Masterproef industriële ingenieurswetenschappen

Application of an Ion-Torrent sequencing approach for genotyping Leguminosae species

Joke Appeltans Academiejaar: 2014-2015

Introduction

The genetic diversity of *Pisum sativum* and *Vicia faba* has to be investigated. That is done by conducting a phylogenetic analysis based upon the sequence of single nucleotide polymorphisms (SNP's), linked to possible resistance genes against high salinity and the fungal disease Ascochyta blight. To conduct the analysis a method has to be developed and optimised to determine the sequence of chosen SNP's, which is the aim of this thesis.

Methods

- To determine the sequence of the SNP's the following steps are executed:
 - 1) Choosing SNP's,
 - 2) Designing primer sets to amplify fragments containing the SNP's;
 - 3) Performing genomic PCR to amplify fragments (fig. 1);
 - 4) Performing barcoding PCR to add adaptor and key sequence (fig. 2);
 - 5) Preparing equimolar fragment library;
 - 6) Performing emulsion PCR to hybridize fragment to a bead (fig. 3);
 - 7) Performing enrichment of beads;
 - 8) Sequencing in Ion Torrent next generation sequencing.

 Optimisation consists of finding the right PCR conditions and the ideal concentration of the fragment library.

Results

• Design of specific part forward and reverse primer:

	Min	Optimum	Max
Melting temperature (°C)	49	50	51
Number of base pares	14	15	16
%GC (%)	40	/	60

Table 1: Primer design

• Determination of PCR conditions:

Thei	rmocyclers	DNA polymerase kit
	eAmp PCR System 9700 blied Biosystems)	One <i>Taq</i> DNA Polymerase (New Englands BioLabs)
	ocycler Gradient 96 atagene)	PrimeSTAR GXL (TaKaRa Bio)
	ofessional thermocycler metra)	

Table 2: PCR conditions

Choosing fragment library concentration:

Concentration (pM)	Templated Ion Speres (%)
26	82,03
13	54,58
6,5	81,39

Table 3: Fragment library concentration

Discussion

71,7 % of the designed primer sets could amplify their SNP fragment for *Vicia faba* and 64,4 % for *Pisum sativum*. The PCR's work best when using the TProfesional thermocyler in combination with One *Taq* DNA Polymerase kit. The ideal fragment library concentration is 13 pM.

Promotoren / Copromotoren:

Dr. Prof. Julia Weiss

Dr. Prof. Marcos Egea-Cortines

Ir. Myriam Meyers

