). ACM, 2011. doi: 10.1145/1989284.1989310.

[117] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. A Study of Skew
in MapReduce Applications. In Proceedings of the 5th Open Cirrus
Summit, 2011.

[118] R. Lämmel. Grammar Testing. In Fundamental Approaches to Software
Engineering: 4th International Conference, (FASE 2001). Volume 2029.
Springer, 2001, pages 201–216. doi: 10.1007/3-540-45314-8_15.

[119] D. Leinders, M. Marx, J. Tyszkiewicz, and J. Van den Bussche. The
Semijoin Algebra and the Guarded Fragment. Journal of Logic, Lan-
guage and Information, 14(3):331–343, 2005. doi: 10.1007/s10849-
005-5789-8.

[120] G. Linden, B. Smith, and J. York. Amazon.com Recommendations:
Item-to-Item Collaborative Filtering. IEEE Internet Computing,
7(1):76–80, 2003. doi: 10.1109/MIC.2003.1167344.

[121] S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo. Capturing Topology
in Graph Pattern Matching. Proceedings of the VLDB Endowment,
5(4):310–321, 2011. doi: 10.14778/2095686.2095690.

[122] S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo. Strong Simulation. ACM
Transactions on Database Systems (TODS), 39(1):1–46, 2014. doi: 10.
1145/2528937.

[123] E. Mäkinen. On Lexicographic Enumeration of Regular and Context-
Free Languages. Acta Cybernetica, 13(1):55–62, 1997.

[124] J. I. Maletic and A. Marcus. Data Cleansing Data Mining and Knowl-
edge Discovery Handbook. Springer, 2005.

[125] H. Mannila and K.-J. Räihä. Practical Algorithms for Finding Prime
Attributes and Testing Normal Forms. In Proceedings of ACM Sym-
posium on Principles of Database Systems (PODS 1989). ACM, 1989,
pages 128–133. doi: 10.1145/73721.73734.

http://dx.doi.org/10.1155/s117391260300004x
http://dx.doi.org/10.1155/s117391260300004x
http://dx.doi.org/10.1016/0304-3975(95)00028-u
http://dx.doi.org/10.1145/1989284.1989310
http://dx.doi.org/10.1007/3-540-45314-8_15
http://dx.doi.org/10.1007/s10849-005-5789-8
http://dx.doi.org/10.1007/s10849-005-5789-8
http://dx.doi.org/10.1109/MIC.2003.1167344
http://dx.doi.org/10.14778/2095686.2095690
http://dx.doi.org/10.1145/2528937
http://dx.doi.org/10.1145/2528937
http://dx.doi.org/10.1145/73721.73734

200 BIBLIOGRAPHY

[126] H. Mannila and K.-J. Räihä. Algorithms for Inferring Functional De-
pendencies from Relations. Data & Knowledge Engineering, 12(1):83–
99, 1994. doi: 10.1016/0169-023x(94)90023-x.

[127] H. Mannila and K.-J. Räihä. The Design of Relational Databases.
Addison-Wesley Longman, 1992.

[128] H. Mannila and H. Toivonen. Levelwise Search and Borders of Theo-
ries in Knowledge Discovery. Data Mining and Knowledge Discovery,
1(3):241–258, 1997. doi: 10.1023/a:1009796218281.

[129] I. L. Markov. Limits on Fundamental Limits to Computation. Nature,
512(7513):147–154, 2014. doi: 10.1038/nature13570.

[130] W. Martens, F. Neven, and T. Schwentick. Simple off the Shelf Ab-
stractions for XML Schema. ACM SIGMOD Record, 36(3):15, 2007.
doi: 10.1145/1324185.1324188.

[131] W. Martens, F. Neven, T. Schwentick, and G. J. Bex. Expressiveness
and Complexity of XML Schema. ACM Transactions on Database Sys-
tems (TODS), 31(3):770–813, 2006. doi: 10.1145/1166074.1166076.

[132] M. Mathioudakis and N. Koudas. TwitterMonitor: Trend Detection
over the Twitter Stream. Proceedings of the 2010 ACM SIGMOD In-
ternational Conference on Management of data (SIGMOD 2010):1155–
1158, 2010. doi: 10.1145/1807167.1807306.

[133] J. Matoušek and R. Thomas. On the Complexity of Finding Iso-
and Other Morphisms for Partial k-Trees. Discrete Mathematics,
108(1):343–364, 1992. doi: 10.1016/0012-365X(92)90687-B.

[134] P. M. Maurer. Generating Test Data with Enhanced Context-Free
Grammars. IEEE Software, 7(4):50–55, 1990.

[135] MongoDB. url: http://www.mongodb.org (visited on 08/21/2016).

[136] M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy of
XML Schema Languages Using Formal Language Theory (TOIT).
ACM Transactions on Internet Technology, 5(4):660–704, 2005. doi:
10.1145/1111627.1111631.

[137] M. Nečaský and I. Mlýnková. Discovering XML Keys and Foreign Keys
in Queries. In Proceedings of the 2009 ACM symposium on Applied
Computing (SAC 2009). ACM, 2009, pages 632–638. doi: 10.1145/
1529282.1529414.

[138] F. Neven. Automata Theory for XML Researchers. ACM SIGMOD
Record, 31(3):39, 2002. doi: 10.1145/601858.601869.

http://dx.doi.org/10.1016/0169-023x(94)90023-x
http://dx.doi.org/10.1023/a:1009796218281
http://dx.doi.org/10.1038/nature13570
http://dx.doi.org/10.1145/1324185.1324188
http://dx.doi.org/10.1145/1166074.1166076
http://dx.doi.org/10.1145/1807167.1807306
http://dx.doi.org/10.1016/0012-365X(92)90687-B
http://www.mongodb.org
http://dx.doi.org/10.1145/1111627.1111631
http://dx.doi.org/10.1145/1529282.1529414
http://dx.doi.org/10.1145/1529282.1529414
http://dx.doi.org/10.1145/601858.601869

BIBLIOGRAPHY 201

[139] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and N. Koudas. MR-
Share: Sharing Across Multiple Queries in MapReduce. Proceedings of
the VLDB Endowment, 3(1-2):494–505, 2010. doi: 10.14778/1920841.
1920906.

[140] A. Okcan and M. Riedewald. Processing Theta-Joins Using MapRe-
duce. In Proceedings of the 2011 ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD 2011). ACM, 2011, pages 949–
960. doi: 10.1145/1989323.1989423.

[141] C. Olston, B. Reed, A. Silberstein, and U. Srivastava. Automatic Op-
timization of Parallel Dataflow Programs. In USENIX 2008 Annual
Technical Conference. USENIX Association, 2008, pages 267–273.

[142] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig
Latin: A Not-So-Foreign Language for Data Processing. In Proceedings
of the 2008 ACM SIGMOD International Conference on Management
of Data (SIGMOD 2008). ACM, 2008, pages 1099–1110. doi: 10.1145/
1376616.1376726.

[143] K. Pal. How to Combat Financial Fraud by Using Big Data? url:
http://www.kdnuggets.com/2016/03/combat-financial-fraud-

using-big-data.html (visited on 08/21/2016).

[144] F. Picalausa, G. H. L. Fletcher, J. Hidders, and S. Vansummeren.
Principles of Guarded Structural Indexing. In Proceedings of the 17th
International Conference on Database Theory (ICDT 2014), 2014,
pages 245–256. doi: 10.5441/002/icdt.2014.26.

[145] P. Purdom. A Sentence Generator for Testing Parsers. BIT, 12(3):366–
375, 1972. doi: 10.1007/bf01932308.

[146] S. R. Ramakrishnan, G. Swart, and A. Urmanov. Balancing Reducer
Skew in MapReduce Workloads Using Progressive Sampling. In Pro-
ceedings of the Third ACM Symposium on Cloud Computing (SoCC
2012). ACM, 2012, 16:1–16:14. doi: 10.1145/2391229.2391245.

[147] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy, and C.
Curino. Apache Tez: A Unifying Framework for Modeling and Build-
ing Data Processing Applications. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data (SIGMOD
2015). ACM, 2015, pages 1357–1369. doi: 10.1145/2723372.2742790.

[148] A. D. Sarma, F. N. Afrati, S. Salihoglu, and J. D. Ullman. Upper and
Lower Bounds on the Cost of a Map-Reduce Computation. Proceed-
ings of the VLDB Endowment, 6(4):277–288, 2013. doi: 10.14778/
2535570.2488334.

http://dx.doi.org/10.14778/1920841.1920906
http://dx.doi.org/10.14778/1920841.1920906
http://dx.doi.org/10.1145/1989323.1989423
http://dx.doi.org/10.1145/1376616.1376726
http://dx.doi.org/10.1145/1376616.1376726
http://www.kdnuggets.com/2016/03/combat-financial-fraud-using-big-data.html
http://www.kdnuggets.com/2016/03/combat-financial-fraud-using-big-data.html
http://dx.doi.org/10.5441/002/icdt.2014.26
http://dx.doi.org/10.1007/bf01932308
http://dx.doi.org/10.1145/2391229.2391245
http://dx.doi.org/10.1145/2723372.2742790
http://dx.doi.org/10.14778/2535570.2488334
http://dx.doi.org/10.14778/2535570.2488334

202 BIBLIOGRAPHY

[149] Schematron - A Language for Making Assertions about Patterns Found
in XML Documents. url: http://www.schematron.com/ (visited on
08/21/2016).

[150] H. Seidl. Deciding Equivalence of Finite Tree Automata. SIAM Journal
on Computing, 19(3):424–437, 1990. doi: 10.1137/0219027.

[151] M. Shaw, P. Koutris, B. Howe, and D. Suciu. Optimizing Large-scale
Semi-Näıve Datalog Evaluation in Hadoop. In Proceedings of the Sec-
ond International Conference on Datalog in Academia and Industry.
Springer, 2012, pages 165–176. doi: 10.1007/978-3-642-32925-8_17.

[152] S. Sidhanta, W. M. Golab, and S. Mukhopadhyay. OptEx: A Deadline-
Aware Cost Optimization Model for Spark. 2016. arXiv: 1603.07936.
url: http://arxiv.org/abs/1603.07936.

[153] M. Sipser. Introduction to the Theory of Computation. Thomson Course
Technology, 2nd edition, 2006.

[154] I. Sommerville. Software Engineering. Addison-Wesley, 1996.

[155] Y. Tao, W. Lin, and X. Xiao. Minimal MapReduce Algorithms. In
Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data (SIGMOD 2013). ACM, 2013, pages 529–540.
doi: 10.1145/2463676.2463719.

[156] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S.
Antony, H. Liu, and R. Murthy. Hive - A Petabyte Scale Data Ware-
house Using Hadoop. In 2010 IEEE 26th International Conference on
Data Engineering (ICDE 2010). IEEE, 2010. doi: 10.1109/icde.

2010.5447738.

[157] J. D. Ullman. Designing Good MapReduce Algorithms. XRDS: Cross-
roads, The ACM Magazine for Students, 19(1):30–34, 2012. doi: 10.
1145/2331042.2331053.

[158] J. R. Ullmann. An Algorithm for Subgraph Isomorphism. Journal of
the ACM, 23(1):31–42, 1976. doi: 10.1145/321921.321925.

[159] M. Y. Vardi. Why is Modal Logic So Robustly Decidable? In Descrip-
tive Complexity and Finite Models: Proceedings of a DIMACS Work-
shop. Volume 31. American Mathematical Society, 1996, pages 149–
184.

[160] W3C. XML Document Type Declaration. 2004. url: http://www.w3.
org/TR/2004/REC-xml11-20040204/%5C#NT-doctypedecl (visited
on 08/21/2016).

http://www.schematron.com/
http://dx.doi.org/10.1137/0219027
http://dx.doi.org/10.1007/978-3-642-32925-8_17
http://arxiv.org/abs/1603.07936
http://arxiv.org/abs/1603.07936
http://dx.doi.org/10.1145/2463676.2463719
http://dx.doi.org/10.1109/icde.2010.5447738
http://dx.doi.org/10.1109/icde.2010.5447738
http://dx.doi.org/10.1145/2331042.2331053
http://dx.doi.org/10.1145/2331042.2331053
http://dx.doi.org/10.1145/321921.321925
http://www.w3.org/TR/2004/REC-xml11-20040204/%5C#NT-doctypedecl
http://www.w3.org/TR/2004/REC-xml11-20040204/%5C#NT-doctypedecl

BIBLIOGRAPHY 203

[161] W3C. XML Schema Part 1: Structures, 2nd edition. 2004. url: http:
//www.w3.org/TR/xmlschema- 1/%5C#cIdentity- constraint_

Definitions (visited on 08/21/2016).

[162] M. M. Waldrop. The Chips are Down for Moore’s Law. Nature,
530(7589):144–147, 2016. doi: 10.1038/530144a.

[163] G. Wang and C.-Y. Chan. Multi-query Optimization in MapReduce
Framework. Proceedings of the VLDB Endowment, 7(3):145–156, 2013.
doi: 10.14778/2732232.2732234.

[164] T. White. Hadoop: The Definitive Guide. O’Reilly, 4th edition, 2015.

[165] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I.
Stoica. Shark: SQL and Rich Analytics at Scale. In Proceedings of the
2013 ACM SIGMOD International Conference on Management of Data
(SIGMOD 2013). ACM, 2013, pages 13–24. doi: 10.1145/2463676.
2465288.

[166] Z. Xu, L. Zheng, and H. Chen. A Toolkit for Generating Sentences
from Context-Free Grammars. International Journal of Software and
Informatics, 5(4):659–676, 2011.

[167] H.-c. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker. Map-Reduce-
Merge: Simplified Relational Data Processing on Large Clusters. In
Proceedings of the 2007 ACM SIGMOD International Conference on
Management of Data (SIGMOD 2007). ACM, 2007, pages 1029–1040.
doi: 10.1145/1247480.1247602.

[168] M. Yannakakis. Algorithms for Acyclic Database Schemes. In Proceed-
ings of the Seventh International Conference on Very Large Data Bases
(VLDB 1981). VLDB Endowment, 1981, pages 82–94.

[169] C. Yu and H. V. Jagadish. XML Schema Refinement Through Redun-
dancy Detection and Normalization. The VLDB Journal, 17(2):203–
223, 2007. doi: 10.1007/s00778-007-0063-0.

[170] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: Cluster Computing with Working Sets. In Proceedings of the 2nd
USENIX Conference on Hot Topics in Cloud Computing (HotCloud
2010). USENIX Association, 2010.

http://www.w3.org/TR/xmlschema-1/%5C#cIdentity-constraint_Definitions
http://www.w3.org/TR/xmlschema-1/%5C#cIdentity-constraint_Definitions
http://www.w3.org/TR/xmlschema-1/%5C#cIdentity-constraint_Definitions
http://dx.doi.org/10.1038/530144a
http://dx.doi.org/10.14778/2732232.2732234
http://dx.doi.org/10.1145/2463676.2465288
http://dx.doi.org/10.1145/2463676.2465288
http://dx.doi.org/10.1145/1247480.1247602
http://dx.doi.org/10.1007/s00778-007-0063-0

Index

Symbols
1-ROUND, 175

A
adherence, 58

ambiguity

BTA, 66

CFG, 23, 48

ancestor string, 57

approximate key, 56, 105

assert message, 130, 152

atom, 112

B
bag semantics, 149, 155

binary tree automaton, 66

Boolean combination, 133

boundedness, 77, 88

BSGF query, 112, 148, 171

evaluation, 135, 137

C
canonical path, 87

canonization, 87

child string, 57

Chomsky normal form, 22

combiner, 120

combiner-based packing, 158

communication cost, 168

concatenation scheme

naive, 25

conditional atoms, 112
confirm message, 152, 153
confirm reduction, 159
consistency, 61, 98
Consistency problem, 63
context, 30, 34, 58, 60, 95

length, 31
yield, 31

context miner, 80
context-free grammar, 21

proper, 23
unambiguous, 48

context-free language, 22
cost model, 122
cover, 100
cross-fact packing, 158

D
data-local map, 118
deny message, 152, 153
dependency graph, 22
distinguished node, 31, 35
distinguished path, 31, 35
DTD, 56
duplicate elimination, 96, 102

E
EVAL, 152

F
fact, 112
fact-based packing, 157

205

206 INDEX

fcns encoding, 67

field (XML key), 60

first-order logic, 110

future bound, 40

future overlap (query), 139

G
generation pace, 30

given-length enumeration, 19, 44

GOPT, 136

GREEDY, 174

greedy heuristic, 136

Greedy-BSGF, 136, 171

Greedy-SGF, 139, 176

guard, 112

guarded fragment, 110

Gumbo

compiler, 163

decomposer, 163

linker, 163

parser, 163

partitioner, 163

rewriter, 163

execution engine, 164

sampling, 165

Gumbo, 162

H
Hadoop, 167

HDFS, 116

block, 117

read, 117

write, 121

Hive, 167, 168, 174

I
implication (XML key), 77

incremental polynomial time, 20,
42

infinite enumeration, 20, 44

input cost, 168

input minimization, 143, 183
input split, 117
intermediate string, 25, 30, 37

J
join, 108, 130

K
key path, 60, 97
key path set miner, 90
key-valueset pair, 115

L
leeching, 22, 34
levelwise search, 81
load-balancing, 111

M
map, 115, 119

cost, 123
function, 119
merge, 120
task, 119
uniform, 123

map output
buffer, 119
estimation, 165
packing, 157

map task, 117, 119
map-side spill, 119
mapper shaping, 160
MapReduce, 111, 115

cost model, 122
job, 115
map, 115
program, 116
reduce, 115
shuffle, 115, 120
sort, 119
spill, 119
transfer, 120

INDEX 207

merge, 120, 121
cost, 123

message compression, 153
message packing, 157
minimal keyset, 100
minimal mapreduce, 111
MSJ, 152
multi-semi-join

evaluation, 131
operator, 131

multiway topological sort, 138, 163

N
net time, 107, 116, 168
non-terminal, 21

O
one-key path miner, 88
OPT, 136
output string, 25
overlap (query), 139

P
packing, 131, 157
PAR, 174
parse tree, 23
partition, 138
past bound, 39
path, 22
Pig, 167, 168, 174
polynomial delay, 19
prefix tree, 80, 94
present bound, 41
production, 22, 42
productivity, 23

Q
query optimization, 110

R
reachability, 22

recursive, 22, 30
reduce, 115

cost, 126
function, 120, 121
merge, 121
task, 120

reduce output packing, 159
reducer shaping, 161
regular expression, 63
relation

arity, 112
size, 112

repartition join, 130
replication rate, 111, 160
reply address, 153
reply packing, 159
request, 152
request message, 130
request-response model, 152
restricted, 22, 30

S
satisfiability (XML key), 61, 77
scan-shared optimal grouping, 136
search predicate, 81, 89
search space, 81
selector expression, 60
semi-join, 108, 111, 113

evaluation, 129
semi-naive, 26, 46
SEQ, 171
SequenceFile, 165
set semantics, 149, 155
SGF query, 112

evaluation, 137
SGF-Opt, 139, 141
shuffle, 115, 120, 127
single-job evaluation, 162
SJ-GROUP, 168
SJ-PAR, 168
skew, 119
slowstart, 121

208 INDEX

Spark, 166
specialization relation, 81, 83, 87
spill, 119
spread, 144
SPREAD-Opt, 144
SQL, 110
start symbol, 22
start-up phase, 28
static packing, 165
streaming reducer, 131, 159, 160
strictly guarded fragment, 110, 112
string

maximal length ωiA, 25, 38
string derivation, 22
Subset Cost, 141
Subset Cost-Opt, 141
Subset Sum, 141
support, 62, 94, 96, 98

T
target nodes, 62
target path, 60, 96

containment, 78
equivalence, 78, 96, 102
length, 92
miner, 81

term, 112
terminal, 21
Tez, 166
total time, 107, 116, 168
transfer penalty, 127
tree, 57
trimmed XSD, 59
tuple, 129

tuple id, 111, 155

U
uniform function, 123
universality, 77
unranked tree automaton, 66

V
validity, 61

W
W3C, 56

X
XML key, 55, 60

boundedness, 53, 77, 88
consistency, 53, 61, 98
implication, 77
minimal, 90
qualification, 52, 61, 98
quality, 99
satisfaction, 61
satisfiability, 77
universality, 53, 77
validity, 61

XML tree, 57
XPath, 60
XPath cardinality problem, 63
XSD, 56, 58

trimmed, 59

Y
Yarn, 117

	Acknowledgments
	Abstract
	Samenvatting
	Introduction
	Knowledge Discovery & Data Mining
	A Pattern Mining Workflow
	Pattern Enumeration Speed
	Data-driven Enumeration and Interestingness

	Big Data
	Parallel Query Evaluation
	SGF Queries

	Outline
	Contributions

	Context-free Language Enumeration in IPT
	Introduction
	Preliminaries
	Naive Enumeration Algorithm
	Bounds on Intermediate String Number and Length
	String Properties
	Start-up Phase
	Generation Pace
	Length Bound
	Intermediate String Bound

	IPT Proof for the Naive Algorithm
	From Given-Length to Infinite Enumeration
	Semi-Naive Optimization
	The Semi-Naive Concatenation Scheme
	Unambiguous Grammars

	Discussion

	Discovering XSD Keys from XML Data
	Introduction
	Related work
	Definitions
	Trees & XML
	XSDs
	XML Keys
	XML Key Mining Problem

	Key Quality Complexity
	Consistency & XPath Cardinality
	tree=1,SE is in ptime
	Other Quality Measures

	XML Key Mining Algorithm
	Prefix Tree and Context Miner
	Target Path Miner
	One-Key Path Miner
	Minimal Key Path Set Miner

	Experiments
	Prefix Tree
	Contexts
	Target Paths
	One-Key Paths
	Keys
	Quality
	Running Time
	Optimizations

	Discussion

	Parallel Evaluation of Multi-Semi-Joins
	Introduction
	Related Work
	Preliminaries
	Strictly Guarded Fragment Queries

	A Cost Model for Hadoop MapReduce
	The MapReduce Computation Model
	MapReduce in Hadoop
	Cost Model

	Parallel MSJ and SGF Evaluation
	Evaluating One Semi-join
	Evaluating a Collection of Semi-joins
	Evaluating Boolean Combinations
	Evaluating BSGF Queries
	Evaluating Multiple BSGF Queries
	Evaluating SGF Queries
	Evaluating Multiple SGF Queries

	Decision Problems
	SGF-Opt is NP-complete
	Minimizing Reads

	Extensions
	Additional Atom Support
	Bag Semantics

	Discussion

	MSJ Evaluation in Practice
	Contributions & Outline
	Algorithm Revision
	Optimizations
	Message Compression
	Message Packing
	Confirm Reduction
	Streaming Reducers
	Mapper Shaping
	Reducer Shaping
	Single-Job Evaluation

	Gumbo
	Internal Structure
	Map Output Estimation
	Low-level Optimizations
	Spark & Tez Support

	Experimental Validation
	Experimental setup
	Multi-Semi-Join Queries
	BSGF Queries
	SGF Queries
	System Characteristics

	Discussion

	Discussion & Future Work
	Bibliography
	Index

