
Improving 360-degree Panoramic Video Stitching

A thesis submitted for the partial fulfilment of the requirements for the degree of Master of Science
in Engineering Technology Electronics-ICT

Thomas Dendale

21 June 2016

Abstract

This paper proposes improvements on an existing implementation of 360-degrees panoramic
view stitching with static cameras by Huang et al. (2014). Seam stitching and performance
are the main focus. Dynamic seam stitching is implemented using last-frame difference (LFD)
and dynamic programming to detect moving objects. Brightness correction and blending are
also improved. Furthermore, performance is increased to reach a FPS of 33 over the original
15, while maintaining identical quality.

Contents

1 Introduction 3

1.1 Goal . 3

1.2 Paper overview . 4

2 Original Implementation 5

2.1 Calibration using SIFT . 5

2.2 Setup . 5

2.3 Capture Thread . 6

2.4 Stitching Thread . 6

2.4.1 Fisheye Correction . 8

2.4.2 Cylindrical Projection . 8

2.4.3 Bilinear Interpolation . 9

2.5 Original Dynamic Seam . 10

2.5.1 Dynamic Programming . 10

2.6 Seam Blending . 11

3 Proposed Implementation 13

3.1 general refactoring . 13

3.2 Dynamic seam . 13

3.2.1 Related work: Feature detection and Deformation 13

3.2.2 Last-frame Difference . 14

3.2.3 brightness correction . 16

3.2.4 Seam Blending . 17

3.3 Improving performance . 17

3.3.1 Mutex . 17

1

CONTENTS CONTENTS

3.3.2 Bilinear Interpolation . 18

3.4 Final Result Difference . 20

3.4.1 Profiling overview table . 20

4 Discussion 21

4.1 Data restructure . 21

4.2 Dynamic seam: Last-frame Difference . 21

4.3 Mutex . 21

4.4 Interpolation . 22

4.5 Seam Blending . 22

4.6 Slow down of YUV to RGB conversion . 22

5 Future work 23

A Full Profiling Summary 24

2

Chapter 1

Introduction

360-degrees panoramic views are used more and more in a variety of situations. One
implementation of such panoramic view consists of multiple cameras arranged in a circle,
resulting in 360 degrees with overlapping areas. Each overlapping area needs to create a
seam dividing the left and right image. A full-stack implementation using 4 cameras was
developed by Kai-Chen Huang for his master thesis at the Institute of Computer science and
Information Engineering at the National Chung-Cheng University (Huang et al., 2014) and
patented by Jiun-In et al. (2015).

Figure 1.1 shows the final panorama view as used throughout this paper.

Figure 1.1: Final 360-degrees panorama view.

1.1 Goal

The aim of this paper is to try to improve his implementation of the 360-degrees panoramic
video system. This paper will make an attempt at summarizing the original implementation

3

1.2. PAPER OVERVIEW CHAPTER 1. INTRODUCTION

and explain in detail where necessary. The main focus will resolve around improving seam
stitching for static camera systems, while maintaining real-time performance. Further
improvements to the complete implementation are a secondary focus.

1.2 Paper overview

The remainder of the paper is structured in three sections. Section 2 will contain the
description of the original implementation and sketch the flow of the program, including
a detailed description of every important step. Section 3 will then present the proposed
implementation improvements including experiments and results. Lastly, section 4 will
address the reasoning behind decisions and results shown in the earlier sections.

4

Chapter 2

Original Implementation

The flow of the original system consists of two main threads (not included the QT thread
handling the GUI). Both threads are started at the same time, after setup. Both threads
run in parallel and should optimally only run once each frame.

2.1 Calibration using SIFT

The program is ran initially to calibrate the cameras using SIFT feature detection. This
data is saved in a file and reused in subsequent runs, as calibration is only needed when the
physical configuration of the cameras changes.

The position shift of each camera in respect to the first camera is calculated using SIFT
feature matching. Information about the position of each camera is used in constructing the
lookup tables discussed below.

2.2 Setup

The setup is divided into three parts.

First, after initializing the camera and capturing the first frame, a LUT (the locations LUT)
is constructed transforming the fisheye camera coordinates to cylindrical coordinates, as
discussed in 2.4.1.

Then, a second LUT (the cyl LUT) is constructed transforming the cylindrical coordinates
to individual camera screen coordinates, see 2.4.2. This table will later be used to select the
correct interpolated pixel values, as explained in part 2.4.3.

Lastly, a third LUT (the whole LUT) is constructed combining the individual cylLUTs. This
table will be used to calculate the final panorama pixels.

A mutex lock is used to control the parallel access of the capture data memory and the
screen output memory.

5

2.3. CAPTURE THREAD CHAPTER 2. ORIGINAL IMPLEMENTATION

After setup, the two threads are created. The Capture thread (2.3) handles the camera
capturing and the Stitch Thread (2.4) will handles the panorama stitching.

2.3 Capture Thread

The capture thread loops and handles the input from the cameras, writing the frame data
of each camera into appropriate memory locations. When processing a recorded video, the
full video is loaded into memory and only the starting address of the memory is updated
each frame. The mutex is locked while writing to memory, followed by a sleep for a period
of time. In the case of camera capture, the time to sleep corresponds to the frame rate of
the camera. Figure 2.1 shows the full thread flow.

Start

Lock

Capture Camera

Unlock

End

Figure 2.1: Capture thread program flow.

2.4 Stitching Thread

The stitch thread loop consists of the bulk of the processing. Figure 2.2 shows the flowchart
of one full cycle.

For each camera, an additional thread is created that applies the fisheye correction, as
described in 2.4.1, and interpolation (2.4.3). Conversion from YUV to RGB and back is
needed for the fisheye correction step as fisheye correction is implemented in RGB color
space. Finally all created threads are joined.

Next, for each overlap an additional thread is created to calculate the dynamic seam, as
described in 2.5. Finally all created threads are joined.

6

2.4. STITCHING THREAD CHAPTER 2. ORIGINAL IMPLEMENTATION

Using the interpolated images, the whole LUT and calculated seam data, the final panorama
view is stitched. For each output pixel in the panorama, the corresponding camera ID and
interpolated image coordinate is calculated, and the final pixel is written.

Finally, additional threads are created for each seam and the resulting seams are blended
by linearly interpolating between the left and right image depending on the position in the
seam. All created threads are joined.

The result is converted to RGB a final time and drawn to the screen using QT. Note the
lock and unlock of the mutex at the start and end of the complete cycle.

Start

Lock

Start ThreadStart ThreadStart Thread

YUV to RGB

‘Fisheye Correction’

RGB to YUV

‘Bilinear Interpolation’

Join ThreadJoin ThreadJoin Thread

Start ThreadStart ThreadStart Thread

Dynamic SeamDynamic SeamDynamic Seam

Join ThreadJoin ThreadJoin Thread

Stitching Panorama

Start ThreadStart ThreadStart Thread

Seam BlendingSeam BlendingSeam Blending

Join ThreadJoin ThreadJoin Thread

YUV to RGB

Unlock

End

Figure 2.2: Stitch thread program flow.

7

2.4. STITCHING THREAD CHAPTER 2. ORIGINAL IMPLEMENTATION

2.4.1 Fisheye Correction

The first step in converting the camera input data to a usable camera image is mapping
the original distortion, caused by the fish-eye, to the proper cylindrical coordinates. This
transformation uses a predefined matrix (KK) containing focal length and the optical axis of
the lens. Formula 2.1 shows this transformation.

x
y
1


corrected

= KK ·

x
y
1


camera

(2.1)

Pixel values are calculated with additional bilinear interpolation, as shown in Figure 2.3.

Figure 2.3: Original image, fisheye corrected image and bilinear interpolation

2.4.2 Cylindrical Projection

To align the camera views, only translations are used. When applying only 2D image
manipulations (homography transformations) to align views, warp distortion will occur; the
panorama view will become stretched near the sides.

To solve this problem and stitch a 360-degree view, cylindrical transformation was imple-
mented. This transformation projects each camera screen image onto a cylinder. The
actual implementation uses the inverse transformation to calculate the projection of screen
coordinates to cylindrical coordinates. This is done by evaluating formulas 2.2 for every
pixel in the corrected camera image, storing the result in the cyl LUT.

8

2.4. STITCHING THREAD CHAPTER 2. ORIGINAL IMPLEMENTATION

x = f · tan(
x′

img

f
)

y =
y′

img ·
√

x2 + f2

f

LUT (ximg, yimg) = (x, y)

(2.2)

Where ximg is the x position of the pixel in the camera image and x‘img = ximg −
imagewidth/2. Identical for y.

However, cylindrical projection is not a one-to-one transformation, some pixels in the final
image will not correspond to a pixel after warping. Bilinear interpolation of neighbour pixels
is performed to fill in those missing pixels.

2.4.3 Bilinear Interpolation

The original implementation uses a custom implementation of bilinear interpolation, by
creating a 16 times bigger image (4*4 for each pixel) containing the original pixels in the
corner of every window, as shown in figure 2.4. This method is easily extendable to quarter-
pixel interpolation, as discussed in the original paper. The Y part of the bilinear interpolation
is performed over a 4 by 4 pixel window.

A B
C D

Original Y

A B

C D

Original U and V

A B

C D

c b d
e g

f

Expanded Y

A B

C D

Expanded U and V
for (x, y) = (3,4)

Figure 2.4: Bilinear Interpolation

This is called the Expanded Image. Using formula 2.3, all remaining pixels are calculated

b = (A + B)/2
c = (2 · A + B)/3
d = (A + 2 · B)/3
e = (A + B + A + C)/4
f = (A + B + C + D)/4
g = b + f = (3 · A + 3 · B + C + D)/8

(2.3)

9

2.5. ORIGINAL DYNAMIC SEAM CHAPTER 2. ORIGINAL IMPLEMENTATION

The U and V part of the interpolation uses a 8 by 8 pixel window. For every pixel in the
window, the modulo of the position is taken to get the local x and y position inside the
window.

Using this position, the final value is calculated using formula 2.4.

p = A · (8 − x) · (8 − y) + B · x · (8 − y) + C · (8 − x) · y + D · x · y

64 (2.4)

2.5 Original Dynamic Seam

Dynamic seams are important in video panoramas, as moving objects in the foreground are
viewed from different angles for adjacent cameras. If the seam is simply a strait line, moving
objects passing through this seam will create distorted results, especially after blending.

To prevent this distortion, the original implementation attempts to construct a dynamic
seam that tries to avoid those objects. This is done by comparing the average luminance of a
3 by 3 pixel window between both sides of the seam. Dynamic programming (DP) is used to
calculate the seam with the lowest difference. Finally, the previous frame is recalculated with
the new camera images. The current seam total is compared to this previous seam total, and
the seam is only updated if the new seam total is lower then a certain threshold below the
previous total. This prevents the seam from updating too frequently and feeling unstable.

2.5.1 Dynamic Programming

The implementation of the total minimal path using dynamic programming is completed in
three steps.

First the start and end position are sought. These points are the intersections between the
outline of the left and right image.

Next, a cost table is constructed containing the accumulated cost of each pixel from top to
bottom, only keeping the minimum of three possible values: the sum of the current pixel
and one of the three pixels directly above. This method constrains the seam to only take a
path that is straight down or diagonally between two pixels. A second table is filled with
the appropriate direction of the minimum path: 1 for left, 2 for middle and 3 for right, as
shown in figure 2.5.

10

2.6. SEAM BLENDING CHAPTER 2. ORIGINAL IMPLEMENTATION

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 .
. 0 0 0 0 0 0 0 0 0 0 0 0 0 . .
. . 0 0 0 0 0 0 0 0 0 0 0 . . .
. . . 0 0 0 0 0 0 0 0 0
. . . . 0 0 0 0 0 0 0
. 0 0 0 0 0
. 0 0 0
. 0

Last-frame difference of a single moving object.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 .
. 0 0 0 0 0 0 0 0 0 0 0 0 0 . .
. . 0 0 0 0 0 0 0 0 0 0 0 . . .
. . . 0 0 0 0 0 0 0 0 0
. . . . 0 0 0 0 0 0 0
. 0 0 0 0 0
. 0 0 0
. 0

Accumulated minima and corresponding seam path

Figure 2.5: Dynamic programming example showing bottom section with a small moving
object near the seam area.

Finally, the seam is constructed by looping over the direction table from start to end, storing
the x position as array value for each y position.

2.6 Seam Blending

Finally, using the seam data, each seam is blended using linear interpolation between the
left and right seam. As information from both cameras is needed, only the overlapping area
of the camera can be interpolated.

In some situations ghosting appears: the moving object might be seen in two different positions
at the same time, caused by interpolating images from cameras in different angles. This is
the most notable when the angle between the cameras is too big or and the interpolation
area is too large.

11

2.6. SEAM BLENDING CHAPTER 2. ORIGINAL IMPLEMENTATION

Figure 2.6: Final seam image. Note ghosting appearing, most notably in the middle image.

12

Chapter 3

Proposed Implementation

The next parts of the paper will talk about the proposed changes to the original paper
to achieve better quality or performance. Part 3.2 will review related works and the final
dynamic seam algorithm is proposed. Next, multiple performance improvements to the
original implementation will be listed in part 3.3.

3.1 general refactoring

Before any implementation changes were made, a refactoring of the original data structure
was performed. The intention of the refactor was readability and data encapsulation.

The change consists of rewriting most of the global state to local variables and using function
arguments instead. Next, most of the coupled data, variables that are always needed
together, were encapsulated into structures. Finally, most of the multi-dimensional array
access (e.g. the y, u and v in a YUV image was a 3-layered array) was converted to pointers
as structure members. Most notably, the fisheye correction was rewritten to use a single
array containing 8 elements instead of 8 separate arrays containing one. (In this case object
oriented design of the data is an actual improvement on the performance.)

3.2 Dynamic seam

3.2.1 Related work: Feature detection and Deformation

One method of improving seam stitching is presented by Jia and Tang (2008); Li et al.
(2015). These methods perform feature detection and matching along the seam, followed by
deformation, possibly followed by blending, to improve quality. This deformation will stretch
and shrink the original image between feature points to create perfect transition from left to
right.

13

3.2. DYNAMIC SEAM CHAPTER 3. PROPOSED IMPLEMENTATION

Firstly, this method creates the seam by minimizing the frame difference between left and
right. However, this does not optimize for distortion of moving objects. On the contrary, the
quality of the seam even improves in cases where the seam crosses objects.

Secondly, when used in video, feature matching will need to be perfect at all times or the
seam will become very unstable. Feature matching quality comes at a big performance cost.
As such, this method is not usable for video.

As a result, feature matching and distortion cannot be considered a solution when calculating
the seam of video panorama.

3.2.2 Last-frame Difference

When applying a constraint of static (non-moving) cameras, time information can be used to
improve the seam. Moving objects can be easily recognised when using last-frame difference
(LFD). Last-frame difference, as the name suggests, subtracts the current frame with the
previous frame. This results in a clearly visible moving objects.

Background subtraction (Gandhamal and Talbar, 2015) can also be seen as a possible
solutions to detect foreground objects. However, after implementing and testing simple LFD,
simple moving-object detection appeared to produce very satisfactory results.

Last-frame difference is constructed by subtracting the current frame with the previous frame.
Moving objects will create a clear outline. To reduce noise, very low values of difference are
ignored and large differences are increased by using an exponential function.

The final result is shown in figure 3.1. Formula 3.1 were used, where LFDleft and LFDright

are the last-frame differences from left and right image.

14

3.2. DYNAMIC SEAM CHAPTER 3. PROPOSED IMPLEMENTATION

Figure 3.1: Last-frame difference (LFD) and seam (a), corresponding stitched image (b),
final blended image (c) and original implementation for comparison (d). Darker pixels are
more likely to correspond to moving objects.

result(x, y) = LFDleft(x, y)2 + LFDright(x.y)2 (3.1)

Note the periodic noise from the camera, clearly visible in the LFD image in figure 3.1 (a).
Noise has a small impact on the seam result, as the exact path of the seam in the background
is not of any real significance, as long as the moving object in the foreground has a much
higher LFD value.

3.2.2.1 Dynamic Programming

The implementation of the dynamic programming algorithm is very similar to the original.
But instead of constructing a table containing the most optimal direction between pixels,
only the accumulated cost table is created.

Then, while constructing the seam data, the minimum is actively calculated instead of stored
in a separate table.

Also, as discussed in 2.5.1, the original implementation uses a small averaging window to
reduce the noise. This, however, is not used in the proposed implementation, as noise is
much less of a problem when using last-frame difference.

Figure 3.2 shows the accumulated differences of the example scene.

15

3.2. DYNAMIC SEAM CHAPTER 3. PROPOSED IMPLEMENTATION

Figure 3.2: Accumulated last-frame difference as used by DP.

3.2.3 brightness correction

Depending on the amount of incident light or individual camera settings, some cameras will
have darker images compared to adjacent cameras. To improve seam quality in those cases,
brightness correction is applied. Only those cameras with luminance above the combined
average of all cameras are adjusted. The adjustment consists of a simple factor scaling and
clamping of the final pixels. Figure 3.3 shows the final result.

16

3.3. IMPROVING PERFORMANCE CHAPTER 3. PROPOSED IMPLEMENTATION

Figure 3.3: Brightness correction comparison. Top: original, bottom: corrected. Note the
difference in brightness of the second camera.

3.2.4 Seam Blending

To improve performance and quality of seam blending, not every pixel in the overlapping area
is interpolated. A region of 10 to 15 pixels on both sides of the seam is used as interpolation
area. This reduces computation considerably.

3.3 Improving performance

The following section will discuss changes to improve performance. Part 3.4.1 summarizes
the timed results.

3.3.1 Mutex

A small change was made to the thread locking. An additional mutex was created. One
mutex locks when copying camera input to memory and one mutex locks when copying the
final stitched panorama to the screen output memory.

17

3.3. IMPROVING PERFORMANCE CHAPTER 3. PROPOSED IMPLEMENTATION

3.3.2 Bilinear Interpolation

As discussed in 2.4.3 the original implementation creates an extra YUV image 16 times
bigger than the original. When applying interpolation, the appropriate pixel in the enlarged
4 by 4 window is taken. This means 15 out of the 16 interpolation calculations are redundant.

The proposed implementation calculates the coordinates of the used pixel relative to the
interpolation window first, using the cyl LUT and the modulo operation, followed by the
actual interpolation, only evaluating one of the formulas in 2.3. The resulting interpolated
YUV is the same size as the original.

Figure 3.4 shows the distribution of the modulo of this transformation. Figure 3.5 shows the
steps to generate the interpolated Y image. A′ is the bi-linearly interpolated value, using
only one of the formulas in (2.3).

Figure 3.4: Modulo distribution after cylindrical transformation. Left is y, right is x.

18

3.3. IMPROVING PERFORMANCE CHAPTER 3. PROPOSED IMPLEMENTATION

A B
C D

Original Y

A B

C D

Forward interpolation

LUT lookup

A′ B′

C ′ D′

Resulting Y

Figure 3.5: Forward Bilinear Interpolation for Y.

19

3.4. FINAL RESULT DIFFERENCE CHAPTER 3. PROPOSED IMPLEMENTATION

3.4 Final Result Difference

Figure 3.6: Difference between the original (top) and proposed implementation (bottom).
Notable differences include dynamic seam and brightness adjustment

3.4.1 Profiling overview table

Table 3.1: Profiling summary.

Name Original Time (ms) Proposed Time (ms) Speed Gain
STITCHTHREAD 153.8778253 71.9367981 110%
Fisheye correction 27.3245352 16.9983821 60%
Interpolating single image 67.2973417 22.9243441 190%
Single dynamic seam 8.1870215 2.7335702 200%
Blending single seam 8.3263934 1.2557025 560%

FPS 15.5 33.1 110%

The full profiling table can be found in Appendix A.

20

Chapter 4

Discussion

This section will try to elaborate on some of the decisions and will try to clarify the results.

4.1 Data restructure

The performance improvement of the fisheye correction is caused by the restructuring of the
data. Instead of using 8 arrays containing separate parts of the needed information, a single
struct is stored in a single array containing the 8 elements. This method uses memory much
more efficiently.

4.2 Dynamic seam: Last-frame Difference

A very important detail about the usability of LFD is the use of static cameras. If the
cameras move slightly, this method, in the current state, will not produce favourable results.
However, when applying such constraint, the implementation can be kept simple and fast,
with decent quality. Moving objects are very easily detected as long as they have small
texture differences and are not too big. Objects bigger than the overlapping area will be
harder to detect as they produce less LFD.

Also, as discussed before, by using dynamic programming, noise does not heavily affect the
result. Moving objects will always get the highest priority in DP as long as the noise is
smaller than the LFD of the object.

4.3 Mutex

By using separate mutexes for specific memory locations, brightness correction, seam cal-
culation, seam stitching, frame switching and blending can be performed in parallel to the
capture thread. When creating threads, it is important to keep separate threads from locking
each other.

21

4.4. INTERPOLATION CHAPTER 4. DISCUSSION

4.4 Interpolation

The biggest speed-up is the result of forward-calculating the bilinear interpolation after
cylindrical transformation: only the needed pixel value is calculated. This is possible because
the interpolated image is only used once, and no other pixel is needed. The biggest slowdown
of interpolation is still cache misses; random access of pixels from memory causes the cpu
to stall. Further improvements can possibly be made by implementing the interpolation on
GPU or even dedicated hardware.

Comparing the fisheye interpolation (in combination with the RGB conversions) with the
custom bilinear interpolation shows a matching speed with the proposed method: 31ms
against 23 ms. The original method of custom interpolation however is much slower. This,
most likely, is a result of attempting to optimise for quarter-pixel instead of bilinear. Adapting
the proposed interpolation method to quarter-pixel should be a matter of increasing the
available formulas at 2.3. This, however, will result in an even larger cache miss rate and
will slow down the program much more.

4.5 Seam Blending

Occasional ghosting of objects can be reduced by applying blur on the LFD result. This will
increase the size of the object difference, so the seam will follow a path further away from
the object.

4.6 Slow down of YUV to RGB conversion

No code was changed in the YUV to RGB conversion, but as seen in appendix A, a 1 ms
slowdown appeared. On the other hand, a speed-up can be seen for the RGB to YUV
conversion. The reason behind this slowdown and speed-up is still unknown, but neglectable.

22

Chapter 5

Future work

The quality of the dynamic seam depends on the (lack of) movement of the camera. Possible
solution for future study can include camera stabilization techniques like the works of Kao
et al. (2006); Li et al. (2014), object detection or stereo vision.

The implementation performs interpolation twice for each frame. After performance improve-
ments the custom interpolation appears to be faster than the fisheye interpolation and YUV
to RGB to YUV conversions. Future improvement can include implementing the proposed
bilinear interpolation for fisheye interpolation or combining both transformations into one
and only performing interpolation once.

Further improving performance will be key to maintain real-time stitching, especially when
using this method for more than 4 cameras.

23

Appendix A

Full Profiling Summary

Name Original Time (ms) Proposed Time (ms) Speed Gain
YUV to RGB conversion 6.2911176 7.1819992 -10%
Fisheye correction & interpolation 27.3245352 16.9983821 60%
RGB to YUV conversion 9.3440064 7.2022147 30%
Custom Interpolation 67.2973417 22.9243441 190%
Fisheye & Custom Interpolation 110.504393 54.4928374 100%
Single Dynamic Seam 8.1870215 2.7335702 200%
All Dynamic Seams 8.85695 1.9507258 350%
Panorama stitching 10.5132186 8.1432525 30%
Single Seam Blending 8.3263934 1.2557025 560%
All Seam Blending 9.0487657 1.5555886 480%
YUV to RGB conversion, full image 6.3614559 3.8030368 70%
Stitch Thread 153.8778253 71.9367981 110%
- - - -
FPS 15.5 33.1 110%

24

Bibliography

Kai Chen Huang, Po Yu Chien, Cheng An Chien, Hsiu Cheng Chang, and Jiun In Guo.
A 360-degree panoramic video system design. Technical Papers of 2014 International
Symposium on VLSI Design, Automation and Test, VLSI-DAT 2014, pages 11–14, 2014.
doi: 10.1109/VLSI-DAT.2014.6834863.

GUO Jiun-In, CHANG Hsiu-Cheng, CHIEN Cheng-An, and HUANG Kai-Chen.
Optimal dynamic seam adjustment system and method for image stitching.
http://hdl.handle.net/11536/128672, 2015. URL https://ir.nctu.edu.tw/handle/11536/
128672.

Jiaya Jia and Chi Keung Tang. Image stitching using structure deformation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2008. ISSN 01628828. doi:
10.1109/TPAMI.2007.70729.

Jing Li, Wei Xu, Jianguo Zhang, Maojun Zhang, Zhengming Wang, and Xuelong Li. Efficient
Video Stitching Based on Fast Structure Deformation. IEEE Transactions on Cybernetics,
2015. ISSN 21682267. doi: 10.1109/TCYB.2014.2381774.

Akash Gandhamal and Sanjay Talbar. Evaluation of background subtraction algorithms
for object extraction. 2015 International Conference on Pervasive Computing: Advance
Communication Technology and Application for Society, ICPC 2015, 00(c), 2015. doi:
10.1109/PERVASIVE.2015.7087065.

Wen-Chung Kao Wen-Chung Kao, Shou-Hung Chen Shou-Hung Chen, and Pei-Yung Hsiao
Pei-Yung Hsiao. Real-Time Image Stabilization for Digital Video Cameras. APCCAS
2006 - 2006 IEEE Asia Pacific Conference on Circuits and Systems, 00:1651–1654, 2006.
doi: 10.1109/APCCAS.2006.342082.

Lengyi Li, Xiaohong Ma, and Zheng Zhao. Real-Time Video Stabilization Based On Fast
Block Matching And Improved Kalman Filter. 2014 Fifth International Conference on
Intelligent Control and Information Processing (ICICIP), pages 394 – 397, 2014.

25

https://ir.nctu.edu.tw/handle/11536/128672
https://ir.nctu.edu.tw/handle/11536/128672

Auteursrechtelijke overeenkomst

Ik/wij verlenen het wereldwijde auteursrecht voor de ingediende eindverhandeling:

Improving 360-degrees Panoramic Video Stitching

Richting: master in de industriële wetenschappen: elektronica-ICT

Jaar: 2016

in alle mogelijke mediaformaten, - bestaande en in de toekomst te ontwikkelen - , aan de

Universiteit Hasselt.

Niet tegenstaand deze toekenning van het auteursrecht aan de Universiteit Hasselt

behoud ik als auteur het recht om de eindverhandeling, - in zijn geheel of gedeeltelijk -,

vrij te reproduceren, (her)publiceren of distribueren zonder de toelating te moeten

verkrijgen van de Universiteit Hasselt.

Ik bevestig dat de eindverhandeling mijn origineel werk is, en dat ik het recht heb om de

rechten te verlenen die in deze overeenkomst worden beschreven. Ik verklaar tevens dat

de eindverhandeling, naar mijn weten, het auteursrecht van anderen niet overtreedt.

Ik verklaar tevens dat ik voor het materiaal in de eindverhandeling dat beschermd wordt

door het auteursrecht, de nodige toelatingen heb verkregen zodat ik deze ook aan de

Universiteit Hasselt kan overdragen en dat dit duidelijk in de tekst en inhoud van de

eindverhandeling werd genotificeerd.

Universiteit Hasselt zal mij als auteur(s) van de eindverhandeling identificeren en zal geen

wijzigingen aanbrengen aan de eindverhandeling, uitgezonderd deze toegelaten door deze

overeenkomst.

Voor akkoord,

Dendale, Thomas

Datum: 27/06/2016

