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Three Effective Metaheuristics to Solve the Multi-Depot Multi-Trip 

Heterogeneous Dial-a-Ride Problem 

Abstract 

The Heterogeneous Dial-a-Ride problem (HDARP) is an important problem in reduced mobility 

transportation.  Recently, several extensions have been proposed towards more realistic applications 

of the problem. In this paper, a new variant called the Multi-Depot Multi-Trip Heterogeneous Dial-a-

Ride Problem (MD-MT-HDARP) is considered. A mathematical programming formulation and three 

metaheuristics are proposed: an improved Adaptive Large Neighborhood Search (ALNS), Hybrid 

Bees Algorithm with Simulated Annealing (BA-SA), and Hybrid Bees Algorithm with Deterministic 

Annealing (BA-DA). Extensive experiments show the effectiveness of the proposed algorithms for 

solving the underlying problem. In addition, they are competitive to the current state-of-the-art 

algorithm on the MD-HDARP. 

Keywords: Vehicle Routing Problem (VRP), Dial-a-Ride Problem (DARP),
 

Metaheuristic, 

Optimization, Bees Algorithm (BA) 

1. Introduction 

The transportation of individuals with reduced mobility is an important branch in passenger 

transportation. It concerns the transportation service that helps the elderly and the disabled people to travel 

easily and comfortably within their community or to access essential health care services. However, such 

services are usually very costly, due to specific requirements, such as the need for specially equipped 

vehicles, highly qualified drivers, accompanying person(s), and the existence of desired service times. 

Clearly, appropriate transportation planning can greatly improve the service quality and save physical and 

human resources.  

The reduced mobility people transportation planning consists of establishing a transport plan (vehicle 

itinerary) to meet particular user demands by a fleet of vehicles. This problem is called the Dial-a-Ride 

problem (DARP) in the literature. The DARP is a variant of the Pickup and Delivery Problem with Time 

Windows (PDPTW) that concerns the transportation of goods/services between paired pickup and delivery 

locations. The optimization criterion of the DARP is often to minimize the total transportation distance or 

duration, while providing high service quality (e.g., small customer waiting times). The DARP is more 

complicated than the traditional NP-hard Vehicle Routing Problem (VRP), due to its special transportation 

constraints.   

Given the increase in social interest towards improving patients’ and disabled persons’ transportation 

conditions, the DARP has indeed many real applications in many countries, such as Italy (Toth and Vigo 

1996, 1997), Germany (Borndörfer et al. 1999), US (Karabuk 2009), and Belgium (Rekiek and al. 2006). 

However, most of the previous research addresses homogeneous vehicles located at a single depot, single 
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route per vehicle, and only one type of users. Surveys on the Dial-a-Ride-Problem have been presented in 

Cordeau and Laporte (2007), Parragh et al. (2008), and Doerner and Salazar-Gonzalez (2014). 

In recent years, there has been a trend to focus on more realistic versions of the DARP by taking into 

consideration additional real-life constraints, such as vehicle and user heterogeneity, multiple vehicle 

depots, and lunch breaks of the drivers. According to Parragh (2011) and Wong and Bell (2006), in reality, 

the reduced mobility people transportation is often complicated by the presence of several types of users 

who need specific types of equipment, such as a patient seat, a wheelchair or a stretcher. Consequently, 

vehicles with special space for this equipment are needed to satisfy different users’ requests. This has lead 

to the emergence of a new variant of the problem, the DARP with heterogeneous users or/and vehicles, 

which is a generalization of the DARP that has not yet been extensively studied in the literature. Wong 

and Bell (2006) adopted a parallel insertion heuristic in their solution of the DARP with two types of 

vehicles (equipped with wheelchair places), and two types of users. The algorithm was tested on artificial 

instances involving 150 requests. Xiang et al. (2006) developed a parallel insertion heuristic to solve a 

version of the DARP with several types of users and vehicles. The proposed approach has solved 

problems between 50 and 2,000 requests. Some authors have also considered realistic real life conditions 

pertaining to uncertainty and imprecision in pickup and/or drop off times (e.g. Teodorovic and 

Radivojevic, 2000 and Maalouf et al., 2014), where fuzzy logic has been utilized to provide approximate 

problem solutions for the dynamic DARP. 

A formal definition of the Heterogeneous DARP (HDARP) was first presented in Parragh (2011). In 

this paper, two types of vehicles are considered; each can have a staff seat, a patient seat, a stretcher and a 

wheelchair. Also, users can request an accompanying person. The problem is solved using a Branch-and-

Cut (B&C) algorithm and Variable Neighborhood Search (VNS) algorithm. The algorithms were tested on 

36 instances with up to 4 vehicles and 48 requests, generated from instances proposed by Cordeau (2006) 

for the homogeneous DARP. Later, Qu and Bard (2013) developed an Adaptive Large Neighborhood 

Search (ALNS) algorithm to solve the heterogeneous pickup and delivery problem with configurable 

vehicle capacity. The proposed method was first tested by comparing the obtained results with Parragh 

(2011). Then, it was applied on data sets provided by the PACE organization. The obtained results are 

better than the solutions generated manually, with results showing 30–40% cost savings over current 

practice. 

The multi-depot concept has been integrated within the context of the Dial-a-Ride Problem as well to 

account for the fact that large service providers may have multiple locations for their vehicles, or that 

drivers are sometimes allowed to take their vehicles home after their shifts. To our knowledge, the only 

researches that explicitly considered multiple depots for vehicles were conducted by Melachrinoudis et al. 

(2007), Carnes et al. (2013) and Braekers et al. (2014a). Melachrinoudis et al. (2007) investigated 

multiple depots and a fleet of vehicles with heterogeneous capacity for aged persons transport from their 

homes to healthcare centers. A Tabu Search (TS) method was adopted to solve the problem and instances 

with up to 50 requests were tested. Another practical version of the multi-depot DARP is studied by 

Carnes et al. (2013). The study aims to build a schedule for air-ambulances assigned to different depots in 

order to satisfy the demands of a set of patients. To solve the problem, an exact method based on set 
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partitioning was applied on smaller instances that contain between 10 and 20 requests per day. In the study 

of Braekers et al. (2014a), multiple depots, heterogeneous vehicles and heterogeneous users are 

considered. To solve the problem, a Branch-and-Cut and a Deterministic Annealing (DA) algorithm were 

used to solve small-medium instances containing 2-8 vehicles and 16-96 requests. Their method was also 

evaluated on the DARP instances proposed by Cordeau and Laporte (2003) and the HDARP instances of 

Parragh (2011).  

Other recent contributions to the literature are made by integrating the multi-trip concept in the DARP 

and HDARP. This concept is actually very common in practice, where the vehicle can perform several 

trips per day. Parragh et al. (2012) introduced a variant of the HDARP in which the requirements for 

assistants and lunch break constraints are taken into account. To solve this problem, a Variable 

Neighborhood Search (VNS) metaheuristic and a column generation approach are developed and tested on 

small-medium instances, and both solution methods are combined into a collaborative scheme. Liu et al. 

(2015) proposed a new variant of realistic DARP that simultaneously considers multiple trips, 

heterogeneous vehicles/users, a single depot, and configurable vehicle capacity. The authors formulated 

two mixed integer programming models and introduced 8 classes of valid inequalities to improve the 

bounds of their Branch-and-Cut algorithm. The proposed method can solve instances with up to 22 

requests within four hours. Zhang et al. (2015) studied a real-life public patient transportation problem 

derived from the Hong Kong Hospital Authority. In their problem, the authors consider that in order to 

prevent the spread of diseases, ambulances must be returned to the depot during the day for sterilization 

and for the driver to have a lunch break. A memetic algorithm is developed to solve this problem. The 

proposed method was tested on real-world data and the standard DARP benchmarks. The results show that 

the proposed algorithm provides near-optimal solutions for small instances. Another real world application 

derived from the Non-Emergency Ambulance Transfer Service (NEATS) in Hong Kong is studied by Lim 

et al. (2016) to solve the Multi-Trip DARP (MT-DARP). Lunch breaks are considered and certain users 

may require the help of assistants (who occupy a seat during the trip). The assistants can move from a trip 

of one vehicle to a trip of another vehicle at the depot. The authors consider that the time windows of 

lunch breaks for the drivers and assistants are heterogeneous. A heuristic with an ad-hoc component to 

handle the manpower planning problem is developed and tested on a real dataset. 

Based on the above literature review, it is concluded that the combination of heterogeneous 

vehicles/users with either multiple depots or multiple trips has already been studied to some extent. Yet, to 

the best of our knowledge, a combination of all these aspects has not been studied before. Our newly 

proposed variant, the Multi-Depot Multi-Trip Heterogeneous Dial-a-Ride Problem (MD-MT-HDARP) 

with coffee and lunch breaks, aims to fill this gap by combining all these aspects, while accounting for 

coffee and lunch breaks as well. This problem is very relevant in real life, since these characteristics often 

occur together in practice. Three metaheuristic-based methods are introduced to solve this new variant, 

and they are compared in order to decide which one is more effective in solving the problem. The choice 

of these methods is based on their relative advantages and demonstrated capabilities in solving a variety of 

VRPs, as described in the excellent survey papers about the implementation of metaheuristics of Laporte 

et al. (2000), Bräysy et al. (2004a, b), and Pisinger and  Ropke (2010). In addition, different types of data 
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sets are introduced to assess and compare the performance quality of these methods, and to be used as 

reference for further research. 

In reality, the multi-trip feature is needed when the vehicles' fleet size is limited and/or the routes have 

a limited duration, e.g., due to the existence of lunch breaks which are imposed on the drivers. Our 

problem is inspired by work on the MT-DARP, in which lunch breaks are considered, such as in Lim et al. 

(2016) and Zhang et al. (2015). However, here we take into consideration a lunch break and two coffee 

breaks during the working day of a driver. Each vehicle/driver can perform two trips during its working 

day: the first trip (𝑟=1) is performed in the morning (before the lunch break), and the second (𝑟=2) is 

performed in the afternoon (after the lunch break).  

During each trip, a short coffee break should be included as well. The motivation behind imposing the 

requirement for breaks can be related to security issues, e.g., providing comfortable conditions to drivers 

by ensuring sufficient rest during their working day, especially when traveling long distances (Goel 2010). 

In this study, we address a generalized case of the MT-HDARP, called the MD-MT-HDARP, in which we 

consider the traditional definition of the HDARP proposed by Parragh (2011), where heterogeneous 

vehicles and multiple request types are treated. In addition, inspired by the multi-depot problem of 

Braekers et al. (2014a), we integrate the multi-depot concept, which makes the problem more challenging 

and sophisticated than the single-depot DARP. To summarize, the Multi-Depot Multi-Trip Heterogeneous 

Dial-a-Ride Problem (MD-MT-HDARP) is considered as a combination of MT-HDARP and MD-

HDARP. To the best of our knowledge, no work has been conducted to address this problem.   

The contributions of this work are as follows: i) a general static Multi-Depot Multi-Trip 

Heterogeneous Dial-a-Ride Problem is introduced and a mathematical formulation of the problem is 

proposed; ii) an Adaptive Large Neighborhood Search (ALNS) and two effective hybrid metaheuristic 

methods (Hybrid Bees Algorithm with Deterministic Annealing (BA-DA) and Hybrid Bees 

Algorithm with Simulated Annealing (BA-SA)), are proposed to solve this problem; iii) A set of new 

small, medium and large instances is generated for the MD-MT-HDARP, based on the instances of 

Parragh (2011) and Braekers et al. (2014a); iv) Numerical experiments are applied to demonstrate that all 

three solution approaches provide high quality solutions both for these new instances and for existing 

benchmark instances on the related MD-DARP; in particular the two hybrid methods show their efficiency 

for large instances of the MD-MT-HDARP. 

The rest of the paper is organized as follows. Section 2 provides the mathematical formulation of the 

problem. Section 3 describes the construction heuristics. Sections 4 and 5 describe our proposed solution 

approaches. Section 6 explains the solution evaluation function. Section 7 reports the computational 

experimentation, followed by the conclusions in Section 8. 

2. Problem description 

The MD-MT-HDARP can be formally described as follows. Let 𝐺 = (𝑉+, 𝐴) be a directed graph. The 

set 𝑉+ is further partitioned into three subsets; 𝑀, 𝑁, 𝑀′. 𝑀 = {𝑣1, … , 𝑣𝑚} is the set of m (starting) 

depots. 𝑁 = {𝑣𝑚+1, … , 𝑣𝑚+2𝑛} corresponds to 𝑛 users to be served, with  𝑃 = {𝑚 + 1, … , 𝑚 + 𝑛} 

and 𝐷 = {𝑚 + 𝑛 + 1, … , 𝑚 + 2𝑛} the sets of vertices corresponding to pickup and delivery locations, 
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respectively. 𝑀′ = {𝑣𝑚+2𝑛+1, … , 𝑣2𝑛+2𝑚} is the set of 𝑚 (finishing) depots. Let  𝑉 = 𝑀 ∪ 𝑁  and 𝑉′ =

𝑀′ ∪ 𝑁, and 𝐴 = {(𝑖, 𝑗: 𝑖 ∈ 𝑉, 𝑗 ∈ 𝑉′, 𝑖 ≠ 𝑗} the set of arcs connecting each pair of nodes. Each user 

request involves transportation from pickup node 𝑖 ∈ 𝑃 to delivery node 𝑖 + 𝑛 ∈ 𝐷. To each arc (𝑖, 𝑗) ∈ 𝐴 

are associated a non-negative travel time  𝑡𝑖𝑗 and a routing cost 𝑐𝑖𝑗. A fleet of heterogeneous vehicles 𝐾
 
is 

available at the 𝑚 depots to serve the 𝑛 users. Each vehicle 𝑘 ∈ 𝐾 starts from a depot and ends at the same 

depot of departure (starts at 𝑖 and finishes at 2𝑛+𝑚+𝑖, where 𝑖=1,… , 𝑚). Each depot has a limited number 

of vehicles 𝑃𝑚. The starting depot and returning depot of a vehicle 𝑘 are represented by 𝑚(𝑘) and 𝑚(𝑘)
′ , 

respectively. We impose that  𝑚(𝑘)
′ = 2𝑛 + 𝑚 +  𝑚(𝑘). Each vehicle 𝑘 has a capacity 𝑄𝑒𝑘 that gives the 

amount of equipment 𝑒 available on the vehicle, where 𝑒 = {0, 1, 2, 3} denotes the types of equipment. 

Let 𝑞𝑖
𝑒 denote the load of passenger 𝑖 for equipment 𝑒; e.g., 𝑞𝑖

0= 1, 𝑞𝑖
1= 1, 𝑞𝑖

2= 1 and 𝑞𝑖
3 = 1 (𝑖 = 1, … , 𝑛) 

mean that passenger 𝑖 needs an accompanying person seat, a disabled seat, a stretcher and a wheelchair, 

respectively. Each delivery node 𝑖 + 𝑛 ∈ 𝐷 has a load  𝑞𝑖+𝑛
𝑒 = −𝑞𝑖

𝑒 .  Every user either specifies a time 

window [𝑒𝑖, 𝑙𝑖] on the departure (pickup) or the arrival (delivery). The service has to start within this time 

window; i.e., if the vehicle arrives earlier than 𝑒𝑖, it must wait. At each node, loading or unloading 

operations last for a given service time 𝑠𝑖. A maximum ride time for each user, denoted by 𝐿𝑚𝑎𝑥, is 

considered in order to provide high service quality. 

Note that each vehicle is assumed to have a fixed driver. Hence, both terms (vehicles and drivers) are 

used interchangeably. For each driver, the maximum working time per day is limited by 𝑇𝑚𝑎𝑥. During this 

time, each driver can perform up to two trips, e.g., one in the morning and one in the afternoon. All drivers 

must have a lunch break at their depot between these two trips. This lunch break has to start and end 

within a given time window [𝐸𝐿, 𝐿𝐿] and has a duration of 𝑇𝐿 =30 minutes. Additionally, during each trip 

𝑟 ∈ {1,2}, a driver should take a coffee break of duration 𝑇𝐶 within a time window [𝐸𝐶𝑟, 𝐿𝐶𝑟]. For 

example, during the morning trip, the driver must take a coffee break of 15 minutes within the time 

window [10 am, 10:30 am].  

Because of the presence of ride times, time windows, breaks, and the limited duration of each working 

day, the scheduling subproblem and hence checking the feasibility of a solution is more complex than in 

other routing problems. A feasible solution consists of a set of routes satisfying the following constraints: 

(i) a pickup node and its corresponding delivery node must be visited in the same trip, and the pickup node 

must be visited before the delivery node; (ii) the vehicle capacity must be respected at each node for each 

type of equipment; (iii) each node must be visited in its time window, so if a vehicle comes early, it must 

wait until the beginning of the time window; (iv) the ride time of any user should not be exceeded; (v) the 

total duration of the working day of each vehicle (maximum route duration) is strictly limited by 𝑇𝑚𝑎𝑥; 

(vi) every vehicle starts and ends at the same depot; (vii) the schedule should include a lunch break and  

two coffee breaks (in the morning and afternoon).  

The MD-MT-HDARP consists of designing the routes to satisfy all requests while minimizing the 

routing costs. The variables used in the mathematical model are shown in Table 1. 

Table 1 
Definition of variables used for the MD-MT- HDARP 

𝑥𝑖𝑗
𝑘 : A binary variable that is equal to 1 if arc (𝑖, 𝑗) is traversed by vehicle 𝑘, and 0 otherwise; 
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𝜆𝑖
1𝑘: A binary variable that is equal to 1 if the first (morning) coffee break of vehicle 𝑘 is held either directly after 

servicing node 𝑖 or directly after traveling from node 𝑖 to the next node, 0 otherwise; 

𝜆𝑖
2𝑘: A binary variable that is equal to 1 if the second (afternoon) coffee break of vehicle 𝑘 is held either directly after 

servicing node 𝑖 or directly after traveling from node 𝑖 to the next node, 0 otherwise; 

𝜇𝑖𝑗
𝑘 : A binary variable that is equal to 1 if the lunch break of vehicle 𝑘 is held directly after node 𝑖 and before 

traveling to node 𝑗, 0 otherwise; 

𝐵𝑖
𝑘: A non-negative variable indicating the time that vehicle 𝑘 begins service at node 𝑖; 

𝑆𝐵𝑖
1,𝑘: A non-negative variable indicating the time that vehicle 𝑘 begins the first coffee break; 

𝑆𝐵𝑖
2,𝑘: A non-negative variable indicating the time that vehicle 𝑘 begins the second coffee break;  

𝑄𝑖
𝑒𝑘 : A non-negative variable indicating the load of equipment 𝑒 on vehicle 𝑘 immediately after visiting node 𝑖; 

𝐿𝑖
𝑘: A non-negative variable indicating the ride time of user 𝑖 ∈ 𝑃 on vehicle 𝑘; 

𝛿𝑖
𝑘: A binary variable that is equal to 1 if vehicle 𝑘 is not empty directly after 𝑖, 0 otherwise.  

𝜃𝑖
1 (𝜃𝑖

2): A binary variable (only relevant when the coffee break is taken after node 𝑖) that is 0 if the coffee break is 

taken directly after service at node 𝑖, and 1 if the coffee break is taken after service at node 𝑖 and traveling to the next 

node. 

Inspired by the formulations for the HDARP of Parragh (2011) and the MT-DARP of Zhang et al. 

(2015), the MD-MT-HDARP can be formulated as follows: 
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The objective function (1) is minimizing the total routing costs. Constraints (2)-(4) guarantee that 

each pickup and delivery pair must be served by exactly one and the same vehicle. Constraints (5)-(6) 

guarantee that each vehicle 𝑘 starts at the origin depot and ends at the corresponding destination depot, 

while constraint (7) ensures flow conservation. Constraints (8) and (9) ensure that the capacity constraint 

is respected. Constraint (10) sets the load variable of each depot to zero, ensuring that the vehicle leaves 

the depot with empty load. Constraint (11) represents the ride time of the user on the route, which is 

bounded by constraint (12). The latter two constraints also ensure that the precedence relationship between 

the pickup and delivery nodes is respected. Constraints (13), (14) and (15) define the beginning of service 

at each node and the consistency of the time variables, while accounting for coffee and lunch breaks. Also, 

these constraints ensure subtour elimination. Constraint (16) imposes time window observance. 

Furthermore, constraints (17), (18), (19) and (20) guarantee that the coffee break between two services 𝑖 

and 𝑗 starts before or after the transportation between the two services within a coffee break time window 

[𝐸𝐶𝑟, 𝐿𝐶𝑟] (𝑟 ∈{1, 2}). Constraint (21) enforces that each driver must take a lunch break at the depot of 

departure during the working day in time window [EL, LL]. Total route duration is limited by (22). 

Constraints (23) and (24) guarantee that the coffee breaks are planned, while constraints (25) force drivers 

to have a lunch break. Constraints (26), (27) and (28) guarantee that the lunch break can only take place 

after a node where the vehicle is empty. Finally, constraints (29), (30) and (31) guarantee that the decision 

variables are binary. 

Note that constraints (8), (13)-(15) and (17)-(20) can easily be linearized using the big M- method. 

 3. Construction heuristic 

To obtain an initial solution to the MD-MT-HDARP, an effective heuristic that is inspired by Braekers 

et al. (2014a) is used. 

First, the heuristic creates a list L of users to be served. Then, we repeat the following steps: an empty 

route is initialized with time windows for coffee and lunch breaks pre-defined in the route. The insertion 

of users is performed by adding a user to the route in the following manner: a user i is selected at random 

from the list L and inserted in already existing routes, such that its pickup and delivery nodes are inserted 
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in their best positions, while respecting the feasibility of the solution and taking into account time 

windows of coffee and lunch breaks. A new vehicle is added in case a user request cannot be inserted in 

one of the existing routes. This procedure is applied until all users have been served. An example of an 

initial solution is shown in Figure 1. It contains two routes, which are served by vehicles V1 and V2, 

assigned to depots 𝑚=1 and 𝑚=2, respectively. Each route is divided into two trips (𝑟=1, 2), where each 

trip consists of a set of pickup (𝑖+) nodes and delivery (𝑖−) nodes for each user 𝑖. Between two 

consecutive trips, the driver of the vehicle must take a lunch break at its home depot. In addition, for each 

trip (∀ 𝑟 = 1,2) a coffee break 𝐶𝑜𝑓 is taken into account. 

r=1    r=2 

m=1 2+ 4+ 2− 3+ 4− 3− 
Cof 

1 
1+ 5+ 5− 12+ 12− 1− 

Lunch 

m=1 
6+ 6− 14+ 14− 

Cof 

2 
15+ 8+ 15− 8− m=1 

 

m=2 9+ 9− 15+ 15− 
Cof 

1 
10+ 11+ 16+ 11− 10− 16− 14+ 14− 

Lunch 

m=2 
13+ 19+ 13− 19− 

Cof 

2 
17+ 17− 18+ 18− m=2 

Figure 1: An example of initial solution 

We note that our construction heuristic is applied to generate each solution in the population N of our 

hybrid Bees Algorithm (BA). For the ALNS algorithm, this heuristic is applied only once to generate the 

starting solution. 

4. Hybrid Bees Algorithms for the MD-MT-HDARP  

In this section, we propose two versions of a hybrid Bees Algorithm (BA). The BA is a metaheuristic 

algorithm that is inspired from the behavior of honey bees in nature while they search for food. There are 

several versions of Bees-inspired Algorithms in the literature, but we follow here the method proposed by 

Pham et al. (2005). The BA can be also considered as an improved version on the well-known Genetic 

Algorithm as studied in Yuce et al. (2013). The BA has been tried on some hard optimization problems, 

producing good results (see, e.g. Pham et al., 2005; Yuce et al., 2013). We have chosen in this research the 

BA as our proposed approach, for the following reasons:  

 The steps of the BA are simple and easy to understand. 

 The BA combines random search with neighborhood search. This has the advantage of providing a 

balance between intensification and diversification, which is needed in any effective metaheuristic 

(Talbi, 2009). 

 BA has a distinguishing feature than other bees-inspired algorithms, which is allowing more 

intensification of the search around elite solutions (best of the best). This property can help the 

algorithm discover better solutions more rapidly. 

 The BA can be easily hybridized with other search methods. For example, the intensification around the 

elite solutions can be conducted using any single solution based metaheuristic. Hybridization of more 

than one metaheuristic is beneficial in handling hard optimization problems, as is the case in our 

problem. 

Since we didn’t encounter any application of the BA on the Dial-a-ride problem (DARP) or its 

variants, we reckoned that it is an attractive research area for further investigation. Since the BA is a 

V 1 

V 2 
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population based metaheuristic, it is more diversification oriented, while being relatively poor in 

exploitation. To overcome this weakness, we propose a modification of the classical BA by hybridizing it 

with single-solution based metaheuristics, to help it converge more rapidly to good solutions. We selected 

Deterministic Annealing (DA) and Simulated Annealing (SA) for this purpose. Our strategies are referred 

to as Hybrid Bees Algorithm with DA (BA-DA) and Hybrid Bees Algorithm with SA (BA-SA). For more 

details about the BA, the interested readers are referred to Pham et al. (2005). 

The main steps of the proposed hybrid BA are shown in Algorithm 1 and the flowchart of the 

algorithm is given in Figure 2. 

Algorithm 1: Pseudo-code of the proposed hybrid Bees Algorithm 

Begin  
Initial population: Generate the initial population of N solutions (by a construction heuristic); 

Repeat 

Step 1: Evaluate the fitness of each solution in the population N  

Step 2: Select (𝑏𝑒) solutions from the current population using tournament selection, and sort 

them in ascending order 

Step 3: Diversification and Improvement phase  

Step 3.1: Apply DA (SA) on each of the best (𝑒𝑠) (from the (𝑏𝑒)) solutions. 

Step 3.2: Improve the quality of each (𝑏𝑒 − 𝑒𝑠) solution using local search. 

Step 4: Memorize the (𝑏𝑒) new solutions and select the best one 

if  the new best solution is better than the best so far one Then  

    replace the best so far solution with this new one 

    End if    

Step 5: Insert the (𝑏𝑒) new solutions in the population N   

       Step 6: Generate (𝑁 − 𝑏𝑒) new solutions to complete the population N  

Until No improvement after ten consecutive iterations 

Output best solution  

End. 

The BA starts with an effective heuristic to generate the initial population of size N (see Section 3). 

Then, for a pre-specified number of iterations, the following steps are followed: In Step 1, all solutions in 

the population N are evaluated based on fitness. In Step 2, we select a set of (𝑏𝑒) best solutions using 

tournament selection, which are then ordered according to fitness value (from lowest to highest).  In Step 

3, we select the first (𝑒𝑠) solutions from (𝑏𝑒) to be improved. Improvement is done by applying one of 

our single-solution based metaheuristics (DA/SA) on the set (𝑒𝑠), in order to obtain high quality solutions. 

In contrast, the remaining (𝑏𝑒 − 𝑒𝑠) solutions are improved by simple local search techniques. In Step 4, 

(𝑏𝑒) new best solutions are obtained and the best of them is selected. If the solution is better than the best 

so far solution, it replaces the best solution. In Step 5, the (𝑏𝑒) new solutions obtained after improvement 

are injected into population N, so that the best solutions survive to the next iteration. In Step 6, to complete 

the population N, (𝑁 − 𝑏𝑒) new solutions are created by a simple heuristic. The algorithm stops when the 

best solution is not improved for ten consecutive iterations. Finally, the best solution is returned as the 

problem solution. 

It should be noted that in our algorithm we only keep feasible solutions, i.e., solutions that violate any 

constraints are always rejected. Therefore, we need to frequently check the feasibility of routes. The 

procedure of checking the feasibility of a route is rather complicated, due the existence of ride time 

constraints, along with time windows and route time limits, in comparison with other routing problems 

(Parragh and Schmid, 2013). In this paper, the eight-step evaluation scheme proposed by Parragh et al. 
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(2010), to test the feasibility of a given path for the DARP introduced by Cordeau and Laporte (2003), is 

applied and described in Section 6.  

 

 

 

 
Generate the initial population of 𝑁 (Section 3) 

 
Fitness evaluation of population 𝑁 

 
Select (be) solutions from 𝑁 using tournament selection (Section 

4.1), and sort them in ascending order 

 
Select the best (𝑒𝑠) solutions from (𝑏𝑒) solutions 

 
Apply DA (Section 4.2) or SA (Section 4.3) algorithm on each of 

the best (𝑒𝑠) solutions 

 
Apply local search on each the (𝑏𝑒 − 𝑒𝑠) solutions (Section 4.4) 

 
Memorize the (𝑏𝑒) new solutions and select the best one 

 

 

 

 

 

 
Insert the (𝑏𝑒) new solutions in the population 𝑁 

 
Generate (𝑁 − 𝑏𝑒) new solutions (Section 4.5) 

 

 

 

 

 

 

 

 

Figure 2: The flowchart of our hybrid Bees Algorithm 

4.1. Selection: Tournament 

To select the best solutions from the population N (Step 2 of Algorithm 1), we adopted the selection 

by tournament as proposed by (Miller et Goldberg, 1995), which is one of the most common selection 

methods in evolutionary algorithms. This type of selection has demonstrated great effectiveness for the 

selection of good solutions at each new generation (Freitas, 2013) for several transportation problems. The 

principle is to randomly choose a subset of solutions 𝑠 from the population N, and then select the best 

individual in the group who has the highest fitness value. This process is repeated until the number of 

solutions required (𝑏𝑒) is attained. Here, the tournament size 𝑠 is considered to be seven. 

Replace the best so far 

solution with this new one 

Start 

New best solution 
better than best so far? 

 

End 

No improvement after ten 

consecutive iterations? 

iterations? 

 

Yes 

No 

Yes 

No 
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4.2. Deterministic Annealing 

Deterministic Annealing (DA), also known as Threshold Accepting, is applied as an improvement 

phase on each of the (es) solutions obtained by our Bees Algorithm (Step 3.1 in Algorithm 1). This 

method was first proposed by Dueck and Scheuer (1990), as a variant of Simulated Annealing (SA). In 

each step of the DA, a new solution x’ is generated from the current solution x. If the objective value of x’ 

is better than that of the current solution x, this solution is accepted. Else, x’ is accepted provided that the 

deterioration of the objective function value, calculated by ∆= 𝐶(𝑥′) − 𝐶(𝑥), is less than the threshold 

value T. This threshold value is gradually reduced during the search until only solutions that improve the 

objective function are accepted (Caris and Janssens, 2010). The DA algorithm has demonstrated 

effectiveness for solving a variety of routing problems, by providing high quality solutions within a short 

computation time (Tarantilis et al., 2004; Bräysy et al., 2008; Nikolakopoulos and Sarimveis, 2007; 

Braekers et al., 2013, 2014a, 2014b). 

The benefit of the DA method is that it is simple to understand and apply. Another advantage is that it 

relies on only one parameter (𝑇). Thus, it requires much less parameter tuning in comparison with other 

algorithms (Braekers et al., 2013, 2014a, 2014b). In addition, the deterministic acceptance function of the 

DA is computationally simpler than the stochastic function of the SA, which may speed up the 

performance of the algorithm (Talbi, 2009).   

The proposed framework of the DA metaheuristic is presented in Algorithm 2 and is based on 

Braekers et al. (2014a). It is applied to each of the es solutions individually. Let 𝑥 be the current solution 

and 𝑥𝑏𝑒𝑠𝑡 the best solution found so far (initially set to the initial solution obtained from the considered 𝑒𝑠 

solution). Threshold 𝑇 is set to its maximum value 𝑇𝑚𝑎𝑥. The proposed DA algorithm runs for a number 

consecutive steps 𝑛𝐷𝐴. At each step, several local search operators (I1, I2, I3, and I4) are applied in a 

random order on the current solution. Each operator returns a new solution 𝑥′, which is checked for 

feasibility and evaluated using the evaluation function described in subsection 3.4. If x’ is feasible and the 

objective function value of  𝑥′ is less than that of 𝑥 plus the threshold 𝑇,  𝑥′ becomes the new current 

solution. When accepting the new solution 𝑥′, it is verified if a new best global solution 𝑥𝑏𝑒𝑠𝑡 has been 

found; in this case, this solution becomes the new best solution. In case we did not obtain a new best 

solution, the threshold 𝑇 is reduced by the threshold reduction parameter ∆𝑇. Every time 𝑇 becomes 

negative, it is reset to 𝑇𝑚𝑎𝑥 ∗ 𝛽, where 𝛽 is a randomly generated number between 0 and 1. In case 𝑇 

becomes negative and no improvement of the best solution 𝑥𝑏𝑒𝑠𝑡 has been found for a consecutive number 

of iterations 𝑛𝑖𝑚𝑝, the search is restarted from the best solution. 

Algorithm 2: Pseudo-code of the proposed DA algorithm 

Initialization: Threshold T = Tmax, ilast = 0 and x = xbest = the current solution selected from the (es) solutions; 

Repeat 

              ilast ← ilast + 1 

For j = 1 to 𝑛𝑜𝑝𝑒𝑟  do 

Perform a local search operator (I1, I2, I3 or I4) on x to obtain a new 

solution x’ and accept or reject x’ 

If x’ is accepted then 

x ← x’  

If  C(x) < C(xbest) then 

xbest ← x 
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ilast ← 0 

End if 

End if 

End for 

If ilast > 0 then 

  

If T < 0 then 

              𝛽 ←Random number in the range [0,1] 

T ←  × Tmax 

If ilast  > nimp then 

x ← xbest 

ilast ← 0 

End if 

End if 

End if 

Until the number of steps nDA is reached  

Return xbest 

4.3. Simulated Annealing 

The second metaheuristic that was hybridized with the BA in our work is Simulated Annealing (SA). 

Similar to DA, it is applied to improve each of the best (𝑒𝑠) solutions of the general BA. The SA method 

was first proposed by Kirkpatrick et al. (1983). In recent years, this method has been successfully applied 

to solve a wide number of problems with complex search spaces (Lin and Vincent, 2015; Xiao and Konak, 

2015 and Vincent et al., 2016). 

The SA algorithm typically performs better than simple local search techniques, due to its ability to 

avoid the trap of local optima (Busetti, 2003). Unlike simple local search, the algorithm does not only 

accept solutions that improve the objective function; rather, using the Boltzmann function of Metropolis et 

al. (1953), it occasionally accepts worse solutions as well, which may help in jumping out of local optima 

and diversify the search towards more promising solution areas. 

Our SA structure is inspired by the SA algorithm proposed by Vincent et al. (2016). Let 𝑥𝑏𝑒𝑠𝑡 and x be 

the initial solution and  𝑇0 the initial temperature. At each temperature 𝑇,  𝑛𝑠𝑒𝑞 iterations are considered. 

To explore the search space further around each solution, our SA considers four different moves (I1, I2, I3 

and I4). During each iteration, our SA selects one of them randomly to explore a larger search space. After 

applying the local search operator, if the new solution is better than the current solution (i.e. the cost is 

lower), it is accepted. On the other hand, if the cost is higher, the new solution may be accepted subject to 

the simulated annealing acceptance criterion proposed by Metropolis et al. (1953) 𝑒∆/𝑇𝑖, where ∆= 𝑓(𝑥) −

𝑓(𝑥′) represents the difference in the objective function between the current solution x and the new one, 

and 𝑇𝑖 is the current temperature. The temperature cooling schedule is as follows: 𝑇𝑖 = 𝛿 *𝑇𝑖−1, where 𝛿 is 

the cooling rate, and 𝑖 is the iteration number. If the new solution obtained from the local search move is 

better than 𝑥𝑏𝑒𝑠𝑡 , it replaces 𝑥𝑏𝑒𝑠𝑡 . 

The proposed algorithm is terminated when 𝑇𝑖  value becomes less than 0.01. The framework of the 

proposed SA is shown in the Algorithm 3. 

Algorithm 3: Pseudo-code of the proposed SA algorithm  

Initialization: Ti=T0 and xbest =x = the current initial solution from the es solutions   

Repeat 

         For i =1 to 𝑛𝑠𝑒𝑞 Do 

                    Perform a local search move {I1, I2, I3 or I4} on the current solution x to obtain x’ 

T T T 





13 

 

                    If x’ is feasible and accepted Then 

x ← x’  

If  C(x) < C(𝑥𝑏𝑒𝑠𝑡) then 

xbest ← x 

End if 

                   End If 

        End for 

       Ti =  * Ti-1 

Until 𝑇𝑖  value is less than 0.01  

Return 𝑥𝑏𝑒𝑠𝑡 

4.4. Local search operators 

During many steps of our developed methods, intra- and inter-route movements of users/edges are 

performed in order to explore the search space of the current solution. Four local search operators are 

applied. It should be noted that in the proposed operators, we adopt a best insertion strategy, in which all 

combinations of insertion positions for the pickup and delivery nodes of user 𝑖 in the current route or in 

other routes are evaluated and checked for feasibility by the scheduling algorithm of Parragh et al. (2010). 

2-opt operator (I1): This operator is proposed in Lin (1965). It consists of replacing two edges with two 

new ones. One route from the solution is selected randomly in each iteration to apply this move. 

Relocation operator inter-vehicle (I2): This operator relocates a user’s pickup and delivery nodes 

assigned to one vehicle (selected randomly) to another. The nodes are inserted in their best possible 

position in another route (vehicle) if possible. 

Relocation operator intra-vehicle (I3): This one is similar to the previously described operator, but it is 

applied in the same vehicle. This operator is applied on each user in the vehicle by removing the user and 

reinserting it in the best possible position. In this case, three types of moves of a user i are considered: the 

first is to relocate only the pickup node; the second is to relocate only the delivery node; while the third is 

to relocate both, with the delivery node inserted immediately after the pickup node.  

Remove two insert one operator (I4): This operator is adopted from Xiang et al. (2006). It consists of 

removing two randomly selected users from the vehicle and inserting them one by one in other vehicles, 

while maintaining feasibility. This operator is applied for all vehicles belonging to one depot selected 

randomly. 

4.5. Local search strategy for the hybrid BA 

In addition to using DA or SA in our hybrid BA algorithm, a local search procedure is applied for a 

fixed number of iterations (50) on the (𝑏𝑒 − 𝑒𝑠) solutions in order to explore the local search space 

further around these solutions. At each iteration, the local search operators I1, I2, I3 and I4 are executed in 

a random order to obtain a higher quality solution. 

 4.6. Generation of new solutions 

Step 5 of Algorithm 1 has generated be new solutions that are inserted in the population. To complete 

the population N, we need to generate (N-be) new solutions (step 6 of Algorithm 1).  A simple heuristic is 

applied to try to obtain high-quality solutions for the next generation of the Bees Algorithm. For each of 

the old (𝑁-𝑏𝑒) solutions, 𝑢 users are selected randomly from the solution; they are removed and added to 


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the removal list L. Then, all users from 𝐿 are re-inserted at the most appropriate insertion positions in all 

vehicles (including the ones from which users were removed), while respecting the feasibility of the 

solution.  

5. Adaptive Large Neighborhood Search Algorithm for the MD-MT-HDARP  

In this section, we present an Adaptive Large neighborhood Search (ALNS) algorithm for solving the 

MD-MT-HDARP. The ALNS heuristic was first proposed by Ropke and Pisinger (2006a), as an extension 

of Large Neighborhood Search (LNS) proposed by Shaw (1998). Many researchers have highlighted the 

excellent capabilities of ALNS in solving large-size and  hard optimization problems, such as Pickup and 

Delivery Problems (see, e.g., Ropke and Pisinger, 2006a, b; and Li et al., 2015; and Ghilas et al., 2016) 

and Dial-a-Ride Problems (see, e.g., Qu and Bard, 2013; Masson et al., 2013; and Li et al., 2016). The 

advantage of ALNS is that, in each iteration, only a smaller size decomposition of the problem is 

investigated, which can be more efficient than an aggregate problem solving method (Schrimpf et al., 

2000).  

The structure of our ALNS algorithm is similar to that proposed by Li et al. (2015) and Li et al. 

(2016), and is shown in Algorithm 4. To find a global best solution x* with cost f (x*), the algorithm 

executes 𝑛𝐴𝐿𝑁𝑆 iterations. Let x be the initial solution of our ALNS to which also the current best solution 

(𝑥𝑏𝑒𝑠𝑡) is initialized. First, the temperature T is initialized to 𝑇𝑚𝑎𝑥 and each removal and insertion 

operator’s weight is initialized. The weights and scores of the removal and insertion operators are updated 

during the search. In each iteration, in principle, one removal and one insertion operator are applied. 

However, if no improvement of 𝑥𝑏𝑒𝑠𝑡 is obtained in the last ten iterations, the algorithm performs two 

removal operators and one insertion operator. This technique is similar to the one proposed by Li et al. 

(2015). The choice of the operators in each iteration is based on the roulette wheel mechanism (described 

in the subsection 5.1). When a new solution x’ is obtained, we decide to accept or reject it as follows: if 

the objective function of x’ is better than that of the current solution, x’ is accepted and becomes the 

current solution; otherwise, x’ is accepted only if it satisfies the SA acceptance criterion  𝑒(𝑓(𝑥)−𝑓(𝑥′)/𝑇). 

The temperature reduction factor 𝛼 was set to 0.99975, as suggested by Ropke and Pisinger (2006a). 

Algorithm 4: Pseudo-code of the ALNS algorithm  
Initialize: x = 𝑥𝑏𝑒𝑠𝑡  = initial solution obtained by our construction heuristic, weights of removal and insertion 

operators to initial values, temperature T = 𝑇𝑚𝑎𝑥  ; cooling rate 𝛼 =0.99975 

      Repeat 

Select and perform the removal operator(s) on the current solution x; 

Select and perform one insertion operator in order to obtain a new solution x’; 

If x’ is feasible and accepted Then   

x← x’ 

If C (x) < C (𝑥𝑏𝑒𝑠𝑡) then 

𝑥𝑏𝑒𝑠𝑡  ← x 

End if 

End If 

T= 𝛼 ∗ 𝑇 

Adjust the weights of removal and insertion operators using the scores obtained after 𝑛𝑠𝑒𝑞consecutive 

iterations 

Reset the scores of the removal and insertion operators to zero after 𝑛𝑠𝑒𝑞  consecutive iterations  

      Until number of iterations 𝑛𝐴𝐿𝑁𝑆 is reached 

Output 𝑥𝑏𝑒𝑠𝑡 
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5.1. Adaptive weight adjustment procedure 

We have five removal and four insertion operators in our ALNS. To choose among them, we use 

roulette wheel selection. Following Ropke and Pisinger (2006a), the probability of choosing an operator d 

at iteration t is given by: 𝑃𝑑
𝑡+1 = 𝑃𝑑

𝑡(1 − 𝑟𝑝) + 𝑟𝑝𝜋𝑖/𝜗𝑖,   where 𝑟𝑝is the roulette wheel parameter, 𝜋𝑖 is the 

score of operator i, and 𝜗𝑖 is the number of times operator i has been used in the last 𝑛𝑠𝑒𝑞 iterations. The 

score of an operator is increased by 𝜋1, if the current pair of removal-insertion operators finds a new best 

solution. On the other hand, if an improved solution is found, the score is increased by 𝜋2, while if a non-

improving solution that is accepted through the SA acceptance condition is found, the score of the 

operator is increased by 𝜋3. After 𝑛𝑠𝑒𝑞 iterations, the new weights are adjusted using the calculated scores, 

and the scores of the removal and insertion operators are reset to zero. 

5.2. Removal and insertion operators 

In each iteration, a set of nodes/users are removed from a current solution x and added to a list L by 

some removal operators, in order to re-insert them using several repair operators to obtain a new solution 

x’. All operators are inspired by and adopted from the literature such as Ropke and Pisinger (2006 a, b), 

Pisinger and Ropke (2007) and Demir et al. (2012). The first five operators (R1 to R5) are applied to 

destroy the current solution x. While, the latter four operators (P1 to P4) are implemented in order to re-

insert the removed nodes/users, forming a new solution. 

Random-user (R1): This operator consists of randomly selecting u users from the solution and putting 

them in list L, thus attempting to help the diversification mechanism. 

Path-removal (R2): This operator is inspired from Demir et al. (2012). Let route r ={0, 

i,…,n,n+1,…,2n,0} contain n users to be served. Each user i is associated with a pickup node 𝑖+ ∈ 𝑃  and 

a delivery node 𝑖− ∈ 𝐷. We denote by 𝜑(𝑖) a path that starts at node 𝑖+ and ends at node 𝑖−. The principle 

of this operator is to remove the path 𝜑(𝑖) of a randomly chosen user 𝑖 and then to insert all users in this 

path in the list L.  

Related removal (R3): This operator is based on the Shaw removal operator proposed by Ropke and 

Pisinger (2006a). After selecting a random user i, we define the relatedness R(i, j) between two requests as 

the distance between users i and j, which is used for removing nodes. The relatedness function is given by: 

𝑅(𝑖, 𝑗) =𝑑𝑖𝑗
𝑘 − 𝑑𝑖+𝑛,𝑗+𝑛

𝑘 +𝜌(|𝐵𝑖
𝑘 − 𝐵𝑗

𝑘 |+|𝐵𝑖+𝑛
𝑘 − 𝐵𝑗+𝑛

𝑘 |), where 𝑑𝑖𝑗
𝑘  is the distance between i and j, and 𝜌 is a 

control parameter with 𝜌 = [0, 1]. 

Time-oriented removal (R4): This operator is considered as a special case of operator R3, in which users 

that are serviced at approximately the same time are selected for removal. The difference in time between 

two users i and j (∆𝑡(𝑖, 𝑗)) is given by:  ∆𝑡(𝑖, 𝑗)=|𝐵𝑖
𝑘 − 𝐵𝑗

𝑘 |+|𝐵𝑖+𝑛
𝑘 − 𝐵𝑗+𝑛

𝑘 |. 

Distance-oriented removal (R5): This operator is also based on operator R3. Here, the set of users to be 

removed are selected based on relatedness in terms of distance, where the difference in distance is 

measured as: ∆𝑑(𝑖, 𝑗)=𝑑𝑖𝑗
𝑘 + 𝑑𝑖+𝑛,𝑗+𝑛

𝑘 . 

Basic greedy heuristic (P1): This heuristic is proposed by Ropke and Pisinger (2006a) for the PDPTW. It 

tries to insert the removed requests in a way that the additional cost is minimized, while satisfying all 
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constraints. Thus, the user that can be inserted at the lowest cost is inserted at its best location, i.e., the 

user 𝑖 to be inserted and the vehicle 𝑘 to insert it in are selected as follows: (𝑖, 𝑘) ≔ arg min𝑖∈𝐿,𝑘∈𝐾 ∆𝑐𝑖,𝑘, 

where ∆𝑐𝑖,𝑘 is the difference in cost before and after insertion of user 𝑖, in the cheapest position in vehicle 

k. This heuristic is repeated until all removed users in L are inserted. 

Best position intra-route (P2): First a user i from list L is chosen randomly. Next, routes are considered 

one by one, and user i is assigned to the first route in which it can feasibly be inserted. The pickup and 

delivery nodes of 𝑖 are then inserted at the best possible position in this route, while respecting precedence 

constraints. This procedure is repeated until no more users in list L. 

Sorting time insertion (P3): The operation of (P3) is similar to (P2), but here all users in L are first sorted 

based on the start of the time window at their pickup node (𝑒𝑖). 

Best position inter-route (P4): The operation of (P4) is similar to (P2) but rather than checking only one 

particular vehicle as in (P2), we check all routes forming the solution in (P4). 

6.  Evaluation function  

During the search in each method developed in this work, a new solution is generated, and it must be 

evaluated to check the feasibility of this solution before it can become the best global solution. We 

evaluate the solution by the following evaluation function based on Cordeau and Laporte (2003): 

𝑓(𝑥) = 𝑐(𝑥) + ∑ 𝛼𝑞𝑒(𝑥) + 𝛽𝑑(𝑥) + 𝛾𝑤(𝑥) + 𝜏𝑎(𝑥)
3

𝑒=0
 

Each new solution x is evaluated by the routing cost c(x) plus a penalty for load violations 

𝑞𝑒(𝑥) =∑ (𝑄𝑖
𝑒2𝑛

𝑖=1 − 𝑄𝑒)+, duration violations 𝑑(𝑥) = ∑ (𝐵2𝑛+1
𝑘 −𝐾

𝑘=1 𝐵0
𝑘−𝑇𝑚𝑎𝑥)+, time windows 

violations 𝑤(𝑥) =∑ (𝐵𝑖 −2𝑛
𝑖=1 𝑙𝑖)+ and ride time violations 𝑎(𝑥)=∑ (𝐿𝑖

𝑛
𝑖=1 − 𝐿𝑚𝑎𝑥)+. Note that these terms 

are applied only for all i ∈ N where 𝑠+= max {0, 𝑠}. For the corresponding notation see Section 2. The 

associated penalty parameters 𝛼, 𝛽, 𝛾 and 𝜏 are dynamically adjusted throughout the search. For more 

details, the readers are referred to Parragh et al. (2010, 2012), and Cordeau and Laporte (2003). Note that 

each new solution can only become the current new best solution 𝑥𝑏𝑒𝑠𝑡, if this solution is acceptable with 

the acceptance criteria in each method developed and 𝑞𝑒(𝑥) = 𝑑(𝑥)= 𝑤(𝑥)= 𝑎(𝑥)=0, for e=0, 1, 2, 3. 

To evaluate a route, we use an evaluation procedure proposed by Cordeau and Laporte (2003), which 

consists of eight steps, as described in the Algorithm 5. This evaluation scheme applies the concept of 

forward time slack 𝐹𝑖 for a node 𝑖 ∈ 𝑁, which was originally proposed by Savelsbergh (1992) for the VRP 

with time windows, adapted to the DARP: 

𝐹𝑖= min𝑖≤𝑗≤𝑦{∑ 𝑊𝑝 + (min {𝑙𝑗 − 𝐵𝑗, 𝐿 − 𝑃𝑗}𝑖≤𝑝≤𝑗 )+} 

Where 𝑊𝑝 represents the waiting time at node 𝑝, 𝑦 is the last node in the route, and 𝑃𝑗 represents the ride 

time of the user whose destination 𝑗 ∈ {𝑛+1,…,2𝑛}, given that 𝑗 − 𝑛 is visited before 𝑖 on the route; 𝑃𝑗=0 

for all other 𝑗. 𝐹𝑖 represents the maximum amount of time, where the departure from node 𝑖 can be 

deferred, without violating the time window and passenger maximum ride time constraints. 

Algorithm  5: The eight-step evaluation scheme 

1. Set departure time 𝐷0:= 𝑒0 

2. Compute arrival time (𝐴𝑖), waiting time (𝑊𝑖), beginning service (𝐵𝑖), departure time (𝐷𝑖) and load vehicle 
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(𝑄𝑖
𝑒) for each node 𝑖 along the route 

If some 𝐵𝑖> 𝑙𝑖,  or 𝑄𝑖
𝑒  > 𝑄𝑒𝑘, Go to step 8 

3. Compute 𝐹0   

4. Set 𝐷0 ≔ 𝑒0+min{𝐹0, ∑ 𝑊𝑝}0<𝑝<𝑦   

5. Update 𝐴𝑖, 𝑊𝑖 , 𝐵𝑖  and 𝐷𝑖  for ech node on the route 

6. Compute 𝐿𝑖 for each request on the route   

If all 𝐿𝑖 ≤ 𝐿𝑚𝑎𝑥   Go to step 8 

7. For evry node j that is an origin 

(a) Compute 𝐹𝑗 

(b) Set 𝑊𝑗:= 𝑊𝑗+ min{𝐹𝑗, ∑ 𝑊𝑝}𝑗<𝑝<𝑦 ; 𝐵𝑗:= 𝐴𝑗+𝑊𝑗; 𝐷𝑗:= 𝐵𝑗+ 𝑠𝑗 

(c) Update 𝐴𝑖, 𝑊𝑖 , 𝐵𝑖  and 𝐷𝑖  for each node that comes after j in the route 

(d) Update 𝐿𝑖 for each request 𝑖 whose destination is after 𝑗 

If all 𝐿𝑖 ≤ 𝐿𝑚𝑎𝑥   of requests whose destinations lie after j, Go to step 8 

8. Compute changes in violation for load, duration, time windows and ride time constraints 

7. Computational experimentation 

In this section, we present the results obtained by our methods. All algorithms are implemented in C 

on a computer with Intel inside 4 GHz and 4 GB of RAM, operating Windows 8 with 64 bits. To test our 

methods, we generated new data sets as described in the following subsection. Additionally, we validated 

our algorithms by running them on existing benchmark instances for a simplified version of our problem, 

the MD-DARP. 

7.1. Data and experimental setting  

Our test data is divided into small, medium and large instances. The small instances are based on the 

benchmark instances generated by Parragh (2011) for the HDARP. These instances are divided into three 

sets (U, E, I), which are in turn modifications of instances created by Cordeau (2006) for the standard 

DARP, where heterogeneous vehicles and users are introduced. They contain 2–4 vehicles and 16–48 

requests. On the other hand, our medium instances are based on Braekers et al. (2014a), which were 

generated for the HDARP and MD-HDARP. These contain 5-8 vehicles and 40-96 requests. For both the 

small and medium instances, the user time window is taken as 15 min, the maximum user ride time 

Lmax=30 minutes, and the service time si = 3 minutes. Up to two vehicle types are considered, with four 

types of resources: 1) staff seats, 2) patient seats, 3) stretcher space and 4) wheelchair space.  

To generate the instances, Parragh (2011) considered the probabilities of patients’ requests for 

facilities and for companions as shown in Table 2. 

       Table 2 

       Probabilities used to generate instances by Parragh (2011) 

Instance 

set 

Patient request probabilities Probability for 

companion (%) 

Vehicle fleet 

% Seat %  stretcher % wheelchair     

U 1.00 0.00 0.00 0.00 homogeneous (T0) 

E 0.50 0.25 0.25 0.10 homogeneous (T2) 

I 0.83 0.11 0.06 0.50 heterogeneous (T1, T2) 

Vehicles of type T0 have three patient seats only. Vehicles of type T1 provide one staff seat, six 

patient seats, no stretchers, and one place for wheelchair, while vehicles of type T2 have two staff seats, 

one patient seat, one stretcher, and one wheelchair space. As shown in Table 2, data set U, assumes 

homogeneous users and vehicles of types T0, while data set E assumes heterogeneous users with 
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homogeneous vehicles of type T2. On the other hand, data set I has heterogeneous users and uses T1 and 

T2 vehicles. 

To create large instances for our problem, we considered the same method of introducing 

heterogeneity as in Parragh (2011), explained in Table 2, and applied it to the 20 benchmark instances of 

Cordeau and Laporte (2003) for the DARP, i.e., we denoted the original homogeneous data set as set U, 

while the two additional heterogeneous data sets E and I have been generated by modifying the instances 

as done in Parragh (2011). The size of these instances of the problem is ranging from 24 to 144 requests. 

The number of vehicles used to serve the transport demands varies from 3 to 13 vehicles. These instances 

represent problems with a single depot. The distance between any two locations i and j is set to be the 

Euclidean distance between the coordinates of locations i and j. Service time si is 3 minutes for all users, 

and the transportation time 𝑡𝑖𝑗 is equal to the Euclidean distance between 𝑖 and j (𝑑𝑖𝑗). The maximum 

duration of the working day (for each vehicle) 𝑇𝑚𝑎𝑥 is 480 minutes and the maximum ride time 𝐿𝑚𝑎𝑥 is 90 

minutes. In the first 10 instances (R1a-R10a), the time windows range between 15 and 45 minutes. In the 

second 10 instances (R1b-R10b), the time windows are between 30 and 90 minutes.  

All these instances have been adapted to the multi-depot case as in Braekers et al. (2014a), i.e., our 

new datasets contain four depots situated respectively at the following coordinates: [-5, -5], [-5, 5], [5, -5] 

and [5, 5]. In each instance the vehicles are distributed as follows: the first vehicle is assigned to the first 

depot, second vehicle to second depot,…, the fifth vehicle to the first depot, etc. In addition, time windows 

for lunch break and coffee break for all instances are introduced. The lunch time window [𝐸𝐿, 𝐿𝐿] is set to 

[240, 360] with a duration TL of 30 minutes. The coffee break time windows [𝐸𝐶𝑟 , 𝐿𝐶𝑟] are [120,150] and 

[450,480] for 𝑟 = 1,2, respectively. The coffee break duration 𝑇𝑟 is 10 min (∀ 𝑟 = {1, 2}). In all instances, 

a 60 minutes period is added to the maximum working day duration in order to respect the number of 

vehicles in the original data and to be able serve all users. 

7.2. Parameter setting  

The parameters of our algorithms were set based on recommendations from the literature, some basic 

experiments considering the tradeoff between solution quality and computation time, as well as our 

intuition. 

Concerning the SA algorithm, the parameters suggested by Vincent et al. (2016) are primarily applied: 

cooling rate δ=0.99, 𝑛𝑠𝑒𝑞=3,000 iterations and 𝑇0=25. The original value 𝑇0=100 proposed by Vincent et 

al. (2016) for the simple SA was divided by four in our algorithm. This latter value was chosen after 

testing several other initial temperature values (10, 25 and 50), and was found to best suit our hybrid BA-

SA framework, since our SA is considered only secondary to the BA and needs to do less effort to find the 

best solution than a standalone SA. Similarly, for the DA algorithm, we have adopted the parameter values 

of Braekers et al. (2013), 𝑇𝑚𝑎𝑥 is equal to 4, ∆𝑇=𝑇𝑚𝑎𝑥 2,500⁄  and 𝑖𝑖𝑚𝑝 equal to five times the number of 

vehicles used in the current best solution. In addition, for the number of iterations 𝑛𝐷𝐴, the original value 

of Braekers et al. (2013) is equal to 50,000 iterations, but in our hybrid BA-DA, we have chosen 𝑛𝐷𝐴 

equal to 5,000 iterations. This reduction of the number of iterations was intended to adapt the DA to our 

hybrid BA-DA framework.  
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For our ALNS, we adopt the parameters values that have been applied in Li et al (2016) for the static 

DARP using the ALNS approach: 𝑛𝐴𝐿𝑁𝑆=25,000 iterations, 𝑝𝑑
0=0.10 for the removal operators, and 0.125 

for the insertion operators,  𝑟𝑝=0.7, 𝜋1=15, 𝜋2=5, 𝜋3=10. We note that in Li et al (2016), the 

parameters  𝜋1, 𝜋2 and 𝜋3, are consistent with 𝜋1 ≥ 𝜋2 ≥ 𝜋3. But in our case, and following some 

preliminary tuning experiments shown in Table 7 (and discussed later on), we have adopted  𝜋1 ≥ 𝜋3 ≥

𝜋2. Due to the complexity of studying the effect of the temperature 𝑇𝑚𝑎𝑥 separately, we have decided to 

apply a large 𝑇𝑚𝑎𝑥 value equal to 100, as in the standard SA algorithm, in order to initially allow 

accepting worse solutions and to permit our ALNS to escape local optima. 

Moreover, various experiments were performed in order to ensure that the parameters for the hybrid 

Bees Algorithm BA-DA (BA-SA) are properly set and tuned. These parameters are 𝑁, 𝑏𝑒 and 𝑒𝑠. Ten 

problem instances from each data set (U, E, I) were chosen for the purpose of tuning the parameters. They 

are selected such that the number of requests varies from small to large with different levels of 

heterogeneity. For the small and medium instances, it appeared that there is no significant difference 

shown during the tuning of parameters for a variety of combinations of N, be and es. This is mostly due to 

the already good performance of the standard DA and SA algorithms in reaching the best solutions for 

these specific instances. However, the results of the large instances were slightly more affected by the 

tuning of parameters. A summary of a sensitivity analysis experiment on the parameters N, be and es is 

displayed in Table 3 for a large instance (R6a) from data set U.  “Best” (“Avg”) indicates the best 

(average) solution value obtained by the BA-DA and BA-SA algorithms for each combination of the 

parameters; whereas, the average run time in minutes is denoted in the column CPU. 

 Table 3 

 Identification for the best parameters setting for the hybrid BA-DA (BA-SA) 

𝑁   10   20   30 

(𝑏𝑒, 𝑒𝑠)  (5,3)   (15,10) (15,5) (10,5) (10,3)   (20,10) (20,5) (15,10) (15,5) 

BA-SA 

Best  813.15  811.88 811.88 811.88 812.05  811.88 811.88 811.88 811.88 

Avg  815.63  813.96 814.23 815.06 814.88  813.21 814.64 814.51 815.34 

CPU  18.75  30.05 25.76 27.98 32.75  35.87 31.42 39.53 43.86 

BA-DA 

Best  812.75  812.03 811.88 811.88 811.88  811.88 811.88 811.88 811.88 

Avg  813.12  814.23 815.32 815.75 814.63  813.29 814.32 815.65 815.82 

CPU   17.96   27.23 25.65 26.53 31.02   30.86 35.29 43.23 38.12 

The solution quality depends not only on the influence of the population size N, but also on the impact 

of the values of be and es. It can be observed from Table 3 that by making the population size N equal to 

20 or 30 (instead of 10), improved best solutions are obtained for the majority of combinations of the pair 

(be, es). Results slightly differ in the average solution quality and computation time. To obtain the best set 

of parameters, we use as a guide producing a high quality solution in a short period of CPU time. 

Therefore, the following parameter values were selected: 𝑁=20, 𝑏𝑒=15 and 𝑒𝑠=5. 

Table 4 provides in brief the results of the parameter tuning of 𝜋1, 𝜋2 and 𝜋3 for the ALNS algorithm. 

Based on these results, these values have been fixed at 15, 5 and 10, respectively. Note that the score for 

obtaining a non-improving solution which is accepted (𝜋3) is larger than that for obtaining an improved 

solution, which is not a new global best one (𝜋2), meaning that diversification is highly rewarded. The 



20 

 

usefulness of such an approach has been discussed before by e.g., Ropke and Pisinger (2006a) and Demir 

et al. (2012). 

Table 4 

Parameters tuning results summary 

Inst.(Data) 
Effect of 𝜋1. 𝜋2 and 𝜋3 on the solution 

(5, 10,15) (1, 5,10) (1, 5,5) (5, 15,10) (5, 10,1) (5, 15,10) (10, 5,1) (15, 10,5) (15, 5,10) (10, 1,5) 

a3-36 (U) 643.09 641.84 642.23 642.17 642.40 642.49 643.01 641.72 641.41 641.52 

a7-56 (E) 816.14 815.43 815.45 815.09 814.12 816.44 815.77 815.58 814.10 815.01 

a5-60 (I) 899.65 899.28 899.37 899.03 899.20 898.61 898.15 898.40 898.25 897.68 

R2a (U) 312.59 311.79 312.67 312.54 312.41 311.26 312.41 311.00 310.96 311.56 

R4a (E) 671.60 670.99 669.94 668.60 670.66 671.03 671.38 671.30 671.63 670.91 

R3b (I) 572.94 571.95 571.99 571.95 571.90 571.73 571.44 572.93 570.56 571.02 

According to Pisinger and Ropke (2007), and Ribeiro and Laporte (2012), the number of users to be 

removed in an ALNS iteration u does not have to be very large. In this context, the following strategy was 

taken into consideration: u is selected randomly in the interval [5, 10] if the number of users in the 

instance is less than 50 users; otherwise, u is chosen in randomly in the interval [5, 20]. 

Tables 5 and 6 indicate the frequency of application of each operator in the ALNS algorithm as a 

percentage of 25,000 iterations, for one instance of each type of data set (i.e., U, E and I). The total time 

performed by each operator is indicated in the parentheses. Table 5 demonstrates that all operators obtain 

almost identical frequency of use. The sum is larger than 100% due to the use of two operators in the same 

iteration in most iterations of our algorithm. 

                Table 5 
Frequency of use as a percentage of 25,000 iterations and the computation time needed by        

each removal operator 

Inst. (Data) 

Removal operators 

R1 R2 R3 R4 R5 

a3-36 (U) 28.65 (1.19) 31.31 (0.95) 25.7 (0.93) 28.31 (1.04) 25.31 (1.44) 

a7-56 (E) 30.31 (1.33) 26.97 (1.28) 27.02 (1.17) 23.97 (1.21) 25.34 (1.64) 

a5-60 (I) 21.01 (1.12) 25.02 (1.04) 23.46 (1.11) 25.94 (1.34) 27.97 (1.77) 

Avg 26.66 (1.21) 27.77 (1.09) 25.39 (1.07) 26.07 (1.20) 26.21 (1.62) 

R2a (U) 23.02 (0.89) 22.36 (0.83) 24.31 (1.33) 21.31 (1.23) 21.65 (1.95) 

R4a (E) 24.97 (1.11) 26.54 (0.94) 24.31 (1.78) 21.64 (1.15) 17.85 (1.75) 

R8b (I) 27.97 (1.95) 21.68 (1.13) 28.24 (2.25) 19.89 (1.77) 24.98 (2.14) 

Avg 25.32 (1.32) 23.53 (0.97) 25.62 (1.79) 20.95 (1.13) 21.49 (1.95) 

  Table 6 
Frequency of use as a percentage of 25,000 iterations and the computation time needed 

by each insertion operator 

Inst. (Data) 

 

  Insertion operators 

P1 P2 P3 P4 

a3-36 (U)  25.34 (2.02)  24.02 (2.24)  26.71 (3.12)  23.93 (4.11) 

a7-56 (E)  26.36 (6.64)  24.63 (3.12)  21.34 (3.65)  27.67 (9.42) 

a5-60 (I)  27.65 (21.97) 25.65 (13.65) 20.35 (10.53)  26.35 (19.85) 

Avg 26.45 (10.21)  24.77 (6.34)  22.80 (5.77)  25.98 (11.13) 

R2a (U)  28.21 (11.34)  23.23 (9.24)  19.23 (10.31)  29.33 (15.93) 

R4a (E)  26.28 (25.98)  24.34 (21.02)  20.01 (15.22)  29.37 (33.03) 
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R3b (I)  27.70 (31.11)  21.23 (24.96)  20.02 (14.01)  31.05 (41.38) 

Avg  27.40 (22.81)  22.93 (18.41)  19.75 (13.18)  29.92 (30.11) 

With respect to the insertion operators in Table 6, the results (and particularly the computed averages) 

demonstrate that the P1 and P4 operators are slightly more utilized than P2 and P3. Obviously, the time 

consumed by P1 and P4 compared to that of P2 and P3, is slightly higher. 

Table 7 presents the number of times a new best solution was found by each operator respectively. 

Additionally, the number in parentheses denotes the number of times the current solution was improved. 

          Table 7 

         Number of global best solutions found and number of improved solutions found by each operator 

Inst. (Data) 

 

Removal operators   Insertion operators 

R1 R2 R3 R4 R5   P1 P2 P3 P4 

a3-36 (U) 4(105) 1(134) 2(98) 2(65) 1(32)  3(129) 2(68) 1(104) 4(133) 

a7-56 (E) 7(103) 4(142) 2(102) 3(89) 2(79)  7(176) 0(87) 3(46) 8(206) 

a5-60 (I) 7(128) 5(98) 1(63) 4(33) 3(42)  5(88) 2(66) 2(80) 11(130) 

R2a (U) 5(165) 4(175) 2(122) 3(141) 4(150)  6(301) 0(129) 4(152) 8(172) 

R4a (E) 4(332) 3(265) 3(241) 3(155) 3(221)  8(214) 2(212) 4(119) 6(669) 

R3b (I) 6(217) 7(322) 3(195) 2(188) 2(168)   5(134) 3(134) 5(198) 7(624) 

Based on the results from Tables 6 and 7, it is clear that the insertion operators P2 and P3 are scarcely 

applied due to their limited ability to find new best solutions. However, ALNS could still take advantage 

of these operators, as they may diversify the search. To sum up, the removal and insertion operators are 

effective in getting high quality solutions for the MD-MT-HDARP as shown in the results. 

7.3. Computational results 

This section presents an overview of the experimental results obtained by our algorithms when tested 

on both newly generated instances for the MD-MT-HDARP and the instances for the MD-HDARP of 

Braekers et al. (2014a). For each table, detailed results per instance are available on our website. 

7.3.1. Results on the MD-MT-HDARP 

To test the performance of our algorithms, we ran each algorithm five times on each instance. In all 

tables reported in this section, columns “Best” (“Avg”) show the best (average) solution objective values. 

The column “%” following each of the “Best” (“Avg”)  columns indicates the percentage of deviation of 

the preceding column from the Best Solution value (BS) obtained by any of the three developed 

algorithms for a given instance, while CPU shows the average run time in minutes. 

Tables 8 and 9 show average results of our algorithms when run on the small-medium and large 

instances. As previously explained, three different data sets (U, E and I) are tested. 

Table 8 
Comparison of our three algorithms on small and medium instances 

Inst. BS 

  ALNS BA-DA BA-SA 

  Best % Avg % 
CPU 
(min) 

Best % Avg % 
CPU 
(min) 

Best % Avg % 
CPU 
(min) 

�̅� 690.38 
 

690.59 0.02 691.82 0.16 2.90 690.55 0.02 691.23 0.09 6.09 690.64 0.03 691.50 0.12 7.28 

�̅� 710.38 
 

711.26 0.08 712.71 0.23 2.88 710.67 0.03 711.50 0.12 6.31 710.69 0.03 711.61 0.12 6.37 

𝐼 ̅ 697.84 
 

697.98 0.01 699.04 0.13 4.12 698.01 0.02 698.75 0.10 9.04 698.17 0.03 699.04 0.13 9.67 
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𝑼𝑬𝑰̅̅ ̅̅ ̅̅  699.53   699.94 0.04 701.19 0.17 3.30 699.74 0.02 700.49 0.10 7.15 699.83 0.03 700.72 0.12 7.77 

Table 8 (and results in the website) show that the results of all our algorithms are comparable to each 

other, and each algorithm can find the best solution in the majority of instances. The hybrid BA-DA can 

find the best solution in at least one of the five runs for 62 instances (out of 72) compared to 59 instances 

for the ALNS and the hybrid BA-SA. The three methods were able to find the same best solution in 46 

instances.  

As can be noticed from the last row of Table 8, the overall average deviation from the BKS  for all 

instances in the five runs is 0.17%, 0.10% and 0.12% for our ALNS, BA-DA and BA-SA algorithms, 

respectively; whereas, the average of the best runs deviates from the BS by 0.04%, 0.02% and 0.03%, 

respectively. For the average processing time, we note that the hybrid approaches are comparable, while 

the ALNS is slightly faster, with 3.30 minutes for ALNS, 7.09 minutes for BA-DA and 7.79 minutes for 

BA-SA.  

Table 9 
Comparison of our three algorithms on large instances 

Inst. BS 

  ALNS BA-DA BA-SA 

  Best % Avg % 
CPU 

(min) 
Best % Avg % 

CPU 

(min) 
Best % Avg % 

CPU 

(min) 

�̅� 525.37 
 

527.28 0.25 531.07 0.96 14.68 526.23 0.14 528.14 0.50 18.70 525.52 0.03 527.91 0.47 20.54 

�̅� 591.63 
 

592.85 0.17 596.94 0.74 17.66 591.67 0.01 594.05 0.35 23.00 591.97 0.05 594.86 0.55 26.05 

𝐼 ̅ 571.41 
 

572.33 0.12 577.39 0.92 19.39 571.51 0.02 573.99 0.43 25.20 571.63 0.05 574.56 0.57 25.57 

𝑼𝑬𝑰̅̅ ̅̅ ̅̅  562.80   564.15 0.18 568.47 0.88 17.24 563.14 0.06 565.39 0.43 22.30 563.04 0.04 565.78 0.53 24.05 

By exploring the results in Table 9, the ALNS algorithm can find the best solution for 43 instances 

compared to 48 instances for BA-DA, and 40 instances for BA-SA. In 19 cases, all our methods are 

capable of finding the same best solution. Taking the average values over five runs for each algorithm, the 

average gap (%) is equal to 0.88% for ALNS, 0.43% for the BA-DA and 0.53% for the BA-SA. On the 

other hand, the average of the best result over five runs deviates from the BKS by 0.18% for the ALNS 

algorithm, 0.06% for hybrid BA-DA algorithm and 0.04% for hybrid BA-SA algorithm. 

The results show that, on average over all instances, the hybrid BA-DA and the hybrid BA-SA 

algorithms outperform the ALNS for both the average and best solutions, albeit with a small difference in 

terms of the number of best found solutions (as can be seen from the results reported in the website). The 

superior performance of the hybrid methods compared to the ALNS can be attributed to the population-

based nature of these algorithms, which allows it to explore several solutions in parallel, as well as to the 

benefit of the hybridizing two metaheuristic, as opposed to improving just one solution using one 

metaheuristic, which is the case in the ALNS.  This, however, comes at the expense of a slight increase in 

computation time, as expected in most population-based metaheuristics. In general, our three algorithms 

are efficient and provide high-quality solutions for all instances. The fact that the algorithms were not able 

to produce the same results in all instances can be explained by the complexity of problem, especially for 

large instances, and the stochastic behavior of the solution algorithms. 

To assess the effectiveness of integrating the DA and SA algorithm within the Bees Algorithm, we 

compared our hybrid BA-DA and BA-SA algorithms with only DA and SA without hybridization and 

with a simple (non-hybrid) BA, as shown in Tables 10 and 11. The parameters used for our simple SA and 
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DA methods are the same as those suggested by Vincent et al. (2016)  and Braekers et al. (2013) for their 

SA and DA methods, respectively, as previously explained in Section. 4.2. The parameters and 

Pseudocode of the traditional BA are presented in Table 14 and Algorithm 6 in the Appendix, 

respectively. 

           Table 10 
    Comparison of BA-DA (BA-SA) performance with standard DA (SA)  

Instance       Data 

 

DA   SA 

   
Best  % Avg  % 

CPU 
 Best   % Avg  % 

CPU 

  (min) 
 

(min) 

Small- Type-U 

 

692.50 0.28 695.10 0.56 1.96 
 

691.38 0.11 693.92 0.35 2.84 

Medium Type-E 

 

711.82 0.16 714.63 0.44 2.13 
 

712.43 0.24 714.82 0.45 3.24 

 Type-I 

 

699.83 0.26 702.74 0.57 3.74 
 

699.74 0.22 702.78 0.54 4.44 

Avg  

 

701.38 0.23 704.16 0.52 2.61 
 

701.18 0.19 703.84 0.45 3.51 

Large Type-U 

 

528.76 0.48 532.39 0.80 12.76 
 

529.04 0.67 533.40 1.04 13.52 

 Type-E 

 

596.71 0.85 602.58 1.44 15.45 
 

597.46 0.93 602.52 1.29 17.33 

 Type-I 

 

577.75 1.09 581.99 1.39 19.47 
 

575.06 0.60 580.57 1.05 16.09 

Avg     567.74 0.81 572.32 1.21 15.89 
 

567.19 0.73 572.16 1.12 15.65 

Table 10 compares the best (average) result for all instances of each data set, using each algorithm. 

Columns “Best” (“Avg”) report the best (average) solution values of our DA and SA without 

hybridization. Columns “%” presents the percentage of deviation of the best (average) solutions obtained 

by our DA and SA, compared to the hybrid BA-DA and hybrid BA-SA, respectively. On the other hand, 

in Table 11, the columns “%BA-DA” and “%BA-SA” show the percentage of deviation from the best 

solutions obtained by our BA compared to the best (average) solution found by our hybrid BA-DA and 

BA-SA algorithms, respectively. 

According to the results in Table 10, our hybrid BAs clearly outperform the non-hybrid DA (SA) 

algorithms, both in terms of best and average solution quality. For the small and medium instances 

(average of three data sets), using hybrid BA-DA (BA-SA) improves the results of the DA (SA), but with 

a small percentage. In fact, the average gap with the best solution obtained with hybrid BA-DA (hybrid 

BA-SA) is just 0.23% (0.19%) for these instances. The average deviation for the DA and SA compared to 

the average results of five runs of the hybrid BA-DA and hybrid BA-SA are 0.52% and 0.45%, 

respectively. However, a considerable improvement can be achieved with the use of our hybridization 

strategies for large instances. In this regard, our proposed hybrid algorithms improve solutions with 0.81% 

compared to the DA and 0.73% compared to the SA, respectively. The average deviation from the average 

solutions compared to our hybrid algorithms for the total routing cost, based on the average calculated for 

five runs, was 1.21% for DA and 1.12% for SA. This in fact indicates that the hybrid algorithms are also 

more stable in terms of finding high quality solutions in most of the runs compared to the standalone DA 

and SA. 
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          Table 11 
          Comparison of BA-DA and BA-SA performance with BA 

Instance  Data 

  Standard BA 

 
Best 

% BA-
DA 

% BA-
SA 

Avg 
% BA-
DA 

% BA-
SA 

CPU 

(min) 

Small- Type-U  696.99 0.93 0.92 701.16 1.44 1.40 6.37 

Medium Type-E  717.03 0.89 0.89 721.43 1.40 1.38 5.75 

 Type-I  704.16 0.88 0.86 708.22 1.36 1.31 8.14 

Avg   706.06 0.90 0.89 710.27 1.40 1.36 6.75 

Large Type-U  541.36 2.88 3.01 550.43 4.22 4.27 53.21 

 Type-E  608.17 2.79 2.74 615.23 3.57 3.42 52.51 

 Type-I  586.85 2.68 2.66 593.67 3.43 3.33 51.74 

Avg     578.79 2.78 2.80 586.44 3.74 3.67 52.49 

Similar to the conclusion obtained from Table 10, Table 11 shows that both BA-DA and BA-SA 

algorithms outperform the traditional BA method. For the small and medium instances, using the DA (SA) 

algorithm, in conjunction with the BA, improves the results of the stand-alone BA. In fact, the average gap 

with the best solution obtained with the BA method amounts to 0.90% (0.89%) in comparison to the 

hybrid BA-DA (hybrid BA-SA). The average deviation of five runs for the simple BA was 1.40% (1.36%) 

compared to the BA-DA (BA-SA) algorithms. For large instances, the integration of the DA and SA 

improves solutions with a percentage of 2.78% for the hybrid BA-DA and 2.80% for hybrid BA-SA. The 

average deviation of the basic BA, from the average value, calculated for five runs was 3.74 % (3.67%) in 

comparison with the hybrid BA-DA (BA-SA).  

From Tables 10 and 11, we conclude that the improvement phase in our new hybrid Bees Algorithm is 

important for all instances. 

7.3.2. Results on the MD-HDARP  

In order to further assess and validate the performance of our algorithms, we applied them on the 

instances of Braekers et al. (2014a) for the MD-HDARP. For this purpose, we assumed that the lunch 

break and coffee break time windows are [𝐸𝐿, 𝐿𝐿]= [𝐸𝐶𝑟, 𝐿𝐶𝑟] = [0, 0] (𝑟 = {1, 2}), the lunch duration 

and coffee break duration are set to 𝑇𝐶 = 𝑇𝐿 = 0. This being done, the MD-MT-HDARP is transformed to 

the MD-HDARP. We use the same parameter settings as before.  

Tables 12 and 13 show the results of our algorithms on the small-medium instances of Braekers et al. 

(2014a) for the MD-HDARP. The results are compared with those of the Deterministic Annealing (DA) 

algorithm of Braekers et al. (2014a), which is considered the current state-of-the-art algorithm for solving 

the MD-HDARP. Each instance is solved five times using each of the algorithms (including the DA 

algorithm) as done in Braekers et al. (2014a). Column “Best” (“Avg”) report the best (average) solution 

values, and “CPU” indicates CPU time in minutes. We note that all results of the algorithms are compared 

with the optimal and/or lower bound solution found by the B&C algorithm of Braekers et al. (2014a). The 

detailed results of each algorithm are reported in the website.  

It should be noted that since a different machine has been used to generate the results for our 

algorithms than that of the existing DA algorithm of Braekers et al. (2014a), we are not able to accurately 

compare the relative performance of our algorithms in terms of processing time compared to that of 

http://multidepot-multi-trip.e-monsite.com/


25 

 

Braekers et al. (2014a). In addition, the speed factor of the configuration material applied by Braekers et 

al. (2014a) cannot be estimated by using Dongarra (2014) table, due to lack of relevant information in 

Dongarra (2014) and in Linpack (2016). Thus, we report in Table 12 the computational time only for the 

record, and not for a direct comparison with the previously published results.  

Table 12  

Comparison of our three methods on the MD-HDARP instances of Braekers et al. (2014a) on the best 

solutions 

Inst. 

 

B&Ca   DAa   ALNS   BA-DA   BA-SA 

Lower 

bound 

  Best  % CPU 

(min)  

  Best % CPU 

(min)  

  Best % CPU 

(min)  

  Best % CPU 

(min)  

�̅� 604.18  605.15 0.09 0.44  604.82 0.06 2.58  604.29 0.01 5.26  604.62 0.04 6.42 

�̅� 623.24  623. 68 0.04 0.48  623.94 0.06 2.55  623.30 0.00 5.43  623.51 0.02 5.72 

𝐼 ̅ 613.71  617.00 0.34 0.45  615.26 0.15 3.61  614.12 0.04 7.90  614.50 0.08 8.34 

𝑼𝑬𝑰̅̅ ̅̅ ̅̅  613.71   615.29 0.16 0.46   614.67 0.09 2.92   613.91 0.02 6.19   614.21 0.05 6.83 

            a Best known solutions provided from Braekers et al. (2014a) on 2.6 GHz Intel Core laptop with 4 GB RAM. 

Table 13  

Comparison of our three methods on the MD-HDARP instances of Braekers et al. (2014a) 

on the average solutions 

Inst. 

 

B&Ca   DAa   ALNS   BA-DA   BA-SA 

Lower 

bound 

  Avg %   Avg %   Avg %   Avg % 

�̅� 604.18  605.66 0.15  606.17 0.11  605.77 0.07  605.66 0.10 

�̅� 623.24  624.30 0.11  624.43 0.14  624.68 0.07  624.34 0.09 

𝐼 ̅ 613.71  617.83 0.43  617.83 0.26  618.11 0.11  617.83 0.15 

𝑼𝑬𝑰̅̅ ̅̅ ̅̅  613.71   615.93 0.23   615.94 0.17   616.07 0.09   615.94 0.11 

                                        a Best known solutions provided from Braekers et al. (2014a) on 2.6 GHz Intel Core laptop with 4 GB RAM. 

The results of Tables 12 and 13 show clearly that our proposed hybrid methods outperform the current 

state-of-the-art algorithm on the MD-HDARP in terms of solution quality. This applies to both the average 

deviation and the best deviation. In addition, regarding the number of best solutions found over five runs 

(Tables 12 and 13 in the website), the BA-DA (BA-SA) reports 65 (63) best solutions among 72 instances, 

compared to 62 best solutions for the DA of Braekers et al. (2014a). The average deviation from the best 

result over five runs for our Hybrid BA-DA (BA-SA) is 0.02% (0.05%) compared to 0.16% for the DA of 

Braekers et al. (2014a).The average deviation from the average results of the optimal solutions found by 

B&C are 0.09% (0.11%) for the BA-DA (BA-SA) algorithms, compared to 0.23% for the DA. 

When compared to the DA, our ALNS also gives reasonable results, albeit with slightly less number 

of best solutions (61). Nevertheless, our ALNS outperforms the DA in terms of both average and best 

deviations. Regarding the average deviation from the best result in five runs, the ALNS is slightly better 

than the DA with 0.09%, while in the average deviation from the average results for the best known 

solutions, our ALNS surpasses the DA with 0.17%. In terms of computation time, as we previously 

mentioned, the average time of 0.46 minutes for Braekers et al. (2014a) cannot be fairly compared to our 

algorithms’ time consumption, since the speed factor of their configuration is unknown. 

In conclusion, we believe that our methods are fairly effective in obtaining high quality solutions for 

the MD-DARP.  
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8. Conclusion  

Heterogeneous Dial-A-Ride Problems (HDARPs) are vehicle routing problems that arise in the 

management of door-to-door transportation services, which are mostly offered to the elderly and the 

disabled. In this paper, we proposed a more realistic variant of the HDARP, in which multi-depots, multi-

trips, and coffee/lunch breaks are considered. The rationale is that in practice some dial-a-ride service 

providers have many depots in the same country. In addition, legislation rules may oblige the drivers to 

take lunch, and if necessary pause for coffee during their working day.  

In this paper, we propose three different metaheuristics to solve the Multi-Depot Multi-Trip 

Heterogeneous Dial-a-Ride Problem (MD-MT-HDARP), and we assess their capabilities in handling the 

problem effectively. The three methods proposed are two new hybrid Bees Algorithms: Hybrid Bees 

Algorithm with Deterministic Annealing (BA-DA), and Hybrid Bees Algorithm with Simulated Annealing 

(BA-SA), and an Adaptive Large Neighborhood Search (ALNS). Different types of data sets have been 

used to test the performance of the above three methods. The obtained results indicate that our algorithms 

provide high quality solutions on newly generated (small-medium and large) instances. The hybrid 

algorithms were also superior to standalone algorithms in this respect. This can be attributed to the benefit 

of integrating single-solution based algorithms (i.e., DA and SA) within a population-based metaheuristic 

(i.e., the BA), which has demonstrated its potential in solving difficult problems, in comparison to 

standalone single-solution based metaheuristics. The results show that our BA-DA and BA-SA can 

effectively deal with the problem, giving high quality solutions on almost all instances. On the other hand, 

our ALNS algorithm is just slightly less efficient than our hybrid algorithms. This could be due to that the 

ALNS probably needs more removal and insertion operators for even more diversification of the search, 

which could make its behavior more robust to be able to compete with our population-based hybrid 

methods. Moreover, when compared on the related MD-HDARP, our methods are competitive to the 

state-of-the-art algorithm of Braekers et al. (2014a) on this problem. In fact, our algorithms provide 

solutions of better quality than the competitive metaheuristic of Braekers et al. (2014a), which shows the 

potential of our hybrid methods in solving other problem variants besides the problem described in this 

research, i.e., the MD-MT-HDARP.   

For future work, we plan to focus on another complex variant, a Multi-depot HDARP with 

synchronization constraints between pickups and deliveries. Other possible directions for future research 

include the introduction of even more sophisticated local search techniques in the Bees Algorithm, and to 

apply this algorithm in a real environment for the transport of handicapped persons. 
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Appendix: Parameters and Pseudocode of the BA  

The parameters used in our tradional BA are shown in Table 14. 

        Table 14 

                     Parameter values of traditional Bees Algorithm 

Parameters     Value 

Population size (N)  30 

be  15 

es  3 

𝑛𝑏𝑒𝑒𝑠   for small (large) instances  20000 (50000) 

𝑛𝑏𝑒   10 

𝑛𝑏𝑒−𝑒𝑠   5 

The difference between our traditional BA and the hybrid BA presented in Section 4 is in step 3 and 

the stopping criteria of the algorithm. Instead of applying DA (SA) on each of these (𝑏𝑒) solutions, we 

simply apply  𝑛𝑏𝑒 iterations of local search (described in subsection 4.4). Also, instead of the algorithm 

returning the best solution after ten non-improvement iterations, the algorithm outputs the best solution 

after 𝑛𝑏𝑒𝑒𝑠 consecutive iterations. The proposed traditional BA is shown in Algorithm 6. 

Algorithm 6: Pseudo-code of the traditional Bees Algorithm 

Begin  
Initial population: Generate a population of N solutions, using a set of construction  heuristics; 

Repeat 

Step 1: Evaluate fitness of each solution in the population N  

Step 2: Sort the solutions in N in ascending order according to fitness and select the first (be) 

solutions from N  

Step 3: Select the first es solutions from (be) 

Step 4: For each es solution Do 

  Repeat 

Apply any local search operator {I1, I2, I3 or I4} to the current (es) 

solution and memorize the new solution 

 Until 𝑛𝑒𝑠 is reached 

Select the best one from the memorized solutions and record it 

End For 

Step 5: For each (be-es) solution Do 

  Repeat 

Apply any local search operator {I1, I2, I3 or I4} to the current (be-

es) solution and memorize the new solution 

 Until 𝑛𝑏𝑒−𝑒𝑠 is reached 

Select the best one from the memorized solutions and record it 

End For 

Step 6: Select the best one from the new (be) solutions  

If the current best solution is better than the best one Then  

Replace the current solution with this new one 

   End If    
Step 7: Replace the (be) new solutions into the population N   

      Step 8: Generate (N- be) new solutions  

Until the maximum number of iteration 𝑛𝑏𝑒𝑒𝑠  is reached  

Output the best solution as a result 

End. 

 

 

 


