
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract — The goal of this project was to develop a virtual

reality system consisting of a graphical software application and
an embedded system, connected with each other via Wi-Fi to make
it wireless and portable. The software application acts as a server
and the embedded system acts as a client for that server. The client
is FPGA based and uses the MPU6050, a 6-axis inertia sensor, to
measure and calculate its own three-dimensional movements. It
sends this information to the server, which in turn sends back an
image stored in a local database. On the client side this image is
displayed on a LCD-screen. By changing the image according to
the movement, the client end user becomes a spectator in a virtual
environment. The end result is a functional proof of concept which
can be further improved by using the DMPTM of the MPU6050 and
adding a magnetometer for a more accurate tracking of the
movements.

Index Terms — Basys3, embedded system, FPGA, MPU6050,
portable, server-client, SQL database, virtual reality, Wi-Fi

I. INTRODUCTION

IRTUAL REALITY is becoming increasingly more popular
due to its applications in fields such as gaming. However,

next to the highly commercialized entertainment industry,
virtual reality can also be used for more practical applications.
One such application could be a training program for
firefighters, where they can practice in a virtual environment to
eliminate any real dangers. With the use of an embedded
system, wirelessly connected to a remote server, their position
and viewing angle inside the virtual room can be calculated.
Based on this information a certain part of the virtual
environment can be displayed with special goggles, or on a
screen held by the firefighter.

A virtual environment is described as a box of equidistant
points, which represent the different coordinates. When
walking around in this virtual environment, the user is basically
moving from one coordinate to a consecutive one. To be able to
‘look around’ in this environment, each of the coordinates
contains a 360° spherical panorama. This way the virtual scene
is projected onto an orb with the coordinate at its center.

To achieve such a virtual reality system, following
framework has been developed: the first part is a server
application connected to a database, and the second part is an

Manuscript received June 28, 2016. R. Fripon and M. Knoet, Students
electronics-ICT at the Hasselt University, Diepenbeek, B-3590 Belgium.
E-mail: robin.fripon@student.uhasselt.be | marcus.knoet@student.uhasselt.be

embedded system. The server software consists of only a few
classes; the core is the main class which handles all graphical
features of the application, and connected to it are a database
class and a Wi-Fi class to handle the database connection and
the wireless communication respectively. The client is FPGA
based and uses the MPU6050 as a motion tracking device. A
custom core is developed to operate this sensor. Furthermore,
the embedded system consists of a LCD-screen to display the
virtual environment and a Wi-Fi module to enable the wireless
communication. For the communication between server and
client, a lightweight custom UDP protocol is used.

II. FRAMEWORK
The framework of this virtual reality (VR) system consists of

two main parts: a software server application and an embedded
system which is referred to as a client. Both are wirelessly
connected via Wi-Fi, which has the advantage that the
embedded system becomes a portable device. Also connected
to the server is a database in which the virtual environments are
stored. The client itself consists of a FPGA development board
with connected to it: a Wi-Fi module for the wireless
communication with the server, a motion tracking device to
track the clients’ three-dimensional movements, and a LCD-
screen to display a certain part of the virtual environment. The
complete framework is shown in Figure 1.

Figure 1. Framework of the embedded system.

FPGA based wireless virtual reality system with
6-axis movement tracking

 (June 2016)
R. Fripon, M. Knoet, IEEE

V

mailto:robin.fripon@student.uhasselt.be
mailto:marcus.knoet@student.uhasselt.be

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

III. SERVER SIDE
The server side application is a graphical tool, developed

with the Visual Studio 2015 software, in which the user gets to
see all the connected clients and where he can assign a specific
virtual environment to new clients that try to connect. It also
provides tabs with: an overview of all the incoming data, a
picture of the last sent image, and an interface for creating and
displaying the virtual environments. Next to these graphical
functionalities, the application also handles a database
connection for the storage of the virtual environments, and it
takes care of the wireless communication with all connected
clients.

A. SQL database
The database used is a SQL local database and it has the sole

purpose of storing all the images from the virtual environments.
Each table in the database represents one virtual environment,
and thus the name of this table is the name that one has chosen
when creating that virtual environment. The structure of a table
is very straight forward: there is one column for the coordinates,
this is also the primary key, and there is a set of columns for
every possible combination of the yaw and tilt.

The coordinate column is of type varchar(50) and contains
all coordinates in the virtual environment. To improve the
readability of the coordinates, a specific structure was used. The
name of each coordinate is a concatenation of ‘x’, the value of
the x-position, ‘y’, the value of the y-position, ‘z’, and the value
of the z-position, e.g. x0y0z0.

The angle columns use the same structure for their names,
namely y0t0, y18t0, etc., and they are of type varbinary(max)
because they will contain the raw image data. Special about
these names is that the values of the yaw and tilt are multiples
of 18 and ranging from 0 to 342 for the yaw, and from -90 to 90
for the tilt. Discrete steps of eighteen degree angles were chosen
to reduce the number of images while still maintaining a smooth
transition between consecutive images.

B. Graphical user interface
The server side application has a simple and intuitive

graphical user interface (GUI) which facilitates the interaction
with the connected devices. The window is divided horizontally
into a narrow panel on the left, which contains a tree view of all
the connected clients, and a larger tabbed panel on the right.
This latter has three different tabs: a Data-, a View-, and a
Rooms-tab. On startup an empty tree view is shown and the
Data-tab is selected (Figure 2).

The Data-tab contains a data grid with five columns for the
x-, y- and z-position, yaw, and tilt. This grid gets filled with the
values sent by the clients, hereby requesting the image
corresponding to this unique set of values.

After sending back the requested image, this image will be
displayed in the View-tab. This way one can see whatever the
remote client is seeing. So in a way, the View-tab gives a visual
representation of the movement of a client.

Lastly there is the Rooms-tab, in which one can create new
virtual environments, referred to as ‘rooms’ in the GUI, by
defining a three-dimensional box of coordinates and fill each of
these coordinates with the images of a 360 degree spherical
panorama. One can use the combo boxes to switch between the

different rooms and between the coordinates within each room.
There is the option to insert images one by one, or to insert
multiple images at once.

Figure 2. Graphical user interface on startup.

C. Framework
The server has a lightweight framework with only three

major classes: the main class, the database class and the Wi-Fi
class. Both the database and the Wi-Fi class have a subclass,
called image class and client class respectively. The main class
provides all functionalities for the GUI, which runs on the main
thread. Furthermore, the main class can access the local
database via the functions in the database class, and it can start
and stop the Wi-Fi communication. This communication is
handled in the Wi-Fi class, which runs on a secondary thread.
The use of a secondary thread is needed to prevent the GUI to
become slow and irresponsive as a consequence of the intensive
process of the Wi-Fi communication. The structure of this
framework is shown in Figure 3. The arrows in this structure
indicate that a class can call functions of, or make changes in
another class.

Figure 3. Structure of the server side framework.

1) Main class
The main purpose of this class is to take care of the GUI. This

includes updating the tree view when a new client connects,
filling the data grid with all incoming data, displaying the last
sent image in the View-tab, displaying all images of the selected
room and coordinate in the Rooms-tab… Whenever an image
needs to be displayed, functions of the database class will be
called to retrieve it from the local database. Another function of
the main class, next to keeping the GUI up to date, is to use the
BackgroundWorker class to start a new thread on which the Wi-
Fi class can run.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

As mentioned previously, in the Rooms-tab one can create
new rooms, and select a room and one of its coordinates. And
if selected, one can add images to this coordinate. When adding
a single image, one has to specify the yaw and tilt manually for
this image. When adding multiple images at once, the software
will assign the correct angles to the images automatically.
However, this will only work if the filenames are of a the format
discussed in III.A, e.g. ‘y90t18.png’.

2) Database class
The database class contains all functions to interact with the

SQL local database. One function will dynamically, i.e. during
runtime, create a new table in the database. This happens when
one adds a new room. Two other functions are for retrieving all
rooms, and for retrieving all coordinates of one specific room.
Furthermore, there are functions to insert an image into a table
or to delete one, and functions to retrieve one image, or to
retrieve all images at one coordinate.

When retrieving one specific image at a specific coordinate
in one of the rooms, all the parameters, i.e. room, x-, y- and z-
position, yaw and tilt, are known. However, for displaying all
contents of a selected coordinate, all images will be retrieved
from the database at once. To display them in the correct order
the angles of each image are needed, but the database only
contains the raw image data. Therefore an object of the image
class will be created for each retrieved image. Every object of
type image contains a bitmap image, a value for the yaw, and a
value for the tilt. Using these values for yaw and tilt, the images
can be displayed in the correct order in the Rooms-tab.

3) Wi-Fi class
The Wi-Fi class handles the wireless communication with

clients. System.Net.Sockets is used to enable the sending and
receiving of messages with the connectionless UDP protocol.
After the Wi-Fi class is initialized, it starts to continuously
listen for incoming messages. This is a very intensive process
which would cause the GUI to become very slow and
irresponsive, therefore the Wi-Fi class has to run on a second
thread.

Different threads cannot interfere with each other, which
means that no changes can be made in the GUI from within the
Wi-Fi class. Nonetheless this is needed e.g. when newly
received data has to be displayed in the data grid. To make this
possible, the graphical elements that need to be updated are
passed on from the main class to the Wi-Fi class and used in
callback delegates. The Wi-Fi class contains callback functions
for updating the tree view, the data grid in the Data-tab, and the
picture box in the View-tab.

When receiving a message from one of the clients, this

message is analyzed for its content. This content is either a
connection request, or motion data to request a new image. In
the case of a connection request, it will be checked if the
connecting client has already connected once, or not. If not, a
new object of type client is created, which takes the clients’ IP
endpoint and the room that it has been assigned to as its
parameters. This object is then added to the servers’ list of client
objects. If the received message contains motion data, then the
requested image is retrieved from the database. After sending
some information about the image first, the image itself is sent

to the client as a stream of 260 byte packets. The first two bytes
are for indicating that the packet contains image data, the two
consecutive bytes contain the packet number, and the remaining
256 bytes contain the actual image data. This is equivalent to
127 pixels, as every pixel is of the RGB565 format and thus 2
bytes in size.

IV. CLIENT SIDE
The client side is a wireless embedded system that measures

accelerations and rotations to calculate its three-dimensional
position and angles and then sends this information to the
server. In return the server sends an image which is displayed
on the LCD-screen of the client. The embedded system consists
of several parts. Physical hardware, a FPGA hardware design
with an integrated softcore.

A FPGA hardware design handles the communication
protocols for the LCD-screen, Wi-Fi module and a motion
tracking device. These modules are part of the physical
hardware. A custom IP core is written to handle the initiation of
the motion tracking device, data acquisition and generation of
an interrupt when the movement exceeds a certain threshold. A
softcore is integrated in the FPGA to compute the software.

Software is written to convert the raw data from the motion
tracking device to useable data and calculate angles to send to
the server. This will be done when an interrupt occurs. The
LCD-screen driver and the communication protocol between
server and client are another important part of the software.

A. Physical hardware
The hardware used for this system consists of four major

parts. For the main part of the system a Digilent development
board is chosen, the Basys3.

A next important part is the sensor to measure the movement
of the system. The InvenSense MPU6050 Six-Axis MEMS
MotionTracking™ Device combines an accelerometer and
gyroscope to measure the change in movement. To use the
MPU a custom IP core is written that connects to an “AXI
GPIO” block which connects to the MicroBlaze. The custom
core is also connected to the I²C bus of the sensor.

To make the system wireless, Wi-Fi is added by using a WM-
C-MR-09 Wi-Fi module. The module connects through the AXI
Quad SPI core to the MicroBlaze. The flash of the Basys3 is
necessary to store the firmware for the Wi-Fi module.

 The final part of the system is a LCD-screen to display the
pictures sent by the server. The Himax’s HX8357-C chipset
drives the screen and communicates with the MicroBlaze using
an AXI Quad SPI core.

1) Development board: Digilent Basys3
The Basys3 is a FPGA development board designed for the

Vivado® Design Suite featuring the Xilinx® Artix®-7-FPGA
architecture. “The Artix-7 FPGA is optimized for high
performance logic [1].” To connect the different modules to the
FPGA the Pmod ports are used, port A connects the Wi-Fi
module, port B the LCD-screen and port C the motion tracking
device. The leds are used to display data and the switches are
used to control the system. Pushbutton C (the middle button)
functions as the system reset. The usb port functions as the

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

JTAG programming and UART port. The flash memory of the
Basys3 is used to store the firmware of the Wi-Fi module.

In Figure 4 an overview is shown of all the components of
the Basys3 development board, and in Figure 5 the physical
hardware is displayed.

Figure 4. Basys3 overview.

Figure 5. Physical hardware.

2) Motion tracking device: InvenSense MPU6050
To be able to measure motion the InvenSense MPU6050

sensor (Figure 6) is used. The sensor combines two MEMS
sensors and a Digital Motion Processor™ (DMP™) hardware
accelerator engine in one package. The sensor offers the
possibility to interface with third party digital sensors such as
magnetometers. When connected to a 3-axis magnetometer, the
MPU-6050 delivers a complete 9-axis MotionFusion output to
its primary I²C port. The DMP™ can use the data from the
accelerometer, gyroscope and magnetometer to accurately
compute position, angles, etc. [2].

Figure 6. InvenSense MPU6050.

The use of the magnetometer and DMPTM are not yet
implemented due to time constraints. To improve the system
these components should be used.

3) Wi-Fi module: WM-C-MR-09
The WM-C-MR-09 Wi-Fi module is based on the Marvell

88W8686 chipset to make wireless communication possible.
The module is connected to the Basys3 by a custom designed
board to control the power to ensure a correct startup sequence.
This is shown in Figure 7. The module is able to communicate
through the SDIO protocol which could work faster than the
SPI protocol, but unfortunately a license has to be payed to
make use of the SDIO protocol, therefore SPI is used. The
module complies with the latest IEEE802.11b/g wireless LAN
Physical Layer Specification and has a data rate up to 54Mbps
by incorporating Direct Sequence Spread Spectrum [3][4].

Figure 7. Custom designed board with Wi-Fi module.

4) LCD-screen: Himax’s HX8357-C chipset
Himax’s HX8357-C chipset controls a TFT-LCD panel with

a maximum of 320x480 RGB dots. The chip is designed to
provide a single-chip solution to drive a panel. With several
interface modes the chip is versatile and it supports HVGA
resolution. Using the “DBI TYPE-C Option 3” interface, a
serial communication by SPI is achieved to write commands
and data to the LCD-screen. Several color modes are available,
to decrease the size of data packets the “RGB565” mode is
chosen. It is a sixteen bit mode where red is represented by the
five most significant bits, green the six following and blue the
five less significant bits.

Another feature is the integrated graphical random access
memory (GRAM) which stores eighteen bit pixels and therefore
consists of 2,764,800 bits (320x18x480bits). When writing to
the GRAM the sixteen bit color data is converted to eighteen bit
pixel data. The GRAM will automatically adjust the pixel
address within the direction and window preferred. A continues
data write action is possible which speeds up the
communication and the refresh rate [5].

B. FPGA hardware design
When using the Basys3 development board the Vivado®

Design Suite is required. The software offers a schematic
approach for designing the programmable hardware. With the
“IP integrator” tool a block design is made which represents the
hardware. The design consists of a MicroBlaze block with a
“Processor System Reset”, local memory, “MicroBlaze Debug
Module (MDM)”, “AXI Interconnect” and “AXI Interrupt
Controller”.

Connected to the “AXI Interconnect” are an “AXI BRAM
Controller”, three “AXI Quad SPI” blocks, three “AXI GPIO”

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

blocks and an “AXI Uartlite” block. In the design is a custom
IP core integrated, the “MPU6050 Controller”. The core
connects to one of the “AXI GPIO” blocks, the other signals
from the core are connected to external ports in the wrapper.
First the custom core will be explained and afterwards the
connections of all the “AXI GPIO” blocks.

1) IP core: MPU6050 Controller
To communicate by I²C with the MPU the core integrates a

wishbone slave: the “I2C controller core” from Richard
Herveille, which can be downloaded at opencores.org [6].

In the wishbone master the “I2C controller core” is initiated,
the I²C communication will run at 200kHz and is directly
enabled when the hardware is loaded into the FPGA. To control
the wishbone master several connections are made to one of the
“AXI GPIO”.

Figure 9 shows an overview of the IP core, and Figure 10
shows all the connections to control the wishbone master.

The control connections are divided in several parts, a first

part is the “addr_in”, second and third are the “data_in” and
“data_out” busses, then an interrupt output pin “intpin” and a
“wr_e” write enable check output. The most significant bit of
“addr_in” is the “Write enable” bit, by setting this bit a core
register can be written with the sixteen bit “data_in” bus. When
the bit is zero a core register can be read on the sixteen bit
“data_out” bus. The four remaining bits select the core register
to be written or read.

a) Core registers
The core registers are explained in IV.B.1)a), it shows which

registers are readable, writeable or both and the format of the
registers. IV.B.1)b) explains the core structure; when the
different functions are possible and when they are executed.
Lastly IV.B.1)c) shows the calculation method of the interrupt.

An overview of the registers is shown in Figure 8. There are
four major groups. The first register, register zero, is the
“Interface_control” register. Next is a group of output only
registers containing the raw data from the six measurements: 3-
axis from the gyroscope and 3-axis from the accelerometer. The
third group of registers reads or sets the MPU offset registers.

The last register, register thirteen, functions as a pass-through
register. When reading or writing the “ANY_REGISTER” a
certain format and sequence is required.

Figure 8. Core registers overview.

Register “Interface_control” is a sixteen bit control register.
The four least significant bits are read- and writeable, the
remaining bits only readable. The delay bits set the interval for
reading the measurements from the MPU and updating the core
registers. In Table 1 the different delay settings are shown.

Read every

Setting Delay (ms)
0 10
1 50
2 100
3 200
4 250
5 500
6 750
7 1000

Table 1. Delay settings MPU6050 Controller.

When bit “init_start” (is) is set the core starts the initiation
process of the MPU. After this initiation is finished and the
measurements are ready to read the “init_done” (id) bit is set. It
is not possible to reset the “init_start” bit with a write action.

Figure 9. MPU6050 Controller overview.

Figure 10. Connections to control.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

When noticeable movement is detected the “interrupt” (int)
bit is set for 1ms, the same pulse interrupt available on the
“intpin” output of the control signals. When no interrupts are
generated when moving, the system needs to be reset.

Bit “any_ready” (ar) will be set when the “Register address”,
set in register “ANY_REGISTER”, has been read from the
MPU and the corresponding data is available in “Register data”
of register thirteen. The correct sequence of using register
thirteen will be explained later on.

The eight most significant bits are the readout of the
“WHO_AM_I” register of the MPU. When this represents
“0x68” [7] the communication is up and running, if not there is
a fault in the communication or connection of the MPU. When
this occurs the system needs to be reset and initiation restarted.

The next group represents the MPU measurement registers

of the two MEMS sensors. These registers contain the raw data
in a sixteen bit two’s complement format, a value in the range
of negative 32768 and positive 32767. The sixteen bit two’s
complement format consists of a sign bit (most significant bit)
and the remaining bits are the numerical value. To get the
numerical negative value a simple conversion is necessary;
when the sign bit is set the numerical bits are inverted and
incremented by one. The registers are read only and will not be
updated when the “Write enable” bit is set.

For setting the offset registers of the MPU another group of

six registers is available. The offset registers are not
documented in the datasheets, the information is gathered from
different MPU6050 Arduino libraries. The most advanced
library is from I²Cdevlib. Information about the library, a
download link and a complete register map can be found at the
I²Cdevlib webpage [8]. Just like the measurement registers, the
offset registers are in two’s complement format. The values in
these registers will be subtracted from the measurements inside
the MPU, correcting the raw output data. It is crucial to
calculate the offset when the sensor is level, stable and facing
upwards, an example program of an automated offset
calculation is found on the I²Cdevlib forum [9].

To write an offset register, which is selected with the
“addr_in” bus, the data needs to be presented to the “data_in”
bus before setting the “Write enable” bit. When setting the bit,
the write action happens exactly one time, and the address of
the last written register is stored. After a change in address or a
read action of the same address a new write action is possible.
The core offset registers will only change by reading the MPU
registers, while performing the write action the MPU register is
directly written. This way it is possible to check if the write
action was successful.

Figure 11. ANY_REGISTER read/write structure.

The last core register makes it possible to read or write every
register in the MPU. Figure 11 shows the “data_in” and
“data_out” structure when reading or writing the register.

When reading a certain register the “data_in” bus needs to be

set before choosing register thirteen. The eight most significant
bits represent the MPU register to read. When the “any_ready”
bit is set in the “Interface_control” register, the “data_out” bus
will hold the corresponding data. A correct sequence to read a
MPU register is the following: first set the “data_in” with the
MPU register address, select address thirteen, and check the
“any_ready” bit in the “Interface_control” register. When this
bit is set, read the “data_out” bus after selecting register
thirteen. Repeat the sequence to perform a next read.

For writing a MPU register the “data_in” bus needs to be set
before selecting register thirteen. The eight most significant bits
represent the MPU register to write and the eight least
significant bits represent the data to write into the register.
Before selecting register thirteen the write bit needs to be
enabled. The correct sequence is as follows: select a not
writeable core register, set “data_in” with the MPU register
address and data, set the “Write enable” bit and finally select
register thirteen. The write action will only happen once, to
write another register the sequence needs to be repeated.

b) Core structure
To explain the hardware design Figure 12 shows a simplified

structure. Keep in mind that hardware runs continuously and
parallel, so every action is dependent on a specific bit that is
either set by an external connection or a different part of the
design. The bit needs to be reset after the action is completed.

Figure 12. MPU6050 Controller structure.

The first block in the design initiates and enables the “I2C
controller core” from Richard Herveille. This happens directly
after the bit stream is loaded or the hardware is reset.

The following action depends on the “init_start” bit of the
“Interface_control” register. When the bit is not set, the

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

hardware keeps performing the “check_addr_in” function. It is
the left side of the structure. When the “Write enable” bit is not
set, the register selected on the “addr_in” bus is set on the
“data_out” bus. When the bit is set only the “Interface_control”
writeable bits can be written. After setting the “init_start” bit
the core will initiate the MPU.

The “initiate MPU” block will perform following
instructions: set the internal 8MHz oscillator and disable the
temperature sensor in the “PWR_MGMT_1”register, fill the
“PWR_MGMT_2” register with zeros, sets the digital low pass
filter to 42Hz in the “CONFIG” register. Also the ranges for the
gyroscope and accelerometer are set to 500°/s and 2g in the
“GYRO_CONFIG” and “ACCEL_CONFIG” registers, a
sample rate of 100Hz is chosen by setting the “SMPLRT_DIV”
register to nine, and to confirm a proper connection the
“WHO_AM_I” register is read. The “init_done” bit is set in the
“Interface_control” core register when the initiation is finished.

When the “init_done” bit is set the main part of the core is
activated. A counter is started, which increments every
millisecond, and when the counter equals the selected delay the
“read_mpu” bit will be set and the counter is reset zero.

While the “read_mpu” bit is not set the “check_addr_in”
function is executed with all the functionality. It still depends
on the “Write enable” bit; when not set the interrupt will be
calculated and the chosen register outputted on the “data_out”
bus. When the “Write enable” bit is set all the writeable
registers can be written by selecting the address of a register.
When writing a register other than the “Interface _control”
register a bit is set to prevent a simultaneous read and write
action of the MPU registers.

When the “read_mpu” bit is set, MPU registers are read (if
the above mentioned write bit is not set). The following
registers are read in this order: a burst read of the gyroscope out
register, a burst read of the accelerometer out registers, a burst
read of the gyroscope offset registers, a burst read of the
accelerometer offset registers and if necessary the register
requested by reading core register thirteen. If all these registers
are read from the MPU the “read_mpu” is reset.

c) Interrupt generation
An interrupt is generated to prevent the loss of useable

samples or reading the same sample several times. The next
code snippet shows the calculation within the “check_addr_in”
while the “Write enable” bit is zero.

Code snippet 1. Interrupt calculation.

The interrupt generates a pulse of one millisecond so the
software can perform a single read operation from the registers.

To calculate the interrupt the core depends on the gyroscope
data. The gyroscope outputs the change in degrees over time,
and when there is no change the measurements are zero.
Because there is always noise in the measurements a low pass
filter is applied by checking the six most significant bits of
every axis. The data is in two’s complement therefore all the
bits need to be zero or one when the device is stable. If the bits
are not all zero or one the device is moving.

2) AXI GPIO connections
To be able to control external signals with the MicroBlaze

“AXI GPIO” blocks are used. In the hardware design three
blocks are connected to several signals or cores. Multiple
channels are possible for every block, where channel one is
always an output and channel two is always an input. All three
blocks are explained below.

a) axi_gpio_led_sw
This block connects the 16 bit leds and 16 bit slide switches

of the Basys3. The leds are used to output the register status
selected with the five most significant bits. The three least
significant bits are to set the delay. The function described is
not set by hardware so it can be changed in the software.

Figure 13. axi_gpio_led_sw connections.

b) axi_gpio_lcd_wifi
To control the LCD-screen and Wi-Fi module this block

connects to three signals of the LCD-screen and two of the Wi-
Fi module. Figure 14 shows the bits corresponding to the
signals.

Figure 14. axi_gpio_lcd_wifi connections.

The “BL” connection controls the backlight of the LCD-
screen. “RS” controls the type of data sent to the LCD; when
set to zero a command is sent and when set to one data is sent.
“SS” is the SPI slave select to select the LCD-screen. For the
Wi-Fi module the “RST” controls the power on state and the
“SS” is the SPI slave select of the Wi-Fi module.

c) Axi_gpio_mpu6050
The third block connects to the MPU6050 Controller core,

using Figure 15 and Figure 16 the connections are explained.
The input channel contains eighteen bits and the output channel
twenty-one.

Figure 15. axi_gpio_mpu6050 output connections.

The output channel is used to select the core register address
to read or write and to send data to the controller. The five most

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

significant bits are the “addr_in” bits and the remaining the
“data_in” bus.

Figure 16. axi_gpio_mpu6050 input connections.

The most significant bit “wr_e” of the input channel is the
write enable check output, bit sixteen is the generated interrupt
and the remaining bits are from the “data_out” bus.

C. Software
When making an embedded system software is needed to run

within the controller core. The “Xilinx Software Development
Kit” or SDK is used for the software on the MicroBlaze. The
hardware is exported from Vivado and SDK is started to create
a new application project. The project is written in C language.

As shown in Figure 17 the source of the project is divided in
several folders, this will keep a good overview. When a change
is needed in the program the files are found easily.

Figure 17. Application project overview.

1) Hardware
The hardware folder contains the settings of the hardware and

the specific functions to initiate and control the hardware. There
are three files as shown in Figure 18.

Figure 18. Hardware folder.

In “hardware_config.h” all the hardware connections are
defined, this way the program can be adjusted quickly if there
are any hardware changes in the future.

In “hardware.h” the several libraries are included to work
with the hardware, by doing this all the needed libraries are
included by including “hardware.h” in a source file. Another
function of this file is to make all the instances, necessary to
work with the functions, global. By adding “extern” in front of
the instance it can be accessed from every source file where
“hardware.h” is included and the instance is instantiated. When
using UART to debug or output useful data, several defines can
help to determine what the output must be. The defines
“debug”, “output_data” or “debug_wifi” can be chosen or put
in comment.

The file “hardware.c” contains all the functions to initiate and
control most of the hardware.

2) LCD-screen
The files in the lcd folder are used to control the LCD-screen.

As shown in Figure 19 only two files are in the folder.

Figure 19. Lcd folder.

The same method is applied as with the “hardware.h”, all the
includes and defines are in the “lcd.h” file. The used registers
of the Himax’s HX8357-C are defined along with several
sixteen bit colors.

The functions to communicate with the LCD-screen, initiate
and control it are in “lcd.c”. The functions are based on the
“Universal TFT and other display device library for the
chipKIT and PIC32 based boards [10].“ from Majenko
Technologies. This library was deprecated and instead the
“DisplayCore” library [11], [12] can be used as a reference in
the future.

3) MPU6050
To control the MPU6050 Controller core two files in the

mpu6050 folder are used. The files are shown in Figure 20.

Figure 20. Mpu6050 folder.

For good practice the same method is used in the
“mpu6050.h” file, all the previous files are written specifically
for this project therefore the same methods are applied.

Some of the functions in “mpu6050.c” are explained in what
follows: IV.C.3)a) explains the conversion from the raw data to
useable data and IV.C.3)b) the motion calculation.

a) Raw data conversion
To use the data from the MPU it needs to be converted

because the data outputted by the MPU is data from the internal
analog to digital converter. Depending on the full scale range
used for the application the raw data needs to be divided by a
sensitivity level. For the gyroscope in a full scale range of
500°/s the sensitivity level is 65.5 and for the accelerometer in
the 2g range 16384.

As mentioned before there will be an offset on the data.
Example code [9] to set the offset in the MPU registers was
implemented, however by experimentation this method turned
out to be not useful due to a long calculation time and low
success rate. If it was working, there was no need to calculate
the offset in software and subtract it from the raw data.

To calculate the offset in the software the raw data is read for
a certain number of times, the first hundred times are discarded
then it will read the data again for the chosen number of times
and calculates the average. For the three gyroscope axis and the
accelerometer x- and y-axis the raw data needs to be zero after
subtraction of the offset. For the accelerometer z-axis the value
of the raw data needs to be equal to the sensitivity level because
the gravity is working only on the z-axis when level and stable.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

Although it is not possible to fully level a sensor, the user can
set a tolerance for every axis.

Code snippet 2 shows the code that is eventually used, the
useable data for the gyroscope is in degrees per seconds and for
the accelerometer in terms of gravitation which equals to
9.81m/s².

Code snippet 2. Raw data conversion.

b) Motion calculation
To calculate proper values which can be used to acquire

pictures some algorithms are needed. Data presented by the
MPU will not be accurate enough, drift on the gyroscope and
noise on the accelerometer are the cause. The calculations
consist of two parts: the calculation of angles and calculation of
coordinates. Due to time constraints the coordinates calculation
is not implemented and needs more research for further
expansion of the system. Theoretically a double integration of
the acceleration presents the distance travelled, however
because of the noise it is not that simple.

The calculation of angles is not fully implemented due to
memory constraints of the Basys3, additional BRAM is already
used for the software. To do the proper calculations the library
“Math.h” needs to be included which is too large, a simplified
calculation is used and is not as accurate as the preferred
method that is explained below. Only the data from the
gyroscope is used, it is not the best option because of the drift
from the gyroscope.

There are several options for calculating angles, an algorithm

which can be used is the Kalman Filter. This algorithm
calculates an estimate based on the presented samples, which is
more accurate when not all samples are correct. A drawback of
this algorithm is the high processor load and difficult
implementation because of the complex mathematics. Another
algorithm is the Complementary filter (Figure 21), it uses the
data from both sensors and cancels the high frequency noise of
the accelerometer and the low frequency drift of the gyroscope.

Figure 21. Complementary filter.

The algorithm uses a low-pass filter for the angles calculated
from the accelerometer data to cancel the noise. A high-pass
filter is used for the angles calculated from the gyroscope. This

removes the drift. By adding the two calculated and filtered
angles an accurate angle is calculated.

Using some trigonometry the angles are calculated from the
accelerometer, to calculate the tilt and roll the code from Code
snippet 3 will be executed.

Code snippet 3. Calculating angles from accelerometer data.

The yaw cannot be calculated from accelerometer data, because
no change in gravity is measured when the device turns in the
horizontal plane. To use an additional measurement for the yaw
a magnetometer needs to be used.

To calculate angles from the gyroscope data, the degrees per
second need to be converted to degrees. This is done with an
integral, in code it is nothing more than adding the new
measurement to the previous measurements keeping in mind it
is not measured during one second but only one sample period
of ten milliseconds. Code snippet 4 shows the code used.

Code snippet 4. Calculating angles from gyroscope data.

To apply the low-pass and high-pass filters the two angles
will be added, each with a multiplication factor. The angle of
the gyroscope has the highest factor because of the high-pass
filter, for example 0.98. The sum of the factors need to be one.
The yaw is only calculated with the angle of the gyroscope and
a high-pass filter. Code snippet 5 shows the calculation of the
tilt, roll and yaw.

Code snippet 5. Calculation of tilt, roll and yaw.

The server expects certain angle values therefore a last
calculation is needed. Code snippet 6 shows the calculation of
the expected values.

Code snippet 6. Calculation expected angle values.

4) Wi-Fi
This part of the code is developed in previous projects of the

Yangzhou University research team, however the file
“v360_protocol.c” is added to implement the communication

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

protocol and display the images on the LCD-screen. The
received images are displayed in the center of the screen, the
server can send an image with a variable size up to the size of
the LCD-screen. When packets with raw image data are
received, the data is written directly into the GRAM of the
LCD-screen. The server and client work in a peer-to-peer
connection because the Wi-Fi module is working in AdHoc
mode secured by WEP.

Figure 22. Wifi folder.

5) Main
When the program starts, the hardware is initiated and when

successful the LCD-screen is initiated followed by the Wi-Fi
module. During the initiation of the Wi-Fi module the interrupt
handler starts to receive and process data from the module. The
next part sets up the AdHoc network with the ssid
“VR360System” and keyascii “1234567890123”. When the
server is detected it makes the connection and the program
continues. To start the MPU6050 Controller core switch three
is set high. When the MPU is started a “init_done” check is
performed, if successful the interrupt handler for the MPU is
activated. It reads the core registers and calculates the angles.
After the activation of all the hardware and the connection to
the server is made the systems starts requesting images when
movement is detected.

V. WI-FI COMMUNICATION PROTOCOL
The communication between server and clients follows a

lightweight protocol (Figure 23) with only a few steps.
For starters, after a client has initialized its Wi-Fi module, it

will send an ARP message to request the servers’ MAC-
address. Once the client has received the MAC-address the
communication can begin, so the client sends a message
containing the word “connect”. On receiving this connection
request, the server replies with “connok” to tell the client that
the connection is ok, and adds the client to its list of clients if it
is a new client. The client can now start sending its coordinate
and angles, hereby requesting the corresponding image. Next
the server retrieves the correct image from the database and
sends back some information about this image. This
information message comprises the size of the image, the
number of packets needed to send to entire image, the width of
the image, and the height.

If the reception of this information has been acknowledged
by the client, the server starts sending a stream of packets
holding the raw image data. The client displays the comprised
data directly on the LCD-screen. The last packet of the stream
contains a unique string of cyphers indicating the end of the
image transmission. When this end-of-file (EOF) string has
been received, the client knows that the server has finished

sending image data so it will check if a new image needs to be
requested.

Figure 23. Wi-Fi communication protocol.

VI. FUTURE WORK
The created system is a functional proof of concept which

can be improved on multiple areas. On the server side some
improvements can be made by creating a full screen
functionality of the GUI and adding several skins, for example
by using Gnome. A function to change the dimensions of an
existing virtual environment is another improvement for the
server. Improvements on the client side can be made by
changing the network type with the purpose to connect several
clients to one server and improve the Wi-Fi stability. When the
network type is changed the method of writing image data to
the GRAM also needs to be changed. The current method writes
the data in the order it is received, however with a larger
network the packets can be in a mixed order, therefore the
GRAM needs to be written according the packet number. To
improve the angle accuracy a magnetometer must be added and
the DMPTM must be used to calculate the angles, this can help
to improve the overall speed of the system and free some
memory. Another way to improve the speed is by speeding up
the reading process of the MPU. The last thing which must be
done is the calculation of the position. With all these
improvements the system can function as a smooth virtual
reality system.

VII. CONCLUSION
This wireless 360° virtual reality system is a functional proof

of concept consisting of a simple and lightweight server
framework and an embedded client system using a FPGA.

The server uses multithreading to simultaneously update the
GUI when communicating over Wi-Fi with the client. This
gives a smooth experience on the server side. The server has

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

three important classes and the protocol used to communicate
is lightweight and easy to understand.

The client uses programmable hardware to communicate
with the MPU6050 and integrate a MicroBlaze controller to run
software. When working with a MEMS accelerometer and
gyroscope algorithms are required to use the inaccurate data of
the sensors and send accurate angles to the server. Because of
the complexity of the algorithms and communication over Wi-
Fi the accessible memory on the hardware was too low. The
communication of the LCD-screen and overall speed are too
slow for a smooth experience one the client side.

Figure 24. Wireless 360° virtual reality system.

REFERENCES

[1] Digilent Inc, “Basys 3 TM FPGA Board Reference
Manual Power Supplies,” vol. C, pp. 1–19, 2016.

[2] InvenSense Inc, “MPU-6000C and MPU-6050C
Product Specification,” vol. 1, no. 408. 2012.

[3] C. Chen, “Preliminary Product Specification of WM-
G-MR-09,” vol. 1.7, no. 00001, p. 24, 2007.

[4] Marvell, “Marvell 88W8686 datasheet,” vol. D, p.
190, 2007.

[5] Himax, “HX8357-C_DS,” 2012, pp. 1–254.

[6] R. Herveille, “opencores.org/project,i2cslave,” p.
Webpage, 2013.

[7] InvenSense Inc, “MPU-6000 and MPU-6050 Register
Map and Descriptions,” vol. 1, no. 408, pp. 1–50,
2011.

[8] J. Rowberg,
“http://www.i2cdevlib.com/devices/mpu6050#source,
” p. Webpage, 2014.

[9] L. Ródenas,
“http://www.i2cdevlib.com/forums/topic/96-arduino-
sketch-to-automatically-calculate-mpu6050-offsets/,”
2014.

[10] Majenko Technologies,
“https://github.com/TFTLibraries/TFT,” p. Webpage,

2015.

[11] Majenko Technologies,
“https://github.com/MajenkoLibraries/DisplayCore,”
p. Webpage, 2016.

[12] Majenko Technologies, “http://displaycore.org/,” p.
Webpage, 2015.

Auteursrechtelijke overeenkomst

Ik/wij verlenen het wereldwijde auteursrecht voor de ingediende eindverhandeling:

FPGA based wireless virtual reality system using 6-axis movement tracking

Richting: master in de industriële wetenschappen: elektronica-ICT

Jaar: 2016

in alle mogelijke mediaformaten, - bestaande en in de toekomst te ontwikkelen - , aan de

Universiteit Hasselt.

Niet tegenstaand deze toekenning van het auteursrecht aan de Universiteit Hasselt

behoud ik als auteur het recht om de eindverhandeling, - in zijn geheel of gedeeltelijk -,

vrij te reproduceren, (her)publiceren of distribueren zonder de toelating te moeten

verkrijgen van de Universiteit Hasselt.

Ik bevestig dat de eindverhandeling mijn origineel werk is, en dat ik het recht heb om de

rechten te verlenen die in deze overeenkomst worden beschreven. Ik verklaar tevens dat

de eindverhandeling, naar mijn weten, het auteursrecht van anderen niet overtreedt.

Ik verklaar tevens dat ik voor het materiaal in de eindverhandeling dat beschermd wordt

door het auteursrecht, de nodige toelatingen heb verkregen zodat ik deze ook aan de

Universiteit Hasselt kan overdragen en dat dit duidelijk in de tekst en inhoud van de

eindverhandeling werd genotificeerd.

Universiteit Hasselt zal mij als auteur(s) van de eindverhandeling identificeren en zal geen

wijzigingen aanbrengen aan de eindverhandeling, uitgezonderd deze toegelaten door deze

overeenkomst.

Voor akkoord,

Fripon, Robin Knoet, Marcus

Datum: 28/06/2016

