Masterproef industriële ingenieurswetenschappen 2015-2016

The consequence of respiratory motion on dose delivery in a mouse lung tumor irradiation using the 4D MOBY phantom

Brent van der Heyden

Master IW nucleaire technologie

Introduction

- Small animal models are used in pre-clinical research to investigate cancer characteristics.

- Respiratory motion during precision irradiation is a concern: the tumor can partially move out of the small irradiation field.

***** How can we perform dose calculations on a breathing mouse ?

What is the consequence of respiratory motion on dose delivery in a mouse lung tumor irradiation ?

Results

Mean organ doses

MOBY simulation cases

MOBY parameters	
Time resolution	50 ms
Tumor diameter	4 mm
Breathing curve	Anesthetized mouse

SmART-Plan Small Animal RadioTherapy plan

SmART-Plan settings			
Irradiation plan	360° arc		
Collimator diameter	5 mm		

	Expected	Obtained	Difference	Expected	Obtained	Difference	
	(Gy)	(Gy)	%	(Gy)	(Gy)	%	
	Case R1			Case L1			
Tumor	7.93	7.09	-11	7.92	7.09	-11	
Heart	0.40	0.52	30	0.51	0.64	25	
	Case R2			Case L2			
Tumor	7.91	7.40	-6	7.91	7.22	-9	
Heart	1.18	1.15	-3	1.46	1.40	-4	
	Case R3			Case L3			
Tumor	7.95	7.89	-1	7.95	7.94	0	
Heart	1.30	1.15	-12	1.55	1.36	-12	
	Case R4			Case L4			
Tumor	7.96	7.96	0	7.94	7.93	0	
Heart	0.51	0.44	-14	0.58	0.50	-14	

(*) Expected dose = static phantom | Obtained dose = breathing phantom

Time dependent tumor dose

Case R1 Case R2 Case R3 Case R4 Tumor and heart motion Case L1 Case L2 Case L3 Case L4

Planned target dose 8 Gy

A. 360° arc to calculate mean organ doses

B. 20 beams representing one arc to determine time dependent organ doses

Conclusion

- The use of MOBY and SmART-Plan provides a suitable method to quantify changes in dose due to respiratory motion in a mouse lung tumor irradiation.

- Some differences between the expected and obtained mean tumor doses are large enough to take into account, especially in cases where the lung tumor is located near the diaphragm.

- State of the art techniques as respiratory gating or motion tracking could provide a proper solution to reduce underdosing of the tumor.

- We recommend assessing the tumor motion before performing small animal precision irradiation.

- In absence of gating or tracking techniques, the use of a suitable beam margin is recommended.

Promotoren / Copromotoren:

Prof. Dr. Ir. Frank Verhaegen Dr. Brigitte Reniers

Maastricht University

