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SUMMARY

Using standard missing data taxonomy, due to Rubin and co-workers, and simple algebraic derivations,
it is argued that some simple but commonly used methods to handle incomplete longitudinal clinical trial
data, such as complete case analyses and methods based on last observation carried forward, require
restrictive assumptions and stand on a weaker theoretical foundation than likelihood-based methods
developed under the missing at random (MAR) framework. Given the availability of flexible software for
analyzing longitudinal sequences of unequal length, implementation of likelihood-based MAR analyses
is not limited by computational considerations. While such analyses are valid under the comparatively
weak assumption of MAR, the possibility of data missing not at random (MNAR) is difficult to rule out.
It is argued, however, that MNAR analyses are, themselves, surrounded with problems and therefore,
rather than ignoring MNAR analyses altogether or blindly shifting to them, their optimal place is within
sensitivity analysis. The concepts developed here are illustrated using data from three clinical trials, where
it is shown that the analysis method may have an impact on the conclusions of the study.

Keywords: Complete case analysis; Ignorability; Last observation carried forward; Missing at random; Missing
completely at random; Missing not at random.

1. INTRODUCTION

In a longitudinal clinical trial, each unit is measured on several occasions. It is not unusual in practice
for some sequences of measurements to terminate early for reasons outside the control of the investigator,
and any unit so affected is called a dropout. It might therefore be necessary to accommodate dropout in
the modeling process.
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Early work on missing values was largely concerned with algorithmic and computational solutions
to the induced lack of balance or deviations from the intended study design (Afifi and Elashoff, 1966;
Hartley and Hocking, 1971). More recently, general algorithms such as expectation-maximization (EM)
(Dempsteret al., 1977), and data imputation and augmentation procedures (Rubin, 1987), combined
with powerful computing resources have largely solved the computational difficulties. There remains
the difficult and important question of assessing the impact of missing data on subsequent statistical
inference.

When referring to the missing-value, or non-response, process we will use terminology of Little and
Rubin (1987, Chapter 6). A non-response process is said to bemissing completely at random(MCAR)
if the missingness is independent of both unobserved and observed data andmissing at random(MAR)
if, conditional on the observed data, the missingness is independent of the unobserved measurements. A
process that is neither MCAR nor MAR is termednon-random(MNAR). In the context of likelihood
inference, and when the parameters describing the measurement process are functionally independent of
the parameters describing the missingness process, MCAR and MAR areignorable,while a non-random
process is non-ignorable.

Numerous missing data methods are formulated as selection models (Little and Rubin, 1987) as
opposed to pattern-mixture modeling (PMM; Little, 1993, 1994). A selection model factors the joint
distribution of the measurement and response mechanisms into the marginal measurement distribution
and the response distribution, conditional on the measurements. This is intuitively appealing because
the marginal measurement distribution would be of interest with complete data. Little and Rubin’s
taxonomy is most easily developed in the selection model setting. Parametrizing and making inference
about treatment effects and their evolution over time is straightforward in the selection model context.

In many clinical trial settings, the standard methodology used to analyze incomplete longitudinal
data is based on such methods aslast observation carried forward(LOCF), complete case analysis
(CC), or simple forms of imputation. This is often done without questioning the possible influence of
these assumptions on the final results, even though several authors have written about this topic. A
relatively early account is given in Heytinget al. (1992). Mallinckrodtet al. (2003a,b) and Lavoriet al.
(1995) propose direct-likelihood and multiple-imputation methods, respectively, to deal with incomplete
longitudinal data. Siddiqui and Ali (1998) compare direct-likelihood and LOCF methods.

As will be discussed in subsequent sections, it is unfortunate that such a strong emphasis is placed
on methods like LOCF and CC in clinical trial settings, since they are based on strong and unrealistic
assumptions. Even the strong MCAR assumption does not suffice to guarantee that an LOCF analysis is
valid. In contrast, under the less restrictive assumption of MAR, valid inference can be obtained through
a likelihood-based analysis without modeling the dropout process. One can then use linear or generalized
linear mixed models (Verbeke and Molenberghs, 2000), without additional complication or effort. We
will argue that such an analysis is more likely to be valid, and even easier to implement than LOCF and
CC analyses.

Nevertheless, approaches based on MNAR need to be considered. In practical settings, the reasons
for dropout are varied and it may therefore be difficult to justify the assumption of MAR. For example,
in 11 clinical trials of similar design, considered by Mallinckrodtet al. (2003b), with the same drug and
involving patients with the same disease state, the rate of and the reasons for dropout varied considerably.
In one study, completion rates were 80% for drug and placebo. In another study, two-thirds of the patients
on drug completed all visits, while only one-third did so on placebo. In yet another study, 70% finished on
placebo but only 60% on drug. Reasons for dropout also varied, even within the drug arm. For example, at
low doses more patients on drug dropped out due to lack of efficacy whereas at higher doses dropout due
to adverse events was more common. At first sight, this calls for a further shift towards MNAR models.
However, caution ought to be used since no modeling approach, whether MAR or MNAR, can recover
the lack of information due to incompleteness of the data.
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Table 1.Overview of number of patients and
post baseline visits per study

Number of patients Post-baseline visits
Study 1 167 4–11
Study 2 342 4–8
Study 3 713 3–8

First, if MAR can be guaranteed to hold, a standard analysis would follow. However, only rarely is such
an assumption known to hold (Murray and Findlay, 1988). Nevertheless, ignorable analyses may provide
reasonably stable results, even when the assumption of MAR is violated, in the sense that such analyses
constrain the behavior of the unseen data to be similar to that of the observed data (Mallinckrodtet al.,
2001a,b). A discussion of this phenomenon in the survey context has been given in Rubinet al. (1995).
These authors argue that, in rigidly controlled experiments (some surveys and many clinical trials), the
assumption of MAR is often reasonable. Second, and very importantly for confirmatory trials, an MAR
analysis can be specifieda priori without additional work relative to a situation with complete data. Third,
while MNAR models are more general and explicitly incorporate the dropout mechanism, the inferences
they produce are typically highly dependent on untestable and often implicit assumptions regarding the
distribution of the unobserved measurements given the observed measurements. The quality of the fit
to the observed data need not reflect at all the appropriateness of the implied structure governing the
unobserved data. This point is irrespective of the MNAR route taken, whether a parametric model of
the type of Diggle and Kenward (1994) is chosen, or a semiparametric approach such as in Robinset
al. (1998). Hence, in incomplete-data settings, a definitive MNAR analysis does not exist. We therefore
argue that clinical trial practice should shift away from thead hocmethods and focus on likelihood-
based ignorable analyses instead. The cost involved in having to specify a model will likely be small to
moderate in realistic clinical trial settings. To explore the impact of deviations from the MAR assumption
on the conclusions, one should ideally conduct a sensitivity analysis, within which MNAR models and
pattern-mixture models can play a major role (Verbeke and Molenberghs, 2000, Chapter 18–20).

A three-trial case study is introduced in Section 2. The general data setting is introduced in Section 3,
as well as a formal framework for incomplete longitudinal data. A discussion on the problems associated
with simple methods is presented in Section 4. In Section 5, using algebraic derivations, we explore the
origins of the asymptotic bias in LOCF, complete-case and likelihood-based ignorable analyses. The case
study is analyzed in Section 6. A perspective on sensitivity analysis is sketched in Section 7.

2. CASE STUDIES

The ideas developed in this paper are motivated from, and applied to, data from three clinical trials of
anti-depressants. The three trials contained 167, 342, and 713 patients with post-baseline data, respectively
(Mallinckrodtet al., 2003b). The Hamilton Depression Rating Scale (H AM D17) was used to measure the
depression status of the patients. For each patient, a baseline assessment was available. Post-baseline visits
differ by study (Table 1).

For blinding purposes, therapies are recoded as A1 for primary dose of experimental drug, A2 for
secondary dose of experimental drug, and B and C for non-experimental drugs. The treatment arms across
the three studies are as follows: A1, B, and C for study 1; A1, A2, B, and C for study 2; A1 and B for
study 3. The primary contrast is between A1 and C for studies 1 and 2, whereas in study 3 one is interested
in A versusB.

In this case study, emphasis is on the difference between the treatment arms in mean change of the
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Fig. 1. Mean profiles for each of the three studies.

H AM D17 score at the endpoint. For each study, mean profiles within each treatment arm are given in
Figure 1. However, as time evolves, more and more patients drop out, resulting in fewer observations for
later visits. Indeed, a graphical representation of dropout, per study and per arm, is given in Figure 2. Due
to this fact, Figure 1 might be misleading if interpreted without acknowledging the diminishing basis of
inference.

3. DATA SETTING AND MODELING FRAMEWORK

Assume that for subjecti = 1, . . . , N in the study a sequence of responsesYi j is designed to be
measured at occasionsj = 1, . . . , n. The outcomes are grouped into a vectorY i = (Yi 1, . . . , Yin)′. In
addition, define a dropout indicatorDi for the occasion at which dropout occurs and make the convention
that Di = n + 1 for a complete sequence. It is often necessary to split the vectorY i into observed (Yo

i )
and missing (Ym

i ) components respectively.
In principle, one would like to consider the density of the full dataf (yi , di |θ, ψ), where the parameter

vectorsθ and ψ describe the measurement and missingness processes, respectively. Covariates are
assumed to be measured, but have been suppressed from notation for simplicity.

Most strategies used to analyze such data are, implicitly or explicitly, based on two choices.

Model for measurements.A choice has to be made regarding the modeling approach to the measure-
ments. Several views are possible.

View1. One can choose to analyze the entire longitudinal profile, irrespective of whether interest focuses
on the entire profile (e.g. difference in slope between groups) or on a specific time point (e.g.
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Fig. 2. Evolution of dropout per study and per treatment arm. Treatment arms of primary interest, are shown in bolder
typeface.

the last planned occasion). In the latter case, one would make inferences about such an occasion
using the posited model.

View2. One states the scientific question in terms of the outcome at a well-defined point in time. Several
choices are possible:

View2a. The scientific question is defined in terms of thelast planned occasion. In this case, one can
either accept the dropout as it is or use one or other strategy (e.g. imputation) to incorporate
the missing outcomes.

View2b. One can choose to define the question and the corresponding analysis in terms of thelast
observed measurement.

While Views 1 and 2a necessitate reflection on the missing data mechanism, View 2b avoids
the missing data problem because the question is couched completely in terms of observed
measurements. Thus, under View 2b, an LOCF analysis might be acceptable, provided it matched
the scientific goals, but is then better described as a Last Observation analysis because nothing is
carried forward. Such an analysis should properly be combined with an analysis of time to dropout,
perhaps in a survival analysis framework. Of course, an investigator should reflect very carefully on
whether View 2b represents a relevant and meaningful scientific question (see also Shih and Quan,
1997).

Method for handling missingness.A choice has to be made regarding the modeling approach for the
missingness process. Under certain assumptions this process can be ignored (e.g. a likelihood-based
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ignorable analysis). Some simple methods, such as a complete case analysis and LOCF, do not
explicitly address the missingness process either.

Wefirst describe the measurement and missingness models in turn, then formally introduce and comment
on ignorability.

The measurement model will depend on whether or not a full longitudinal analysis is done. When the
focus is on the last observed measurement or on the last measurement occasion only, one typically opts
for classical two- or multi-group comparisons (t test, Wilcoxon, etc.). When a longitudinal analysis is
deemed necessary, the choice depends on the nature of the outcome. For continuous outcomes, such as in
our case studies, one typically assumes a linear mixed-effects model, perhaps with serial correlation:

Y i = Xi β + Zi bi + W i + εi , (3.1)

(Verbeke and Molenberghs, 2000) whereY i is then-dimensional response vector for subjecti , 1 � i �
N,N is the number of subjects,Xi and Zi are (n × p) and (n × q) known design matrices,β is the
p-dimensional vector containing the fixed effects,bi ∼ N(0, D) is theq-dimensional vector containing
the random effects,εi ∼ N(0, σ 2Ini ) is an-dimensional vector of measurement error components, and
b1, . . . , bN , ε1, . . . , εN are assumed to be independent. Serial correlation is captured by the realization of
a Gaussian stochastic process,W i , which is assumed to follow aN(0, τ2Hi ) law. The serial covariance
matrix Hi only depends oni through the numbern of observations and through the time pointsti j at
which measurements are taken. The structure of the matrixHi is determined through the autocorrelation
functionρ(ti j − tik). This function decreases such thatρ(0) = 1 andρ(u) → 0 asu → ∞. Finally, D
is a general(q × q) covariance matrix with(i, j ) elementdi j = dji . Inference is based on the marginal
distribution of the responseYi which, after integrating over random effects, can be expressed as

Y i ∼ N(Xi β, Zi DZ′
i + �i ). (3.2)

Here,�i = σ 2Ini + τ2Hi is a (n × n) covariance matrix combining the measurement error and serial
components.

Assume that incompleteness is due to dropout only, and that the first measurementYi 1 is obtained for
everyone. A possible model for the dropout process is a logistic regression for the probability of dropout
at occasionj , given that the subject is still in the study. We denote this probability byg(hi j , yi j ) in which
hi j is a vector containing all responses observed up to but not including occasionj , as well as relevant
covariates. We then assume thatg(hi j , yi j ) satisfies

logit[g(hi j , yi j )] = logit
[
pr(Di = j |Di � j, yi )

] = hi j ψ + ωyi j , i = 1, . . . , N, (3.3)

(Diggle and Kenward, 1994). Whenω equals zero, the dropout model is MAR, and all parameters can be
estimated using standard software since the measurement model, for which we use a linear mixed model,
and the dropout model, assumed to follow a logistic regression, can then be fitted separately. Ifω �= 0,
the posited dropout process is MNAR. Model (3.3) provides the building blocks for the dropout process
f (di |yi , ψ).

Rubin (1976) and Little and Rubin (1987) have shown that, under MAR and the condition that
parametersθ and ψ are functionally independent, likelihood-based inference remains valid when the
missing data mechanism is ignored (see also Verbeke and Molenberghs, 2000). Practically speaking, the
likelihood of interest is then based upon the factorf (yo

i |θ). This is calledignorability. The practical
implication is that a software module with likelihood estimation facilities and with the ability to handle
incompletely observed subjects, manipulates the correct likelihood, providing valid parameter estimates
and likelihood ratio values. Note that the estimands are the parameters of (3.2), which is a model for
complete data, corresponding to what one would expect to see in the absence of dropouts.
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A few cautionary remarks are warranted. First, when at least part of the scientific interest is directed
towards the nonresponse process, obviously both processes need to be considered. Under MAR, both
processes can be modeled and parameters estimated separately. Second, likelihood inference is often
surrounded with references to the sampling distribution (e.g. to construct measures of precision for
estimators and for statistical hypothesis tests; Kenward and Molenberghs, 1998). However, the practical
implication is that standard errors and associated tests, when based on the observed rather than the
expected information matrix and given that the parametric assumptions are correct, are valid. Thirdly,
it may be hard to rule out the operation of an MNAR mechanism. This point was brought up in the
introduction and will be discussed further in Section 7. Fourthly, such an analysis can proceed only under
View1, i.e. a full longitudinal analysis is necessary, even when interest lies, for example, in a comparison
between the two treatment groups at the last occasion. In the latter case, the fitted model can be used as
the basis for inference at the last occasion. A common criticism is that a model needs to be considered,
with the risk of model misspecification. However, it should be noted that in many clinical trial settings the
repeated measures are balanced in the sense that a common (and often limited) set of measurement times is
considered for all subjects, allowing the a priori specification of a saturated model (e.g. full group by time
interaction model for the fixed effects and unstructured variance–covariance matrix). Such an ignorable
linear mixed model specification is termed MMRM (mixed-model random missingness) by Mallinckrodt
et al. (2001a,b). Thus, MMRM is a particular form of a linear mixed model, fitting within the ignorable
likelihood paradigm. Such an approach is a promising alternative to the often used simple methods such
as complete-case analysis or LOCF. These will be described in the next section and further studied in
subsequent sections.

4. SIMPLE METHODS

We will briefly review a number of relatively simple methods that still are commonly used. For the
validity of many of these methods, MCAR is required. For others, such as LOCF, MCAR is necessary
but not sufficient. The focus will be on the complete case method, for which data are removed, and on
imputation strategies, where data are filled in. Regarding imputation, one distinguishes between single and
multiple imputation. In the first case, a single value is substituted for every ‘hole’ in the data set and the
resulting data set is analyzed as if it represented the true complete data. Multiple imputation acknowledges
the uncertainty stemming from filling in missing values rather than observing them (Rubin, 1987; Schafer,
1997). LOCF will be discussed within the context of imputation strategies, although LOCF can be placed
in other frameworks as well.

A complete case analysisincludes only those cases for which all measurements were recorded. This
method has obvious advantages. It is simple to describe and almost any software can be used since there
are no missing data. Unfortunately, the method suffers from severe drawbacks. Firstly, there is nearly
always a substantial loss of information. For example, suppose there are 20 measurements, with 10% of
missing data on each measurement. Suppose, further, that missingness on the different measurements is
independent; then, the estimated percentage of incomplete observations is as high as 87%. The impact on
precision and power may be dramatic. Even though the reduction of the number of complete cases will
be less severe in settings where the missingness indicators are correlated, this loss of information will
usually militate against a CC analysis. Secondly, severe bias can result when the missingness mechanism
is MAR but not MCAR. Indeed, should an estimator be consistent in the complete data problem, then the
derived complete case analysis is consistent only if the missingness process is MCAR. A CC analysis can
be conducted when Views 1 and 2 of Section 3 are adopted. It obviously is not a reasonable choice with
View 2b.

An alternative way to obtain a data set on which complete data methods can be used is to fill in rather
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than delete (Little and Rubin, 1987). Concern has been raised regarding imputation strategies. Dempster
and Rubin (1983) write: ‘The idea of imputation is both seductive and dangerous. It is seductive because
it can lull the user into the pleasurable state of believing that the data are complete after all, and it is
dangerous because it lumps together situations where the problem is sufficiently minor that it can be
legitimately handled in this way and situations where standard estimators applied to the real and imputed
data have substantial biases.’ For example, Little and Rubin (1987) show that the application of imputation
could be considered acceptable in a linear model with one fixed effect and one error term, but that it is
generally not acceptable for hierarchical models, split-plot designs, repeated measures with a complicated
error structure, random-effects, and mixed-effects models.

Thus, the user of imputation strategies faces several dangers. First, the imputation model could be
wrong and, hence, the point estimates biased. Second, even for a correct imputation model, the uncertainty
resulting from missingness is ignored. Indeed, even when one is reasonably sure about the mean value the
unknown observationwould have had, the actual stochastic realization, depending on both the mean and
error structures, is still unknown. In addition, most methods require the MCAR assumption to hold while
some even require additional and often unrealistically strong assumptions.

A method that has received considerable attention (Siddiqui and Ali, 1998; Mallinckrodtet al.,
2003a,b) islast observation carried forward(LOCF). In the LOCF method, whenever a value is missing,
the last observed value is substituted. The technique can be applied to both monotone and nonmonotonic
missing data. It is typically applied in settings where incompleteness is due to attrition.

LOCF can, but should not necessarily, be regarded as an imputation strategy, depending on which
of the views of Section 3 is taken. The choice of viewpoint has a number of consequences. First, when
the problem is approached from a missing data standpoint, one has to think it plausible that subjects’
measurements do not change from the moment of dropout onwards (or during the period they are
unobserved in the case of intermittent missingness). In a clinical trial setting, one might believe that the
response profilechangesas soon as a patient goes off treatment and even that it would flatten. However,
the constant profile assumption is even stronger. Secondly, LOCF shares with other single imputation
methods that it artificially increases the amount of information in the data, by treating imputed and
actually observed values on an equal footing. This is especially true if a longitudinal view is taken.
Verbeke and Molenberghs (1997, Chapter 5) have shown that all features of a linear mixed model (group
difference, evolution over time, variance structure, correlation structure, random effects structure,. . . )
can be affected. A similar conclusion, based on the case study, is reached in Section 6.

Thus, scientific questions with which LOCF is compatible will be those that are phrased in terms of
the last obtained measurement (View 2b). Whether or not such questions are sensible should be the subject
of scientific debate, which is quite different from apost hocrationale behind the use of LOCF. Likewise,
it can be of interest to model the complete cases separately and to make inferences about them. In such
cases, a CC analysis is of course the only reasonable way forward. This is fundamentally different from
treating a CC analysis as one that can answer questions about the randomized population as a whole.

We will briefly describe two other imputation methods. The idea behindunconditional mean
imputation(Little and Rubin, 1987) is to replace a missing value with the average of the observed values
on the same variable over the other subjects. Thus, the termunconditionalrefers to the fact that one does
not use (i.e. condition on) information on the subject for which an imputation is generated. Since values
are imputed that are unrelated to a subject’s other measurements, all aspects of a model, such as a linear
mixed model, are typically distorted (Verbeke and Molenberghs, 1997). In this sense, unconditional mean
imputation can be as damaging as LOCF.

Buck’s methodor conditional mean imputation(Buck, 1960; Little and Rubin, 1987) is similar in
complexity to mean imputation. Consider, for example, a single multivariate normal sample. The first step
is to estimate the mean vectorµ and the covariance matrixΣ from the complete cases, assuming that
Y ∼ N(µ,Σ). For a subject with missing components, the regression of the missing components (Ym

i )
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on the observed ones (yo
i ) is

Ym
i |yo

i ∼ N(µm + Σmo(Σoo)−1(yo
i − µo

i ),Σ
mm − Σmo(Σoo)−1Σom). (4.1)

The second step calculates the conditional mean from the regression of the missing components on the
observed components, and substitutes the conditional mean for the corresponding missing values. In this
way, ‘vertical’ information (estimates forµ andΣ) iscombined with ‘horizontal’ information (yo

i ). Buck
(1960) showed that under mild conditions, the method is valid under MCAR mechanisms. Little and Rubin
(1987) added that the method is also valid under certain MAR mechanisms. Even though the distribution
of the observed components is allowed to differ between complete and incomplete observations, it is
very important that the regression of the missing components on the observed ones is constant across
missingness patterns. Again, this method shares with other single imputation strategies that, although
point estimation may be consistent, the precision will be overestimated. There is a connection between
the conceptof conditional mean imputation and a likelihood-based ignorable analysis, in the sense that
the latter analysis produces expectations for the missing observations that are formally equal to those
obtained under a conditional mean imputation. However, in likelihood-based ignorable analyses, no
explicit imputation takes place, hence the amount of information in the data is not overestimated and
important model elements, such as mean structure and variance components, are not distorted.

Historically, an important motivation behind the simpler methods was their simplicity. Currently, with
the availability of commercial software tools such as, for example, the SAS procedures MIXED and
NLMIXED and the SPlus and R nlme libraries, this motivation no longer applies. Arguably, a MAR
analysis is the preferred choice. Of course, the correctness of a MAR analysis rests upon the truth of the
MAR assumption, which is, in turn, never completely verifiable. Purely resorting to MNAR analyses is
not satisfactory either since important sensitivity issues then arise. These and related issues are briefly
discussed in the next section (see also Verbeke and Molenberghs, 2000).

It is often quoted that LOCF or CC, while problematic for parameter estimation, produce random-
ization-valid hypothesis testing, but this is questionable. First, in a CC analysis partially observed data
are selected out, with probabilities that that may depend on post-randomization outcomes, thereby
undermining any randomization justification. Second, if the focus is on one particular time point, e.g.
the last one scheduled, then LOCF plugs in data. Such imputations, apart from artificially inflating the
information content, may deviate in complicated ways from the underlying data (see next section). In
contrast, a likelihood-based MAR analysis uses all available data, with the need for neither deletion nor
imputation, which suggests that a likelihood-based MAR analysis would usually be the preferred one
for testing as well. Third, although the size of a randomization based LOCF test may reach its nominal
size under the null hypothesis of no difference in treatment profiles, there will be other regions of the
alternative space where the power of the LOCF test procedure is equal to its size, which is completely
unacceptable.

5. BIAS IN LOCF, CC,AND IGNORABLE LIKELIHOOD METHODS

Using the simple but insightful setting of two repeated follow-up measures, the first of which is always
observed while the second can be missing, we establish some properties of the LOCF and CC estimation
procedures under different missing data mechanisms, against the background of a MAR process operating.
In this way, we bring LOCF and CC within a general framework that makes clear their relationships
with more formal modeling approaches, enabling us to make a coherent comparison among the different
approaches. The use of a moderate amount of algebra leads to some interesting conclusions.

Let us assume each subjecti is to be measured on two occasionsti = 0, 1. Subjects are randomized to
one of two treatment arms:Ti = 0 for the standard arm and 1 for the experimental arm. The probability
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of an observation being observed on the second occasion (Di = 2) is p0 and p1 for treatment groups 0
and 1, respectively. We can write the means of the observations in the two dropout groups as follows:

dropoutsDi = 1 : β0 + β1Ti + β2ti + β3Ti ti , (5.1)

completersDi = 2 : γ0 + γ1Ti + γ2ti + γ3Ti ti . (5.2)

The true underlying population treatment difference at timeti = 1, as determined from (5.1)–(5.2), is
equal to

�true = p1(γ0 + γ1 + γ2 + γ3) + (1 − p1)(β0 + β1 + β2 + β3)

−[p0(γ0 + γ2) + (1 − p0)(β0 + β2)]. (5.3)

If we use LOCF as the estimation procedure, the expectation of the corresponding estimator equals

�LOCF = p1(γ0 + γ1 + γ2 + γ3) + (1 − p1)(β0 + β1)

−[p0(γ0 + γ2) + (1 − p0)β0]. (5.4)

Alternatively, if we use CC, the above expression changes to

�CC = γ1 + γ3. (5.5)

In general, these are both biased estimators.
We will now consider the special but important cases where the true missing data mechanisms are

MCAR and MAR, respectively. Each of these will impose particular constraints on theβ andγ parameters
in model (5.1)–(5.2). Under MCAR, theβ parameters are equal to theirγ counterparts and (5.3) simplifies
to

�MCAR,true = β1 + β3 ≡ γ1 + γ3. (5.6)

Suppose we apply the LOCF procedure in this setting, the expectation of the resulting estimator then
simplifies to

�MCAR,LOCF = β1 + (p1 − p0)β2 + p1β3. (5.7)

The bias is given by the difference between (5.6) and (5.7):

BMCAR,LOCF = (p1 − p0)β2 − (1 − p1)β3. (5.8)

While of a simple form, we can learn several things from this expression by focusing on each of the terms
in turn. First, supposeβ3 = 0 andβ2 �= 0, implying that there is no differential treatment effect between
the two measurement occasions but there is an overall time trend. Then, the bias can go in either direction
depending on the sign ofp1 − p0 and the sign ofβ2. Note thatp1 = p0 only in the special case that the
dropout rate is the same in both treatment arms. Whether or not this is the case has no impact on the status
of the dropout mechanism (it is MCAR in either case, even though in the second case dropout is treatment-
arm dependent), but is potentially very important for the bias implied by LOCF. Second, supposeβ3 �= 0
andβ2 = 0. Again, the bias can go in either direction depending on the sign ofβ3, i.e. depending on
whether the treatment effect at the second occasion is larger or smaller than the treatment effect at the first
occasion. In conclusion, even under the strong assumption of MCAR, we see that the bias in the LOCF
estimator typically does not vanish and, even more importantly, the bias can be positive or negative and
can even induce an apparent treatment effect when one does not exist.
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In contrast, as can be seen from (5.5) and (5.6), the CC analysis is unbiased.
Let us now turn to the MAR case. In this setting, the constraint implied by the MAR structure of

the dropout mechanism is that the conditional distribution of the second observation given the first is
the same in both dropout groups (Molenberghset al., 1998). Based on this result, the expectation of the
second observation in the standard arm of the dropout group is

E(Yi 2|Di = 1, Ti = 0) = γ0 + γ2 + σ(β0 − γ0) (5.9)

whereσ = σ21σ
−1
11 , σ11 is the variance of the first observation in the fully observed group andσ12 is

the corresponding covariance between the pair of observations. Similarly, in the experimental group we
obtain

E(Yi 2|Di = 1, Ti = 1) = γ0 + γ1 + γ2 + γ3 + σ(β0 + β1 − γ0 − γ1). (5.10)

The true underlying population treatment difference (5.3) then becomes

�MAR,true = γ1 + γ3 + σ [(1 − p1)(β0 + β1 − γ0 − γ1) − (1 − p0)(β0 − γ0)]. (5.11)

In this case, the bias in the LOCF estimator can be written as

BMAR,LOCF = p1(γ0 + γ1 + γ2 + γ3) + (1 − p1)(β0 + β1)

−p0(γ0 + γ2) − (1 − p0)β0 − γ1 − γ3

−σ [(1 − p1)(β0 + β1 − γ0 − γ1) − (1 − p0)(β0 − γ0)]. (5.12)

Again, although involving more complicated relationships, it is clear that the bias can go in either
direction, thus contradicting the claim often put forward that the bias in LOCF leads to conservative
conclusions. Further, it is far from clear what conditions need to be imposed in this setting for the
corresponding estimator to be either unbiased or conservative.

The bias in the CC estimator case takes the form

BMAR,CC = −σ [(1 − p1)(β0 + β1 − γ0 − γ1) − (1 − p0)(β0 − γ0)]. (5.13)

Even though this expression is simpler than in the LOCF case, it is still true that the bias can operate in
either direction.

Thus, in all cases, LOCF typically produces bias of which the direction and magnitude depend on
the true but unknown treatment effects. Hence, caution is needed when using this method. In contrast, an
ignorable likelihood based analysis, as outlined in Section 4, provides a consistent estimator of the true
treatment difference at the second occasion under both MCAR and MAR. While this is an assumption,
it is rather a mild one in contrast to the stringent conditions required to justify the LOCF method, even
when the qualitative features of the bias are considered more important than the quantitative ones. Note
that the LOCF method is not valid even under the strong MCAR condition, whereas the CC approach is
valid under MCAR.

6. ANALYSIS OF CASE STUDIES

We now analyze the three clinical trials, introduced in Section 2. The primary null hypothesis
(zero difference between the treatment and placebo in mean change of the HAMD17 total score at
endpoint) is tested using a model of the type (3.1). The model includes the fixed categorical effects of
treatment, investigator, time, and treatment by time interaction, as well as the continuous, fixed covariates
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of baseline score and baseline score-by-time interaction. In line with the protocol design, we use the
heterogeneous compound symmetric covariance structure. Satterthwaite’s approximation will be used to
estimate denominator degrees of freedom. The significance of differences in least-square means is based
on Type III tests. These examine the significance of each partial effect, that is, the significance of an effect
with all the other effects in the model. Analyses are implemented using the SAS procedure MIXED.

Given this description, the effect of simple approaches, such as LOCF and CC,versusMAR, can
be studied in terms of their impact on various linear mixed model aspects (fixed effects, variance
structure, correlation structure). It will be shown that the impact of the simplifications can be noticeable.
This is the subject of Section 6.1, dedicated to View 1. Section 6.2 focuses on Views 2a and 2b,
where the last planned occasion and the last measurement obtained are of interest, respectively. In
addition, we consider the issues arising when switching from a two-treatment arm to an all-treatment
arm comparison.

6.1 View1: longitudinal analysis

For each study in this longitudinal analysis, we will only consider the treatments that are of direct interest.
This means we estimate the main difference between these treatments (treatment main effect) as well as
the difference between both over time (treatment by time interaction). Treatment main effect estimates
and standard errors,p values for treatment main effect and treatment by time interaction, and estimates
for the within-patient correlation are reported in Table 2. When comparing LOCF, CC, and MAR, there
is little difference between the three methods, in either the treatment main effect or the treatment by time
interaction. Nevertheless, some important differences will be established between the strategies in terms
of other model aspects. These will be seen to be in line with the reports in Verbeke and Molenberghs
(1997, 2000).

Two specific features of the mean structure are the time trends and the treatment effects (over time).
Wediscuss these in turn. The placebo time trends as well as the treatment effects (i.e. differences between
the active arms and the placebo arms) are displayed in Figure 3. Both LOCF and CC are different from
MAR, with a larger difference for CC. The effect is strongest in the third study. It is striking that different
studies lead to different conclusions in terms of relative differences between the approaches. While there
is a relatively small difference between the three methods in Study 2 and a mild one for Study 1, for
Study 3 there is a strong separation between LOCF and CC on the one hand, and MAR on the other hand.
Importantly, theaverageeffect is smaller for MAR than for LOCF and CC. This result is in agreement
with the proofs in Section 5, which showed that the direction of the bias on LOCF is in fact hard to
anticipate.

The variance–covariance structure employed is heterogeneous compound symmetry (CSH), i.e. a
common correlation and a variance specific to each measurement occasion. The latter feature allows us to
plot the fitted variance function over time. This is done in Figure 4. It is very noticeable that MAR and
CC produce a relatively similar variance structure, which tends to rise only mildly. LOCF on the other
hand, deviates from both and points towards a (linear) increase in variance. If further modeling is done,
MAR and CC produce homogeneous or classical compound symmetry (CS) and hence a random-intercept
structure. LOCF on the other hand, suggests a random-slope model. The reason for this discrepancy is
that an incomplete profile is completed by means of a flat profile. Within a pool of linearly increasing or
decreasing profiles, this leads to a progressively wider spread as study time elapses. Noting that the fitted
variance function has implications for the computation of mean-model standard errors, the potential for
misleading inferences is clear.

The fitted correlations are given in Table 2. Clearly, CC and MAR produce virtually the same
correlation. However, the correlation coefficient estimated under LOCF is much stronger. This is entirely
due to the fact that after dropout, a constant value is imputed for the remainder of the study period, thereby
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Fig. 3. Summary of all placebo time evolutions (left hand panels) and all treatment effects (right hand panels).

increasing the correlation between the repeated measurements. Of course, the problem is even more severe
than shows from this analysis since, under LOCF, a constant correlation structure can be changed into one
which progressively strengthens as time elapses. It should be noted that the correlation structure has an
impact on all longitudinal aspects of the mean structure. For example, estimates and standard errors of
time trends and estimated interactions of time with covariates can all be affected. In particular, if the
estimated correlation is too high, the time trend can be ascribed a precision which is too high, implying
the potential for aliberal error.

In conclusion, all aspects of the linear mixed models (mean structure, variance structure, correlation
structure) may be influenced by the method of analysis. This is in line with results reported in Verbeke and
Molenberghs (1997, 2000). It is important to note that, generally, the direction of the errors (conservative
or liberal) is not cleara priori , since different distortions (in mean, variance, or correlation structure) may
counteract each other. We will now study a number of additional analyses that are extremely relevant from
aclinical trial point of view.

6.2 Views 2a and 2b and all-versustwo-treatment arms

When emphasis is on the last measurement occasion, LOCF and CC are straightforward to use. When the
last observed measurement is of interest, the corresponding analysis is not different from the one obtained
under LOCF. In these cases, at test will be used. Note that it is still possible to obtain inferences from a
full linear mixed-effects model in this context. While this seems less sensible, since one obviously would
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Fig. 4. Variance functions per study and per method.

Table 2.Analysis of case study. View 1. Treatment effects (standard
errors), p values for treatment main effect and for treatment by time

interaction, and within-patient correlation coefficients

Treatment p value Within-patient
Study Method effect (s.e.) (effect, interaction) correlation
1 LOCF −1.60(1.40) (0.421, 0.565) 0.65

CC −1.96(1.38) (0.322, 0.684) 0.57
MAR −1.81(1.24) (0.288, 0.510) 0.53

2 LOCF −1.61(1.05) (0.406, 0.231) 0.54
CC −1.97(1.16) (0.254, 0.399) 0.37
MAR −2.00(1.12) (0.191, 0.138) 0.39

3 LOCF 1.12(0.71) (0.964,<0.001) 0.74
CC 1.75(0.77) (0.918,<0.001) 0.57
MAR 2.10(0.69) (0.476,<0.001) 0.60

get distorted estimates of such longitudinal characteristics as time evolution, etc., we nevertheless add
these for the sake of comparison. However, it should be understood that thet test analysis is more in line
with clinical trial practice.

For MAR, by its very nature, one is drawn to consider the incomplete profiles, to use the information
contained in these for the correct estimation of effects at later times, where there may be some missingness.
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Table 3.Analysis of case study. Views 2a and 2b. p values are
reported. (‘mixed’ refers to the assessment of treatment at the

last visit based on a linear mixed model)

Method Model Data used Study 1 Study 2 Study 3
CC mixed All treatments 0.076 0.055 0.001

Two treatments 0.070 0.088 0.001
CC t test All treatments 0.092 0.156 0.017

Two treatments 0.092 0.156 0.017
LOCF mixed All treatments 0.053 0.052 0.001

Two treatments 0.056 0.082 0.001
t test All treatments 0.246 0.172 0.120

Two treatments 0.246 0.172 0.120
MAR mixed All treatments 0.052 0.048 0.001

Two treatments 0.047 0.077 0.001

Thus, one has to consider the full linear mixed model. To this end, the MMRM approach has been
developed (Mallinckrodtet al., 2001a,b).

An important issue that occurs whenever there are more than two treatment arms is whether one uses
all treatments or only the two of interest. This choice has an effect on thep value in the linear mixed model
case. Consider, for example, the covariance structure. Model-based smoothing of the covariance structure
takes place either on two arms or on all arms. Hence, due to correlations between model parameters, the
estimated treatment effects and also the resultingp values might change. Generally, one might argue that
efficiency can be gained by using all treatment arms, but this comes at the cost of an increased risk of mis-
specification. This risk can be avoided by assuming a treatment-arm specific covariance matrix in conjunc-
tion with a treatment-arm specific mean evolution. For thet tests, however, there is no change. Of course,
one might entertain the possibility of correcting for multiple comparisons when more than two arms are
involved, but this is not the purpose of the current paper and does not substantially affect our conclusions.

Table 3 summarizes results in terms ofp values. In study 3, which has a relatively large sample size,
all p values indicate a significant difference with, very importantly, the sole exception of thet tests under
LOCF. This re-emphasizes the problems with the LOCF method as discussed in Section 6.1. In studies 1
and 2, more subtle differences are observed.

For study 1, we have the following conclusions. All mixed models lead to borderline differences:
LOCF and CC are not significant, MAR is borderline (depending on the number of treatments included).
An endpoint analysis (i.e. using the last available measurement) leads to a completely different picture,
with clearly non-significant results. For study 2, the mixed models lead to small differences, with a
noticeable shift towards borderline significance for MAR with all treatments. An endpoint analysis shows,
again, results that are notably different (non-significant) from the mixed models.

If the t tests under LOCF and CC are compared with the mixed analysis of MAR, studies 1 and 2 show
dramatic differences. Such a comparison is not contrived since thet tests for LOCF and CC are well in
line with common data-analytic practice and under MAR only the mixed analysis makes sense.

These results, in conjunction with those of Section 6.1, underscore the limitations of LOCF and CC. By
selecting a subset (CC), a different type of patient might be retained in the treated versus the untreated arm.
This can be explained by a difference in therapeutic effect, a difference in side effects or a combination
thereof. As with CC, the difference of complete versus incomplete observations can cause distortions
within an LOCF analysis. In addition to differences in sets to which the techniques are applied, there
are further distortions which take place, in the mean structure, the variance structure and the correlation
structure. These effects may counteract and/or strengthen each other, depending on the situation.
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Table 4. Analysis of case study. Fitted MAR and
MNAR models to the case study data. Columns MAR
and MNAR report twice the negative likelihood. The
resulting likelihood ratio is given in the column

labeledχ2

MAR MNAR
Study −2 likelihood χ2 p

1 2005.89 2004.99 0.90 0.32
2 2330.06 2320.41 9.65 0.0019
3 10234.53 10199.05 35.48 <0.0001

Treat. effect (s.e.)
1 −1.58(1.14) −1.55(1.10)
2 −1.84(1.07) −1.64(1.07)
3 1.98(0.65) 2.04(0.64)

In conclusion, use of likelihood-based ignorable methods is more justifiable than LOCF and CC.

7. SENSITIVITY ANALYSIS

Although the assumption of likelihood ignorability encompasses both MAR and the more stringent
and often implausible MCAR mechanisms, it is difficult to exclude the option of a more general
nonrandom dropout mechanism. One solution is to fit an MNAR model as proposed by Diggle and
Kenward (1994) who fitted models to the full data using the simplex algorithm (Nelder and Mead, 1965).
The result of fitting these models to studies 1–3, using GAUSS code developed by the authors, is presented
in Table 4. The effects of treatment, time, the interaction between time and treatment, and baseline value
were all included in the model. The model for dropout is based on (3.3) and includes the effect of the
previous outcome (MAR), with in addition the effect for current, possibly unobserved outcome in the
MNAR case.

Note that the results are not directly comparable to those reported in Table 3, where inference is
based on the last measurement, but rather to the treatment main effect results reported in Table 2. The
model considered here is somewhat simpler than the model considered in Section 6.1, since fitting such
a complicated model in the MNAR case may become computationally prohibitive. Note that studies 1–3
show a dramatically different picture in terms of evidence for MNAR, with apparently no, fairly strong,
and very strong evidence for MNAR, respectively. However, as pointed out in the introduction and by
several authors (discussion to Diggle and Kenward, 1994; Verbeke and Molenberghs, 2000, Chapter 18),
one has to be extremely careful with interpreting evidence for or against MNAR using only the data under
analysis.

A sensible compromise between blindly shifting to MNAR models or ignoring them altogether, is
to make them a component of a sensitivity analysis. In that sense, it is important to consider the effect
on key parameters such as treatment effect. Here, in line with several other observations (Molenberghs
et al., 2001; Verbekeet al., 2001) we see that the impact on the treatment effect parameter is extremely
small, providing additional support for the use of likelihood-based ignorable models. One such route for
sensitivity analysis is to consider pattern-mixture models as a complement to selection models (Thijs
et al., 2002; Michielset al., 2002). Further routes to explore sensitivity are based on global and local
influence methods (Verbekeet al., 2001). A more extensive case study on the advantages and problems
related to several sensitivity analysis is a topic of ongoing research.
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The same considerations can be made when compliance data are available. In such a case, arguably
a definitive analysis would not be possible and it might be sensible to resort to sensitivity analysis ideas
(Cowleset al., 1996).

8. DISCUSSION

In this paper, we have used both formal derivations and case studies to show that there is little
justification for analyzing incomplete data from longitudinal clinical trials by means of such simple
methods as LOCF and CC. This is true even if a single point in time (e.g. the last measurement occasion)
is of primary interest. It is more sensible to use linear mixed models in combination with the assumption
of MAR. Such an approach, tailored to the needs of clinical trials, has been proposed by Mallinckrodtet
al. (2001a,b). This type of analysis is stable and provides sensible assessments of important aspects such
as treatment effect and time evolution, even if the assumption of MAR is violated in favor of MNAR.
This is in line with analyses conducted by Diggle and Kenward (1994), Molenberghset al. (1997, 2001)
and Verbekeet al. (2001). Moreover, such analyses can be conducted routinely using standard statistical
software such as the SAS procedures MIXED and NLMIXED.

A related and, for the regulatory clinical trial context, very important set of assertions is the following:
(1) an ignorable likelihood analysis can be specified a priori in a protocol without any difficulty; (2)
an ignorable likelihood analysi is consistent with the intention to treat (ITT) principle, even when
only the measurement at the last occasion is of interest; (3) the difference between an LOCF and an
ignorable likelihood analysis can be both liberal and conservative. The first is easy to see since, given
ignorability, formulating a linear mixed model for either complete or incomplete data involves exactly
the same steps. Let us expand on the second issue. It is often believed that when the last measurement
is of interest a test for the treatment effect at the last occasion neglects sequences with dropout, even
when such sequences contain post-randomization outcomes. As a result, it is often asserted that to be
consistent with ITT some form of imputation, based on an incomplete patient’s data, e.g. using LOCF,
is necessary. However, as Little and Rubin (1987, Chapter 6) showed, likelihood based estimation of
means in an incomplete multivariate setting involves adjustment in terms of the conditional expectation
of the unobserved measurements given the observed ones. Thus, a likelihood based ignorable analysis
(such as MMRM) should be seen as a proper way to accommodate information on a patient with post-
randomization outcomes, even when such a patient’s profile is incomplete. This fact, in conjunction
with the use of treatment allocation as randomized rather than as received, shows that MMRM is fully
consistent with ITT. Regarding the third issue, the case study produced smallerp values under MAR
than under LOCF (Table 3). Conversely, consider a situation where the treatment difference increases
over time, reaches a maximum around the middle of the study period, with a decline thereafter until
complete disappearance at the end of the study. Suppose further that the bulk of dropout occurs around
the middle of the study. Then, an endpoint analysis based on MAR will produce the correct nominal level,
whereas LOCF might reject the null hypothesis too often. When considering LOCF, we often have in mind
examples in which the disease shows progressive improvement over time. However, when the goal of a
treatment is maintenance of condition in a progressively worsening disease state, LOCF can exaggerate the
treatment benefit. For example, in Alzheimer’s disease the goal is to prevent the patient from worsening.
Thus, in a one-year trial where a patient on active treatment drops out after one week, carrying the last
value forward implicitly assumes no further worsening. This is obviously not conservative.

Note that the inadequacy of LOCF, especially when conceived as a single imputation method, will vary
across types of disease. LOCF is particularly inappropriate if either the effect of treatment is expected to
change over time or there are secular trends. Thus, it would do slightly better in diseases where the
treatment induces a steady but reversible response, such as asthma or rheumatism (Sennet al., 2000).
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When there is residual doubt about the plausibility of MAR, one can conduct a sensitivity analysis.
This is a very active area of research. Obviously, a number of MNAR models can be fitted, provided
one is prepared to approach formal aspects of model comparison with due caution. Such analyses can
be complemented with appropriate (global and/or local) influence analyses. Another route is to construct
pattern-mixture models and to compare the conclusions with those obtained from the selection model
framework. Alternative frameworks for sensitivity analyses are provided by Robinset al. (1998) and
Forster and Smith (1998), who present a Bayesian sensitivity analysis, and Raab and Donnelly (1999).
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