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Abstract: We study the double-cross matrix descriptions of polylines in the two-dimensional
plane. The double-cross matrix is a qualitative description of polylines in which exact, quantitative
information is given up in favour of directional information. First, we give an algebraic
characterization of the double-cross matrix of a polyline and derive some properties of double-cross
matrices from this characterisation. Next, we give a geometric characterization of double-cross
similarity of two polylines, using the technique of local carrier orders of polylines. We also
identify the transformations of the plane that leave the double-cross matrix of all polylines in the
two-dimensional plane invariant.
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1. Introduction and Summary of Results

Polylines arise in Geographical Information Science (GIS) in a multitude of ways. One recent
example comes from the collection of moving object data, where trajectories of moving persons
(or animals), that carry GPS-equipped devices, are collected in the form of time-space points that are
registered at certain (ir) regular moments in time. The spatial trace of this movement is a collection of
points in two-dimensional space. There are several methods to extend the trajectory in between the
measured sample points, of which linear interpolation is a popular method [1]. The resulting curve
in the two-dimensional geographical space is a polyline.

Another example comes from shape recognition and retrieval, which arises in domains, such as
computer vision, image analysis and GIS, in general. Here, closed polylines (where the starting point
coincides with the end point) or polygons, often occur as the boundary of two-dimensional shapes or
regions. Shape recognition and retrieval are central problems in this context.

In examples, such as the above, there are, roughly speaking, two very distinct approaches to
deal with polygonal curves and shapes. On the one hand, there are the quantitative approaches
and on the other hand there are the qualitative approaches. Initially, most research efforts have dealt
with the quantitative methods [2–5]. Only afterwards, the qualitative approaches have gained more
attention, mainly supported by research in cognitive science that provides evidence that qualitative
models of shape representation are much more expressive than their quantitative counterpart and
reflect better the way in which humans reason about their environment [6]. Polygonal shapes and
polygonal curves are very complex spatial phenomena and it is commonly agreed that a qualitative
representation of space is more suitable to deal with them [7].

Within the qualitative approaches to describe two-dimensional movement or shapes, two major
approaches can be distinguished: the region-based and the boundary-based approach. The region-based
approach, using concepts such as circularity, orientation with respect to the coordinate axis, can only
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distinguish between shapes with large dissimilarities [8]. The boundary-based, using concepts such
as extremes in and changes of curvature of the polyline representing the shape, gives more precise
tools to distinguish polylines and polygons. Examples of the boundary-based approaches are found
in [7–13].

The principles behind qualitative approaches to deal with polylines are also related to the
field of spatial reasoning. Spatial reasoning has as one of its main objectives to present geographic
information in a qualitative way to be able to reason about it (see, for example, Chapter 12 in [14]),
also for spatio-temporal reasoning) and it can be seen as the processing of information about a spatial
environment that is immediately available to humans (or animals) through direct observation. The
reason for using a qualitative representation is that the available information is often imprecise, partial
and subjective [15].

Qualitative spatial reasoning is a part of the broader field of spatial reasoning and has as goals
(1) to finitely represent knowledge about infinite spatial (and spatio-temporal) domains using a
finite number of qualitative relations and (2) to design computationally feasible symbolic reasoning
techniques for these data. The aim of these models is to support human understanding of
space. In particular, qualitative approaches aim to reflect human cognition and they offer intuitive
representations of spatial situations that are nevertheless able to enable complex decision tasks.
During the past decades, the qualitative spatial reasoning community has investigated several
qualitative representations of spatial knowledge and reasoning techniques and their underlying
computational principles, linking formal approaches to cognitive theories. For an overview of the
aims and methods in this field, we refer to [16] and [17].

In the field of qualitative spatial reasoning several taxonomies of cognitive spatial (and
spatio-temporal) concepts have been proposed and frameworks have been designed to accommodate
computational techniques, useful for applications. Dozens of formalisms, in the form of, so-called,
qualitative spatial calculi have been proposed (a representative sample is discussed in [18]). Recent
examples are [19,20].

Only during the last decade, the field of spatial reasoning has focussed more on the applications
of the developed techniques, for instance, in the area of GIS. This has lead to the insights that semantics
plays an important role and that qualitative spatial reasoning is more than constraint-based reasoning.
During the last years, also a number of toolboxes have been developed to incorporate qualitative
spatial reasoning techniques in application domains such as computer-aided design, natural language
processing, robot navigation [21] and GIS. We mention the systems SparQ [22], GQR [23] and
QAT [24]. As an other example from GIS, qualitative calculi have also been used to analyse trajectory
data of moving objects [25].

If we return to the example of trajectory data, we can see that if a person orients her- or himself
at a certain location in a city and then moves away from this location, she or he remembers her or
his current location by using a mental map that takes the relative turns into account with respect to
the original starting point, rather than the precise metric information about her or his trajectory. For
such navigational problems, a person will for instance remember: “I left the station and went straight;
passing a church to my right; then taking two left turns; ...”

One of the formalisms to qualitatively describe polylines in the plane is given by the double-cross
calculus. In this method, a double-cross matrix captures the relative position of any two line segments
in a polyline by describing it with respect to a double cross based on the starting points of these
line segments. The double-cross calculus was introduced as a formalism to qualitatively represent a
configuration of vectors in the plane [15,26]. In this formalism, the relative position (or orientation)
of two (located) vectors is encoded by means of a 4-tuple, whose entries come from the set
{0,+,−}. Such a 4-tuple expresses the relative orientation of two vectors with respect to each
other. The double-cross formalism is used, for instance, in the qualitative trajectory calculus, which,
in turn, has been used to test polyline similarity with applications to query-by-sketch, indexing and
classification [27]. We elaborate on these applications in Section 2.4. As an other example from GIS,
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the double-cross formalism have also been used for mining and analysing moving object data [25].
Recently, first steps have been made to generalise the double-cross formalism to model spatial
interactions in 3-dimensional space, called QTC3D, where it is used to model, for instance, flying
planes. Also, the complex interactions of birds, that fly in a flock, are modelled, using this formalism.
In this higher dimensional setting, the calculus is based on the transformations of the so-called
Frenet-Serret frames [28]. Other applications of the double-cross formalism and its generalisation
OPRAn include the modelling of traffic situations [29,30].

Two polylines are called double-cross similar if their double-cross matrices are identical.
Two polylines, that are quite different from a quantitative or metric perspective, may have the same
double-cross matrices, as we illustrate below. The idea is that they follow a similar pattern of relative
turns, which reflects how humans visualize and remember movement patterns.

In this paper, we provide an extensive algebraic and geometric interpretation of the double-cross
matrix of a polyline and of double-cross similarity of polylines. To start with, we give a collection of
polynomial constraints (polynomial equalities and inequalities) on the coordinates of the measured
points of a polyline (its vertices) that express the information contained in the double-cross matrix of
a polyline. This algebraic characterisation can be used to effectively verify double-cross similarity
of polylines and to generate double-cross similar polylines by means of tools from algebraic
geometry, implemented, for instance, in software packages like MATHEMATICA [31]. This algebraic
characterization of the double-cross matrix also allows us to prove a number of properties of
double-cross matrices. As an example, we mention a high degree of symmetry in the double-cross
matrix along its main diagonal.

Next, we turn to a geometrical interpretation of double-cross similarity of two polylines.
This geometrical interpretation is based on local geometric information of the polyline in its vertices.
This information is called the local carrier order and it uses (local) compass directions in the vertices of
a polyline to locate the relative position of the other vertices. Our main result in this context says that
two polylines are double-cross similar if and only if they have the same local carrier order structure.

From the definition of the doubtle-cross matrix of a polyline it is clear that this matrix remains
the same if, for instance, we translate or rotate the polyline in the two-dimensional plane. In a final
part of this paper, we identify the exact set of transformations of the two-dimensional plane that leave
double-cross matrices invariant. Our main (and rather technical) result states that the largest group of
transformations of the plane, that is double-cross invariant consist of the similaritiy transformations
of the plane onto itself. In broad terms, the similarities of the plane are the translations, rotations and
homotecies (scalings) of the plane. This result allows us, for instance, to prove any statement about
double-cross matrices of a polyline, only for polylines start in the origin of the two-dimensional plane
and have a unit length first line segment.

Organization

This paper is organized as follows. Section 2 gives the definition of a polyline, the double-cross
matrix of a polyline and double-cross similarity of two polylines. It also gives examples of
the application of the concept of double-cross similarity in GIS. Section 3 gives our algebraic
characterization of the double-cross matrix of a polyline. In Section 4, we derive a number of
properties of double-cross matrices from the algebraic characterisation. In Section 5, we give a
geometric characterization of the double-cross similarity of two polylines in terms of the local carrier
order. And finally, in Section 6, we characterize the double-cross invariant transformations of the
plane. In this section, we identify the transformations of the plane that leave the double-cross matrix
of all polylines invariant.

2. Definitions and Preliminaries

In this section, we give the definitions of a polyline, of the double-cross matrix of a polyline and
of double-cross similarity of two polylines.
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2.1. Polylines in the Plane

Let R denote the set of the real numbers, and let R2 denote the two-dimensional real plane.
To stress that some real values are constants, we use sans serif characters: x, y, x0, y0, x1, y1, . . . . Real
variables are denoted in normal characters. For constant points of R2, we use the sans serif characters
p, p0, p1, . . .

The following definition specifies what we mean by polylines. We define polylines as a finite
sequences of points in R2 (which is often used as their finite representation). When we add the line
segments between consecutive points we obtain what we call the semantics of the polyline. We also
introduce some terminology about polylines.

Definition 1. A polyline (in R2) is an ordered list P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN)〉 of points in R2.
We call the points (xi, yi), 0 ≤ i ≤ N, the vertices of the polyline. We assume that no two consecutive vertices
are identical, that is: (xi, yi) 6= (xi+1, yi+1), for 0 ≤ i < N.

We call N the size of the polyline P. The vertices (x0, y0) and (xN , yN) are respectively called the start
and end vertex of P. The line segments connecting the points (xi, yi) and (xi+1, yi+1), for 0 ≤ i < N, are
called the (line) segments of the polyline P. The semantics of P, denoted sem(P), is the union of the line
segments of P.

So, the semantics, sem(P), is the following union of line segments:

N−1⋃
i=0

{
(x, y) ∈ R2 | ∃λ ∈ [0, 1] : (x, y) = λ · (xi, yi) + (1− λ) · (xi+1, yi+1)

}
,

which is a polygonal curve in R2. The quantified real variable λ captures, for values 0 < λ < 1, the
points on the line segments, strictly between the vertices (xi, yi) and (xi+1, yi+1) in sem(P). Further
on, we will loosely use the term polyline also to refer to the semantics of a polyline, although, in a
strict sense, a polyline is a ordered list of points in R2.

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0)

( 5
2 , 1)

P2

(0, 0) (2, 0) (3, 0) (4, 0)

( 5
2 , 1)

P1

Figure 1. An example of a polyline P1 = 〈(0, 0), (2, 0), ( 5
2 , 1), (3, 0), (4, 0)〉 and a polyline P2 = 〈(0, 0),

(1, 0), (2, 0), ( 5
2 , 1), (3, 0), (4, 0)〉. Although they have a different vertex set and a different size, still

sem(P1) = sem(P2).
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(0, 0)

(0, 1)

(1, 0)

(2, 1)

(3, 0)

(4, 2)

(4, 0)

Figure 2. An example of a polyline P = 〈(0, 0), (0, 1), (2, 1), (3, 0), (4, 2), (1, 0), (4, 0)〉 and its semantics
sem(P). We see that two of the line segments of its semantics intersect in a point that is not a vertex.
The last line segment of the polyline intersects two other line setments in a vertex.

We remark that two polylines with a different number of vertices, may have the same semantics.
Figure 1 gives an example of such polylines. We also remark that the line segments, appearing in
the semantics, may intersect in points which may or may be not vertices, as is illustrated by the
polyline shown in Figure 2. A polyline where the start and end vertex coincide and which has no
other self-intersections in its semantics is a polygon. Finally, we remark that it is reasonable to assume
that polylines coming from GIS applications have vertices with rational coordinates.

Below, we stick to the notation introduced in the above definitions. Furthermore, as a standard,
we abbreviate (xi, yi) by pi. We also use the following notational conventions. The (located) vector
from pi to pj is denoted by −→pipj (by the located vector from p to q, we mean an ordered pair (p, q)
of points of R2). We use this concept to represent the oriented line segment between p and q. The
counter-clockwise angle (expressed in degrees) measured from −→pipj to−→pipk is denoted by 6 (−→pipj,

−→pipk),
as illustrated in Figure 3.

\(��!pipj ,
��!pipk)

pj

pi

pk

Figure 3. The counter-clockwise angle 6 (−→pipj,
−−→pipk) from −→pipj to −−→pipk.

2.2. The Double-Cross Matrix of a Polyline

In this section, we define the double-cross matrix of a polyline.

2.2.1. The Double-Cross Value of Two (Located) Vectors

The double-cross calculus was introduced as a formalism to qualitatively represent a
configuration of vectors in the plane R2 [15,26]. In this formalism, the relative position (or orientation)
of two (located) vectors is encoded by means of a 4-tuple, whose entries come from the set {0,+,−}.
Such a 4-tuple expresses the relative orientation of two vectors with respect to each other.

We associate to a polyline P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN)〉, with pi = (xi, yi), the (located)
vectors −−→p0p1,−−→p1p2, . . . ,−−−−→pN−1pN , representing the oriented line segments between the consecutive
vertices of P. Because of the assumption in Definition 1, the vectors −−→p0p1,−−→p1p2, . . . ,−−−−→pN−1pN all have
a strictly positive length. In the double-cross formalism, the relative orientation between −−−→pipi+1 and
−−−→pjpj+1 is given by means of a 4-tuple

(C1 C2 C3 C4) ∈ {−, 0,+}4.
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We follow the traditional notation of this 4-tuple without commas. To determine C1, C2, C3 and C4,
for pi 6= pj, first of all, a double cross is defined for the vectors −−−→pipi+1 and −−−→pjpj+1, determined by the
following three lines:

• the line Lij through pi and pj;
• the line Piji through pi, perpendicular on Lij; and
• the line Pijj through pj, perpendicular on Lij.

These three lines are illustrated in Figure 4. These three lines determine a cross at pi and a cross
at pj. Hence the name “double cross.” The entries C1, C2, C3 and C4 express in which quadrants or on
which half lines pi+1 and pj+1 are located with respect to the double cross.

pi+1

pi

pj

pj+1
PijjPiji

Lij

����!pjpj+1

����!pipi+1

Figure 4. The double cross (in blue): for −−−→pipi+1 and −−−→pjpj+1 we have the lines Lij, Piji and Pijj.

We now define this more formally and follow the historical use of the double cross (see, for
instance, [15,26]). In this definition, an interval (a, b) of angles, represents the open interval between
a and b on the counter-clockwise oriented circle.

Definition 2. Let P = 〈(x0, y0), (x1, y1), . . . , (xN , yN)〉 be a polyline, with pi = (xi, yi), for 0 ≤ i ≤ N, and
with associated vectors −−→p0p1,−−→p1p2, . . . ,−−−−→pN−1pN . For −−−→pipi+1 and −−−→pjpj+1 with 0 ≤ i, j < N, i 6= j and pi 6= pj,
we define

DC(−−−→pipi+1,−−−→pjpj+1) = (C1 C2 C3 C4)

as follows:

C1 =


− if 6 (−→pipj,

−−−→pipi+1) ∈ (−90◦, 90◦)
0 if 6 (−→pipj,

−−−→pipi+1) ∈ {−90◦, 90◦}
+ else

C2 =


− if 6 (−→pjpi,

−−−→pjpj+1) ∈ (−90◦, 90◦)
0 if 6 (−→pjpi,

−−−→pjpj+1) ∈ {−90◦, 90◦}
+ else

C3 =


− if 6 (−→pipj,

−−−→pipi+1) ∈ (0◦, 180◦)
0 if 6 (−→pipj,

−−−→pipi+1) ∈ {0◦, 180◦}
+ else

C4 =


− if 6 (−→pjpi,

−−−→pjpj+1) ∈ (0◦, 180◦)
0 if 6 (−→pjpi,

−−−→pjpj+1) ∈ {0◦, 180◦}
+ else.
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For −−−→pipi+1 and −−−→pjpj+1, with pi = pj, we define, for reasons of continuity,

DC(−−−→pipi+1,−−−→pjpj+1) = (0 0 0 0).

The argumentation for this convention is given in [32].

So, in particular, when i = j, we have DC(−−−→pipi+1,−−−→pjpj+1) = (0 0 0 0).
We remark that the values C1 and C3 describe the location of the point pi+1 or, equivalently, the

orientation of the vector −−−→pipi+1 with respect to the cross at pi (formed by the lines Lij and Piji). We see
that each of the four quadrants and four half lines determined by the cross at pi are determined by a
unique combination of C1 and C3 values. Similarly, the values C2 and C4 describe the location of the
point pj+1 or, equivalently, the orientation of the vector −−−→pjpj+1 with respect to the cross at pj (formed
by the lines Lij and Pijj).

The quadrants and half lines where C1, C2, C3 and C4 take different values are graphically
illustrated in Figure 5. For example, the 4-tuple DC(−−−→pipi+1,−−−→pjpj+1) for the vectors −−−→pipi+1 and −−−→pjpj+1,
shown in Figure 4, is (+ − − −).

pi pj

C1

C3

C2

C4

+

� �

0�

�

0+

0

+

�

�

0

0

+

+

0 0

+ +

�� +

0

0

�

+

Lij

Piji Pijj

�

�

+

+�

+

0 0 0

Figure 5. The quadrants and half lines where C1, C2, C3 and C4 take different values.

Further on, we will sometimes use the notation DC(−−−→pipi+1,−−−→pjpj+1)[k] to indicate Ck, for
k = 1, 2, 3, 4. Obviously, this notation does not hide the dependence on i and j.

Remark. Since C1, C2, C3 and C4 take values from the set {−, 0,+}, it may seem that there are 34 = 81
possible values for the tuples (C1 C2 C3 C4).

However, some combinations are not possible because of the assumption in Definition 1, that says that
two consecutive vertices of a polyline have to be different. This means that C1 and C3 cannot be both 0 and
that C2 and C4 cannot be both 0, in each case with the exception of C1, C2, C3 and C4 all being 0, that is
(C1 C2 C3 C4) = (0 0 0 0). So, we have 81− 8− 8 = 65 possible values for (C1 C2 C3 C4).

This number of 65 possible values for the tuples (C1 C2 C3 C4) can also be reached in another way. The
point pi+1 can be in one of four quadrants around pi or on one of four half lines starting in pi. These are 8
possible locations for pi+1. Similarly, we have 8 possible locations for pj+1 in the quadrants and half lines
starting in pj. This gives 8× 8 = 64 possible combinations. Together with the case (C1 C2 C3 C4) = (0 0 0 0),
we reach a total number of 65 possibilities.

2.2.2. The Double-Cross Matrix of a Polyline

Based on the definition of DC(−−−→pipi+1,−−−→pjpj+1), we now define the double-cross matrix of
a polyline.
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Definition 3. Let P = 〈(x0, y0), (x1, y1), . . . , (xN , yN)〉 be a polyline, with pi = (xi, yi), for 0 ≤ i ≤ N,
and with associated vectors −−→p0p1,−−→p1p2, . . . ,−−−−→pN−1pN . The double-cross matrix of P, denoted DCM(P), is the
N × N matrix with the entries DCM(P)[i, j] = DC(−−−→pi pi+1,−−−→pj pj+1), for 0 ≤ i, j < N.

For example, the entries of the double-cross matrix of the polyline of Figure 6 are given in
Table 1. This first example can be used to illustrate some properties of this matrix that are proven
in Section 4. First, we observe that on the diagonal always (0 0 0 0) appears. We also see that there
is a certain degree of symmetry along the diagonal. If DC(−−−→pipi+1,−−−→pjpj+1) = (C1 C2 C3 C4), then we
have DC(−−−→pjpj+1,−−−→pipi+1) = (C2 C1 C4 C3). These two observations imply that it suffices to know a
double-cross matrix above its diagonal.

p0
p1

p2

p3

p4 p5

Figure 6. An example of a polyline.

Table 1. The entries of the double-cross matrix of the polyline of Figure 6.

−→p0p1
−→p1p2

−→p2p3
−→p3p4

−→p4p5
−−→p0p1 (0 0 0 0) (− − 0 +) (− + + −) (− − + −) (− + − +)−−→p1p2 (− − + 0) (0 0 0 0) (− − 0 +) (− + + +) (− − + +)−−→p2p3 (− − − +) (− − + 0) (0 0 0 0) (− + 0 −) (− − − +)−−→p3p4 (− − − +) (+ − + +) (+ − − 0) (0 0 0 0) (− − 0 +)−−→p4p5 (+ − + −) (− − + +) (− − + −) (− − + 0) (0 0 0 0)

2.3. Double-Cross Similarity of Polylines

We now define double-cross similarity of two polylines of equal size.

Definition 4. Let P and Q be polylines of the same size. We say that P and Q are double-cross similar if
DCM(P) = DCM(Q).

We stress that Definition 4 requires that the two polylines have to be of the same size before we
can speak of their double-cross similarity.

Figure 7 depicts two polylines, P and Q, which are double-cross similar. The entries of their
double-cross matrices are given in Table 2. In polyline P of Figure 7, at each vertex, the polyline
bends around 10 degrees to the left. In polyline Q, this is only around 2 degrees. Nevertheless, all
relative positions of oriented line segments remain the same. As the most extreme example, if we
compare −−→p0p1 and −−→p4p5 in both polylines, we see that −−→p4p5 almost makes a 90◦ left angle with the
central line of the double cross in the polyline P, whereas, this is only some 10◦ in the polyline Q.
Still, both P and Q have the same double-cross entry for −−→p0p1 and −−→p4p5.
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p0 p1

p2

p3

p4

p5

p0 p1
p2

p4

p5

p3

P

Q

Figure 7. The polylines P and Q are double-cross similar.

Table 2. The entries of the double-cross matrix of the polylines of Figure 7.

−→p0p1
−→p1p2

−→p2p3
−→p3p4

−→p4p5
−−→p0p1 (0 0 0 0) (− + 0 +) (− + + +) (− + + +) (− + + +)−−→p1p2 (+ − + 0) (0 0 0 0) (− + 0 +) (− + + +) (− + + +)−−→p2p3 (+ − + +) (+ − + 0) (0 0 0 0) (− + 0 +) (− + + +)−−→p3p4 (+ − + +) (+ − + +) (+ − + 0) (0 0 0 0) (− + 0 +)−−→p4p5 (+ − + +) (+ − + +) (+ − + +) (+ − + 0) (0 0 0 0)

2.4. Examples of The Application of Double-Cross Similarity in GIS

In this section, we give some examples of the applicability of the concept of double-cross similarity
of polylines in the area of GIS [27]. Polyline- (and polygon-) similarity testing, based on the
double-cross formalism, can be applied in a number of areas in GIS. We think of applications in the
area of image recognition or retrieval in the context of geographical maps. Features in maps are often
modelled as polylines (for instance, roads and rivers) and polygons (for example, closed polylines
can be used to delimit geographical areas such as cities, provinces and countries). Polyline-similarity
testing can also be applied in the area of the classification of terrain features. In spatial database terms,
it can be used for querying-by-sketch.

To determine the degree of similarity between two polylines (not necessary of the same size),
according to the double-cross formalism, we can proceed by the following two steps: (1) first, if the
polylines are of different size, their “generalized polylines” (that approximate the original polylines
within an ε-error margin) are computed; (2) next, the differences between the double-cross matrices
of the generalized polylines are used as a measure of dissimilarity between the given polylines. In the
remainder of this section, we describe this process in some more detail and we give some examples
of its application.

The definition of double-cross similarity of polylines (Definition 4) can only be applied to
polylines of the same size. Obviously, in practice, we often want to test similarity of polylines that
are not necessarily of the same size. To overcome this problem, we can use the notion of “generalized
polylines”: for a given polyline P, a sequence of generalized polylines P2, P4, P8, ..., P2n

, ... are defined
that tend (as n grows) to converge to P (arbitrary close) and to consist of equally long line segments.
To define the generalized polyline P2n

in this sequence, we measure the distance along P from its
start vertex to its end vertex and we mark on sem(P) the 2n + 1 points that divide sem(P) in pieces of



ISPRS Int. J. Geo-Inf. 2016, 5, 152 10 of 27

equal length. These markers are used as the 2n + 1 vertices of the generalized polyline P2n
. The first

generalizations P2, P4 and P8 of a polyline P are shown in Figure 8. It can be shown that the
generalized polylines of P converge to P, as n grows. This means that, for any error margin ε > 0,
a polyline P can be approximated, for sufficiently large n, by its generalizations P2n

up to an error of
ε. In particular, the difference in length between P and P2n

is less than ε [27].

(1, 0)(0, 0)

(1, 1)(0,1)

P P 2

P 4 P 8

Figure 8. An example of a polyline P = 〈(0, 1), (0, 0), (1, 0), (1, 1)〉 (in black). Next, its first
generalizations P2, P4and P8 are shown in blue, in red and in green, respectively.

This means that for two given polylines P1 and P2 and an arbitrarily small ε, we can find a
large enough n such that both P2n

1 and P2n

2 are ε-close to P1 and P2. For step (2), we can use the
double-cross matrices M1 and M2 of P2n

1 and P2n

2 to define the double-cross (dis)similarity of P1

and P2. There are many possibilities here, but in the experiments in [27], the distance function
∆H is shown to be the most suitable in many applications in GIS. To define the distance measure
∆H(M1, M2) between double-cross matrices, we first construct, for both matrices M1 and M2, 65-ary
vectors γ(M1), γ(M2) over the natural numbers, that count for each of the 65 realizable 4-tuples of−,
+ and 0 (Proposition 10 explains the number 65), the number of times they occur in the matrices M1

and M2. Then, for matrices M1 and M2 of polylines of size N, we define

∆H(M1, M2) :=
1

N2 − N

65

∑
i=1
|γ(M1)[i]− γ(M2)[i]| ,

where N = 2n and where γ(M1)[i] refers to the ith entry of the vector γ(M1). This means that the
function ∆H counts the average difference between the 65 count values. In [27], it is shown that ∆H can
be efficiently computed. It was also shown to perform well in a number of applications. We conclude
this section, by discussing some of the performance results of ∆H .

Example 1: Polygon Similarity: Image Recognition and the Classification of Terrain Features

Figure 9 shows a map of Belgium in Figure 9a, consisting of 2047 line segments. Figure 9b is the
same figure with the three bumps in the upper part moved to the right. Figure 9c is a map drawn by
a geographer and Figure 9d is an abstract representation. Table 3 gives an overview of the similarity
levels determined by ∆H . For example, the actual map of Belgium is 99% similar to the slightly
modified map, but only 60% similar to the abstract representation.
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(a) (b)

(c) (d)

Figure 9. A map of Belgium in (a) and some sketches in (b–d).

Table 3. Similarity between polygons of Figure 9 using ∆H .

Figure (a) (b) (c) (d)

(a) 100% 99% 87% 66%
(b) 100% 87% 67%
(c) 100% 80%
(d) 100%

(a) Butte (b) Plateau (c) Mesa

(d) Flat-floored Valley (e) U-shape Valley

(f) Depression (g) Canyon

Figure 10. The seven basic shapes of terrain features in (a–g). They are modelled as polylines and
named as shown in the figure.

This technique of ∆H-based polygon similarity can be used in areas such as image retrievel or
recognition, but also in the recognition and classification of terrain features, of which the basic terrain
features, modelled as polylines, are depicted in Figure 10.
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Example 2: Query-by-Sketch

Figure 11 first shows sketches of a bowler hat and a bow tie. Next, it shows a map of the the
province of Limburg in Belgium with its municipalities. The municipalities that resemble the bowler
hat the most, according to ∆H , are shown in black on this map. The most alike city is “Lommel”,
as indicated in the figure. The municipalities, resembling the bow tie sketch, are shown in grey.

(a) (b)

Figure 11. Part (a) shows sketches of a bowler hat and bow tie. Part (b) shows the municipalities in
the province of Limburg that resemble best these sketches in black, respectively, grey.

For further implementation details and experimental results, we refer to [27].

3. An Algebraic Characterization of the Double-Cross Aatrix of a Polyline

In this section, we give an algebraic characterization of the entries in the double-cross matrix of
a polyline. This algebraic characterisation can be used to effectively verify double-cross similarity
of polylines.

Let P = 〈(x0, y0), (x1, y1), . . . , (xN , yN)〉 be a polyline and let pi = (xi, yi), for 0 ≤ i ≤ N.
Theorem 5 gives algebraic expressions to calculate the entries DC(−−−→pipi+1,−−−→pjpj+1) of a double-cross
matrix in terms of the x- and y-coordinates of the points pi, pi+1, pj and pj+1. Further on, we use this
theorem extensively to prove properties of double-cross matrices.

Before stating and proving this theorem, we recall some elementary notations from algebra and
some formula’s in the following remark.

Remark. The well-known formula to calculate the (counter-clockwise) angle θ between two vectors~a and~b in
R2 (and also, in general, in Rn) is

cos θ =
~a ·~b
|~a| · |~b|

.

Here, we are not talking about located vectors like before, but vectors in the common sense. In the above
formula, the · in the numerator denotes the inner product (also called scalar product) of two vectors and |~a|
is the norm or length of~a (and the · in the denominator is the product of real numbers).

The above formula implies that we have cos θ = 0 if and only if~a ·~b = 0 if and only if θ ∈ {90◦,−90◦}.
So, ~a ·~b = 0 means that ~a is perpendicular to~b. On the other hand, we have cos θ > 0 and thus ~a ·~b > 0,
when θ ∈ (−90◦, 90◦). And finally~a ·~b < 0 is equivalent to θ ∈ (90◦, 270◦).

If~a = (a, b) ∈ R2, then~a⊥ = (−b, a) is the unique vector, perpendicular to~a and of the same length of
~a, such that the (counter-clockwise) angle from~a to~a⊥ is 90◦.
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In the following theorem, we use the function

sign : R→ {−, 0,+} : x 7→ sign(x) =


− if x < 0;
0 if x = 0; and
+ if x > 0.

We also work with the following convention concerning signs: −− is +; −0 is 0; and −+ is −.

Theorem 5. Let P = 〈(x0, y0), (x1, y1), . . . , (xN , yN)〉 be a polyline and let pi = (xi, yi), for 0 ≤ i ≤ N.
Then, DC(−−−→pipi+1,−−−→pjpj+1) = (C1 C2 C3 C4) with

C1 = − sign((xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi));
C2 = sign((xj − xi) · (xj+1 − xj) + (yj − yi) · (yj+1 − yj));
C3 = − sign((xj − xi) · (yi+1 − yi)− (yj − yi) · (xi+1 − xi)); and
C4 = sign((xj − xi) · (yj+1 − yj)− (yj − yi) · (xj+1 − xj)).

Proof. We have pi = pj if and only if xj − xi = 0 and yj − yi = 0 and in this case the four (instantiated)
polynomials in the statement of the theorem evaluate to zero.

Next, we assume pi 6= pj. We consider the following vectors in R2:

• −→uij = (xj − xi, yj − yi);
• −→uji = (xi − xj, yi − yj);
• −→vi = (xi+1 − xi, yi+1 − yi); and
• −→vj = (xj+1 − xj, yj+1 − yj).

We remark that −→uij = −−→uji and that the vectors −→uij,
−→vi and −→vj (in the common sense of the word

vector) are the (located) vectors −→pipj,
−−−→pipi+1 and −−−→pjpj+1 translated to the origin of R2.

• C1: Now, we apply the above cosine-formula to −→a = −→uij and
−→
b = −→vi to obtain an expression for

C1. Because C1 is negative towards pj, we get the minus-sign in the following expression for C1:

C1 = −sign(−→uij · −→vi )

= −sign((xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi)).

• C2: Next, we apply the cosine-formula to −→a = −→uji and
−→
b = −→vj to obtain an expression for

C2. Again, because C2 is negative towards pi, we get the minus-sign in C2 = −sign(−→uji · −→vj ).
This means that

C2 = sign(−→uij · −→vj )

= sign((xj − xi) · (xj+1 − xj) + (yj − yi) · (yj+1 − yj)).

• C3: Here, we apply the cosine-formula to −→a = −→uij
⊥ and

−→
b = −→vi and get C3 = −sign(−→uij

⊥ · −→vi ).
We have a minus-sign here, because C3 = − in the direction of −→uij

⊥. Since −→uij
⊥ = (−(yj − yi), xj − xi),

we get

C3 = −sign(−→uij
⊥ · −→vi )

= sign((yj − yi) · (xi+1 − xi)− (xj − xi) · (yi+1 − yi)).

• C4: Finally, we apply the cosine-formula to −→a = −→uji
⊥ and

−→
b = −→vj . Since C4 = − in the direction

of −→uji
⊥, we have C4 = −sign(−→uji

⊥ · −→vj ). Since −→uji
⊥ = (yj − yi,−(xj − xi)), we get

C4 = −sign(−→uji
⊥ · −→vj )

= sign(−(yj − yi) · (xj+1 − xj) + (xj − xi) · (yi+1 − yi)).

This concludes the proof.

In the following property, we show that the double-cross value (0 0 0 0), which, for reasons of
continuity, is the value in the case pi = pj (see Definition 2), can only occur in that exceptional case.
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Proposition 6. Let P = 〈(x0, y0), (x1, y1), . . . , (xN , yN)〉 be a polyline and let pi = (xi, yi). Then,
DC(−−−→pipi+1,−−−→pjpj+1) = (0 0 0 0) if and only if pi = pj.

Proof. As already observed in the proof of Theorem 5, pi = pj implies xj − xi = 0 and yj − yi = 0
and in this case the four (instantiated) polynomials of Theorem 5 evaluate to zero. This implies that
DC(−−−→pipi+1,−−−→pjpj+1) = (0 0 0 0).

For the converse, we have to show that if the four polynomials evaluate to zero, then pi = pj. We
prove this by assuming pi 6= pj and deriving a contradiction. If pi 6= pj, then xj − xi 6= 0 or yj − yi 6= 0.
First, we consider the case xj − xi 6= 0.

As a first subcase, we consider the case yj − yi = 0. Then we get from the equations C1 = 0 and
C3 = 0 that (xj − xi) · (xi+1 − xi) = 0 and (xj − xi) · (yi+1 − yi) = 0. Since xj − xi 6= 0 is assumed, this
implies that xi+1 − xi = 0 and yi+1 − yi = 0. This contradicts the assumption in Definition 1, which
says that no two consecutive vertices of a polyline are identical.

As a second subcase, we consider the case yj − yi 6= 0. Then we get from C1 = 0 that

xi+1 − xi =
−(yj − yi) · (yi+1 − yi)

xj − xi

From C3 = 0, we get (xj − xi) · (yi+1 − yi) = (yj − yi) · (xi+1 − xi).
Combined, these two equalities imply ((xj − xi)

2 + (yj − yi)
2) · (yi+1 − yi) = 0. Since in this case

(xj − xi)
2 + (yj − yi)

2 > 0, we conclude yi+1 − yi = 0. But then, again using the equation for C1, we
get (xj − xi) · (xi+1 − xi) = 0, or xi+1 − xi = 0. So, we have both xi+1 − xi = 0 and yi+1 − yi = 0,
which again contradicts the assumption in Definition 1. We have contradiction in all cases and this
concludes the proof of the first case. The case yj − yi 6= 0 has a completely analogous proof, now
using C2 = 0 and C4 = 0 instead of C1 = 0 and C3 = 0. This concludes the proof.

We end this section by remarking that all the factors appearing in the algebraic expressions,
given by the theorem, that is xj − xi, xi+1 − xi, yj − yi, yi+1 − yi, xj+1 − xj and yj+1 − yj are differences
in x-coordinate or differences in y-coordinate values.

4. Some Properties of Double-Cross Matrices that can be Derived from Their Algebraic Characterisation

In this section, we give some basic properties of double-cross matrices of polylines. In most cases,
these properties can be derived from the algebraic characterization of the entries of a double-cross
matrix, that we presented in previous section.

4.1. Symmetry in the Double-Cross Matrix of a Polyline

In Section 2.2.2, we have already announced by the example polyline given in Figure 6 with
its double-cross matrix given in Table 1, that a double-cross matrix exhibits symmetry properties.
We prove these properties in this section. The first property is by definition, the second needs some
inspection of polynomials. The conclusion is that it is enough to know a double-cross matrix above
its diagonal.

Proposition 7. If P = 〈p0, p1, . . . , pN〉 is a polyline, then DC(−−−→pipi+1,−−−→pipi+1) = (0 0 0 0), for 0 ≤ i < N.

The following property says how DC(−−−→pjpj+1,−−−→pipi+1) can be derived from DC(−−−→pipi+1,−−−→pjpj+1) in a
straightforward way.

Proposition 8. Let P = 〈p0, p1, . . . , pN〉 be a polyline. If DC(−−−→pipi+1,−−−→pjpj+1) = (C1 C2 C3 C4), then
DC(−−−→pjpj+1,−−−→pipi+1) = (C2 C1 C4 C3).
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Proof. Let P = 〈(x0, y0), (x1, y1), . . . , (xN , yN)〉 be a polyline and let pi = (xi, yi). We use the
polynomials given in Theorem 5 to prove this result. Essentially, what we do is to interchange the
role of i and j. If i = j, nothing has to be shown. So, we assume i 6= j. If we interchange in

C1 = − sign((xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi));
C2 = sign((xj − xi) · (xj+1 − xj) + (yj − yi) · (yj+1 − yj));
C3 = − sign((xj − xi) · (yi+1 − yi)− (yj − yi) · (xi+1 − xi)); and
C4 = sign((xj − xi) · (yj+1 − yj)− (yj − yi) · (xj+1 − xj)).

the role of i and j, we get DC(−−−→pjpj+1,−−−→pipi+1) = (C′1 C′2 C′3 C′4), with

C′1 = − sign((xi − xj) · (xj+1 − xj) + (yi − yj) · (yj+1 − yj));
C′2 = sign((xi − xj) · (xi+1 − xi) + (yi − yj) · (yi+1 − yi));
C′3 = − sign((xi − xj) · (yj+1 − yj)− (yi − yj) · (xj+1 − xj)); and
C′4 = sign((xi − xj) · (yi+1 − yi)− (yi − yj) · (xi+1 − xi)).

It is easy to see that C′1 = C2, C′2 = C1, C′3 = C4 and C′4 = C3.

These two properties imply that only the N·(N−1)
2 entries above the diagonal of the double-cross

matrix of a polyline are significant.

4.2. The Double-Cross Value of Consecutive Line Segments

The following property says what the entries in the double-cross matrix of two successive line
segments −−−→pipi+1 and −−−−−→pi+1pi+2 in a polyline P = 〈p0, p1, . . . , pN〉 look like. These values correspond to
entries in the double-cross matrix just above (or below) its diagonal.

Proposition 9. Let P = 〈p0, p1, . . . , pN〉 be a polyline. Of DC(−−−→pipi+1,−−−−−→pi+1pi+2) the entries C1 and C3 are
fixed to − and 0. That is,

DC(−−−→pipi+1,−−−−−→pi+1pi+2) = (− C2 0 C4),

for any 0 ≤ i < N − 1.

Proof. Let 0 ≤ i < N − 1. We start with the entry DC(−−−→pipi+1,−−−−−→pi+1pi+2)[1] = −sign((xi+1 −
xi) · (xi+1 − xi) + (yi+1 − yi) · (yi+1 − yi)) = −sign((xi+1 − xi)

2 + (yi+1 − yi)
2). Because of the

assumption in Definition 1, we have (xi+1 − xi)
2 + (yi+1 − yi)

2 > 0 and we can conclude that
DC(−−−→pipi+1,−−−−−→pi+1pi+2)[1] = −.

For the third entry we have DC(−−−→pipi+1,−−−−−→pi+1pi+2)[3] = −sign((xi+1 − xi) · (yi+1 − yi) − (yi+1 −
yi) · (xi+1 − xi)) = −sign(0) = 0. This concludes the proof.

The following property shows that more values depend on one another.

Proposition 10. Let P = 〈p0, p1, . . . , pN〉 be a polyline and let 1 ≤ i < N − 1. If DC(−−−→pi−1pi,
−−−→pipi+1) =

(− C2 0 C4), with C2 = + or 0, then DC(−−−→pi−1pi,
−−−−−→pi+1pi+2) = (− C′2 C4 C′4), for some C′2, C′4 ∈ {−, 0,+}.

Proof. Let DC(−−−→pi−1pi,
−−−−−→pi+1pi+2) be (C′1 C′2 C′3 C′4). We have the following expressions:

C2 = sign((xi − xi−1) · (xi+1 − xi) + (yi − yi−1) · (yi+1 − yi))

C4 = sign((xi − xi−1) · (yi+1 − yi)− (yi − yi−1) · (xi+1 − xi))

C′1 = −sign((xi+1 − xi−1) · (xi − xi−1) + (yi+1 − yi−1) · (yi − yi−1))

C′3 = −sign((xi+1 − xi−1) · (yi − yi−1)− (yi+1 − yi−1) · (xi − xi−1))

Let us abbreviate the first two expression as C2 = sign(c2) and C4 = sign(c4) and the latter two
as C′1 = −sign(c′1) and C′3 = −sign(c′3).
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Then we have c′1 = ((xi+1 − xi) + (xi − xi−1)) · (xi − xi−1) + ((yi+1 − yi) + (yi − yi−1)) · (yi −
yi−1) = (xi − xi−1)

2 + (yi − yi−1)
2 + c2. Since, by assumption c2 ≥ 0, it follows from the assumption

in Definition 1 that c′1 > 0 and thus C′1 = −sign(c′1) = −.
Further, we have c′3 = ((xi+1 − xi) + (xi − xi−1)) · (yi − yi−1)− ((yi+1 − yi) + (yi − yi−1)) · (xi −

xi−1) = −c4. So, C′3 = −sign(c′3) = −sign(−c4) = C4. This concludes the proof.

4.3. On the Length of Line Segments of a Polyline

The following properties shows that changing the length of segments in a polyline may or may
not influence certain entries in its double-cross matrix.

Proposition 11. Let P = 〈(x0, y0), (x1, y1), . . . , (xN , yN)〉 be a polyline and let pi = (xi, yi), for 0 ≤ i ≤ N.
Changing the length of −−−→pipi+1 and −−−→pjpj+1 does not influence the value of DC(−−−→pipi+1,−−−→pjpj+1).

Proof. If we take DC(−−−→pipi+1,−−−→pjpj+1) = (C1 C2 C3 C4) and DC(
−−−→
pip
′
i+1,
−−−→
pjp
′
j+1) = (C′1 C′2 C′3 C′4), where

−−−→
pip
′
i+1 is −−−→pipi+1 scaled by a factor c, with c > 0 and

−−−→
pjp
′
j+1 is −−−→pjpj+1 scaled by a factor d, with d > 0,

then we first observe that p′i+1 = (xi + c · (xi+1 − xi), yi + c · (yi+1 − yi)) and p′j+1 = (xj + c · (xj+1 −
xj), yj + c · (yj+1 − yj)). It is then easily verified that C′1 = −sign(c · c1) = −sign(c1) = C1, since
c > 0. Similarly, we get C′2 = sign(d · c2) = sign(c2) = C2, C′3 = −sign(c · c3) = −sign(c3) = C3 and
C′4 = sign(d · c4) = sign(c4) = C4, since also d > 0. This concludes the proof.

The length of the last segment of a polyline does not influence the double-cross matrix. Only its
direction matters. This follows straightforwardly from the definition.

Proposition 12. Let P = 〈p0, p1, . . . , pN〉 be a polyline. Changing the length of −−−−→pN−1pN does not
change DCM(P).

For segments, that differ from the last, this is not the case, as the following property shows.

Proposition 13. Let P = 〈p0, p1, . . . , pN〉 be a polyline. Changing the length of −−−→pipi+1 , for 0 ≤ i < N − 1,
may change DCM(P).

Proof. Consider the polylines P = 〈p0, p1, p2, p3, p4〉 and Q = 〈q0, q1, q2, q3, q4〉 of Figure 12. They only
differ in the length of their third segment. For P, we have DC(−−→p0p1,−−→p3p4) = (− − − −), whereas for
Q, we have DC(−−→q0q1,−−→q3q4) = (+ + − −).

p0

p1
p2

p3

p4

q4

q3

q2q1

q0

Figure 12. Two polylines that differ in the length of their third segment.
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4.4. The Quadrant of Points of a Polyline

In Section 6, we will see that we can apply a similarity transformation to a polyline without
changing its double-cross matrix. Without loss of generality, we may therefore assume that the first
line segment of the polyline is the unit interval of the x-axis, that is, p0 = (0, 0) and p1 = (1, 0).

The following property states that we can derive the quadrants in which all the other points are
located from the double-cross matrix.

Proposition 14. Let P = 〈p0, p1, . . . , pN〉 be a polyline and assume that p0 = (0, 0) and p1 = (1, 0). Let
pi = (xi, yi) for 2 ≤ i ≤ N. From DC(−−→p0p1,−−−→pipi+1), we can determine sign(xi) and sign(yi).

Proof. It is clear that C1 = −sign((xi− 0) · 1+ yi · 0) = −sign(xi) and that C3 = −sign(xi · 0+ yi · 1) =
−sign(−yi).

5. A Geometric Characterization of the Double-Cross Similarity of Two Polylines

In this section, we define the local carrier order of a polyline. This is a geometric concept and the
main result of this section is a characterization of double-cross similarity of two polylines in terms of
their local carrier orders.

5.1. The Local Carrier Order of a Polyline

Here, we give the definition of the local carrier order of a polyline. First, we introduce some
notation for half-lines.

Definition 15. Let P = 〈p0, p1, . . . , pN〉 be a polyline in R2 and let 0 ≤ i < N. If pi 6= pj, the (directed)
half-line starting in pi through pj will be denoted by pipj. The half-line, also starting in pi, but in the opposite
direction is denoted −pipj. The half-lines pipj and −pipj, for 0 ≤ j ≤ N with j 6= i and pj 6= pi, are called the
carriers at pi.

The perpendicular half-line on pipi+1 starting in pi directing to the right of pipi+1 (that is, making
a 90◦ clockwise angle with pipi+1) as pi

⊥r and the opposite perpendicular half-line starting in pi as pi
⊥` .

The half-lines pi
⊥r and pi

⊥` are called the perpendiculars at pi.

For 0 ≤ i < N, the vertex pi has 2N carriers and 2 perpendiculars. For an illustration of the
half-lines of and of this single cross between pi and pi+1, we refer to Figure 13.

pi

pj

p?r
i

p?`
i

pipj�pipj

pi+1

Figure 13. An example the half-lines pipj (in blue), −pipj (in green) and the two perpendicular
half-lines pi

⊥r and pi
⊥` (in red).

Now, we define the local carrier order of a vertex pi of a polyline P, for 0 ≤ i < N. This local
carrier order consists of nine sets. One keeps track which pj’s are equal to pi and the other eight are
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corresponding to eight directions of a compass card. We use the image of a 8-point compass with the
northern cardinal direction in the direction of the half-line pipi+1 to name these sets.

In the following definition, we say that a half-line ` is strictly between the two perpendicular
half-lines `1 and `2, if they all have the same starting point and ` is in the quadrant determined by `1

and `2 (following the counter-clockwise direction).

Definition 16. Let P = 〈p0, p1, . . . , pN〉 be a polyline in R2. For 0 ≤ i < N, we define the following nine
sets for the vertex pi:

• N(pi) is the set of pipj equal to pipi+1;
• NE(pi) is the set of pipj strictly between pipi+1 and pi

⊥r ;
• E(pi) is the set of pipj equal to pi

⊥r ;
• SE(pi) is the set of pipj strictly between pi

⊥r and −pipi+1;
• S(pi) is the set of pipj equal to −pipi+1;
• SW(pi) is the set of pipj strictly between −pipi+1 and pi

⊥` ;
• W(pi) is the set of pipj equal to pi

⊥` ; and
• NW(pi) is the set of pipj strictly between pi

⊥` and pipi+1,

with 0 ≤ j < i or i < j < N. Finally, Eq(pi) is the set of pj that are equal to pi. The local carrier order of P
in its vertex pi, for 0 ≤ i < N, denoted as LCO(P, pi), is the list of sets

〈Eq(pi),N(pi),NE(pi),E(pi), SE(pi),S(pi),SW(pi),W(pi),NW(pi)〉

and the local carrier order of P is the the list

〈LCO(P, p0), LCO(P, p1), ..., LCO(P, pN−1)〉.

We remark that if pj ∈ Eq(pi), then the half-line pipj makes no sense and therefore does not
appear in any of the sets N(pi), ..., NW(pi).

p0

p4

p1

p3

p2

Figure 14. A polyline P = 〈p0, p1, p2, p3, p4〉 with its carriers (in green) and its perpendiculars (in red).

As an illustration we use the polyline P depicted in Figure 14. Here, the local carrier orders in
the vertices are given by:

• LCO(P, p0) = 〈{}, {p0p1}, {p0p2, p0p4}, {}, {}, {}, {}, {}, {p0p3}〉
• LCO(P, p1) = 〈{}, {p1p2}, {}, {}, {p1p0}, {}, {}, {}, {p1p3, p1p4}〉
• LCO(P, p2) = 〈{}, {p2p3}, {p2p4}, {}, {}, {}, {p2p0}, {}, {}〉
• LCO(P, p3) = 〈{}, {p3p4}, {p3p2}, {}, {p3p1, p3p0}, {}, {}, {}, {}〉
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We now define the notion of local-carrier-order similarity of two polylines.

Definition 17. Let P = 〈p0, p1, . . . , pN〉 and Q = 〈q0, q1, . . . , qN〉 be polylines of equal size. We say that
P and Q are local-carrier-order similar if LCO(P, pi) = LCO(Q, qi) for all i = 0, 1, ..., N − 1, that is, if
LCO(P) = LCO(Q) (always, modulo changing pi in qi).

5.2. An Algebraic Characterization of the Local Carrier Order of a Polyline

In this section, we give algebraic conditions to express the local carrier order of a polyline.
Hereto, it suffices to give for each vertex pi, with 0 ≤ i < N, in the polyline P = 〈p0, p1, . . . , pN〉
characterizations of the sets in the list

〈Eq(pi),N(pi),NE(pi),E(pi),SE(pi),S(pi),SW(pi),W(pi),NW(pi)〉.

The following property gives this characterization. The proof of this property uses the same
algebraic tools as the proof of Theorem 5 and we will skip the (straightforward) details.

We remark that, obviously, the algebraic characterisation of Eq(pi) is given by equalities on
the coordinates.

Proposition 18. Let P = 〈(x0, y0), (x1, y1), . . . , (xN , yN)〉 be a polyline and let pi = (xi, yi), for 0 ≤ i ≤ N.
For 0 ≤ j < i or i < j < N, the following table gives algebraic conditions for the halfline pipj to belong to
X(pi) with X ∈ {N,NE,E,SE,S,SW,W,NW}:

X = pipj ∈ X(pi) is equivalent to
N −((xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi)) < 0

and
−((xj − xi) · (yi+1 − yi)− (yj − yi) · (xi+1 − xi)) = 0

NE −((xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi)) < 0
and
−((xj − xi) · (yi+1 − yi)− (yj − yi) · (xi+1 − xi)) < 0

E −((xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi)) = 0
and
−((xj − xi) · (yi+1 − yi)− (yj − yi) · (xi+1 − xi)) < 0

SE −((xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi)) > 0
and
−((xj − xi) · (yi+1 − yi)− (yj − yi) · (xi+1 − xi)) < 0

S −((xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi)) > 0
and
−((xj − xi) · (yi+1 − yi)− (yj − yi) · (xi+1 − xi)) = 0

SW −((xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi)) > 0
and
−((xj − xi) · (yi+1 − yi)− (yj − yi) · (xi+1 − xi)) > 0

W −((xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi)) = 0
and
−((xj − xi) · (yi+1 − yi)− (yj − yi) · (xi+1 − xi)) > 0

NW −((xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi)) < 0
and
−((xj − xi) · (yi+1 − yi)− (yj − yi) · (xi+1 − xi)) > 0
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5.3. A Characterization of Double-Cross Similarity of Polylines in Terms of Their Local Carrier Order

In this section, we give a geometric characterization of double-cross similarity of polylines in
terms of their local carrier orders. The main theorem that we prove in this section is the following.

Theorem 19. Let P and Q be polylines of equal size. Then, P and Q are double-cross similar if and only if they
are local-carrier-order similar. That is

DCM(P) = DCM(Q) if and only if LCO(P) = LCO(Q).

The two directions of this theorem are proven in Lemma 20 and Lemma 22 (or their immediate
Corollaries 21 and 23).

Lemma 20. Let P = 〈p0, p1, . . . , pN〉 be a polyline. For i, j with 0 ≤ i ≤ j < N, we can derive the value of
the 4-tuple DCM(P)[i, j] = (C1 C2 C3 C4) from LCO(P, pi) and LCO(P, pj).

Proof. Let P = 〈p0, p1, . . . , pN〉 be a polyline of size N. If pj ∈ Eq(pi), then DCM(P)[i, j] = (0 0 0 0).
This is in particular true if i = j.

If pj 6∈ Eq(pi), then the following twelve easily observable facts show how to determine C1, C2,
C3 and C4 (for instance, by a detailed inspection of Figure 5).

C1 is equivalent to
0 pipj ∈ W(pi) ∪ E(pi)

+ pipj ∈ SE(pi) ∪ S(pi) ∪ SW(pi)

− pipj ∈ NW(pi) ∪N(pi) ∪NE(pi)

C2 is equivalent to
0 pjpi ∈ W(pj) ∪ E(pj)

+ pjpi ∈ SE(pj) ∪ S(pj) ∪ SW(pj)

− pipj ∈ NW(pi) ∪N(pi) ∪NE(pi)

C3 is equivalent to
0 pipj ∈ N(pi) ∪ S(pi)

+ pipj ∈ SW(pi) ∪W(pi) ∪NW(pi)

− pipj ∈ NE(pi) ∪ E(pi) ∪ SE(pi)

C4 is equivalent to
0 pipj ∈ N(pj) ∪ S(pj)

+ pipj ∈ SW(pj) ∪W(pj) ∪NW(pj)

− pipj ∈ NE(pi) ∪ E(pi) ∪ SE(pi)

This concludes the proof.

This lemma has the following immediate corollary.

Corollary 21. Let P be a polyline in R2. Then, the matrix DCM(P) can be reconstructed from the local carrier
order LCO(P).

Proof. Properties 7 and 8 show that it is sufficient to know a double-cross matrix of a polyline on and
above its diagonal in order to complete it below its diagonal. And Lemma 20 shows how the local
carrier order gives the double-cross matrix on and above its diagonal. This concludes the proof.

Now, we turn to the other implication of Theorem 19.
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Lemma 22. Let P = 〈p0, p1, . . . , pN〉 be a polyline in R2 of size N. If 0 ≤ i < j < N, then DCM(P)[i, j]
contains enough information to derived to which set of LCO(P, pi) the half-lines pipj belong and to which set
of LCO(P, pj) the half-lines pjpi belong.

Proof. Let DCM(P)[i, j] = (C1 C2 C3 C4), for 0 ≤ i < j < N. Again, the following facts are easily
observable (for instance, by a detailed inspection of Figure 5).

C1 C3 is equivalent to
− − pipj ∈ NE(pi)

− 0 pipj ∈ N(pi)

− + pipj ∈ NW(pi)

0 − pipj ∈ E(pi)

0 0 pi = pi+1 is excluded
0 + pipj ∈ W(pi)

+ − pipj ∈ SE(pi)

+ 0 pipj ∈ S(pi)

+ + pipj ∈ SW(pi)

C2 C4 is equivalent to
− − pjpi ∈ NE(pj)

− 0 pjpi ∈ N(pj)

− + pjpi ∈ NW(pj)

0 − pjpi ∈ E(pj)

0 0 pj = pj+1 is excluded
0 + pjpi ∈ W(pj)

+ − pjpi ∈ SE(pj)

+ 0 pjpi ∈ S(pj)

+ + pjpi ∈ SW(pj)

This concludes the proof.

This lemma has the following immediate corollary.

Corollary 23. Given DCM(P), LCO(P, pi) can be constructed for all 0 ≤ i < N.

Combined, Corollaries 21 and 23 prove Theorem 19.

6. A Characterization of the Double-Cross Invariant Transformations of the Plane

In this section, we identify the transformations of the plane R2 that leave the double-cross matrix
of all polylines invariant. By a transformation we mean a continuous, bijective mapping of the plane
R2 onto itself.

If α : R2 → R2 is a transformation and if p and q are points in R2, then we write α(−→pq)
for
−−−−−→
α(p)α(q).

What do we mean by applying a transformation of the plane to a polyline? The following
definition says that we mean it to be the polyline formed by the transformed vertices.

Definition 24. Let α : R2 → R2 be a transformation. Let P = 〈(x0, y0), (x1, y1), . . . , (xN , yN)〉 be a
polyline. We define α(P) to be the polyline 〈α(x0, y0), α(x1, y1), . . . , α(xN , yN)〉.

We remark that since a transformation α is a bijective function, the assumption in Definition 1,
which says that no two consecutive vertices of a polyline are identical, will hold for α(P) if it holds
for the polyline P.

We now define the notion of double-cross invariant transformation of the plane.

Definition 25. Let α : R2 → R2 be a transformation. Let P be a polyline. We say that α leaves P invariant
if P and α(P) are double-cross similar, that is, if DCM(P) = DCM(α(P)).

We say that α is a double-cross invariant transformation if it leaves all polylines invariant. A group of
transformations of R2 is double-cross invariant if all its members are double-cross invariant transformations.

The main aim of this section is to prove the following theorem, which says that the largest group
of transformations that is double-cross invariant consists of the translations, rotations and homotecies
(or scalings) of the plane. The elements of this group are called the similarities of R2. We remark that
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a homotecy of the plane is a transformation of the form αc : R2 → R2 : (x, y) 7→ c · (x, y), where c ∈ R
and c 6= 0.

Theorem 26. The largest group of transformations of R2, that is double-cross invariant consist of the
similarity transformations of the plane onto itself, that is, transformations of the form

α : R2 → R2 :

(
x
y

)
7→ c ·

(
a −b
b a

)
·
(

x
y

)
+

(
d

e

)
,

where a, b, c, d, e ∈ R, c 6= 0 and a2 + b2 = 1.

We remark that the condition a2 + b2 = 1 imply that the matrix is orthogonal and that a and b

cannot be both zero. In fact, we can see a as cos ϕ and b as sin ϕ, where ϕ is the angle of the rotation
expressed by the matrix.

We prove this theorem by proving three lemma’s. Lemma 27 proves soundness and Lemma 29
proves completeness. Lemma 28 is a purely technical lemma.

Lemma 27. The translations, rotations and homotecies of the plane (that is, the transformations given in
Theorem 5) are double-cross invariant transformations.

Proof. We consider the three types of transformations separately, since we can apply them one after
the other. In all cases, we use the algebraic characterization, given by Theorem 5.

1. Translations. We have already remarked that all the factors appearing in the algebraic expressions,
given by given by Theorem 5, that is (xj − xi), (xi+1 − xi), (yj − yi), (yi+1 − yi), (xj+1 − xj) and
(yj+1 − yj) are differences in x-coordinates or differences in y-coordinates. A translation τ(d,e) :
R2 → R2 : (x, y) 7→ (x + d, y + e), therefore leaves these differences unaltered. For instance,
(xj − xi) is transformed to (xj + d− (xi + d)), which is, of course, the original value (xj − xi). None
of the expressions given by Theorem 5 are therefore changed and the double-cross condition remain
the same.

2. Rotations. Let

ρ(a,b) : R2 → R2 :

(
x
y

)
7→
(

a −b
b a

)
·
(

x
y

)
,

with a2 + b2 = 1, be a rotation (that fixes the origin).
The expression for C1 is transformed to

(a · (xj − xi)− b · (yj − yi)) · (a · (xi+1 − xi)− b · (yi+1 − yi)) +

(b · (xj − xi) + a · (yj − yi))) · (b · (xi+1 − xi) + a · (yi+1 − yi)),

which simplifies to (a2 + b2) · ((xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi)), which is the original
polynomial since a2 + b2 = 1. For C2, C3 and C4, a similar straightforward computation shows that
the polynomials remain the same.

3. Homotecies. A homotecy αc : R2 → R2 : (x, y) 7→ c · (x, y), transforms the differences (xj − xi),
(xi+1 − xi), (yj − yi), (yi+1 − yi), (xj+1 − xj) and (yj+1 − yj) to (c · xj − c · xi), (c · xi+1 − c · xi), (c · yj −
c · yi), (c · yi+1 − c · yi), (c · xj+1 − c · xj) and (c · yj+1 − c · yj). This means that the polynomials given
by Theorem 5 are multiplied by c2, which is strictly larger than zero, for c 6= 0. The signs of these
polynomials are therefore unaltered. And the double-cross value of the scaled polyline is the same as
the original one.

Before we can turn to completeness, we need the following technical lemma.
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Lemma 28. Let f : R→ R : t 7→ f (t) be a strictly monotone increasing function. If

f (
s + t

2
) =

f (s) + f (t)
2

for any s, t ∈ R, then f (t) = ( f (1)− f (0)) · t + f (0).

Proof. Suppose that f is a function as described and suppose that there is a t0 ∈ R such that f (t0) 6=
( f (1)− f (0)) · t0 + f (0). We remark that therefore t0 cannot be 0 or 1.

If f (−t0) = ( f (1)− f (0)) · (−t0) + f (0), then it follows from 2 · f (0) = 2 · f ( t0−t0
2 ) = f (t0) +

f (−t0) that also f (t0) = ( f (1)− f (0)) · t0 + f (0). We may therefore assume 0 < t0.
If f ( t0

2 ) = ( f (1) − f (0)) · ( t0
2 ) + f (0), then it follows from 2 · f ( 0+t0

2 ) = f (0) + f (t0) that also
f (t0) = ( f (1)− f (0)) · t0 + f (0). We may therefore assume 0 < t0 < 1.

Claim. For any n ∈ N and any k, with 0 ≤ k ≤ 2n, we have that

f (
k

2n ) = ( f (1)− f (0)) · k
2n + f (0).

We first prove this claim (by induction on n). For n = 0, and k = 0, 1, we respectively have
f (0) = ( f (1)− f (0)) · 0 + f (0) and f (1) = ( f (1)− f (0)) · 1 + f (0).

Assume now that the claim is true for n. We prove it holds for n + 1. We consider k
2n+1 and

distinguish between the cases, 0 ≤ k ≤ 2n and k = k′ + 2n with 0 < k′ ≤ 2n. If 0 ≤ k ≤ 2n,
then f ( k

2n+1 ) = f ( 1
2 (0 +

k
2n )) = 1

2 ( f (0) + f ( k
2n )), which by the induction hypothesis equals 1

2 ( f (0) +
( f (1)− f (0)) · k

2n + f (0)) or ( f (1)− f (0)) · k
2n+1 + f (0).

If k = k′ + 2n with 0 < k′ ≤ 2n, then f ( 2n+k′
2n+1 ) = f ( 1

2 (1 + k′
2n )) = 1

2 ( f (1) + f ( k′
2n )), which by

the induction hypothesis equals 1
2 ( f (1) + ( f (1)− f (0)) · k′

2n + f (0)) which equals 1
2 ( f (1)− f (0)) +

( f (1) − f (0)) · k′
2n+1 + f (0) or ( f (1) − f (0)) · k′+2n

2n+1 + f (0) which is ( f (1) − f (0)) · k
2n+1 + f (0). This

concludes the proof of the claim.

To conclude the proof, let 0 < t0 < 1 and assume first that f (t0) > ( f (1)− f (0)) · t0 + f (0). This
means that t0 < f (t0)− f (0)

f (1)− f (0) . We remark that since f is assumed to be strictly monotone, f (1)− f (0) 6= 0
and therefore the division is allowed. Choose k and n such that

k
2n ≤ t0 <

k + 1
2n <

f (t0)− f (0)
f (1)− f (0)

,

with 0 ≤ k ≤ 2n. Then f ( k+1
2n ) = ( f (1) − f (0)) · k+1

2n + f (0) < f (t0), although t0 < k+1
2n , which

contradicts the fact that f is strictly monotone increasing.
If we assume f (t0) < ( f (1)− f (0)) · t0 + f (0) on the other hand, we have f (t0)− f (0)

f (1)− f (0) < t0. Choose
k and n such that

f (t0)− f (0)
f (1)− f (0)

<
k

2n < t0 ≤
k + 1

2n ,

with 0 ≤ k ≤ 2n. Then f ( k
2n ) = ( f (1)− f (0)) · k

2n + f (0) > f (t0), although k
2n < t0, which contradicts

the fact that f is strictly monotone increasing. In both cases, we obtain a contradiction and this
concludes the proof.

The following lemma proves completeness. The proof is kept elementary and we remark that it
shows how the double-cross formalism can be used to construct midpoints.

Lemma 29. The similarity transformations of the plane (given in Theorem 5) are the only double-cross
invariant transformations.

Proof. Let α : R2 → R2 be a double-cross invariant transformation.
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(1) We consider polylines P = 〈p0, p1, p2〉, where p0, p1 and p2 are collinear points with p1 between p0

and p2. By the assumption in Definition 1, p1 should be strictly between p0 and p2 The only relevant
entry in the double-cross matrix of this polyline is DC(−−→p0p1,−−→p1p2) which is (− + 0 0). In α(P),
DC(α(−−→p0p1), α(−−→p1p2)) should also be (− + 0 0). This implies that α(p0), α(p1) and α(p2) should also
be collinear, with α(p1) (strictly) between α(p0) and α(p2). This means that α preserves collinearity
and betweenness, depicted in Figure 15.

p1

p2

p0

α

α(p2)α(p1)α(p1)

Figure 15. A collinearity and betweenness-preserving transformation of the plane.

(2) We consider polylines P = 〈p0, p1, p2〉, where 6 (−−→p1p0,−−→p1p2) = 90◦, that is, the polyline takes a right
turn at p1. The only relevant entry in the double-cross matrix of this polyline is again DC(−−→p0p1,−−→p1p2)

which is now (− 0 0−). In α(P), DC(α(−−→p0p1), α(−−→p1p2)) should also be (− 0 0−). This means that α is a
right-turn-preserving transformation. This is illustrated in Figure 16. Similarly, α is a left-turn-preserving
transformation.

p1 p2

p0

α(p1)

α(p0)

α

α(p2)

Figure 16. A right-turn-preserving transformation of the plane.

(3) We consider the polyline P = 〈p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12〉, with p0 = p4 =

p7 = p12(0, 0), p1 = p5 = (0, 1), p2 = p10 = (1, 1), p3 = p8 = (1, 0) and p6 = p9 = ( 1
2 , 1

2 ),
depicted in Figure 17. This polyline forms a square with its two diagonals after making six 90◦

right-turns and two 90◦ left-turns . It is also closed in the sense that its start and end vertex are
equal. The transformation α, which according to (2) preserves right and left turns, therefore has
to map P again to a square with its diagonals. This means α is a square-preserving transformation.
In particular, α preserves parallel line segments. Also, p6, which is the midpoint between p0 and
p2 is mapped to α(p6), which should be the midpoint between α(p0) and α(p2). This means α is a
midpoint-preserving transformation.

p2 = p10

p3 = p8

p1 = p5 = p11

p0 = p4 =
p7 = p12

p6 = p9

Figure 17. A polyline that is a square with its two diagonals. The six 90◦ right-turns are indicated
in bold.
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Suppose α(0, 0) = (a, b). If τ(−a,−b) is the translation (x, y) 7→ (x − a, y − b), then τ(−a,−b) ◦
α(0, 0) = (0, 0). Suppose τ(−a,−b) ◦ α(1, 0) = (c, d). Let ρ(c,d) be the rotation with (0, 0) as center that
brings (c, d) to the positive x-axis, that is, to (

√
c2 + d2, 0). We remark that (c, d) cannot be the origin

since α is assumed to be a bijective function. So, also τ(−a,−b) ◦ α is bijective. Furthermore, let σ√c2+d2

be the scaling (x, y) 7→ 1√
c2+d2 (x, y) and let

β = σ√c2+d2 ◦ ρ(c,d) ◦ τ(−a,−b) ◦ α.

Then we have that β(0, 0) = (0, 0) and β(1, 0) = (1, 0).
Since α is a double-cross invariant transformation, by assumption, and since σ√c2+d2 , ρ(c,d) and

τ(−a,−b) are double-cross invariant transformations by Lemma 27, also β is a double-cross invariant
transformation. And β also inherits from α the properties of preserving betweenness, collinearity,
right- and left turns, squares, parallel line segments and midpoints. Because β preserves squares, we
also have β(0, 1) = (0, 1).

We now claim the following.

Claim. The transformation β is the identity.

The proof of this claim finishes the proof. Indeed, then we have

α = σ−1√
c2+d2 ◦ ρ−1

(c,d) ◦ τ−1
(−a,−b),

which is of the required form.

Proof of the claim: First, we show that β is the identity on the x-axis and next we do the same for all
lines perpendicular to the x-axis. Hereto, we consider the function

βx : R→ R : x 7→ βx(x) := πx(β(x, 0)),

where πx is the projection on the first component, that is, πx(x, y) := x. Since β(0, 0) = (0, 0) and
β(1, 0) = (1, 0) and β preserves collinearity, β maps the x-axis onto the x-axis and we have βx(0) = 0
and βx(1) = 1. Furthermore, since β and hence βx preserves betweenness, βx is strictly monotone
increasing. Indeed, let s, t ∈ R with s < t. With respect to 0 and 1, we can consider the twelve
possible locations of s and t: s < t < 0; s < t = 0 < 1; s < 0 < t < 1; s < 0 < t = 1; s < 0 < 1 < t;
s = 0 < t < 1; s = 0 < t = 1; s = 0 < 1 < t; 0 < s < t = 1; 0 < s < 1 < t; 0 < s = 1 < t; and
0 < 1 < s < t. In all cases, except s = 0 < t = 1, we have three points. So, here we can use the
fact that β preserves betweenness to show that βx(s) < βx(t). In the case s = 0 < t = 1, we have
βx(s) = βx(0) = 0 < 1 = βx(1) = βx(t). Finally, since β preserves midpoints, also for βx, we have

βx(
s + t

2
) =

βx(s) + βx(t)
2

,

for all s, t ∈ R. All the conditions to apply Lemma 28 are therefore fulfilled. And we get βx(x) =

(βx(1)− βx(0)) · x + βx(0) = (1− 0) · x + 0 = x.
Now, we fix some x0 ∈ R and consider the function

βx0,y : R→ R : y 7→ βx0,y(y) := πy(β(x0, y)),

where πy(x, y) := y. Since β preserves parallel line segments, βx0,y maps the line with equation x = x0

onto itself (since it maps the y-axis to itself). Since β also preserves the rectangle given by the polyline

P = 〈(0, 0), (0, 1), (1, 1), (x0, 1), (x0, 0), (1, 0), (0, 0), (0, 1)〉

(for x0 = 1, we can omit (x0, 1) and (x0, 0) from the list) onto itself, we have again have βx0,y(0) = 0
and βx0,y(1) = 1. The function βx0,y also inherits from β the property of preserving midpoints and is



ISPRS Int. J. Geo-Inf. 2016, 5, 152 26 of 27

strictly monotonic increasing on the line x = x0. So, again we can apply Lemma 28 to show that βx0,y

is the identity.
Since β(x, y) = (βx(x), βx,y(y)), we obtain that β is the identity transformation. This finishes the

proof of the claim and also of the lemma.

7. Conclusions

We have studied the double-cross matrix descriptions of polylines in the two-dimensional plane
from an algebraic and geometrical point of view. We have first given an algebraic characterization
of the double-cross matrix of a polyline. This algebraic characterisation allowed us to prove some
basic properties of double-cross matrices. We have given a geometric characterization of double-cross
similarity of two polylines by means of the notion of the local carrier orders of polylines. Finally, we
identify the transformations of the plane that leave the double-cross matrix of all polylines in the
two-dimensional plane invariant.

Research on double-cross matrices gives rise to many questions of which we name a few here.
Firstly, variants of double crosses can be imagined, for instance, to include the temporal dimension
of moving object data. Another variant would be to rotate the double cross by 45◦. This would
make notions of straight ahead, back, right and left more relative. We can also envisage double
crosses with a finer structure. They may have 8, 16 or more lines determining the “crosses”, as in the
OPRAn-approach [29] (in some sense, the double-cross formalism can be seen as OPRA2).

Our algebraic characterization of the double-cross matrix of a polyline, also raises the question
of the realisability of double-cross matrices. This question adds up to the following: given an N × N
matrix of 4-tuples over the set {−, 0,+}, decide if this is the double-cross matrix of a polyline.
A matrix where (0 0 0 0) doesn’t appear on the diagonal, for instance, cannot be the double-cross
matrix of a polyline. This decision problem leads to non-trivial problems in computational
algebraic geometry.
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