2015+2016 "
FACULTEIT INDUSTRIELE INGENIEURSWETENSCHAPPEN

master in de industriéle wetenschappen: elektronica-ICT

Masterproef
Evaluation of CAESAR candidates on FPGA

Promotor :
Prof. dr. ir. Nele MENTENS

Promotor : Copromotor :
dr. BEGUL BILGIN Dhr. BOHAN YANG
Dhr. DANILO SIJACIC

Gezamenlijke opleiding Universiteit Hasselt en KU Leuven

Jasper Gorissen

Scriptie ingediend tot het behalen van de graad van master in de industriéle
wetenschappen: elektronica-ICT

»»hasselt »»hasselt

2015+2016 _
Faculteit Industriéle

Ingenieurswetenschappen
master in de industriéle wetenschappen: elektronica-ICT

Masterproef
Evaluation of CAESAR candidates on FPGA

Promotor :
Prof. dr. ir. Nele MENTENS

Promotor : Copromotor :
dr. BEGUL BILGIN Dhr. BOHAN YANG
Dhr. DANILO SIJACIC

Jasper Gorissen

Scriptie ingediend tot het behalen van de graad van master in de industriéle
wetenschappen: elektronica-ICT

»pNasselt

Acknowledgements

First off all, | would like to express my greatagipreciation to all my supervisors, Prof. dr.Nele
Mentens, dr. Begiil Bilgin, Mr. Bohan Yang and Marillo Sijai¢ , for their encouragement, great
advice and enthusiasm in guiding me in the coursei®thesis. Prof. dr. Ir. Mentens initial advice
helped me get started, and her continued help imie &6 the more difficult mathematical equations
helped me overcome many problems. Dr. Bilgin and Yéng both helped immensely in
understanding the authenticated encryption algostand more than once offered vital advice when |
was stuck. They were always available for questimsalso offered many remarks on the thesis,
which helped to improve it. Mr. Sii& offered a great and patient step by step tutorigdhe Design
compiler, which allowed me to write a script to@uate the generation of results. He also gave great
advice on this thesis and on the choice of companisetrics.

I would also like to thank my mother and her friemtey supported my decisions and provided me
with everything to get me where | am now. | alsailgdike to thank my brother, friends, and close
family for their support. A special thanks also gt to my girlfriend, who kept my motivation high
and who helped even when she had little time.

Table of contents

ACKNOWIEAGEMENLS ... [
LIS Of TADIES ...t e e e e e e e e e e e e e e nn V.
(IS A T U= Vii.
[o)l =T [U= U1 0] I PP PPPUPTPPPRPPPP X. 1
[00 0| =1] PP PP PRPP PP PP X..
LiSt Of @DDreVIatioNSccoiii e Xiii
Y o LY 1= Tt (N[(= 5 F= T T £ TP XV
ADSTIAICT ...t emmernr et XVii
R [011 (0T [U Tt i o] o IR PP P P PP PPPPPPPRPRPN 1
2 Materials and MELNOUS.cuuiiiiiicerrn e et 3
2.1 AuthentiCated ENCIYPLIONueeiiiiiieiii et e e e e e 3
P A U £ 1= To I o oo = o 1 TSP PRPRN 5
221 XIlINX ISE WEDPACK ...ttt e e 5
222 ABAD AP e e 6
2.2.3 ATHENa & Design Compilercoooi oo 9
G T I 11V, = o PP PP PP PP PPTPPPPPRPN 11
R 700 R Y o o T 1] o S 11
3.1.1 THIVIA —SC ettt nnmmnteeseeestnennnnnnnee 12
3.1.2 VPV-HASN et 13
I 7Y |5 T o'oY [R 14
3.2.1 TOPIEVEI DIOCKeiiiiiii e 14
3.2.2 DAt@ PAtNooeiiiiiii s 15
3.2.3 Finite State MacChiNeoeiiiiiiii e 17
3.3 Trivia-CK OptimISALIONcccoi i i 18
331 BASIC COUE......oiiiiiiee ettt e e et e e s e et e e e e e e e e aane 19
3.3.2 Area OPtMISALIONS cce s i e e e ettt e e e e e e e e e e e e 19
3.3.3 Speed OPUMISALIONS.......cciiiiiiirreeee s e e e et e e e e e e e e eeeeennnnneeeeeaeens 23
3.3.4 THIVIA-CK VEISION 2 ...ttt 26
3.35 RESUILS ...ttt e e s e e e e e e e e e e 26
O (=1 PP 33
s R AN o o 41 33
4.1.1 SPONGE CONSIIUCTIONeeiiiieeeiiiiiie e et e e e e e e et e e e e e e s beeeeee s e rneees 33
4.1.2 MonkeyWrap CONSLIUCLIONccevviiiiiitceeeee e eeeeeeeeeeeeeeeeeeeee e reeeneeeeeeees 34

4.1.3 MoNKeyDUPIEX CONSIIUCTIONceviiieiii s st 35

414 KECCAK-p permutationccceeieeee e 36
Y |5 T I o o T [40
4.2.1 [z U= B 0= L1 PP 40
4.2.2 SEALE MACKNINE ...t ettt e e e e e e e e e e e e e r e e e s 42
4.3 Ketje OptiMISALIONooiiiiiiiiieiiiee et ——nnn—eeesaearraarrrrrrrrrnre 42
O Tt R Y (= = W o o1 [1 SY= 11 o] o PRSP 42
O T S T o =T To o] o] 1] 4 15T 1] o IR SRPSR 46
4.3.3 State machine OpPtMISALIONScuuvteaamiiir e e nreee e 48
4.3.4 RESUILS ... e e e e e e 51
5 IMORUS e oo e oo e oo e e et e e et e e et e ettt ettt e et ettt et aaaaaaaaaas 55
L0t R Y o o T 1 T o PP 55
L0 N R - 1 (=Y oo = L (PRSPPI 57
5.2 WHDL COE ...t et eeeeeeennnnnnnennnes 59
5.2.1 [U= B 0= 11 PP 59
5.2.2 State MACKINEooiiiiiiiiii ettt e e e e e e e e e 60
5.3 MORUS OptimMISAtiONcccoiiiiiiii e e e e s s annnnna 61
53.1 RESUILS ...t ettt e e e e e e e e e e e e e e e 62
6 PerformanCe COMPAIISONuu i uieueeeeeueeeeeeueeteeeeeeeeaaeeeneeeaaee e e s s msssnesensesnnennnnsnnnnnnns 65
7 CONCIUSION & AISCUSSIONcciiiiiiie ittt ee ettt e s 69
[T o LU PP PP PPPPPPPRI 71
Y o] 01T T [PP 73

List of tables

Table 2-1: CAESAR CaANUIAALESccoiiiii ettt a s nnee e e e s e e e e e e e e e e annnnes 4
Table 3-1: Estimated gate counts of 1-bit to 64hbitdware implementations [18]..............cceeee.. 12
Table 3-2: Area results for basic Trivia-Ck USINEAD WIapPEerc.ceeviiiiieieeieeeiieeriieeeemreeennennnns 26
Table 3-3: Area usage for basic Trivia-ck WithOUEEAD WIapPEr..........uuvvvrrereereiiiiniinnimmmmmseeee e 26
Table 3-4: Area results for area optimised TrHKa:C..........oovviviiiiiiiiiiieiieieeeeeeeeeeeeees 27
Table 3-5: Area results for speed optimised TroHa-.............ooovvviiiiiiiiiiiiiieeeeee e 27
Table 3-6: Area results fOr TIIVIA-CK V2.....couuuiiiiiiiiiee ittt e 27
Table 3-7: Timing results for DASIC THVIA-CK......ccooiieiaee e 27
Table 3-8: Timing results for area optimised THEIA.uuuiiiiiiiiiiie e 28
Table 3-9: Timing results for speed optimised THEKcoociiiiiiiiee e 28
Table 3-10: Timing results for TriVia-CK V2 ..o 28
Table 3-11: ASIC results for basic Trivia-CK COU@...........uuuiiiiiiieiiii e 31
Table 3-12: ASIC results for Trivia_ck area Optisioncccceiiiiiiiieiniiiiee e 31
Table 3-13: ASIC results for Trivia_ck speed OpHBIION................cevviiiiiiiiiieieeeees e e e eeeeeaeaaans 31
Table 3-14: ASIC results for Trivia_CK V2. 31
Table 4-1: Ketje PArGMELEISciiiiiiceeeeee ettt e e e e e e e s eans e et e e e e e e e e neeeeaeeeeas 33
Table 4-2: RNO OffSELS [24] ..eevveiiieeiiiet cemmee s s e e e e e e e e 38
Table 4-3: Round constants for each of the mod&oinkeyDupleXccceevveeeeriiiiiiieeennnnens 40
Table 4-4: Area results for speed optimised Ketjgthout/with optimised state machine 51
Table 4-5: Area results for area optimised Ketjafinout/with optimised state machine.............. 51
Table 4-6: Area results for speed optimised KetjetBnout/with optimised state machine........... a3l
Table 4-7: Area results for area optimised Ketj@in optimised state machine .. S o % |
Table 4-8: Timing results for speed optimised Katpithout/with optimised state machlne 52
Table 4-9: Timing results for area optimised Ketjgithout/with optimised state machine.......... Y

Table 4-10: Timing results for speed optimised &8tjwithout/with optimised state machine....52..
Table 4-11: Timing results for area optimised K8tjavith optimised state machine52

Table 4-12: Latency results for Ket ...ttt 53
Table 4-13: ASIC results for Ketje implementatiovith optimised state machinec... 54
Table 5-1: MORUS PAramMELErS [26]o ceeeeeeeeaaaaaaaeaaaens 55
Table 5-2: Rotation constants 0f MORUS [26].....cccvvvvvviiiiiiiiiiiiiiiiiiiiiiiiannnssesssenssnnnnnnnnnn. 57
Table 5-3: Shift constants 0f MORUS [26]....ccccccuuuiiiiiiiiieeeeieie e 57
Table 5-4: Area results for MORUS-640.coouuiiiiiiiiiiiieeeeiiiiiiie e 62
Table 5-5: Area results for MORUS-1280.ccceeeiiiiiiieeiiiiiiiiiiieee e e e e e e e e 62
Table 5-6: Timing results for MORUS-640 ... eoiiiiiiiiiiiieieee et 63
Table 5-7: Timing results for MORUS-1280comuruuuuiiiiiiiiiiiiiiiiieeiieneeneenennnnnnsesssrennnnn.. 63
Table 5-8: ASIC results for MORUS implementations.ccuuvieieeieeeiiiiiiiieieeee e 63
Table 6-1: Results fOr MINIMUIM GIE@........ o eeeeeeieiitiieiieeeae e e e s eeesssssrr e eaeee e e s nnnreeeees 65
Table 6-2: Results for maximum SPEEU.......cuuuei i 65
Table 6-3: Throughput/ area results for both oahoN pathscceevvveeiiiiiiirreeeneen 66
Table 6-4: CAESAR results implemented with the AE&®e on Virtex 6 [29].............ceevvveereeee. 67

vi

List of figures

Figure 2-1: EtM, E&M, MIE [LL] ..euuriiiiiiiiiimmmm e ee e ee ettt e e e e et aa e e e aaaaaa e 3
Figure 2-2: Generic stream CIPNET [13] ... e oo it 4
Figure 2-3: The Sponge CONSIIUCTION [14] .. oom et e e 5
Figure 2-4: An ISIiM teSthench OULPULoceeeeeiii i, 5
Figure 2-5: AEAD INTEITACE [L15] ...iiiiiiiiiit oottt mmmeeeeeeeeseeeeseeeeeeeneennnennne 6
Figure 2-6: TWO fOrmats fOr SDI [15].....uiiicceeeiiiiiiiie e e e e e e e e 7
Figure 2-7: FOrmats for PDI [L5]cceiiiiiieeeeeiee ettt e e 7
Figure 2-8: The segment NEAUEr [15]cccceemiiiiiieee it e e e e 8
Figure 2-9: The AEAD interface [15]ciiveiiieiiiiiiiiiiiiiiiiiiiiiii s ees e seeenseenanennnnnnnes 8
Figure 3-1: Trivia-CK CIFCUIL [17] ...eeeeiiiiiceee et e e e e e eeeas 11
Figure 3-2: The Trivia-SC cipherstream and theitinvcipherstream [17], [19].......ccevvviiiiiiceenn. 13
Figure 3-3: TriVia-CK CIPNEICOIEuuuuiiieeecee et 15
Figure 3-4: Trivia-CK data Path............cemeerieeiee e 15
FIQUIE 3-5: VPVNASK [L7] ..euniiiiiie oo s s s e e e s s e 16
Figure 3-6: Field MUILIPHEToooiiiiiee ettt 17
Figure 3-7: Trivia Stat€ MACKNINE ... e e e e e e e 18
Figure 3-8: Testbench results from the basic THKA/EIrSIONueeuiiiiiiiieie e rmmmmme e 19
Figure 3-9: A 4:1 mUX USING 2 LUT'S [20] ..o eeeeeeiiiiieiiie et 20
Figure 3-10: state machine for the area optimigatia................cccoevvviiiiiiiiiiieieeeeee e, 22
Figure 3-11: Pipelined field MUILIPHET ... rereiiiiiiiiiiiiiii e 23
Figure 3-12: state machine of the speed OPtIMISEIB C...............occuiiiiiiiiiiee i 25
Figure 4-1: The sponge CONSIIUCHON [14] .o it e e e e ee e e e e e e e e e e e e e e e e eeeees 33
Figure 4-2 : DUPIEX CONSIIUCION [14]eii oottt e e e e e 34
Figure 4-3: Encrypting data using MonkKeyWrap [23].........ccouiiiimmmimieieeeeee e e 35
Figure 4-4: The MonkeyDuplex cONStruCtion [23] e.oooooiiiiiiieieeeeee e, 36
Figure 4-5: Naming conventions for the KECCAK SHRM]coooiiiiiiiiiiiiiiiiimeeee e 37
T 8L =R G N T = T 22 37
Figure 4-7: The rN0 STEP [24] ..o e e e e e 38
Figure 4-8: The Pi STEP [24]....cco oot cmmme ettt e e e e e e e e e e e e r e e e s 39
Figure 4-9: The Chi SteP [24] ..o oo oo, 39
Figure 4-10: Ketje data pathcooo oo 41
Figure 4-11: Area optimised KECCAK round block [25]..........cooooiieeeee 43
Figure 4-12: Ketje area state MacChing ... cooiiiiiiiiiie ettt 45
Figure 4-13: Ketje speed state Machineg.o i s 47
Figure 4-14: Area optimised Ketje with [eSS States.............ccovviviiiiiiiiiiiiiiieeeeee e 49
Figure 4-15: Speed optimised Ketje with eSS States.........ccooveeieiii i, 50
Figure 5-1: The encryption process of MORUSoooiiiiiiiiiiiiiiiceeeeeeeeee e 56
Figure 5-2: The state update fUNCHION [26] . s rrrrrrrnniiiieiae e eeee e 58
Figure 5-3: MORUS data PAtNccooi e s e e e e e s eeeeees 59
Figure 5-4: MORUS state Machingcooooiooei e 61

Vi

viii

List of equations

Equation 3-1:
Equation 3-2:
Equation 3-3:
Equation 3-4:
Equation 3-5:
Equation 3-6 :
Equation 3-7:
Equation 4-1:
Equation 4-2:
Equation 4-3:

Vandermonde MatriX [L17].....cocooeeeeeeeeeeieeeeee e 13
Primitive polynomials of GFERaNd GF(2) [17] ..ccvveviieeiceeeeee e 14

Extended input generation [L7] .o 14
Throughput CalCulation [22] ... cceeeeeevvveiieriiiiiiiiiiiiiiiieeaearaeerereerr .. 28
Throughput calculation for Short NEES [22]coovveiiiiiiiiiiieee e 29

Delay calculation iN CYCIESccoiiiiiiieee e 29
=Y =7 o o YT 30
Input string to 3d matrix MappPiNg][23.......ccooviiimirimiiieeee e mme e 36

Round constant value [23]....cccooe oo 39
IC CONSEANE VAIUE [23] ... eeeeeeriie e 39

List of graphs

Graph 6-1: Throughput/ Area of CAESAR candidates/(Throughput)ooe e

Graph 6-2: Throughput/ Area of CAESAR candidateghthroughput)

Xi

Xii

List of abbreviations

AD

AE
AEAD
AES
API
ASIC
ATHENa
CAESAR
CosIC
DES
DO
E&M
ECCode
EOI
EOT
EtM

FF

FM
FPGA
FSM
GF
HDL
I/0

ISE

LSB
LUT
MAC
MSB
MtE
Npub
Nsec
PAR
PDI
RC
SDI
SHA-3
VHDL
WEP
XOR

Associated data

Authenticated encryption

Authenticated encryption with authenticated data
Advanced encryption standard

Application programming interface
Application-specific integrated circuit

Automated tool for hardware evaluation

Competition for authenticated encryption: security, applicability, and robustness

Computer security and industrial cryptography
Data encryption standard

Data output

Encrypt-and-MAC

Error correcting code

End of input

End of type

Encrypt-then-MAC

Flip-flop

Field multiplier

Field programmable gate array
Finite state machine

Galois field

Hardware description language
Input/output

Integrated synthesis environment
Initialization vector

Least significant bit

Lookup table

Message authentication code
Most significant bit
MAC-then-Encrypt

Public message number

Secret message number
Place and route
Public data input

Round constant
Secret data input

Secure hash algorithm 3

Very high speed integrated circuit hardware description language
Wired equivalent privacy
Exclusive or

Xiii

Xiv

Abstract (Nederlands)

Evaluation of CAESAR candidates on FPGA

Auteur: Jasper Gorissen
Interne promotor: Prof. dr. ir. Nele MENTENS
Externe promotor: Dr. Begul Bilgin

Externe copromotoren: Dhr. Bohan Yang & Dhr. Dadlij&i¢

Het beveiligen van data is essentieel in ons le@endat krakers manieren vinden om bestaande
cryptografische algoritmen te kraken, moeten depéueren. Authenticated encryption (AE) biedt
zowel confidentiality als authenticity van data sitaan aan. De nood voor AE is er gekomen nadat
het combineren van bestaande algoritmen die cantfadidy aanboden met die wat authenticity
aanboden resulteerde in onveilige schema’s. NigAi&valgoritmen worden ingezonden naar de
CAESAR cryptografische wedstrijd. Onder andere degtartement Elektrotechniek (ESAT) van KU
Leuven test deze algoritmen op sterkte en hardpragtaties om zo hun kwaliteit te bepalen.

Het doel van deze masterproef is het implementesiardrie CAESAR inzendingen: Trivia-ck, Ketje
en MORUS in de AEAD API. Twee prestatie-eigensclesypgie de mogelijke applicaties helpen
bepalen, opperviakte en snelheid, zijn gekozepgtisnalisatiedoelwitten voor deze inzendingen. De
implementaties zijn getest met ATHENa en Design giten

De verschillende implementaties tonen de minimajeeoviakte en maximale snelheid van elk
algoritme, alsook de afwegingen tussen de tweeeBdtaten zijn ook vergeleken met andere
CAESAR inzendingen, om zo een beter inzicht tegknjin hun kwaliteit. Hier is aangetoond dat
Ketje het kleinste oppervlakte heeft en dat MORES @itstekende snelheid/opperviakte verhouding
heeft. Trivia-ck, hoewel deze een hoge throughpetfthin de snelheid geoptimaliseerde versie,
presteert niet goed in opperviakte vergeleken ragedt.

XV

XVi

Abstract

Evaluation of CAESAR candidates on FPGA

Author: Jasper Gorissen
Internal supervisor: Prof. dr. ir. Nele MENTENS
External supervisor: Dr. Begul Bilgin

External co-supervisors: Dhr. Bohan Yang & Dhr. DaSijagi¢

Data security is an essential part of our dailgdivHowever, cryptanalysts discover ways to crack
existing cryptographic algorithms, making it ne@eggo improve them. Authenticated encryption
(AE) offers the confidentiality and authenticity ddita simultaneously. The need for AE has risen
because combining existing algorithms that proeolafidentiality with those that provide authenfycit
results in insecure schemes. New AE algorithmsabenitted to the CAESAR cryptographic
competition. Amongst others, the department of ksl Engineering (ESAT) at KU Leuven tests
the AE algorithms on their strength and performaodeelp determine their overall quality.

The goal of this thesis is the implementation oe¢hCAESAR submissions: Trivia-ck, Ketje and
MORUS, in VHDL, using the AEAD API. Two performanaeetrics, area and speed, which help
determine the range of possible applications, hosen as optimisation targets for these submissions
The implementations are tested on those metricgyusTHENa and Design Compiler.

The different implementations show the minimal aaed the maximal speed of each algorithm, as
well as the trade-offs between the metrics. Thelteare also compared to other CAESAR
submissions, in order to get a better perspectivine quality of the implementations. Here it shows
that Ketje has the smallest area usage and MORB &rhaxcellent speed/area ratio. Trivia-ck, while
having good throughput in the speed optimised warsinderperforms in area usage compared to
others.

XVii

XVili

1 Introduction

Cryptography is the field of research that encorsgsishe practice and study of techniques used to
secure communication in the presence of unwaniediphrties, which are called adversaries [1].
Cryptographic algorithms are used in many parwunflives, from securing electronic payments and
cell phones to internet security and many moreoAigms used to encrypt and decrypt data are called
ciphers. Encryption is the transformation of infaetron from a useful form of understanding to an
opaque form of understanding, and decryption iogmosite. This transformation of information is
usually achieved by using a key. In symmetric Kgpidthms, data is encrypted using a secret key,
and only those with the same secret key can detirgpdata. In the case of asymmetric key
algorithms, two keys are used, one public and enees, that are somehow paired together. The
sender encrypts the data using the receiver pkélicand now only the receiver can decrypt thisdat
using his secret key.

The common goals in cryptography are message @mnifality, integrity and sender authentication
[2]. Confidentiality is the privacy of the messagdich is achieved by using a key as mentioned
before. Message integrity (the ability to detecmfes in the message content) and authenticitydbei
able to verify the identity of the sender) can beieved by using a message authentication code
(MAC). In order to achieve confidentiality and aeritication at the same time, authenticated
encryption algorithms are used. The need for §fps bf encryption has arisen from observations that
combining secure encryption schemes (to providéidentiality) with secure MACs (to provide
authenticity) was difficult and prone to errors.[3]

The other aspect of cryptology is cryptanalysisicivistudies the methods on how to crack ciphers
and their implementations. Since cryptanalystsadiscnew cryptanalytic attacks and have more
powerful tools at their disposal to crack existaigorithms, cryptographic algorithms need to evolve
For instance, the data encryption standard (DES8)phce predominant symmetric-key algorithm, was
cracked by discovering the key in 22 hours and itfutas using brute force attacks, its weakness
being its small 56-bit size [4]. In order to promdhe creation of new algorithms, cryptographic
competitions are organised. For instanceativanced encryption standard (AES) competition was
announced in 1997, called for "an unclassified liplybdisclosed encryption algorithm capable of
protecting sensitive government information welbithe next century" [5]. The winning algorithm,
Rijndael, has superseded DES and is now used aéwestwhere in secure applications, like
bankcards and network security [5]. AES was folldveg other competitions, like eSTREAM and
SHA-3, each with their own focus. The latest ostheompetitions, CAESAR, focuses on
authenticated encryption. CAESAR stands for ‘Comtipetfor Authenticated Encryption: Security,
Applicability, and Robustness’ [5].

In the competition, the submitted algorithms astet@ against several cryptanalytic attacks to nreasu
their strength as well on their performance, suchraa usage, speed and power usage in hardware.
These performance metrics help determine the rahgessible applications. The smaller the
hardware usage, the smaller the needed chip, ggebihe range of applications. The same goes for
speed and power. An ideal algorithm will be secsnaall and fast. The submissions are also tested on
their performance in software.

The goal of this thesis is testing the area anddpardware performance of several submitted
CAESAR candidates. The chosen algorithms are Fokj&Ketje and MORUS. They are tested on
field-programmable gate array (FPGA) and applicatipecific integrated circuit (ASIC) chips. The
difference between FPGA and ASIC is that FPGAgaeeade chips, with a fixed number of logic

1

cells, depending on the chip, grouped togethelidass whereas in ASIC chips the number of logic
gates is determined by the design. FPGA’s are geanomable and are often used for prototyping.
After the prototyping stage is done, developersligswitch over to ASIC, where they can control
the area, timing etc.

The submitted algorithms are written in C-code sgyzlocode, which can’t be used to evaluate
hardware. So this hardware code needs to be cresied a Hardware Description Language (HDL)
such as VHDL or Verilog [6]. The objective of thigesis is to investigate the minimal area usage and
maximal speed of each algorithm, and investigatiegtrade-offs between these two metrics. In order
to achieve this, two versions of the code are etkaine that is optimised for speed and another for
area. Two different implementations are neededusscmost optimisations used to improve one
characteristic will be at cost of the other. Thesle then needs to be embedded in an application
programming interface (API), which allows the odésivorld to interact with the algorithm. The
results on area and speed are then used in a catmpastudy to determine the quality of the
algorithms regarding these metrics.

This thesis is done in cooperation with ESAT. ES#aThe department of Electrical Engineering of
KU Leuven that does research on international lawdl offers academic level education on the
subjects of electronics, electrical engineering iaformation processing. The department also
explores a wide array of technological innovationthe field of energy, integrated circuits, imaye
voice processing and telecommunication systems [7].

COSIC, which stands fatomputer Security and Industrial Cryptography, is a research group
branched of ESAT that specializes in digital sagufiiheir studies are applied in a broad range of
domains, like electronic payments, communicati¢egteonic ID, e-voting and the security of e-
documents. Their research focus lies in the deweop of security architectures for information and
communication systems, the building of security Inaedsms for embedded systems and the design,
evaluation and implementation of cryptographic atgms and protocols [8].

In Section 2, the motivation for the chosen aldnis is given. The used programs are also discussed
briefly. Sections 3, 4 and 5 offers a more in-ddptk at the algorithms and their respective VHDL
code and optimisations. In Section 6, the resuésampared with one another and with other
implementations and in Section 7, the conclusioageesented.

2 Materials and methods

2.1 Authenticated encryption

The concept of authenticity first appeared in taeking industry. Banks did not want to transmitrthe
data and allow an attacker to flip bits undeteckégte the attacker would not need to decrypt the
message, however flipping bits would make the grted/message say “Post $800” instead of “Post
$100” for instance [3]. At first, primitives thaffer confidentiality and authenticity had been
designed separately. Combining these two resuttedbak systems, such as the wired equivalent
privacy (WEP), which used a cyclic redundancy cheekash function alongside a stream cipher for
encryption. WEP keys could be cracked in minutésgusimple hardware and computers [9]. So there
was a need to find a way to combine a strong atittaion mechanism with a strong cipher. Hugo
Krawczyk published a paper in which he examinedd¢ttommonly used combination methods [10].
These methods are EtM (encrypt then MAC), MtE (Mi&€n encrypt) and E&M (encrypt and

MAC).

* Key
’ Encryption Key ¢ ¢ v
: Hash function
:L Encryption Hash function f“;
\
‘ Hash function ‘ wAC
Y v 4
| Ciphertext | MAC | Ciphertext | MAC R 2
‘ Encryption
| Ciphertext |

Figure 2-1: left: EtM, middle : E&M, right: MtE11]

For their encryption input, these schemes use arkegsage and optionally a header that will not be
encrypted and instead is covered by authenticityeption. The output for encryption is the ciphetrte
and the tag or MAC. During decryption, the inputs @ne ciphertext, tag and the optional header,
which will then output the original message if theputted tag is equal to the transmitted one.

In the beginning of the thesis, the choice wasretfdetween the 30 CAESAR submissions that made
it to the second round. The candidates that wessashcan be found in Table 2-1.

Table 2-1: CAESAR candidates

Cipher Based on (type) IV (bits) | Key (bits) | State (bits)

Trivia-ck | Trivium (Stream cipher) 128 128 385

Ketje Keccak-f (Sponge function) | 80/128 | 96/128 200/400

MORUS | LRX (Stream cipher) 128 128/256 | 640/1280

Trivia-ck has been chosen because of previous exmer with Trivium on which the cipher is based.
Trivium is a stream cipher. This type of cipher tdmes its plaintext with a pseudorandom digit
stream, one digit at a time. Stream ciphers ustalye a smaller hardware footprint and are faster
than block ciphers [12].

Source Destination
Data Keystream Cipher stream Keystream Received data
0 1 1 1 0
1 1 0 1 1
0 1 1 1 0
1 0 1 (1} 1
1 «—Rp—>» 0 —— 1 —J0R 0 1
0 1 1 1 0
0 0 0 0 0
0 1 1 1 0
1 0 1 (1} 1

Figure 2-2: Generic stream ciph§t3]

MORUS, the other AE algorithm based on a streathesipvas chosen for its resemblance to Trivia-
ck. Using this is interesting to see the differeniceperformance when comparing the two. It is also
algorithm built for speed, with 128/256 bits outjpet cycle and a fast state update function.

Ketje has been chosen since it shares the sameifagion with KECCAK, of which a subset was
chosen to be the new SHA-3 standard in 2007. Kegesponge construction, which takes an input
bit stream of any length to produce an output wittesired length in two distinct phases: absorbing,
where the input is read into the state, and sqongeuihere the state returns the output blocks. A2amo
detailed explanation of the sponge constructiagivien in Section 4.

pad | ||/
™ I) Y : e '
Y Y Y Y :
|| 0f—d - : ,
il e s
|
c 0 > > > > : > >
\/) N N AN —/
absorbing : squeezing
sponge

Figure 2-3: The sponge constructifi]

2.2 Used programs

During the course of the thesis, a number of prograre used for various purposes. These are: Xilinx
integrated synthesis environment (ISE) WebPACKgtesbftware, the hardware Application
Programming Interface (APl) AEAD, ATHENa and Desigampiler. This section outlines them
briefly.

2.2.1 Xilinx ISE WebPACK

The Xilinx ISE is a software tool used for the dyggis and analysis of hardware description
languages (HDL) designed by Xilinx. It can be utedenerate timing reports and area consumption
on several Xilinx FPGA families, like the SpartardaVirtex FPGA's. Since the WebPACK is a free
licence, not all of the mentioned families are &lde. It is mainly used in this thesis for itsriSi
simulator. Using ISim, the HDL code can be testgdimulating input signals and observing and
verifying the output of the device under test.

Instances andProc.. + O & X|[Objects + 0O & x| #
4| Simulstion Objects £

. Value
Instance and Process Name 'EH'E‘E“‘B ;:0 ¥ io_clk 1

& acad th Object Name | /
) std_logic 1164 |} simulstior @
% numeric_std 1§ stop_dod

4 std_logic_arith 1§ rorce_exit|=|| @
| 1k do_empty

Ty

%

Ll

W textio iy global ste
4 std_logic_textio Ly dk 1 do_fun
4 std_logic_unsigned s io_clk 1 do_read
% std_logic_1164_addition Ly rst W do_valid
4 aead_pkg 25 do_ext3 R
I‘é do[63:0] 1 3
1l do_em
g do_ pty
Iy do_run
1§ do_read
1 oo
15 do_write_ 1 pdi_em 1
) do_ready 1B pdi_fun 0
2 pdi_extis: —
= =
1L paenp _- WA
‘P pdi_empty
a I ol s roLll | 4 gl 9l g m
2 Instanc Memery 4 [b | « . = Default.wefg™ [x]

Figure 2-4: An ISim testbench output

As mentioned, the code is written in HDL, whiclaispecialized language to program digital logic
circuits. There are two major HDLs: VHDL and Vegldrhe one used in this thesis is VHDL because
past experience with the language, but since tbdanguages are very similar, the code can be
converted from one to another easily.

2.2.2 AEAD API

AEAD is a proposed universal hardware API for antlvated ciphers. In the call for CAESAR
candidates, the software API has been clearly défifihe result is that software implementations can
be compared equally. However, no similar hardwdPé ias been proposed. As a result, hardware
implementations use independently made API's, wharhave a high influence on area and
throughput, resulting in unreliable comparisonsMeein the candidates [15]. The AEAD API offers
several features like allowing input of an arbigraize (a multiple of bytes only), a wide rangalafa
port widths (between eight and 256), independeta dad key inputs, support for encryption and
decryption within the same core and more. The AE#ABrface has three major data busses: one for
public data (the associated data, the messagputhie message number and tag), one for secret data
(the key) and one for data outputs (the ciphedexttag). Each of these busses have their own
handshaking signaislid, which indicates that data is ready at the soumnedreadywhich indicates

that the destination is ready to receive. The fateris shown in Figure 2-5.

clk rst
+ ¥
clk rst
AEAD
PDI AP dos DO
Public Data Input —{pdi_valid do_valid—» Data Output
Ports «—|pdi_ready do_ready «— Ports
SDI 2 sd
Secret Data Input —»{sdi_valid
Ports «+— sdi_ready

Figure 2-5: AEAD interfac§l5]

The format of the secret data input (SDI) starth\&n instruction, which is either Load Key or Load
Round Key, followed by the key or round key segregwhose size is determined by the width of the
SDI. Each segment will have their own header.

~—— w-bit

-—— w-bit

instruction = LDKEY instruction = LDRKEY
seg_0_header seg_0_header
seg_0 = Key seg_0 = Round Key
(a) Key loading (b) Round key loading

Figure 2-6: Two formats for SO15]

The format for the public data input (PDI) is sianillt starts with an instruction: activate key
(ACTKEY), authenticated encryption (ENC) or autheatted decryption (DEC). The activate key
instruction, which is used to couple the secretwily this input, is called first, then either
authenticated encryption or decryption. During gption, the public data is segmented in the public
message number (Npub), secret message number (lsssagiated data (AD) and the message.
During decryption, the segments are the same blutda the ciphertext instead of the message, the
encrypted secret message number instead of the &lséthe tag.

~—— w-bit

instruction = ACTKEY instruction = ACTKEY status = PASS
instruction = ENC instruction = DEC seg_0_header
seg_0_header seg_0_header @ seg_0 = AD
seg_0 = Npub seg_0 = Npub seg_1_header
seg_1_header _> seg_1_header seg_1 = Message
seg_1=AD seg_1=AD (©)
seg_2 header seg_2_ header
seg_2 = Message seg_2 = Ciphertext
@ () status = FAIL
(d)

Figure 2-7: Formats for PDI. (a) is encryption, (&) and (d) show decryption and the resulting paskil [15]

Each segment will have its own header that detarmiits type and length. It also notifies if it'®th
last of its type, or the last of the input.

8 8 W—(16+s) mod w: s

Msg ID Info 000...0 Seg Len
MSB ? [11111]1 LSB
Segment | LEOT
Type Reserved EOI

EOIl =1 if the last

Divided into [(16+s)/w] words, starting from MSB .
segment of input

Segment Type: 0 otherwise
0000 — Reserved 0100 — Ciphertext
0001 — Npub 0101 - Tag EOT =1 if the last
0010 - AD 0110 - Key segment of its type
0011 — Message 0111 — Round Key (AD, Message, Ciphertext),
1000 - Nsec 1001 - Enc Nsec 0 otherwise

Figure 2-8: The segment head&b]

The AEAD interface is built up out of three pattse pre-processor, the post-processor and the
ciphercore. The pre-processor parses the segmeaderse loads the keys and input blocks, pads the
input blocks and keeps track of the number of dgtas left to process. The post-processor clears th
padding out of the ciphertext or plaintext, consehe output blocks back into words and formats
them into segments. During decryption, it storesrtiessages until the result of authentication is
known. The ciphercore is the actual cipher algarith

AEAD
{AEAD Core iR e ;
: ey by ;
sk [~] sy 1
bk [T :ﬁ]
npub
%"M CipherCore - Tia soc
a0 [)_tag 1
len_d [~ t—H len_d]
: k3
key_updated ey_updated
Ha key_neecs_updale - _nesds_upchte
pdi gl B homy_ready T—* kmy_reacy
pdi_valid -+ ps_aid e vem [
pdi_ready +— i ready npub_ready ¥ npub_ready
e _read - _read
Pre rsac_ready : ready
Processor r:,;':;!d b;.“_: Cip boo_data tag_data
L = L= Controller
Sdi-gr+ = bdi_proc +— beli_proc bdo_ready [+— bedn_
sdi_valid-—-+ = vaid b ot I o ke [7] o ke i
- ' b — i 1 T it _size [) SiTe S,
sdi_readys——— =i ready bei_sot +— bai_sat bdo_nsec [— bdo_nsec POSE = . do
s bedi_eci +—* bi_eai tag_ready f— tag_ready ProcesSsor do_vaid ——-+ do_valid
bdi_nodata +—* bdi_nodata tag_write — tag_writa (-
bdi_pad_loc bdi_pad_loc auth_valid [~ msg_auth_vakid Hl|
bl valid Iytes st bk valid byles n"::__-m_m m&-nh_m B ' do_ready
bdi_read 1 bdi_read i’ @ F
bob_size - beil_size 5]
i i oxp_tag_roacky |24 axp, tag rwady iﬁg EE ' F |
B # msg_auh_dane H Fg'; .E .E L 'E]
g s : CipherCore 238 v 8 B 5 |
write Bmss read din ol dowt status| .
fud
N RFO Ty AUX FIFO

Figure 2-9: The AEAD interfadd 5]

In order to work with the AEAD interface, the cipbere state machine is required to have the
following state groupdpad/activate keyprocess ADprocess messa@e ciphertextandgenerate or
verify the authentication tadpuring the first state groyoad/activate keythe state machine monitors
thekey needs_updatmdkey readyinputs.Key_ readyis high when the key is successfully loaded
into the pre-processor. When tRetivate Keyinstruction is received, tHeey _needs_updat®mes high.
When both of these inputs are high, the ciphercareread the key and set ttey _updatedutput to
high. This output remains high until a new key égded.

After the key is read, the npub is next, usingrtpeb_readynput to monitor its status and the
npub_readoutput to move on to the processing the AD. Noavdiphercore needs to monitor the
bdi_ready bdi_eotandbdi_eoiinputs. For each block of AD read, thdi_readoutput is set to high,
and it waits for the next block unbli_readyis high. This sequence repeats until the wholeisAD
read and thédi_eotgoes high. Then the message is read and monitieiag the same inputs. During
this group of states, the ciphertext is writteth® post-processor using thdo_writeoutput. In the
final group of states, the tag is generated anttemrio the post-processor using Write_tag
command.

2.2.3 ATHENa & Design Compiler

ATHENa, the Automated Tool for Hardware EvaluatieMimed at a fair, comprehensive and fully
automated evaluation of hardware cryptographicfir&]. Results of comparison depend on the
algorithms, but also on the selected hardware taatores, implementation techniques, the family of
FPGA and used tools. ATHENa is an open-sourceth@blallows for an automated generation of
optimized results for multiple hardware platforritss used alongside the AEAD hardware APl in
order to produce generalized, fair results. Eatle tATHENa runs, it generates results for Xilinx and
Virtex chip families. The results given are theaaireslices and look up tables (LUT) and the timimg
synthesis frequency and post place-and-route frexyudf selected, it can also present the begtdjtt
device for said implementation.

Design Compiler by Synopsys is a logic-synthesi$ tivat is used in the design of an ASIC chip. It
can be used to get the hardware area in um, beiarhount of logic gates and timing in clock period
For this thesis, the free NangateOpenCell PDK 4birary is used as the target and link library.

In this thesis, ATHENa is used to generate the Fir€3Ailts, whereas ASIC results are generated
using Design Compiler. In Section 6, the Trivia-Kletje and MORUS results are compared with
other authenticated encryption algorithms fromAfi¢lENa database.

10

3 Trivia-ck

3.1 Algorithm

Trivia-ck is an AE algorithm based on a stream eipgthat uses a 128-bit key and a 128-bit nonce
[17]. The nonce is divided into two 64-bit partargm, which is a bitwise representation of the ck
version, and the npub. The algorithm uses an iatetate of 385 bits and outputs a 128-bit tag.
Trivia-ck is described by the integrated combinagiof the Trivia-SC and VPVHash modules. Trivia-
SC is the stream cipher used to encrypt the messag¥PVHash is used to generate the tag. The ck
in the algorithm is used for the length of the iintediary tags, which get outputted after every &4-b
message block. The designers recommend two verdiong-0 and Trivia-128. The first does not
output the intermediary tags, while the latter otgd 28-bit intermediary tags [17]. A circuit diagr

of Trivia-ck can be observed in Figure 3-1 below.

Key N*
D
Update6d (18 T'imes) 1
StExt6d
l Updatetd
.
H
KeyExttd StE xt6: o) fa
y Lot L VPVHash
o - UpdateGa
e KeyExitd StExted — T
o
T, Updatetd
KeyExttd St Ext6d
K ——
Updatetd (18 Times) M
A KeyExtid StExt64 ‘l' .
—— [Tag
.
o . l——— [Tags
o KeyErt6d . | I -
Select
o Updatefd | -
KeyExtb: St Exttd VPV Hash
pdatefd — *
StExttd
Ks, +—— Tag
Ky —

Figure 3-1: Trivia-ck circuif17]

In the first step, both the key and nonce are |dawi® the state. The state is divided into three-n
linear feedback registers A, which is 132-bit, Biieh is 105-bit and C, 147-bit. The key is padded
with “1” and loaded into register A., while a padd¥ gets loaded into C. B is initialised with “1”.

After this, the state is updated for 1152 roundsweler, this updating can be parallelized up to 64
bits thanks to the flexibility of the Trivia-SC malé, allowing the amount of rounds to be reduced to

11

18. Once the initialisation is done, the first 6& lof the associated data is loaded into VPVHash
alongside the first 64-bits of the stream (the 88Exnodule in Figure 3-1). This step gets repeated
until the whole associated data (AD) has beendiiced. If the AD is not divisible by 64, the last
block will be padded using 10* padding. If therasAD, there will be a single $0‘empty” block.
After the AD step is done, the intermediary tageserated in four extra clock cycles, by using the
first and third state key and xoring this with ¥#8VHash output tag. This 160-bit intermediary tag i
inserted into the state by xoring it with registeand the first 28 bits of B.

Before processing the message, the stream is wpdgaén for 1152 rounds. When this is done, the
message gets introduced in the same way as théen/Aa-pit slices). The difference with the AD step
is that with each 64-bit message block, a 64-ppiheitext is outputted by xoring the message wigh th
state key. After the message is fully introduced tire ciphertext is generated, the 128-bit tag is
generated in three extra clock cycles. If ck izéren no extra tags are generated, when it isth28
VPVHash tag is outputted every step [17].

The decryption works in a similar way, where theuts are AD, nonce, Key, ciphertext and tag. By
running the code with the ciphertext as the messhgeoutputted ciphertext will be the original
message if the outputted tag is equal to the trateshone.

It is important to note that this describes thstfirersion of Trivia-ck. For the second CAESAR radun
Trivia-ck has been updated to version two. In #aission, the biggest change is that a 128-bit
intermediary tag is generated instead of a 160+m@t which allows the algorithm to use only one
VPVHash block for both the intermediary tag andfthal tag(s), saving more hardware space [18].
However the developer C-code for the second roawe hot been updated. A prototype has been
designed for the second version in order to meakerdifferences against the first version, bus¢he
results are not necessary correct, since there gy to verify the testbench results yet.

In Section 3.1.1 and 3.1.2, the Trivia-SC and VP$tiHmodules are examined more closely.

3.1.1 Trivia -SC

Trivia-SC is a variant of Trivium. This is a hardwaoriented synchronous stream cipher that was
designed for simplicity, without sacrificing sedwyrispeed or flexibility. It uses a 80-bit key amahce
and a 288-bit internal state and provides 80-lmtisgy [19]. It is flexible in that the amount of
iterations done in one clock cycle can be alteoeslit the design. This is achieved by ensuring tha
any state bit is not used for at least 64 iteratiaiter it has been modified. So it allows for o4
iterations to be calculated in parallel by dupiicgtthe AND and XOR gates. This flexibility makes i
easy to optimise for speed or area.

Table 3-1: Estimated gate counts of 1-bit to 64kbitdware implementatiorj49].

Components| 1-bit 8-bif 16-bjt32-bit | 64-bit
Flip-flops 288 | 288 | 288 288 288
AND gates | 3 24 48 96 192
XOR gates | 11 88 176 352 704
NAND gates| 3488 | 3712| 3968 | 4480 | 5504

12

Trivia-SC extends Trivium by adding several extraduies, increasing the Key, IV and internal state
size and introducing a non-linear effect in the &egnputation [17]. It extends the Trivium modules
Load UpdateandKeyExtby StExt64andinsert Loadinserts the 128-bit Key and IV into the internal
state Updateupdates the stream, KeyExt extracts the keystfeamthe stateStExt64extracts the

first 64-bits from the state and finallysertinserts an intermediary tag into the stream. The
pseudocode of these modules can be found in thendpp Just like Trivium, Trivia-SC is
parallelizable up to 64 bits.

Figure 3-2: The Trivia-SC cipherstream (left) ane ffrivium cipherstream (righfL7], [19]

3.1.2 VPV-Hash

The second component, VPV-Hash is used to compattag in three steps. The first step is
calculating the checksum by applying Vandermondedarror-correcting code, called ECCode.
Then it calculates the Pseudo-dot product of tleek$um and the Trivia-SC state and finally, it
calculates the Tag by using ECCode again [17].

ECCode is an error correcting code that extendapist by a distance d. The extra output is
calculated via the Vandermonde Matrix and Hornarls. The Vandermonde matrix is shown in
Equation 3-1.

1 1 1 1

-1 2
a a a 1

andll el e} e}
q-D@-1) p20d-1) gd-1 4

Equation 3-1: Vandermonde Matijik7]

13

In this construction, the primitive polynomials dge represent the Galois fields GEjzand GF(2%)
respectively can be found in Equation 3-2. thesed in Equation 3-1 is the primitive element of
those Galois fields and is notedegsor o».

P32(X) =x32 +x2 +x2+x+1
Pea(@) = x* +xt +x3+x+1

Equation 3-2: Primitive polynomials of GFg and GF(24) [17]

The primitive element multiplication can be easithieved using shift and bit-wise xor operations.
The extended output yo ysis calculated through matrix multiplication of tllendermonde Matrix
with the original input, as shown in Equation 2dvel

) 1 1 11
B4 ak-1 a? a 1 X1
vi|=| q2t-D at a? 1 2

k Xk
Yd g@-Dk-1) 2d-1 @1 4

Equation 3-3: Extended input generatidr7]

In the first step of VPV hash, this extended ouipihe checksum and in the last step it is theThg
pseudo-dot product is a multiplication of two 324ignals, one being the extracted key of the @rivi
SC block and the other the output of the first EG€@which is either the associated data or the
message extended with the checksum).

3.2 VHDL code

In this section, the design of the VHDL code islioed in a “top-bottom” way. First the top level
block is illustrated. Then the two subcomponelits,data path and the state machine are examined, as
well as their underlying components.

3.2.1 Top level block

The code is divided into two parts, one part thkes care of the calculations, called the data gadh
another that controls the program flow, calledRFs&. This is done to ease bug fixing and making
adjustments, while also granting a better overwéthe code. The top level block combines the
inputs and outputs of these blocks together as shwigure 3-3. Since this top level block is dani
for Ketje and MORUS, it will only be shown here.

14

From Pre-processor

exp_tag \
Bdi [\ To post-processor
Noub Counter
Key value
bei_decrypt Data path bdo
Control
Clock signals tag
Reset 1 \ msg_auth_valid
Key_ready bdo_write
key_needs_update tag_write
npub_ready FSM
bdi_ready msg_auth_done
bdi_eot \ T /
] y

'

bdi_read key_updated npub_read
bdo_ready tag_ready

From post-processor To pre-processor

Figure 3-3: Trivia-ck ciphercore

3.2.2 Data Path

The data path contains all the functional unitshsas logic gates and multipliers. It contains s&ve

smaller blocks, which represent the two mathemiatimaponents Trivia-SC and VPVHash. The data
path is illustrated below in Figure 3-4.

Data Path

L 4)

P!

Cryp(64)
—_— Load state
pub(64) state |
insert
Kz ———10ad | [
clk e e |

to mux

Tag(128)
.
mux state K td mux
sload
init sel I checksum count_out(int)
sini
loopl
looplend checksum and tag
loop2 feedbackloop
loop2end
final counter
count_reset Dlltl)llt
bl crypt
count_enable ﬁnal tag
sel_reset

Mux output

Mux select signals

Figure 3-4: Trivia-ck data path

The load, update, key_ext, insert atdextblocks are all made up of simple registers, flgp8 and
logic gates. The multiplexer shown here is corgbly the state machine and routes the right signal
to the right blocks and outputs. Tésleadsignal routes the load block output to the staggsters Sinit
and thdoop inputs route the state registers to the updateekeand state ext blocks. The®p inputs
additionally routes the checksum and tag to the Mg®h block, whiléoopendroutes the tag only.

15

Themidstateinserts the tag into the state dimal outputs the tag. Durinigop2 the ciphertext is also
outputted. A counter is also used to count the deureeded per state.

There are two version of the VPVHash block, ongutiing a 160-bit tag and one outputting a 128-
bit tag. They both contain several smaller compts)eshown in Figure 3-5.

6
L
pa
B4 VHornergy /4 7, checksum
) 7
7 D 2
(J l /7
//‘2:’:(}
256
— £
; MUX
464
ar 32
33? 32 39 -~
K —F=>p 7 32 Bit 16 ”
K'—zt Multiplier 7 VHornergzy/s 7,
\ ra L -
32 V% -
160
Tag

Figure 3-5: VPVhasliil7]

As can be seen in Figure 3-5, VPVHash is built upad two Vhorner blocks, a multiplexer and the
32-bit field multiplier. VHorner64 has two inputte 64-bit message or AD, and the 192-bit or 256-
bit checksum, depending on the VPVHash block. Tipet checksum gets multiplied by the primitive
elementuss, Which is achieved by using a shift register. Tiesv checksum then gets xored by the
input to produce the output checksum. The outpetksum then used as the new input checksum
next clock cycle. The multiplexer first sends thessage or AD in 64-bit chunks to the multiplier.
After the last block, its 256-bit checksum is s@nd4-bit chunks. The 32-bit multiplier has two g,
the 64-bit message or checksum from Vhorner64>getd with the 64 first bits of the cipher stream.

16

This result then gets split into two 32-bit padgdrm the inputs. The multiplier is shown in Figs-
6.

Result or 0 if first result

a b

Mux Mult_alf A
fieldmult —
B(n) B(n+1)

if0=>bif1b=>a

1 bit

B = 32 bit so 32 instances of fieldmult

Figure 3-6: Field multiplier

The field multiplier includes a multiplexer and @npitive element shift register. As illustrated in
Figure 3-6 above, there are 32 instances of thiskblone for each bit in input B. If this bit isreethe
input result (which is zero for the first block atie output of the previous block for the otherchk)
gets multiplied withoes, Otherwise the input is first xored with A andhaultiplied with the
primitive. This multiplication is done by shiftirand xoring the bits in a specific way. The ressilihie
output of the FM block. The final FM block is difest from the other FM blocks in that there is no
multiplication witha. The multiplier output is then used in Vhorner@bjch works identical to
Vhorner64 except it multiplies its input tag witkr and outputs a 160-bit or 128-bit tag.

3.2.3 Finite State Machine

The state machine controls the large multiplexeh@andata path, which in turn controls the internal
signals. This state machine has 20 states, in wt8cttates are used to cipher or decipher the messa
and four states which are needed to interact \Wweh®EAD structure. The first two states wait foe th
AEAD wrapper to read the key and npub. After thigheload state, the IV and key are loaded into
the stream. The following staiait, initialises the stream. After this, during tbeplstate, the AD is
loaded in 64-bit chunks into the VPVhash. Ebodpl state calculates the tag and checksum and
routes it back into the Vhorner blocks next clogkle. After all the AD are reathoplendstate is
called. In this state the 160-bit tag is calculatéds takes four clock pulses because the muxubigp
64 bits and the checksum is 256 bits. Also theastkey of the first and last step are taken herglwh
are xored with the tag to calculate the intermegdiag. In themidstate this intermediary tag is
inserted into the stream. Then the process refsalfsfor the message, where in every buffer dsfage
64-bit chunk of the ciphertext is written to thespprocessor. In thinal state, the tag is written to the
post processor and the state waits for a new Keg.state machine is illustrated in Figure 3-7.

17

key ready =0

if reset, return here

idle (wait on key)

key ready = 1

npub ready =0

npub ready = 1

sload =1

counter< 17
sinit=1
counter=17
bdiready =0
bdi ready = 1
bdieot=0
loop1 =1
looptend=1 counter <2
counter=2
midstate = 1

Figure 3-7: Trivia state machine

3.3 Trivia-ck optimisation

bdo write = 1

counter<2

final (write tag) writetag =1

buf(write cyphertext)

bdo write = 1

In order to test the algorithm fairly in both speeul hardware usage, the code has been improved
using these two optimisation strategies. The §osll is to discover the areas which could use
improvement. Here, both the multiplier in VPVhastd the parallelizable Trivia-SC module are
obvious candidates. In the original code, 32 instarof the multiplier are used, resulting in adarg
amount of registers. It is also a critical pathtfoe clock, since all calculations happen serial,
decreasing the maximum frequency. Also, in theimgigcode, the update and key exit block update

64 bits per clock cycle. This also requires a largmber of registers. In the following paragrapte t
original code, the area and speed optimisationdiaceissed. As mentioned before, the basic code and
most optimisations were done on the first, outdatrdion of Trivia-ck. A prototype for the new
version of the code is discussed in Section 3Thé.results for area usage and timing can be found
Section 3.3.5.

18

3.3.1 Basic code

In order to observe the impact of the optimisationghe algorithm, the basic version is discussed
first. In this version, no optimisation path isléated and the blocks use their recommended
parameters. This version uses 64-bit parallel wdat key generation, 32 instances of the multiplie
without pipelining and two VPVhash. It also usasoamal binary counter and 5:1 multiplexers in the
VPVhash block. Shown below are the testbench i®siithe ciphercore for a 15 byte AD and a 16
byte message, resulting in three 64-bit ciphertbyinks. The results for this version are found in
Section 3.3.5.

”;_ do_empty
Uk do_ful

-H—i- do_read
"s alid

Figure 3-8: Testbench results from the basic Trigkaversion

3.3.2 Area optimisations

This section outlines all the area reducing optatiims. The performed optimisations are: rolling up
on the 32-bit multiplier, reducing 64-bit updateltdit and changing the multiplexer. The Vhorner
block was also rolled up, but this resulted in manea, so this change was ultimately undone.

The first optimisation is rolling up the 32-bit ntiplier. The original field multiplier block is bliiup
out of 31 identical FM blocks and one final FM tto&ll of these blocks are connected using 32 32-
bit signals.

The rolled up version of the field multiplier onlges one FM block and the FM last block, which are
connected using only three 32-bit signals. The FddKs in the original code differ only in the bit o

B they monitor. By using a counter, the 32 bit8are sent to the FM block bit by bit. Thesult_out
output is routed back to the input every clock eyéfter 31 cycles, the FM last block output is the
final result. For every time the multiplication v#tsis needed, the code needs 32 clock cycles to
process it, which is during evelgop (processing AD and message) &mapend(tag generation)

state. This results in higher delay and latency¢clwvhan be calculated using Equation 3-5:

Dlen
64

Mlen
encryption delay (cycles) = 262 + . (1+32)+ (14 32)

19

In order to further reduce the registers, VHornaswalso rolled up. In the basic code, each VHorner
uses four internal registers of 128-bit, 160-bi2-kiX or 256-bit. From each of these registerspiB3g4
bits are taken to form the tag or checksum, agamdmultiplied byo. In order to reduce the code to
use only one register, VHorner was rolled up, s the multiplication and checksum or tag would be
generated in four cycles. However, the added cbsttteme needed for this increased the total area,
so this optimisation was not used.

The second optimisation is reducing the amount@RXand AND-gates used in the update and
key_ext blocks. This is achieved by only updating bit at a time instead of 64-bits parallel, which
possible since Trivia-SC ensures that any staties bivt used for at least 64 iterations after & haen
modified. Now 64 clock cycles are needed every tingestate is updated. This means 2304 clock
cycles are needed for the two initialisation staesl 64 extra for every message and AD block and
448 extra for the tag generation.

The last area focussed optimisation is changingrthiéiplexers used in the VPVHash blocks. In the
original code, the two VPVHash blocks use a 5:1tipleixer with a 3-bit select signal. During
synthesis, such a multiplexer is built up out afrf@:1 multiplexers (N-1 2:1 mux, where N is the
amount of inputs). Here, each 2:1 mux requiregparsee LUT, which results in four LUTs [20]. It is
however more efficient to use one 4:1 mux and oherix to create the 5:1 mux. The 4:1 mux used
two LUTSs, which results in three LUTSs total. A 4slbuilt as depicted in Figure 3-9 below.

=0 SO

Figure 3-9: A 4:1 mux using 2 LUT[20]

In the VPVHash4 block, the multiplexer only hasrfmputs, which allowed a single 4:1 mux after
changing the code. This change resulted in better laut also better timing, so these mux trees are
also used in the speed optimised version.

A lot of the optimisation increased the total antoafrclock cycles needed for encryption and
decryption, which results in more states in théestaachine. The new state machine is shown in
Figure 3-10.

The loading of the key and npub remains the saine.ifitialisation state is used to update the sirea
After loading the key and npub, the stream now gptated 1152 times, since it now happens bit by
bit.

After this, the FSM waits on the AD blocks. Aftexah block, the 32-bit multiplication is calculated

over 32 clock cycles during theadvpvstate. After this, the Pre-processor is notifteat the block is
20

read and the stream is updated 64 times in theteti¢. When all the AD blocks are read, the iaites
continues to thencselstate. This state increments the select signahtomultiplexers in the

VPVHash blocks. Thereafter, the multiplication édoulated in thédoadvpvendstate and the tag is
calculated in théoopend2state. Then, the state is updated again for 6dstiffihis gets repeated four
times to calculate the valid tag. The processintpefmessage blocks is similar. Tuydate_Cstate
generates the ciphertext and is called after upgldtie stream, after the message block has beén rea

21

22

if reset, return here

keyready =1

npub ready =1

sload=1
amount= 1152

amount =64

ifselect=4 then
mid =1

ifendloop =1

incsel

loadvpvend

wait on npub

keyready=0

o

npub ready =0

‘ counter < amount

ifmid=1

vpv enable = 1

amount =64

midstate

ifselect=3then
ending = 1

incsel

loadvpvend

QpendZ

ifendloop =1

fbdi_eot=1then
endloop = 1

amount= 1152

counter < amount

waitonAD

loadvpv

\ > bdiready=0

bdiready =1

vpvvalid=0

else

ifending =1

vpv enable =1

amount=63

h 4 if bdi_eot= 1 then
endloop =1

loadvpv

ifmid = 1 => firsttime, no ciphertext yet

\ > bdiready=0

waitonM

update_C

<

bdiready = 1

vpvvalid=0

Figure 3-10: state machine for the area optimisatio

3.3.3 Speed optimisations

This section outlines all the speed optimisatidiee performed optimisations are: pipelining thédfie
multiplier, changing the VPVHash multiplexers aetksting a better counter. Also, several registers
where duplicated in order to shorten the path delay

The first optimisation is reducing the critical pdaty pipelining the field multiplier. This path sigin
the data path control multiplexer input. Whendwepl, loop2, looplendrloop2endare high, the

tag gets generated in the VPVhash block. Herefjgltemultiplication takes place. In the basic
version, 32 of these FM blocks are utilised evéogk pulse. Since each of these blocks uses at32-bi
2:1 multiplexer, using them all at once slows tbdecdown considerably. However, this critical path
can be broken up using intermediary registers. THuBnique is called pipelining. Although a
pipelined circuit requires more clock cycles to pbate, the maximum clock frequency increases,
which results in higher throughput. The benefitpipklining can be explained using a simple
example: if 5 bits of data have to be transfernegt @ path with a 2 ns delay, bit for bit it wilke 10
ns to complete. When this path is pipelined, thié pelay is lowered, for instance to 1 ns. It will
however take one extra clock cycle to get the foiglthus 6 cycles are needed. So the data okista
6 ns as opposed to the 10 ns it took in the noalipigd path. In this optimisation, 31 extra registe
are implemented, one between every FM block.

Result or 0 if first result

A 32bit &-

a b
Mux Mult_alfa FF a A

fieldmult —
U Al oy

ifo=>biflb=>a

1 bit

clk

B = 32 bit so 32 instances of fieldmult

Figure 3-11: Pipelined field multiplier

It takes 32 clock pulses to get the multiplier attyp the VHorner4 block to generate the tag.
However, since the tag is only needed duringhtigstateand thefinal state, the total added delay is
only 64 clock pulses, independent of the AD andsage length.

Another change is switching from the 5:1 multipletaethe 4:1 and 2:1 multiplexer, as explained in
the area optimisations. This optimisation also ltesn faster clock frequencies.

The counter used in the state machine is also @uaingm binary to one-hot. In the basic code, this
timer is written as shown below.

23

counter: process(clk,count_reset,count_enable)
begin
if (count_reset ='1") then
count_out_buffer <=(others =>'0");
elsif (rising_edge(clk)) then
if(count_enable ='1") then
count_out_buffer <= count_out_buffer+1;
end if;
end if;

end process;

And this is how the counter is read:

If (count_in < 3) then

Here, the code needs to check several bits in dodeympare the count in value with the number.
This takes extra time [21] . The process can beeased in speed if the code only needs to compare a
single bit instead like so:

if (count_in(3) = '1") then

In order to achieve this, the counter is changeah f@ normal incrementing counter to a shift regjste
where a ‘1’ is loaded as the LSB (last significhitt and this ‘1’ gets shifted to the left everpck
pulse, like demonstrated below.

24

counter: process(clk,count_reset,count_enable)
begin
if (count_reset ='1") then
count_out_buffer(35 downto 1) <=(others =>'0";
count_out_buffer(0) <=1
elsif (rising_edge(clk)) then
if(count_enable = '1") then
count_out_buffer <= count_out_buffer(34 downta0p";
end if;
end if;

end process;

In order to give the pipelined field multiplier tarto compute the product, the state machine has bee
altered. Two extra statagpdate Tandupdate Tagare added between tlewpendlandmidstate and
between théoopend2andfinal state. These states are 32 cycle loops that flieshipelined field
multiplier, so that the right tag is outputted lie thext state. The altered state machine can bersee

Figure 3-12.

key ready =0

if reset, return here

idle (wait on key)

key ready =1

npub ready =0

npub ready =1

sload =1

sinit=1

counter < 32

midstate =1

sinit=1

counter=17

\> bdi ready = 0

bdi ready =1

bdo write =1

bdieot=1

buf(write '
cyphertext) loopend 2
loop2end =1
bdo write =1
final (write tag)

Figure 3-12: state machine of the speed optimisettc

counter<2

update Tag ‘

write tag = 1

counter <32

25

3.3.4 Trivia-ck version 2

In this section, a prototype of the second rouridid-ck is discussed. As mentioned, this prototige
untested since there is no developer C-code yets&€bond version differs from the first in several
ways. The first change is in the way the key arbrgme loaded into the state. The C part of the $at
now loaded with zero’'s and three “1”, instead of &l. The important change is however the
reduction of the intermediary tag to 128-bit inste& 160-bit. This change also removes the use of
two different VPVhash blocks, now only VPVhashséeded for both tag generation steps. This
change decreases the amount of registers condigefale third change is the way the A and B inputs
to the multiplier are formed. Now the key and npléker output are divided into four equal parts] an
the first and third parts from both are xored torfd\, and the second and fourth parts are xored to
form B. The final change is that the second kepeput during tag generation (looplend and
loop2end) is multiplied witlus2[18].

Only the reduction of the intermediary tag chartescode in a drastic way. As mentioned, now only
one VPVhash block is needed. This also simplifiesibsert block, and removes the need to save the
keyext outputs, since now the same outputs areindmuth tag generation phases. The Trivia-ck
prototype is built using the Trivia-ck speed opsed version, so the state machines are the same.

3.3.5 Results

Here, the results on area and speed are compareedrethe different versions of Trivia-ck. Shown
below are the result of the area usage, calculated) the ATHENa tool for the basic Trivia-ck code.
LUTs are look-up tables and FF’s are flip flips.eTirst results with the full AEAD interface are
tested on Spartan and Virtex .

Table 3-2: Area results for basic Trivia-ck usingAD wrapper

Device LUTS SLICES FFs
Spartan 3 5482 3116 2192
Spartan 6 7435 2223 2321
Virtex 5 7491 2398 2310
Virtex 6 7289 2093 2295

However, the results above include the extra harelwhthe pre- and postprocessors. In order tg trul
judge the algorithm for its area usage, it has bésn tested without the AEAD wrapper. For this
purpose, the Ciphercore wrapper provided by the BNE website has been used.

Table 3-3: Area usage for basic Trivia-ck withoutAEwrapper

Device LUTS SLICES FFs
Spartan 3 5071 2959 2141
Spartan 6 3540 1120 2002
Virtex 5 3407 1075 1970
Virtex 6 3322 1399 1965

26

As can be seen, for Spartan 3, the wrapper only aiseut 5,04% of the total usage. However in

Spartan 6, the usage is 49;61%, for Virtex 5 55, b Virtex 6 33,16%. In future results, only the
area usage and speed of the algorithm using tHee@pre wrapper is calculated. Shown below are
the results on area usage for both the area optihaind speed optimised versions and Trivia-ck v2.

Table 3-4: Area results for area optimised Trivia-c

Device LUTS SLICES FFs
Spartan 3 2310 1593 2282
Spartan 6 1775 618 2113
Virtex 5 1974 711 2132
Virtex 6 1724 699 2112

Table 3-5: Area results for speed optimised Tricka-

Device LUTS SLICES FFs
Spartan 3 4823 4302 7216
Spartan 6 4375 1405 6198
Virtex 5 4254 1665 6166
Virtex 6 3981 1205 6153

Table 3-6: Area results for Trivia-ck v2

Device LUTS SLICES FFs
Spartan 3 3020 2525 3980
Spartan 6 2572 777 3365
Virtex 5 2760 1086 3346
Virtex 6 2312 808 3369

It can be clearly seen that the area optimisedoretgas the lowest area usage. The speed optimised
version has more slices and FF’s than the basgiorerbecause of the extra added pipeline registers
The Trivia-ck v2 version sees a significant redution area when compared to the speed optimised
version, on which it is based. This reduction carctedited to the removal of one of the VPVHash
blocks.

Tables 3-7 to 3-10 show the timing results forliasic version, area optimised version, speed
optimised version and the second version of TrokiaThe place and route (PAR) frequency is the
highest clock frequency at which the chip can henalgorithm.

Table 3-7: Timing results for basic Trivia-ck

Device PAR Freq (MHz)| Throughput (Mbit/s) Latency)

Spartan 3| 48,57 1554,24 988,3+41,1*(M+AD)
Spartan 6| 94,67 3029,44 507+21,1*(M+AD
Virtex 5 120,57 3860,07 397,9+16,6*(M+AD)
Virtex 6 126,41 4045 379,7+15,8*(M+AD)

27

Table 3-8: Timing results for area optimised Tridla

Device PAR Freq (MHz)| Throughput (Mbit/s) Latenog)
Spartan 3| 120,42 79,45 20993+805,5*(M + AD)
Spartan 6| 149,61 98,71 16897+648,4*(M + AD)
Virtex 5 196,97 129,96 12834+492,5*(M + AD)
Virtex 6 237,70 156,83 10635+408,1*(M + AD)
Table 3-9: Timing results for speed optimised Brigk
Device PAR Freq (MHz)| Throughput (Mbit/s) Latenoys)
Spartan 3| 121,12 3875,84 899,9+16,5*(M+AD)
Spartan 6| 146,59 4690,88 743,6+13,6*(M+AD)
Virtex 5 177,49 5679,68 614,1+11,3*(M+AD)
Virtex 6 235,07 7522,24 463,7+8,5*(M+AD)
Table 3-10: Timing results for Trivia-ck v2
Device PAR Freq (MHz)| Throughput (Mbit/s) Latenos)
Spartan 3| 120,15 3846,15 907+17*(M+AD)
Spartan 6| 126,89 4060,40 859+16*(M+AD)
Virtex 5 150,24 4807,69 726+13*(M+AD)
Virtex 6 224,67 7189,40 485+9*(M+AD)

In order to measure the speed of the algorithmihtfeughput and the latency are calculated. The
throughput of the cipher is the amount of bits ggrond that are encrypted. The latency is the amoun
of time it takes for the full message to be enagpair decrypted. Equation 3-4 shows the method used
to obtain the throughput.

_ Blocksize
~ latency(N + 1,Tclk) — latency(N, Tclk)

Mbit
Throughput(S)

Equation 3-4: Throughput calculatid@2]

Trivia has a constant block size of 64-bit forgitimisations. The formula in the denominator of
Equation 3-4 is the processing time of 1 messagekbFirst the total processing time for N+1 blocks
is calculated and the processing time for N blaslsibtracted. This results in the processing tifne
one block. This processing time needs to be cakdlasing the amount of clock cycles that are
needed to process one block.

28

Equation 3-4 is used to calculate the throughpukdiog messages. For short messages, the effective
throughput is smaller. The formula for throughpart$hort messages is found in Equation 3-5. Since
the equation for latency is given in Equation 247d for each of the selected candidates the latency
per message and AD block is calculated, suffidigiormation is provided to calculate and compare
the throughput of different message sizes. Inttiesis, only Equation 3-4 is used to calculate the
throughput.

Mbit N - Blocksize
Throughput ()
Eff

s - latency(N, Tclk)

Equation 3-5: Throughput calculation for short megss[22]

The equation used in calculating the delays cdiolred below.

Mlen
Delay (cycles) = initialisation + tag generation + M processing “blocksize

] Adlen
+ AD processing blocksize

Equation 3-6 : Delay calculation in cycles

The amount of cycles it takes to process an inppedds on several factors. One factor is the AEAD
wrapper delay. The code needs to wait until thetingey and IV get updated. The amount of time this
takes depends on the length of the inputs ando$ittes chip IO- buffers. When taking this delay as
the absolute minimum, presuming only one clock e@tds each AEAD state, it can be calculated
using Equation 3-5:

Mlen Adlen

+

AEAD delay (cycles) = 3 + =)

Three stateddle, wait_on_npulandfinal are used to input the key, npub and write theatajneed at
least 1 clock pulséVaitonADandWaitonMare repeated for every 64 block of input.

The encryption delay is the actual amount of cynksded process a full message without the AEAD
delay. This delay depends on the structure oftgite snachine and on the message/AD length. For the
basic version, it is calculated as following:

Mlen ADlen

64+ 64

encryption delay (cycles) = 45 + 3

The 45 constant clock cycles are: the loading efikity and 1V into the cipher stream (one cycled tw
initialisation states (18 cycles each), thiglstate(one cycle) and two tag generation states (whikh t
three and four cycles respectively). For each &4nkissage/AD block one cycle is needed to process
the data.

Thus the total delay is:

29

Mlen +2 ADlen
64 64

total delay (cycles) = AEAD delay + encrytion delay = 48 + 2

Using the maximum frequency, the amount of cyclearsbe calculated, and thus the delay in ns.

latency (ns) = total delay (cycles) - Tclk
Equation 3-7: Latency

Now the throughput can be calculated by calculatirglatency using Equation 3-7 for N+1 blocks
and N blocks, and using the result in Equation 3-4.

In the area optimised version, the encryption dedaalculated as such:

Mlen ADlen
encryption delay(cycles) = 2528 + i (1+32+64)+ -(1+32+64)

64

And in the speed optimised and second versios,daiculated as following:

Mlen +2 ADlen
64 64

encryption delay(cycles) = 109 + 2

From the results, it can be observed that the spptithised version has the highest throughput. The
PAR frequencies have increased, compared to the W&sion, thanks to the pipeline shortening the
critical path. Because of this, the throughputdias increased, because the message block pragessin
time has remained the same. Trivia-ck version Zahasver throughput because of the more complex
multiplier inputs. These results are however uetésind are thus susceptible to change. The area
optimised version has the highest frequency, bgingller in size allows the components to be placed
closer together, shortening the path delays. Howeugce the latency is high, the actual throughput
low.

30

Lastly, shown below are the ASIC results usingNl@Gate PDK 45nm library for all Trivia-ck
versions. The area is given in both micron squadcegate equivalent (GE), showing the estimated
number of gates needed.

Table 3-11: ASIC results for basic Trivia-ck code

Area (Und) | Area Timing crit Max Freq Throughput | Latency (ns)
(kGE) path (ns) (MHz) (Mbit/s)
21049,91 26,31 4,4264 225.92 7209,28 213+9*(M+ AD)

Table 3-12: ASIC results for Trivia_ck area optintisa

Area (Und) | Area Timing crit Max Freq Throughput | Latency (ns)
(kGE) path (ns) (MHz) (Mbit/s)
16082,89 20,1 2,5244 396.13 261,37 6382+245*(M+) AD

Table 3-13: ASIC results for Trivia_ck speed optitit

Area (und) | Area (KkGE) | Timing crit | Max Freq Throughput | Latency (ns)
path (ns) (MHz) (Mbit/s)
63868,20 80 2,7728 360.64 11540,7 302 + 5,5%(MDy) A

Table 3-14: ASIC results for Trivia_ck v2

Area (uni) | Area Timing crit | Max Freq Throughput Latency (ns)
(kGE) path (ns) (MHz) (Mbit/s)
33625,86 26,31 2,3667 422,52 13520,64 258+8*(M+ AD)

31

32

4 Ketje

4.1 Algorithm

Ketje is an AE function that is aimed at memorystoained devices. It relies strongly on nonce
uniqueness for security [23]. There are two suggkesgérsions of Ketje: Ketjedr and KetjeSr. Their
key, nonce and state sizes can be found in Talle 4-

Table 4-1: Ketje parameters

Recommended Key (bits) | Nonce (bits) | State (bits Block length
version (bits)

Ketjedr 96 80 200 16

KetjeSr 128 128 400 32

KetjeSr and KetjeJr are built on round-reducedivassof KECCAK-f[400] and KEccak-f[200],

which are called by a construction named MonkeyBxipT his variant of a duplex construction
supports different types of calls that invoke itwdifferent numbers of rounds. On top of
MonkeyDuplex is the MonkeyWrap construct. Sectidh Bwill first outline the Sponge construction
to get a better understanding of the cipher. Sestibl.2 to 4.1.4 will explain the MonkeyWrap,
MonkeyDuplex and KCCAK-p constructions.

4.1.1 Sponge construction

This sponge construction is a mode of operatiohtties a binary string of any length as input and
returns a binary string of any required length. €bastruction has a fixed length permutation or
transformatiorf and a finite internal state with a number of kiggial to b (the width of the state). B is
divided into two sections, one with size r (caltbd bitrate) and the other with size c (called the
capacity).

M zZ
A
) . > 7
] e) I) : M e
Y Y Y Y |
r (J Fan - Dy) - Fan - I - - -
i e L
] |
c 0 > > > > : > >
[| / "/ "/ N AN "/
absorbing : squeezing
sponge

Figure 4-1: The sponge constructifi]

First the input string gets padded with a reveesg@adding rule. Then it gets cut into equal length

blocks of length r. The state is initialised to@and the construction continues in two distincg#s:
33

the absorbing phase and the squeezing phase. finsthghase, the r-length input blocks get xomd i

the state. Following each block, the functfaa called. After all the input blocks are absorlibe
squeezing phase begins. Now the first r bits okthage are the output blocks. The amount of output
blocks can be chosen by the user. The last ¢ biteastate are never affected by the input anémnev
outputted during the squeezing phase. It can berebd in Figure 4-1 that first the full input is
absorbed before the output appears. A varianteoSghonge, the Duplex, alternates between absorbing
and squeezing for every input block. It is thisstonction that is used in Ketje and other singlespa

AE systems [14].

ag Zo a1 Z1 gz Zy

l
(pad)_(L-J“fu) (pad) m[L-Jﬂfl) (p2a) C(_-J“a_,)

fa nY
o Fa
Y
Y

Y /
7110 o> o>

f f f
C 0 - - > -
/ — /
init. duplexing duplexing duplexing

Figure 4-2 : Duplex constructiofi4]

4.1.2 MonkeyWrap construction

MonkeyWrap is the top level construction of Ketieldakes care of wrapping and unwrapping the
data. When wrapping, it takes the AD and messadeetarns the ciphertext and tag. The opposite is
called unwrapping, which takes ciphertext, AD aagl &nd returns the message is the tags match.

The authenticated encryption process starts witlalizing the state by loading the key and nonce.
The key first gets packed in a keypack. Here thegats extended by 16 bits. The first eight bits
represent the length of the keypack, which is #edize plus 16, in bytes. The last eight bitdhef t
pack are simple 10* padding. This keypack then gpended with the nonce, after which the
MonkeyDuplex gets called with 16 rounds.

After the initialisation is done, the AD gets alisedt in the state in blocks of 16-bit for KetjeJd &2-
bit for KetjeSr. Each AD block gets padded with tineame bits “00” before calling MonkeyDuplex
with one round. This process repeats until thd #ablock. This block gets padded with “01”
instead, and the first 16-bit or 32-bit (lengttofthe state gets xored with the first messagekioc
obtain the first ciphertext block.

Following this, the message gets absorbed intsttite in either 16-bit or 32-bit blocks after being
padded with the frame bits “11”. Each MonkeyDupbexput gets xored with the next message block
to form the ciphertext.

The final message block is used to generate thd-tegj it gets padded with “10” and the
MonkeyDuplex gets called with six rounds. The 1&2first bits from the state form the first bifs o
the tag. The rest of the tag gets generated bytingwa “0” bit into the stream and duplexing one
round. Each time 16 or 32 bits are taken from thtesuntil the tag is 90 or 128 bits [23].

34

Unwrapping or decrypting works identical. The Allphertext and tag return the message if the input
tag equals the output tag. An illustration of therdeyWrap construction can be seen in Figure 4-3.

1
+00
5 B

Figure 4-3: Encrypting data using MonkeyWrap. Theelblocks represent the AD, green the messageheediphertext
and grey the taf3]

4.1.3 MonkeyDuplex construction

As mentioned before, MonkeyDuplex is a variant &fgplex construction in that the amount of
rounds can be selected before the r-bits of the ata outputted. MonkeyDuplex has three modes:
start, step and stride.

In start mode, which is during the initialisationgse of MonkeyWrap, the keypack appended with the
nonce is the input. This input gets padded to mételstate width b (200-bit for KetjeJr and 400-bit
for KetjeSr), using 10*1 padding (so padding twéraxits would be “11”, three would be “101"etc.).
This padded input gets xored into the state, aftech the KECCAK-p permutation gets called with 12
rounds to initialise the state.

In step mode, called during the AD and message pimgfunwrapping phase, the message or AD gets
padded further to match the length of r using 1@atiding. Ketje’s bitrate length is equal to thecklo
size plus four, so for KetjeJr this is 20 bits &mdKetjeSr this is 36 bits. This padded input gairsed

into the state. Now theBCCAK-p permutation gets called with one round, and-bi¢s of the state

are used to calculate the ciphertext.

Stride mode is identical to step mode, the diffeesbeing that the BCCAK-p permutation gets called
with six rounds before the state output is useguifé 4-4 illustrates the MonkeyDuplex construction.

35

+
y]
_ (pad) () (1) (d) (L)
0 Yf f f
|| A Ly '_;]
Tstart Tstep Tlsiride

Figure 4-4: The MonkeyDuplex constructi@3]

4.1.4 KECCAK-p permutation

KEccAk-p is a fixed length permutation defined by its thith and number of rounds it is derived
from the KECCAK-f permutation, in that ECccak-p is the application of the lastmounds of KccCAK-f
[23]. KECCAK-p is a sequence of operations on a state S, whglhree-dimensional array of binary
numbers. S is described as s[5,5,w], where w isvilth b divided by 25. In the case of KetjeJr,sw i
eight and for KetjeSr this is 16. The input biiragris mapped to the state using Equation 4-1.

input[w - (5y + x) + z] = s[x,y, z]

Equation 4-1: Input string to 3d matrix mappifg]

Expressions taken at the x and y coordinates kemtat modulo five and those at the z coordinates
are taken at modulo w.

Each KeccAK round consists of five steps: theta, rho, pi,aid iota. The pseudocode for each of the
steps can be found in the appendix.

Sections 4.1.4.1 to 4.1.4.5 describe each of #yessBefore continuing, it is important to know the
naming conventions for theBCCAK-p state, which are depicted in Figure 4-5.

36

Yy z
+ b state

Yy
row I column M lane

mf

bit
°

Figure 4-5: Naming conventions for th&®CAk state[24]

4.1.4.1 First step: theta

For every bit with coordinates [X,y,z] in the statee bitwise sum of two KCCAK columns, [x-1,.,Z]
and [x+1,.,z-1] is taken and added to that bit [24¥isual representation is depicted below.

Figure 4-6: Thetd24]

37

4.1.4.2 Second step: rho

For each of the five sheets in the state, thefluta each column are translated in their lane by a
number depending on the rho offsets [24]. Thessetsfare found in Table 4-2.

Table 4-2: Rho offsef24]

Xx=0|x=1|x=2|x=3|x=4
0 1 190 | 55 276
36 300 | 6 55 276
171 | 153 | 276
150 | 45 15 21 136
210 | 66 253 | 120| 78

K IKIKIK I
I fimpmn)pn
AWM RO

w

=

o

The translation values are defined by the offsétis modulo w. Figure 4-7 illustrates the Rho step.

Figure 4-7: The rho step. Here x=0,y=0 is the centf the middle shef24]

4.1.4.3 Third step: pi

In this step, all the lanes in each slice are sthifike so: x =y’ and y = 2x'+3y’, where x’ andare
the new positions. Within each slice, six axesloaformed: x axis, y axis, y=x axis, , y= -x axis,

y=2x axis and the y =-2x axis [24]. The bits oregtain axis are translated to a different axis as
depicted in Figure 4-8.

38

[> ® x
L > , Lr
D RROAMMIGAODE
<o 'y 4]
2 ~ilrs Y
x| & A *
o T o= |\
. D %
e RO
o ¥ ° Al

Figure 4-8: The pi stef24]

4.1.4.4 Fourth step: chi

In this step, for each bit [x] in every row, thegjilo AND between bit [x+2] and the inverse of bit-[¥
in the same row, are added to said bit [24]. Ttdp & illustrated for a single row in Figure 4-9.

it

& & o

g

Figure 4-9: The chi stef24]

4.1.4.5 Fifth step: iota
In the final step, the round constant RC is adddté state. This RC is given by Equation 4-2.

RC[i;][0,0,27 — 1] =rc[j+7-i,] forall0 <j <1

Equation 4-2: Round constant val[23]

With | = 3 in KetjeJr and= 4 in KetjeSri, is equal to the current round number plus 18 fetjddr
and plus 20 for KetjeSr. It can be observed that tire bottom lane will get influenced by this sum,

since the rest of RC is zero. The valueaff] is the output of a binary linear feedback shiffiseer
[23].

rc[t] = (xt mod x8 + x® + x> + x* + 1)mod x

Equation 4-3: rc constant valy23]

39

The table of round constants used in Ketje carobed in Table 4-3.

Table 4-3: Round constants for each of the mod&4oinkeyDuplex

Start Stride | Step| Ketjedr (hexKetjeSr (hex)
Start 1 0x81 Ox008A
Start 2 0x09 0x0088
Start 3 O0x8A 0x8009
Start 4 0x88 Ox000A
Start 5 0x09 0x808B
Start 6 O0x0A 0x008B
Start 7 | Stride 1 0x8B 0x8089
Start 8 | Stride 2 0x8B 0x8003
Start 9 | Stride 3 0x89 0x8002
Start 10| Stride 4 0x03 0x0080
Start 11| Stride 5 0x02 0x800A
Start 12| Stride 6| Stepl| 0x80 0x000A

4.2 VHDL code

In this section, the design of the VHDL code islioed. Just like with Trivia-ck, the data path and
controller are separated to ease bug fixing. Thdewel block combines the inputs and outputs of
these blocks together. The two subcomponents,dteephth and the state machine are examined, as
well as their underlying components.

4.2.1 Data path

The data path is built up out of four importantdids: the multiplexer controlled by the state maehin
a counter, the keypack block, and thed€Ak round block.

40

round number

keypack \

Key — l g__’_' t—> ciphertext
Nonce — J
bdi (AD or M)

init

H\

wrapAD
select wrapM Mux round Keccak round
signals ptag input output

wrapADfinat
round
i
padtag —" tag buffer tag
genC T
rst J I count out

clk

o /

count enable count reset

Figure 4-10: Ketje data path

The multiplexer’'s main function is the routing gmatdding of inputs as required by the
MonkeyDuplex and MonkeyWrap constructs. The mutiel has ten select bits originating from the
state machine. Theit input appends the keypack output with the nonads it to match the state
width b and routes it to theund inputregister. This register is used as the input ¢okbhccAK round
block. The inputsvrapAD, wrapADfinal, wrapMandwrapTagall pad the input (AD, message or
ciphertext) with the appropriate frame bits anchwli0*1 padding and routes the padded input td the
register. ThgadTaginput routes a padded “0” to theund inputregister. IfwrapM is high, the
ciphertext is also generatedptidTagis high, the tag is generated per sixteen bitseitjeJr and per
32 bits in KetjeSr. The inpuhiccounterincrements a counter that keeps track of the pquddiands.
The amount of padTag rounds needed to generatetagus six for KetjeJr and four for KetjeSr.

The second block, the counter, keeps track of theddk round number.

The keypack block pads the key with the bitwisegeak length and 10* padding, as previously
discussed.

The last block, kccak round, incorporates theHCCAK-p permutation. How this block operates is
highly dependent on the optimisation path. The dpg#imised version calculates a complete round
every clock cycle, while the area optimised versisas a memory block to store the state and
calculates each step in the round lane per laneséltaersions are discussed in depth in Sectiorks 4.3
and 4.3.2.

It is also important to note that in order for #H1dDL code to match the C source code, several extra
functions are implemented. First is a function tleaerses a string byte by byte, meaning the tiyts
becomes the last and so on. This function is caltéle state input and output. The reason forighis
that in the C source code the state’s most sigmifibyte is at position zero, while in VHDL thisat
highest position. The second function has to db witra padding. Since the pre-processor cannot pad
the input as needed in the algorithm, it is donghénciphercore. First the input is padded witlogen

41

count tag out

the pre-processor. This is needed because therciwheexpects a 16-bit or 32-bit input. The pre-
processor signals the ciphercore that the inpubbaa padded, after which the padding function is
called, which takes the valid bits out of the blacid applies the right padding afterwards.

4.2.2 State machine

The state machine communicates with the pre- astigrocessor and controls the select signals of the
data path’s multiplexer. Since the way data is @seed depends highly on thed¢CAK round block,

the state machines differ for each optimisatiom p@he state machines follow the typical AEAD state
structure, which begins with loading the key andmmto the state, processing the AD, processing
the message or ciphertext and generating the tagtwo different versions of the state machines are
discussed in Sections 4.3.1 and 4.3.2.

4.3 Ketje optimisation

Just as with Trivia-ck, the code is improved byhgdiwo optimisation stategies, area and speed. In
total, three optimisations are performed. The finsi optimisations are the different implementasion

of the KECCAK round block. Since this block is responsible fa state permutations, it is an obvious
target for optimization. For both optimisationse tteeveloper’'s VHDL code for theBCCAK hash
function is used in the design of the round blo€ks.the speed version, th&®&cAK implementation
“High speed core” is altered to fit with Ketje’'sgign, and for the area version, the “low area co-
processor” is chosen [25]. The third optimisatiownalves grouping several states in the state machin
This results in fewer states, which reduce the arnotislices and also increase clock speed. Section
4.3.1 and 4.3.2 outline the area and speed optinkiseCcAK round blocks, Section 4.3.3 discusses the
new state machine and Section 4.3.4 outlines ttaé fesults with the improved state machine.

4.3.1 Area optimisation

The area optimised Ketje implementation uses systemory to store the state instead of having it
stored internally. The Eccak round block here has a data path and FSM of its dlve data path

has three w-bit registers that are used to stonpdeary values. It also includes the blocks that
preform the rho, chi and iota step. The statedd feom the memory lane by lane. The FSM
communicates with the memory to read or write th@@n a specific address. The FSM also controls
the register inputs via the command signal. In Féglt1l, the liKcCAK round block, here called
coprocessor, is illustrated.

42

System memory COPROCESSOR

data

e
1T

T S e N

I

P‘ X

Y
M L
N

Yvy
N

data

address

FSM

A JLT

read/write

Figure 4-11: Area optimiseda€cak round bloci25]

A KEccAK round is performed in the following way. First tinéernal round number is initialised with
the required start number. Now, the state get lanaelby lane. These values are stored internally in
register one. Each time a new lane is read, itxygtsd with the previous stored value. This wag, th
sumsheet, required in theta, is calculated. After fanes are read and xored, the resulting surh&hee
written to a dedicated area on the memory. Thisgiad states is repeated until five sumsheets have
been calculated.

In the next states, theta, pi and rho are calall&tiest, the two sumsheets required for thetaemd
from the memory and stored in register two andethfden, a lane is read, and in the following two
states, the sum between this lane and the two ®etssis calculated. This output is then shifted by
the rho-offset and written to a specific area i tfemory dictated by pi. This process gets repeated
until all the lanes from the state have been read.

The following states calculate chi and iota. To pate chi, three lanes are read and stored in the
registers, after which the chi block calculatesdabgput. This repeats until all the lanes are r€ady
this first output gets xored with iota’s outputeththers are send directly to the memory. This is
because only the bottom lane gets influenced byated constant. Now a full round has been
completed. When the required number of roundsnspeted, the FSM signals the top level state
machine. The computation of one round takes 21¢kagcles.

43

Since this version of the code stores the statdéresmemory block, several dedicated memory
read/write states are implemented in the state machAfter the key and nonce are received, they are
written to the memory. This whole process takesl@ék cycles (200/8 or 400/16). During the state
initialisation, the state is permutated by prefergni2 rounds. Since one round takes 215 cycles, thi
process takes a total of 2580 clock cycles.

The following states process the AD. First the Adisgpadded. Then the state gets read from the
memory, which is then xored with the padded AD wamitten back to the memory. Since the padded
AD is always p+4 bits long, only the first p+4 bitkthe state are read and written back to the
memory, which saves a lot of time. The proces®afling and storing this part of the state in a
register takes five clock cycles. It takes two klpalses for the data in the memory to get outplutte
The other three cycles write this data to a regiStee process of writing the data to the memokgsa
three clock cycles. Hereatfter, the state is updfmtedne round. The process of reading the state,
xoring it with the AD, writing the result back tbe memory and updating repeats until all the AD is
read.

The message is processed very similar, the onerelifte being that after reading the state, the
ciphertext is generated by xoring it with the catrmessage block.

During tag generation a hew series of events cornggoonsisting of: reading the state, generating a
piece of the tag, xoring the state with a paddédi) writing the result to the memory and

preforming one round. An internal counter is useddtermine the number of steps needed to generate
the complete tag, which is outputted in the finates The used state machine is illustrated below.

44

if reset, return here

sinit=1

sinit=1

round =1
ready =1

sinit=1

read mem =1
wrap_m

write_mem

round =1
ready =1

idle (wait on

bdi ready = 1

key ready =0

key)

ey ready =1

npub ready =0

npub ready =1

wrap_adfinal

bdi ready =0
waiton M
counter<5
rmem_m
counter=5
counter<3

counter=3

wrap_tag

Figure 4-12: Ketje area state machine

=0
counter<5
counter=5
bdi ready =0
tagcount=5
tagcount<5
counter<5
counter<3
ready =0
counter<3

45

4.3.2 Speed optimisation

In this version, the KCCAK round operates in a stand-alone fashion. The istaite string gets
converted onto a 3d- array by using Equation 4kkenlthe entire round gets calculated in a single
clock cycle. All the bits in the state are transaauall at once. First, the sumsheets are calcylated
which are xored with the right state bits to cateltheta. After this, the lane bits are shiftecby
amount equal to the rho offsets. Following the step, the state slices are shifted in the pi step.
Hereafter, in the chi step, the rows are xored with another. The final step, iota, xors the curren
round constant with the first lane. Then the outpubnverted back to a string and is stored in an
output register.

This version of the state machine is very simitethie one used in the area optimised one. The
different phases now require less steps to compladehe states used to write and read the memory
are obviously not required here. The state madbidepicted in Figure 4-13.

46

key ready =0

idle (waiton key)

ifreset, return here

key ready =1

e

npub ready = 1

o o

counter =12

‘ bdiready =0

waiton AD
bdiready = 1

bdi_eot=1

counter <3
‘ counter<3
counter=3 wrap_ad wrap_adfinal
counter=3
bdiready =0
waiton M
bdiready =1
bdi_eot=0 bdi_eot= 1
counter<3
‘ counter <3
‘ wrap_tag
counter=3
counter=3
‘ counter <6
gentag
counter=6

‘ counter<3

padtag

tagcount <6 counter =3

tagcount=6

Figure 4-13: Ketje speed state machine

47

4.3.3 State machine optimisations

After reviewing the state machines, a lot of similes can be found between the different stakes.
wrapAD, wrapFinalAD, wrapMandwraptagstates all preform the same task: padding andrigad
their input into the state. The only differencevietn these states are the framebits.

In the area optimised state machine, three diffestates ofvrite andread memory are used, while
they all are identical. In this new state machthewrap states are all combined into a total of two
stateswrap andstep

In thewrap state, the input gets padded and loaded intot#te. She state machine now sends the
framebits to the data path.

Thestepstate performs theBCCAK round. This change removes four states in thedspptmised
version and six in the area optimised version.

The tag generation states are unaltered, since thi#fsr too much from therap states.

Losing these states also reduces the amount dadlsigmthe data path multiplexer, reducing thecele
signal and thus the amount of different optionse @ibwnside to this state joining is that the state
transitions become more complex. The results shaitioth the area is reduced and the throughput is
increased. Figures 4-14 and 4-15 show both altstetd machines.

48

key ready =0

idle (waiton ke
if reset, return here ¢ "

key ready =1

npub ready = 1

npub ready =0

sinit=1

counter <25

sinit=1

ready =1

counter <5

counter=5

counter=3

bdiready =0
waiton AD

counter<5

counter=5

tagcount=5

tagcount <5

wmem_t counter<3

counter=3

ready =1

Figure 4-14: Area optimised Ketje with less states.

bdiready =0

49

50

if reset, return here

key ready =0

idle (wait on key)

key ready =1

waiton npub npub ready =0

npub ready = 1

counter < 12

counter=12

tagcount<6

. bdiready =0
waiton AD step
bdiready = 1
J
bdiready =0
waiton M
bdiready = 1
counter<6
counter=6
counter<3

padtag

counter=3

tagcount=6

Figure 4-15: Speed optimised Ketje with less states

4.3.4 Results

In order to show how the optimised state machiflaénces the area and speed, the results for KetjeJ
speed, KetjeJr area and KetjeSr speed are showrandt without this optimised state machine. The

tables below show the results on area usage.

Table 4-4: Area results for speed optimised Ketyeifinout/with optimised state machine

Device LUTS SLICES FFs

Spartan 3 1137 /1291 819/993 1252 /1038
Spartan 6 1007/ 713 341/ 263 1132 /887
Virtex 5 1173 /764 400 / 288 1125/908
Virtex 6 954/ 707 310/ 237 1124/ 884

Table 4-5: Area results for area optimised KetjeJthaut/with optimised state machine

Device LUTS SLICES FFs
Spartan 3 947 / 940 751/ 745 934 /932
Spartan 6 917 / 866 256 / 256 7921792
Virtex 5 7761775 327/ 315 802 /800
Virtex 6 877 / 806 346/ 237 790/ 790

Table 4-6: Area results for speed optimised Ketje@rout/with optimised state machine

Device LUTS SLICES FFs

Spartan 3 2106 / 2000 1405/ 1374 2116 /1651
Spartan 6 1702 /1322 443/ 404 1956 / 1464
Virtex 5 2168 /1345 573 /489 1953/ 1483
Virtex 6 1623 /1327 514/ 375 1952 / 1459

It can be observed that in most cases the statkineawith less states results in less LUT, sliog an
FF usage. Therefore the KetjeSr area optimisedorevgas immediately implemented using this state

machine. The results are found below.

Table 4-7: Area results for area optimised KetjeShwiptimised state machine

Device LUTS SLICES FFs
Spartan 3 1389 1067 1257
Spartan 6 1204 322 1096
Virtex 5 1046 422 1104
Virtex 6 1133 433 1094

When comparing the Area optimised version to theedmpptimised version of KetjeJr, the area is
actually smaller or equal for the speed optimiseion on the Virtex 5 and 6 family. In this case,
seems that the state size (200 bits) is too smalhve a real advantage when stored in memory. The

51

coprocessor is based on VHDL code f@dCak, which has an internal state of 1600 bits, ané her

using memory will have a higher influence [25]. IKatjeSr, the results for the area optimisation are
better, but not by a whole lot.

The results for the timing can be found in theaalilelow. Here, the two versions of each
optimisation are compared again, except for Ket@8a, which was only implemented with the

optimised state machine, since the increase ingtmout gained from the optimised state machine was
apparent.

Table 4-8: Timing results for speed optimised Ketyeithout/with optimised state machine

)

Device PAR Freq (MHz)
Spartan 3 119,02 / 120,58
Spartan § 126,79/ 127,32
Virtex 5 | 171,06/ 170,24
Virtex 6 | 320/ 210,57

Throughput (Mbit/
476,19/ 642,57
507,16 / 679,06
684,24 / 907,95
1280/ 1122,81

U7r

Table 4-9: Timing results for area optimised Ketjedthout/with optimised state machine

Device PAR Freq (MH2z) Throughput (Mbit/s)
Spartan 3 120,44 /121,79 8,60/ 8,66

Spartan § 130,62 /171,20 9,33/10,46

Virtex 5 | 197,98/ 190,48 14,14 /13,61
Virtex 6 | 336,36 /311,72 24,03 /22,86

Table 4-10: Timing results for speed optimised Katpwithout/with optimised state machine

Device PAR Freq (MHz) Throughput (Mbit/s)
Spartan 3 93,61 /98,32 749,06 /1048,73
Spartan § 126,81 /126,92 1014,46 / 1353,81
Virtex 5 | 149,37/ 152,84 1194,92/ 1630,24
Virtex 6 | 202,63 /210,35 1621,07 / 2243,72

Table 4-11: Timing results for area optimised Ketje&h optimised state machine

Device PAR Freq (MHz) Throughput (Mbit/s)
Spartan 3 108,67 15,46
Spartan § 126,82 18,04
Virtex 5 | 172,03 27,09
Virtex 6 | 240,04 44,33

As can be observed, the optimised state machinétgeas higher throughput in all cases. In some of
the speed optimisations, the PAR frequency is dygtloavered, however since the state machine
requires one less state to compute the ciphettexthroughput is still higher. In the area optimis
versions, the state machine takes one extra chadk to calculate the ciphertext, but since the @mo
of cycles is already high, this has little influen@he amount of cycles needed to compute the
ciphertext are three and 224 for the speed andogtaised version respectively without the

52

optimised state machine, and two and 225 with gienised state machine. Using Equation 3-5, the
calculation for the total encryption delay for assal speed versions without the optimised state
machine are shown below.

encryption delay area(cycles)

— 4801+ 224 M 4 50 AP 4576 4 224 MM | 5o ADET
= 16 16 32 32

Mlen ADlen Mlen ADlen
encryption delay speed(cycles) = 30 + 4 16 +4 16 or 27 +4 37 +4 37

The constants are the cycles needed to load thari@yonce (one cycle), initialise the state (12
rounds), and finalise the tag (six rounds, plugtardfive for KetjeJdr and another three for KetjeSr
With each extra round there is also an extra ayekxled to increment the counter. For the versions
with optimised state machine for formulas stayghme, only the cycles for AD and M change.

encryption delay area(cycles)

Mlen ADlen Mlen ADlen

16 + 225 16 or 4576 + 225 3 + 225 3

Mlen ADlen Mlen ADlen
encryption delay speed(cycles) = 30 + 3 16 +3 16 or 27 +3 37 +3 37

= 4801 + 225

Shown in the table below are the latency resutt$hfe state optimised versions.

Table 4-12: Latency results for Ketje

Device Latency (ns) Latency (ns) Latency (ns) Latency (ns)

KetjeJr area KetjeSr area KetjeJr speed KetjeSr speed
Spartan 3 | 39421 + 1839* (AD+M) 42108 + 2070 *(ADV 249 +25*(AD + M) | 288+ 32 *(AD + M)
Spartan 6 | 32647+1530*(AD +M) 36082 + 1774 * (AD Y M| 236 + 24 * (AD + M) | 213 + 24 * (AD + M)
Virtex 5 25205 + 1176 *(AD + M)| 24024 + 1181 *(ADM) 176 + 18 *(AD + M) | 181+ 20 * (AD + M)
Virtex 6 15402+719*(AD + M) 14680 + 722 *(AD + M) | 143+ 14*(AD+ M) | 133 +15*(AD + M)

It should be noted that the message and AD bloekd@uble the size in KetjeSr. Although it might
seem that KetjeJr in some cases has a lower lgtéardgarge inputs this is not the case, since &k&tj
will require twice as many AD and/or message prsiogscycles.

The speed optimised versions have a higher thraugind lower latency in all cases, up to 50 times
higher in the case of throughput. Combining thithwihe observation that the speed optimised version
for KetjeJr uses less area then the area versimngdncluded that the speed optimised version is
superior. In the case of KetjeSr, the area optidigrsion offers only a small drop in area while
suffering a high drop in throughput and increasgericy when compared to the speed optimised
version. So here it can also be concluded thagjileed optimised version is superior.

53

Shown in Table 4-13 are the ASIC results usinghbeGate PDK 45nm library. Again only the
versions with an optimised state machine have bestad.

Table 4-13: ASIC results for Ketje implementatioiith wptimised state machine

Area (un) | Area Timing crit | Max Freq Throughput Latency (ns)
(kGE) path (ns) | (MHz) (Mbit/s)

KetjeJr | 6515 8,1 2,38 420,17 3361,34 71+ 7*(AD + M)
Speed
KetjeJr | 6250 7,8 2,37 421,94 30,00 11378 + 533 * (AD + M)
Area
KetjeSr | 10885 13,6 2,62 381,68 6106,87 71+ 8* (AD + M)
speed
KetjeSr | 9302 11,6 2,38 420,17 59,76 10891 + 536 * (AD + NI)
Area

Finally it should be noted that the AEAD interfai@es not work with KetjeJdr, where it seems to have
problems with its tag and npub size. In order $b tiee outputs, a simple wrapper is made, imitating
the steps of the AEAD interface. KetjeSr howevegsdavork with the interface.

54

5 MORUS

5.1 Algorithm

The last tested algorithm, MORUS, was designecetedny fast in hardware. This is achieved by
using only shifts, AND and XOR operations in thphar [26]. There are three versions of MORUS:
MORUS-1280-128, MORUS-640-128 and MORUS 1280-25tifTparameters can be found in the
table below.

Table 5-1: MORUS parameteji26]

Recommended versions Key (bits Nonce (bits) StEts) | Block length (bits) | Tag (bits)
MORUS-640-128 128 128 640 128 128
MORUS-1280-128 128 128 1280 256 128
MORUS-1280-256 256 128 1280 256 128

This thesis only handles the hardware implementatad MORUS-640 and MORUS-1280-128,
which are the primary and secondary recommendatM@iRUS-1280-256 is identical to MORUS
1280-128 except for the key size, so the differén@rea and speed between to the two is small.

MORUS only uses one subcomponent, the state upgdatgon. This function is discussed in Section
5.1.1. The state of MORUS is divided into five tke®f identical length. In MORUS-640-128 (called
MORUS-640 from this point on) the length of thesmchs is 128 bits and in MORUS-1280-128
(called MORUS-1280 from this point on) this is 2%6s.

In the first step, initialisation, the key and npare loaded into the state. In MORUS-640, the npub
loaded into the first state block and the key thi® second. The third block is initialised with281bit
string of “1” and the fourth and fifth blocks armabed with 128 bits of a 256-bit constant (the
Fibonacci sequence modulo 256). In MORUS-1280nth is first padded to 256 bits with zeros
before being loaded into the first block. The kegiplicated and appended (key||key) and thendbade
into the second block. The fourth block is loadethweros and the fifth block is loaded with thé25

bit constant. Then the state gets updated sixte®rs twith state input “0”. Hereafter the secondesta
block is xored with the key (or key||key in MORUS8D) to finalise the initialisation.

After initialisation, the AD is read block per blgavith blocklength shown in Table 5-1. If a blosk
smaller than this blocklength, it gets padded wétos. Then the state is updated once with the AD
block as state input. This repeats until all ADdb® are processed.

In this cipher, encryption and decryption are diona slightly different way. During encryption, a
block of ciphertext is generated by xoring the magssblock with the first state block, the left suf
second state block (96-bit shift in MORUS-640 a@&-bit shift in MORUS 1280) and the AND

result of the third and fourth state block. The sag® block is then used as input to update the. stat
During decryption, the message is generated isdhge way, however the resulting message block is
then used to update the state, instead of usingphertext block.

The tag is generated after encryption or decrygiipfirst xoring the fifth state block with the dir
and loading the result into the fifth block. Thatetinput of the fourth block is xored with the I6id-
representations of the message and AD length (thhas64-bit strings are appended, and are also

55

padded to 256 bits for MORUS 1280). The state theta updated eight times. After this, the tag is
generated by xoring the second to fifth state #d2&]. The full process is illustrated in Figurd 5

T

e L
[vowes |

pepped gnd Jo gqndN

JSUOD 10 ZISUOD
000 40 J3SUCd

HEEE —

@
g
E
5
_g.' ©
®
x
-
D |
x
o
<
| o
-]
x
o
=
v =
o
~
a
ES
o >
c le—0 9
R o
8 3
o =
Q, gg
E 3%
® ~
) o8
3 = -
L
N v v v
e
% :
c <—§
2 g
E)
s

g X ajepdn a3e1s | <
ua|w||us|pe

Bey

Figure 5-1: The encryption process of MORUS

56

5.1.1 State update

The state update function is responsible for updatie internal state. Its inputs are the fiveestat
blocks and a state input, which can be an AD bloséssage or ciphertext block, or “0”, depending on
the current phase. The state update function Isuguut of five smaller rounds. Within each round
three different types of operations happen: rosdiiét and pass [26].

The rotate operation takes four state blocks aadtte input (the state input is not used initise f
round). The AND result of two of the state blocksored with the rest of the inputs. This resuient
gets divided into four words of 32 bits (in MORUS8E or 64 bits (in MORUS-1280). Each of these
words is then left shifted b bits. The value ofdpends on the current round and can be found ie Tab

5-2.

Table 5-2: Rotation constants of MOR[25]

b MORUS-640, MORUS-1280
Round 1| 5 13
Round 2| 31 46
Round 3| 7 38
Round 4| 22 7
Round 5| 13 4

The shift operation left shifts a state block bpits. The values for w can be found in the tablewe

Table 5-3: Shift constants of MOR[Z%]

w MORUS-640| MORUS-1280
Round 1| 32 64
Round 2| 64 128
Round 3| 96 192
Round 4| 64 128
Round 5| 32 64

The pass operation simply passes the state bldak t@a new state block. The state update function

is depicted below. The pseudocode for the funaEmbe found in the appendix.

57

58

i l ol 1
0,0 ot ‘g‘u.; “oa Sm
.
Rotl oo y_\'{.{‘l‘,\:,bo|
k4 L
WL adl vl all vl
o ‘Sl.l 5’1.1 5’|_3 5’1.4
Eé (+ *
k'
B .
hd
fa
¥ L 4
I] 1 1
0 Sz.i 5, 2 Sz Sz.-
— J-.
'
- >

vl

o 4.0

i+l
0.0

i+l 1+l
o 0,2

Figure 5-2: The state update functif6]

5.2 VHDL code

In this section, the design of the VHDL code islioed. Both subcomponents: the data path and the
state machine are examined, as well as their yndgrtomponents. As with the other algorithms, the
top level block connects these two together.

5.2.1 Data path

The MORUS data path consists of three subcompon&mtailtiplexer, responsible for routing the
signals, a counter, responsible for counting thalver of state update rounds and the state update
block, responsible for updating the state. The dath is depicted below.

bdi (AD or M)

Key Nonce
v adlen ormlen

ane N

state in
init > stin | L-| s1out
init_last Mux —{ s2in — | F—— 2 out
select Aw?:r?:
signals saout]
- state update _Lm back to
round ——C s 1 S esout] "
tag proc
gen tag
j counter
. I count out
clk

_ /

ciphertext tag

countenable countreset

Figure 5-3: MORUS data path

The multiplexer’'s main function is routing the righputs to the five state blocks. It is controlled

the state machine through its select signals. Tilléptexer has eight select bits. Thnit input loads

the key, npub and the constants into the statdisasssed previously. Thieundinput routes the state
update output back to its input. The counter cobotg many rounds are needédit_lastis an input
used after the sixteen initialisation rounds tdqren the last initialisation step. Whé&D_sor M_s

are high, the input blocks are first reversed &t toaded into the state. This reversing is needed
because otherwise the results from the developgede-do not match the VHDL results. This is
because of the way arrays work in C, as discuss8ection 4.2. Also when one of these two inputs is
high, the AD or message length is stored in a tegi$he pre-processor calculates these lengths, bu
the values are erased after the whole AD or medsagbeen read, which requires them to be stored.
Furthermore, wheM_sis high, the ciphertext is generated. Heeinput is used during decryption. It
simply loads the generated message block intottthe. $ag_sandget tare used in the final stage of
encryption or decryptiorfag_sis used to load the state with the message anteAdphs and

updating the fifth state block like previously dissedGen_tgenerates the tag after eight round
updates.

59

The state update block is divided into five “rouriddcks. Each of these blocks alter the state lslock
in a specific way, illustrated in Figure 5-2. Theind outputs the five state blocks and takes ag inp

the five blocks. All rounds except the first alseuhe state input. A full round is calculated cwer
single clock cycle.

5.2.2 State machine

The state machine is responsible for communicatiitig the AEAD interface and controls the data
path multiplexer. Just like with Trivia-ck and Ketthe MORUS state machine also has the distinct
AEAD state groups. It waits on the pre-processotte key and npub before beginning the
initialisation. After loading the key and npub, dgdate rounds are performed. An extra state
init_last_supdates the second state block. Then the statieimesgrocesses the AD. First the AD is
loaded into the state and then one round is peddrifihe message processing is similaite ¢

writes the output to the post-processor. After,tthie tag is generated and written to the postgssar
in thefinal state. The state machine is illustrated in Fidie

60

keyready=0

if reset, return here

bdiready =0

waiton M
counter <3
bdiready =1

counter=3

if decryption

finalM=0

finalM=1

‘ bdiready =0

waiton AD
bdiready =1

final AD = 1

Figure 5-4: MORUS state machine

5.3 MORUS optimisation

The optimisation paths used for MORUS are the tarents, MORUS 640 and MORUS 1280.
MORUS 640 has a smaller state, resulting in lesdwere usage. MORUS 1280 has double the block
size of MORUS 640, thus having higher throughputusing more area. Several other optimisations
have been tested, but none improved the code.

The state update function is tested first. In thgidversion, five steps are calculated at ondegb
signals to connect them together. In order to redbis, the state update function is reduced tanigav
only one round block in a loop, similar to the Taick multiplier optimisation. However, whereas the
FM blocks of Trivia-ck where completely identictie round blocks are not. The first differencehis t
shift constants used in every round, the secondsotiat the first round block does not use theesta
input during its rotate function. Thus an extratcolter is needed to load the right shift constants
the round loop at the right time, as well as raggian extra rotate function to calculate the first
round. This controller uses the data path courstéisaselect signal. And, although the area usége o
the state update block was reduced, the contraliheost doubled the total amount of slice LUTs and
slice registers, so this implementation was undM@RUS state update function also does not allow
61

for an obvious way to reduce the input size, comgbao Trivia-ck, which uses the flexible Trivia-SC,
and Ketje, which uses round blocks that can caleuleeir output lane per lane. In MORUS, each
round uses all five state blocks in XOR and ANDragiens, and because shifting is used, it is not
possible to reduce the state block sizes.

For speed optimisations, placing pipeline regisbetsveen the rounds was considered, but undone
since the operations used here are already builipleed. The second reason is that the state update
uses feedback. So pipelining would increase tleméat considerably for every message or AD block,
and thus would lower the throughput [27].

Since reducing the states in Ketje helped with Ispied and area, the same was attempted here.
However, Ketje's base state machine has sevetakdtaat functioned identical, here this is not the
case. Only thed_roundandm_roundstates are identical but use the same outputissgnaerging
them would result in more complex state transitiovisile not reducing the amount of select signals
used in the data path. It is therefore concludatlttie basic versions offer the best results fea and
speed.

5.3.1 Results
Below the results for area can be found for MORWS;Gvhich is the area optimised version of the
two implementations and MORUS-1280, which is theesboptimised version.

Table 5-4: Area results for MORUS-640.

62

Device LUTS SLICES FFs
Spartan 3 3271 2234 2134
Spartan 6 2119 715 1986
Virtex 5 1980 567 1955
Virtex 6 1840 533 1815
Table 5-5: Area results for MORUS-1280.

Device LUTS SLICES FFs
Spartan 3 5930 3641 3334
Spartan 6 3371 1175 3879
Virtex 5 3515 1190 3116
Virtex 6 3400 1081 3114

In the tables 5-6 and 5-7, the timing results caufdlind for both MORUS implementations.

Table 5-6: Timing results for MORUS-640

Device PAR Freq (MHz) | Throughput (Mbit/s Latenoys)
Spartan 3| 120,41 5137,47 233+25*(M + AD)
Spartan 6| 127,31 5431,78 220+24*(M + AD)
Virtex 5 | 142,09 6062,33 197+21*(M + AD
Virtex 6 | 284,25 12128 99+11*(M + AD)

Table 5-7: Timing results for MORUS-1280

Device PAR Freq (MHz)| Throughput (Mbit/s) Latenc)
Spartan 3| 120,60 10291 233+25*(M + AD)
Spartan 6| 147,54 12586 190+20*(M + AD)
Virtex 5 | 138,06 11781,50 203+22*(M + AD
Virtex 6 | 202,14 17249,5 139+15*(M + AD

The encryption delay for both implementations dr@ below.

Mlen 43 ADlen
128 128

encryption delay (cycles) = 28 + 3

The constant here contains the cycles neededdateskey and nonce (one cycle), initialise théesta
(16 rounds), and finalise the tag (eight roundstardcycles, one to load the input and another to
generate the tag). Each message or AD block thkes tycles to process. First, the input is loaded
and the ciphertext is formed, then one round ifopered, then the state waits for the next block.

Shown below are the ASIC results using the NanB&t€ 45nm library.

Table 5-8: ASIC results for MORUS implementations

Area Area Timing crit Max Freq Throughput | Latency(ns)

() (kGE) path (ns) (MHz) (Mbit/s)
MORUS 27468 34,3 2,53 395,26 16864,3 71+ 8*(AD + M)
640
MORUS 58068 72,59 2,37 421,94 36005,6 66 + 7 * (AD + M)
1280

63

64

6 Performance comparison

In this section, the results from the three impleted algorithms are compared to one another and are
compared to other ciphers from the ATHENa database.

In the table below, the results of each algorithimiplementation using the lowest area on Virtex 6,
are shown.

Table 6-1: Results for minimum area

Algorithm LUTS | SLICES| FFs | Throughput (Mbit/s) Latency (ns)

Trivia-ck (area 1724 | 699 2112 156,83 10635+408,1*(M + AD)/64
optimised)

KetjeJr (speed 707 237 884 | 112281 143 + 14 * (AD + M)/16
optimised)

MORUS 640 1840| 533 181512128 99+11*(M + AD)/128

As expected, KetjeJr has the smallest hardwar@ffimbf since it is an algorithm designed for area
constrained devices. MORUS is second in area usag, has the highest throughput. Trivia-ck has
the most slices and the lowest throughput, theedfas not a very good implementation. The results
for the other chips are similar, with the exceptiloat the area optimised Trivia-ck uses less slicas
MORUS 640 on Spartan 3 and 6. Trivia-ck uses 1568sson Spartan 3 and 618 on Spartan 6, while
MORUS uses 2234 and 715 slices respectively. Tioaiginput of MORUS s still considerably higher
than that of Trivia-ck on both chips.

In the table below, the results of each algorithimiplementation with the highest throughput and
lowest latency on Virtex 6, are shown.

Table 6-2: Results for maximum speed

Algorithm LUTS | SLICES| FFs | Throughput(Mbit/s) Latency(ns)

Trivia-ck (speed | 3981 | 1205 6153 7522,24 463,7+9*(M+AD)/64
optimised)

KetjeSr (speed | 1327 | 375 1419 2243,72 133 +15* (M + AD)/32
optimised)

MORUS 1280 3400| 1081 311417249,5 139+15*%(M + AD)/256

Here it can clearly be observed that MORUS hasrsupghroughput and the lowest Latency, while

still having a smaller area footprint than Trivia-&etje, having the smallest footprint, also Haes t
lowest throughput and high latency. Trivia-ck hae fastest message processing time, as can be seen
in the latency. The results are similar on all dhimilies and are not shown here.

65

Finally the Throughput/area is calculated for ealgorithm to indicate the overall area efficienay i

Virtex 6.
Table 6-3: Throughput/ area results for both opsation paths
Algorithm Area efficiency (Mbs /slice)
Trivia-ck (area optimised) 0,22
Trivia-ck (speed optimised) 6,24
KetjeJr (speed optimised) 4,74
KetjeSr (speed optimised) 5,98
MORUS 640 22,75
MORUS 1280 15,96

As can be seen here, MORUS has the highest effigienboth implementations. It can be concluded
that the MORUS algorithm offers the most efficiantl versatile hardware implementations, having
the second lowest area but having the highest Speéat.

It should be mentioned that both Trivia-ck and M@#Rhave other hardware implementations [28],
[29].The other Trivia-ck implementation uses 746ed and has 16000 Mbit/s throughput in Virtex 6.
It must be taken into account that the developersiot mention their API. When looking at their
cycles per byte results, it shows that their cifghe@rtakes only one cycle to generate. In the AEAD
version, it takes an extra clock cycle to wait lo@ pre-processor. This will make for different
throughput values. The maximum frequency is nog@i\so it is unknown whether the post-PAR
frequency or the synthesis frequency was usedlduleging the throughput. The same goes for
MORUS, where MORUS-640 has an area of 485 slicdsadrequency of 425 MHz, resulting in
54400 Mbit/s throughput, and 879 slices, 370,4 MHd 94,8 Gbit/s for MORUS 1280. Again, no
information is given about the APl and which fregegis used. Also the results are on a Virtex 7
chip, which also influences the results.

In order to have a more fair comparison, the atgors are compared with other second round
candidates that are also implemented with the AE&Dcture. These results are taken from the
ATHENa database [30].The table below shows the, tigpe size, Throughput, implementation
frequency and the amount of slices of each ciphlenf the ciphers are tested on the Virtex 6 famil
These algorithms have been optimised for good Tdirput/area ratio, which is a balanced approach.
There are no other implementations using AEAD fovidi-ck, Ketje and MORUS yet. The results are
shown in Table 6-4.

66

Table 6-4: CAESAR results implemented with the AE#B an Virtex §30]

Algorithm Type Key size | PAR Freq Throughput | Slices Area efficiency
(bits) (MHz) (Mbit/s) (Mbs /slice)
AES-COPA Block cipher| 128 127,36 1482 3606 0,41
Ascon Sponge 128 353,86 3235 595 5,44
CLOC (speed) Block cipher 128 232,78 2709 129 2,10
CLOC (area) Block cipher 128 159,21 1482 10172 1,46
Deoxys Block cipher| 128 264,20 1166 1165 1,00
ICEPOLE Sponge 128 202,55 34569 1940| 17,82
(area)
ICEPOLE Sponge 128 258,26 37780 2336| 16,17
(speed)
Joltik Block cipher| 128 348,80 343 582 0,59
Keyak Sponge 128 233,26 26126 2139 12,21
OBC Block cipher| 128 220,51 2566 1418 1,81
PAEQ Block cipher| 128 225,84 4130 2617 1,58
POET (area) Block cipher 128 133,44 1553 2452 0,63
POET (speed) Block cipher 128 159,80 1859 2877 10,4
PRIMATEs- Sponge 120 205,00 1171 713
GIBBON 5,44
PRIMATEs- Sponge 120 200,40 617 728
HANUMAN 2,10
SCREAM Block cipher| 128 101,33 1179 1199 1,46

In order to compare the algorithms, their throudlgnd slices have been plotted in the graph below.

The algorithms have been divided into two categoaes that have a throughput of less than 5000
Mbit/s and the others that have more. This is dorder to get more orderly graphs.

5000

4500

4000

3500

3000

2500

2000

1500

Throughput (Mbit/s)

1000

500

0

Ascon

CLOC (speed)

(
KetjeSr (speed optimised)
CLOC (area)
PRIMATEs-GIBBON

|

()
OBC

@ SCREAM

Deoxys

PRIMATEs-HANUMAN

@® Trivia-ck (area optimised)

° [J
Ketjelr (speed optimised)
Q
Joltik @
0 500

1000

1500 2000

Slices

PAEQ

POET (speed)

Q
POET (area)

2500

3000

Graph 6-1: Throughput/ Area of CAESAR candidates (Itiroughput)

1 J
AES-COPA

3500 4000

67

40000
ICEPOLE (speed) ®

35000 ICEPOLE (area) ®
30000
2
= k
K °
=35000 ik
)
-]
o
<
%020000
o MORUS 1280 @
15000
= MORUS 640
°
10000
Trivia-ck (speed optimised) ®
5000
0 500 1000 1500 2000 2500 3000 3500 4000

Slices

Graph 6-2: Throughput/ Area of CAESAR candidategh(finroughput)

As can be observed from the graphs, Ketje hasmiadiesst area footprint of all the tested candidates
with both versions being the only algorithms thee less than 500 slices. Trivia-ck area
implementation has the lowest throughput of albatgms, but is in the top six in the speed
implementation. MORUS has excellent results witthlmptimisations, being in the top five highest
throughput candidates, while still having the lotva®a usage. ICEPOLE, based onez&ak-like
permutation and Keyak, based oBdCAK-f (just like Ketje) seem to perform really wellelfe was
designed for area, Keyak for speed, and both akgos top the chart in their design choice. Therefor
the KECCAK permutation seems very sound to build efficienthfsEdware implementations.

68

7 Conclusion & discussion

The main objective of this thesis was to implenmaad test three CAESAR ciphers that made it to the
second round, on their area usage and speed.-Tkylsetje and MORUS have all been successfully
implemented in VHDL for both minimal area and maairepeed separately. All the ciphers, except
the Ketjedr variant, have been tested using theDEdre API using various message and AD

lengths. Using the ATHENa tool and Design compiégea and timing results have been generated for
all ciphers and finally used in a comparison witheo ciphers using the AEAD API.

These results have shown that Ketje, an algorithith for area constrained devices proved to be the
smallest of all the ciphers, with a minimal are@8¥ slices on Virtex 6. In order to further minomi

the area for Ketje, the VHDL implementation of thecCAK low area co-processor was used, but this
resulted in more area, thus proving that the spgéichised KECcCAK round is better suited for both
optimisation paths. MORUS, having the second higaesa efficiency of all the ciphers, proved to be
the most versatile of the three tested ciphetgving small area and high speed on both builds.
Several optimisation techniques where attempteblORUS, but none improved the results. The
Trivia-ck area optimisation, while having 50% lesea usage than the basic version, suffers from low
throughput. The speed optimised version has gaodigihput results, but does not surpass MORUS
and has more slice usage.

The main advantages MORUS and Ketje have overdrakiis their simple round operations. Using
simple XOR and shift operations cost very littleherdware, compared to the 32-bit multiplier used i
Trivia-ck, using a 32-bit 2:1 multiplexer for eaEM block. For the area optimised path, these FM
blocks are reduced to two blocks, significantlyugidg the area when compared to the speed
optimised version, where 32 FM blocks are used. él@w, reducing this multiplier to only two FM
blocks significantly increases the processing tointhe AD, message and Tag. The reduction of the
Trivia-SC inputs increased this even further. Sitheegoal of the optimisation was to limit the ar@a
more balanced approach, which could have resuitbétier area efficiency, was not pursued.

Future work for this subject can be implementing dlgorithms using a more balanced path, for
instance, the Throughput/area path that is usétkeiother AEAD ciphers. Another feature that could
be tested is maximising throughput with a fixedjfrency. Since the maximum clock frequency is
fixed on FPGA boards, it could be interesting tckena code that still has high throughput. This can
for instance be achieved by using multiple rouratks of the cipher to calculate the ciphertext in
fewer cycles. For Trivia-ck, more research couldibed to design a more efficient multiplier. The
current version is inspired by the developer C-caae this might not be the most efficient version.
Another optimisation for Trivia-ck can be changthg Trivia —SC cipher. Now only the 64-bit and 1-
bit variants are tested, since these where thee¢a@mmended values. Further testing the range
between the two values can perhaps result in btteughput/area results. The current versionbef t
algorithms are tested with their recommended patensidike key size and npub size. Using the
current implementations as a starting point, vaisicould be made where the user can choose the size
of these parameters.

69

70

Literature

[1] R. Rivest, “Handbook of Theoretical Computer Science 1,” in Handbook of Theoretical
Computer Science 1, 1990.

[2] “Cryptography/Introduction - Wikibooks, open books for an open world.” [Online]. Available:
https://en.wikibooks.org/wiki/Cryptography/Introduction. [Accessed: 10-Jan-2016].

[3] “Authenticated Encryption - Crypto++ Wiki.” [Online]. Available:
https://www.cryptopp.com/wiki/Authenticated_Encryption. [Accessed: 07-Jan-2016].

(4] “DES Cracker Project.” [Online]. Available: https://en.wikipedia.org/wiki/EFF_DES_cracker.
[Accessed: 14-Jan-2016].

[5] “Crypto competitions: Introduction.” [Online]. Available:
http://competitions.cr.yp.to/index.html. [Accessed: 07-Jan-2016].

[6] “Verilog vs. VHDL | BitWeenie.” [Online]. Available:
http://www.bitweenie.com/listings/verilog-vs-vhdl/. [Accessed: 08-Jan-2016].

[7] “Algemene informatie — ESAT KU Leuven.” [Online]. Available:
https://www.esat.kuleuven.be/info. [Accessed: 07-Jan-2016].

(8] “About us | COSIC.” [Online]. Available: http://www.esat.kuleuven.be/cosic/?page_id=13.
[Accessed: 07-Jan-2016].

[9] S. Flushrer, I. Mantin, and A. Shamir, “Weaknesses in the Key Scheduling Algorithm of RC4,”
Sel. Areas Cryptogr., pp. 1-24, 2001.

[10] H. Krawczyk, “The order of encryption and authentication for protecting communications (or:
How secure is SSL?),” Adv. Cryptology—CRYPTO 2001, vol. 2139, pp. 310-331, 2001.

[11] “Authenticated encryption - Wikipedia, the free encyclopedia.” [Online]. Available:
https://en.wikipedia.org/wiki/File:Authenticated_Encryption_EtM.png. [Accessed: 07-Jan-
2016].

[12] S.P.Mansoor, “Performance analysis of stream and block cipher algorithms,” in 2010 3rd
International Conference on Advanced Computer Theory and Engineering(ICACTE), 2010, vol.
1, pp. V1-522-V1-525.

[13] “Chapter 5. Wired Equivalent Privacy (WEP) - 802.11 Wireless Networks: The Definitive Guide,
Second Edition.” [Online]. Available: http://flylib.com/books/en/2.519.1.37/1/. [Accessed: 07-
Jan-2016].

71

[14] “The Keccak sponge function family.” [Online]. Available: http://keccak.noekeon.org/.
[Accessed: 07-Jan-2016].

[15] E. Homsirikamol, W. Diehl, A. Ferozpuri, F. Farahmand, M. U. Sharif, and K. Gaj, “GMU
Hardware API for Authenticated Ciphers,” Eprint.lacr.Org, 2015.

[16] K. Gaj,). P. Kaps, V. Amirineni, M. Rogawski, E. Homsirikamol, and B. Y. Brewster, “ATHENa -
Automated tool for hardware evaluation: Toward fair and comprehensive benchmarking of
cryptographic hardware using FPGAs,” Proc. - 2010 Int. Conf. F. Program. Log. Appl. FPL 2010,
pp. 414-421, 2010.

[17] A. Chakraborti and M. Nandi, “TriviA-ck-v1,” 2014.
[18] A. Chakraborti and M. Nandi, “TriviA-ck-v2,” 2015.

[19] C. De Canniere and B. Preneel, “TRIVIUM Specifications,” ECRYPT Stream Cipher Proj. Rep.,
vol. 30, p. 2005, 2005.

[20]). Stephenson, “Logic Optimization Techniques for Multiplexers,” Altera Lit., no. March, pp. 1-
8, 2004.

[21] Model Technology, “Applications Note 116 : VHDL Style Guidelines for Performance.”

[22] E. Homsirikamol, M. Rogawski, and K. Gaj, “Comparing Hardware Performance of Fourteen
Round Two SHA-3 Candidates Using FPGAs,” no. 60, 2010.

[23] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and R. Van Keer, “CAESAR submission :
Ketje v1,” 2014.

[24] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “The keccak reference,” Submiss. to
NIST (Round 3), pp. 1-14, 2011.

[25] B. Guido, “Keecak Implementation Overview,” pp. 1-59, 2012.
[26] H.WuandT. Huang, “MORUS v1,” pp. 1-19, 2014.

[27] S. W. Alexander and R. W. Stewart, “The Effects of Pipelining Feedback Loops in High Speed
DSP Systems,” in Proceedings. (ICASSP ‘05). IEEE International Conference on Acoustics,
Speech, and Signal Processing, 2005., 2005, vol. 5, pp. 145-148.

[28] A. Chakraborti, A. Chattopadhyay, M. Hassan, and M. Nandi, “TriviA: A Fast and Secure
Authenticated Encryption Scheme,” pp. 1-26.

[29] H.WuandT. Huang, “MORUS: A Fast Authenticated Cipher,” 2015, pp. 1-23.

[30] “ATHENa Database of FPGA Results for Authenticated Ciphers.” [Online]. Available:
https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/table_view. [Accessed: 07-Jan-
2016].

72

Appendix

Developer Pseudocode Trivia-ck[17]

Load (K; 1V): Key and IV Loading:

(A1,A2,A3, ...A139) < (K1,K2,K3, ..., K128 1,1, 1, 1);
(C1,C2,C3, ...,C147) € (IV1, IV2, IV3, ..., IV128 1,1, ... 1);
(B1,B2,Bs3, ...,B1os) <« (1,1,1, ..., 1);

Update: Update a Single Round

t1 < Asexor A132xor (A130and A131) xor Bos;
t2 < Beoxor Biosxor (Biosand Bo4) xor Ci20;
t3 € Csexor C1r47xor (Cr4sand Q4e) xor A7s;
(A1,A2,A3, ...,A139) < (13,A1,A2, ...,A131);
(B1,B2,B3, ...,B105) < (11,B1,B2, ...,B104);
(C1,C2,C3, ...,C147) €« (12,C1,C2, ...,Al46);

KeyExt : Extract a Key Bit
Z = As6xor A132xor Beoxor Biosxor Gsexor Ci147xor (A102and Bse)

Output z ;

StExt64 : Extract 64 Key Bits
Output AL A2, ... ,A64

Insert (T) :Insert T into State Registers

(5,2 ...,9)=(8,,...,9)xorT;

KeyExt64: Extract First 64 Bits from A After 64 Rounds

t = A[3...66] XOr A[69...132]X0r Bi6...69]1X0r B[42...1051xor 3...66]x0r (84

A[39...102]and B3...66];

Output t;

..1471xor

73

Update64: Update 64 Rounds

t1 A[3...66]x0r A[69...132]xor A[67...130]and A68...131]xor B[33...96];
t2 B6...69]x0r Bj42...105]x0or Bj40...103]and B41...104]xor O57...120];
t3 ga3...e6]xor gs4...147)xor sz2...145]and {s3...146]x0r A[12...75];
(A1,A2,A3, ... ,A132) < (13,A1,A2, ...,A68),

(B1,B2,B3, ...,Bios) < (11,B1,B2, ...,Bs1) ;

(C1,C2,C3, ...,Cla7) € (2,C1,C2, ...,A83) ;

Developer Pseudocode Keccak-f round[23]

R=toyomopob,with

Q:dXx,y, 4 € a[x,y,z] +z X—ly,z]+z a[x+1,y,z—1]

P:ax,y,4 € a [x, y,Z — ml)zﬂ] with t satisfying 0 < t < 24 and [(2) = _ in GF(5)?*?

15=7

ort=—-1ifx=y=0
. ax, y] € a[x’,y’] w1th [

v dx] € a[x] + (a[x + 1] + Da[x + 2]
1:a< a+ RC[i,]
with RC[i][0,0,2) — 1] = rc[j + 7i,Jforall 0 <j <1

with rc[t] = (x* mod x® + x® + x® + x* + 1)mod x in GF(2)[x]

Developer Pseudocode MORUS state update [26]
S* = StateUpdate($n) with 5 rounds

Round 1 : §0= Rotl_xxx_yy(%.oxor (So1and $) xor Soz, b);
S1.3= So3 <<< W
S11=Soz
S12=Soz;
81,4 = 50,4;

74

Round 2 :

Round 3 :

Round 4 :

Round 5 :

S.1= Rotl_xxx_yy(S.1xor (S12and S 3) xor S;.4x0r m, by);
32,4 = 51,4 <<< W,

Sz,o = 51,0;

32,2 = 91,2;

32,3 = 51,3;

S.2= Rotl_xxx_yy(%.2xor (S2zand $4) xor Sy xor m, by);
S5.0= Fp0 <<< W

S1=S23

$3=S23

Ss4= S

S3= Rotl_xxx_yy(S%sxor (S34and $) xor Sz1 xor m, by);
841 = Sa1<<< W

S10=Sap;

Si2=S32;

Ss4=Ssz

8,4 = Rotl_xxx_yy(&.sxor (Ssoand S,1) xor Ss2xor m, ky);
82 =S4 <<< Wy

S$100= Sug;

891 = Saz;

S195= Suz

VHDL code, testbench results & ATHENa reports:

Included on CD

75

Auteursrechtelijke overeenkomst

Ik/wij verlenen het wereldwijde auteursrecht voor de ingediende eindverhandeling:
Evaluation of CAESAR candidates on FPGA

Richting: master in de industriéle wetenschappen: elektronica-ICT
Jaar: 2016

in alle mogelijke mediaformaten, - bestaande en in de toekomst te ontwikkelen - , aan de
Universiteit Hasselt.

Niet tegenstaand deze toekenning van het auteursrecht aan de Universiteit Hasselt
behoud ik als auteur het recht om de eindverhandeling, - in zijn geheel of gedeeltelijk -,
vrij te reproduceren, (her)publiceren of distribueren zonder de toelating te moeten
verkrijgen van de Universiteit Hasselt.

Ik bevestig dat de eindverhandeling mijn origineel werk is, en dat ik het recht heb om de
rechten te verlenen die in deze overeenkomst worden beschreven. 1k verklaar tevens dat
de eindverhandeling, naar mijn weten, het auteursrecht van anderen niet overtreedt.

Ik verklaar tevens dat ik voor het materiaal in de eindverhandeling dat beschermd wordt
door het auteursrecht, de nodige toelatingen heb verkregen zodat ik deze ook aan de
Universiteit Hasselt kan overdragen en dat dit duidelijk in de tekst en inhoud van de
eindverhandeling werd genotificeerd.

Universiteit Hasselt zal mij als auteur(s) van de eindverhandeling identificeren en zal geen

wijzigingen aanbrengen aan de eindverhandeling, uitgezonderd deze toegelaten door deze
overeenkomst.

Voor akkoord,

Gorissen, Jasper

Datum: 15/01/2016

