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Abstract In this work, we propose a new way of splitting the flux function of
the isentropic compressible Euler equations at low Mach number into stiff and
non-stiff parts. Following the IMEX methodology, the latter ones are treated
explicitly, while the first ones are treated implicitly. The splitting is based on
the incompressible limit solution, which we call reference solution (RS). An
analysis concerning the asymptotic consistency and numerical results demon-
strate the advantages of this splitting.
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1 Introduction

In this paper, we propose a particularly stable and accurate flux-splitting
IMEX scheme for stiff systems of hyperbolic conservation laws. We derive,
analyze and evaluate the scheme for low Mach number flows governed by the
isentropic compressible Euler equations in two spatial dimensions (see, e.g.,
[1,44]).
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The isentropic compressible Euler equations, written in dimensionless vari-
ables, are given by

pr+ V- (pu) =0 (1)
(pu) + V- (pu®u) + éVp =0, (2)

where u = (u,v)” denotes velocity, p density and p = p(p) = p7 is the isen-
tropic pressure. The constant v > 1 is the ratio of specific heats. We call

Uref

p(pref)/pref

the reference Mach number, with fixed dimensional reference speed wu,.f and
density prer. The system is hyperbolic with wave speeds

1
Ao =u-n, A =u-n+- o (3)
eVop

in direction n. We are interested in weakly compressible flows, for which ¢ < 1.
It is well-known that the equations change type as € — 0. Physically, the flow
changes from compressible to incompressible. It is instructive to consider the
Hilbert expansion (often also named after Poincaré) of w = (p, pu)?, i.e.,

W = W) + W) + 52W(2) + ... (4)

Taking the formal limit € — 0 of the isentropic compressible Euler equation,
one derives the incompressible equations as

p(0) = const, V-oug =0 (5)
1
(u())e + (u(o) - V)u) + %Vp@) =0. (6)

Note that one can only obtain the limit if one uses well-prepared initial data
w(t = 0), i.e., initial data that fulfill

p(t = 0) = const +O(?), V-u(t=0)=0(). (7)

Mathematically, the system changes from hyperbolic to hyperbolic-elliptic
(see, e.g., [31,40,46]). Therefore, (1)—(2) constitute a singularly perturbed
problem. For a mathematical analysis of this problem we refer to [31,40,46]
and the references therein. For conciseness, we write equations (1)—(2) as a
general hyperbolic system of conservation laws

w,+V -F(w)=0 (8)

with e-dependent flux F(w) and a maximum wave speed which is singular in
the limit.
Explicit time discretizations have to obey the CFL condition

At S eAw. (9)
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For the Euler equations, the fastest waves are the sound waves, travelling with
speed Ay. Hence we call condition (9) the acoustic CFL condition. Conse-
quently, explicit finite volume discretizations are prohibitively expensive for
small Mach numbers. Moreover, they would add an unwanted amount of nu-
merical diffusion to the advective waves, which travel with speed Ay and hence
need O(e~1) steps to travel across one cell - and after each step the finite
volume average damps the numerical solution. It is well-known that most im-
plicit schemes are unconditionally stable, i.e., they are stable under any time
step size. However, they also tend to add excessive diffusion to the advective
field [33] within each single time step. A possible remedy is a mixture of both
implicit and explicit (IMEX) schemes [3,18,26]. More precisely, those schemes
are supposed to be stable under a convective CFL condition

e (10)

™l

and the goal is to resolve the convective wave (the one that belongs to Ag)
explicitly with good accuracy, while adding enough diffusion through the im-
plicitness to compute solutions to the acoustic waves in a stable way. For this,
it is necessary that the scheme preserves the asymptotic limit.

IMEX schemes depend on a splitting of the flux F(w) into ‘fast’ and ‘slow’
components F(w) and F(w), respectively. Flux splittings have been applied
successfully to compressible fluid flows (see, e.g., [8,17,20,22,24,32,35, 36,38,
45]). The fast flux component is discretized implicitly in time, while the slow
component is treated explicitly, both with an e-uniform time step. So ideally,
F approximates the acoustic and F the convective waves.

Recently, the authors and collaborators have conducted a number of nu-
merical experiments with well-known splittings, as well as some AP analysis,
reported in [8,36]. While the Giraldo-Restelli splitting [23] used in [8] was
uniformly CFL stable in our computations, Klein’s auxiliary splitting [32] oc-
casionally requires to reduce the time step as At = ¢ Az (see [36]). With a note
of caution, however, we would like to point out that the implementations and
the asymptotic settings in [32] and [36] differ considerably, so our observation
applies only to the straightforward IMEX implementation, and not to Klein’s
original algorithm.

In [43], we started a linear stability analysis based on the modified equation.
It turns out that for any system of hyperbolic conservation laws, and any flux
splitting, the numerical diffusion matrix of the modified equation is of the form

f(mz‘)jmfzmg,mgz), (11)

where & and @ are numerical diffusions coefficients of the Rusanov flux, and
A = A+ A are the Jacobian matrices of the full, fast and slow fluxes, respec-
tively. [A, A] := AA — AA is the commutator of the fast and slow Jacobians.
We now assume that the spectral radius of the fast Jacobian is O(e™!), and
that of the slow Jacobian is O(1). Then the spectral radius of A2 is O(1)
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as well, and thus the explicit part of the algorithm can be balanced by an
e-uniform advective CFL condition. The fast term is O(¢~?), which is singu-
lar, but positive (semi-)definite. Thus, the implicit part of the algorithm is
unconditionally stable. The remaining suspect of causing a non-uniform CFL
condition is the commutator. It may lead to a subtle resonance between the
implicit and explicit parts of the algorithm. In general, it is of O(¢~1). Hence
it may be singular, and it has no sign which would rescue stability. In [43], we
removed the commutator via a characteristic splitting and therefore obtained
e-uniform stability. This approach cannot be carried over directly to nonlinear,
and to multidimensional, systems.

To overcome this difficulty, we propose a general splitting, which is lin-
ear in the implicit part, based on a reference solution and call this splitting
RS-IMEX [41]. In the present paper, we choose the zeroth-order asymptotic
component w g as reference solution. Due to this choice, the eigenvectors
of the one-dimensional stiff and non-stiff Jacobians are asymptotically close
to each other (see Remark 3 below). Therefore, the commutator of stiff and
non-stiff Jacobians disappears in the limit, which serves as a motivation for
considering the proposed splitting.

The RS-IMEX approach was first analyzed in [41] for a singularly perturbed
system of ODEs, and gave superior results for high order IMEX Runge-Kutta
and BDF time discretizations. Furthermore, in [47] Zakerzadeh et al. proved
stability of the modified equation for the one-dimensional shallow water equa-
tions with flat bottom. In [21], a similar splitting idea is used in the context
of kinetic equations and in [22] for the pressure gradient in the shallow water
equations.

The present paper develops the RS-IMEX approach for the two dimensional
isentropic Euler equations, by coupling it with a first order time and space dis-
cretization. We prove the asymptotic preserving property (AP-property) [19,
27,28], which is fundamental in the low Mach regime, see exemplarily [8,20,
24,36] and the references therein. Roughly speaking, the AP property guar-
antees that the limiting numerical method (limit w.r.t. ¢ — 0) is a consistent
discretization of the limiting equation for fixed values of At and Ax. This
concept is not restricted to low Mach flows, but it can also be applied to other
discretizations of singular problems. Examples are the discretization of kinetic
equations, see, e.g., [11,29,34,37] and the references therein, or the discretiza-
tion of singularly perturbed ODEs, see, e.g., [9,10,25,41] and the references
therein. This list is by no means exhaustive, we refer to [28] for a more detailed
overview.

We compare our scheme to a first order IMEX scheme with a well-established
flux splitting due to Haack, Jin and Liu [24]. Our numerical tests show a con-
siderable advantage of the RS-IMEX scheme for small Mach numbers, both in
terms of error and computing time.

The paper is organized as follows: The splitting is defined in more detail in
the second section; in the third section, we discuss the asymptotic preserving
property. In the fourth section, numerical results underline our analysis and
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show that the splitting performs well, also in comparison to more established
splittings [24]. The paper concludes with an outlook in the last section.

2 The RS-IMEX Splitting

As mentioned before we define the splitting into stiff and non-stiff parts by
linearization around the reference solution w ). The splitting idea has been
analyzed in the context of ODEs in [41], a first extension to isentropic Euler
equations was given in [42]. Similar ideas have been used before in [23].

In [41], we investigated the performance of the RS-IMEX splitting in the
setting of singular perturbed ODEs and were able to obtain improved sta-
bility and accuracy results in comparison to standard splittings. This earlier
work serves as a motivation to use the RS-IMEX also for the isentropic Euler
equations.

Definition 1 The RS-IMEX splitting for a flux function F(w) is given by

F(w) =F(w() +F(we)(w—-wq), Fw) =Fw) -Fw), (12)
where w o) denotes the reference solution.

Remark 1 1. A closely related IMEX scheme was introduced by Filbet and Jin
[21] for the kinetic equations with low Knudsen number. They split the colli-
sion operator into an implicit and an explicit part. As implicit part, they choose
the linearization of the collision operator around the fluid dynamical limit so-
lution, which is similar in spirit to the RS-IMEX splitting. In comparison, the
RS-IMEX scheme splits the nonlinear flux function and the asymptotic limit
PDE is the incompressible Euler equation. This needs to be solved numerically,
while in the kinetic case, the background solution can be evaluated directly by
computing the local Mazwellians.

2. The RS-IMEX splitting generalized work of Bispen et al. [7,8], who de-
veloped a numerical method for the shallow water equations based on a splitting
due to Giraldo, Restelli and collaborators [22,23]. In that work, the asymptotic
reference state was chosen to be the lake at rest, while the present schemes re-
lies on a more general incompressible solution.

Remark 2 As a proof of concept we use the isentropic Euler equations in
this work, but the RS-IMEX splitting is directly extendable to different types
of equations and settings, e.g., the full Euler or Navier-Stokes equations.

A splitting into stiff and non-stiff terms has to fulfill some properties, one
being that F is in fact non-stiff:

~/
Lemma 1 Let n be a unit normal vector. Then, the eigenvalues of F (w) - n
are given as

~

Ao =0, A= (u—u) -n, Ao = 2(u—uy) - n

for any w = (p, pu)”.
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In particular, one can see from La. 1 that the eigenvalues do not become

A~/
singular as € — 0, i.e. the Jacobian F (w)-n is indeed non-stiff. In fact, a little
more is true:

Corollary 1 Suppose that the asymptotic expansion (4) holds, i.e.
u—ug) = 0fe). (13)
Then the eigenvalues of the non-stiff Jacobian are in O(g).

Remark 3 In the one dimensional case the difference of the eigenvectors of
the non-stiff and the stiff matrices are, suitably normed, in O(e). This is close
to the characteristic splitting [43] where the eigenvectors of the stiff and non-
stiff matrices are the same.

By construction, the stiff flux function F is linear in w. As this part is
treated implicitly, this will have a positive influence on the overall algorithm,
as one only needs to solve a linear system of equations for one time step.

With Def. 1 being made, the first-order semi-discrete IMEX scheme for (8)
can be written down as

Wn+1 — W r- n - n
% +V- (F(WAt) + F(WAJtrl)> =0. (14)

For the analysis to be performed, we need the following lemma, who’s proof
relies on the specific form of w gy, see also (5).

Lemma 2 For F as defined in (12), there holds
V-F(w)=V- F'(wp))w. (15)

Proof The proof is straightforward computation. Using the definition of F in
(12), one has to show that

V . (F(W(O)) — F/(W(O))W(O)) =0.
Since most terms sum up to zero, the equation reduces to
V (p(p)) — P (p))py) = 0. (16)
The fact that p(g) is constant, see (5), concludes the proof. O

Remark 4 For~y =1, the well-known relation F(w) = F'(w)w holds, directly
proving La. 2. For v > 1, the correction term (16) has to be accounted for.

We discretize (14) in space using a finite volume method. Therefore, the
spatial domain {2 is subdivided into uniform cartesian rectangles (2;;, with



A new stable splitting for the isentropic Euler equations 7

(uniform, say) cell size Az and unit normal vectors n, and n,. The resulting
method reads

At /7~ ~
n+l _ __n * n n * n n
i Wi T Az (F (WAt,i,jvat,i,jJrl?ny) +F (WAt,i,jﬂwAt,i,jfh —ny)

w
_— n n Tk n n
FE (Wi s Wt ir1,j ) + F (WA 5 Wi, 1)
Tk n+1 n+1 Tk n+1 n+1
+F (Wt s Wiy e y) FEN (WA oWl —ny) (17)
Tk n+1 n+1 Tk n+1 n+1
+F (WAt,i,jaWAt,iH,jvnw) +F (WAt,i,j7WAt,i71,j7 _nx>) )
with a given numerical flux function F* for the explicit and F* for the implicit
part. For simplicity, we choose the Rusanov flux functions

f‘*(u,v, n) = wn - %a(v —u),
F*(u,v,n) = wn - %a(v —u),

with constant stabilization coefficients & for the explicit and & for the implicit
part. Both coefficients are chosen in the order of e, being motivated by the
fact that w — w gy = O(e), see also La. 1.

3 Asymptotic Preserving Property

In this section, we discuss asymptotic properties of (14) and its finite vol-
ume discretization (17) coupled with certain boundary conditions. Analysis is
shown in two-dimensional space; note that the results hold with direct exten-
sions also for three-dimensional equations.

As mentioned before the equations change type for ¢ — 0. In the setting of
Euler equations this means that the equations transform to their incompress-
ible counterpart. Thus ¢ is a measure of the compressibility of the system,
and an ideal numerical method should ’transform’ to a discretization of the
incompressible equations.

Definition 2 We call a numerical method asymptotically consistent (AC) if
its lowest order multiscale expansion is a consistent discretization of the in-
compressible limit.

In Fig. 1 an illustration of the AC property is given. In order to investigate
the AC property of a method, one has to compute the limit method first.
Subsequently, this limit method has to be a discretization of the incompressible
equations.

As mentioned in the introduction the use of a convective CFL condition is a
desirable property for a numerical method in the low Mach case. In accordance
to this, we define this additional quantity, guaranteeing that the method is
stable under an e-uniform CFL condition:
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1 e—0 +1
wiit WAL (0)
At — 0 At — 0?7 AC
hd e—0 w(0)

Fig. 1 Illustration of the AC property as given in [28]. If the numerical solution Wﬂl@

converges toward w ) for At — 0, the algorithm is asymptotically consistent (AC). Note
that both w and w’E:l depend implicitly on € through the equation.

Definition 3 We call a numerical method asymptotically stable, see, e.g., [19],
if there exists a constant C' > 0 independent of € such that the method is stable
for all values of ¢ < 1 and for all choices of % <C.

As mentioned in the introduction, Jin introduced the asymptotic preserv-
ing property, see, e.g., [28], which is fulfilled by an asymptotically consistent
scheme if the limiting numerical method is stable. In this work we prove that
the method is asymptotically consistent and show that it is asymptotically sta-
ble with the help of numerical experiments. If the method is asymptotically
stable, there is practically no doubt that also the limiting method is stable.
Our scheme will therefore turn out to be asymptotic preserving.

3.1 Semi-Discrete Setting: IMEX Euler

Based on the splitting as given in (12), we consider the semi-discrete algorithm
as in (14).

Lemma 3 The semi-discrete IMEX scheme (14) is asymptotically consistent
if the initial data are well-prepared in the sense of (7), and mass-conserving
boundary conditions are chosen.

Proof We plug the asymptotic expansion
WAL= War(0) + EWar, 1)+ War2) + O(E) (18)
into the semi discretization (14). Because of (12) and La. 2, we obtain
Wit! =Wy — AtV (F(wo)wiy' + F(wh,) = F'(we)wh,).  (19)

Showing that this is a consistent discretization of the incompressible Euler
equations is done inductively, where the base case holds because of the well-
preparedness of the data. Then, collecting all terms of order e~2 in (19), we
obtain

0= WVPZJ{}(O) (p©@)" "+ V(0lar )" = YVPhe0)(P0) " (20)
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Because Vp', ©) = 0 and the fact that, in particular, p) is a constant in
space, we get:

0= Vol (21)

meaning that pztl(o) is a constant in space. Because of conservation of mass we

can conclude that pAt (0) and p,, (0 Must be the same constant and so pAt (0)
is also constant in time. With similar arguments starting with a comparison

in order e~! we can conclude that pztl(l) is constant too.

The continuity equation to order £° is given by
n+1 _ n+1 n+1
Pat0) = Phro) — AtV - (ply L(0)UAt, (0)) (22)
Because pzt,l(o) = pZt,(O) = const there holds:

_ +1
0=V uly . (23)
We showed that for well-prepared initial data also w’,, is well-prepared for
every n. Making a coefficients comparison in order €° we can confirm that also
the discretization of the momentum equation is a consistent approximation of
(8), and so for ¢ — 0 (14) is a consistent discretization of (5). O

3.2 Fully-Discrete Setting: IMEX Euler and Finite Volume

Previously, we have seen that the RS-IMEX splitting combined with an IMEX
Euler time discretization is asymptotically consistent. The canonical next step
is to show the same for the fully-discrete setting, viz for using a first order
finite volume spatial discretization (17). Note that due to the structure of
the RS-IMEX splitting we are able to choose both stabilization coefficients
in O(e). Thus taking € — 0 the numerical viscosity does not affect the lower
order terms, e.g., the terms in order et with —2 < i <0.

As in the analysis before, we assume that we can represent the discrete
solution by

WAt = Wag,0) T EWag 1) + EQWAt,(Z) +O(e%).

Plugging this expansion into the numerical method (17), collecting O(e~2)
terms of the momentum equation and noting that p?o) i.j = P(0) Is constant in
space and time, one obtains /

= p(p(0) ( )(pAt NORRES P(0))

plp©) =P (p©0) (AT (0).4.-1 — P(0))
Pt 0),i5+1) — PP©)) — D' (P0)) (Pt (0).1.5+1 — P(0))
Pt (0

)+
—p(
+( (P

= (Pt 0),0.5-1) F+PP©) + 1 (0©0) (Pat (0,551 — P(0))-
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Assuming that the initial values are given in such a way that pZt,(O),i,j is
constant in space we obtain

o n+1 n+1
0=7p"(p(0)) (pAt,(()),i,jJrl - pAt,(o),i,jA) (24)

and correspondingly
0 =7'(p(0)) (pz-:,l(o),i+l,j - ﬂZTf(m,,-_l,j) : (25)
Unfortunately, from this, one can not directly conclude that pzt)l(o)’i)j is a con-
stant in space. In particular, depending on the boundary conditions, checker-
board modes could occur. (See also Bispen’s dissertation for a discussion of
this phenomenon [7].) We note that checkerboard modes can not be precluded
for periodic boundary conditions. The issue could be solved by implicit diffu-
sion in the mass equation [7]. As we do not observe any numerical issues, we
do not pursue this approach further.
Using the boundary conditions proposed by Haack, Jin and Liu in a similar
setting, see [24], one can prove the AC property. More precisely, said bound-

ary conditions operate on ghost cells and are, on the lower left boundary for
example, given by

n _.n n _n
PAt,—1,5 = PAt,0,5° PAti,—1=PAti,0 (26)

n J— n n _ n
PUAL —1,5 = —PUAL 0,55 PUAL ;. —1= — PUAL ;.0 (27)

These boundary conditions approximate slip boundary conditions with an ex-
tra condition on Vp - n,

o _

0 and un=20 on of1.
on

To mimic well-prepared initial data as in (7), we require that the discrete
initial conditions are chosen such that (note that u = (u,v))

pOAt,i,j = po) + O(e%) and (28)

0 0 0 0 _ q
UAp 41— UAtij—1 T VAriv1j — Vaci-1; = O(e) + O(Ax9),

holds for a ¢ > 1. Furthermore we assume that the reference solution was
computed by a suitable numerical method. This especially means that the
velocity is divergence free in a discrete sense, similar to the well-prepared
initial conditions. Using these assumptions we obtain the main lemma of this
section.

Lemma 4 The limiting numerical method is a consistent discretization of the
limiting Euler equations, if the used reference solution is computed by a suitable
numerical method, the initial conditions are well-prepared as in (28) and the
boundary conditions are given as in (26).
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Proof Due to (24)—(25), and the choice of boundary conditions, we can directly

conclude that p"F% . is constant in space. It is therefore denoted by pE’l(o).

At,(0),i,5
Next we consider the O(1) terms of the conservation of mass equation. This

results in

n+1 n At 1 ( n+1 n+1 n+1 n+1

Pat) = PO = Ao \Pae0) %At 0),i5+1 ~ Pat0) %At 0),i5-1

n+1 n+1 n+1 n+1
F0 A1 0)VAt,0),i41,5 — /-’At,(o)”At,(o),i—l,j) :

Summing this equation over the whole domain and using the boundary con-
dition directly leads to

n+1 . n
PAt,0) = P(0)-

Thus the limiting density is constant in space and time and equals to p(g)
due to the well-prepared initial conditions. Note that one can show the same
result for p(1) by considering the O(e7!) terms and performing the same steps
as before. Thus due to the initial conditions we can obtain that p(;) = 0. The
O(1) terms of the conservation of mass equation reduces to

1 n
_ +1 _ntl n+1 o+l
0 ~Ar (“At,(oxm‘ﬂ UAL(0),i,j—1 T VAL, (0),i+1,5 ”At,(O),i—l,j) :

This is a consistent discretization of the divergence free constraint of the lim-
iting partial differential equation. Finally, we have to show that the remaining
O(1) terms of the momentum equation are consistent to the corresponding
limiting equation. If one considers these equations and rearranges the terms,
one obtains that the first terms are a discretization of

1
(w))e + V- (00 ®ug)) + %Vp(z) =0,

which is indeed the momentum equation of the incompressible Euler equation,
and the remaining terms are terms in the difference of the computed solution
and the reference solution. Therefore, if the reference solution is computed in
a suitable way the limiting numerical method is a consistent discretization of
the limiting equation. O

4 Numerical Results

Having analyzed the RS-IMEX splitting, this section presents numerical results
for the proposed splitting. The splitting is compared against a splitting from
literature, introduced by Haack, Jin and Liu in [24]. The splitting is given in
the following definition; it is labeled HJL in the following.
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Definition 4 Haack, Jin and Liu splitting [24] (HJL). With this splitting, the
convective fluxes are split into stiff and non-stiff terms, respectively, by

Fov) = (1) B = (T ) @)

pu@u+ %z(t)p
The particular choice of 7 and a(t) is given by

0<7<1, 7€0(?) and a(t)= m)znp'(p(:c,t)). (30)

The splitting is hyperbolic and the eigenvalues of F are in magnitude indepen-
dent of e. Also F is a linear function, if a(t) is handled explicitly, i.e., evaluated
at time ¢". Note that this splitting is well tested. In [24] Haack, Jin and Liu
proved that the splitting is asymptotically consistent and uniformly stable un-
der a CFL restriction independent of e. We note that the authors in [24] did
not directly apply their splitting in form (14), but restate the equations in the
semi-discrete setting to obtain an additional pressure equation, which is the
only equation that is solved for implicitly in their algorithm.

In the following we consider two different examples and compute the L'-
error of the first momentum component. This is sufficient since both momen-
tum components behave very similar and the density is close to a constant.

4.1 Periodic Flow

Inspired by Degond and Tang [20] (see also [24]) we compute the so called
periodic flow example.

Definition 5 The periodic flow example is given on {2 = [0,1] x [0, 1] with
periodic initial conditions

plx,y,0) =1+ E(QSiIZZ(QW(;c)-F Y)) (31)
_ (sin(27(x —y 31
= ( ).

U.(xa Y, Sin(QTF(Z' - y))

periodic boundary conditions and v = 2. The initial conditions are illustrated
in Fig. 2.

The error is computed with the aid of a highly resolved solution, being com-
puted on a finer grid with HJL splitting and a higher-order method.

Both numerical methods are computed with the same solver and for both,
moderate stabilization coefficients are used, namely & = 2¢ and & = ¢ for the
RS-IMEX and & = 2 and & = 1 for the HJL splitting. The reference solution
is computed with a corresponding semi-implicit finite volume method where
the convective term is treated explicitly and the divergence free constraint is
stabilized with pressure. We use stabilization coefficients & = a = 2. Finally
we choose 7 = g2 for e < 1 and 7 = 0.5 for ¢ = 1.
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Fig. 2 Initial conditions for the periodic flow example for € = 1: Left: p and right: pu.

Using a grid cell size ranging from Az = 272 to Az = 277 we chose for all
values of ¢, viz ¢ = 1077 with ¢ = 0...4, the same relation between the cell
size and the temporal step size, namely

At

Based on the initial conditions, this corresponds to a global convective CFL
number of also 0.25.

10! T T

100

llpw — puly,lips

101

Fig. 3 Periodic flow: Comparison of the RS-IMEX with the HJL splitting for large Mach
number ¢ = 10°. The plot shows the L'-error in the first momentum component of the
computed solution with a highly resolved numerical solution. HJL and RS lie on top of each
other. Black line indicates first order convergence.

Starting with large values for € demonstrates the performance of the meth-
ods in the fully compressible regime. In Fig. 3 one can clearly see that both
our newly developed method and the classical HJL method perform equally
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Fig. 4 Periodic flow: Comparison of the RS-IMEX with the HJL splitting for Mach numbers
e = 107! to 10=%. The plots show the Ll-error in the first momentum component of the
computed solution with a highly resolved numerical solution. Black line indicates first order
convergence.

well for e = 1. This is not surprising, as for € = 1, the solutions are not yet in
the asymptotic regime.

In Fig. 4, numerical results are shown for e = 107! to 10~*. Beginning from
e = 107!, one obtains improved accuracy for the RS-IMEX splitting. Both
splittings converge with the desired order. In all settings it can be clearly seen
that both splittings have the same initial error on the coarse grid, but RS-
IMEX gives a better convergence than the HJL splitting. Ultimately, there
is a factor of about 10 between both errors. In order to achieve the same
error, the algorithm involving the RS-IMEX splitting needs to solve for both
compressible and incompressible solution, but on a significantly coarser grid.
Overall, this yields substantial savings.

From the convergence figures one can also see that both methods are AC:
The smaller 1 and €2, the more similar the corresponding error plots are.

4.2 Traveling Vortex

As a second example, we consider the traveling vortex example used by Bispen
et al. in [8].
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Fig. 5 Initial conditions for the traveling vortex example for € = 1: Left: p and right: pu.

Definition 6 The traveling vortex example is given on 2 = [0, 1] x [0, 1] with
periodic initial conditions

2
plan0) =110+ &2 (32 ) 300000 — )

u(z, y,0) = <0(')6> +1.5(1 + cos(re))8(re) <E25_ B%%) .

where

1 1 3
k(r) := 2cos(r) + 2rsin(r) + gcos(27") + erin(Zr) + ZTQ,

e = 4my/(z — 0.5)2 + (y — 0.5)2,
5(r) = {1 r<m

0 otherwise

Boundary conditions are chosen to be periodic (unlike in [8]), and p(p) = 3p*.

The initial conditions are illustrated in Fig. 5.

Note that for this example an exact solution is available:

p(x,y,t) = p(I - 0'6t7y70)3 u(x7y7t) = 11(33 - 0'6t7ya O)

We compute the results in a similar setting as before. This means we com-
pute on the same grids and the same values of €. Again we use for both methods
the same relation between the temporal step size and the cell size, namely

At

— = 0.05.

Ax
Based on the initial conditions, this corresponds to a global convective CFL
number of approximately 0.04. The setting is the same as before, with the
exception that the stabilization coefficients for the computation of the incom-
pressible solutions are chosen to be & =0 and & = 2.
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Results in this example are given in Figs. 6-7, they are similar to those
of the previous example. Again, for ¢ = 1, both methods compute similarly
accurate results, but the RS-IMEX splittings takes twice the work. For ¢ < 1
the RS-IMEX method performs much better. While the HJL splitting needs
some steps to hit the right convergence order, the RS-IMEX splitting starts
with the correct order after a few steps, leading to a more accurate solution.
This then also justifies the higher effort due to the computation of the in-
compressible solution. There seems to be a slight superconvergence of the RS
splitting, however, we think this is only an artefact that diminishes under grid
refinement.

e =100
10! —— S -
I | ]
=3
g 100 =
I r ]
5 r ]
Y L ]
L —o— HJL |-
—=— RS
1071””\‘ | I PR
102 107!
Az

Fig. 6 Traveling vortex: Comparison of the RS-IMEX with the HJL splitting for large
Mach number € = 10°. The plot shows the Ll-error in the first momentum component of
the computed solution with a highly resolved numerical solution. HJL and RS lie on top of
each other. Black line indicates first order convergence.

Note, in addition, that due to the stiffness of the resulting linear system,
the linear solver needs much more time to solve the compressible part than
the incompressible one. Thus, for small values of €, solving the incompressible
part is negligible in terms of computational costs. To verify this we compare
the computational costs for the implemented solver in the next subsection.

4.3 Computational cost

In the previous two subsections we observed that the RS-IMEX splitting de-
livers a better error for the same mesh size and small values of € compared
to the HJL splitting. This happens with the additional effort in solving the
incompressible limit equation. To make a fair comparison, one has therefore
to also report computational times. We implemented a solver with the help of
Netgen [39] and PETSc [4-6] to solve both the RS-IMEX and the HJL split-
ting. The basic solver was written for the HJL splitting and then extended by
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Fig. 7 Traveling vortex: Comparison of the RS-IMEX with the HJL splitting for Mach
numbers € = 10~! to 10~%. The plots show the L!-error in the first momentum component

of the computed solution with a highly resolved numerical solution. Black line indicates first
order convergence.

an incompressible solver. We only use basic techniques to solve the implicit
system, therefore the solver is not optimized in any sense. Note that the sys-
tem of equations gets harder to solve if one reduces the mesh size Azx or .
This plays an important role in choosing the right residual threshold value to
stop the solver. We believe that one can, especially for the low Mach case,
reduce the computational costs significantly by optimization. The basic solver
was designed as a proof of concept.

In Tables 1 and 2 we see the computational costs of both methods to
compute a similar error for different values of €. For large values of ¢ we can
see that the HJL splitting performs much better, since the RS-IMEX splitting
needs to solve more equations. Therefore for large values of ¢ this additional
effort is not justified. For small values of € the RS-IMEX splitting reduces the
computational costs significantly since one uses a coarser grid to get the same
error. For the traveling vortex example difference is much larger due to the
superconvergence we obtained in the beginning.
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5 method Az ne L'-error | time in s
100 HJL 7.8125-1073 | (27)2 | 0.1778 | 7.40-10!
RS-IMEX || 7.8125-1073 | (27)2 | 0.1778 | 4.52-102

101 HJL 7.8125-1073 | (27)2 | 0.0732 | 1.95-102
RS-IMEX || 3.125-1072 | (252 | 0.0579 | 5.02-10°

1072 HJL 7.8125-1073 | (27)2 | 0.0704 | 1.45-103
RS-IMEX || 3.125-1072 | (25)2 | 0.0418 | 1.54-10!

1073 HJL 7.8125-1073 | (27)2 | 0.0686 | 2.04-103
RS-IMEX || 3.125-1072 | (25)2 | 0.0409 | 3.86-10!

104 HJL 7.8125-1073 | (25)2 | 0.0686 | 4.20-103
RS-IMEX || 3.125-1072 | (25)2 | 0.0409 | 4.13-10!

Table 1 Periodic flow example: Comparison of computational time to obtain a similar
L'-error of the first momentum component for the HJL splitting and RS-IMEX splitting.

5 method Az ne Ll-error | time in s
100 HJL 7.8125-1073 | (27)2 | 0.5401 | 3.24-102
RS-IMEX || 7.8125-1072 | (27)2 | 0.5415 | 1.08-10%

101 HJL 7.8125-1073 | (27)2 | 0.5398 | 2.02-103
RS-IMEX 6.25- 1072 (2%)2 | 0.4530 | 5.02-10°

10—2 HJIL 7.8125-1073 | (27)2 | 0.5398 | 1.53-10*
RS-IMEX 6.25- 1072 (2%)2 | 0.2249 | 8.81-10°

10-3 HJIL 7.8125-1073 | (27)2 | 0.5398 | 2.07-10*
RS-IMEX 6.25- 1072 (2%)2 | 0.2227 | 3.15-10!

10~* HJL 7.8125-1073 | (27)2 | 0.5397 | 9.77-10*
RS-IMEX 6.25-10~2 (2H2 | 0.2236 | 7.89-10'

Table 2 Traveling vortex example: Comparison of computational time to obtain a similar
Ll-error of the first momentum component for the HJL splitting and RS-IMEX splitting.

5 Conclusion and Outlook

We have presented a new IMEX flux splitting for two-dimensional, low Mach
number, isentropic compressible Euler equations, as a prototype for stiff hy-
perbolic systems of conservation laws. The stiff part is the linearization of the
flux around the asymptotic reference solution (in this case the incompressible
solution).

We have proven that the new scheme is asymptotically consistent, and
our numerical experiments indicate that it is stable under a convective CFL
condition, and for all values of €. Hence the scheme may be called asymptotic
preserving.
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For two well-known test cases, the new splitting gives smaller errors than
Haack, Jin and Liu’s recent splitting on the same mesh (when compared within
the same IMEX code). For small €, similar errors are obtained within less
computational time.

Several extensions of the new method are important: high-order discon-
tinuous Galerkin methods [12-16] and IMEX Runge-Kutta integrators [2,30]
to increase the efficiency and accuracy, development and implementation for
more complex equations, as well as analytical proofs of asymptotic stability.
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