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Abstract. Estimating stellar parameters from spectrophotometric data is a key tool in the study of stellar structure and stellar
evolution. Although many methods have been proposed to estimate stellar parameters from ultraviolet (UV), optical and in-
frared (IR) data using low, medium or high-resolution observational data of the target(s), only a few address the problem of
the uncertainties in the stellar parameters. This information is critical for a meaningful comparison of the derived parameters
with results obtained from other data and/or methods. Here we present a frequentist method to estimate these uncertainties.
We demonstrate that the combined use of both a local and a global goodness-of-fit parameter alters the uncertainty intervals as
determined from the use of only one of these deviation estimating parameters. This technique using both goodness-of-fit param-
eters is applied to the infrared 2.38−4.08 µm ISO-SWS data (Infrared Space Observatory – Short Wavelength Spectrometer)
of α Boo, yielding an effective temperature range from 4160 K to 4300 K, a logarithm of the gravity range from 1.35 to 1.65 dex
and a metallicity from −0.30 to 0.00 dex. However, using a lack-of-fit test, it is shown that even the “best” theoretical models
are still not capable of capturing all the structure in the data, and this is due to our incomplete knowledge and modelling of the
full physical stellar structure or due to problems in the data reduction process.

Key words. methods: data analysis – methods: statistical – techniques: spectroscopic – stars: fundamental parameters –
stars: individual: Alpha Boo

1. Introduction

Everything we know about the structure of stellar objects be-
ing studied is the result of a comparison between theoretical
predictions and stellar observations. To give realistic answers
to many physical questions induced by stellar phenomena, not
only are accurate theoretical models indispensable, but also re-
alistic uncertainty estimates on the parameters being deduced
are required. In astronomy, uncertainty estimates (if assessed at
all) are still often based on too simple a study of the sample of
observables, resulting in too “optimistic” error bars. A realistic
knowledge of the uncertainties is however crucial and has to be
taken into account if one, for example, wants to test the pro-
posed physical mechanism explaining certain phenomena (see,
e.g., De Bruyne et al. 2003). The present paper is the first of
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a series devoted to the development and description of a statis-
tical method to assess the uncertainties of stellar atmospheric
parameters deduced from astronomical spectra.

One way of estimating stellar atmospheric parameters and
drawing inferences from them consists of comparing the ob-
served spectrum of the target being studied with a collection
of synthetic spectra (e.g., Decin et al. 2000, for an applica-
tion to cool stars; Bailer-Jones 2000, for an application using
neural networks). Depending on the quality, the resolution and
the wavelength coverage of the data, different stellar parame-
ters can be traced. In this paper we focus on the three most
important stellar parameters for the model structure: the effec-
tive temperature Teff, the gravity g and the metallicity [Fe/H].
Other parameters such as the abundance pattern or the micro-
turbulence are treated as known. Let Ω = (Teff, log g, [Fe/H])
present the parameters of the stellar atmosphere. A synthetic
spectrum, θ(m), m = 1, 2, . . . ,M, is calculated for specific val-
ues of the parameters, Ω(m) = (Teff

(m), log g(m), [Fe/H](m)) and
compared to the observed spectrum. When the synthetic spec-
trum and the observed spectrum agree the parameters of the
stellar atmosphere are assumed to be known. The first ques-
tion which arises when applying this kind of method is how to
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measure the goodness-of-fit between observational and theo-
retical data. A second – equally important – question is then
how to assess the uncertainties on the derived stellar parame-
ters. These questions (and answers) become even more compli-
cated when we want to take measurement errors into account.

A search of the astronomical literature reveals that sta-
tistical tests are often restricted to local deviation estimating
parameters, as e.g. the ordinary least square method (OLS) (or
derivatives from it) (Bailer-Jones 2000; Valenti & Piskunov
1996; Erspamer & North 2002; Katz et al. 1998). The first goal
of this paper is to demonstrate that parameter ranges as deter-
mined from the use of a local goodness-of-fit parameter can be
optimized by combining a local with a global goodness-of-fit
parameter (Sects. 3 and 4). In both methods, the estimate for Ω
is the value of Ω(m) which minimises the proposed goodness-
of-fit parameter. Using the results of this first part of the study,
our second goal is to discuss (Sect. 5) how the differences be-
tween observed and synthetic spectra can be used to check the
appropriateness of a proposed set of stellar parameters – a step
often neglected by astronomers. This qualification can be per-
formed using lack-of-fit tests.

The methodology developed in this paper has broad appli-
cations in astronomy as it relies only on observed spectra and
on theoretical predictions thereof. To test our method, we have
chosen to apply it to the spectra of a stellar target of which
the basic stellar parameters are already very well known from
successful comparisons with models. Accurate estimations of
stellar parameters for cool standard stars were done using data
of the ISO-SWS (Decin et al. 2003a–c). We therefore have cho-
sen to illustrate our general methodology on the ISO-SWS ob-
servations of one such star, the case study of the K2IIIp giant
Alpha Bootis (Arcturus, HD 124897).

Before doing the analysis in Sects. 3–5, we give in Sect. 2
a description of the observational and theoretical data on which
the method will be tested. The results of both Part I (Sects. 3
and 4) and Part II (Sect. 5) are discussed in Sects. 4.3 and 5.3
respectively. We end with a summary and some conclusions in
the last section, Sect. 6. How to treat observational errors in this
kind of study will be discussed in a forthcoming paper of this
series.

2. Observational and synthetic data

This section describes the used observational ISO-SWS and
theoretical data. The grid of synthetic spectra calculated for the
test-case α Boo is specified in Sect. 2.3.

2.1. Observational data y

The observational data for this study consist of near-
infrared (2.38−4.08µm) spectra of α Boo observed with the
SWS (Short Wavelength Spectrometer, de Graauw et al. 1996)
on board ISO (Infrared Space Observatory, Kessler et al. 1996).
The spectrometer was used in the SWS observing mode AOT01
(=a single up-down scan for each aperture with four possi-
ble scan speeds at degraded resolution) with scanner speed 4,

Table 1. Resolution and factors used to shift the sub-bands.

Wavelength

Sub-band Resolution Factor

range [µm]

1A 2.38–2.60 1300 1.007

1B 2.60–3.02 1200 1.013

1D 3.02–3.52 1500 1.018

1E 3.52–4.08 1000 1.011

resulting in a resolving power of ∼1500. The observation lasted
for 6538 s and was performed during revolution 4521.

The reduction was made using the SWS Interactive
Analysis Package IA3 (de Graauw et al. 1996) using calibra-
tion files and procedures equivalent with pipeline version 10.0.
Further data processing consisted of bad data removal (σ =
2.0), aligning of the 12 detectors to their average level. Since
the grid of observational pixel values does not have a fixed res-
olution, we first want to “summarise” the observational pixel
values, and then make a comparison between this summary (de-
noted as y) and a synthetic spectrum (θ) with the same resolu-
tion. The standard way to resample the input data is by “rebin-
ning”. To summarise the ISO-SWS data to a fixed resolution
we have applied a flux conserving non-parametric rebinning
method – i.e. for each bin the flux value is calculated using
the trapezoidal rule – with an oversampling of 4. This means
that the resolution bin used is 4 times the grid separation de-
termined by the resolution for a specific wavelength range of
the ISO-SWS data. To fully recover the intervening flux values
it can be shown in the context of “rectangular filtering” that
taking 4 points in an interval of length ∆t is enough to optimise
the signal-to-noise (S/N) ratio (Bracewell 1985). The rebinning
used in the data reduction procedure introduces a correlation
between the data point values. The appropriate resolving power
was taken to be the most conservative resolving power as de-
termined by Lorente in Leech et al. (2002) (see Table 1), with
the exception being band 1A2 for which this value has been
changed from 1500 to 1300 (Decin et al. 2003b).

The individual sub-band spectra can show jumps in flux
level at the band-edges when combining them into a single
spectrum. These band-to-band discontinuities can have sev-
eral causes: uncertainties in flux calibration, the low responsiv-
ity at the band edges, pointing errors, and a problematic dark
current subtraction in combination with the RSRF (Relative
Spectral Response Function) correction, from which the point-
ing errors are believed to have the largest impact for this
high-flux observation. Hence, the individual sub-bands were

1 Each observation is determined uniquely by its observation num-
ber (8 digits), in which the first three digits represent the revolution
number. The observing data can be calculated from the revolution
number which is the number of days after 17 November 1995.

2 The bands are combinations of detector array, aperture and grating
orders such that for each band its detector array sees a unique order
of light, and hence a unique wavelength t. Band 1 (2.38−4.08 µm)
is subdivided in 4 sub-bands: band 1A: 2.38−2.60 µm, band 1B:
2.60−3.02 µm, band 1D: 3.02−3.52 µm, and band 1E: 3.52−4.08 µm.
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multiplied by a factor to construct a smooth spectrum (see
Table 1). These factors were determined using the SED
(Spectral Energy Distribution) of α Boo as constructed in
Decin et al. (2003b) as a reference. The estimated 1σ uncer-
tainty on these factors is 10% (Leech et al. 2002).

2.2. Synthetic data θ

The synthetic spectra used in this study have been generated us-
ing model photospheres calculated with the  code, ver-
sion May 1998. This version is a major update of the 
model-photosphere programs first developed by Gustafsson
et al. (1975), and further improved by, e.g. Plez et al. (1992),
Jørgensen et al. (1992), Edvardsson et al. (1993).

The common assumption of spherical stratification in
homogeneous stationary layers, hydrostatic equilibrium and
Local Thermodynamic Equilibrium (LTE) were made. Energy
conservation was required for radiative and convective flux,
where the energy transport due to convection was treated
through a local mixing-length theory. The mixing-length l was
chosen as 1.5 Hp, with Hp the pressure scale height. Turbulent
pressure was neglected. The reliability of these assumptions is
discussed in Plez et al. (1992). The continuous absorption as
well as the new models will be fully described in a series of
forth-coming papers (Gustafsson et al.; Jørg ensen et al.; Plez
et al., all in preparation).

Using the computed model atmospheres, the synthetic
spectra were generated by solving the radiative transfer at
a high wavelength resolution (∆t ∼ 1 km s−1, correspond-
ing to t/∆t ∼ 330 000). With a microturbulent velocity ξt ∼
2 km s−1, this means we are sure to sample all lines in the
atomic and molecular database in the generation of the syn-
thetic spectrum. This is necessary so as not to overestimate
the absorption in regions with a high line density, or to un-
derestimate it in regions with a low line density (Ryde &
Eriksson 2002). For the line opacity in the ISO-SWS range
a database of infrared lines including atoms and molecules
has been prepared. For the molecular lines, the same data
have been used as in Decin et al. (2000). The accuracy
and completeness of these line lists are discussed in Decin
(2000). For the atomic transitions, the newly generated atomic
linelist of J. Sauval (priv. comm.) based on the FTS-ATMOS
(Atmospheric Trace Molecule Spectroscopy) spectrum of the
Sun (Farmer & Norton 1989; Geller 1992) has been included.
The emergent synthetic spectra are then convolved with a
Gaussian instrumental profile with the same resolution as the
ISO-SWS sub-bands (see Table 1).

2.3. Synthetic data for α Boo

As described in the introduction, we will calculate a grid of
synthetic spectra over discrete values in the parameter vectorΩ.
In the following sections, we will use this grid over the vector
parameter Ω to estimate Ω with Ω(∗) for which the synthetic
spectrum θ(∗) is the “closest” to the observed spectrum (see
Sects. 3 and 4).

Based on the results in Decin et al. (2003a), 125 spectra
have been calculated for α Boo, with parameter ranges:

Teff : 4160 K, 4230 K, 4300 K, 4370 K, 4440 K
log g : 1.20, 1.35, 1.50, 1.65, 1.80
[Fe/H] : 0.00, −0.15, −0.30, −0.50, −0.70.

The other parameters needed to compute a proper spherical
symmetric spectrum – the mass, the abundances of C, N, O,
Mg, and Si, the microturbulent velocity, and the 12C/13C-ratio
– were kept fixed, with values as determined in Decin et al.
(2003a). For a detailed comparison between the stellar param-
eters as deduced in Decin et al. (2003a) and other literature
values, we refer to Decin et al. (2003a). Each synthetic spec-
trum was thus calculated for a different combination of the
atmospheric parameters. The fact that we are dealing with a
3-dimensional stellar parameter space made us decide to as-
sign each theoretical model an (artificial) model number to plot
all the results in one figure. The model numbers are specified
in Table 2.

Since the ISO-SWS data are absolutely calibrated, one also
has to compute the angular diameter to compare the rebinned
observed and synthetic data properly. Therefore, the angular
diameter θd is deduced from the energy distribution of the syn-
thetic spectrum between 2.38 and 4.08 µm and the absolute
flux-values in this wavelength range of the ISO-SWS spectrum.
We therefore have minimised the residual sum of squares

n∑
t=1

(
y(t) −

(
π

4
θd

2
)
∗ θ(t)

)2
, (1)

with y(t) and θ(t) representing, respectively, a (rebinned) ob-
servational and synthetic data point at the t th wavelength
point. The derived angular diameters are listed in Table 2.
The dependence of the angular diameter on the effective tem-
perature is discussed in Decin (2000). A typical example
of the ISO-SWS data of α Boo and a synthetic spectrum
(model 1: Teff = 4160 K, log g= 1.20, and [Fe/H]=−0.70) is
shown in Fig. 1.

3. Model selection based on the OLS criterion

We try for the first time in this paper to determine the parameter
ranges of the effective temperature, the gravity and the metal-
licity of α Boo. We first describe in general the model selection
based on the ordinary least square criterion (Sect. 3.1). This is
followed by the application to our test-case, the ISO-SWS data
of α Boo (Sect. 3.2).

3.1. Definition

For the high-quality (absolutely calibrated) spectroscopic data
that we use, it is natural to estimate Ω with Ω(∗) for which the
synthetic spectrum θ(∗) gives the best resemblance to the ob-
served spectrum, y. By analogy to linear regression we can es-
timateΩ by minimising the residual sum of squares (also called
the “ordinary least square” (OLS) method):

T 2(y, θ(m)) =
1
n

n∑
t=1

(
y(t) −

(
π

4
θd

2
)
∗ θ(m)(t)

)2
. (2)
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Table 2. Angular diameters in mas and model numbers (in between brackets) associated with the different model parameters of the grid of
synthetic spectra.

Teff [K]

log g
4160 4230 4300 4370 4440

log g = 1.20 21.16 (1) 20.95 (26) 20.72 (51) 20.51 (76) 20.28 (101)

log g = 1.35 21.20 (6) 20.99 (31) 20.76 (56) 20.54 (81) 20.31 (106)

log g = 1.50 21.24 (11) 21.02 (36) 20.79 (61) 20.57 (86) 20.34 (111) [Fe/H] = −0.70

log g = 1.65 21.27 (16) 21.04 (41) 20.86 (66) 20.59 (91) 20.36 (116)

log g = 1.80 21.29 (21) 21.06 (46) 20.99 (71) 20.61 (96) 20.38 (121)

log g = 1.20 21.16 (2) 20.95 (27) 20.73 (52) 20.51 (77) 20.29 (102)

log g = 1.35 21.21 (7) 21.00 (32) 20.76 (57) 20.54 (82) 20.31 (107)

log g = 1.50 21.25 (12) 21.02 (37) 20.79 (62) 20.57 (87) 20.36 (112) [Fe/H] = −0.50

log g = 1.65 21.26 (17) 21.04 (42) 20.82 (67) 20.59 (92) 20.37 (117)

log g = 1.80 21.28 (22) 21.06 (47) 20.83 (72) 20.61 (97) 20.41 (122)

log g = 1.20 21.17 (3) 20.96 (28) 20.74 (53) 20.51 (78) 20.29 (103)

log g = 1.35 21.21 (8) 21.00 (33) 20.77 (58) 20.55 (83) 20.32 (108)

log g = 1.50 21.24 (13) 21.02 (38) 20.79 (63) 20.57 (88) 20.35 (113) [Fe/H] = −0.30

log g = 1.65 21.26 (18) 21.04 (43) 20.81 (68) 20.60 (93) 20.37 (118)

log g = 1.80 21.28 (23) 21.06 (48) 20.84 (73) 20.78 (98) 20.40 (123)

log g = 1.20 21.17 (4) 20.96 (29) 20.74 (54) 20.52 (79) 20.29 (104)

log g = 1.35 21.21 (9) 21.00 (34) 20.77 (59) 20.55 (84) 20.32 (109)

log g = 1.50 21.24 (14) 21.02 (39) 20.79 (64) 20.58 (89) 20.35 (114) [Fe/H] = −0.15

log g = 1.65 21.26 (19) 21.04 (44) 20.82 (69) 20.61 (94) 20.38 (119)

log g = 1.80 21.28 (24) 21.06 (49) 20.84 (74) 20.63 (99) 20.41 (124)

log g = 1.20 21.17 (5) 20.96 (30) 20.74 (55) 20.52 (80) 20.28 (105)

log g = 1.35 21.21 (10) 21.00 (35) 20.77 (60) 20.55 (85) 20.33 (110)

log g = 1.50 21.23 (15) 21.02 (40) 20.79 (65) 20.58 (90) 20.36 (115) [Fe/H] = 0.00

log g = 1.65 21.25 (20) 21.04 (45) 20.82 (70) 20.61 (95) 20.38 (120)

log g = 1.80 21.28 (25) 21.07 (50) 20.84 (75) 20.63 (100) 20.41 (125)

Hence, the minimiser of T (y, θ(m)) should be seen as the
OLS estimator forΩ. In practice one can minimise Eq. (2) with
a search over a sensitive grid of the parameter vector Ω.

3.2. Application to α Boo

3.2.1. Band 1A

Figure 2 shows the values of T (m)(y, θ(m)) (on a log scale). The
vertical lines separate the 125 models by Teff.

Model 62 (Teff = 4300 K, log g = 1.50 dex, [Fe/H] =
−0.50 dex) has the best goodness-of-fit in band 1A. We note
that within one temperature level, the models occur in groups
of size 5 (according to the value of the gravity). For exam-
ple, models 1–5 have the same effective temperature, 4160 K,

and the same gravity (log g = 1.2) while for models 6−10
log g = 1.35. Trends in the goodness-of-fit are visualised in
Fig. 3. Three patterns are observed: (a) the goodness-of-fit in-
creases with the level of metallicity, (b) a parabolic shape in
which the best goodness-of-fit is achieved for models with
metallicity between −0.15 to −0.5, and (c) goodness-of-fit de-
creases with the level of metallicity. For a fixed temperature,
the trend changes from trend (a) via trend (b) to trend (c) when
the gravity increases. Sometimes, a trend occurs twice or is ab-
sent, but the order of trends never changes. The model having
the best goodness-of-fit is always situated at the minimum of a
parabolic shape, suggesting that we have reached a local mini-
mum – an equilibrium – in the parameter space.

Table 3 shows the 10 models with T (m)(y, θ(m)) having
the lowest values, i.e., they have the best goodness-of-fit.
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Fig. 1. Comparison between the ISO-SWS data of α Boo (black)
and the synthetic spectrum with model number 1, i.e. Teff = 4160 K,
log g = 1.20, and [Fe/H]=−0.70 (grey) in the 4 sub-bands 1A, 1B,
1D, and 1E. The main absorption features caused by the CO 1st over-
tone lines, the SiO 1st overtone lines, and the OH fundamental lines
are indicated.

Fig. 2. log T (m)(y, θ(m)) versus the model numbers for band 1A. The
vertical lines separate the models according to the temperature. The
10 models with the best goodness-off-fit are situated below the hori-
zontal dashed line.

For these models log g is between 1.20 and 1.65 dex, the ef-
fective temperature ranges from 4160 K to 4440 K and [Fe/H]
is between −0.15 dex and −0.70 dex.

3.2.2. Overall goodness-of-fit

While in the previous subsection we have concentrated on
band 1A of the ISO-SWS data of α Boo, we now will take the
whole 2.38−4.08µm wavelength range into account. Band 1A
has a very characteristic footprint, determined by the first over-
tone CO (∆v = 2) vibration-rotation bands in this wave-
length range (Decin et al. 2000). Molecules absorbing in
bands 1B, 1D, and 1E are mainly OH and SiO, while also some
atomic features are visible. The absorption pattern of these last
molecules is however not as pronounced as for CO (∆v = 2)

Fig. 3. Trends in the goodness-of-fit condition of log T (m)(y, θ(m)) for
band 1A. The model numbers are as specified in Table 2.

Table 3. Top 10 models in band 1A.

Model (rank) Teff [K] log g [Fe/H]

62 (1) 4300 1.50 −0.50

38 (2) 4230 1.50 −0.30

82 (3) 4370 1.35 −0.50

61 (4) 4300 1.50 −0.70

58 (5) 4300 1.35 −0.30

41 (6) 4230 1.65 −0.70

102 (7) 4440 1.20 −0.50

14 (8) 4160 1.50 −0.15

42 (9) 4230 1.65 −0.50

81 (10) 4370 1.35 −0.70

in band 1A. Although these CO features can already give us
quite a good idea of the temperature and the gravity of the tar-
get, it is essential to use the whole 2.38−4.08µm wavelength
in order to minimise the uncertainties on the stellar parameters
being studied. This is due to the fact that all of these molec-
ular and atomic absorption features have their own character-
istic dependence on the atmospheric parameters (see Decin
et al. 2000). Since, however, each sub-band has its own instru-
mental characteristics, and since the observational data have
their largest uncertainties at the band edges (Leech et al. 2002),
we will not join the whole 2.38−4.08µm wavelength range
into 1 spectrum, but we will combine the results obtained from
the separate bands.

The values of T (m)(y, θ(m)) were ranked at each band, and
for each model we have calculated the mean of the ranks. This
means that the “best” model is the one with the smallest mean
rank. For example, model 38 (Teff = 4230 K, log g = 1.50 dex,
[Fe/H] = −0.30 dex) has a rank of 2 in band 1A, but this model
is ranked 9, 28, 25 in band 1B, 1D and 1E respectively (hence,
the mean rank is 13.50). Overall, the rank of the mean rank of
model 38 is 5. The ranks of the mean ranks of the 125 models
are displayed in Fig. 4. The models with the lowest rank are
models 62 and 82. Model 62 is ranked 1, 7, 8, and 4 in the
4 bands, respectively, with mean rank being 5.0.
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Fig. 4. Rank of the mean ranks for the 125 synthetic spectrum.

Table 4. Stellar parameters of the models having the lowest overall
rank. The overall rank is given in between brackets in the first column.
In the last column, the rank in band 1A is tabulated.

Model (rank) Teff [K] log g [Fe/H] Rank in band 1A

62 (1) 4300 1.50 −0.50 1

82 (2) 4370 1.35 −0.50 2

86 (3) 4370 1.50 −0.70 15

58 (4) 4300 1.35 −0.30 5

38 (5) 4230 1.50 −0.30 2

61 (6) 4300 1.50 −0.70 4

81 (7) 4370 1.35 −0.70 10

63 (8) 4300 1.50 −0.30 26

106 (9) 4440 1.35 −0.70 16

66 (10) 4300 1.65 −0.70 28

3.2.3. Conclusions

The models having the best rank of the mean rank are listed
in Table 4. Based on the models which rank in the top 10, the
range in effective temperature is between 4230 K and 4440 K,
in gravity between 1.35 and 1.65, and in metallicity be-
tween −0.70 to −0.30 dex.

4. Model selection based on Kolmogorov-Smirnov
statistics

In the previous section, T (y, θ) was used as a measure for the
goodness-of-fit. In this section the analysis discussed above
was repeated using the Kolmogorov-Smirnov (β) statistics as
a measure for the goodness-of-fit.

4.1. Definition

The Kolmogorov-Smirnov statistical test globally checks the
goodness-of-fit of the observed and synthetic spectra by com-
puting a deviation estimating parameter β (see Eq. (5) in

Decin et al. 2000). Without specifying the distribution function
of β, we may summarise that

β =
√

n sup
1≤k≤n−1

∣∣∣∣∣∣∣∣∣∣∣∣

k∑
t=1

y(t)
θ(t)

n∑
t=1

y(t)
θ(t)

− k
n

∣∣∣∣∣∣∣∣∣∣∣∣
· (3)

The lower the β-value, the better the accordance between
the observed data and the synthetic spectrum. For more de-
tails about the use of Kolmogorov-Smirnov statistics to es-
timate stellar parameters and their uncertainties see Decin
et al. (2000). Hence, the main difference between β and T is
that the Kolmogorov-Smirnov parameter β measures a global
goodness-of-fit, so that local deviations between observations
and theoretical data only have a minor influence on the final
result, while for T (y, θ) local deviating points are important.
Note that a shift in the absolute flux values (e.g. to simulate a
change or uncertainty in the angular diameter) influences T a
lot, while β remains almost the same.

4.2. Application to α Boo

Since both deviation estimating parameters stress a different
point in the goodness-of-fit, a combination of the results based
on the two parameters separately can only improve our knowl-
edge on the stellar parameters and their uncertainties. This is
illustrated in Fig. 5.

Table 5 shows the best 5 models, which besides appearing
in the lower left corner of Fig. 5a also are ranked among the
top 30 for both β and T (y, θ) (see Fig. 5b and Table 4). The
combined use of both the scores of β and T (y, θ) themselves
and the ranking of these scores does allow us to determine
a set of “best” models! While e.g. model 54 (Teff = 4300 K,
log g = 1.20 dex, [Fe/H] = −0.15 dex) has very low ranks
based on both β and T (y, θ), the mean β-value is rather high.
The advantage of using ranks is that all deviation estimating
parameters can be treated in the same magnitude level. The
disadvantage of using the ranks is that a sudden increase in the
deviation estimating parameter is not translated into a sudden
jump in the rank. Using both diagnostics together solves this
problem.

Note that one can see a correlation between the ranks of
the mean ranks of the T and β parameter, but that there are a
few outliers namely in the upper left corner of Fig. 5b where
a few models are situated with low T and high β. Inspecting
why the deviation estimating parameters do show this trend,
shows us that all of these models have a very low rank in T
for band 1D and/or band 1E. When zooming into these bands,
one indeed sees a resemblance (see e.g. Fig. 6a for model 77:
Teff = 4370 K, log g = 1.20 dex, [Fe/H]=−0.50 dex), explain-
ing the low T -value. The ratio between the observational and
synthetic data does, however, show a trend and is not randomly
distributed around 1, explaining the high β value. This is illus-
trated by the gray line in Fig. 6b with slope−0.02. The few very
strong (negative) peaks are due to the underestimation of the
OH-lines. Note also that the model having the lowest rank in β
(model 40: Teff = 4230 K, log g = 1.50 dex, [Fe/H]= 0.00 dex)
is only ranked 46 in T . This illustrates once more that a
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(a)

(b)

Fig. 5. Panel a) mean of the β-values of the 4 sub-bands versus the
mean of T (y, θ) for the 4 sub-bands. Panel b) ranks of the mean ranks
based on β versus ranks of the mean ranks based on T (y, θ).

combination of a local and global deviation estimating pa-
rameter enlarges our knowledge on the estimated stellar pa-
rameters and their uncertainties, which in this particular case
(see Table 5) results in a range in Teff from 4160 K to 4300 K,
in log g from 1.35 dex to 1.65 dex, and in [Fe/H] from −0.30
to 0.00 dex. Note that while the local goodness-of-fit parame-
ter T favours the lower range in metallicity, the combined use
of T and β clearly indicates a higher range in metallicity.

4.3. Discussion on the estimated parameter ranges

It is important to compare the derived parameter ranges with
literature values. We therefore will use Table D.3 as published
in Decin et al. (2003a), in which a comprehensive list of de-
rived and assumed parameter values published in the litera-
ture is given. These listed parameters have already been com-
pared with the results as deduced from the ISO-SWS data in
Sect. 3.5.2 in Decin et al. (2003a). However, the uncertain-
ties as given in Decin et al. (2003a) were empirical values
estimated from (1) the intrinsic uncertainty on the synthetic

Table 5. Overall goodness-of-fit.The 5 models given in this table
do belong to the group of “best” models based on both the values
of T (y, θ) and β, and are moreover ranked among the top 30 for
both T (y, θ) and β.

Model Rank β Rank T (y, θ) Teff [K] log g [Fe/H]

39 9 14 4230 1.50 −0.15

43 14 22 4230 1.65 −0.30

35 7.5 25 4230 1.35 0.00

14 11 26 4160 1.50 −0.15

59 27 12 4300 1.35 −0.15

spectrum (i.e., the possibility to distinguish different synthetic
spectra at a specific resolution, i.e. there should be a signifi-
cant difference in β-values) which is thus dependent on both
the resolving power of the observation and the specific val-
ues of the fundamental parameters; (2) the uncertainty on the
ISO-SWS spectrum which is directly related to the quality of
the ISO-SWS observation; (3) the value of the β-parameters in
the KS-test; and (4) the still remaining discrepancies between
observed and synthetic spectra. Decin et al. (2003a) obtained
Teff = 4320± 140 K, log g = 1.50± 0.15, and [Fe/H]=−0.50±
0.20. Comparing these results with the ones as given in the pre-
vious section, we see that a combination of both a global and
a local deviation estimating parameter restricts the uncertainty
ranges for these 3 fundamental parameters in the case of the
ISO-SWS data of α Boo.

Combining the results given in Table 5 with the angular
diameter values tabulated in Table 2, we obtain for the angu-
lar diameter 20.77 < θd < 21.24 mas, mainly resulting from
the uncertainty in the effective temperature (compared to the
gravity and the metallicity). However, from Eq. (2) in Decin
et al. (2003b), one can see that in the case of the ISO-SWS
data the main uncertainty on the angular diameter is determined
from the uncertainty in the absolute flux level (being≈10%, see
Sect. 2.1). Taking this last uncertainty into account (as done in
Eq. (2) in Decin et al. 2003b), we obtain θd = 21.01 ± 1.24 mas.

Uncertainty intervals as listed in Table D.3 in Decin
et al. (2003a) are often intrinsic uncertainties or (sometimes)
have been propagated from uncertainties in other parameters.
However, as in this analysis, observational measurement un-
certainties are never taken into account. As commented on in
Decin et al. (2003a), we do see that the derived parameters from
the ISO-SWS data are in good agreement with other listed val-
ues, but it should be noted that our uncertainty on the metal-
licity is quite large compared to other results. Several causes
can be reported for this larger uncertainty range: (1) the used
grid is not sensitive enough in the metallicity, and we should
diminish the spacing in metallicity; (2) the used low-resolution
ISO-SWS data are not that well suited to derive the metallic-
ity; (3) the lack of a proper uncertainty estimate significantly
underestimates the derived uncertainty ranges found in other
studies.
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(a)

(b)

(c)

Fig. 6. ISO-SWS observations of α Boo in band 1E versus the
synthetic data of model 77 (Teff = 4370 K, log g = 1.20 dex,
[Fe/H]=−0.50 dex). Panel a) ISO-SWS data are plotted in black, syn-
thetic data in grey. Panel b) the ratio between observational and syn-
thetic data. Panel c) illustration of how the β parameter is calculated:
the argument of the absolute value in the right-hand side of Eq. (3) is
displayed as a function of the wavelength.

5. Lack-of-fit tests

Within the classical regression framework, estimation is usu-
ally followed by inference and model diagnostics. In the

previous sections we focused on model selection and estima-
tion of the stellar parameters. In this section we propose a tool
for model diagnostics. The term model “diagnostics” refers
to any technique that offers evidence of whether a particular
model is an adequate description of the data or not. Our main
argument is that choosing the “best” model (out of a grid) does
not necessarily imply that the model is a “good” representation
of the observed data. Hence, when a model is chosen, one can
investigate how well the model fits the data. We focus on the
variable

Vt =
y(t)
θ(t)
·

Note that Vt was used to construct the Kolmogorov-Smirnov
statistics in the previous section. Now, if a specific synthetic
spectrum is a “good” model, then we expect that Vt ≈ 1. The
aim of this section is to investigate the behaviour of Vt locally
rather than globally. Note that if the synthetic spectrum is a
good model, we expect that a non-parametric smoother (see
details in the appendix) of Vt will be flat around 1. Contrasting
a hypothesized parametric model to a non-parametric model is
a key aspect in an omnibus lack-of-fit test.

Lack-of-fit tests are an attractive tool for model diagnos-
tics since they allow us to asses the goodness-of-fit of a pro-
posed model in a formal way. For a comprehensive discussion
on lack-of-fit tests we refer to Hart (1997). In our setting, we
wish to test the null hypothesis H0 : E(Vt) = 1 against the
alternative hypothesis that H0 : E(Vt) = η(t) where η(t) is a
smooth function which is not necessarily constant along the
wavelength. For the remainder of this section we first formu-
late the hypotheses to be tested in more detail, review the test
procedure proposed by Bowman & Azzalini (1997) and apply
these methods to our setting.

5.1. Test of hypothesis for the “no effect” model

Let y(t) be the rebinned data at wavelength t and let µ(t) be the
“true” spectrum at the same wavelength. We assume that µ(t)
is determined by the values of the stellar parameters Ω = (Teff,
log g, [Fe/H]) and we consider the model

y(t) = µ(t) + ε(t), (4)

with ε(t) being the observational error on the observed spec-
trum. We further assume that E(ε(t)) = 0. Since the parameter
of interest is Ω, we wish to test the hypotheses

H0 : Ω = Ω0,

H1 : Ω � Ω0, (5)

with Ω0 representing the null stellar parameters of the target
being studied. The hypotheses in Eq. (5) can be reformulated
in terms of the synthetic spectrum,

H0 : µ(t) = θ0(t), for all t

H1 : µ(t) � θ0(t), for some t, (6)

where θ0(t) is the null synthetic spectrum corresponding to the
stellar parameters Ω0. In terms of the observed spectrum the
hypotheses in Eq. (6) can be rewritten as

H0 : E(y(t)) = θ0(t), for all t

H1 : E(y(t)) � θ0(t), for some t. (7)
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Under the null hypothesis in Eq. (7) we expect that E(Vt) = 1.
Thus, in terms of Vt, we consider two competing models,

H0 : E(Vt) = 1,

H1 : E(Vt) = η(t) with η(t) � 1, for some t. (8)

Here, η(t) is assumed to be a smooth function. The model un-
der H0 is called the “no effect” model (see e.g., Hart 1997,
p. 148).

To test the hypotheses in Eq. (8), we used the procedure as
described by Bowman & Azzalini (1997). One therefore needs
to calculate the residual sum of squares under the two hypothe-
ses and compare them. Since the mean of Vt under H0 is con-
stant, the residual sum of squares under the null hypothesis is

RSS0 = Σ
n
t=1 {Vt − 1}2 , (9)

and under H1

RSS1 = Σ
n
t=1 {Vt − η̂(t)}2 , (10)

where η̂(t) is a linear smoother of Vt. Note that we do not spec-
ify any parametric structure for η(t) under the alternative in
Eq. (8). The underling assumption that we made is that if a spe-
cific synthetic model it not a “good” model, there is a structure
in the rebinned data that this specific model cannot capture.
This structure can be captured by the non-parametric smooth
function η̂(t). In practice, we use the Loess method, e.g. see
Cleveland (1979) and Chambers & Hastie (1992), to model the
relationship between Vt and the wavelength. More details about
the Loess method is given in the appendix. Intuitively, it is clear
that for a “good” synthetic spectrum RSS0 and RSS1 have close
values. Therefore we will not reject the null hypothesis if RSS0

is sufficiently close to RSS1. Formally, the test statistics which
quantifies the difference between the residual sum of squares is
given by

F =
RSS0 − RSS1

RSS1
· (11)

Note that if H0 is correct we expect that F will be small. Hence,
we reject the null hypothesis for a large value of F.

To proceed further we need to find the distribution of F un-
der the null hypothesis. This can be done using a bootstrap pro-
cedure (Davison & Hinkley 1997) which we describe in more
detail in the appendix. Briefly, the bootstrap procedure we ap-
plied consists of sampling B samples from the original sample
while reflecting the null hypothesis. For each bootstrap sam-
ple we calculate the value of F. The empirical p-value of the
test statistics is simply the proportion of the bootstrap statistics
that is larger than the one observed in the original sample. For a
given significance level α, one cannot reject the null hypothesis
if the p-value> α.

To calculate the residual sum of squares under H1 we
smooth Vt with Loess. Thus, the distribution of the test statis-
tics in Eq. (11) depends on the choice of the smoothing pa-
rameter. As argued by Hart (1997), the smoothing parame-
ter should be chosen in advance and should be fixed for all
bootstrap samples. Therefore, our conclusion of whether to re-
ject the null hypothesis or not depends on our choice of the
smoothing parameter. A method to overcome this problem is to
calculate the so-called “significance trace” (Hart 1997 p. 160;
Bowman & Azzalini 1997 p. 89). In this method, one computes
the p-value for a wide range of smoothing parameters and the

Table 6. Empirical p-values in band 1A. The first column gives the
model number, and the second column the rank of the corresponding
model determined from the β-value in band 1A. Empirical p-values
based on a bootstrap with B = 1000 and smoothing parameter γ =
0.85 are given in the third and fourth column: the third column shows
the empirical p-values calculated under the null hypothesis in Eq. (8),
and the fourth column shows the empirical p-values under the null
hypothesis in Eq. (12). The last column gives the bias as determined
from Eq. (14).

Model Rank (β) p-value p-value Bias
(γ = 0.85) (γ = 0.85) under H0

H0 : E(Vt) = 1 H0 : E(Vt) = µ (%)
51 1 0 0.011 1.361
26 2 0 0.004 1.880
52 3 0 0.000 1.072
27 4 0 0.001 1.590
76 5 0 0.002 0.819
28 6 0 0.000 1.199
53 7 0 0.000 0.708
77 8 0 0.000 0.571
29 9 0 0.000 0.850
56 10 0 0.000 0.725
54 11 0 0.000 0.399
30 12 0 0.000 0.484
101 13 0 0.000 0.311
1 14 0 0.002 2.379
2 15 0 0.001 2.054
31 16 0 0.000 1.209
3 17 0 0.000 1.658
4 18 0 0.000 1.306
5 19 0 0.000 0.921
78 20 0 0.000 0.227

decision (whether to reject H0 or not) is based on the signifi-
cance trace plot. This point will be illustrated in the following
section (Sect. 5.2.1).

In addition to the hypotheses in Eq. (8) we test the follow-
ing hypotheses

H0 : E(Vt) = µ (any constant),

H1 : E(Vt) = η(t). (12)

The null hypothesis in Eq. (12) states that the mean of Vt is
constant, but not necessarily equal to 1. Under H0 in Eq. (12)
the residual sum of squares is

RSS0 = Σ
n
t=1

{
Vt − V̄t

}2
, (13)

with V̄t indicating the mean of Vt. Note that if we reject the
null hypothesis in Eq. (12) the null hypothesis in Eq. (8) will
be rejected as well but not vice versa.

5.2. Application to the data

5.2.1. Band 1A

Table 6 presents the results for the lack-of-fit tests for
the top 20 models in band 1A. For each synthetic spec-
trum 1000 bootstrap samples (B = 1000) were drawn from
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the original sample as described in the appendix. Whenever
the empirical p-value is greater than 0.05 the null hypothesis
cannot be rejected. This means that the relationship between Vt

and t is assumed to be constant for all models with p-value
greater than 0.05.

(1) Testing H0 : E(Vt) = 1:

The third column in Table 6 presents the empirical p-values
calculated under the null hypothesis in Eq. (8). Using a
smoothing parameter γ = 0.85 for the Loess model, the
empirical p-values are all 0. Thus, we reject H0 in Eq. (8) for
all models.

(2) Testing H0 : E(Vt) = µ:

The bias in the last column in Table 6 is defined as

bias = (V̄t − 1) × 100, (14)

where V̄t was estimated under the null hypothesis in Eq. (12).
Thus, a good synthetic model for the spectrum is one with em-
pirical p-value greater than 0.05 (hence, constant relationship
between Vt and t) and small bias (hence, the constant is closed
to 1). When the empirical p-value was calculated under H0 in
Eq. (12) (with γ = 0.85) the null hypothesis is rejected for all
models. Figure 7 shows the plot of Vt with Loess smoothers
(with several values for the smoothing parameter) for model 51
(Teff = 4300 K, log g = 1.20 dex, [Fe/H]=−0.70 dex). Note
that, for γ = 0.85 (the value that was used to calculate
the empirical p-value in Table 6) the Loess model is quite
flat, but lies above 1. This means that, in general, the values
of the rebinned observational data are greater than the val-
ues of the synthetic spectrum along the wavelength. Figure 8
shows similar patterns for model 26 (Teff = 4230 K, log g =
1.20 dex, [Fe/H] = −0.70 dex). Model 52 (Teff = 4300 K,
log g = 1.20 dex, [Fe/H] = −0.50 dex) is shown in Fig. 9.
Figure 10 shows the results for model 125 (Teff = 4440 K,
log g = 1.80 dex, [Fe/H]= 0.00 dex), which fit the data poorly
according to the least squares criterion. Note how the Loess
smoother is always below 1 and suggest an increasing trend
with the wavelength.

We turn now to the discussion on the effect of smoothing
parameters on the estimation procedure which depends on the
choice of the smoothing parameter of the Loess. To be able to
calculate the p-value one needs to construct the null distribu-
tion of the test statistics. This can be done only if the smoothing
parameter is held fixed for each bootstrap replication (e.g., see
Hart 1997, Sect. 6.4). King et al. (1991) proposed to compute
the p-values corresponding to several different choices of the
smoothing parameter. The plot in which p-values are plotted
versus the smoothing parameter is called a “significance trace”.
Figure 11 shows the significance trace plot for model 51 for the
null hypothesis E(Vt) = µ. For all values of γ the null hypothe-
sis is rejected (the p-value is below the horizontal line of 0.05).
This means that the data do not support the null hypothesis. The
same conclusion can be drawn for all other models. The fact
that, for all models, the significance trace for the null hypoth-
esis E(Vt) = µ is below the 0.05 line regardless of the choice

.

.

.

.

.

.

.

.

.

.

...
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

...

.

.

.

..
..
..

.

..
.
.

.

.

.

..

.

..
.

..
.
.
.
..

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..
.

..
..

.

.

...

.

.

.

.

.

..
.
.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

..

.

..

.

.

.

.

..

.

.

.

..

.

...

.

.

.

..

...

.

.

.

.

.

.

.

.

.

.

..
.

..
.

.

.

.

.

..
.
.

.

.

..

.

.

.

...
.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

..
.
..

.

.

.

.

.

..

.

.

..

.

..

.

.

.

.

..
.
.
.
.

.

.

.

.

.

.

......

..
.

.

.

.

.

...

.

.

.

.

.

..

.

.

.

.

...
.

.

.

.

.

.

.

.

.

.

..
.

...

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

..
.
.
.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

...

.

.

.

.

.

......

.

.

..
.

..

.

.

...

.

..

..

.

.

....
..
..

.

.

.

..
.

.

.

..

.

...
.

.

....
.
.

.

.

.

wavelength[micron]

Vt
2.40 2.45 2.50 2.55 2.60

0.
98

1.
00

1.
02

1.
04

1.
06

band 1A: model 51

gamma=0.5
gamma=0.75
gamma=0.85

Fig. 7. Band 1A: model 51 (Teff = 4300 K, log g = 1.20 dex,
[Fe/H]=−0.70 dex). Vt and the Loess smoother with three values of γ.
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Fig. 8. Band 1A: model 26 (Teff = 4230 K, log g = 1.20 dex,
[Fe/H]=−0.70 dex). Vt and the Loess smoother with three values of γ.

of the smoothing parameter means that the null hypothesis is
rejected for all possible values of the smoothing parameter.

5.2.2. Bands 1B, 1D, and 1E

The results in bands 1B, 1D, and 1E are similar: the empirical
p-values for all model were either zero or very close to zero.
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Fig. 9. Band 1A: model 52 (Teff = 4300 K, log g = 1.20 dex,
[Fe/H]=−0.50 dex). Vt and the Loess smoother with three values of γ.

Hence, the null hypothesis in Eq. (8) was rejected for all models
in the three bands which indicates that the synthetic spectra do
not follow the same pattern as the rebinned observational data.

5.3. Discussion

What are the lessons learned from the rejection of the null hy-
pothesis in so many cases? It may be clear that this failure can-
not be solved by relaxing the criteria, e.g. by lowering the level
of significance α. These lack-of-fit tests are an objective tool
to demonstrate that there is still too much structure left in Vt.
This is illustrated, e.g., in Figs. 12−15 where model 39 with
a very good goodness-of-fit is depicted in bands 1A, 1B, 1D,
and 1E. As can be seen from the upper panel in Fig. 12 the low-
excitation 12CO lines are often predicted as being too strong,
while it is clearly visible in the upper panel in Fig. 13 that
the low-excitation OH-lines are often predicted as being too
weak. This systematic discrepancy between observations and
theory is captured in Vt and its Loess smoother, explaining why
the lack-of-fit test rejects the null hypothesis. This systematic
problem is not solved by one of the other models in the grid.
Neither it is possible to solve this problem by reducing the car-
bon abundance ε(C) or enhancing the oxygen abundance ε(O),
since then other molecular features are mispredicted. The de-
scribed problem may be an outcome of three possible reasons.
(1) We should enlarge our vector parameter Ω including not
only the effective temperature, the gravity, and the metallicity,
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[Fe/H]= 0.00 dex). Vt and the Loess smoother with three values of γ.

Smoothing parameter

P-
va

lu
e

0.75 0.80 0.85 0.90 0.95

0.
0

0.
01

0.
02

0.
03

0.
04

0.
05

significance trace plot for model 51

Fig. 11. Significance trace for model 51 for the null hypothesis (H0 :
Vt = µ) in band 1A. The dotted horizontal line represents a signifi-
cance level of 0.05. Whenever the significance trace plot is above the
dotted line, the null hypothesis cannot be rejected.

but also the carbon, nitrogen and oxygen abundance and the mi-
croturbulence, thus enlarging our grid to a 7-dimensional grid.
However, some first tests done in the framework of the study in
Decin (2000) do show that this inflation of the parameter range
does not solve the problem in the case of α Boo. (2) Secondly,
we have to consider that inaccuracies may occur in the temper-
ature distribution in the outermost layers of the model photo-
sphere (Decin et al. 2003b), indicating that some assumptions,
on which the theoretical models are based, are questionable for
cool stars. One of the assumptions in the -code is that
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Fig. 12. Band 1A. Upper panel: comparison between the rebinned
data (solid line) and theoretical data of model 39 (dashed line). Lower
panel: Vt and the Loess smoother.

radiative equilibrium is required, also for the outermost layers.
This implies that temperature bifurcation, caused by e.g. effects
of convection and convective overshoot with inhomogeneities
in the upper photosphere, cannot be allowed for. Consequently
the cores of e.g. the satured CO and OH lines are not predicted
with full success, resulting in a systematic pattern in Vt and
so to a rejection of the null hypothesis. At least for α Boo, re-
cent studies done by Ryde et al. (2002) show that the outermost
surface layers may be a few hundreds of Kelvin cooler than
predicted by the  code. (3) Inaccuracies in the (satel-
lite) data-reduction process result in (non)-rebinned data being
systematically off from the “true” stellar spectrum. A problem
with the Relative Spectral Response Function (RSRF) at the
shorter wavelenghts of band 1A has already been reported by
Decin et al. (2003b). Since the data are divided by the RSRF, a
small problem with the RSRF at these places may introduce a
pronounced error at the band edge. This kind of data-reduction
problem can never be captured by the synthetic predictions,
thus resulting in a systematic rejection of the null hypothesis.
Using lack-of-fit tests for a sample of standard stars covering a
broad parameter space, one can trace calibration problems.

In general, we may conclude that a systematic rejection of
the null hypothesis in the lack-of-fit tests is an indication of a
still incomplete modelling of all the physical mechanisms de-
termining the spectral footprint in the wavelength range con-
sidered or of problems with the data reduction.
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Fig. 13. Band 1B. Upper panel: comparison between the rebinned data
(solid line) and theoretical data of model 39 (dashed line). Lower
panel: Vt and the Loess smoother.
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Fig. 14. Band 1D. Upper panel: comparison between the rebinned
data (solid line) and theoretical data of model 39 (dashed line). Lower
panel: Vt and the Loess smoother.

6. Summary and conclusions

In the first part of this article (Sects. 3 and 4) we have demon-
strated that the use of either a local or a global goodness-of-fit
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Fig. 15. Band 1E. Upper panel: comparison between the rebinned data
(solid line) and theoretical data of model 39 (dashed line). Lower
panel: Vt and the Loess smoother.

parameter is an important first step to objectively determine
the uncertainty range on the estimated parameters. But a
very important message is that combining both a local and a
global deviation estimating parameter allows us to pin down
the parameters with even more certainty. In the test-case of
the ISO-SWS data of α Boo, we estimate the stellar pa-
rameters Teff, log g and metallicity as ranging respectively
from 4160 K to 4300 K, from 1.35 to 1.65 dex, and from −0.30
to 0.00 dex using synthetic spectra calculated from 
model atmospheres.

Having determined the “best” models is however not the
end of the story. The use of lack-of-fit tests enables us to de-
tect systematic patterns in the difference between observed and
theoretical data. For the case-study of α Boo, we obtained that
in all the 4 sub-bands the closest synthetic spectra to the ob-
servational data are not capable of capturing all the structure
from the data, i.e. the “best” models are not “good” enough.
Both gaps in our knowledge of the physical mechanisms tak-
ing place during the life of a star, too simple assumptions in the
theoretical modelling, uncertainties in additional stellar param-
eters – which are now kept fixed – and satellite data reduction
problems may result in the rejection of the null hypothesis in
the lack-of-fit tests.

As was illustrated by the example of the ISO-SWS data
of α Boo, the statistical methods presented in this paper for
comparing observational and synthetic data provide useful,
practical and general tools: (1) to estimate objectively the stel-
lar parameters and their uncertainties from observational data
and a grid of synthetic spectra; (2) to refine the uncertainty
intervals by combining a local and a global goodness-of-fit
parameter; and (3) to trace if our knowledge of the physical
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Fig. A.1. Band 1A: model 58 (Teff = 4300 K, log g = 1.35 dex,
[Fe/H]=−0.30 dex). Vt and 4 Loess smoothers with γ equals to 0.1
(solid line), 0.25 (short dashed line), 0.5 (long dashed line) and 0.75
(dotted-dashed line).

mechanisms in a star, of the theoretical (numerical) modelling
of the stellar photosphere or of the calibration process still need
considerable refinement. The main limitation of this methodol-
ogy is that measurement errors are still not included. In the
following paper in this series (Shkedy et al., submitted) we
will use hierarchical Bayesian models for the spectrum. In this
approach, the measurement errors will be incorporated in the
model as well.
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Appendix A: Smooting using Loess models

Non-parametric regression models aim to describe the relation-
ship between a response variable y and a predictor x. The model
has the general form of

yi = η(xi) + εi, i = 1 . . . , n,

where η is considered to be a smooth function. The local linear
approach for non-parametric models is based on solving the
local weighted least square problem

minα,β
n∑

i=1

{
yi − α − β(xi − x)

}2
w(xi − x; γ).

Here, w is a weight function symmetric around zero and γ is a
smoothing parameter which controls the width of w and there-
fore the amount of smoothing in the model. Local quadratic
models can be fitted by including the term (xi − x)2 into the
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model. In our setting we applied a local linear model. The
effects of the smoothing parameter on the fitted model is il-
lustrated in Fig. A.1 which shows 4 Loess smoothers with
smoothing parameters increasing from 0.1 to 0.75. Clearly, as
the smoothing parameter increases, the fitted model becomes
“more” smooth.

For a further discussion about Loess, which stands for “lo-
cal regression”, we refer to Cleveland (1979) and the book of
Bowman & Azzalini (1997). An intuitive introduction about
Loess can be found in Cleveland (1993). The book of (Hart
1997) gives a comprehensive discussion about smoothing and
data driven choice of the smoothing parameter.

Appendix B: The bootstrap procedure

We applied the following bootstrap procedure in order to cal-
culate the empirical p-values.

– Construct the residuals êi = Vti−η̂(ti) where η̂(ti) is an initial
estimator for η(ti).

– Create a new set of normalised residuals, ẽi = êi −∑i êi/n.
– Create the bootstrap observation by sampling a value with

replacement form ẽ1, . . . , ẽn and define V�ti = 1 + ẽ�i .
– Calculate the value of F�b for the bootstrap sample.
– Repeat the procedure above B times.

The empirical p-value is the proportion of the bootstrap statis-
tics, F∗1, . . . , F

∗
B, that are greater or equal to the value of F

which is calculated from the original sample. For further dis-
cussion of the bootstrap procedure we refer to the books of
Davison & Hinkley (1997) and Bowman & Azzalini (1997).
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