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Three Effective Metaheuristics to Solve the Multi-Depot Multi-Trip

Heterogeneous Dial-a-Ride Problem

Abstract

The Heterogeneous Dial-a-Ride problem (HDARP) is an important problem in reduced mobility
transportation. Recently, several extensions have been proposed towards more realistic applications
of the problem. In this paper, a new variant called the Multi-Depot Multi-Trip Heterogeneous Dial-a-
Ride Problem (MD-MT-HDARP) is considered. A mathematical programming formulation and three
metaheuristics are proposed: an improved Adaptive Large Neighborhood Search (ALNS), Hybrid
Bees Algorithm with Simulated Annealing (BA-SA), and Hybrid Bees Algorithm with Deterministic
Annealing (BA-DA). Extensive experiments show the effectiveness of the proposed algorithms for
solving the underlying problem. In addition, they are competitive to the current state-of-the-art
algorithm on the MD-HDARP.

Keywords: Vehicle Routing Problem (VRP), Dial-a-Ride Problem (DARP), Metaheuristic,
Optimization, Bees Algorithm (BA)

1. Introduction

The transportation of individuals with reduced mobility is an important branch in passenger
transportation. It concerns the transportation service that helps the elderly and the disabled people to travel
easily and comfortably within their community or to access essential health care services. However, such
services are usually very costly, due to specific requirements, such as the need for specially equipped
vehicles, highly qualified drivers, accompanying person(s), and the existence of desired service times.
Clearly, appropriate transportation planning can greatly improve the service quality and save physical and
human resources.

The reduced mobility people transportation planning consists of establishing a transport plan (vehicle
itinerary) to meet particular user demands by a fleet of vehicles. This problem is called the Dial-a-Ride
problem (DARP) in the literature. The DARP is a variant of the Pickup and Delivery Problem with Time
Windows (PDPTW) that concerns the transportation of goods/services between paired pickup and delivery
locations. The optimization criterion of the DARP is often to minimize the total transportation distance or
duration, while providing high service quality (e.g., small customer waiting times). The DARP is more
complicated than the traditional NP-hard Vehicle Routing Problem (VRP), due to its special transportation
constraints.

Given the increase in social interest towards improving patients’ and disabled persons’ transportation
conditions, the DARP has indeed many real applications in many countries, such as Italy (Toth and Vigo
1996, 1997), Germany (Borndorfer et al. 1999), US (Karabuk 2009), and Belgium (Rekiek and al. 2006).

However, most of the previous research addresses homogeneous vehicles located at a single depot, single



route per vehicle, and only one type of users. Surveys on the Dial-a-Ride-Problem have been presented in
Cordeau and Laporte (2007), Parragh et al. (2008), and Doerner and Salazar-Gonzalez (2014).

In recent years, there has been a trend to focus on more realistic versions of the DARP by taking into
consideration additional real-life constraints, such as vehicle and user heterogeneity, multiple vehicle
depots, and lunch breaks of the drivers. According to Parragh (2011) and Wong and Bell (2006), in reality,
the reduced mobility people transportation is often complicated by the presence of several types of users
who need specific types of equipment, such as a patient seat, a wheelchair or a stretcher. Consequently,
vehicles with special space for this equipment are needed to satisfy different users’ requests. This has lead
to the emergence of a new variant of the problem, the DARP with heterogeneous users or/and vehicles,
which is a generalization of the DARP that has not yet been extensively studied in the literature. Wong
and Bell (2006) adopted a parallel insertion heuristic in their solution of the DARP with two types of
vehicles (equipped with wheelchair places), and two types of users. The algorithm was tested on artificial
instances involving 150 requests. Xiang et al. (2006) developed a parallel insertion heuristic to solve a
version of the DARP with several types of users and vehicles. The proposed approach has solved
problems between 50 and 2,000 requests. Some authors have also considered realistic real life conditions
pertaining to uncertainty and imprecision in pickup and/or drop off times (e.g. Teodorovic and
Radivojevic, 2000 and Maalouf et al., 2014), where fuzzy logic has been utilized to provide approximate
problem solutions for the dynamic DARP.

A formal definition of the Heterogeneous DARP (HDARP) was first presented in Parragh (2011). In
this paper, two types of vehicles are considered; each can have a staff seat, a patient seat, a stretcher and a
wheelchair. Also, users can request an accompanying person. The problem is solved using a Branch-and-
Cut (B&C) algorithm and Variable Neighborhood Search (VNS) algorithm. The algorithms were tested on
36 instances with up to 4 vehicles and 48 requests, generated from instances proposed by Cordeau (2006)
for the homogeneous DARP. Later, Qu and Bard (2013) developed an Adaptive Large Neighborhood
Search (ALNS) algorithm to solve the heterogeneous pickup and delivery problem with configurable
vehicle capacity. The proposed method was first tested by comparing the obtained results with Parragh
(2011). Then, it was applied on data sets provided by the PACE organization. The obtained results are
better than the solutions generated manually, with results showing 30-40% cost savings over current
practice.

The multi-depot concept has been integrated within the context of the Dial-a-Ride Problem as well to
account for the fact that large service providers may have multiple locations for their vehicles, or that
drivers are sometimes allowed to take their vehicles home after their shifts. To our knowledge, the only
researches that explicitly considered multiple depots for vehicles were conducted by Melachrinoudis et al.
(2007), Carnes et al. (2013) and Braekers et al. (2014a). Melachrinoudis et al. (2007) investigated
multiple depots and a fleet of vehicles with heterogeneous capacity for aged persons transport from their
homes to healthcare centers. A Tabu Search (TS) method was adopted to solve the problem and instances
with up to 50 requests were tested. Another practical version of the multi-depot DARP is studied by
Carnes et al. (2013). The study aims to build a schedule for air-ambulances assigned to different depots in

order to satisfy the demands of a set of patients. To solve the problem, an exact method based on set



partitioning was applied on smaller instances that contain between 10 and 20 requests per day. In the study
of Braekers et al. (2014a), multiple depots, heterogeneous vehicles and heterogeneous users are
considered. To solve the problem, a Branch-and-Cut and a Deterministic Annealing (DA) algorithm were
used to solve small-medium instances containing 2-8 vehicles and 16-96 requests. Their method was also
evaluated on the DARP instances proposed by Cordeau and Laporte (2003) and the HDARP instances of
Parragh (2011).

Other recent contributions to the literature are made by integrating the multi-trip concept in the DARP
and HDARP. This concept is actually very common in practice, where the vehicle can perform several
trips per day. Parragh et al. (2012) introduced a variant of the HDARP in which the requirements for
assistants and lunch break constraints are taken into account. To solve this problem, a Variable
Neighborhood Search (VNS) metaheuristic and a column generation approach are developed and tested on
small-medium instances, and both solution methods are combined into a collaborative scheme. Liu et al.
(2015) proposed a new variant of realistic DARP that simultaneously considers multiple trips,
heterogeneous vehicles/users, a single depot, and configurable vehicle capacity. The authors formulated
two mixed integer programming models and introduced 8 classes of valid inequalities to improve the
bounds of their Branch-and-Cut algorithm. The proposed method can solve instances with up to 22
requests within four hours. Zhang et al. (2015) studied a real-life public patient transportation problem
derived from the Hong Kong Hospital Authority. In their problem, the authors consider that in order to
prevent the spread of diseases, ambulances must be returned to the depot during the day for sterilization
and for the driver to have a lunch break. A memetic algorithm is developed to solve this problem. The
proposed method was tested on real-world data and the standard DARP benchmarks. The results show that
the proposed algorithm provides near-optimal solutions for small instances. Another real world application
derived from the Non-Emergency Ambulance Transfer Service (NEATS) in Hong Kong is studied by Lim
et al. (2016) to solve the Multi-Trip DARP (MT-DARP). Lunch breaks are considered and certain users
may require the help of assistants (who occupy a seat during the trip). The assistants can move from a trip
of one vehicle to a trip of another vehicle at the depot. The authors consider that the time windows of
lunch breaks for the drivers and assistants are heterogeneous. A heuristic with an ad-hoc component to
handle the manpower planning problem is developed and tested on a real dataset.

Based on the above literature review, it is concluded that the combination of heterogeneous
vehicles/users with either multiple depots or multiple trips has already been studied to some extent. Yet, to
the best of our knowledge, a combination of all these aspects has not been studied before. Our newly
proposed variant, the Multi-Depot Multi-Trip Heterogeneous Dial-a-Ride Problem (MD-MT-HDARP)
with coffee and lunch breaks, aims to fill this gap by combining all these aspects, while accounting for
coffee and lunch breaks as well. This problem is very relevant in real life, since these characteristics often
occur together in practice. Three metaheuristic-based methods are introduced to solve this new variant,
and they are compared in order to decide which one is more effective in solving the problem. The choice
of these methods is based on their relative advantages and demonstrated capabilities in solving a variety of
VRPs, as described in the excellent survey papers about the implementation of metaheuristics of Laporte
et al. (2000), Braysy et al. (20044, b), and Pisinger and Ropke (2010). In addition, different types of data



sets are introduced to assess and compare the performance quality of these methods, and to be used as
reference for further research.

In reality, the multi-trip feature is needed when the vehicles' fleet size is limited and/or the routes have
a limited duration, e.g., due to the existence of lunch breaks which are imposed on the drivers. Our
problem is inspired by work on the MT-DARP, in which lunch breaks are considered, such as in Lim et al.
(2016) and Zhang et al. (2015). However, here we take into consideration a lunch break and two coffee
breaks during the working day of a driver. Each vehicle/driver can perform two trips during its working
day: the first trip (r=1) is performed in the morning (before the lunch break), and the second (r=2) is
performed in the afternoon (after the lunch break).

During each trip, a short coffee break should be included as well. The motivation behind imposing the
requirement for breaks can be related to security issues, e.g., providing comfortable conditions to drivers
by ensuring sufficient rest during their working day, especially when traveling long distances (Goel 2010).
In this study, we address a generalized case of the MT-HDARP, called the MD-MT-HDARP, in which we
consider the traditional definition of the HDARP proposed by Parragh (2011), where heterogeneous
vehicles and multiple request types are treated. In addition, inspired by the multi-depot problem of
Braekers et al. (2014a), we integrate the multi-depot concept, which makes the problem more challenging
and sophisticated than the single-depot DARP. To summarize, the Multi-Depot Multi-Trip Heterogeneous
Dial-a-Ride Problem (MD-MT-HDARP) is considered as a combination of MT-HDARP and MD-
HDARP. To the best of our knowledge, no work has been conducted to address this problem.

The contributions of this work are as follows: i) a general static Multi-Depot Multi-Trip
Heterogeneous Dial-a-Ride Problem is introduced and a mathematical formulation of the problem is
proposed; ii) an Adaptive Large Neighborhood Search (ALNS) and two effective hybrid metaheuristic
methods (Hybrid Bees Algorithm with Deterministic Annealing (BA-DA) and Hybrid Bees
Algorithm with Simulated Annealing (BA-SA)), are proposed to solve this problem; iii) A set of new
small, medium and large instances is generated for the MD-MT-HDARP, based on the instances of
Parragh (2011) and Braekers et al. (2014a); iv) Numerical experiments are applied to demonstrate that all
three solution approaches provide high quality solutions both for these new instances and for existing
benchmark instances on the related MD-DARP; in particular the two hybrid methods show their efficiency
for large instances of the MD-MT-HDARP.

The rest of the paper is organized as follows. Section 2 provides the mathematical formulation of the
problem. Section 3 describes the construction heuristics. Sections 4 and 5 describe our proposed solution
approaches. Section 6 explains the solution evaluation function. Section 7 reports the computational

experimentation, followed by the conclusions in Section 8.

2. Problem description

The MD-MT-HDARP can be formally described as follows. Let G = (V*, A) be a directed graph. The
set V* is further partitioned into three subsets; M,N,M'.M = {v,, ..., v,,} is the set of m (starting)
depots. N = {Vj41, ) Vma2n} COrresponds to n users to be served, with P={m+1,..,m+n}

andD ={m+n+1,..,m+ 2n}the sets of vertices corresponding to pickup and delivery locations,



respectively. M' = {Vp12n+1) -» Vans2m} 1S the set of m (finishing) depots. Let V=M UN andV' =
M'UN, and A ={(i,j:i €V,jeV'i=+j} the set of arcs connecting each pair of nodes. Each user
request involves transportation from pickup node i € P to delivery node i + n € D. To each arc (i,j) € A
are associated a non-negative travel time t;; and a routing cost ¢;;. A fleet of heterogeneous vehicles K is
available at the m depots to serve the n users. Each vehicle k € K starts from a depot and ends at the same
depot of departure (starts at i and finishes at 2n+m+i, where i=1,...,m). Each depot has a limited number
of vehicles B,,. The starting depot and returning depot of a vehicle k are represented by m, and mEk),
respectively. We impose that mEk) = 2n+m+ m,. Each vehicle k has a capacity Q¢ that gives the
amount of equipment e available on the vehicle, where e = {0, 1, 2, 3} denotes the types of equipment.
Let q¢ denote the load of passenger i for equipment e; e.9., q?=1,qi=1,g?=1landg’ =1(i=1,..,n)
mean that passenger i needs an accompanying person seat, a disabled seat, a stretcher and a wheelchair,
respectively. Each delivery node i + n € D has a load qf,, = —q{. Every user either specifies a time
window [e;, [;] on the departure (pickup) or the arrival (delivery). The service has to start within this time
window; i.e., if the vehicle arrives earlier than e;, it must wait. At each node, loading or unloading
operations last for a given service time s;. A maximum ride time for each user, denoted by L, gy, IS
considered in order to provide high service quality.

Note that each vehicle is assumed to have a fixed driver. Hence, both terms (vehicles and drivers) are
used interchangeably. For each driver, the maximum working time per day is limited by T},,4,. During this
time, each driver can perform up to two trips, e.g., one in the morning and one in the afternoon. All drivers
must have a lunch break at their depot between these two trips. This lunch break has to start and end
within a given time window [EL, LL] and has a duration of TL =30 minutes. Additionally, during each trip
r € {1,2}, a driver should take a coffee break of duration TC within a time window [EC",LC"]. For
example, during the morning trip, the driver must take a coffee break of 15 minutes within the time
window [10 am, 10:30 am].

Because of the presence of ride times, time windows, breaks, and the limited duration of each working
day, the scheduling subproblem and hence checking the feasibility of a solution is more complex than in
other routing problems. A feasible solution consists of a set of routes satisfying the following constraints:
(i) a pickup node and its corresponding delivery node must be visited in the same trip, and the pickup node
must be visited before the delivery node; (ii) the vehicle capacity must be respected at each node for each
type of equipment; (iii) each node must be visited in its time window, so if a vehicle comes early, it must
wait until the beginning of the time window; (iv) the ride time of any user should not be exceeded; (v) the
total duration of the working day of each vehicle (maximum route duration) is strictly limited by T, 4;
(vi) every vehicle starts and ends at the same depot; (vii) the schedule should include a lunch break and
two coffee breaks (in the morning and afternoon).

The MD-MT-HDARP consists of designing the routes to satisfy all requests while minimizing the
routing costs. The variables used in the mathematical model are shown in Table 1.

Table 1
Definition of variables used for the MD-MT- HDARP

xi""j: A binary variable that is equal to 1 if arc (i, j) is traversed by vehicle k, and 0 otherwise;
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AYk: A binary variable that is equal to 1 if the first (morning) coffee break of vehicle k is held either directly after
servicing node i or directly after traveling from node i to the next node, 0 otherwise;
A2k A binary variable that is equal to 1 if the second (afternoon) coffee break of vehicle k is held either directly after
servicing node i or directly after traveling from node i to the next node, O otherwise;
y{‘j: A binary variable that is equal to 1 if the lunch break of vehicle k is held directly after node i and before
traveling to node j, 0 otherwise;
BF: A non-negative variable indicating the time that vehicle k begins service at node i;
SB}”‘: A non-negative variable indicating the time that vehicle k begins the first coffee break;
SBl.Z"‘: A non-negative variable indicating the time that vehicle k begins the second coffee break;
k: A non-negative variable indicating the load of equipment e on vehicle k immediately after visiting node i;
L¥: A non-negative variable indicating the ride time of user i € P on vehicle k;
8%: A binary variable that is equal to 1 if vehicle k is not empty directly after i, 0 otherwise.
6} (67%): A binary variable (only relevant when the coffee break is taken after node i) that is 0 if the coffee break is

taken directly after service at node i, and 1 if the coffee break is taken after service at node i and traveling to the next
node.

Inspired by the formulations for the HDARP of Parragh (2011) and the MT-DARP of Zhang et al.
(2015), the MD-MT-HDARP can be formulated as follows:

Minimize D> > cxi+>. > > (g, *Cry, — Cy) 14y )
keK ieV jev' keK ieV jev'

Subject to
>y %=1 VieP ()
keK jeN
PRI vieD €))
keK jeN
ZX;:ZXTWA vk eK,VieP (4)
jeN N

> X =1l vk e K ®)
jePu{m’ 4}

Y K, =1 vk e K (6)
ieDu{my,}
Zx;:Zx:}f vk e K,VieN @)
jev jev'

k Kk k P
X =1=Q 2q} +Qf vk e K,V(i, j) e Aee{0,1,2,3} 8)
0<Q" <Q* vk eK,VieN,e<{0,1,2,3} )
Q;fk) =0 vk e K,e e{0,1,2,3} (10)
L =By, — (B +5 2. %) vk eK,VieP (11)

jeN

ti.n+i < L:( < Lmax Vk S K,Vl eP (12)
Xi =1=> B 2B +s +t vk e K, Y(i, j) e A (13)
X =1a(AK =1 v 2K 1) B 2B s 4+ TC vk e K, (i, j) € A (1)
gy =1=B] 2B 45+t + TL+t, vkeK,¥(i, j)e A (15)
e <Bf<lI, vkeK,VieV' (16)
A 1= ECt < 5BM < LC? vk e K,VieV* (17)
A 1AK =1 SBM = B 45+ O vk e K, ¥(i, ) e A (18)
A% 15 EC? <sBP < LC? vk e K,VieV* (19)

2k

A
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it

vk e K,V(i, j) e A
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YU =1 EL<Bf 45+t <LL vk eK,vieV (21)
jev'

v = Br < T vk e K (22)
Ak vk e K, Vi

i= e K,Vi eV (23)
ii2|< -1 vk e K, Vi eV' (24)
> =1 vk e K (25)
(i,j)eA
Hy <X vkeK, (i, j) eA (26)
z/uilj( gl—é‘lk vkeK,Vi eV’ 27)
jev'

3 3
> QM <> Q%sf vkeK,i eV’ (28)
e=0 e=0

X, {0,133 vk e K, V(i j) e A (29)
5, 2% 22K o1y vk eK, Vi eV’ (30)
a',0% <{0,1} vi eV’ (31)

The objective function (1) is minimizing the total routing costs. Constraints (2)-(4) guarantee that
each pickup and delivery pair must be served by exactly one and the same vehicle. Constraints (5)-(6)
guarantee that each vehicle k starts at the origin depot and ends at the corresponding destination depot,
while constraint (7) ensures flow conservation. Constraints (8) and (9) ensure that the capacity constraint
is respected. Constraint (10) sets the load variable of each depot to zero, ensuring that the vehicle leaves
the depot with empty load. Constraint (11) represents the ride time of the user on the route, which is
bounded by constraint (12). The latter two constraints also ensure that the precedence relationship between
the pickup and delivery nodes is respected. Constraints (13), (14) and (15) define the beginning of service
at each node and the consistency of the time variables, while accounting for coffee and lunch breaks. Also,
these constraints ensure subtour elimination. Constraint (16) imposes time window observance.
Furthermore, constraints (17), (18), (19) and (20) guarantee that the coffee break between two services i
and j starts before or after the transportation between the two services within a coffee break time window
[ECT,LC"] (r €{1, 2}). Constraint (21) enforces that each driver must take a lunch break at the depot of
departure during the working day in time window [EL, LL]. Total route duration is limited by (22).
Constraints (23) and (24) guarantee that the coffee breaks are planned, while constraints (25) force drivers
to have a lunch break. Constraints (26), (27) and (28) guarantee that the lunch break can only take place
after a node where the vehicle is empty. Finally, constraints (29), (30) and (31) guarantee that the decision
variables are binary.

Note that constraints (8), (13)-(15) and (17)-(20) can easily be linearized using the big M- method.

3. Construction heuristic

To obtain an initial solution to the MD-MT-HDARP, an effective heuristic that is inspired by Braekers
et al. (2014a) is used.

First, the heuristic creates a list L of users to be served. Then, we repeat the following steps: an empty
route is initialized with time windows for coffee and lunch breaks pre-defined in the route. The insertion
of users is performed by adding a user to the route in the following manner: a user i is selected at random

from the list L and inserted in already existing routes, such that its pickup and delivery nodes are inserted



in their best positions, while respecting the feasibility of the solution and taking into account time
windows of coffee and lunch breaks. A new vehicle is added in case a user request cannot be inserted in
one of the existing routes. This procedure is applied until all users have been served. An example of an
initial solution is shown in Figure 1. It contains two routes, which are served by vehicles V1 and V2,
assigned to depots m=1 and m=2, respectively. Each route is divided into two trips (r=1, 2), where each
trip consists of a set of pickup (i*) nodes and delivery (i~) nodes for each user i. Between two
consecutive trips, the driver of the vehicle must take a lunch break at its home depot. In addition, for each

trip (Vv r = 1,2) a coffee break Cof is taken into account.

r=1 r=2
Cof Lunch Cof
\V&1 =1|2* [4* |27 |3* [47 |3~ 1+ (5% |57 [12* 127 (1~ 6% |67 [14F 14 [L5* |8+ 15~ [ 8~ m=1
1 m=1 2
V2 Cof Lunch Cof
=2 |9* |9~ [L5* 15~ 1 [L0* [L1* 16" 11~ 10~ [l6™ [L4* |14~ ) [13* 19* 13~ 19~ ) 17+ 17- 18* 18~ m=2
m=

Figure 1: An example of initial solution

We note that our construction heuristic is applied to generate each solution in the population N of our
hybrid Bees Algorithm (BA). For the ALNS algorithm, this heuristic is applied only once to generate the

starting solution.

4. Hybrid Bees Algorithms for the MD-MT-HDARP

In this section, we propose two versions of a hybrid Bees Algorithm (BA). The BA is a metaheuristic
algorithm that is inspired from the behavior of honey bees in nature while they search for food. There are
several versions of Bees-inspired Algorithms in the literature, but we follow here the method proposed by
Pham et al. (2005). The BA can be also considered as an improved version on the well-known Genetic
Algorithm as studied in Yuce et al. (2013). The BA has been tried on some hard optimization problems,
producing good results (see, e.g. Pham et al., 2005; Yuce et al., 2013). We have chosen in this research the
BA as our proposed approach, for the following reasons:

o The steps of the BA are simple and easy to understand.

e The BA combines random search with neighborhood search. This has the advantage of providing a
balance between intensification and diversification, which is needed in any effective metaheuristic
(Talbi, 2009).

e BA has a distinguishing feature than other bees-inspired algorithms, which is allowing more
intensification of the search around elite solutions (best of the best). This property can help the
algorithm discover better solutions more rapidly.

¢ The BA can be easily hybridized with other search methods. For example, the intensification around the
elite solutions can be conducted using any single solution based metaheuristic. Hybridization of more
than one metaheuristic is beneficial in handling hard optimization problems, as is the case in our
problem.

Since we didn’t encounter any application of the BA on the Dial-a-ride problem (DARP) or its

variants, we reckoned that it is an attractive research area for further investigation. Since the BA is a
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population based metaheuristic, it is more diversification oriented, while being relatively poor in
exploitation. To overcome this weakness, we propose a modification of the classical BA by hybridizing it
with single-solution based metaheuristics, to help it converge more rapidly to good solutions. We selected
Deterministic Annealing (DA) and Simulated Annealing (SA) for this purpose. Our strategies are referred
to as Hybrid Bees Algorithm with DA (BA-DA) and Hybrid Bees Algorithm with SA (BA-SA). For more
details about the BA, the interested readers are referred to Pham et al. (2005).

The main steps of the proposed hybrid BA are shown in Algorithm 1 and the flowchart of the

algorithm is given in Figure 2.

Algorithm 1: Pseudo-code of the proposed hybrid Bees Algorithm

Begin
Initial population: Generate the initial population of N solutions (by a construction heuristic);
Repeat
Step 1: Evaluate the fitness of each solution in the population N
Step 2: Select (be) solutions from the current population using tournament selection, and sort
them in ascending order
Step 3: Diversification and Improvement phase
Step 3.1: Apply DA (SA) on each of the best (es) (from the (be)) solutions.
Step 3.2: Improve the quality of each (be — es) solution using local search.
Step 4: Memorize the (be) new solutions and select the best one
if the new best solution is better than the best so far one Then
replace the best so far solution with this new one
End if
Step 5: Insert the (be) new solutions in the population N
Step 6: Generate (N — be) new solutions to complete the population N
Until No improvement after ten consecutive iterations
Output best solution
End.

The BA starts with an effective heuristic to generate the initial population of size N (see Section 3).
Then, for a pre-specified number of iterations, the following steps are followed: In Step 1, all solutions in
the population N are evaluated based on fitness. In Step 2, we select a set of (be) best solutions using
tournament selection, which are then ordered according to fitness value (from lowest to highest). In Step
3, we select the first (es) solutions from (be) to be improved. Improvement is done by applying one of
our single-solution based metaheuristics (DA/SA) on the set (es), in order to obtain high quality solutions.
In contrast, the remaining (be — es) solutions are improved by simple local search techniques. In Step 4,
(be) new best solutions are obtained and the best of them is selected. If the solution is better than the best
so far solution, it replaces the best solution. In Step 5, the (be) new solutions obtained after improvement
are injected into population N, so that the best solutions survive to the next iteration. In Step 6, to complete
the population N, (N — be) new solutions are created by a simple heuristic. The algorithm stops when the
best solution is not improved for ten consecutive iterations. Finally, the best solution is returned as the
problem solution.

It should be noted that in our algorithm we only keep feasible solutions, i.e., solutions that violate any
constraints are always rejected. Therefore, we need to frequently check the feasibility of routes. The
procedure of checking the feasibility of a route is rather complicated, due the existence of ride time
constraints, along with time windows and route time limits, in comparison with other routing problems

(Parragh and Schmid, 2013). In this paper, the eight-step evaluation scheme proposed by Parragh et al.



(2010), to test the feasibility of a given path for the DARP introduced by Cordeau and Laporte (2003), is

| Generate the initial population of N (Section 3) |

applied and described in Section 6.

—>| Fitness evaluation of population N |

Select (be) solutions from N using tournament selection (Section
4.1), and sort them in ascending order

| Select the best (es) solutions from (be) solutions |

Apply DA (Section 4.2) or SA (Section 4.3) algorithm on each of
the best (es) solutions

| Apply local search on each the (be — es) solutions (Section 4.4) |

| Memorize the (be) new solutions and select the best one |

Replace the best so far
solution with this new one

New best solution
better than best so far?

No

pd
N

| Insert the (be) new solutions in the population N |

| Generate (N — be) new solutions (Section 4.5) |

No improvement after ten
consecutive iterations?

Figure 2: The flowchart of our hybrid Bees Algorithm

4.1. Selection: Tournament

To select the best solutions from the population N (Step 2 of Algorithm 1), we adopted the selection
by tournament as proposed by (Miller et Goldberg, 1995), which is one of the most common selection
methods in evolutionary algorithms. This type of selection has demonstrated great effectiveness for the
selection of good solutions at each new generation (Freitas, 2013) for several transportation problems. The
principle is to randomly choose a subset of solutions s from the population N, and then select the best
individual in the group who has the highest fitness value. This process is repeated until the number of

solutions required (be) is attained. Here, the tournament size s is considered to be seven.

10



4.2. Deterministic Annealing

Deterministic Annealing (DA), also known as Threshold Accepting, is applied as an improvement
phase on each of the (es) solutions obtained by our Bees Algorithm (Step 3.1 in Algorithm 1). This
method was first proposed by Dueck and Scheuer (1990), as a variant of Simulated Annealing (SA). In
each step of the DA, a new solution x’ is generated from the current solution x. If the objective value of x’
is better than that of the current solution X, this solution is accepted. Else, x’ is accepted provided that the
deterioration of the objective function value, calculated by A= C(x") — C(x), is less than the threshold
value T. This threshold value is gradually reduced during the search until only solutions that improve the
objective function are accepted (Caris and Janssens, 2010). The DA algorithm has demonstrated
effectiveness for solving a variety of routing problems, by providing high quality solutions within a short
computation time (Tarantilis et al., 2004; Bréysy et al., 2008; Nikolakopoulos and Sarimveis, 2007;
Braekers et al., 2013, 2014a, 2014b).

The benefit of the DA method is that it is simple to understand and apply. Another advantage is that it
relies on only one parameter (T). Thus, it requires much less parameter tuning in comparison with other
algorithms (Braekers et al., 2013, 2014a, 2014b). In addition, the deterministic acceptance function of the
DA is computationally simpler than the stochastic function of the SA, which may speed up the
performance of the algorithm (Talbi, 2009).

The proposed framework of the DA metaheuristic is presented in Algorithm 2 and is based on
Braekers et al. (2014a). It is applied to each of the es solutions individually. Let x be the current solution
and x.4; the best solution found so far (initially set to the initial solution obtained from the considered es
solution). Threshold T is set to its maximum value T,,,,. The proposed DA algorithm runs for a number
consecutive stepsnp,. At each step, several local search operators (11, 12, 13, and 14) are applied in a
random order on the current solution. Each operator returns a new solution x’, which is checked for
feasibility and evaluated using the evaluation function described in subsection 3.4. If x " is feasible and the
objective function value of x’ is less than that of x plus the threshold T, x' becomes the new current
solution. When accepting the new solution x’, it is verified if a new best global solution x;,s; has been
found; in this case, this solution becomes the new best solution. In case we did not obtain a new best
solution, the threshold T is reduced by the threshold reduction parameter AT. Every time T becomes
negative, it is reset to Ty, * B, Where £ is a randomly generated number between 0 and 1. In case T
becomes negative and no improvement of the best solution x;,,; has been found for a consecutive number

of iterations n;,,,,, the search is restarted from the best solution.

Algorithm 2: Pseudo-code of the proposed DA algorithm

Initialization: Threshold T = Ty, ijast= 0 and X = X, = the current solution selected from the (es) solutions;
Repeat
Iast < Tlast + 1
For j =110 n,y,, do
Perform a local search operator (11, 12, 13 or 14) on x to obtain a new
solution x” and accept or reject x’
If x” is accepted then
X<—x’
If C(X) < C(Xpesy) then

Xpest <— X
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ilast «—0
End if
End if
End for
If ij.:> 0 then
T«T-AT
If T<0then
B <Random number in the range [0,1]
T ,B X Trax
If ijast > Nimp then
X <= Xpest
iIast 0
End if
End if
End if
Until the number of steps np, is reached
Return Xpes

4.3. Simulated Annealing

The second metaheuristic that was hybridized with the BA in our work is Simulated Annealing (SA).
Similar to DA, it is applied to improve each of the best (es) solutions of the general BA. The SA method
was first proposed by Kirkpatrick et al. (1983). In recent years, this method has been successfully applied
to solve a wide number of problems with complex search spaces (Lin and Vincent, 2015; Xiao and Konak,
2015 and Vincent et al., 2016).

The SA algorithm typically performs better than simple local search techniques, due to its ability to
avoid the trap of local optima (Busetti, 2003). Unlike simple local search, the algorithm does not only
accept solutions that improve the objective function; rather, using the Boltzmann function of Metropolis et
al. (1953), it occasionally accepts worse solutions as well, which may help in jumping out of local optima
and diversify the search towards more promising solution areas.

Our SA structure is inspired by the SA algorithm proposed by Vincent et al. (2016). Let x5 and x be
the initial solution and T, the initial temperature. At each temperature T, n,, iterations are considered.
To explore the search space further around each solution, our SA considers four different moves (11, 12, I3
and 14). During each iteration, our SA selects one of them randomly to explore a larger search space. After
applying the local search operator, if the new solution is better than the current solution (i.e. the cost is
lower), it is accepted. On the other hand, if the cost is higher, the new solution may be accepted subject to
the simulated annealing acceptance criterion proposed by Metropolis et al. (1953) e®/Ti, where A= f(x) —
f(x") represents the difference in the objective function between the current solution x and the new one,
and T; is the current temperature. The temperature cooling schedule is as follows: T; = § *T;_,, where § is
the cooling rate, and i is the iteration number. If the new solution obtained from the local search move is
better than x,;, it replaces xpq¢-

The proposed algorithm is terminated when T; value becomes less than 0.01. The framework of the
proposed SA is shown in the Algorithm 3.

Algorithm 3: Pseudo-code of the proposed SA algorithm

Initialization: T;=T, and Xpet =X = the current initial solution from the es solutions
Repeat
For i =1to nge, Do
Perform a local search move {11, 12, 13 or 14} on the current solution x to obtain x’
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If x” is feasible and accepted Then

X<—x’
If C(X) < C(xpest) then
Xpest <— X
End if
End If
End for
Ti=6 *Tia

Until T; value is less than 0.01
Return x;.¢;

4.4. Local search operators

During many steps of our developed methods, intra- and inter-route movements of users/edges are
performed in order to explore the search space of the current solution. Four local search operators are
applied. It should be noted that in the proposed operators, we adopt a best insertion strategy, in which all
combinations of insertion positions for the pickup and delivery nodes of user i in the current route or in
other routes are evaluated and checked for feasibility by the scheduling algorithm of Parragh et al. (2010).
2-opt operator (11): This operator is proposed in Lin (1965). It consists of replacing two edges with two
new ones. One route from the solution is selected randomly in each iteration to apply this move.
Relocation operator inter-vehicle (12): This operator relocates a user’s pickup and delivery nodes
assigned to one vehicle (selected randomly) to another. The nodes are inserted in their best possible
position in another route (vehicle) if possible.

Relocation operator intra-vehicle (13): This one is similar to the previously described operator, but it is
applied in the same vehicle. This operator is applied on each user in the vehicle by removing the user and
reinserting it in the best possible position. In this case, three types of moves of a user i are considered: the
first is to relocate only the pickup node; the second is to relocate only the delivery node; while the third is
to relocate both, with the delivery node inserted immediately after the pickup node.

Remove two insert one operator (14): This operator is adopted from Xiang et al. (2006). It consists of
removing two randomly selected users from the vehicle and inserting them one by one in other vehicles,
while maintaining feasibility. This operator is applied for all vehicles belonging to one depot selected

randomly.

4.5. Local search strategy for the hybrid BA

In addition to using DA or SA in our hybrid BA algorithm, a local search procedure is applied for a
fixed number of iterations (50) on the (be — es) solutions in order to explore the local search space
further around these solutions. At each iteration, the local search operators 11, 12, 13 and 14 are executed in

a random order to obtain a higher quality solution.

4.6. Generation of new solutions

Step 5 of Algorithm 1 has generated be new solutions that are inserted in the population. To complete
the population N, we need to generate (N-be) new solutions (step 6 of Algorithm 1). A simple heuristic is
applied to try to obtain high-quality solutions for the next generation of the Bees Algorithm. For each of

the old (N-be) solutions, u users are selected randomly from the solution; they are removed and added to
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the removal list L. Then, all users from L are re-inserted at the most appropriate insertion positions in all
vehicles (including the ones from which users were removed), while respecting the feasibility of the

solution.

5. Adaptive Large Neighborhood Search Algorithm for the MD-MT-HDARP

In this section, we present an Adaptive Large neighborhood Search (ALNS) algorithm for solving the
MD-MT-HDARP. The ALNS heuristic was first proposed by Ropke and Pisinger (2006a), as an extension
of Large Neighborhood Search (LNS) proposed by Shaw (1998). Many researchers have highlighted the
excellent capabilities of ALNS in solving large-size and hard optimization problems, such as Pickup and
Delivery Problems (see, e.g., Ropke and Pisinger, 2006a, b; and Li et al., 2015; and Ghilas et al., 2016)
and Dial-a-Ride Problems (see, e.g., Qu and Bard, 2013; Masson et al., 2013; and Li et al., 2016). The
advantage of ALNS is that, in each iteration, only a smaller size decomposition of the problem is
investigated, which can be more efficient than an aggregate problem solving method (Schrimpf et al.,
2000).

The structure of our ALNS algorithm is similar to that proposed by Li et al. (2015) and Li et al.
(2016), and is shown in Algorithm 4. To find a global best solution x* with cost f (x*), the algorithm
executes ny; ys iterations. Let x be the initial solution of our ALNS to which also the current best solution
(xpest) 18 initialized. First, the temperature T is initialized to T,,,, and each removal and insertion
operator’s weight is initialized. The weights and scores of the removal and insertion operators are updated
during the search. In each iteration, in principle, one removal and one insertion operator are applied.
However, if no improvement of x,,,; is obtained in the last ten iterations, the algorithm performs two
removal operators and one insertion operator. This technique is similar to the one proposed by Li et al.
(2015). The choice of the operators in each iteration is based on the roulette wheel mechanism (described
in the subsection 5.1). When a new solution x’ is obtained, we decide to accept or reject it as follows: if

the objective function of x’ is better than that of the current solution, x’ is accepted and becomes the

current solution; otherwise, x” is accepted only if it satisfies the SA acceptance criterion e f)=()/T),

The temperature reduction factor a was set to 0.99975, as suggested by Ropke and Pisinger (2006a).

Algorithm 4: Pseudo-code of the ALNS algorithm

Initialize: X = x5 = initial solution obtained by our construction heuristic, weights of removal and insertion
operators to initial values, temperature T = Ty, ; cooling rate & =0.99975
Repeat
Select and perform the removal operator(s) on the current solution x;
Select and perform one insertion operator in order to obtain a new solution x’;
If x” is feasible and accepted Then
Xe—Xx’
If C (X) < C (xpes:) then
Xpest < X
End if
End If
T=ax*T
Adjust the weights of removal and insertion operators using the scores obtained after ng,,consecutive
iterations
Reset the scores of the removal and insertion operators to zero after n,, consecutive iterations
Until number of iterations n,; s is reached
Output xpe;
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5.1. Adaptive weight adjustment procedure

We have five removal and four insertion operators in our ALNS. To choose among them, we use
roulette wheel selection. Following Ropke and Pisinger (2006a), the probability of choosing an operator d
at iteration t is given by: P§** = P{(1 —r,) + r,m;/9;, Where r,is the roulette wheel parameter, r; is the
score of operator i, and ¥; is the number of times operator i has been used in the last n,,,, iterations. The
score of an operator is increased by 7, if the current pair of removal-insertion operators finds a new best
solution. On the other hand, if an improved solution is found, the score is increased by m,, while if a non-
improving solution that is accepted through the SA acceptance condition is found, the score of the
operator is increased by m3. After n,,, iterations, the new weights are adjusted using the calculated scores,

and the scores of the removal and insertion operators are reset to zero.

5.2. Removal and insertion operators

In each iteration, a set of nodes/users are removed from a current solution x and added to a list L by
some removal operators, in order to re-insert them using several repair operators to obtain a new solution
x’. All operators are inspired by and adopted from the literature such as Ropke and Pisinger (2006 a, b),
Pisinger and Ropke (2007) and Demir et al. (2012). The first five operators (R1 to R5) are applied to
destroy the current solution x. While, the latter four operators (P1 to P4) are implemented in order to re-
insert the removed nodes/users, forming a new solution.

Random-user (R1): This operator consists of randomly selecting u users from the solution and putting
them in list L, thus attempting to help the diversification mechanism.

Path-removal (R2): This operator is inspired from Demir et al. (2012). Let route r ={0,
i,...,n,n+1,...,2n,0} contain n users to be served. Each user i is associated with a pickup node i* € P and
a delivery node i~ € D. We denote by ¢(i) a path that starts at node i* and ends at node i ~. The principle
of this operator is to remove the path ¢ (i) of a randomly chosen user i and then to insert all users in this
path in the list L.

Related removal (R3): This operator is based on the Shaw removal operator proposed by Ropke and
Pisinger (2006a). After selecting a random user i, we define the relatedness R(i, j) between two requests as
the distance between users i and j, which is used for removing nodes. The relatedness function is given by:
R(i,j) =df5 — dfyn jantp(IBE — Bf|+|Bf, — Bf.,l), where df; is the distance between i and j, and p is a
control parameter with p = [0, 1].

Time-oriented removal (R4): This operator is considered as a special case of operator R3, in which users
that are serviced at approximately the same time are selected for removal. The difference in time between
two users i and j (At(i, j)) is given by: At(i, )=|Bf — Bf|[+|Bf\, — Bfnl.

Distance-oriented removal (R5): This operator is also based on operator R3. Here, the set of users to be
removed are selected based on relatedness in terms of distance, where the difference in distance is
measured as: Ad (i, ))=df; + dfp j4n.
Basic greedy heuristic (P1): This heuristic is proposed by Ropke and Pisinger (2006a) for the PDPTW. It

tries to insert the removed requests in a way that the additional cost is minimized, while satisfying all
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constraints. Thus, the user that can be inserted at the lowest cost is inserted at its best location, i.e., the
user i to be inserted and the vehicle k to insert it in are selected as follows: (i, k) := arg min;ep xex AC; k.,
where Ac; . is the difference in cost before and after insertion of user i, in the cheapest position in vehicle
k. This heuristic is repeated until all removed users in L are inserted.

Best position intra-route (P2): First a user i from list L is chosen randomly. Next, routes are considered
one by one, and user i is assigned to the first route in which it can feasibly be inserted. The pickup and
delivery nodes of i are then inserted at the best possible position in this route, while respecting precedence
constraints. This procedure is repeated until no more users in list L.

Sorting time insertion (P3): The operation of (P3) is similar to (P2), but here all users in L are first sorted
based on the start of the time window at their pickup node (e;).

Best position inter-route (P4): The operation of (P4) is similar to (P2) but rather than checking only one

particular vehicle as in (P2), we check all routes forming the solution in (P4).

6. Evaluation function

During the search in each method developed in this work, a new solution is generated, and it must be
evaluated to check the feasibility of this solution before it can become the best global solution. We

evaluate the solution by the following evaluation function based on Cordeau and Laporte (2003):

3
FE= el + ) aq () +Fd) +yw(x) +Tax)

Each new solution x is evaluated by the routing cost c(x) plus a penalty for load violations
qe(x) =X2% (Qf — Q®)*, duration violations d(x) = YX_,(BY,.1 — B¥—T0)*, time  windows
violations w(x) =Y 2 (B; — ;)" and ride time violations a(x)=Y1-,(L; — Limax)". Note that these terms
are applied only for all i € N where s*= max {0, s}. For the corresponding notation see Section 2. The
associated penalty parameters a, §, y and 7 are dynamically adjusted throughout the search. For more
details, the readers are referred to Parragh et al. (2010, 2012), and Cordeau and Laporte (2003). Note that
each new solution can only become the current new best solution x;.;, if this solution is acceptable with
the acceptance criteria in each method developed and g, (x) = d(x)=w(x)=a(x)=0, for e=0, 1, 2, 3.

To evaluate a route, we use an evaluation procedure proposed by Cordeau and Laporte (2003), which
consists of eight steps, as described in the Algorithm 5. This evaluation scheme applies the concept of
forward time slack F; for a node i € N, which was originally proposed by Savelsbergh (1992) for the VRP
with time windows, adapted to the DARP:

Fi= mingj<) (Vicp<j Wp + (min{l; — B;, L — P}
Where W, represents the waiting time at node p, y is the last node in the route, and P; represents the ride
time of the user whose destination j € {n+1,...,2n}, given that j — n is visited before i on the route; P;=0
for all other j.F; represents the maximum amount of time, where the departure from node i can be

deferred, without violating the time window and passenger maximum ride time constraints.

Algorithm 5: The eight-step evaluation scheme

1. Set departure time Dy:= e,
2. Compute arrival time (4;), waiting time (W), beginning service (B;), departure time (D;) and load vehicle
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(Q7) for each node i along the route
If some B;> [;, or Qf > Q°¢*, Go to step 8
3. Compute F,
4. Set Dy = eg+min{Fy, Yo<p<y Wp}
5. Update A;, W;, B; and D; for ech node on the route
6. Compute L; for each request on the route
Ifall L; < L., Gotostep8
7. For evry node j that is an origin
(@) Compute F;
(b) Set VV]':: VVJ"" min{Fj, Zj<p<y Vl/p}, Bj:: AJ+VV], Dj:: B]+ S]'
(c) Update A4;, W;, B; and D; for each node that comes after j in the route
(d) Update L; for each request i whose destination is after j
Ifall L; < L,,., Of requests whose destinations lie after j, Go to step 8
8. Compute changes in violation for load, duration, time windows and ride time constraints

7. Computational experimentation

In this section, we present the results obtained by our methods. All algorithms are implemented in C
on a computer with Intel inside 4 GHz and 4 GB of RAM, operating Windows 8 with 64 bits. To test our
methods, we generated new data sets as described in the following subsection. Additionally, we validated
our algorithms by running them on existing benchmark instances for a simplified version of our problem,
the MD-DARP.

7.1. Data and experimental setting

Our test data is divided into small, medium and large instances. The small instances are based on the
benchmark instances generated by Parragh (2011) for the HDARP. These instances are divided into three
sets (U, E, I), which are in turn modifications of instances created by Cordeau (2006) for the standard
DARP, where heterogeneous vehicles and users are introduced. They contain 2—4 vehicles and 16-48
requests. On the other hand, our medium instances are based on Braekers et al. (2014a), which were
generated for the HDARP and MD-HDARP. These contain 5-8 vehicles and 40-96 requests. For both the
small and medium instances, the user time window is taken as 15 min, the maximum user ride time
Lmax=30 minutes, and the service time s; = 3 minutes. Up to two vehicle types are considered, with four
types of resources: 1) staff seats, 2) patient seats, 3) stretcher space and 4) wheelchair space.

To generate the instances, Parragh (2011) considered the probabilities of patients’ requests for
facilities and for companions as shown in Table 2.

Table 2
Probabilities used to generate instances by Parragh (2011)

Patient request probabilities Probability for ~ Vehicle fleet

Instance companion (%)
set

% Seat % stretcher % wheelchair

U 1.00 0.00 0.00 0.00 homogeneous (T0)
E 0.50 0.25 0.25 0.10 homogeneous (T2)
| 0.83 0.11 0.06 0.50 heterogeneous (T1, T2)

Vehicles of type TO have three patient seats only. Vehicles of type T1 provide one staff seat, six
patient seats, no stretchers, and one place for wheelchair, while vehicles of type T2 have two staff seats,
one patient seat, one stretcher, and one wheelchair space. As shown in Table 2, data set U, assumes

homogeneous users and vehicles of types TO, while data set E assumes heterogeneous users with
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homogeneous vehicles of type T2. On the other hand, data set | has heterogeneous users and uses T1 and
T2 vehicles.

To create large instances for our problem, we considered the same method of introducing
heterogeneity as in Parragh (2011), explained in Table 2, and applied it to the 20 benchmark instances of
Cordeau and Laporte (2003) for the DARP, i.e., we denoted the original homogeneous data set as set U,
while the two additional heterogeneous data sets E and | have been generated by modifying the instances
as done in Parragh (2011). The size of these instances of the problem is ranging from 24 to 144 requests.
The number of vehicles used to serve the transport demands varies from 3 to 13 vehicles. These instances
represent problems with a single depot. The distance between any two locations i and j is set to be the
Euclidean distance between the coordinates of locations i and j. Service time s; is 3 minutes for all users,
and the transportation time ¢;; is equal to the Euclidean distance between i and j (d;;). The maximum
duration of the working day (for each vehicle) T, is 480 minutes and the maximum ride time L,,,,, is 90
minutes. In the first 10 instances (R1a-R10a), the time windows range between 15 and 45 minutes. In the
second 10 instances (R1b-R10b), the time windows are between 30 and 90 minutes.

All these instances have been adapted to the multi-depot case as in Braekers et al. (2014a), i.e., our
new datasets contain four depots situated respectively at the following coordinates: [-5, -5], [-5, 5], [5, -5]
and [5, 5]. In each instance the vehicles are distributed as follows: the first vehicle is assigned to the first
depot, second vehicle to second depot,..., the fifth vehicle to the first depot, etc. In addition, time windows
for lunch break and coffee break for all instances are introduced. The lunch time window [EL, LL] is set to
[240, 360] with a duration TL of 30 minutes. The coffee break time windows [EC", LC"] are [120,150] and
[450,480] for r = 1,2, respectively. The coffee break duration 7" is 10 min (V r = {1, 2}). In all instances,
a 60 minutes period is added to the maximum working day duration in order to respect the number of

vehicles in the original data and to be able serve all users.

7.2. Parameter setting

The parameters of our algorithms were set based on recommendations from the literature, some basic
experiments considering the tradeoff between solution quality and computation time, as well as our
intuition.

Concerning the SA algorithm, the parameters suggested by Vincent et al. (2016) are primarily applied:
cooling rate $=0.99, ng,=3,000 iterations and T,=25. The original value T,=100 proposed by Vincent et
al. (2016) for the simple SA was divided by four in our algorithm. This latter value was chosen after
testing several other initial temperature values (10, 25 and 50), and was found to best suit our hybrid BA-
SA framework, since our SA is considered only secondary to the BA and needs to do less effort to find the
best solution than a standalone SA. Similarly, for the DA algorithm, we have adopted the parameter values
of Braekers et al. (2013), Tyqy is equal to 4, AT=T,4,/2,500 and i;,,, equal to five times the number of
vehicles used in the current best solution. In addition, for the number of iterations np 4, the original value
of Braekers et al. (2013) is equal to 50,000 iterations, but in our hybrid BA-DA, we have chosen np,4
equal to 5,000 iterations. This reduction of the number of iterations was intended to adapt the DA to our
hybrid BA-DA framework.
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For our ALNS, we adopt the parameters values that have been applied in Li et al (2016) for the static
DARP using the ALNS approach: n,,ys=25,000 iterations, p3=0.10 for the removal operators, and 0.125
for the insertion operators, 7,=0.7, =15, m,=5, m3=10. We note that in Li et al (2016), the
parameters m,, m, and w3, are consistent withm; > m, > m3. But in our case, and following some
preliminary tuning experiments shown in Table 7 (and discussed later on), we have adopted ©; > 75 =
m,. Due to the complexity of studying the effect of the temperature T,,,, Separately, we have decided to
apply a large T, Value equal to 100, as in the standard SA algorithm, in order to initially allow
accepting worse solutions and to permit our ALNS to escape local optima.

Moreover, various experiments were performed in order to ensure that the parameters for the hybrid
Bees Algorithm BA-DA (BA-SA) are properly set and tuned. These parameters are N, be and es. Ten
problem instances from each data set (U, E, 1) were chosen for the purpose of tuning the parameters. They
are selected such that the number of requests varies from small to large with different levels of
heterogeneity. For the small and medium instances, it appeared that there is no significant difference
shown during the tuning of parameters for a variety of combinations of N, be and es. This is mostly due to
the already good performance of the standard DA and SA algorithms in reaching the best solutions for
these specific instances. However, the results of the large instances were slightly more affected by the
tuning of parameters. A summary of a sensitivity analysis experiment on the parameters N, be and es is
displayed in Table 3 for a large instance (R6a) from data set U. “Best” (“Avg”) indicates the best
(average) solution value obtained by the BA-DA and BA-SA algorithms for each combination of the

parameters; whereas, the average run time in minutes is denoted in the column CPU.

Table 3
Identification for the best parameters setting for the hybrid BA-DA (BA-SA)
N 10 20 30
 (bees)  (53) (15,10) (155) (105) (10,3) (20,10) (205 (15,10) (15,5)
Best 81315  811.88 811.88 811.88 81205 81188 81188 81188 81188
BA-SA Avg 81563  813.96 81423 81506 81488 81321 81464 81451 81534
CPU 18.75 3005 2576 27.98 3275 3587 3142 3953 4386
Best 81275 81203 811.88 811.88 811.88 81188 81188 81188 81188
BA-DA Avg 81312 81423 81532 81575 81463 81329 814.32 81565 815.82
CPU 17.96 2723 2565 2653 3102 3086 3529 4323 3812

The solution quality depends not only on the influence of the population size N, but also on the impact
of the values of be and es. It can be observed from Table 3 that by making the population size N equal to
20 or 30 (instead of 10), improved best solutions are obtained for the majority of combinations of the pair
(be, es). Results slightly differ in the average solution quality and computation time. To obtain the best set
of parameters, we use as a guide producing a high quality solution in a short period of CPU time.
Therefore, the following parameter values were selected: N=20, be=15 and es=5.

Table 4 provides in brief the results of the parameter tuning of m,, 7, and 5 for the ALNS algorithm.
Based on these results, these values have been fixed at 15, 5 and 10, respectively. Note that the score for
obtaining a non-improving solution which is accepted (m3) is larger than that for obtaining an improved

solution, which is not a new global best one (m,), meaning that diversification is highly rewarded. The
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usefulness of such an approach has been discussed before by e.g., Ropke and Pisinger (2006a) and Demir
et al. (2012).

Table 4
Parameters tuning results summary

Effect of ;. m, and 5 on the solution
(5,10,15) (1,510) (1,55) (5 1510) (5,10,1) (5,1510) (10,51) (15105) (15 510) (10,1,5)
a3-36 (U)  643.09 641.84 642.23 642.17 642.40 642.49 643.01 641.72 641.41 641.52
ar-56 (E)  816.14 815.43 815.45 815.09 814.12 816.44 815.77 815.58 814.10 815.01
a5-60 (1) 899.65 899.28 899.37  899.03 899.20 898.61 898.15 898.40 898.25 897.68
R2a (U) 312.59 311.79 312.67 31254 312.41 311.26 312.41 311.00 310.96 311.56
R4a (E) 671.60 670.99 669.94 668.60 670.66 671.03 671.38 671.30 671.63 670.91
R3b (1) 572.94 571.95 571.99 57195 571.90 571.73 571.44 572.93 570.56 571.02

Inst.(Data)

According to Pisinger and Ropke (2007), and Ribeiro and Laporte (2012), the number of users to be
removed in an ALNS iteration u does not have to be very large. In this context, the following strategy was
taken into consideration: u is selected randomly in the interval [5, 10] if the number of users in the
instance is less than 50 users; otherwise, u is chosen in randomly in the interval [5, 20].

Tables 5 and 6 indicate the frequency of application of each operator in the ALNS algorithm as a
percentage of 25,000 iterations, for one instance of each type of data set (i.e., U, E and I). The total time
performed by each operator is indicated in the parentheses. Table 5 demonstrates that all operators obtain
almost identical frequency of use. The sum is larger than 100% due to the use of two operators in the same
iteration in most iterations of our algorithm.

Table 5

Frequency of use as a percentage of 25,000 iterations and the computation time needed by
each removal operator

Removal operators
R1 R2 R3 R4 R5
a3-36 (U)  28.65(1.19) 31.31(0.95) 25.7(0.93) 2831 (1.04) 2531 (1.44)
a7-56 (E)  30.31(1.33) 2697 (1.28)  27.02(1.17) 23.97(1.21)  25.34 (1.64)
a5-60 ()  21.01(1.12) 25.02(1.04) 2346 (1.11) 2594 (1.34)  27.97 (1L.77)

Inst. (Data)

Avg 26.66 (1.21)  27.77(1.09)  25.39(1.07)  26.07(1.20)  26.21(1.62)

R2a (U) 23.02(0.89) 22.36(0.83) 24.31(1.33) 21.31(1.23)  21.65(1.95)

Réa (E) 2497 (1.11) 2654 (0.94)  2431(1.78)  21.64(1.15)  17.85(L.75)

R8b (1) 2797 (1.95) 2168 (1.13)  28.24(2.25)  19.89(1.77)  24.98 (2.14)

Avg 2532 (1.32)  2353(0.97) 25.62(1.79)  20.95(1.13)  21.49 (1.95)
Table 6

Frequency of use as a percentage of 25,000 iterations and the computation time needed
by each insertion operator

Insertion operators
P1 P2 P3 P4
a3-36 (V) 25.34 (2.02) 24.02 (2.24) 26.71 (3.12) 23.93 (4.11)
a7-56 (E) 26.36 (6.64) 24.63 (3.12) 21.34 (3.65) 27.67 (9.42)
a5-60 (1) 27.65(21.97) 25.65(13.65) 20.35(10.53)  26.35(19.85)

Inst. (Data)

Avg 26.45(10.21) 24.77(6.34)  22.80 (5.77)  25.98 (11.13)
R2a (U) 28.21(11.34) 23.23(9.24)  19.23(10.31)  29.33 (15.93)
R4a (E) 26.28 (25.98) 24.34(21.02) 20.01(15.22) 29.37 (33.03)
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R3b (1) 2770 (31.11)  21.23(24.96) 20.02 (14.01) 31.05 (41.38)
Avg 2740 (22.81) 22.93(18.41) 19.75(13.18)  29.92 (30.11)

With respect to the insertion operators in Table 6, the results (and particularly the computed averages)
demonstrate that the P1 and P4 operators are slightly more utilized than P2 and P3. Obviously, the time
consumed by P1 and P4 compared to that of P2 and P3, is slightly higher.

Table 7 presents the number of times a new best solution was found by each operator respectively.
Additionally, the number in parentheses denotes the number of times the current solution was improved.

Table 7
Number of global best solutions found and number of improved solutions found by each operator
Inst. (Data) Removal operators Insertion operators
R1 R2 R3 R4 R5 P1 P2 P3 P4

a3-36 (U) 4(105) 1(134) 2(98)  2(65)  1(32) 3(129) 2(68)  1(104) 4(133)

a7-56 (E) 7(103)  4(142) 2(102) 3(89)  2(79) 7(176) 0(87)  3(46)  8(206)

a5-60 (1) 7(128) 5(98)  1(63)  4(33)  3(42) 5(88) 2(66) 2(80)  11(130)

R2a (U) 5(165) 4(175) 2(122) 3(141)  4(150) 6(301) 0(129) 4(152) 8(172)

R4a (E) 4(332) 3(265) 3(241) 3(155) 3(221) 8(214) 2(212) 4(119) 6(669)

R3b (1) 6(217) 7(322) 3(195) 2(188) 2(168) 5(134) 3(134) 5(198) 7(624)

Based on the results from Tables 6 and 7, it is clear that the insertion operators P2 and P3 are scarcely
applied due to their limited ability to find new best solutions. However, ALNS could still take advantage
of these operators, as they may diversify the search. To sum up, the removal and insertion operators are

effective in getting high quality solutions for the MD-MT-HDARP as shown in the results.

7.3. Computational results

This section presents an overview of the experimental results obtained by our algorithms when tested
on both newly generated instances for the MD-MT-HDARP and the instances for the MD-HDARP of

Braekers et al. (2014a). For each table, detailed results per instance are available on our website.

7.3.1. Results on the MD-MT-HDARP

To test the performance of our algorithms, we ran each algorithm five times on each instance. In all
tables reported in this section, columns “Best” (“Avg”) show the best (average) solution objective values.
The column “%” following each of the “Best” (“Avg”) columns indicates the percentage of deviation of
the preceding column from the Best Solution value (BS) obtained by any of the three developed
algorithms for a given instance, while CPU shows the average run time in minutes.

Tables 8 and 9 show average results of our algorithms when run on the small-medium and large

instances. As previously explained, three different data sets (U, E and 1) are tested.

Table 8
Comparison of our three algorithms on small and medium instances
ALNS BA-DA BA-SA
Inst. BS CPU CPU CPU
Best % Avg % . Best % Avg % . Best % Avg % .
(min) (min) (min)
U 69038 69059 002 691.82 016 290 69055 002 69123 009 609 69064 003 69150 012 7.28
E 71038 71126 008 71271 023 288 71067 003 71150 012 631 71069 003 71161 012 637
I 69784 69798 001 699.04 013 412 69801 002 69875 010 9.04 69817 003 699.04 013 9.67
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UET 699.53 699.94 0.04 70119 0.17 330 699.74 0.02 70049 0.10 7.15 699.83 0.03 700.72 0.12 7.77

Table 8 (and results in the website) show that the results of all our algorithms are comparable to each
other, and each algorithm can find the best solution in the majority of instances. The hybrid BA-DA can
find the best solution in at least one of the five runs for 62 instances (out of 72) compared to 59 instances
for the ALNS and the hybrid BA-SA. The three methods were able to find the same best solution in 46
instances.

As can be noticed from the last row of Table 8, the overall average deviation from the BKS for all
instances in the five runs is 0.17%, 0.10% and 0.12% for our ALNS, BA-DA and BA-SA algorithms,
respectively; whereas, the average of the best runs deviates from the BS by 0.04%, 0.02% and 0.03%,
respectively. For the average processing time, we note that the hybrid approaches are comparable, while
the ALNS is slightly faster, with 3.30 minutes for ALNS, 7.09 minutes for BA-DA and 7.79 minutes for
BA-SA.

Table 9
Comparison of our three algorithms on large instances
ALNS BA-DA BA-SA
Inst. BS CPU CPU CPU

Best % Avg % Best % Avg % Best % Avg %

(min) (min) (min)

U 525.37 52728 025 531.07 096 14.68 526.23 0.14 52814 050 1870 52552 0.03 52791 047 20.54
E 591.63 592.85 0.17 596.94 0.74 17.66 591.67 0.01 594.05 035 23.00 591.97 0.05 59486 055 26.05
T 571.41 57233 012 577.39 092 1939 57151 0.02 573.99 043 2520 571.63 005 57456 057 2557

UEI  562.80 564.15 0.18 56847 0.88 17.24 563.14 0.06 56539 043 2230 563.04 0.04 56578 053 24.05

By exploring the results in Table 9, the ALNS algorithm can find the best solution for 43 instances
compared to 48 instances for BA-DA, and 40 instances for BA-SA. In 19 cases, all our methods are
capable of finding the same best solution. Taking the average values over five runs for each algorithm, the
average gap (%) is equal to 0.88% for ALNS, 0.43% for the BA-DA and 0.53% for the BA-SA. On the
other hand, the average of the best result over five runs deviates from the BKS by 0.18% for the ALNS
algorithm, 0.06% for hybrid BA-DA algorithm and 0.04% for hybrid BA-SA algorithm.

The results show that, on average over all instances, the hybrid BA-DA and the hybrid BA-SA
algorithms outperform the ALNS for both the average and best solutions, albeit with a small difference in
terms of the number of best found solutions (as can be seen from the results reported in the website). The
superior performance of the hybrid methods compared to the ALNS can be attributed to the population-
based nature of these algorithms, which allows it to explore several solutions in parallel, as well as to the
benefit of the hybridizing two metaheuristic, as opposed to improving just one solution using one
metaheuristic, which is the case in the ALNS. This, however, comes at the expense of a slight increase in
computation time, as expected in most population-based metaheuristics. In general, our three algorithms
are efficient and provide high-quality solutions for all instances. The fact that the algorithms were not able
to produce the same results in all instances can be explained by the complexity of problem, especially for
large instances, and the stochastic behavior of the solution algorithms.

To assess the effectiveness of integrating the DA and SA algorithm within the Bees Algorithm, we
compared our hybrid BA-DA and BA-SA algorithms with only DA and SA without hybridization and

with a simple (non-hybrid) BA, as shown in Tables 10 and 11. The parameters used for our simple SA and
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DA methods are the same as those suggested by Vincent et al. (2016) and Braekers et al. (2013) for their
SA and DA methods, respectively, as previously explained in Section. 4.2. The parameters and
Pseudocode of the traditional BA are presented in Table 14 and Algorithm 6 in the Appendix,

respectively.

Table 10
Comparison of BA-DA (BA-SA) performance with standard DA (SA)
Instance  Data DA SA
CPU CPU
Best % Avg % . Best % Avg % _
(min) (min)
Small-  Type-U 69250 028 69510 056 1.96 691.38 011 69392 035 284
Medium Type-E 71182 016 71463 044 2.13 71243 024 71482 045 3.24
Type-1 699.83 026 702.74 057 3.74 699.74 022 70278 054 4.44
Avg 701.38 023 70416 052 2.61 70118 019 70384 045 351

Large Type-U 528.76 048 53239 0.80 12.76 529.04 067 53340 1.04 1352
Type-E 596.71 0.85 60258 1.44 1545 597.46 093 60252 129 17.33
Type-I 577.75 1.09 58199 139 1947 575.06 0.60 580.57 1.05 16.09
Avg 567.74 081 57232 121 15.89 567.19 0.73 57216 112 15.65

Table 10 compares the best (average) result for all instances of each data set, using each algorithm.
Columns “Best” (“Avg”) report the best (average) solution values of our DA and SA without
hybridization. Columns “%” presents the percentage of deviation of the best (average) solutions obtained
by our DA and SA, compared to the hybrid BA-DA and hybrid BA-SA, respectively. On the other hand,
in Table 11, the columns “%BA-DA” and “%BA-SA” show the percentage of deviation from the best
solutions obtained by our BA compared to the best (average) solution found by our hybrid BA-DA and
BA-SA algorithms, respectively.

According to the results in Table 10, our hybrid BAs clearly outperform the non-hybrid DA (SA)
algorithms, both in terms of best and average solution quality. For the small and medium instances
(average of three data sets), using hybrid BA-DA (BA-SA) improves the results of the DA (SA), but with
a small percentage. In fact, the average gap with the best solution obtained with hybrid BA-DA (hybrid
BA-SA) is just 0.23% (0.19%) for these instances. The average deviation for the DA and SA compared to
the average results of five runs of the hybrid BA-DA and hybrid BA-SA are 0.52% and 0.45%,
respectively. However, a considerable improvement can be achieved with the use of our hybridization
strategies for large instances. In this regard, our proposed hybrid algorithms improve solutions with 0.81%
compared to the DA and 0.73% compared to the SA, respectively. The average deviation from the average
solutions compared to our hybrid algorithms for the total routing cost, based on the average calculated for
five runs, was 1.21% for DA and 1.12% for SA. This in fact indicates that the hybrid algorithms are also
more stable in terms of finding high quality solutions in most of the runs compared to the standalone DA
and SA.
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Table 11
Comparison of BA-DA and BA-SA performance with BA

Standard BA

Instance Data % BA- 9% BA- % BA- % BA- CPU
Best Avg
DA SA DA SA (min)
Small- Type-U 696.99 0.93 0.92 701.16 144 1.40 6.37
Medium  Type-E 717.03 0.89 0.89 72143 140 1.38 5.75
Type-I 704.16 0.88 0.86 708.22 1.36 131 8.14
Avg 706.06 0.90 0.89 710.27 1.40 1.36 6.75

Large Type-U 541.36 2.88 3.01 55043 4.22 4.27 53.21
Type-E 608.17 2.79 2.74 615.23 3.57 3.42 52.51
Type-I 586.85 2.68 2.66 593.67 3.43 3.33 51.74
Avg 578.79 2.78 2.80 586.44 3.74 3.67 52.49

Similar to the conclusion obtained from Table 10, Table 11 shows that both BA-DA and BA-SA
algorithms outperform the traditional BA method. For the small and medium instances, using the DA (SA)
algorithm, in conjunction with the BA, improves the results of the stand-alone BA. In fact, the average gap
with the best solution obtained with the BA method amounts to 0.90% (0.89%) in comparison to the
hybrid BA-DA (hybrid BA-SA). The average deviation of five runs for the simple BA was 1.40% (1.36%)
compared to the BA-DA (BA-SA) algorithms. For large instances, the integration of the DA and SA
improves solutions with a percentage of 2.78% for the hybrid BA-DA and 2.80% for hybrid BA-SA. The
average deviation of the basic BA, from the average value, calculated for five runs was 3.74 % (3.67%) in
comparison with the hybrid BA-DA (BA-SA).

From Tables 10 and 11, we conclude that the improvement phase in our new hybrid Bees Algorithm is

important for all instances.

7.3.2. Results on the MD-HDARP

In order to further assess and validate the performance of our algorithms, we applied them on the
instances of Braekers et al. (2014a) for the MD-HDARP. For this purpose, we assumed that the lunch
break and coffee break time windows are [EL,LL]= [ECT,LC"] = [0, O] (r = {1, 2}), the lunch duration
and coffee break duration are set to TC = TL = 0. This being done, the MD-MT-HDARRP is transformed to
the MD-HDARP. We use the same parameter settings as before.

Tables 12 and 13 show the results of our algorithms on the small-medium instances of Braekers et al.
(2014a) for the MD-HDARP. The results are compared with those of the Deterministic Annealing (DA)
algorithm of Braekers et al. (2014a), which is considered the current state-of-the-art algorithm for solving
the MD-HDARP. Each instance is solved five times using each of the algorithms (including the DA
algorithm) as done in Braekers et al. (2014a). Column “Best” (“Avg”) report the best (average) solution
values, and “CPU” indicates CPU time in minutes. We note that all results of the algorithms are compared
with the optimal and/or lower bound solution found by the B&C algorithm of Braekers et al. (2014a). The
detailed results of each algorithm are reported in the website.

It should be noted that since a different machine has been used to generate the results for our
algorithms than that of the existing DA algorithm of Braekers et al. (2014a), we are not able to accurately

compare the relative performance of our algorithms in terms of processing time compared to that of
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Braekers et al. (2014a). In addition, the speed factor of the configuration material applied by Braekers et
al. (2014a) cannot be estimated by using Dongarra (2014) table, due to lack of relevant information in
Dongarra (2014) and in Linpack (2016). Thus, we report in Table 12 the computational time only for the
record, and not for a direct comparison with the previously published results.

Table 12

Comparison of our three methods on the MD-HDARP instances of Braekers et al. (2014a) on the best
solutions

Inst B&C? DA? ALNS BA-DA BA-SA

nst.
Lower Best % CPU Best % CPU Best % CPU Best % CPU
bound (min) (min) (min) (min)

U 604.18 605.15 0.09 0.44 604.82 0.06 2.58 604.29 0.01 5.26 604.62 0.04 6.42

E 623.24 623.68 0.04 0.48 623.94 0.06 2.55 623.30 0.00 5.43 62351 0.02 5.72

Iz 613.71 617.00 0.34 045 61526 0.15 3.61 614.12 0.04 7.90 61450 0.08 8.34

UEI 61371 61529 0.16 0.46 61467 0.09 292 61391 0.02 6.19 61421 0.05 6.83
Best known solutions provided from Braekers et al. (2014a) on 2.6 GHz Intel Core laptop with 4 GB RAM.

Table 13
Comparison of our three methods on the MD-HDARP instances of Braekers et al. (2014a)
on the average solutions

Inst B&C* DA® ALNS BA-DA BA-SA

nst.
Lower Avg % Avg % Avg % Avg %
bound

604.18 605.66 0.15 606.17 0.11 605.77 0.07 605.66 0.10
623.24 62430 0.11 624.43 0.14 624.68 0.07 624.34 0.09
613.71 617.83 043 617.83 0.26 618.11 0.11 617.83 0.15
UEI 61371 61593 0.23 615.94 0.17 616.07 0.09 61594 0.11
#Best known solutions provided from Braekers et al. (2014a) on 2.6 GHz Intel Core laptop with 4 GB RAM.

~ T g

The results of Tables 12 and 13 show clearly that our proposed hybrid methods outperform the current
state-of-the-art algorithm on the MD-HDARP in terms of solution quality. This applies to both the average
deviation and the best deviation. In addition, regarding the number of best solutions found over five runs
(Tables 12 and 13 in the website), the BA-DA (BA-SA) reports 65 (63) best solutions among 72 instances,
compared to 62 best solutions for the DA of Braekers et al. (2014a). The average deviation from the best
result over five runs for our Hybrid BA-DA (BA-SA) is 0.02% (0.05%) compared to 0.16% for the DA of
Braekers et al. (2014a).The average deviation from the average results of the optimal solutions found by
B&C are 0.09% (0.11%) for the BA-DA (BA-SA) algorithms, compared to 0.23% for the DA.

When compared to the DA, our ALNS also gives reasonable results, albeit with slightly less number
of best solutions (61). Nevertheless, our ALNS outperforms the DA in terms of both average and best
deviations. Regarding the average deviation from the best result in five runs, the ALNS is slightly better
than the DA with 0.09%, while in the average deviation from the average results for the best known
solutions, our ALNS surpasses the DA with 0.17%. In terms of computation time, as we previously
mentioned, the average time of 0.46 minutes for Braekers et al. (2014a) cannot be fairly compared to our
algorithms’ time consumption, since the speed factor of their configuration is unknown.

In conclusion, we believe that our methods are fairly effective in obtaining high quality solutions for
the MD-DARP.
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8. Conclusion

Heterogeneous Dial-A-Ride Problems (HDARPs) are vehicle routing problems that arise in the
management of door-to-door transportation services, which are mostly offered to the elderly and the
disabled. In this paper, we proposed a more realistic variant of the HDARP, in which multi-depots, multi-
trips, and coffee/lunch breaks are considered. The rationale is that in practice some dial-a-ride service
providers have many depots in the same country. In addition, legislation rules may oblige the drivers to
take lunch, and if necessary pause for coffee during their working day.

In this paper, we propose three different metaheuristics to solve the Multi-Depot Multi-Trip
Heterogeneous Dial-a-Ride Problem (MD-MT-HDARP), and we assess their capabilities in handling the
problem effectively. The three methods proposed are two new hybrid Bees Algorithms: Hybrid Bees
Algorithm with Deterministic Annealing (BA-DA), and Hybrid Bees Algorithm with Simulated Annealing
(BA-SA), and an Adaptive Large Neighborhood Search (ALNS). Different types of data sets have been
used to test the performance of the above three methods. The obtained results indicate that our algorithms
provide high quality solutions on newly generated (small-medium and large) instances. The hybrid
algorithms were also superior to standalone algorithms in this respect. This can be attributed to the benefit
of integrating single-solution based algorithms (i.e., DA and SA) within a population-based metaheuristic
(i.e., the BA), which has demonstrated its potential in solving difficult problems, in comparison to
standalone single-solution based metaheuristics. The results show that our BA-DA and BA-SA can
effectively deal with the problem, giving high quality solutions on almost all instances. On the other hand,
our ALNS algorithm is just slightly less efficient than our hybrid algorithms. This could be due to that the
ALNS probably needs more removal and insertion operators for even more diversification of the search,
which could make its behavior more robust to be able to compete with our population-based hybrid
methods. Moreover, when compared on the related MD-HDARP, our methods are competitive to the
state-of-the-art algorithm of Braekers et al. (2014a) on this problem. In fact, our algorithms provide
solutions of better quality than the competitive metaheuristic of Braekers et al. (2014a), which shows the
potential of our hybrid methods in solving other problem variants besides the problem described in this
research, i.e., the MD-MT-HDARP.

For future work, we plan to focus on another complex variant, a Multi-depot HDARP with
synchronization constraints between pickups and deliveries. Other possible directions for future research
include the introduction of even more sophisticated local search techniques in the Bees Algorithm, and to

apply this algorithm in a real environment for the transport of handicapped persons.
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Appendix: Parameters and Pseudocode of the BA

The parameters used in our tradional BA are shown in Table 14.

Table 14

Parameter values of traditional Bees Algorithm
Parameters Value
Population size (N) 30
be 15
es 3
Npees for small (large) instances 20000 (50000)
Npe 10
Npe—es 5

The difference between our traditional BA and the hybrid BA presented in Section 4 is in step 3 and
the stopping criteria of the algorithm. Instead of applying DA (SA) on each of these (be) solutions, we
simply apply n,, iterations of local search (described in subsection 4.4). Also, instead of the algorithm
returning the best solution after ten non-improvement iterations, the algorithm outputs the best solution

after n,.s consecutive iterations. The proposed traditional BA is shown in Algorithm 6.

Algorithm 6: Pseudo-code of the traditional Bees Algorithm

Begin
Initial population: Generate a population of N solutions, using a set of construction heuristics;
Repeat
Step 1: Evaluate fitness of each solution in the population N
Step 2: Sort the solutions in N in ascending order according to fitness and select the first (be)
solutions from N
Step 3: Select the first es solutions from (be)
Step 4: For each es solution Do
Repeat
Apply any local search operator {I1, 12, 13 or 14} to the current (es)
solution and memorize the new solution
Until n. is reached
Select the best one from the memorized solutions and record it
End For
Step 5: For each (be-es) solution Do
Repeat
Apply any local search operator {I1, 12, 13 or 14} to the current (be-
es) solution and memorize the new solution
Until ny,_ is reached
Select the best one from the memorized solutions and record it
End For
Step 6: Select the best one from the new (be) solutions
If the current best solution is better than the best one Then
Replace the current solution with this new one
End If
Step 7: Replace the (be) new solutions into the population N
Step 8: Generate (N- be) new solutions
Until the maximum number of iteration n,,, is reached
Output the best solution as a result
End.
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