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Abstract. We investigate the effect of rotation on the maximum mass-loss rate due to an optically-thin radiatively-driven wind
according to a formalism which takes into account the possible presence of any instability at the base of the wind that might
increase the mass-loss rate. We include the Von Zeipel effect and the oblateness of the star in our calculations. We determine
the maximum surface-integrated mass that can be lost from a star by line driving as a function of rotation for a number of
relevant stellar models of massive OB stars with luminosities in the range of 5.0 < log (L/L�) < 6.0. We also determine the
corresponding maximum loss of angular momentum. We find that rotation increases the maximum mass-loss rate by a moderate
factor for stars far from the Eddington limit as long as the ratio of equatorial to critical velocity remains below 0.7. For higher
ratios, however, the temperature, flux and Eddington factor distributions change considerably over the stellar surface such that
extreme mass loss is induced. Stars close to the Eddington-Gamma limit suffer extreme mass loss already for a low equatorial
rotation velocity. We compare the maximum mass-loss rates as a function of rotation velocity with other predicted relations
available in the literature which do not take into account possible instabilities at the stellar surface and we find that the inclusion
thereof leads to extreme mass loss at much lower rotation rates. We present a scaling law to predict maximum mass-loss rates.
Finally, we provide a mass-loss model for the LBV ηCarinae that is able to explain the large observed current mass-loss rate of
∼10−3 M� yr−1 but that leads to too low wind velocities compared to those derived from observations.

Key words. stars: early-type – stars: mass-loss – stars: winds, outflows – stars: evolution – methods: statistical –
stars: individual: ηCar

1. Introduction

Rapidly rotating massive stars may suffer mass-loss rates that
are considerably higher than those of non-rotating stars. Stellar
evolution calculations indeed show that rapidly rotating stars
must lose a large fraction of their mass in a relatively short
time (Langer 1998). For the calculation of the evolution of ro-
tating stars Langer (1998) used an expression for the mass-loss
rate of rotating stars, based on an interpolation and extrapola-
tion of the models from Friend & Abbott’s (1986) early study
of rotating line-driven winds. This expression predicts that the
mass-loss rate becomes extremely high when the star rotates
close to critical velocity. This result was criticized by Glatzel
(1998) and by Owocki et al. (1998), who find that the mass-loss
rates at critical velocity do not differ too much from those of a
non-rotating star.

Maeder & Meynet (2000) propose a new scaling law for the
increase of mass loss with the rotation velocity by taking into
account the Von Zeipel effect and the oblateness of the star.
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This law depends on the Eddington factor Γ, the CAK line-
force parameter α (Castor et al. 1975, hereafter called CAK)
and the critical velocity. It predicts a finite mass-loss rate close
to critical velocity for stars sufficiently far from the Eddington
limit, i.e. for Γ roughly below 0.3. For higher values of Γ, how-
ever, extreme mass loss is derived. Our current study elaborates
further on this by including any kind of instability at the base
of the stellar wind that might increase the mass-loss rate. In
particular, the purpose of our work is to investigate how much
mass can maximally be expelled from a rotating star by radi-
ation pressure due to spectral lines, by allowing for the most
optimistic circumstances near the sonic point. This work can
be seen as a generalisation of Maeder & Meynet (2000). We
explicitly integrate the momentum equation for different lati-
tudes to find the surface-integrated maximum mass-loss as a
function of rotation velocity rather than using a scaling law for
the mass loss of a non-rotating and a rotating star. Moreover,
we allow for an unspecified extra force (e.g. due to pulsation or
magnetic fields) at the stellar surface that changes the velocity
gradient at the sonic point and helps in this way in the onset of
the mass loss.
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Very recently, Aerts & Lamers (2003, hereafter termed
Paper I) presented a formalism to derive maximum equatorial
mass-loss rates Ṁeq

max of massive stars for which the wind is
driven by radiation pressure in spectral lines with finite disk
correction, photon tiring and rotation included. The latter, how-
ever, was included only for the equatorial region. The rotation-
induced decrease of the radiative flux from the poles to the
equator, called gravity darkening, as well as the oblateness of
the star, was neglected. Aerts & Lamers solved the momentum
equation for different positive values of the velocity gradient
at the sonic point as boundary condition. They then selected
the highest possible mass loss for which an outflowing wind is
still obtained. Such a formalism is the most flexible one to see
how much mass can be driven by a CAK-type radiative force
on spectral lines, because an unspecified possible extra force
(such as due to stellar oscillations, magnetic fields or instabili-
ties) at the base of the wind is allowed for.

These maximum mass-loss rates were compared with those
predicted by classical self-regulating CAK wind theory and
with the models including multiple scattering (Vink et al. 2000,
2001) which do not include instabilities at the base of the wind.
The result of Paper I was that line driving can induce a maxi-
mum equatorial mass loss that is at most a factor 2–3 higher
than the one of a self-regulated line-driven wind, in agree-
ment with the earlier results of mass-overloaded wind solutions
found in the studies by e.g. Poe et al. (1990), Owocki et al.
(1994), Gayley (2000) and Feldmeier & Shlosman (2002). In
this paper we investigate to what extent the Von Zeipel effect
and rotational flattening changes the results obtained in Paper I,
by performing the calculations for an oblate star and provid-
ing total surface-integrated maximum mass-loss rates instead
of only equatorial ones. Our results can be compared with those
of Pelupessy et al. (2000), who calculated line-driven mass-loss
rates of rotating hot stars with oblateness, the von Zeipel effect
and the proper finite disk correction factor taken into account,
but who did not allow for the presence of an extra force.

The concept of the maximum mass-loss rate was introduced
in Paper I because mechanisms other than radiation pressure
and rotation are common among massive stars and may in-
fluence their mass loss. This will affect the evolution of the
star if the resulting mass-loss rate is much higher than for self-
regulated line-driven winds. As Paper I revealed the occurrence
of maximum mass-loss rates which are only moderately higher
than those considered up to now for (super)giants, and in view
of the intense debate about the role of rotation on mass loss
of massive stars (see e.g. Langer 1998; Glatzel 1998; Owocki
et al. 1998; Maeder & Meynet 2000), we devote the current pa-
per to the detailed study of the dependence of the maximum
mass-loss rates, determined with the formalism of Paper I, on
rotation.

The paper is organised as follows. In Sect. 2 we briefly re-
call the ingredients of the formalism and the definitions used
in Paper I to derive the maximum mass-loss rates. In Sect. 3
we subsequently present the maximum mass-loss rates as a
function of the rotation velocity for a grid of stellar models of
massive stars. We do this by outward integration of the momen-
tum equation for different latitudes and by summing the corre-
sponding local mass-loss rates for all stellar latitudes. We also

compare our values for the surface-integrated maximum mass
loss with those found from Langer’s (1998) empirical relation
and with Maeder & Meynet’s (2000) scaling law. We also de-
termine the maximum loss of angular momentum. We provide
a maximum mass-loss recipe derived from multiple regression
of the calculated grid, i.e. for the range 5 ≤ log (L/L�) ≤ 6 in
Sect. 4. An application of our mass-loss calculations to the lu-
minous blue variable ηCarinae is presented in Sect. 5. We end
with a discussion in Sect. 6.

2. Maximum mass-loss rates: The formalism

The starting point for the formalism developed in Paper I was
to understand to what extent the conservation of momentum
and energy allow the occurrence of extremely high mass loss.
To do this, we adopted the most flexible conditions possible,
i.e. we allowed for an unspecified force at the base of the stel-
lar wind to help drive the wind. Such a force can result from
stellar oscillations or a magnetic field or any instability, i.e.
phenomena that are common in massive stars but that are not
commonly included in line-driven wind calculations yet. Under
this condition, which replaces the usual singularity and regu-
larity condition adopted in a self-regulating wind, it was in-
vestigated how large Ṁeq can become such that the momen-
tum equation remains solvable for a CAK-type parametrisation
of the line-driving. This was done in the approximation of a
uniformly rotating star for which the deviation from spherical
symmetry of the physical stellar quantities and of the wind was
neglected. Finite disk correction and photon tiring were taken
into account, as well as a wind temperature law T (r) ∼ r−n

with n = 1. It was shown in Paper I that the resulting mass loss
depends only very weakly on n.

The momentum equation was solved numerically from an
assumed position of the sonic point outwards, for increasing
values of the mass-loss rate, until the amount of wind material
had increased so much that the acting forces could no longer
make it escape from the star. This condition is expressed mathe-
matically by allowing any positive velocity gradient at the sonic
point so that there is outflow. Since we are interested in the
maximum mass-loss rate that can be lifted out of the poten-
tial well of the star by radiation pressure on spectral lines, we
did not solve the subsonic structure of the wind. The velocity
gradient at the assumed sonic point was calculated numerically
from the momentum equation. We refer to Sect. 2 of Paper I for
a detailed description of the theory we adopt here. In Paper I we
allowed the radius of the sonic point, Rs, to be situated in the
interval [1.01, 1.1] R�. It was shown there that the highest equa-
torial mass-loss rates were obtained for a sonic point as close as
possible to the stellar surface, a well-known result from classi-
cal wind theory. We hence fixed the sonic point at the position
Rs = 1.01 R� for all results shown in this paper.

In Paper I, we selected the maximum mass-loss rate in the
equatorial plane, termed Ṁeq

max, out of all the physically rele-
vant solutions of the momentum equation for which this equa-
tion still has an outflowing wind. The maximum velocity that
occurs in the wind was defined as vmax. It was shown in Paper I
that the vmax-values corresponding to Ṁeq

max are typically a few
hundred km s−1 for all considered cases. This is much lower
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Table 1. Stellar parameters of the 9 non-rotating models for which the maximum mass-loss rates were determined in Paper I. The line force
parameters α and k are taken from Pauldrach et al. (1986). The critical velocity vcrit is expressed in km s−1 while σe is expressed in cm2 g−1.
The mass-loss rate is given in units of 10−6 M� yr−1.

Model log L/L� Teff M(M�) R(R�) Γ vcrit α k σe Ṁeq
max

Model 1 6.0 50 000 K 60 15 0.434 873 0.64 0.124 0.34 4.3

Model 2 6.0 40 000 K 50 23 0.521 644 0.64 0.124 0.34 6.1

Model 3 6.0 30 000 K 40 42 0.613 426 0.59 0.17 0.32 11.8

Model 4 5.5 40 000 K 40 10 0.209 873 0.64 0.124 0.34 0.8

Model 5 5.5 30 000 K 35 18 0.221 609 0.59 0.17 0.32 1.0

Model 6 5.5 20 000 K 30 40 0.250 378 0.565 0.32 0.31 3.4

Model 7 5.0 40 000 K 30 8 0.087 846 0.64 0.124 0.34 0.1

Model 8 5.0 30 000 K 25 14 0.089 584 0.59 0.17 0.32 0.2

Model 9 5.0 20 000 K 20 32 0.119 345 0.565 0.32 0.31 0.5

than the values of the terminal velocity v∞ predicted by the
classical or modified CAK-models. It was also found in Paper I
that the mass-overloaded solutions at a high percentage (>80%)
of the critical rotation velocity have kinked velocity laws, in
agreement with earlier studies in the literature. In the following
section we focus entirely on the mass-loss rates so we do not
list explicitly the corresponding wind velocities, which are all
of the order of a few hundred km s−1.

3. The effect of rotation on the maximum
mass-loss rates

We describe the mass-loss rates and angular momentum loss
for stellar models that are rotationally flattened and gravity-
darkened. The (equatorial) stellar parameters of the considered
models are listed in Table 1. They span a range of 20 000 <
Teff < 50 000 K, at high luminosities between 105 and 106 L�.

In Table 4 of Paper I, the equatorial maximum mass-loss
rates for 9 spherical stars of different stellar parameters and
for a large range of equatorial velocities, ranging from zero ro-
tation up to the critical velocity, was presented, assuming the
stars to be spherical solid rotators. The radiative acceleration
was calculated for a spherical star with a homogeneously illu-
minated stellar disk, i.e. without gravity darkening. Under these
simplifying assumptions the maximum mass-loss rates of stars
rotating near critical were found to increase only with a factor
2–3 compared to those of non-rotating stars.

In reality, the radius, effective temperature, luminosity and
Eddington factor differ for different values of the co-latitute θ
due to the rotation of the star (we use the convention that the
pole of the star corresponds with θ = 0◦). To investigate the
correct effect of rotation on the overall maximum mass loss,
the procedure outlined in Sect. 2 has to be repeated for each
co-latitude θ and for increasing values of the equatorial rotation
velocity, instead of assuming spherical symmetry as was done
in Paper I. We first outline the basic assumptions we made for
our calculations before providing the final results.

3.1. Critical rotation velocity

The equatorial velocity veq is varied from slow rota-
tion up to critical rotation velocity, which is given by

vcrit =
√

2GM/3Rpolar whenever the Eddington factor Γ < 0.64
(Maeder & Meynet 2000). For Γ > 0.64, however, Maeder &
Meynet (2000) have shown the critical velocity to decrease sig-
nificantly because of the reduced effective escape velocity, and
in that case we have adopted values for vcrit according to their
Fig. 1. We will express the equatorial rotation velocity in terms
of vcrit in the rest of this paper.

3.2. The shape of the star

The surface of an oblate rotating star has an inhomogeneous
temperature and flux distribution. We assume the Von Zeipel
effect to be valid, which is a good approximation for radia-
tive stellar envelopes. The Von Zeipel theorem expresses that
the effective radiative flux from a point on a distorted star is
proportional to the local effective gravity, which can be deter-
mined by taking into account the real shape of a uniformly ro-
tating star. In doing so, we assume that all the stellar mass is
concentrated in the stellar centre. In that case, the shape of the
star is determined by its Roche equipotential surfaces, which
take the following dimensionless form in a co-rotating frame
of reference:

Φ(x, y, θ) =
1
x
+

1
2

x2y2 sin2 θ, (1)

where x ≡ r(θ, y)/Req, and y = veq/vcrit (see, e.g. Maeder &
Meynet 2000, Eq. (A.6), for the equivalent formulation in terms
of x = r(θ, y)/Rpole). The local radius x of the star in such a
Roche model is given by

x(θ, y) = 2

√
(2 + y2)√
3 y sin θ

sin


1
3

arcsin


3
√

3 y sin θ
(2 + y2)3/2


 (2)

(see Eq. (4) in Pelupessy et al. 2000) and is graphically depicted
in the upper left panel of Fig. 1.

Through the Von Zeipel theorem we are able to calculate
the latitudinal dependence of the radiative flux for a particu-
lar y:

|g(θ, y)| = |∇Φ(θ, y)| ∼ T 4
eff(θ, y) (3)

from the potentialΦ. A plot of the latitudinal dependence of the
relative gravity, i.e. of the ratio of the local gravity to the grav-
ity at the equator, and from this of the relative local effective
temperature, is provided in Fig. 1.
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Fig. 1. The local radius (upper left), local gravity (upper right), local effective temperature (lower left) and local luminosity L(θ) ≡
4πR2(θ)T 4

eff(θ) (lower right) relative to the equatorial value of these quantities, for different ratios of the equatorial velocity to the critical
velocity and as a function of co-latitude (θ = 0 at the pole). The step in y = veq/vcrit for the different curves is 0.1.

By multiplication of x2 and T 4
eff, we also obtain the relative

local luminosity as a function of co-latitude (see Fig. 1, lower
right panel). In Fig. 1, the oblateness of the star is expressed
in terms of y, which is increased from y = 0 (spherical star)
to y = 0.9 in steps of 0.1 for the different dotted curves in the
panels.

3.3. A sectorial model

In our model calculations we ignore any θ-component of the
flow velocity and we solve the momentum equation in one
dimension (viz. the radial direction) only, i.e. we solve the
momentum equation (Eq. (9) of Paper I) for the values of the
relevant parameters for each co-latitude θ. We thus neglect
any wind compression due to velocity components towards the
equatorial plane that may occur, as described by Bjorkman &
Cassinelli (1993). This assumption is justified because com-
pression merely redistributes the wind material and does not
change the total mass lost from the star, which interests us here.
In this approximation, we write the conservation of mass loss
for a non-spherical sectorial wind as

Ṁ(θ, y) ≡ 4πR2(θ, y)Fm(θ, y)

= 4πr2(θ, y) ρ[r(θ, y)] v[r(θ, y)], (4)

with Ṁ(θ, y) the local mass-loss rate and Fm(θ, y) the local mass
flux along the surface normal for a particular equatorial rotation
velocity y = veq/vcrit (see Fig. 2).

Fig. 2. A rotationally distorted star according to the Roche model for
veq/vcrit = 0.8 (full line). At a certain co-latitude θi the surface normal
to the distorted star encloses an angle αi with the radial vector, which
is perpendicular to a spherical star with radius r(θi) (dashed line). The
surface-integrated maximum mass loss calculated from Exp. (5) takes
into account the maximum mass flux along the normal to the true stel-
lar surface.

At different values of θ, the equation to solve for the max-
imum mass-loss rate at that θ differs because the local lu-
minosity, the local radius and the local effective temperature
change for each co-latitude θ (according to Fig. 1). Moreover,
also the Eddington factor depends on the co-latitude and on the
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rotation (see Maeder & Meynet 2000). For uniform rotation
the θ-dependence of the Eddington factor solely occurs in the
opacity. We assume that the only source of continuum opac-
ity in the envelope is electron scattering, which is a good ap-
proximation for the high surface temperatures considered here.
We have taken the continuum opacity values from Lamers &
Leitherer (1993) – see Table 1. Hence, the opacity, and there-
fore also the Eddington factor, is independent of the co-latitude.
We are then only left with a rotational dependence of Γ, accord-
ing to Eq. (4.28) in Maeder & Meynet (2000), which we adopt
in this work.

The change of the finite disk correction factor due to stel-
lar oblateness and to the θ-dependence of Teff is neglected. As
shown in Paper I, the inclusion of the finite disk correction fac-
tor has only a small influence of a few percent on maximum
mass-loss rates determined from our formalism (contrary to its
large effect for the classical CAK solution). It is therefore jus-
tified to keep its value for a spherical star for all co-latitudes.

3.4. The force multipliers

The values of the force multipliers k and α are listed in Table 1
and were taken from Pauldrach et al. (1986) for the different
temperature ranges. The force multiplier parameter δ was set
to zero for reasons outlined in Paper I. For the calculation of
the mass loss we take into account the change in the value of k
and α across the stellar surface due to the varying temperature,
according to Fig. 1.

3.5. Strategy

We determined the local maximum mass flux through a sphere
with radius r(θ, y) (see dashed line in Fig. 2) at a particular
co-latitude θ and for a particular value of the equatorial ro-
tation velocity y by numerical integration of the momentum
equation. We did this by using the appropriate values of the lo-
cal radius, local effective temperature (and corresponding α, k
and σe-values), local luminosity and local Eddington factor in
Eq. (9) of Paper I. This procedure was followed for 4 different
values of the co-latitude θ: 90◦, 60◦, 30◦ and 0◦; for 10 differ-
ent values of the ratio y = veq/vcrit ranging from 0 to 1 in steps
of 0.1 and for the 9 stellar models of which the equatorial pa-
rameters are given in Table 1. This leads to 360 local maximum
mass-loss determinations Ṁsphere

max (θ, y).
As already mentioned, the mass flux does not occur along

the radial direction but rather perpendicular to the local surface
(see Fig. 2). When calculating the surface-integrated maximum
mass loss we corrected for this difference in flux direction by
projecting the local radial vector onto the local surface normal.
We thus approximate the surface-integrated mass-loss by

Ṁtot
max(y) =

1
4

4∑

i=1

Ṁsphere
max (θi, y) cosαi, (5)

where θi = 0◦, 30◦, 60◦, 90◦ while αi is the angle between the
local surface normal at co-latitude θi for i = 1, 2, 3, 4 and the
local radial vector (see Fig. 2 for an example with y = 0.8 and

θi = 45◦). With this definition of Ṁtot
max(θ) the total loss of an-

gular momentum is approximated by:

−J̇tot
max(y) =

1
4
ΩR2

eq

4∑

i=1

Ṁsphere
max (θi, y) cos3 αi x

2(θi, y), (6)

with Ω ≡ veq/Req.

3.6. Results

We provide in Table 2 the equatorial, polar and surface-
integrated maximum mass-loss rates with the corresponding
maximum loss of angular momentum of the 9 models with
equatorial stellar parameters given in Table 1, as a function of y.
We find that the maximum mass-loss rates induce a bipolar
prolate form, in agreement with results of earlier studies (e.g.
Dwarkadas & Owocki 2002). This form becomes more out-
spoken as y increases. We also find that the inclusion of the
Von Zeipel effect and the oblateness of the star has a signif-
icant effect on the ratio of the maximum mass-loss rate for a
rotating star to that one of the non-rotating star. The factor 2–3
increase in maximum mass loss from no rotation to critical ro-
tation found in Paper I is largely exceeded in the present work.

The onset of extreme mass loss is different for the dif-
ferent stellar models, occurring already at y = 0.5 for stars
with a high Eddington factor (above 0.6 on the entire surface,
e.g. Model 3) and only at y = 0.9 for stars with a very low
Eddington factor (below 0.2 everywhere on the surface such
as for Models 7, 8, 9). The allowance of a possible extra force
at the base of the stellar wind thus implies that extreme mass
loss might occur at critical rotation, for any stellar model. This
is in contrast to the situation where extra forces are not taken
into account and the mass loss is finite if the star is sufficiently
far from the ΩΓ-limit (Owocki et al. 1998; Maeder & Meynet
2000). On the other hand, to reach the stage of extreme mass
loss, one needs a rotation rate that is at least about half the
critical rate for the models we considered here. This threshold
decreases considerably for a star closer to the Eddington limit,
as we show in the next section and as was already found by
Maeder & Meynet (2000). If the extreme mass loss occurs at
any lattitude, the star can no longer be considered to be stable.

In Fig. 3 we plot the ratio of Ṁtot
max(veq) and Ṁtot

max(veq = 0)
versus veq/vcrit as filled squares for the 9 models. The maxi-
mum mass-loss rate increases drastically whenever the star ro-
tates faster than half the critical velocity. Globally, the curves
behave rather similar for all 9 models and point towards a mod-
erate increase in Ṁtot

max(veq) as a function of the rotation velocity
for veq/vcrit < 0.4 and a very steep increase for faster rotation.
As expected, for models of the same temperature, the onset of
extreme mass loss occurs at higher rotation as the luminosity
decreases (compare e.g. Models 2, 4, 7).

3.6.1. Comparison with previous estimates

The dotted line in the panels of Fig. 3 is the empirically derived
relation proposed by Langer (1998) for self-regulated winds
(i.e. without the inclusion of a possible extra force at the base
of the wind that might increase the mass loss rate), applied
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Table 2. Surface-integrated maximum mass-loss rates (expressed in 10−6 M� yr−1) and corresponding maximum angular momentum loss
(expressed in 1037 kg m2 s−2 = 1.94 × 10−3 J� yr−1) for the stellar models of which the equatorial parameters are listed in Table 1, as a function
of the rotation velocity. The indication “∞” means that the star has reached the ΩΓ-limit.

veq/vcrit Ṁeq
max Ṁpole

max Ṁtot
max −J̇tot

max Ṁeq
max Ṁpole

max Ṁtot
max −J̇tot

max Ṁeq
max Ṁpole

max Ṁtot
max −J̇tot

max

Model 1 Model 4 Model 7
0.2 4.7 5.1 4.9 2.27 0.9 0.9 0.9 1.09 0.1 0.2 0.2 0.14
0.3 5.3 6.3 5.8 3.95 0.9 1.1 1.0 1.85 0.2 0.2 0.2 0.23
0.4 6.2 9.3 7.7 6.73 1.0 1.4 1.2 2.97 0.2 0.2 0.2 0.37
0.5 8.2 18.3 13.7 13.89 1.2 1.9 1.6 4.89 0.2 0.3 0.3 0.60
0.6 13.1 ∞ ∞ ∞ 1.6 3.3 2.7 9.69 0.3 0.5 0.4 1.06
0.7 ∞ ∞ ∞ ∞ 2.4 8.4 6.1 25.55 0.3 0.9 0.7 2.13
0.8 ∞ ∞ ∞ ∞ 3.1 ∞ ∞ ∞ 0.4 1.9 1.4 5.06
0.9 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0.6 ∞ ∞ ∞

Model 2 Model 5 Model 8
0.2 6.7 7.4 7.0 2.40 1.1 1.2 1.1 0.21 0.2 0.2 0.2 0.02
0.3 7.7 9.5 8.6 4.44 1.2 1.4 1.3 0.37 0.2 0.2 0.2 0.03
0.4 9.4 16.3 12.8 8.79 1.4 1.9 1.6 0.62 0.2 0.3 0.2 0.05
0.5 14.1 ∞ ∞ ∞ 1.7 2.8 2.3 1.08 0.2 0.4 0.3 0.08
0.6 19.0 ∞ ∞ ∞ 2.3 5.5 4.2 2.36 0.3 0.6 0.5 0.15
0.7 ∞ ∞ ∞ ∞ 3.3 13.3 9.2 5.98 0.5 1.3 0.9 0.33
0.8 ∞ ∞ ∞ ∞ 4.1 ∞ ∞ ∞ 0.6 3.5 2.3 0.90
0.9 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0.7 ∞ ∞ ∞

Model 3 Model 6 Model 9
0.2 13.6 15.7 14.4 4.90 3.7 4.0 3.8 0.75 0.6 0.6 0.6 0.06
0.3 16.8 23.6 20.0 10.21 4.1 4.9 4.4 1.31 0.6 0.7 0.6 0.09
0.4 20.1 52.9 34.6 19.87 4.8 6.8 5.7 2.26 0.7 0.9 0.8 0.15
0.5 32.2 ∞ ∞ ∞ 6.1 10.5 8.5 4.17 0.8 1.3 1.0 0.25
0.6 40.4 ∞ ∞ ∞ 8.8 24.3 17.7 10.2 1.1 2.3 1.7 0.48
0.7 ∞ ∞ ∞ ∞ 11.9 ∞ ∞ ∞ 1.7 5.6 3.7 1.16
0.8 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2.1 14.0 8.7 2.95
0.9 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

to our maximum equatorial mass-loss rates for the 9 stellar
models listed in Table 1. Langer (1998) neglected the oblate-
ness of the star and the Von Zeipel effect. His relation leads
to mass-loss rates that are overestimates of the true values if
one does not include extra forces near the sonic point. This can
be seen by comparison with the correct scaling law derived by
Maeder & Meynet (2000) for a self-regulated CAK-type wind
(dashed line in Fig. 3). If one allows instabilities, though, one
easily ends up with larger mass-loss rates than those predicted
by Langer’s relation.

We find systematically a significantly higher contrast in the
maximum mass-loss rate with and without rotation than the one
found by Maeder & Meynet (2000). This finding shows that
the inclusion of extra forces at the base of the wind allows the
onset of extreme mass loss at much lower rotation rates com-
pared to the situation where such extra forces do not occur. It
is entirely understandable that we find a larger contrast than
Maeder & Meynet (2000) who did not include any additional
helpful force. Maeder & Meynet (2000) had already derived
extreme mass loss from their scaling law for stars close to the
so-called ΩΓ-limit. We confirm this result by direct numerical
integration of the momentum equation and we show that the
onset of extreme mass loss occurs at lower rotation rates when-
ever extra forces help to lift the material at the stellar surface.

Langer (1998) computed the main sequence evolution of
a 60 M� star with various initial rotation rates and considered

the effect of angular momentum loss on the stellar mass-loss
rate and the rotation of the star. He finds that the coupling of
mass and angular momentum loss limits the mass-loss rate of
main-sequence stars at the so-called Ω-limit. He lists a value
of Ṁtot

max 	 10−5 M� yr−1 which is determined through the an-
gular momentum loss imposed by the Ω-limit. We have done
quite opposite calculations as we have built up a formalism to
find the maximum mass-loss rate by line-driving from a phys-
ical model and we derived the accompanied maximum angu-
lar momentum loss. The maximum mass loss of the slowly
rotating O-star models in our sample is indeed of the order
10−5 M� yr−1, which is compatible with Langer’s (1998) result.
Hence, there seems to be general agreement between our re-
sults and stellar evolution calculations of massive stars.

3.6.2. The effect of the force multiplier parameters

The values of the maximum mass-loss rates listed in Table 2,
and hence also those of the maximum angular momentum loss,
are determined by the adopted values of the line force param-
eters (α, k). It is clear that any future change in the values of
these parameters will imply different values for the maximum
mass-loss rates. This should always be kept in mind when us-
ing them for stellar evolution calculations. The main purpose
of our work was to investigate how high a mass can be driven
in the best possible circumstances of having a high rotation and



C. Aerts et al.: Maximum mass-loss rates of line-driven winds of rotating massive stars 645

Fig. 3. z ≡ Ṁtot
max(veq/vcrit)/Ṁtot

max(0) as a function of y ≡ veq/vcrit for rotating models including the Von Zeipel effect. The values are obtained
from direct integration of the momentum equation at different co-latitudes and are indicated by filled boxes connected by a full line. The dotted
line represents the empirical relation proposed by Langer (1998). The scaling law proposed by Maeder & Meynet (2000) for winds in rotating
stars without instabilities is superimposed as a dashed line. The dashed-dotted line represents the multiple regression prediction formula given
in Exps. (8) and (9).

extra forces helping to lift the wind material, compared to the
case where rotation does not occur. This ratio should not be
very sensitive to the line-force parameters. We have taken the
values by Pauldrach et al. (1986) derived from theory rather
than empirical values derived from observations. The reason
why we did not rely on the empirical values is that we needed a
consistent set of (α, k) at each temperature at the stellar surface
to be able to solve the momentum equation rather than using a
scaling law to predict the mass loss. We also note for complete-
ness that the empirical αm-values listed by Lamers et al. (1995)
are too low due to a small error in the code that was used by
the authors to derive them.

4. Maximum mass-loss recipe

The observation that the dependence of the increase of the max-
imum mass-loss rates on the ratio veq/vcrit is quite similar over a
wide range of stellar models, as illustrated in Fig. 3, is very for-
tunate. Indeed, it permits us to derive a formula that allows the
prediction of the maximum mass-loss rates for a star with a par-
ticular luminosity, effective temperature and mass, as a function
of the equatorial rotation velocity, instead of having to calcu-
late each time again the Ṁtot

max-values when the stellar model

parameters deviate from those given in Table 1. With the spe-
cific goal of determining such a statistical formulation we have
performed multiple regression, using the procedure NLMIXED
of the statistical software package SAS (2002).

We have considered several non-linear model options and
the best result was obtained for a logistic function, which fi-
nally leads to the form

zi =
1 + exp( f (yi, L,M, Teff))

exp( f (yi, L,M, Teff))
+ εi (7)

with zi ≡ Ṁtot
max(yi)/Ṁtot

max(0) and yi ≡ veq/vcrit for each of
i = 1, . . . , 81. In this model we assume normally distributed
errors εi ∼ N(0, σ2) and the function f (y, L,M, Teff) is taken
to be linear in y and dependent of the luminosity, mass and
temperature of the star. In the first instance, we determined the
best fit for each of the 9 stellar models separately. This leads to
very satisfactory fits, which is not surprising as we have a large
degree of freedom with only 9 points to fit.

A subsequent important question is: can we find one global
non-linear model, with a good predictive power, that describes
the data of the 9 models simultaneously? If so, we can predict
Ṁtot

max(veq) from the maximum mass-loss rate at zero rotation
as a function of mass, luminosity, effective temperature and
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equatorial rotation speed for the range of physical parameters
listed in Table 1. The coefficients for the linear function f were
hence determined from one global fit to the 81 calculated val-
ues of Ṁtot

max (shown as full squares in Fig. 3) simultaneously.
We started from the most general linear function for f and kept
only those terms with significant coefficients. This results in the
following maximum mass-loss recipe:

Ṁtot
max(veq) = Ṁtot

max(veq = 0) × 1 + exp( f (y))
exp( f (y))

(8)

with

f (y, L,M, Teff) = 27.72 − 1.19 log (L/L�) + 0.04M

−4.05 log Teff + 22.02y − 7.12 log (L/L�)y + 0.19My,
(9)

where y = veq/vcrit and vcrit =
√

2GM/3Rpolar for Γ < 0.64
and as given in Maeder & Meynet (2000) for higher values
of Γ. The global fits for the 9 models based on Eqs. (8) and
(9) are shown as dashed-dot lines in Fig. 3. It can be seen that
the fits are satisfactory from a point of view of providing accu-
rate maximum mass-loss estimates as input to stellar evolution
calculations. The fit allows one to predict the maximum mass
loss as a function of equatorial rotation velocity, provided that
the overall maximum mass loss without rotation is known, for
all stellar parameters not too different from those in our grid of
9 models.

As shown in Paper I (see last column in Table 3 of that pa-
per), the maximum mass-loss rate of a non-rotating star is be-
tween 0.5 and 1.7 times the rate of a line-driven wind calculated
with the inclusion of multiple scattering for solar metallicity
(see Vink et al. 2000). It is therefore a very good approximation
to use the values from the recipe provided by Vink et al. (2000)
for solar metallicity, in combination with our scaling law (8)
and (9) in order to find the maximum mass than can be lost by
a star as a function of rotation velocity. For completeness, we
therefore repeat here the results obtained by Vink et al. (2000):

log Ṁ = −6.70 + 2.19 log(L/105) − 1.31 log(M/30)

−1.23 log(v∞/2vesc) + 0.93 log(Teff/40 000)

−10.92{log(Teff/40 000)}2
(10)

in the range of 25 000 < Teff < 50 000 K where v∞ = 2.6vesc,
and

log Ṁ = −6.69 + 2.21 log(L/105) − 1.34 log(M/30)

−1.60 log(v∞/2vesc) + 1.07 log(Teff/20 000)
(11)

in the range of 15 000 < Teff < 22 500 K, where v∞ = 1.3vesc.
The parameters L and M have to be expressed in solar units in
these formulae. These multiple scattering mass-loss predictions
can be rescaled to include the effect of deviations from solar
metallicity according to Vink et al. (2001).

5. The case of ηCarinae and other luminous blue
variables

As already emphasized by Maeder & Meynet (2000), extreme
mass loss occurs for stars near the ΩΓ-limit, such as luminous

blue variables (LBVs). Having included possible extra forces
or instabilities to help build up the ideal velocity gradient at
the sonic point, we can check if our models are able to explain
the mass loss and the kinematical structure of nebulae around
such stars, which are indeed expected to undergo instabilities.
Weiss (2003) recently provided an overview of such structures
for several galactic and LMC LBVs. Given its extreme prop-
erties, we concentrate mainly on the LBV ηCarinae and we
confront its observational characteristics with our maximum
mass-loss formalism.

Maeder & Desjacques (2001) used their mass-loss scal-
ing law to derive mass flux plots of stars like ηCarinae in
the two cases of a shell ejection and of a constant wind. A
much more systematic study of the shaping of LBV nebulae in
terms of radiatively driven winds was provided by Dwarkadas
& Owocki (2002). They obtained an equatorial mass-loss rate
that is about 1/5 of its polar value. They also provided density
contours derived from wind simulations for which they fixed
the maximum mass-loss rate to 10−4 M� yr−1 and the maximum
polar wind velocity to 2000 km s−1. Their simulations showed
convincingly that radiatively driven wind theory leads in a nat-
ural way to a latitudinal dependence in velocity and mass loss
for rotating stars, with both a higher mass flux and a higher
terminal velocity from the pole than from the equator (in the
absence of a bi-stability jump). They also provided a model for
ηCarinae in which they assumed a pre-outburst wind with a
polar velocity of 700 km s−1 and a mass loss of 10−5 M� yr−1,
and an outburst period of 20 years during which the velocity
was assumed not to change but during which the mass loss in-
creased to 0.1 M� yr−1. The density contour plots they obtained
in this way indeed resemble ηCarinae’s Homunculus Nebula.

Recent progress in determining the observational properties
of ηCarinae is impressive. Hillier et al. (2001) have derived ob-
servational properties of the star from HST/STIS spectra and
require a current mass-loss rate of 10−3 M� yr−1 to obtain a
good fit to the spectrum. More recently, van Boekel et al. (2003)
have obtained a direct measurement of the size and the shape
of the stellar wind of ηCarinae from interferometric data gath-
ered with the VLTI. They derive an even higher current mass-
loss rate of 1.6 ± 0.3 × 10−3 M� yr−1, assuming a spherically
symmetric clumped wind. Smith et al. (2003) found the wind
structure of the star to be axisymmetric and variable in time,
with higher velocities (of order 600–1 000 km s−1) and higher
densities at the pole than at the equator from new STIS spectra.

An important question is whether the high observed mass-
loss rate of ηCarinae can be explained in terms of radiatively
driven wind theory. Our formalism is ideally suited to answer
this question as it allows for the influence of instabilities at
the base of the wind. We have therefore solved the momen-
tum equation for stellar parameters appropriate for ηCarinae
and determined the maximum mass-loss rates as explained in
Sect. 3 for models that have not yet reached the ΩΓ-limit but
are only barely below this limit. We have kept a large degree of
freedom on stellar parameters in the first instance as these are
not well known for ηCarinae.

It is not our intention to provide a fully explored set of
models that lead to the observed mass loss. Rather we em-
phasize that such models indeed were found by us. One such



C. Aerts et al.: Maximum mass-loss rates of line-driven winds of rotating massive stars 647

Fig. 4. Some velocity laws resulting from integration of the momen-
tum equation for stellar parameters appropriate for ηCar, allowing for
different values of the velocity gradient at the sonic point. The full
lines are solutions for the polar region while the dashed lines are valid
for the equatorial regions. The mass-loss rates corresponding to the
velocity laws are indicated. For a more detailed explanation we refer
to Paper I and to the text.

model has the following characteristics: M = 90 M�, Req =

60 R�, Rpole = 57.4 R�, T eq
eff = 20 000 K, T pole

eff = 20 935 K,
log (L/L�)eq = 6.50, log (L/L�)pole = 6.54, vcrit = 250 km s−1,
veq/vcrit = 0.3, Γ = 0.87. The highest possible mass-loss rates
we obtained from integration of the momentum equation are in
this case 1.5× 10−3 M� yr−1 at the pole and 0.5 × 10−3 M� yr−1

at the equator, leading to a surface-integrated mass loss of
10−3M� yr−1. The mass-loss contrast of a factor three between
the pole and the equator (with a higher mass loss rate from the
pole), together with the factor 0.5 for the maximum velocity,
(with a higher outflow velocity from the equator – see below)
leads to a density contrast of a factor 6. This is compatible with
the factor 5 found by Dwarkadas & Owocki (2002), although
they obtain a higher velocity at the pole than at the equator.
We stress that the listed model parameters are just one set that
lead to the appropriate mass-loss rate and there may be sev-
eral others that do so as well. We also stress that much more
extreme mass-loss rates are easily reached for stars above the
ΩΓ-limit (i.e. with veq/vcrit > 0.4), as shown in Fig. 3 and listed
in Table 2 in Sect. 3. However, the purpose of our investigation
of ηCarinae was to search for models with a “natural” line-
driven outflow based on an ideal velocity gradient at the sonic
point that explains the observed mass loss rather than having to
invoke a specific outburst with a much increased ad-hoc mass-
loss rate as often assumed in the literature. From the point of
view of the high mass loss we have succeeded in finding such
models.

The velocity laws accompanying the solution for the model
mentioned above are shown in Fig. 4. The full lines are for the
polar region of the star. It can be seen that a kinked velocity
law (see Paper I) is found as of Ṁpole

max = 1.6 × 10−3 M� yr−1

for the polar mass loss and the matter can no longer es-
cape from the star if the mass-loss rate is further increased
to 1.7 × 10−3 M� yr−1. We refer to Paper I for a more detailed

description of the velocity laws in this figure. The dashed lines
indicate the three acceptable solutions with the highest pos-
sible mass loss for the equatorial region. Increasing the mass
loss above Ṁeq

max = 0.5 × 10−3 M� yr−1 implies fall-back of the
wind material in the equatorial zone. The maximum wind ve-
locity near the pole for the model shown in Fig. 4 is only some
80 km s−1 and cannot explain the extent of the Homunculus if
it formed only after the outburst around 1850.

While large uncertainties of several hundred km s−1 exist
for the terminal wind velocity of ηCarinae we could not find
a model below the ΩΓ-limit that explains both the observed
mass-loss rate and the wind velocity of the star in full details.
For appropriate mass-loss rates, we always end up with a much
lower wind velocity, similar to the one shown in Fig. 4. Note
that Maeder & Desjaques (2001) and Dwarkadas & Owocki
(2002) assumed values for the wind speeds and mass-loss rates
to end up with an acceptable configuration from scaling laws.
We provide a fully consistent estimate of the wind velocity and
maximum mass loss. The velocities we derive in such a way for
stars close to the ΩΓ-limit are in general in very good agree-
ment with the expansion velocities observed by Weis (2003)
for several LBVs, except for ηCarinae for which they are an
order of magnitude too low.

Given the observed geometry of the Homunculus of
ηCarinae, the wind velocity near the equator must be signif-
icantly lower than at the pole. In our model shown in Fig. 4
this would correspond to the velocity curve obtained for 0.1 ×
10−3 M� yr−1 at the equator. It is quite easy to imagine that the
equatorial region would undergo a different effect on its local
mass loss from an instability than the pole. A non-radial ax-
isymmetric even oscillation mode, for instance, is just one sim-
ple example of an instability that could lead to such an effect.
It is clear that our formalism has the potential to lead to very
different geometries of the density distribution around a rotat-
ing star because we have left the cause of obtaining the ideal
velocity gradient at the sonic point unspecified. Several natu-
ral large-amplitude phenomena occur at the surface of massive
stars (such as stellar oscillations or a complex magnetic field)
and may indeed help in the onset of the local mass loss.

We conclude that we have found radiatively-driven wind
models below the ΩΓ-limit that explain in a natural way the
huge currently observed mass-loss rate of ηCarinae and its spa-
tial distribution. From the point of view of mass loss we would
therefore not need any different physical mechanism or a spe-
cific eruption to explain the star’s nebula and geometry. Our
models, however, have too low a wind velocity. We do point
out that all other LBVs have expansion velocities that are en-
tirely compatible with the predicted maximum wind velocities
of our models.

6. Discussion

We determined the maximum mass-loss rates of stars by means
of a wind that is lifted out of the potential well by radiation
pressure on spectral lines, taking into account rotation. Our cal-
culations were done for a simplistic CAK-type description of
the line driving, including the oblateness of the star and the Von
Zeipel effect and allowing for the possible presence of an extra
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force or an unspecified instability at the base of the wind (at or
below the sonic point) that might increase the mass-loss rate.
The maximum mass-loss rates were determined explicitly for
9 stellar models, which are representative for massive stars at
different evolutionary stages and not too close to the Eddington
limit. All rotating models have higher mass-loss rates at the
pole than at the equator, the contrast increasing as the rota-
tion increases. This is in agreement with previous studies of
self-regulated winds in the absence of a rotationally induced bi-
stability jump (Pelupessy et al. 2000), as shown by Dwarkadas
& Owocki (2002). For moderately to rapidly rotating stars we
find maximum mass-loss rates that are significantly higher than
those of non-rotating stars. In particular, all OB stars with near-
critical rotation can have extreme mass loss in the presence of
surface instabilities. From comparison of our results with those
by Maeder & Meynet (2000) we conclude that the onset of ex-
treme mass loss occurs at lower rotation rates when allowing an
instability to help increase the mass-loss rate or lift the material
at the base of the wind.

We provide the maximum loss of angular momentum as
function of the stellar parameters and of the rotational velocity
for all considered models. It would be worthwhile to compare
these angular momentum losses with those used in stellar evo-
lution codes.

We provide a formula to predict the maximum mass-loss
rate for stars with a luminosity not too different from 5.0 <
log (L/L�) < 6.0. It was derived from multiple regression using
the results of our detailed numerical integration of the momen-
tum equation for 9 models. This formula can easily be com-
bined with mass-loss estimates based on multiple scattering for
non-rotating stars (Vink et al. 2000, 2001). The use of the for-
mula provided by Maeder & Meynet (2000) allows one to find
the mass lost by massive stars in the presence of rotation with-
out the occurrence of instabilities while our formula leads to the
maximum amount of mass that can be lost due to a line-driven
wind in a rotating star that undergoes unspecified instabilities
which help to reach the optimum velocity gradient at the sonic
point.

By means of integration of the momentum equation for
the specific case of the LBV ηCarinae we have found models
below theΩΓ-limit that lead to realistic predictions of the huge
mass loss observed for this star and of its latitudinal distribu-
tion. In general, we are able to explain the combination of high

mass loss and low wind velocities observed in LBVs. We were
unable, however, to find a model below the ΩΓ-limit that pre-
dicts the high mass-loss rate in combination with the measured
high wind velocity of ηCarinae itself.
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