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Chapter I 

General Introduction & Aims 

Parts of this chapter are based on: 

The role of "anti-inflammatory”cytokines in axon regeneration 

Vidal PM, Lemmens E, Dooley D, and Hendrix S: 

Cytokine & Growth Factor Reviews, vol. 24, pp. 1–12, 2013 
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1.1 Spinal cord injury 

Spinal cord injury (SCI) is an insult to the spinal cord resulting in a change, 

either temporary or permanent, in the cord’s normal motor, sensory, or 

autonomic function and patients with spinal cord injury usually have permanent 

and often devastating neurologic deficits and disability (1). The global incidence 

rate of SCI is estimated at 180,000 cases per annum (2). The most common 

causes of SCI include car accidents (43-50%), falls (18.8-37%) and violence 

(17.8%). Therefore, the use of seat belts, safety in sports and on construction 

sites as well as weapon restrictions, all aid in decreasing the number of 

preventable tragedies that occur annually. The economic burden associated with 

the decrease in quality of life is a major factor adding to the number of issues 

that need be addressed when dealing with SCI. The mean cost of treating a 

patient with traumatic SCI is between US$500,000 and $2 million, depending on 

elements such as the type of injury suffered or injury location (3). 

The two most common types of SCI are contusion and transection injuries, with 

contusion being the most common in humans (4, 5) and the symptomatology 

differs depending on the location and severity of the injury. The American Spinal 

Injury Association (ASIA) have defined a severity classification for impairment as 

either complete (category A: loss of both sensory and motor function), 

incomplete (category B, C or D: preservation of either sensory or motor 

function) or normal (category E). With regard to injury location, about 40% of 

patients suffer from quadriplegia, due to injuries at the cervical spine level, with 

the remaining 60% suffering from paraplegia (6). Despite considerable progress 

in palliative care, there is currently no therapeutic intervention currently 

available which leads to functional recovery. Throughout this thesis, our SCI 

model of choice is the T-cut or hemisection injury model (7). We have chosen to 

work with this model over others (such as contusion), as it enables us to study 

regenerative processes that can only be investigated when all the axons of a 

projecting system are lesioned and reduces the amount of spared fibres present. 

This type of lesion destroys the dorsal, dorsolateral and ventral corticospinal 

axons (Figure 1.1). 
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Figure 1.1: Schematic representation of a coronal view of a T-cut hemisection 

spinal cord injury in rodents. The blue shaded area represents the T-cut lesion which 

results in complete transection of the corticospinal tract (green) and also part of the 

rubrospinal tract (red). Image modified from Tuszynski and Steward, 2012). 

1.1.2 Pathophysiology 

The pathophysiology of SCI can be divided into two phases. Firstly, the primary 

mechanical injury results in haemorrhage, vascular damage and cell death at the 

lesion site and this is followed by a secondary inflammatory response. This 

secondary injury phase is characterised by demyelination, glial cell activation 

resulting in the production of inhibatory extracellular matrix molecules (e.g. 

Chondroitin and keratan sulphate proteoglycans, ephrins and semaphorins), glial 

scar formation as well as immune cell (neutrophils, microglia, macrophages and 

T cells) migration and infiltration (8-10). In 1928, Ramón y Cajal first described 

the process in which regenerating axons form so-called dystrophic endbulbs 

when they encounter the environment of the glial scar (11) and this makes 

axons regeneration beyond the glial scar, extremely problematic. These events 

also lead to the secondary loss of neighbouring axons, neurons and 

oligodendrocytes.  

1.1.3 Inflammatory phases & current treatments 

Inflammatory responses are a major component of the secondary injury phase 

and play a key role in regulating the pathogenesis of acute and chronic SCI. On 

one hand, the inflammatory response is necessary as it leads to clearance of 

cellular debris, resulting in a more favourable environment for endogenous  

T-cut hemisection

Dorsal

Ventral
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repair and axonal sprouting (12, 13), but on the other hand, over-activation of 

this response can exacerbate damage. Therefore, characterization of these 

specific phases and maintaining a balance between inflammatory mediators is 

now being recognized as a vital aspect to consider when designing therapeutic 

approaches (14) 

With the help of well-established rodent models, the four main phases which 

have been identified after SCI are: acute, sub-acute, early chronic and late 

chronic. The acute phase which takes place immediately after the injury, lasts 

for a few hours and leads to an up-regulation of pro-inflammatory cytokines 

(e.g. interleukin (IL)-1 and tumour necrosis factor (TNF)-, as well as axonal 

destruction and demyelination (6, 15). There is an immediate infiltration of 

neutrophils which reaches its peak one day post injury (16).  In the sub-acute 

phase (days 2-7), the levels of certain pro-inflammatory cytokines start to 

decrease and there is an influx of microglia, macrophages, T cells and activated 

astrocytes (15, 17). At this point there is also an increase in certain anti-

inflammatory factors such as cytokines, chemokines and neurotrophic mediators 

(Figure 1.2), which attempt to rebalance the damaged system. The early and 

late chronic phases can persist for up to weeks or even months and result in a 

second T cell, macrophage and neutrophil peak in the early chronic phase (16). 

Unfortunately to date, there is no treatment available for SCI patients. Current 

therapies focus on combining immunosuppression (e.g. methylprednisolone) 

with rehabilitation and palliative care. Although the continual and dual role of 

the neuroinflammatory response leaves it difficult to decipher upon a single 

modulatory strategy, the establishment of distinct inflammatory phases is of 

vital importance when designing therapies. This, in combination with 

fundamental research strategies have resulted in recent advances in cell-

replacement therapy, tissue engineering as well as neural interface systems.  



Chapter I: General Introduction & Aims 

5 

Figure 1.2: Schematic representation of inflammatory and neurotrophic 

mediator expression following spinal cord injury. The curves represent 

peaks in pro- and anti-inflammatory mediators as well as neurotrophic factors at 

various timepoints post injury. Within hours after injury, the chronic phase 

consists of peaks in pro-inflammatory factors such as IL-1, TNF, ROS and IL-

6. There is a peak in the anti-inflammatory cytokines IL-4 and IL-13 8 hours

post injury. In the later phases spanning from days to weeks, there are peaks in

neurotrophic factors such as GDNF, NGF and BDNF which try to rebalance the

damaged system after injury (Modified from Popovich & Longbrake 2008).

1.2 Cytokines 

Cytokines can be defined as proteins with pleiotropic, redundant, synergetic 

and/or antagonistic effects which are mediated via several signaling cascades, 

allowing them to regulate cellular activity (such as proliferation, differentiation 

and maturation) in a coordinated and interactive manner (18). Cytokines and 

the cells that secrete them can be classified as either pro-inflammatory (T helper 

cell type 1 [Th1] or type 1) or anti-inflammatory (T helper type 2 [Th2] or type 

2). In most publications, the terms pro-inflammatory, T helper cell type 1 [Th1] 

or type 1 and anti-inflammatory, T helper cell type 2 [Th2] or type 2 are used 

interchangeably, which theoretically is incorrect. Generally speaking, type 1 cells  
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activate macrophages and control infections while type 2 cells activate B cells 

and help eliminate extracellular parasites (13). Despite this general 

classification, most cytokines display overlapping functions, exerting both pro- 

and anti-inflammatory effects depending on the tissue milieu. This makes it 

difficult to understand many cytokines’ true effects as mediators of the immune 

response. In this thesis, the focus will be on the so-called “anti-inflammatory” 

cytokines IL-25 and IL-13 and their use as immunomodulators for treatment of 

SCI.  

1.2.1 Interleukin-25 

We as well as others have shown that cytokines associated with Th2 cells such 

as IL-4 (19-21) and IL-10 (22, 23), not only promote neuronal survival and 

regeneration, but also improve functional outcome after central nervous system 

(CNS) trauma such as SCI. IL-25 (also known as IL-17E) has been suggested to 

be a key player in the origin of a type 2 response (24, 25). While research has 

begun to unravel its importance in immunity in general, conclusive data on the 

role of IL-25 in the CNS is lacking. Although a limited number of studies are 

currently available, these tend to point towards a protective role of IL-25 in 

neuroinflammation (reviewed in (26, 27)). For example, IL-25 treatment 

suppresses Th17 responses and disease symptoms in experimental autoimmune 

encephalomyelitis (EAE) via IL-13 and is important in maintaining blood-brain 

barrier function (28, 29). IL-25 expression is downregulated by proinflammatory 

cytokines such as tumor necrosis factor-α and IL-1β, which increase acutely 

after trauma. Consistently, IL-25 is reduced in the proinflammatory milieu of 

CNS lesions (28). These findings, suggest that an increase in IL-25 may possess 

the therapeutic potential to provide repair after CNS trauma.  

1.2.2 IL-25 receptor signaling 

IL-25 is a rather unique member of the pro-inflammatory IL-17 family and 

displays the least homology with IL-17(A), which may point towards its potential 

ability to regulate Th2 responses. IL-25 signals through a heterodimeric receptor 

complex (IL-25R) which is composed of two subunits, IL-17RA and IL-17RB (30, 

31). It has been shown that IL-25 activates NFATc1 and JUNB, which leads to  
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increased IL-4 expression by Th2 cells (32). Upon ligand binding, IL-25R has 

been shown to signal through Act1 via interactions with the SEFIR domains (33, 

34). IL-25 has also been shown to activate mitogen-activated protein kinases 

(MAPK)s such as P38 and c-Jun N-terminal kinase (JNK) as well as nuclear factor 

kappa-light-chain-enhancer of activated B cells (NF-kB) (35). Wu et al have 

identified a novel IL-25 signaling pathway through the activation of Signal 

transducer and activator of transcription (STAT)5 (31) and this activation is 

crucial for T cell development and Th2 cell differentiation (36). Despite the 

identification of the IL-25 receptors, few cell populations expressing IL-17RA or 

IL-17RB have been identified. Antigen-presenting cells (APCs) such as 

macrophages or dendritic cells (DCs) may be a possible target of IL-25 and IL-

17RB has been found to be up-regulated in dendritic cells under Th2-inducing 

conditions (37). IL-17RA and IL-17RB are also expressed on eosinophils and 

their expression increases in asthma patients (38).  

1.2.3 Interleukin-13 

IL-13, a cytokine closely related to IL-4 (39), is a canonical anti-inflammatory 

cytokine, which in some contexts can also be pro-inflammatory (40). 

Functionally, IL-13 is a pleiotropic cytokine, and can display both 

immunostimulatory or immunosuppressive effects. For example, IL-13 inhibits 

the expression of pro-inflammatory cytokines (e.g. IL-6, IL-1β, and TNF-α) and 

other inflammation-associated factors (e.g. nitric oxide (NO), reactive oxygen 

species (ROS)) both in vitro (41) and in vivo as IL-13 has also been shown to 

exert neuroprotective effects in the EAE model of multiple sclerosis, by 

decreasing inflammatory cell infiltration and axonal loss as well as reducing 

clinical symptoms (42-44). IL-13 plays an important role in the body’s fight 

against parasites and cancer. On the other hand, it can also contribute to the 

pathophysiology of allergic diseases such as asthma by promoting 

immunoglobulin E production (reviewed in (45)). Furthermore, in EAE, IL-13 has 

been shown to exert neuroprotective effects, decreasing infiltration of 

inflammatory cells and diminishing axonal loss, and to suppress clinical 

symptoms (43, 46). Preliminary data from our group has shown that IL-13 

promotes neurite growth in primary neurons and organotypic brain slices in  
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vitro. Taken together, these data indicate that IL-13 has the potential to display 

beneficial immunomodulatory effects following CNS trauma, however, due to it’s 

pleiotropic nature, fine-tuning regarding timing and method of administration is 

vital.  

1.2.4 IL-13 receptor signalling 

There are two types of IL-13 receptors, the first consists of a heterodimer 

containing IL-13R1 and IL-4R subunits and the latter of which also binds IL-4. 

The second type is an IL-13 specific receptor and consists of an IL-13R2 chain 

(47). Although IL-13 binds to the IL-13R2 chain with a high affinity, it is 

considered to be primarily a decoy receptor given its short cytoplasmic tail and 

lacking signalling motif (48). In addition to regulation of IL-13R1 and IL-13R2 

by IL-13 itself in vivo, IL-4 and IL-10 are also actively involved. IL-13 first binds 

to IL-13R1 with a low affinity and then IL-4R is recruited to the complex 

which in turn generates a high affinity receptor (49). For this reason, signal 

transduction via the IL-4R is thought to be responsible for the majority of the 

functional characteristics of IL-4 and IL-13. However, IL-13 also possesses many 

unique effector functions which differentiates it from IL-4. For example, it has 

been shown that both IL-4 and IL-13 activate STAT3 and STAT6, while STAT1 is 

only activated by IL-13 (50). IL-13 is mainly secreted by Th2 cells, but also 

other T cell subsets, mast cells, dendritic cells, microglia, and macrophages (47, 

51). IL-13R1 is expressed on many different cell types, including B cells, mast 

cells, endothelial cells, fibroblasts, monocytes, and macrophages, but is absent 

on T cells (47). We have also recently identified the expression of the of IL-13R 

on neurons (data not shown). In the CNS, neurons and microglia work in 

synergy to reduce brain inflammation via induction of IL-13 and IL-13 has also 

been shown to directly induce apoptosis in activated microglia (52). It therefore 

seems plausible that modulating the microglia/macrophage response after SCI 

by factors such as IL-13, may prove beneficial in down-regulating CNS 

regenerative-inhibitory factors. 
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1.3 Microglia & macrophage response in spinal cord injury 

Almost all tissues contain several types of microglia and macrophages with 

specialized functions (53, 54). With regard to the spinal cord, microglia reside in 

the spinal parenchyma and in their resting state are highly dynamic cells with an 

ability to continuously scan the surrounding environment for homeostatic 

irregularities (55, 56). They are responsible for phagocytosis of cellular debris 

and toxic compounds and are the first cells which respond to infection, 

inflammation and injury to the CNS (57). Additionally, microglia react to 

environmental changes by altering their motility, morphology and phagocytic 

functions by releasing cytokines, chemokines and reactive oxygen species (55). 

The extent of microglia activation depends on whether they are in a “primed” 

(sensitised) state upon exposure to a stimulus. Additionally, the type of insult, 

potency of the stimulus, as well as the microenvironment (proximity of neurons, 

glial, immune cells etc), all affect the way in which microglia react to CNS injury 

(58). 

Macrophages are derived from monocytes and are recruited to the site of injury 

sites from the peripheral circulation (59). They are capable of assuming a wide 

variety of functional states which can influence CNS repair. Similarly to 

microglia, macrophage phenotypes are determined by the surrounding 

microenvironment and can change in response to various stimuli (60, 61). This 

functional adaptability allows macrophage to contribute to repair by 

promoting/modulating inflammation, removing detrimental triggers, depositing 

ECM, stimulating cell proliferation, and releasing anti-inflammatory factors (61). 

However, on the other hand, macrophages also have the potential to hinder 

different phases of repair and persistent activation can result in chronic 

inflammation and dysfunctional wound healing (62).  

SCI activates microglia and macrophages with different functional phenotypes 

(63, 64). As outlined above, there is an influx of microglia, macrophages as well 

as T cells and activated astrocytes in the sub-acute phase (days 2-7) at the 

lesion site (15, 17). At this stage, blood monocytes migrate to the injury site 

where they differentiate into macrophages, which, using currently established 

methodologies, become phenotypically and morphologically indistinguishable  
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from activated microglia (61). The timing and distribution of monocyte- and 

microglia-derived macrophage activation after SCI has been previously reviewed 

(16, 49). 

1.3.1 Microglia & macrophage classification 

Distinction between brain-resident microglia and blood-borne macrophage is an 

ongoing issue. A traditional, rather simplistic way to distinguish the varying 

microglia and macrophage subsets is to divide them into classically (M1) or 

alternatively activated (M2) phenotypes (65, 66). M2 microglia/macrophages, 

differentiate from the classically activated M1 microglia/macrophages and are 

less inflammatory in nature. They are characterized by a reduced nitric oxide 

production and secrete lower levels of pro-inflammatory cytokines (67). This 

subset of M2 microglia/macrophages express markers that differentiate them 

from classically activated, such as Arg-1 and Found in inflammatory zone 1 

(FIZZ1) (68). However, a more specific characterization indicates that 

upregulation of MHC-II (in both M1 and M2 cell subsets) is associated with 

macrophage activation and joint expression of MHC-II and Arg-1/FIZZ1 is 

indicative of the neuroprotective and anti-inflammatory, M2a phenotype (69).  

1.4 Stem cell therapy for spinal cord injury 

Stem cell therapies for SCI have raised a lot of hope amongst patients, doctors 

and scientists in recent years. Although we are still in the early stages, advances 

in research have demonstrated the ability of stem cells to provide therapeutic 

effects in many pre-clinical animal studies (70-72). Despite this progress, a 

precise mechanism describing the way in which stem cells improve CNS injury is 

lacking. Potential candidate mechanisms include: direct cell replacement, 

stimulation of endogenous stem cells and more recently, immunomodulation via 

transplanted exogenous cells (73-75). This ‘by-stander’ effect exerted by 

transplanted cells involves the production of trophic factors which can potentially 

stimulate the endogenous neuro-protective and/or neuro-repair processes (76, 

77). Directing microglia and macrophages towards a more pro-neurogenic, 

neuroprotective phenotype and the development of an ideal transplantation  
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environment for stem cells will more than likely involve up- and downregulation 

of certain inflammatory factors. These factors which display “good’’ or “bad’’  

effects towards stem cells will be discussed in chapter II of this thesis. These 

data were summarised in a review article which was published in 2014 in the 

Journal of Pharmacology & Therapeutics. 

1.4.1 Neural stem cells 

Neural stem cells (NSCs) can be an invaluable tool for CNS repair and low 

numbers of multipotent stem and precursor cells exist within specialized areas of 

the adult mammalian brain (78). The stimulation of these endogenous NSCs is 

one possible strategy to consider in the field of CNS repair. An alternative option 

may involve the use of previously isolated exogenous NSCs, by means of 

transplantation to the site of injury. The ability of these exogenous and 

endogenous NSCs to migrate has been well documented (75, 79, 80) and the 

differentiative capability of these cells into neurons has been speculated to 

provide beneficial effects in both degenerative diseases as well as CNS trauma. 

1.4.2 Mesenchymal stem cells 

Mesenchymal stem cells (MSCs) possess the ability to exert positive effects in 

rodent models of spinal cord injury (81, 82). They are a good choice in cell-

based therapy as they can modulate oxidative stress and secrete cytokines and 

growth factors that have immunomodulatory, anti-inflammatory, angiogenic and 

anti-apoptotic effects (Figure 1.3) (83). Despite the positive effects observed, 

quite a few hurdles still remain when considering MSC therapy for CNS injury, as 

the described functions of MSCs have not yet lead to an elusive mode of action. 

1.4.3 Which cell type to choose? 

Initial studies in our group have investigated the use of both NSC and MSC cell 

transplantation following SCI. However, for the experimental procedures 

summarised in this thesis, the focus is on the use of MSCs for the following 

reasons: 

a. When looking towards potential clinical applications, autologous MSC can

easily be isolated from bone marrow or other tissues, such as adipose
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tissue, dental pulp, placenta and Wharton’s jelly (84). 

b. MSCs alone possess many strong intrinsic immunomodulatory properties

(83).

c. Based on pilot experiments in our lab and previous studies within on

group, MSCs display a higher survival rate compared with NSCs, due to

new blood vessel formation and appear more stable in vivo (85, 86).

Figure 1.3: Schematic representation of the beneficial characteristics of 

MSCs. The ways in which MSCs can improve therapeutic outcome following SCI 

are outlined. E.g. reduction of  macrophage infiltration, microglia activation and 

apoptosis, secretion of trophic factors, increased myelination and angiogenesis 

may all add to the beneficial effects of MSCs following CNS trauma or disease. 

Modified from: Castillo-Melendez et al, Frontiers in Neuroscience 2013. 

1.5 Aims of this Study 

The continual and dual role of the neuroinflammatory response leaves it difficult 

to decipher upon a single modulatory strategy. Additionally, the role of certain 

immunomodulatory cytokines which are up- or down-regulated in response to 

SCI still remains unclear. In this thesis, we focus on the type-2 cytokines: IL-25  
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and IL-13 and investigate their therapeutic potential for treatment of SCI. 

Understanding the interaction of these factors with the surrounding 

microenvironment and exploiting their modulatory effects on cells such as 

microglia and macrophages, may provide a vital therapeutic tool in developing 

strategies for treating CNS trauma. Therefore, our primary research question in 

this thesis is as follows: are IL-25 and IL-13 potential therapeutic 

immunomodulatory candidates for treatment of SCI? 

1.5.1 Therapeutic effects of IL-25 after SCI 

We as well as others have shown that cytokines associated with Th2 cells, not 

only promote neuronal survival and regeneration, but also improve functional 

outcome after SCI (19-21). Although IL-25 has been suggested to be a key 

player in the origin of a type 2 response (24, 25), at the beginning of this study, 

there was a gap in the literature outlining its role in CNS repair. Therefore, the 

first goal of this study was to investigate whether recombinant murine IL-25, 

administered either as a single dose locally to the spinal cord or via repeated 

systemic injections, improves functional recovery after SCI in mice.These results 

are described in detail in chapter III of this thesis and were published in 2016 

in the Journal of Neuroinflammation. 

1.5.2 Therapeutic effects of IL-13 after SCI 

In the second part of this study, we focus on investigating the therapeutic 

potential of the Th2, anti-inflammatory cytokine, IL-13. In addition to its 

immunomodulatory effects, IL-13 is also a well-known inducer of the M2 

microglia/macrophage phenotype (87, 88). We recently demonstrated that after 

SCI in mice, IL-13 levels decrease significantly in the serum and spinal cord 

within hours after injury (89). Therefore, given the drop in IL-13 levels after 

injury and it’s polarizing capabilities towards a more neuroprotective M2 

macrophage phenotype, it seems plausible that application of IL-13 in the acute 

phase after SCI may have therapeutic potential. Therefore the second goal of 

this study was to investigate the therapeutic effects of recombinant murine IL-

13 in a mouse model of SCI. These results are described in detail in chapter IV 

of this thesis. 
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1.5.3 MSCs as carriers of IL-13 and their therapeutic effects after SCI  

Following some inconclusive results upon administration of recombinant IL-13 

following SCI, in the final part of this study, we aimed to optimise a continuous 

local delivery system for IL-13. In order to achieve this, we choose to use MSCs 

for the reasons outlined above. Therefore, in the final part of this study, we 

investigated the use of autologous MSCs which were genetically modified to 

secrete IL-13, as a potential therapeutic strategy to modulate the immune 

response and improve functional recovery after SCI. We also investigated 

whether IL-13-secreting MSCs were capable of modulating the complex 

microglia and macrophage response following SCI and characterised there 

phenotypes at both the MSC graft and lesion site. Furthermore, we performed 

detailed histological analysis in CX3CR1eGFP/+ CCR2RFP/+ mice, allowing us to

distinguish between resident microglia and infiltrating macrophages. These 

results are described in detail in chapter V of this thesis and the research 

manuscript is currently submitted for publication.  
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2.1 Abstract 

The pharmacological support and stimulation of endogenous and transplanted 

neural stem cells (NSCs) is a major challenge in brain repair. Trauma to the 

central nervous system (CNS) results in a distinct inflammatory response caused 

by local and infiltrating immune cells. This makes NSC-supported regeneration 

difficult due to the presence of inhibitory immune factors which are upregulated 

around the lesion site. The continual and dual role of the neuroinflammatory 

response leaves it difficult to decipher upon a single modulatory strategy. 

Therefore, understanding the influence of cytokines upon regulation of NSC self-

renewal, proliferation and differentiation is crucial when designing therapies for 

CNS repair. There is a plethora of partially conflicting data in vitro and in vivo on 

the role of cytokines in modulating the stem cell niche and the milieu around 

NSC transplants. This is mainly due to the pleiotropic role of many factors. In 

order for cell-based therapy to thrive, treatment must be phase-specific to the 

injury and also be personalized for each patient, i.e. taking age, sex, 

neuroimmune and endocrine status as well as other key parameters into 

consideration. In this review, we will summarize the most relevant information 

concerning interleukin (IL)-1, IL-4, IL-10, IL-15, IFN-γ, the neuropoietic 

cytokine family and TNF-α in order to extract promising therapeutic approaches 

for further research. We will focus on the consequences of neuroinflammation on 

endogenous brain stem cells and the transplantation environment, the effects of 

the above cytokines on NSCs, as well as immunopharmacological manipulation 

of the microenvironment for potential therapeutic use. 

2.2 Introduction 

Stem cells are a very unique cell type with two fundamental characteristics: 

multipotency and self-renewal. More specifically, NSCs are an undifferentiated 

cell type possessing the capacity to generate both glial and neural cell lineages 

(1). NSCs can be an invaluable tool for CNS repair and low numbers of 

multipotent stem and precursor cells exist within specialized areas of the adult  



Chapter II: Immunopharmacological intervention for successful neural stem 

cell therapy: new perspectives in CNS neurogenesis and repair 

27 

mammalian brain (2). The stimulation of these endogenous NSCs is one possible 

strategy to consider in the field of CNS repair. An alternative option may involve 

the use of previously isolated exogenous NSCs, by means of transplantation to 

the site of injury. The ability of these exogenous and endogenous NSCs to 

migrate has been well documented (3-5) and the differentiative capability of 

these cells has long since been speculated for reinstating neurons in both 

degenerative diseases as well as trauma to the CNS. Such capabilities are of 

vital relevance when considering methods to overcome many of the current 

challenges associated with application of NSCs in the clinic; namely, low 

survival, proliferation and differentiation rates. Understanding the interactions 

between the immune system and NSCs is also crucially important for effective 

therapies and a method directed at neutralising or downregulating immune-

associated mechanisms, represents an affirm approach toward preventing 

disease progression (6). A recent review by Kokaia et al. has outlined the effects 

of macrophages and microglia on NSCs (7), however the influence of cytokines 

on the NSC fate has been neglected and information on their potential use for 

immunopharmacological intervention is lacking. Varying factors, such as the site 

of transplantation, method of delivery as well as cytokine concentration, all 

influence the given immune reaction. Here, we focus on the consequences of 

neuroinflammation on endogenous brain stem cells and the transplantation 

environment, as well as the effects of specific groups of cytokines on NSCs. We 

believe that characterizing the specific phases of selected diseases or injuries 

such as acute, subacute, early chronic etc, will be necessary before 

immunopharmacological intervention can be translated from in vitro and in vivo 

studies to the clinic. It is of vital importance to understand the implications, be 

they favorable or deleterious toward NSCs, before one can look toward 

exploiting cytokines and enhancing the properties of NSCs for therapeutic 

purposes (8, 9).  
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2.2.1 CNS injury is associated with ‘pro- and anti-inflammatory’ 

processes 

Following trauma to the CNS, there is a distinct inflammatory response driven by 

resident microglial activation, local infiltration of immune cells as well as 

production of cytokines, chemokines, neurotransmitters and reactive oxygen 

species (ROS) (10-12). While the primary mechanical injury is restricted to the 

lesion site, a widely acute inflammatory response including a dramatic influx of 

neutrophils and later macrophages and T cells, causes rapid death in both 

neuronal and glial cells. In addition, the secondary pathology is characterized by 

neuronal and glial apoptosis, increased blood-brain barrier permeability, 

progressive lesion expansion as well as an elaborate and poorly understood 

chronic neuroinflammatory response, which may persist for years following the 

initial trauma (12-15). It is tempting to speculate that this more delayed 

secondary inflammatory response may be susceptible to certain therapeutic 

manipulative strategies. One of the main aims to induce CNS regeneration is to 

promote axonal outgrowth by stimulating the formation of new connections. 

Anti-inflammatory cytokines as modulators of neurite plasticity and outgrowth, 

are of pivotal importance in neuroregeneration with many varying effects 

reported (16). 

The continual and dual role of the neuroinflammatory response leaves it difficult 

to decipher upon a single modulatory strategy. However, despite much debate 

regarding the detrimental effects of inflammation, many studies have also 

outlined its significance in tissue repair including a therapeutic potential of 

activated macrophage/microglial cells in promoting axonal regeneration (11, 17-

19). Depending on their requirements, almost all tissues contain macrophages 

with specialized functions (20, 21). The two varying macrophage subsets were 

originally represented by the classically (M1) or alternatively activated 

(M2phenotypes (22). However, M2 macrophages have since been subdivided 

into M2a, M2b and M2c macrophages, in order to distinguish between 

phenotypes induced by different stimuli. In short, this new grouping of 

macrophage populations is based on three different homeostatic activities — 

host defense, wound healing and immune regulation (23). Additionally, 
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activation of microglial cells does result in varying response phenotypes and 

phenotypic diversity leads to functional diversity (24). As outlined above, there 

is ample evidence indicating that full activation of microglia leads to neurotoxic 

effects. However, such harmful effects must be based at least in part by the 

activating conditions involved. To investigate the effects of inflammation on the 

regenerative capacity of stem cells in the brain, researchers have concentrated 

on the response of microglial cells following an acute injury and after stimulation 

with lipopolysaccharides (LPS) (25). However, the use of LPS to outline the toxic 

potential of microglia in vitro, often stimulates defence-oriented reactions and 

thus, does not offer a broad signal variety.  

2.2.3 Inflammation-associated cytokines: Looking past the pro- and 

anti-inflammatory concept 

The dynamic equilibrium that exists between the immune system’s pro- and 

anti-inflammatory response is mediated by pro- and anti-inflammatory factors, 

including IL-1, IL-4, IL-10, interferon-γ (IFN-γ), tumour necrosis factor alpha 

(TNF-α), and transforming growth factor beta (TGF-β) (12, 26). However, this 

concept of defined pro- and anti-inflammatory mediators is that of a simplistic 

one (16). Cytokines have the capacity to exert varying effects depending on 

their location and environmental queues. IL-4 for example promotes the 

proliferation of fibroblasts (27, 28) and endothelial cells (29), while displaying 

anti-proliferative effects on carcinoma cells (28). The induction of phase-specific 

effects is also a vital aspect to consider when attempting to classify anti-

inflammatory cytokines. Examples of such effects have been described in other 

disease contexts such as asthma, experimental autoimmune encephalomyelitis 

(EAE) as well as wound healing and pregnancy. IL-13 is also an example of an 

anti-inflammatory cytokine which in some contexts can also be pro-

inflammatory (30). Studies using anti-IL-13 monoclonal antibodies to treat 

asthma, have suggested that IL-13 may play a protective role in an acute 

inflammatory setting, while having a detrimental effect during chronic 

inflammation (30). Similarly, blocking the IL-4/IL-13 receptor prevents allergic 

airway sensitisation in asthma, without affecting the established allergy,  
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suggesting that both cytokines play a predominant role in the acute onset of 

disease (31). 

2.2.4 The stem cell niche 

Before looking toward optimal cell-transplantation conditions, one must take into 

consideration the environment within which endogenous NSCs are located within 

the adult CNS. These specialized stem cell ‘niches’ provide support and 

maintenance to endogenous cells, regulate their proliferative capabilities, and 

may also be considered to direct downstream differentiation (32). In the case of 

the NSC niche, physical contact-dependant mechanisms as well as diffusible 

signals are amongst the factors necessary for cells to thrive within the 

subventricular zone (SVZ) and the dentate gyrus (DG) (32). Evidence suggests 

that NSC transplantation may protect the CNS from inflammatory damage via a 

‘bystander’ mechanism rather than by direct cell replacement (9, 33). This 

neuroprotective ability is mainly exerted by undifferentiated stem cells releasing 

a milieu of neuroprotective molecules at the site of tissue damage, which is 

temporally and spatially orchestrated by environmental needs. This milieu 

contains molecules (such as immunomodulatory substances, neurotrophic 

growth factors and stem cell regulators), that are constitutively expressed by 

NSCs for the maintenance of tissue homeostasis, both during development and 

in adulthood (9). It is important to acknowledge that the inflammatory 

environment may influence the NSC niche, thereby affecting stem cell survival, 

self-renewal, migration and neuronal differentiation (9). NSCs appear to 

reinstate degenerating neurons by regulating the host environment and adapting 

a chaperone-like role, for example, by possessing the ability to migrate along 

radial glial cells and in turn contribute to corticogenesis (34). Additionally, 

exposure to small direct current electric fields, increases the directional 

migration of NSCs (35). This ability of NSCs to provide cellular scaffolding may 

affect the mobilization of endogenous stem cells and migration of transplanted 

NSCs toward the spinal cord injury (SCI) site has also been previously observed 

(36). Such a result indicates that NSCs may also be used as delivery vehicles for 

therapeutic proteins due to their migratory capabilities toward the lesion site.  
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2.3 Regenerative capacity of endogenous CNS stem cells 

Endogenous stem cells have been shown to be located within specialised regions 

of the adult brain - the subgranular zone of the DG of the hippocampus (37) and 

the lateral ventricle of the SVZ (38). The spinal cord is also home to a specific 

niche and NSCs have been isolated from the ependymal zone surrounding the 

central canal (39, 40) In the spinal cord, there is no defined sub-ependymal 

layer and sustained neurogenesis is not observed (41). Additionally, ependymal 

cells rather than astrocytes are the primary source of in vitro stem cell activity 

(41). Although there is still much to be learned about the spinal cord ependymal 

niche, ependymal cells have been seen to be rapidly activated following SCI. 

They proliferate and differentiate to deliver astrocytes and oligodendrocytes to 

the injury site. One can therefore conclude that at least a sub-population of 

spinal cord ependymal cells possess latent NSC properties (41-43).  

Although the exact molecular mechanisms affecting NSC proliferation and 

differentiation have yet to be delineated, several factors are known to regulate 

neurogenesis. Brain stem cells appear to become ‘activated’ in response to 

neuronal trauma and migrate to the site of damage, suggesting that there are 

factors located at the injury site capable of influencing migration of precursor 

cells (3, 44). Furthermore, intracerebral administration of stromal-derived factor 

1α (SDF-1α) has been seen to enable migration of intravenously injected NSCs 

into the CNS (45). These findings lead us to believe that a well-coordinated 

inflammatory reaction is necessary for tissue repair. This should ideally be 

capable of controlling the secretion of these beneficial factors, whose presence 

influence cell migration. On the other hand, a prolonged and exacerbated 

response may lead to a more critical and incessant neuroinflammatory cycle, 

which may in turn be involved in the acceleration of several neurodegenerative 

diseases.  

2.3.1 Neurogenesis 

Neurogenesis and differentiation of endogenous NSCs are also affected by their 

local environment following disease or injury-induced damage. As activation of 

astroglia and microglia are common attributes of these pathologies, equilibrium  
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between protective and toxic mediators controls NSC biology. For example, 

astrocytes can induce a neuronal phenotype on adult NSCs due to a cell contact 

mechanism as well as circulating secreted factors (46). In addition, microglia are 

capable of secreting neurotrophins, cytokines and chemokines which act directly 

on the NSC niche regulating precursor cell migration, proliferation and 

differentiation (47). Neurogenesis is inhibited by neuroinflammation by a 

number of diverse mechanisms, yet little is known about the way in which a 

pathological environment interacting with reactive microglia, affects precursor 

cell differentiation. A continual and consistent feature of CNS damage is 

microglial cell migration toward the injury site, and in turn, consequential 

activation. There is evidence that newborn neurons generated from stem cells 

may intermittently replace dead cells following brain injury (3). Thus, to initiate 

the use of either endogenous brain stem cells or stem cells undergoing 

transplantation, the establishment of suitable tools to identify the microglial 

state is necessary. Directing microglia toward a pro-neurogenic phenotype may 

exemplify a new approach to advocate the regenerative processes within the 

brain. Other types of immune cells can also induce the survival and proliferation 

of endogenous NSCs. For example, implantation of dendritic cells (DCs) after 

SCI, provides trophic support through the release of neurotrophin-3 and 

modulates the activation of microglia, thereby promoting locomotor repair after 

SCI (48). 

2.4 Cytokines and neural stem cells 

The initial idea that stem cell transplants work only via structural cell 

replacement has been recently challenged, due to regular cellular signaling 

which takes place between the host and cellular graft  (9, 49). The derivation of 

NSCs from living patients is currently not possible, however, the use of induced 

pluripotent stem cells may help overcome this limitation (50). Bearing this in 

mind, there are still many challenges in place when it comes to choosing the 

most efficient source of NSCs, for example, finding reliable sources of 

multipotent and pluripotent cells and also controlling their differentiation to 

generate favourable derivatives (50). Recent observations have shown that a 
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surprisingly low number of stem cells survive and integrate following 

transplantation in vivo (51). Furthermore, the limited availability and 

mobilization difficulties associated with endogenous stem cells within the CNS, 

limit their therapeutic efficiency. These sourcing limitations have lead us to focus 

more on the bystander effects of stem cells rather than those observed via 

direct cell grafting (9, 33). 

The process of inflammation varies and depending on the environment in place, 

can either amplify or suppress the activity of endogenous brain stem cells, which 

in turn will also determine the fate of transplanted NSCs. The distinction 

between the pro- and anti-neurogenic properties of inflammation may be based 

upon how macrophages, microglia and/or astrocytes are activated, as well as 

the duration of the inflammatory process (52). Reactive microgliosis has been 

shown to contribute to neuronal dysfunction and degeneration via the release of 

inflammatory factors such as, IL-6, TNF-α, IL-1β, nitric oxide (NO) and ROS. 

These pro-inflammatory factors can have negative effects on the NSC niche, 

resulting in reduced neuronal proliferation and differentiation, thereby 

decreasing neurogenesis (53, 54). However, in contrast, other factors and 

conditions are involved in the enrichment and stimulation of neurogenesis. It 

has been previously shown that antigen-specific autoimmune T cells, can 

increase the ability of microglia enriched cultures to remove glutamate, by 

tailoring the microglial phenotype (55). This finding suggests that T cells or their 

cytokines may allow microglia to adopt a particular phenotype that facilitates 

rather than impairs glutamate clearance, thus regulating at least in part, the 

onset as well as the shut-down, of the local immune response (55). This may in 

turn provide a more favorable environment for the survival of stem cell grafts. 

Additionally, NSCs express receptors which allow them to respond to certain 

cytokines and trophic factors. Therefore, the inflammatory process trigged in 

response to injury or disease, as well as that induced by the stem cell 

transplantation itself, may affect the success of the graft. One may consequently 

assume that the timing of the transplantation following injury, is of utmost 

importance when considering the success of the therapy (56). This association 

between neuroinflammation and neurogenesis and the action of microglia in 

regulating neurogenesis under pathological conditions, is still under intense  
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exploration (6, 57, 58). As mentioned previously, the creation of an ideal 

transplantation environment for NSCs will more than likely involve up- and 

downregulation of certain inflammatory factors. Although there is still much to 

be unveiled, particularly due to the dual role of many factors, we will attempt to 

characterize those which display ‘’good’’ or ‘’bad’’ effects towards NSCs and 

additionally, summarize those cytokines which should be up- or downregulated 

within the transplantation environment. 

2.4.1 Selected cytokines to be downregulated during pharmacological 

intervention. 

IL-1 family 

Members of the IL-1 family exert numerous biological effects acting both directly 

or indirectly on the CNS (59). The IL-1 family consists of three proteins that are 

closely related and are products of separate genes. IL-1α and IL-1β are agonists 

which display identical actions and  bind to a single 80kDA cell surface receptor 

(IL-1R1) (60), which requires an association with a accessory protein in order to 

carry out signal transduction (61). The third member is IL-1 receptor antagonist 

(IL-1ra) and as indicated by its name, blocks the actions of IL-1α and IL-1β. It is 

highly selective and binding to IL-1R1 does not initiate a response between IL-

1R1 and AcP (61).  

It has been demonstrated that acute LPS stimulation of primary microglia, 

induces greater levels of mature IL-1α and IL-1β (62). The same group 

investigated whether neural precursor cells (NPCs) may be a target of IL-1α and 

studies indicated that IL-1β as well as IL-α, do indeed modulate the properties of 

NPCs in vitro (63, 64). The study established that embryonic cortical NPCs 

express functional IL-1R1 and IL-1RAcP receptors, which are involved in 

transducing intracellular signaling via phosphatidylinositol 3-kinases (PI3K) 

activation, in response to IL-1α stimulation. It has also been shown that IL-1R1 

is expressed on adult NPCs derived from the SVZ, indicating that the adult 

neural cell fate is also influenced by IL-1α. Additionally, recombinant IL-1α  
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actively enhances NPC differentiation into astrocytes, without altering cell 

viability and neuronal differentiation (63). 

By using techniques such as immunocytochemistry, RT-PCR and ELISA, it has 

been shown that human multipotent neural progenitor cells express the cytokines 

IL-1α and IL-1β (65). This, in combination with IL-1R1 and IL-1RAcP receptor 

expression may suggest the potential for a direct receptor effect via IL-1α or IL-

1β (61). IL-1β has also been shown to reduce proliferation and differentiation of 

NPCs and this appears to be mediated by the stress-activated protein kinase/c-

Jun N-terminal kinase (SAPK/JNK), but not extracellular-signal-regulated kinase 

(ERK), P38 mitogen-activated protein kinases (P38MAPK) nor nuclear factor-

kappa β (NF-κβ) pathways (66). This decrease in cell proliferation was 

accompanied by a regular pattern of cell differentiation; however, a lower level 

of glial fibrillary acidic protein (GFAP) protein expression in differentiated NPCs 

was observed (66). It is also generally accepted that pro-inflammatory 

cytokines, particularly IL-1β, exert rather detrimental effects following damage 

to the CNS. Consistently, IL-1 deficient mice display reduced neuronal loss and 

infarct volumes following ischemic brain damage (67) and in traumatic brain 

injury, antibodies against IL-1β reduce the loss of hippocampal neurons (68). In 

contrast, varying in vitro models have shown IL-1β to display beneficial effects 

towards neuronal survival in the CNS (69) and co-administration of IL-1β and 

NT-3, significantly increases neurite growth in organotypic brain slice cultures 

when compared to single treatments (70). 

Neuropoietic cytokine family 

The neuropoietic cytokine family is a group of structurally related cytokines 

consisting of IL-6, IL-11, IL-27, B cell stimulating factor, cardiotrophin 1 (CT-1), 

cardiotrophin-like cytokine/cytokine-like factor-1 (CLC/CLF), ciliary neurotrophic 

factor (CNTF) and leukaemia inhibitory factor (LIF) (71). These cytokines have 

well established roles in infection, pregnancy as well as muscle, bone and 

cardiovascular function, however, more recent studies have outlined their 

signaling involvement in both the developing and adult brain, as well as playing 

a role in response to CNS injury (71). In mice, LIF, CNTF,  CLC/CLF and CT-1 all  
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contain receptors with identical signal-transducing subunits (LIF receptor (LIFR)-

h and gp130) and are therefore called LIF-related cytokines (72). Although IL-

6is a member of the neuropoeitic cytokine family, we have decided based on its 

effects on NSCs and in contrast to the other family members, to categorize it 

under the cytokines to be upregulated sub-heading, thus again verifying the 

rather pleiotropic nature of this cytokine family. LIF displays many pleiotropic 

effects within the CNS and therapeutic treatment via systemic application often 

leads to undesirable side effects (73). The limited potential of LIF to cross the 

blood brain barrier (74) not only restricts it’s therapeutic potential, but also 

makes it difficult to evaluate the exact role of LIF within CNS disease. However, 

local production of LIF within the CNS by means of lentiviral vectors, has proven 

an effective way to overcome this delivery problem (75). Consequently, the 

effects of LIF and its related cytokines on NSCs are complex and in part 

contradictory (76). On one hand, early astrocyte formation has been shown in 

vitro following NSC treatment with LIF and CNTF (77). The mechanism of such 

an effect was shown to be due to activation of the Janus-activated kinase-signal 

transducer, activator of transcription (JAK-STAT) and mitogen-activated protein 

kinase (MAPK) signal transduction pathways (77, 78). It is also interesting to 

note that LIF appears to mediate astrogliogenesis in late embryonic (>E15), but 

not early (E12-E14) cortical progenitors in mice (77). This may in part be due to 

the sustained increase in epidermal growth factor receptor (EGFR) expression 

during development, which in combination with LIF, leads to an increase in 

astrocyte differentiation through a combined synergistic mechanism (79). On the 

other hand however, LIF has been shown to support the maintenance and self-

renewal of embryonic mouse NSCs in vitro (80, 81) via the activation of the 

JAK–STAT pathway (82).  

Signaling via gp130 appears to cause progenitor cells located within the 

ventricular zone, to re-enter the cell cycle whilst at the same time maintaining 

the original length of the cell cycle (83). It has also been shown that cells 

dissociated from LIFR-knockout mice, propagate fewer secondary neurospheres 

when compared to cells taken from wild-type mice, outlining a decrease in self-

renewal capability (84). On the contrary, exogenous LIF appears to promote 

secondary sphere formation in cells from wild-type animals (85). Neurospheres  
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secrete endogenous LIF suggesting that in vitro, the effect of LIF on the self-

renewal of NSCs exists due to an autocrine/paracrine mechanism (77). Although 

LIF-related cytokines lead to an increase in astrocyte production (78), another 

important point to outline is the fact that signaling via the LIFR also affects the 

oligodendrocyte lineage of NSCs. It has been shown that CNTF and LIF are 

strong modulators of oligodendrocyte-type-2 astrocytes (O2-A) in lineage 

development (86). These molecules were seen to elevate oligodendrocyte 

generation in cultures of dividing O-2A progenitors. An increase in myelin basic 

protein (MBP) also indicated an augmentation in oligodendrocyte maturation and 

thus, myelination, which may in turn promote oligodendrocyte survival (86).  

As mentioned previously, neuropoietic cytokines, primarily LIF and CNTF, play a 

considerable role in astrocyte differentiation from neural progenitors in vitro. 

Concurrently, studies employing anneurosphere assay derived from embryonic 

mice, have indicated astrocyte-like cell formation in response to LIF-signaling as 

shown by an increase in GFAP expression (85, 87). However, given the 

conflicting observation that LIF and CNTF also appear to maintain NSC survival 

(84, 85), these findings together denote that some GFAP-positive astrocyte-like 

cells may generate both neuronal and glial cells, whereas others are in fact 

differentiated astrocytes. One can therefore conclude that GFAP is not a lineage-

specific marker in the context of NSCs (88). Although LIF may be beneficial in 

maintaining the self-renewal of embryonic mouse NSCs in vitro, it’s ability to 

drive NSCs toward an astrocyte lineage and further increase their differentiation, 

is unfavorable in the context of cell therapy following CNS injury. 

IL-15 

IL-15 is a pleiotropic, widely expressed pro-inflammatory cytokine that affects a 

large variety of cell types at varying stages of development and has important 

functions in both the immune and the nervous system (89). Human cell culture 

studies have also shown the presence of IL-15 mRNA in microglia, astrocytes 

and neuronal cell lines (90). IL-15 has been shown to play a role in the 

development of early inflammatory events in the CNS and is also involved in  
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glial cell activation as well as neuronal function in response to nerve injury (90, 

91). However, because little is known about  

the effects of IL-15 on neural cell differentiation, a study using cultured rat NSCs 

to investigate IL-15 signal transduction and activity subsequently revealed that 

NSCs and differentiating neurons, but not astrocytes or oligodendrocytes, 

express the IL-15Rα subunit of the IL-15 receptor (92). The authors also 

unveiled that IL-15 treatment decreased neurite outgrowth in differentiating 

neurons but did not alter NSC proliferation. IL-15 may affect neural cell 

differentiation via a signal transduction pathway involving IL-15Rα and STAT3, 

as the signal transduction alters MAP-2 protein levels and thus, affects neuronal 

differentiation from NSCs (92). The involvement of IL-15 in NSC proliferation 

and/or self-renewal has also been investigated. It’s been shown that the 

cytokine controls NSC self-renewal and enhances neurogenesis with decreased 

IL-15 levels leading to elevated cell differentiation (93). In vitro, IL-15 

deficiency results in a defective activation of both the JAK/STAT and the 

ERK/MAPK pathways in adult NSCs, which are key regulators of NSC 

proliferation and differentiation (53, 94, 95). Consequently, the effect of IL-15 

upon these pathways may be accountable for the maintenance of self-renewal 

as well as the proliferative capabilities of NSCs within the adult brain, thereby 

contributing to the governing of neurogenesis during neuropathological states 

(93). Given the mechanistic effects of IL-15 on NSC proliferation and 

differentiation, we can conclude that downregulation of this pro-inflammatory 

cytokine provides a better and more suitable environment for NSCs to thrive.  

IFN-γ 

IFN-γ is a key inflammatory cytokine, mainly produced by cytotoxic CD8+ T-cells 

and natural killer cells in the course of neurological diseases such as cerebral 

trauma (96), stroke (97) and multiple sclerosis (98). One would therefore 

assume that high levels of  IFN-γ would exert detrimental effects upon 

neurogenesis and stem cells. However, microglia influenced by IL-4 and—

surprisingly—by low concentrations of IFN-γ, have been seen to encourage adult 

neurogenesis and provide neuroprotection in vitro. This involves a complex 

regulation between insulin-like growth factor and TNF-α (99). IFN-γ also  
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increases neuronal (100) and microglial/macrophage (94) differentiation upon 

direct application to NSCs. However, in sharp contrast, IFN-γ hinders the 

formation of neural colonies in primary SVZ cells, while in neurospheres and 

NPCs, it reduces proliferation (101, 102). Similarly, the absence of IFN-γ in 

knockout mice has been shown to result in augmented NSC proliferation and 

differentiation within the adult DG, which is accompanied by neuroprotection as 

well as enhanced spatial cognitive performance (103). These data indeed outline 

the conflicting information which currently exists in the literature and  the 

contradictory role that IFN-γ plays in both in vitro and in vivo with respect to 

neuroinflammation. However, although IFN-γ is generally thought to beneficially 

enhance neurogenesis from fetal or adult NSCs, recent literature has also 

provided information to the contrary, outlining dysfunctional development of 

NSCs under the influence of IFN-γ (104). We therefore hypothesise that 

downregulating IFN-γ may be beneficial when considering its effects upon 

endogenous NSCs or those undergoing transplantation. 

2.4.2 Selected cytokines to be upregulated during pharmacological 

intervention. 

IL-4 and IL-10 

The neuroinflammatory milieu that develops in response to injury is also likely to 

result in insufficient migration of NSCs upon transplantation. Taking this obstacle 

into consideration, a previous study has looked at outlining the influence of IL-

10 and IL-4 on neurospheres derived from the SVZ of adult mice. The authors 

found that treatment with IL-4 and IL-10 upregulated the surface adhesion 

molecule lymphocyte function-associated antigen 1 (LFA-1) and chemokine 

receptors CXCR4 and CCR5, on NSCs (105). Subsequently, IL-10-treated NSCs 

displayed significantly higher chemotaxis to the ligands of the above chemokine 

receptors when compared to untreated cells. In addition, treatment of NSCs with 

IL-4 also lead to a greater degree of chemotaxis of these cells to RANTES 

(regulated on activation, normal T cell expressed and secreted) (105). As  
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mentioned above, microglia modulated by IL-4, encourage adult neurogenesis 

and provide neuroprotection in vitro. (99). Adult NSCs engineered to express IL-

10 show a greater ability to induce immune suppression, remyelination, and 

neuronal repair, thereby possibly outlining a novel approach to improve the 

efficacy of NSC-based therapy in CNS disease (106). Thus, pre-treatment with 

anti-inflammatory cytokines such as IL-4 or IL-10 may provide neuroprotection 

as well as the ability to facilitate migration of NSCs to the site of damage, 

ultimately resulting in a more favorable environment for the survival and 

maintenance of transplanted NSCs. 

IL-6 

IL-6 has been found to stimulate cortical precursor cell differentiation toward 

astrocyte and oligodendrocyte cell types (78, 107). It also plays a role in adult 

astrocyte activation as well as functioning as a neuronal neurotrophic and 

differentiation factor, in both the central and peripheral nervous system (108-

110). In contrast, treatment of hippocampal precursor cells with IL-6, decreases 

neurogenesis in vitro (53). This may indicate a cell-type-dependent effect of IL-

6, however this needs to be studied in greater depth in order to elucidate such a 

suggestion. 

As mentioned previously, the IL-6 receptor family contains multiple subunit 

receptors with one common receptor subunit; the gp130 transmembrane 

protein. However, naturally occurring soluble forms of the integral-membrane 

receptors also exist (111). It has been shown that the majority of these act as 

antagonists by competing with the membrane bound receptors for their ligands. 

The soluble IL-6R (sIL-6R) which is propagated as a result of minimal proteolysis 

(shedding) then acts as an agonist (111). Hence, the complex of sIL-6R bound 

to IL-6, is capable of activating target cells expressing gp130 on their cell 

surface, but lack the membrane-bound IL-6R; a mechanism known as trans-

signaling (112). Taking that the gp130 protein exists as a common component 

amongst the IL-6 family, it is interesting to note that every cell in the body 

expresses gp130. In contrast, only a select few cells express the IL-6R and cells 

that respond to IL-6 during inflammation, do not express the IL-6R. It may  
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therefore be of interest to target the IL-6R system in the context of stem cell 

transplantation for CNS injury, as neutralization of sIL-6R in vivo induces 

mucosal T-cell apoptosis in a model of Crohn’s disease (113). Thus, it is 

tempting to speculate that blockade of IL-6 trans-signaling may therefore 

decrease T-cell resistance against apoptosis, thereby providing a possible 

method of controlling inflammation in and surrounding the area of 

transplantation.  

In order to gain insight into the effects of specific cytokines on NSCs, one must 

take into consideration their effects on stem cell differentiation. A study to 

further define the functional role of the IL-6R complex during NSC differentiation 

showed that NSCs do not express a functional IL-6R, nor do they release IL-6. 

Thus, NSCs do not display a functional response to IL-6 (114). However, in the 

same study, a highly active fusion protein of IL-6 and sIL-6R, entitled Hyper-IL-

6 (H-IL-6), indicated that H-IL-6 causes NSCs to differentiate specifically into 

glutamate-responsive neurons, oligodendrocytes as well as phenotypically 

varying glial cell types. Further analysis revealed that H-IL-6 initiates gliogenesis 

via activation of STAT-3 and neurogenesis occurs via activation of the MAPK 

pathway, leading to an augmentation of nuclear phosphorylated CREBB (114). 

Although there is conflicting information in the literature regarding the effect of 

neuropoietic cytokines following CNS injury, one interesting approach may be to 

upregulate IL-6, whilst downregulating LIF, CNTF and CT-1. This may minimise 

the switch of NSCs toward an astrocytic fate whilst leaving IL-6 in place to 

promote NSC differentiation into functional neurons. 

TNF-α 

TNF-α has been documented to possess both positive and negative effects on 

neurogenesis (115). When it signals through its TNFR1 receptor, it greatly 

impedes neurogenesis, but conversely, its signaling through TNFR2 supports 

NSC survival and proliferation (116). TNF-α appears to activate NSC proliferation 

while inhibiting their differentiation into progenitor cells and an IKK-α/β-

dependent proliferation as well as a clear upregulated cyclin D1 expression  
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following TNF exposure, has been demonstrated (117). This significant increase 

in proliferation of TNF-treated cells was verified by an increase in neurosphere 

volume, increased 5-bromodeoxyuridine-labeled (BrdU) incorporation as well as 

a greater total cell number (117). NSCs constitutively express toll-like receptor 

(TLR) 2 and TLR4 and following exposure to TNF-α and IFN-γ, this receptor 

expression is increased. Furthermore, activation of these receptors can lead to 

production of certain pro-inflammatory cytokines (118) which may lead to an 

increased inhibitory enviroment. It may therefore be interesting to consider 

priming endogenous NSCs or even NSCs prior to transplantation, in order to 

encourage these cells to produce certain cytokines following CNS injury.  

Conditioned media from LPS-activated microglia and macrophages has been 

shown to block neuronal differentiation via the production of TNF-α (119, 120). 

Consistently, soluble TNF-α receptors as well as pentoxifylline, a TNF-α inhibitor, 

partially restored neuronal differentiation, establishing that TNF-α is partly 

responsible for the anti-neurogenic effect of the LPS-conditioned media (119, 

120). It has also been demonstrated that NSCs also affect the surrounding 

environment upon transplantation via a cell contact-dependent mechanism. For 

example, NSCs co-cultured with macrophages can inhibit in vitro macrophage 

activation, thereby reducing TNF-α level secretion (121). Additionally, co-culture 

of adult NSCs on a feeder layer of primary astrocytes, results in functional 

neurogenesis and synapse formation of the stem cell progeny (46). This shows 

that NSCs derived from adult tissues, similarly to those derived from embryonic 

tissues; maintain the ability to differentiate into functional neurons whilst 

possessing fundamental properties of mature CNS neurons.  

Although TNF-α is a well-established mediator of inflammation, its signaling 

mediated by two different receptors appears to generate both positive and 

negative effects in the case of NSCs. It appears that TNF-α mediates its effect 

on NSCs via NF-κβ activation, resulting in increased cell proliferation. Such data 

indicate that upregulation of TNF-α may in fact be favorable towards 

transplanted NSCs. However, its negative effect on neurogenesis when signaling 

through the TNFR1 receptor, leaves it yet to be fully elucidated whether this  
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cytokine is of beneficial or detrimental value to endogenous NSCs or those facing 

transplantation. To complicate matters even further, the soluble form of TNF- α 

has an inflammatory function, while transmembrane TNF-α displays anti-

inflammatory properties in EAE models (122, 123). 

2.5 Conclusions 

Cytokines and growth factors are effector molecules of the innate as well as the 

adaptive immune system and they are involved in the regulation of cellular and 

humoral responses. Their release may offer plausible hope for potential 

therapeutic strategies via enhancement and modulation of what is currently a 

limited repair process. It is therefore of great interest to look at the possibility of 

exploiting the beneficial effects of cytokines, whilst at the same time, 

neutralising those with a deleterious impact (Tables 1 and 2). This may, for 

example, involve the use of factors which induce neurogenesis or inhibit those 

preventing neurogenesis or ideally, a combination of both. The identification of 

such a balance is especially important in the context of stem cell therapies 

where the influence of inflammatory-associated factors is of pivotal importance. 

Cells are mostly transplanted into a pro-inflammatory milieu and the 

transplantation mechanism may itself induce a pro-inflammatory response or 

even result in rejection (88). Despite the initial attempt of the CNS to repair 

itself in response to injury particularly in the SVZ and the DG (38), it is clear 

that these repair mechanisms are inadequate in achieving full functional 

recovery. For these reasons, much research has been directed toward the use of 

NSCs to replace cells lost though damage, as well as attempting to modulate the 

immune system and deliver immunomodulatory pro-regenerative factors (124). 

One can learn a lot about the exact mechanisms which control in vivo 

development of the CNS from the developing embryo and it is known that 

similar cues also regulate in vitro differentiation of ESCs into neural progenitors 

and various types of neurons (125). Several studies have taken advantage of 

these inductive signals identified during embryonic development and have 

exploited their properties to boost the efficiency of generating neuroectoderm 

cells and decrease the number of non-neural cell types in vitro. For example,  
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treating mouse ESCs with Wnt and Nodal antagonists (Dkk1 or lefty), to inhibit 

Wnt and nodal signaling, increases generation of early neuroectoderm based on 

Sox1 expression (126). Treatment of human NSCs with Noggin has also been 

seen to encourage their differentiation toward neural progenitors (127). 

Additionally, it has been shown that the use of a synthetic TGF-β antagonist to 

inhibit SMAD signaling, leads to greater numbers of neural progenitor production 

(128). As differentiation of ESCs into NSCs via embryoid body intermediates is 

closely related to embryonic development of the cortical layers (125), 

neurogenesis may indeed be something that needs to be mimicked in order for 

stem cell grafts to succeed therapeutically. CNTF and LIF encourage self-renewal 

of NSCs as well as astrocyte differentiation (84). This shift to astrocyte 

differentiation is also seen with the presence of IL-6 in cultured NSCs, thereby 

decreasing neuronal production (53, 129). LIF’s ability to increase the adult NSC 

population would undoubtedly lead to useful applications in brain injury, whilst 

curtailing the need for stem cell transplantation. Other promising clinical 

applications lie in these cytokines’ ability to display protective actions towards 

oligodendrocytes, leading to an increase in the number of myelinated axons. 

However, some unavoidable hurdles in applying these pleiotropic cytokines still 

remain. One must establish safe doses to avoid detrimental side effects, but 

more importantly, a cocktail providing just the right balance of modulatory 

factors is necessary. This must in turn be phase-specific to the injury and also 

be personalized for each patient, i.e. taking age, sex, neuroimmune and 

endocrine status as well as other key parameters into consideration. The re-

administration of certain cytokines at specific time-points during for example, 

SCI, whilst omitting those with no effect, may be one important aspect to 

consider. This idea may also be implemented quite readily in pre-clinical 

research given that the neuroinflammatory phases are already well-established 

in rodent models of SCI.  

After investigating both the positive and negative aspects of neuroinflammatory 

cytokines, one can accept that there is still much more information to be 

unveiled prior to their use in immune-modulation therapy. Transplantation of 

NSCs into an environment which possesses a correct balance of positive 

diffusible signals as well as the ability to neutralise inhibitory effects (Figure 1),  
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would be an ideal therapeutic situation. This would provide a greater chance for 

cell migration as well as proliferation, differentiation and formation of functional 

circuits. But the intrinsic and often pleiopropic nature of these molecules, makes 

such an approach a difficult one. Indeed, a better comprehension of the 

mechanisms that control inhibition versus stimulation of neurogenesis during 

neuroinflammation may be an advantageous approach. Identification of such 

signals would provide an opportunity to replicate the process of neurogenesis, or 

even prevent its progression to further characterize the implications, be they 

detrimental or perhaps even in some cases, beneficial. Furthermore, in vitro pre-

treatment with cytokines may be an advantageous approach to induce migration 

of NSCs to the CNS inflammatory core, thus resulting in more substantial and 

efficacious therapeutic effects. For example, NSCs express TLR2 and TLR4 and 

because their activation leads to the production of pro-inflammatory cytokines, 

possible priming of these cells to produce the necessary factors during traumatic 

conditions, may be an interesting strategy to focus on.  

The points raised in this review collectively suggest and indeed support the fact 

that the inflammatory environment following CNS injury greatly influences the 

regenerative ability of NSCs. It is clear that understanding the influence of 

cytokines upon regulation of NSC self-renewal, proliferation and differentiation is 

a crucial phenomenon to acknowledge when considering pharmacological 

intervention via cell-based therapy. A model environment capable of maximizing 

the ameliorative capabilities of NSCs may be all that currently lies between 

researchers and the exploitation of NSCs as a novel therapeutic tool in the field 

of neuroregeneration. Viral vectors and gene therapy, even with their known 

drawbacks, such as potential tumor formation, as well as localized drug delivery 

by means of implantable pumps, are indeed important options to consider.  



Chapter II: Immunopharmacological intervention for successful neural stem 

cell therapy: new perspectives in CNS neurogenesis and repair 

46 

2.6 Future therapeutic options 

Taking these points into consideration, it may therefore be advantageous to 

introduce immunopharmacological factors which will downregulate the effects of 

IL-1, IL-15 and IFN-γ following injury to the CNS. In addition, pre-treatment 

with ‘’anti-inflammatory’’ cytokines such as IL-4 or IL-10 may provide 

neuroprotection and facilitate migration of NSCs to the site of damage, thereby  

resulting in a more favorable environment for transplanted NSCs to thrive. It is 

clear that there is conflicting information in the literature regarding the effect of 

TNF-α and neuropoietic cytokines following CNS injury. One interesting approach 

may be to upregulate IL-6, whilst downregulating LIF, CNTF and CT-1.  

Regarding the future direction of this field, personalized medicine will prove an 

even bigger challenge due to the complex network of the factors outlined above. 

Thus, identifying the phases of patient disease may be imperative and many of 

these are already well-established in rodent models. Additionally, targeting 

these phases specifically in order to increase NSC survival and favor cell 

differentiation towards oligodendroytes and neurons, is in our eyes the next big 

hurdle in immunopharmacological research. 
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Table 2.1: Effects of cytokines on neural stem cell behavior 

Cytokine Effects Animal model/Region Ref. 

IL-1α NSCs express IL-1 receptor and so IL-1α increases NSC 

differentiation into astrocytes, without affecting cell viability and 

neuronal differentiation 

Mouse embryonic NSCs (63) 

IL-1β IL-1β treatment and IL1-R1 activation of the SAP/JNK pathway 

inhibit NPC proliferation 

Rat embryonic forebrain 

NPCs 

(66) 

IL-4 Upregulates surface adhesion molecule LFA-1 and chemokine 

receptors CXCR4 and CCR5 on NSCs 

NSCs + IL-4: Progressive disappearance of large tumors 

Mouse SVZ aNPCs 

C57BL6J mice 

Sprague-Dawley rats 

(105) 

(130) 

IL-6 Induces NSC differentiation into both glutamate-responsive neurons 

& astrocytic cells – NSCs don’t express IL-6 receptor 

Neurospheres from adult 

mouse SVZ 

Mouse ESCs 

(71) 

(131) 

(132) 

IL-10 Increases NSC differentiation into larger numbers of oligodendrocytes 

and neurons but fewer astrocytes 

Upregulates surface adhesion molecule LFA-1 and chemokine 

receptors CXCR4 and CCR5 on NSCs 

Mouse SVZ aNPCs (106) 

(105)
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IL-15 IL-15Rα subunit was expressed in NSCs and neurons, but not 

oligodendrocytes or astrocytes, IL-15 reduced MAP-2 levels in 

neurons 

Modulates proliferation and self-renewal of adult stem cells 

Rat NSCs 

Mouse SVZ NSCs 

(92) 

(93) 

CNTF Induces generation of astrocytes in vitro In late embryonic 

(>E15), not early (E12-

E13) cortical progenitors 

in mice 

(78) 

(77) 

LIF Promotes growth and proliferation of human NSCs and promotes 

oligodendrocyte survival 

In late embryonic 

(>E15), not early (E12-

E13) cortical progenitors 

in mice 

(77) 

(131) 

(133) 

(134) 

TNF-α Increased TLR2 & TLR4 expression in NSCs upon exposure 

Increases neurosphere volume, does not cause differentiation into 

glial cells, activates NF-κβ in NSCs 

NSCs from adult rat SVZ 

Rat derived 

neurospheres, NSCs from 

adult rat SVZ 

(118) 

(117)
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Table 2.2: Factors mediating therapeutic effects of neural stem cells 

Molecule(s) Therapeutic 

strategy 

Neurogenesis Species Model Effects on NSC 

differentiation & 

support 

Ref 

BDNF Transplantation of 

exogenous BDNF-

modified NSCs into 

the ischemic 

penumbra zone (3 

days after tMCAO) 

Transplantation of 

BDNF-modified 

NSCs to the cortex 

in the ipsilateral 

hemisphere  

Increased 

Increased 

Rat 

Rats 

tMCAO 

Traumatic 

brain injury 

Promotion of NSC 

survival, 

differentiation and 

migration in the brain 

(transplantation 

reaction favorable) 

BDNF increased NSCs 

survival, as well as 

their differentiation to 

neurons; increasing 

regeneration after 

injury 

(135) 

(136) 

GABA Transplantation of 

exogenous neural 

stem/progenitor 

cells (D6/GFP) 1 

week after a brain 

Increased Rat Thrombotic 

stroke: 

photochemic

al lesion 

Differentiation to 

active neurons 

capable of forming 

synapses, no cell 

migration 

(137)
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photochemical 

lesion 

One week after in 

vitro differentiation 

of D6/GFP-derived 

cells give rise to 

undifferentiated 

GABA-ergic 

neurons 

Increased Mouse 

Neural 

stem/progen

itor cells 

(D6/GFP) 

Differentiation to 

astrocytes and 

neurons. 

Transplantation 

reaction favorable 

(137) 

GM-CSF Modulation of 

endogenous NSCs 

by local application 

of GM-CSF at the 

injury site 

NSCPCs co-

cultured with DCs 

Increased Mouse Over-

hemisection 

SCI 

Induction of 

differentiation of DCs, 

leading to 

proliferation of 

endogenous NSPCs 

and later neuronal 

differentiation in the 

spinal cord 

Induction of 

proliferation and 

survival of NSPCs in 

culture 

(138) 

(48) 

nNOS/NO Inhibition of nNos Increased Mouse Cortical Inhibition of nNOS in (139)
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by using N5-(1-

imino-3-butenyl)-

L- ornithine or by

nNos gene deletion 

in NSCs cultures 

NSCs were co-

cultured with 

nNos-/- neurons 

for 24 hours 

Suppression of NO 

production in the 

brain by using 

osmotic minipumps 

with a NO 

synthase inhibitor 

(L-NAME) 

Analysis of the 

number of BrdUrd-

positive cells in 

neurogenic brain 

areas of wildtype 

Decreased 

Decreased 

Mouse 

Rat 

NSCs 

Cortical 

NSCs 

Lateral 

ventricle of 

an adult 

brain 

embryonic and adult 

NSCs reduces 

neurosphere 

formation and 

proliferation 

NO production by 

neurons inhibits NSCs 

differentiation and 

proliferation 

Pharmacological and 

genetic deletion of 

NO production 

increases proliferation 

in neurogenic regions 

(SVZ, RMS and OB) 

Modulation of 

endogenous NSCs 

(139) 

(140)
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and NO synthase 

knockout mice Decreased Rat 

NO synthase 

knockout 

mouse line 

(transplantation 

reaction not studied) (140) 

Prox1/Notch1 NPCs from 

embryonic mouse 

spinal cord were 

transfected with 

Prox1 

Modulation of 

endogenous NSCs 

by in ovo 

electroporation of 

misexpressed 

Prox1 

Decreased 

Decreased 

Mouse 

Chicken 

Embryonic 

spinal cord 

NPCs 

Neural tube 

of Prox1 

transfected 

embryos. 

Overexpression of 

Prox1 reduces 

proliferation and 

differentiation 

Reduced proliferation 

of progenitors by 

negatively regulating 

Notch1 expression 

(transplantation 

reaction not studied) 

(141) 

(141) 

Stat3 Inhibition of Stat3 

production using 

cultured NSC from 

Stat3flox/flox mouse 

embryos 

Decreased Mouse NSCs from 

Stat3flox/flox 

Inhibition of Stat3 

promotes 

neurogenesis in NSCs 

and reduces notch1, 

notch2, hes5 and 

hes1 mRNA 

expression 

(transplantation 

(142)
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reaction not studied) 

SC1/PRMT5 complex SC1 knock-down in 

primary NSC by 

using SC1 specific 

siRNA 

oligonucleotides 

Increased Mouse Cortical 

primary 

NSCs 

Involved in the switch 

between proliferation 

and neurogenesis in 

NSCs (transplantation 

reaction not studied) 

(143) 

TGF- NSCs were 

incubated for 24 

hours with 

different doses of 

TGF- 

Cultured ANPs 

were treated for 1 

week with different 

doses of TGF-1 

Intranasal 

treatment with 

TGF-1 after 

stroke modulates 

endogenous NSCs 

Increased 

Decreased 

Increased 

Rat 

Rat 

Mouse 

Primary 

adult 

hippocampal 

NSCs 

ANPs from 

the ventricle 

wall and 

hippocampu

s 

MCAO 

Increase in NSC 

proliferation 

(Transplantation 

reaction not studied) 

Decrease in NPC 

proliferation 

(transplantation 

reaction not studied) 

Reduction in the 

number of apoptotic 

cells, increase in 

progenitor 

proliferation in the 

SVZ (transplantation 

reaction not studied) 

(144) 

(145) 

(146)
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UCN NSCs were 

cultured for 3 days 

in the presence of 

different doses of 

UCN and UCN 

antagonists 

Decreased Rat Cortical 

NSCs and 

organotypic 

slices 

Inhibition of 

proliferation 

(transplantation 

reaction not studied) 

(147)
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Figure 2.1: Ideal therapeutic environment for NSC survival following 

CNS injury. This figure illustrates one ideal therapeutic approach for 

transplantation of NSCs following CNS injury via up- and downregulation of 

certain environmental factors. Such an approach involves transplantation of 

NSCs into an environment which possesses a balance between positive diffusible 

signals and those with inhibitory effects. Upregulation of anti-inflammatory 

cytokines such as IL-4 and IL-10 (represented in green) and downregulation of 

microglia activation, ROS and pro-inflammatory cytokines such as IL-1, IL-15, 

IFN-γ and LIF (represented in red), may prove beneficial. There are also factors 

which display a ‘’double-edged sword’’ like behaviour. These factors include IL-6 

and TNF-α (represented in yellow) and can be either beneficial or detrimental to 

the NSC environment, depending on the surrounding milieu in place.  
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3.1 Abstract 

The cytokine, IL-25, is thought to be critically involved in inducing a type 2 

immune response which may contribute to regeneration after CNS trauma. We 

investigated whether applying recombinant IL-25, locally or systemically, in a 

mouse model of SCI improves functional and histological recovery. Repeated 

systemic administration of IL-25 did not influence functional recovery following 

SCI. In contrast, a single local administration of IL-25 significantly worsened 

locomotor outcome, which was evident from a decreased BMS score compared 

with PBS-treated controls. This was accompanied by a significant increase in 

lesion size, demyelination and T helper cell infiltration. These data show for the 

first time that IL-25 is either ineffective when applied systemically, or 

detrimental to spinal cord recovery when applied locally. Our findings question 

the potential neuroprotective role of IL-25 following CNS trauma. 

3.2 Introduction 

For decades, it has been the general opinion that an imbalanced immune 

response plays a major role in the pathophysiology of CNS trauma and disease. 

Inflammation may prove problematic for many repair processes (1), but may 

also exert beneficial effects when closely regulated. The type 2 response can be 

characterized by differentiation of CD4+ T helper type 2 (Th2) cells and the 

production of the type 2 cytokines IL-4, IL-5, IL-9 and IL-13 (2-4). This in turn 

inhibits phagocytosis (5) and suppresses inflammatory cytokines (6). Therefore, 

type 2 immune factors can contribute to immune regulation by suppressing 

excessive pro-inflammatory processes (7, 8). 

We as well as others have shown that cytokines associated with Th2 cells such 

as IL-4 (9-11) and IL-10 (12, 13), not only promote neuronal survival and 

regeneration, but also improve functional outcome after CNS trauma such as 

SCI. IL-25 (also known as IL-17E) has been suggested to be a key player in the 

origin of a type 2 response (2, 14). While research has begun to unravel its 

importance in immunity in general, conclusive data on the role of IL-25 in the 

CNS is lacking. Although a limited number of studies are currently available, 

these tend to point towards a protective role of IL-25 in neuroinflammation 
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(reviewed in (15, 16)). For example, IL-25 treatment suppresses Th17 

responses and disease symptoms in EAE and is important in maintaining blood-

brain barrier function (17, 18). IL-25 expression is downregulated by 

proinflammatory cytokines such as tumor necrosis factor-α and IL-1β, which 

increase acutely after trauma. Consistently, IL-25 is reduced in the 

proinflammatory milieu of CNS lesions (17). These findings, suggest that an 

increase in IL-25 may possess the therapeutic potential to provide repair after 

CNS trauma. 

In the present short report, we tested whether recombinant murine IL-25, 

administered either as a single dose locally to the spinal cord or via repeated 

systemic injections, improves functional recovery after SCI in mice. While no 

clinical effect was observed following systemic administration of IL-25, 

surprisingly, when applied locally, IL-25 lead to a significant decrease in 

locomotor recovery as well as a substantial increase in lesion size, demyelination 

and T helper cell infiltration. 

3.3 Methods 

3.3.1 Spinal cord T-cut hemisection injury  

A T-cut hemisection injury was performed as previously described  (19-22) in 

10-week-old female BALB/c mice (Harlan, The Netherlands). In brief, 10-week-

old female BALB/c mice were anesthetized to undergo a partial laminectomy at 

thoracic level 8. Next, iridectomy scissors were used to transect left and right 

posterior columns, the dorsal horns and additionally the ventral funiculus. 

Finally, the muscles were sutured and the back skin closed with wound clips. It 

is important to mention is that this procedure (i.e. T-cut) results in a complete 

transection of the corticospinal tract and impairment of several other descending 

and ascending motor and sensory tracts. All experiments were performed 

according to the guidelines of EU Directive 2010/63/EU on the protection of 

animals used for scientific purposes and were approved by the local ethical 

committee for animal experimentation at Hasselt University. 
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3.3.2 Treatment protocol 

Mice were treated with recombinant murine IL-25 (500 ng or 1 µg; 

ImmunoTools, Germany) via two different methods. Mice received either a 

single, local application of IL-25 (1 µg), by placing a cytokine-saturated gelfoam 

patch at the lesion site immediately after injury, or systemic administration via 

repeated intraperitoneal (i.p.) injections (500 ng) once-daily for seven days 

starting one day before injury. The dose for the local application of IL-25 was 

chosen based on pilot experiments in our lab, where we observed a non-

significant trend towards a decreased functional recovery after SCI following 

treatment with a lower dose (500 ng/ml; data not shown). The dose for 

systemic administration was chosen based on a previous study (17). Control 

animals were treated with vehicle, i.e. phosphate buffered saline (PBS) (n=7-10 

mice/group).  

3.3.3 Locomotion tests 

Starting 1 day after surgery, functional recovery in SCI mice was measured at 

regular time points for three weeks using the BMS (23) as previosuly described 

(19, 20, 22). The BMS is a 10-point locomotor rating scale (9 = normal 

locomotion; 0 = complete hind limb paralysis), in which mice are scored by two 

investigators blinded to the experimental groups. The given scores are based on 

hind limb movements made in an open field during a 4-minute interval. 

3.3.4 Immunofluorescence protocol 

Three weeks after surgery, mice were anesthetized and transcardially perfused 

with Ringer’s solution containing heparin, followed by perfusion with 4% 

paraformaldehyde. Spinal cord tissue was resected and cryoprotected in sucrose 

(5% followed by 30%), then stored at -80°C prior to sectioning. Histological 

analysis was performed on mice receiving a local and systemic application of IL-

25 as previously described (20, 22).  To analyze lesion size, demyelination, 

astrogliosis as well as T cell and microglia/macrophage infiltration, cryosections 

(10 µm) were pretreated with PBS (pH 7.4) containing 10% normal goat serum 

and 0.05% Triton X-100 for 1h. Sections were then incubated for 2h at room 
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temperature or overnight at 4°C with the following primary antibodies, diluted in 

PBS containing 1% normal goat serum and 0.05% Triton X-100: a combination 

of mouse anti-glial fibrillary acidic protein (GFAP) (1:500; Sigma-Aldrich, 

Belgium) and rabbit anti-myelin basic protein (MBP) (1:500; Millipore, Belgium), 

or with rat anti-CD4 (1:500; BD biosciences, Belgium) and rabbit anti-ionized 

calcium binding adaptor molecule 1 (Iba-1) (1:350; Wako, Germany). 

Subsequently, sections were washed with PBS, and corresponding secondary 

antibodies were applied for 1h at room temperature: goat anti-mouse Alexa 

Fluor 568, goat anti-rabbit Alexa Fluor 488, or goat anti-rat Alexa Fluor 568 

(dilution 1:250 in PBS containing 1% normal goat serum and 0.05% Triton X-

100; Life Technologies, Belgium). Finally, a DAPI nuclear stain was performed 

before sections were mounted using anti-fade fluorescent mounting medium 

(Dako, Germany). Negative controls were prepared by omitting incubation with 

the primary antibody from the protocol 

3.3.5 Image analysis 

Image analysis was performed using pictures taken by a Nikon Eclipse 80i 

microscope (Nikon, Brussels, Belgium), with one series containing a maximum of 

8 sections per animal per  analysis, as previously described (19, 20), with minor 

modifications. Lesion size and demyelinated area were defined by delineating 

the area devoid of GFAP or MBP immunoreactivity, respectively. To quantify the 

number of infiltrating CD4+ T helper cells, the entire section containing the 

lesion epicenter as well as the perilesional area was used. CD4-positive but Iba-

1 negative cells (to exclude CD4+ microglia/macrophages) were counted 

manually. For quantification of astrogliosis (GFAP) and microglia/macrophage 

infiltration (Iba-1), TissueQuest immunofluorescence analysis software 

(TissueGnostics GmbH, v3.0) was used, as previously described (24). Each slide 

was analysed at 4X magnification and the number of IBA-1+ and GFAP+ cells at 

the lesion site and surrounding tissue were quantified based on a DAPI nuclear 

staining. 
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3.3.6 Cell cytotoxicity assay 

To study the effect of IL-25 on cell survival in vitro, we used a human 

astrocytoma cell line (CCF) (25), a human glial (oligodendrocytic) hybrid cell line 

(MO3.13) (26), an immortalized murine BV-2 cell line (27) and primary cortical 

neuronal cells as previously described (3). Primary cortical neuronal cells were 

isolated from embryonic day 15 (E15) BALB/c mice and were cultured in 

neuronal media (Neurobasal media, containing 2% B27, 1% glutamine and 1% 

penicillin/streptomycin). MO3.13, CCF and BV2 cell lines were used to study 

survival of oligodendrocytes, astrocytes and microglia respectively. All cells were 

seeded on poly-d-lysine-coated 96-wells at a density of 5 x 103 cells/well. Cells 

were grown under optimal conditions and treated with selected concentrations of 

IL-25 (5 ng/ml, 50 ng/ml, 500 ng/ml, and 1 μg/ml for 72 hours to measure 

viability. To measure a potential beneficial effect of IL-25 inhibition on neuronal 

death, 1 hour after isolation, cells were incubated in B27 deficient media with or 

without IL-25 for 72 hours. CCF cells were cultured in DMEM/F-12 medium 

containing 10% FCS and 1% penicillin/streptomycin and BV2 cells were cultured 

in (DMEM medium, containing 10% FCS and 1% penicillin/streptomycin. MO3.13 

cells were cultured in MEM medium with 10% FCS and 1% 

penicillin/streptomycin. After 70% confluency, MO3.13 cells were differentiated 

in DMEM medium by removing FCS from the culture medium and adding 100nM 

4-α-phorbol 12-myristate 13-acetate (PMA) to the cells for 72 hours (3, 28).

Following treatment of all cell types with varying concentrations of IL-25, a 3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) solution 

(1 mg/ml) was added for 4 h. The cells were lysed in a mixture of dimethyl 

sulfoxide (DMSO) and glycine (0.1 M), and the absorption was measured at 

540nm using a microplate reader (Bio-Rad, Nazareth, Belgium). Cells treated 

with 10% DMSO were used as positive control. 

3.3.7 Statistical analyses 

Statistical analyses were performed using GraphPad Prism software (GraphPad 

Software Inc., USA). Differences between treatment groups in lesion size, 

demyelinated area and T cell numbers, were calculated using the Mann-Whitney 
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U test. Differences in astrogliosis, microglia/macrophage infiltration, as well as in 

the BMS data were analyzed using the two-way ANOVA for repeated 

measurements (with Bonferroni post hoc tests). Differences were considered to 

be significant when p < 0.05.  Data in graphs are presented as mean ± SEM. 

3.4 Results & Discussion 

In this short report, we investigated whether increasing levels of IL-25, a 

potential inducer of a type 2 immune response, can promote functional recovery 

in a mouse model of SCI. Considering the widespread expression of the receptor 

A subunit of the IL-17 receptor which forms a complex with the receptor B 

subunit upon binding with IL-25 (29), we aimed to distinguish between local and 

systemic effects of treatment. We found that local application of IL-25 led to a 

significant worsening in motor performance following injury compared with PBS 

controls (Figure 3.1a; * p < 0.05). At the histological level, these results were 

accompanied by a 30% increase in lesion size (Figure 3.1b, g, h; *** p < 0.001) 

and demyelinated area (Figure 3.1c, i, j; ** p < 0.01). Surprisingly, systemic IL-

25 treatment did not influence functional recovery (Figure 3.2a). Furthermore, 

there was no effect of systemic IL-25 treatment on lesion size or demyelinated 

area (Figure 3.2b, c).  
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Figure 3.1: Local application of IL-25 decreases functional outcome and 

increases lesion size, demyelination and T-cell infiltration following SCI 

in mice  

(a) Mice receiving local application of IL-25 show a statistically significant

decrease in functional outcome when compared to those receiving PBS, as

measured by the BMS (*p < 0.05), n = 9–10 mice/group. (b) Lesion size and

(c) demyelinated area were quantified by staining for (g, h) GFAP and (i, j)

MBP, respectively, as depicted by the dotted white line. Image analysis revealed

a significant increase in (b) lesion size and (c) demyelinated area in animals

treated locally with IL-25, compared with the PBS control group. Quantification

of (d) Iba-1+ and (e) GFAP+ cells after SCI using TissueQuest software

revealed no significant difference in (k, l) microglia/macrophages numbers or

(g, h astrogliosis between animals receiving PBS or IL-25. (f) Significantly more

CD4+ T cells are present in the spinal cord sections of the (n) IL-25-treated

mice, compared with (m) PBS-treated mice, 3 weeks after SCI. Scale bars of

representative photomicrographs: (g–l) = 500 μm, m+ n = 50 μm. Data

represent mean ± SEM. ***p < 0.001, **p< 0.01, n = 5–6 mice/group

We also analyzed the presence of microglia/macrophages (Figure 3.1d, k, I & 

2d) as well as astrogliosis (Figure 3.1e, g, h & 2e), by quantifying the number of 

Iba-1+ and GFAP+ cells respectively. However, no significant differences were 

found between IL-25 treated and control groups, in both local and systemic 

treatment. Following quantification of perilesional CD4+ T cells, we found a 

significant increase in the number of cells in tissue sections from mice treated 

locally with IL-25, compared with PBS controls (Figure 3.1f, m, n; *** p < 

0.001). There was no effect of systemic IL-25 treatment on the number of CD4+ 

T cells (Figure 3.2f). The precise role of T cells following CNS injury is still 

subject to discussion. Although they may display beneficial effects under certain 

conditions, accumulation of endogenous T cells, may be considered detrimental 

(7, 20).  
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Figure 3.2: Systemic application of IL-25 has no effect on functional

or histological outcome following SCI in mice 

(a) Repeated i.p. administration of IL-25 has no significant effect on functional

outcome when compared to those receiving PBS, as measured by the BMS, n=7

mice/group. Sections were stained for GFAP and MBP to determine the (b)

lesion size and (c) demyelinated area respectively. Image analysis revealed no

significant difference in (b) lesion size or (c) demyelinated area in animals

treated systemically with IL-25, compared with the PBS control group.

Quantification of (d) Iba-1+ and (e) GFAP+ cells after SCI using TissueQuest

software revealed no significant difference in microglia/macrophages numbers or

astrogliosis between animals receiving PBS or IL-25. (f) There was no significant

difference in the number of CD4+ T cells present in spinal cord sections of IL-25-

treated mice, compared with PBS-treated mice. Data represent mean ± SEM, n

= 7 mice/group.
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We also investigated the effect of IL-25 in vitro on cell viability. However, we 

observed no significant effects of various concentrations of IL-25 on survival of 

oligodendrocytes, astrocytes, microglia or primary cortical neuronal cells (Figure 

3.3a-d). These results may be consistent with the lacking effect of systemic IL-

25 treatment in vivo. They also indicate that the toxic effect observed locally, is 

not caused by a direct effect on the above cell types. This suggests that local 

administration of IL-25 following SCI activates an indirectly mediated cascade of 

detrimental immune events.  

Although a member of the rather pro-inflammatory IL-17 family, IL-25 plays a 

somewhat different role in the context of CNS inflammation. IL-25 mRNA is 

highly expressed in polarized Th2 cells (14) and IL-25 administration in mice 

drives the Th2 response, by elevating IL-4 and IL-13 levels (14, 16). Systemic 

IL-25 regulates the development of autoimmune inflammation mediated by IL-

17-producing cells and suppresses EAE symptoms in a relapse-remitting model

(14). Additionally, delivery of IL-25 to the CNS in two different models of 

neuroinflammation, was able to drive microglia and macrophages to a more 

anti-inflammatory and tissue-protective phenotype (30). 
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Figure 3.3: IL-25 has no effect on mature oligodendrocyte, astrocyte, 

microglia or primary neuron cell viability 

(a) MO3.13 cells were differentiated to mature oligodendrocytes using PMA for

72 h and were treated for 48 h with selected concentrations of IL-25. (b, c) The

astrocytic and microglial cell lines (CCF and BV2 respectively) were treated for

48 h with selected concentrations of IL-25. (d) Primary neurons were incubated

with selected concentrations of IL-25 for 48 h in the presence or absence of B27.

B27 deprivation induced a decreased cell viability, but IL-25 treatment had no

effect on this. The selected concentrations of IL-25 used for all cell types were:

5 ng/ml, 50 ng/ml, 500 ng/ml and 1 μg/ml. Cell survival was measured using an

MTT assay and values are expressed as percentage of the control. (a-d) There

was no significant effect observed on cell viability in all cell types tested. Data

represent mean ± SEM of 1 representative experiment (from 2-3 independent

experiments) *** p < 0.001.



Chapter III: Interleukin-25 is detrimental for recovery after spinal cord injury 

in mice 

83 

In contrast to the above positive effects on neuroinflammation, our results 

indicate that systemic administration of IL-25 after SCI in mice is ineffective in 

improving functional outcome. This result was surprising given that we as well 

as others have shown that treatment with cytokines which induce a type-2 

response, such as IL-4 and IL-10, are neuroprotective following SCI (11, 12). 

Differences in systemic versus local administration is a well-known phenomenon 

(31-33) and our results are consistent with this as local application of IL-25 

decreased functional recovery after SCI. Furthermore, we observed that a lower 

local dose of IL-25 (500 ng/ml) lead to a non-significant trend towards a 

decrease in functional outcome after SCI (data not shown), indicating that route 

of administration and dosing are important factors which must be considered 

prior to use of cytokine therapy. 

Interestingly, it was previously demonstrated that intraspinal treatment with IL-

10 exacerbated damage and lesion size, while when given systemically; it 

improved recovery after SCI (12). Taken together, these data reiterate the well-

recognized fact that the route of administration is of pivotal importance when 

determining a therapeutic outcome. Additionally, Mearns et al recently 

questioned the role of IL-25 in Th2 cell differentiation and the induction of 

potentially beneficial Th2-cell responses (34). In contrast to previous reports, 

the authors used reporter mouse technology to show that IL-25 is dispensable 

during differentiation and development of Th2 cells (34). In our study, IL-25 

failed to have an effect systemically and even worsened functional outcome 

when applied locally. This suggests that the direct involvement of IL-25 in 

driving a Th2 response remains questionable. Furthermore, based on the current 

opinion on the role of Th2 cytokines following CNS injury (8), it is safe to 

suggest that factors which regulate the type 2 immune response, are in turn, 

key players in CNS pathology. 

In this short report, we show for the first time that IL-25 is either ineffective 

when applied systemically or detrimental to spinal cord recovery when applied 

locally. These findings indicate that the potential positive effects of IL-25 and its 

involvement in driving a beneficial type 2 immune response, need to be carefully 

reconsidered prior to its use therapeutically.  
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4.1 Abstract 

Increasing evidence suggests that cytokines associated with Th2 cells, contribute 

to improved therapeutic outcome after trauma to the CNS. We have previously 

shown that IL-13 potently stimulates neurite outgrowth in primary neurons and 

organotypic brain slices in vitro. Additionally, we have demonstrated that IL-13 

levels are significantly decreased in the spinal cord tissue, within hours after 

after injury in mice. Therefore, in the present study, we investigated whether 

recombinant murine IL-13, administered either as a single dose locally to the 

spinal cord or via repeated systemic injections, improves functional outcome 

after SCI in mice. While no clinical effect was observed following local 

administration of IL-13, systemic administration of IL-13 lead to a significant 

increase in locomotor recovery as well as a significant increase in the number of 

Arg-1+ alternatively activated microglia/macrophages. Taken together, these 

data indicate that IL-13 may be a promising therapeutic agent for treatment 

following SCI, however further research is required to optimise the optimal 

method of administration and determine the mechanistic effects of IL-13 in vivo. 

4.2 Introduction 

To date, regeneration and the recovery of function after as SCI is limited. 

Trauma induced inflammation combined with the minimal ability of neural tissue 

to regenerate, are two major factors which hinder recovery. Increasing evidence 

suggests that cytokines associated with Th2 cells such as IL-4 (1-3) and IL-10 

(4, 5), not only promote neuronal survival and regeneration, but also improve 

functional outcome after CNS trauma such as SCI. IL-13, a cytokine closely 

related to IL-4 (6), is a canonical anti-inflammatory Th2 cytokine, which in some 

contexts can also be pro-inflammatory (7). IL-13 has been shown to exert 

neuroprotective effects in EAE, by decreasing inflammatory cell infiltration and 

axonal loss as well as reducing clinical symptoms (8-10). However, at present, 

there is limited literature available indicating whether IL-13 is capable of 

promoting repair after CNS trauma. We have previously demonstrated that IL-

13 stimulates key processes of regeneration, by modulating neuronal survival 



Chapter IV: Systemic administration of IL-13 improves functional recovery 

following spinal cord injury in mice 

91 

and increasing neurite outgrowth from primary neurons and organotypic brain 

slices in vitro (unpublished observations).  

Following CNS trauma, such as SCI, the immune system responds acutely via 

the induction of a complex pro-inflammatory state, which is accompanied by a 

lesser, transient anti-inflammatory reaction (11, 12). We have also recently 

demonstrated that IL-4 levels are significantly decreased in the serum and IL-13 

levels are significantly decreased in the spinal cord, within hours after after SCI 

in mice (13). Therefore, it seems plausible that application of IL-13 in the acute 

phase after SCI may provide therapeutic potential. In the present study, we 

tested whether recombinant murine IL-13, administered either as a single dose 

locally to the spinal cord or via repeated systemic injections, improves functional 

recovery after SCI in mice. While no clinical effect was observed following a 

single local administration of IL-13, multiple systemic administrations of IL-13 

lead to a significant increase in locomotor recovery as well as a significant 

increase in the number of Arg-1+ alternatively activated microglia/macrophages. 

4.3 Methods 

4.3.1 Spinal cord hemisection injury 

A T-cut hemisection injury was performed as previously described (13-15) in 10-

week-old female BALB/c mice (n=10 per treatment group) (Harlan, The 

Netherlands). In brief, 10-week-old female BALB/c mice were anesthetized to 

undergo a partial laminectomy at thoracic level 8. Next, iridectomy scissors were 

used to transect left and right posterior columns, the dorsal horns and 

additionally the ventral funiculus. Finally, the muscles were sutured and the back 

skin closed with wound clips. It is important to mention is that this procedure 

(i.e. T-cut) results in a complete transection of the corticospinal tract and 

impairment of several other descending and ascending motor and sensory 

tracts. All experiments were performed according to the guidelines of EU 

Directive 2010/63/EU on the protection of animals used for scientific purposes 

and were approved by the local ethical committee for animal experimentation at 

Hasselt University. 
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4.3.2 Treatment protocol 

For systemic recombinant IL-13 treatment, mice were injected once daily i.p. 

with 500ng of mouse recombinant IL-13 (Peprotech, UK), (the dose of which 

was chose based on pilot experiments in our lab) in PBS for 7 consecutive days, 

starting on the day of SCI (i.e. until day 6 post-SCI). For local application of IL-

13, mice were treated with 500ng of mouse recombinant IL-13 (Peprotech, UK), 

by placing a cytokine-saturated gelfoam patch at the lesion site immediately 

after injury. In both experimental set ups, control animals were treated with 

PBS. 

4.3.3 Locomotion tests 

Starting 1 day after surgery, functional recovery in SCI mice was measured at 

regular time points for 3 or 12 weeks using the BMS (16) as previosuly 

described (13-15). The BMS is a 10-point locomotor rating scale (9 = normal 

locomotion; 0 = complete hind limb paralysis), in which mice are scored by two 

investigators blinded to the experimental groups. The given scores are based on 

hind limb movements made in an open field during a 4-minute interval. 

4.3.4 Immunofluorescence protocol 

Three weeks after surgery, mice were anesthetized and transcardially perfused 

with Ringer’s solution containing heparin, followed by perfusion with 4% 

paraformaldehyde. Spinal cord tissue was resected and cryoprotected in sucrose 

(5% followed by 30%), then stored at -80°C prior to serial sectioning. 

Histological analysis was performed on mice receiving a local and systemic 

application of IL-13 as previously described (15, 17, 18).  To analyze lesion size, 

demyelination, astrogliosis as well as T cell and microglia/macrophage 

infiltration, serial cryosections (10 µm) were pretreated with PBS (pH 7.4) 

containing 10% normal goat serum and 0.05% Triton X-100 for 1h. Sections 

were then incubated for 2h at room temperature or overnight at 4°C with the 

following primary antibodies, diluted in PBS containing 1% normal goat serum 

and 0.05% Triton X-100: a combination of mouse GFAP (1:500; Sigma-Aldrich, 

Belgium) and rabbit MBP (1:500; Millipore, Belgium), or with rat anti-CD4 

(1:500; BD biosciences, Belgium) and rabbit Iba-1 (1:350; Wako, Germany). To 
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identify alternatively activated microglia/macrophages, sections were 

permeabilized using 0.1% Triton X-100 for 30 minutes and treated with 20% 

serum in Tris-buffered saline (TBS, pH 7.5) for 2 hours. Incubation with primary 

goat anti-arginase-1 (Arg-1) antibody (Santa Cruz, Germany; sc-18354), diluted 

1:50 in TBS containing 10% milk powder (TBS-M), was performed overnight at 

4°C. Sections were then washed with PBS, and corresponding secondary 

antibodies were applied for 1h at room temperature: goat anti-mouse Alexa 

Fluor 568, goat anti-rabbit Alexa Fluor 488, goat anti-rat Alexa Fluor 568 

(dilution 1:250 in PBS containing 1% normal goat serum and 0.05% Triton X-

100; Life Technologies, Belgium) or donkey anti-goat DyLight 650 (Abcam, UK). 

Finally, a DAPI nuclear stain was performed before sections were mounted using 

anti-fade fluorescent mounting medium (Dako, Germany). Negative controls 

were prepared by omitting incubation with the primary antibody from the 

protocol. 

4.3.5 Image analysis 

Image analysis was performed using pictures taken by a Nikon Eclipse 80i 

microscope (Nikon, Brussels, Belgium), with one series containing a maximum of 

8 sections per animal per  analysis, as previously described (15, 17, 19), with 

minor modifications. Lesion size and demyelinated area were defined by 

delineating the area devoid of GFAP or MBP immunoreactivity, respectively. To 

quantify the number of infiltrating CD4+ T helper cells, the entire section 

containing the lesion epicenter as well as the perilesional area was used. CD4-

positive but Iba-1 negative cells (to exclude CD4+ microglia/macrophages) were 

counted manually. For quantification of alternatively activated 

microglia/macrophages [Arginase (Arg)-1], TissueQuest immunofluorescence 

analysis software (TissueGnostics GmbH, v3.0) was used, as previously 

described (15, 20). Each slide was analysed at 10X magnification and the 

number of Arg-1+ cells at the lesion site were quantified based on a DAPI 

nuclear staining. 
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4.3.6 Statistical analysis 

All statistical analyses were performed using Prism 5.0 software (GraphPad 

Software, San Diego, CA, USA). The BMS locomotion tests as well as histological 

evaluation of astrogliosis and microglia/macrophage intensities were analysed 

using a two-way ANOVA for repeated measurements with Bonferroni correction 

for multiple comparisons. All other differences between two groups were 

evaluated using the nonparametric Mann-Whitney U-test. Differences were 

considered statistically significant when p<0.05. Data shown represent mean 

values per experimental group ± SEM. 

4.4 Results and Discussion 

SCI is accompanied by a complex pro-inflammatory immune response, leading 

to secondary damage and limited repair. However, increasing evidence suggests 

that restoring the immune balance may provide a more favourable environment 

for functional recovery and regeneration. One possible strategy to downregulate 

this pro-inflammatory state, may be to increase the levels of anti-inflammatory 

factors. Furthermore, it has been previously demonstrated that anti-

inflammatory or Th2/M2 factors such as IL-13 can downregulate the production 

of pro-inflammatory factors such as TNF-alpha, IL-1beta and IL-6 (21). 

To study its potential therapeutic effects, we administered recombinant IL-13, 

both locally and systemically, in a well-established mouse model SCI. For the 

local application, mice were treated with recombinant IL-13 (500ng/ml), by 

placing a cytokine-saturated gelfoam patch at the lesion site immediately after 

injury and functional recovery was monitored using the BMS. Surprisingly, 3 

weeks post injury, IL-13-treated mice showed no functional improvement 

following treatment, compared with PBS controls (Figure 4.1A).  
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Figure 4.1: Local application of IL-13 has no effect on functional 

recovery following SCI in mice.  

(A) Following SCI, mice were treated with a local application of recombinant IL-

13 (500ng/ml), by placing a cytokine-saturated gelfoam patch at the lesion site

immediately after injury and functional recovery was monitored using the BMS.

IL-13-treated mice showed no functional improvement following treatment,

compared with PBS controls, n=13/group.

For systemic treatment, mice received recombinant IL-13 at a dose of 500ng/ml, 

once daily for 7 days, starting on the day of surgery. Similarly to the local 

application, functional recovery was monitored using the BMS. One week post 

treatment, mice which received IL-13 displayed a significantly improved 

functional outcome compared with PBS treated controls, which persisted for 12 

weeks post injury (Figure 4.2A). Given this improved clinical effect, we also 

investigated the effect of systemic IL-13 at the histological level; more 

specifically on lesion size and demyelination. Surprisingly, we found no 

significant effect of IL-13 treatment on lesion size and (GFAP) or demyelinated 

area (MBP) (Figure 4.2B + C respectively). 
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Figure 4.2: Systemic administration of recombinant IL-13 improves 

functional recovery following SCI in mice.  

(A) After subjecting mice to a dorsal T-cut hemisection injury, they received

recombinant IL-13 at a dose of 500ng/ml, systemically once daily for 7 days,

starting on the day of surgery. Functional recovery was monitored using the

Basso mouse scale (BMS). Mice treated with IL-13 displayed a significantly

improved functional outcome compared with PBS treated controls. Analysis of

(B) lesion size and (C) demyelinated area revealed no significant differences in

IL-13-treated mice compared with PBS controls. * p < 0.05, n=5-7/group.

In the case of treatment with IL-10, another anti-inflammatory Th2 cytokine, a 

decrease in lesion size was observed, however, this was measured two months’ 

post SCI (22). Having ruled out a direct effect of IL-13 on lesion volume and 

demyelinated area and given that inflammation also plays an important role in 

defining functional outcome (11), we also quantified the presence of 

microglia/macrophages and astrogliosis at the lesion site by performing an 

intensity analysis for Iba-1 (Figure 4.3A). and GFAP respectively (Figure 4.3B). 

However, for both analyses, no significant differences were found between 

control and IL- 13 treated mice. Finally, we investigated the presence of 

alternatively activated microglia/macrophages by staining for Arg-1 at the lesion 

site (Figure 4.3C). Upon quantification, we observed a significant increase in the 

number of Arg-1+ microglia/macrophages at the lesion site in IL-13-treated mice 

compared with PBS controls (Figure 4.3D, E).  
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Figure 4.3: Systemic administration of recombinant IL-13 leads to a 

significant increase in Arg-1+ alternatively activated 

microglia/macrophages. 

Immunofluorescence staining for Iba-1 and GFAP revealed no significant 

differences in (A) microglia/macrophage presence or (B) astrogliosis. 

TissueQuest quantification revealed a significant increase in the percentage of 

(C) Arg-1+ cells in (E) IL-13-treated compared with (D) PBS-treated mice. * p

< 0.05, n=5-7/group.

IL-13 has been shown to be a key factor, capable of inducing a macrophage 

phenotype switch from a rather ‘detrimental’ M1 phenotype to a more ‘beneficial’ 

alternatively activated, M2 phenotype (6, 23). Therefore, it is tempting to 

speculate that systemic treatment with IL-13 also leads to a switch in vivo 

towards a more neuroprotective microglia/macrophage phenotype, which may 

correspond to the improved functional recovery observed in IL-13-treated mice.  
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Given the limited effect of IL-13 on other inflammatory parameters and lesion 

remodeling when administered systemically, it is difficult to specifically pin-down 

the mechanistic effects of IL-13 after SCI. It is also interesting to note the 

varying results observed in local versus systemic IL-13 treatment, however this 

is not the first time that we have observed differences based on route of 

administration using cytokine treatment following SCI (15). Differences in 

systemic versus local administration is a well-known phenomenon (25-27) and 

our results are consistent with this as systemic administration of IL-13 improved 

functional recovery after SCI, while local application had no effect.  

4.5 Conclusion 

Taken together, our findings indicate that IL-13 has the therapeutic potential to 

improve locomotion recovery after SCI, most likely via a direct or indirect effect 

on microglia/macrophages and driving them towards a more alternatively 

activated, neuroprotective phenotype. However, given the variation observed in 

route of administration, a more favourable treatment method and further 

investigation into the mechanistic effects of IL-13, is still needed. These options 

will be further discussed in chapter V. 
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5.1 Abstract 

MSC transplantation has been suggested to provide repair after CNS injury, 

however, the therapeutic effects to date have been rather limited. Therefore, in 

the present study, rather than focusing on the intrinsic regenerative capacity of 

MSCs, we aimed to enhance their immunomodulatory properties via genetic 

engineering, to enable continuous secretion of the anti-inflammatory cytokine 

IL-13. We used MSCs as carriers of IL-13 (MSC/IL-13) and investigated their 

therapeutic potential, compared with non-engineered MSCs, in a mouse model 

of SCI. We show for the first time that transplanted MSCs which continuously 

secrete IL-13, not only significantly improve functional recovery following SCI in 

mice, but also on the histopathological level, decrease lesion size and 

demyelinated area by over 40%. Further detailed histological analyses in the 

CX3CR1eGFP/+ CCR2RFP/+ transgenic mouse model indicated that transplantation of

MSC/IL-13 significantly decreases the number of resident microglia and 

significantly increases the number of alternatively activated macrophages at 

both the graft and lesion site. Additionally, the number of macrophage-axon 

contacts in MSC/IL-13-treated mice was decreased by 50%, suggesting a 

reduction in axonal dieback, and in turn, improved functional outcome. In 

summary, our data provide first evidence that transplantation of IL-13-secreting 

MSCs, and the subsequent introduction of M2a macrophages to the injured 

spinal cord, lead to improved functional and histopathological recovery in a 

mouse model of SCI. 

5.2 Introduction 

Stem cell therapies for CNS injury have raised a lot of hope amongst patients, 

doctors and scientists in recent years. Although we are still in the early stages of 

developing successful approaches in humans, numerous pre-clinical animal 

studies support the therapeutic ability of stem cells (1-3). Despite these 

observations, the dual role of the neuro-inflammatory response following CNS 

injury, makes stem cell-supported regeneration difficult due to the presence of 
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inhibitory immune factors which are upregulated in and around the lesion site. 

Therefore, modulating the inflammatory milieu by upregulating anti-

inflammatory cytokines may be crucial when designing therapies for CNS repair 

(4). With this in mind, using MSCs as an immune-modulating cellular therapy, 

may exert positive effects in rodent models of SCI (5, 6). Here, we test the 

hypothesis that using MSCs as carriers for the delivery of the canonical anti-

inflammatory cytokine IL-13, may further enhance their therapeutic potential. 

Despite much debate regarding the detrimental effects of CNS inflammation, 

many studies have also outlined its significance in tissue repair, including a 

therapeutic potential of microglia/macrophages in promoting axonal 

regeneration (7, 8). Almost all tissues contain several types of phagocytic cell 

populations, consisting of macrophages and/or microglia, which have specialised 

functions and distinct phenotypic properties. (9, 10). A rather simplistic but 

pragmatic way to distinguish the varying microglia/macrophage subsets is to 

divide them into classically (M1) or alternatively activated (M2) phenotypes (11, 

12). M2 microglia/macrophages differentiate from the classically activated M1 

microglia/macrophages and are less inflammatory in nature. They are 

characterised by a reduced nitric oxide production and less secretion of pro-

inflammatory cytokines (13). They also express markers such as Arg-1 and 

Found in inflammatory zone 1 (FIZZ1) which differentiate them from classically 

activated M1 microglia/macrophages (14). However, a more specific 

characterisation indicates that upregulation of major histocompatibility complex 

(MHC)-II (in both M1 and M2 cell subsets) is associated with macrophage 

activation. It is currently suggested that the joint expression of MHC-II and Arg-

1/FIZZ1 is indicative of a neuroprotective and anti-inflammatory, M2a 

phenotype (15), however, the exact mode-of-action of this polarised cell type 

has not yet been unravelled. Nevertheless, reducing the pro-inflammatory M1 

phenotype upon CNS injury in favour of the beneficial M2a phenotype, is of 

particular therapeutic interest. 

This polarising approach towards an M2a phenotype may be of great therapeutic 

value, particularly following SCI. After injury, infiltration of axon-attacking 
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macrophages greatly contributes to axonal retraction and the deleterious 

phenomenon known as axonal dieback (16, 17). This leads to exacerbation of 

damage and increased functional deficits. Therefore, in this study, we aimed to 

target these attacking macrophages and drive them towards a less destructive 

phenotype, in order to limit axonal dieback and improve functional recovery 

after SCI. To do this, we chose to use the immunomodulatory cytokine, IL-13, 

which is a well-known inducer of the M2a microglia/macrophage phenotype (18, 

19). IL-13 has also been shown to exert neuroprotective effects in the 

experimental autoimmune encephalomyelitis model of multiple sclerosis, by 

decreasing inflammatory cell infiltration and axonal loss as well as reducing 

clinical symptoms (20-22). We recently demonstrated that after SCI in mice, IL-

13 levels decrease significantly in the spinal cord within hours after injury (23). 

Therefore, given the drop in IL-13 levels after injury and it’s polarising 

capabilities towards a more neuroprotective M2 macrophage phenotype, it is 

plausible that application of IL-13 in the acute phase after SCI may have 

therapeutic potential. 

In order to efficiently deliver IL-13 to the injured spinal cord, we used 

autologous MSCs genetically engineered to secrete IL-13. We hypothesised that 

this enhanced cellular therapy is capable of modulating the 

microglia/macrophage response and improve functional recovery after SCI. In 

order to support our hypothesis, we investigated the effects of grafting control 

MSCs and those expressing IL-13 (MSC/IL-13), in a mouse model of SCI. We 

show for the first time that transplantation of MSCs which continuously secrete 

IL-13, significantly improve functional recovery and decrease lesion size as well 

as demyelinated area after SCI. Finally, we propose a mode-of-action in which 

delivery of IL-13 from MSC grafts to the injured spinal cord, polarises 

macrophages to a neuroprotective, M2a phenotype, subsequently reducing the 

number of axon-attacking macrophages and improving functional outcome.   
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5.3 Materials and methods 

5.3.1 Animals 

Wild type (WT) BALB/c OlaHsd (strain code 162) and wild type C57BL/6 mice 

(strain code 027) were obtained from Harlan and Charles River Laboratories 

respectively. CX3CR1eGFP/eGFP mice (strain code 005582) and CCR2RFP/RFP mice

(strain code 017586) were obtained from Jackson Laboratories. CX3CR1eGFP/+

CCR2RFP/+ mice were obtained by breeding CX3CR1eGFP/eGFP mice with CCR2RFP/RFP

mice. Resulting double transgenic mice have one allele of the CX3CR1 gene 

replaced by eGFP and the other allele of the CCR2 gene replaced by RFP (24). 

This results in the presence of green fluorescent microglia (eGFP+RFP-) and red 

fluorescent infiltrating macrophages/monocytes (eGFP-RFP+ and  eGFP+RFP+). All 

animals were housed in a conventional animal facility at Hasselt University or 

University of Antwerp under regular conditions, i.e. in a temperature-controlled 

room (20±3°C) on a 12h day-night light cycle and with food and water ad 

libitum. Male mice were used for all experiments, except for those carried out in 

CX3CR1eGFP/+ CCR2RFP/+ mice, where equal numbers of males and females were

used. All experiments were performed using 8-10-week old mice and were 

approved by the local ethical committees and were performed according to the 

guidelines described on the protection of animals used for scientific purposes at 

Hasselt University (EU Directives 2010/63) and University of Antwerp (2011/13 

and 2012/39). 

5.3.2 Isolation, genetic engineering and culturing of MSCs 

In this study, we used two previously established and characterised bone 

marrow-derived MSC lines originally derived from BALB/c and C57BL/6 mice (25, 

26). Both the parental BALB/c and C57BL/6 MSC lines, as well as derivatives 

thereof genetically engineered to express IL-13, were used for transplantation 

experiments. For generation of BALB/c and C57BL/6 MSC/IL-13, the pCHMWS-

mIL-13-IRES-Pac lentiviral (LV) vector was used for MSC transduction according 

to previously optimised procedures (27, 28). Following LV transduction, Pac-

expressing MSCs were selected with puromycin (10 μg/mL; InvivoGen). 
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Expression of IL-13 was confirmed by murine IL-13 ELISA (eBioscience). For 

routine expansion, all MSC lines were cultured in standard cell culture 

plasticware (well plates and/or culture flasks) in complete expansion medium as 

previously described (27, 28). Culture medium of MSC/IL-13 was further 

supplemented with 5µg/mL puromycin (InvivoGen), in both C57BL/6 and 

BALB/c-derived lines. All MSC cultures were kept at 37°C and 5% CO2 and were 

passaged 1:5 following 0.05% trypsin-EDTA (Invitrogen) treatment every 5 to 7 

days. BALB/c-derived MSCs were used in experiments carried out in WT 

BALB/c mice and C57BL/6 MSCs were used for transplantation experiments in 

WT C57BL/6 and transgenic C57BL/6 CX3CR1eGFP/+ CCR2RFP/+ mice.

5.3.3 Spinal cord hemisection injury 

A T-cut spinal cord hemisection injury was performed as previously described 

(n=10 per treatment group). (23, 29-33). Briefly, 8-10-week old anesthetized 

mice underwent a partial laminectomy at thoracic level T8. Iridectomy scissors 

were used to transect left and right dorsal funiculi, the dorsal horns and 

additionally the ventral funiculus (34). The back muscles were sutured and the 

skin was closed with wound clips. Bladders were manually voided daily until 

animals were able to urinate independently.  

5.3.4 Cell transplantation 

For transplantation experiments, MSC and MSC/IL-13 cell populations were 

harvested via trypsin-EDTA treatment. Cells were then washed twice with NaCl, 

resuspended in NaCl and kept on ice until spinal cord transplantation. The 

animals were divided into three groups: those receiving an injection of MSCs, 

MSC/IL-13 or NaCl (control). A motorised stereotaxic injector pump (Stoelting, 

Ireland) with a 34-gauge needle attached to a 10μl Hamilton Syringe was 

positioned 3mm rostral to the lesion site. The needle was stereotactically 

inserted into the spinal cord at a depth of 1mm and 5x104 cells in 1.5μl NaCl 

were injected over a four minute time period. The needle was subsequently kept 

in place for an additional four minutes to allow pressure equilibration and 



Chapter V: Cell-based delivery of interleukin-13 directs alternative activation of 

macrophages resulting in improved functional and histopathological outcome 

following spinal cord injury 

109 

prevent backflow of the injected cell suspension. For transplantation 

experiments carried out in CX3CR1eGFP/+ CCR2RFP/+ mice, no NaCl control group

used, given that the research objectives in question concerned potential 

differences between IL-13-secreting MSCs and control MSCs. Furthermore, 

1.5x105 cells were grafted to allow for more detailed histological quantification.  

5.3.5 Locomotion tests 

Starting 1 day after surgery, functional recovery in SCI mice was measured for 4 

weeks using the BMS (35). The BMS is a 10-point locomotor rating scale 

(9 = normal locomotion; 0 = complete hind limb paralysis), in which mice are 

scored by two investigators blinded to the experimental groups. The given 

scores are based on hind limb movements made in an open field during a 4-

minute interval.  

5.3.6 Immunofluorescence analysis 

Spinal cord cryosections (10µm) cut serially, were obtained from animals 

transcardially perfused 4 weeks post injury with ringer solution containing 

heparin, followed by 4% paraformaldehyde in 0.1M PBS. To determine lesion 

size, demyelination, gliosis, and inflammatory infiltrate, cryosections were pre-

incubated with 10% serum in PBS containing 0.5% Triton X-100 for 30 minutes 

at RT. The following primary antibodies were then incubated overnight at 4°C: 

mouse GFAP (Sigma-Aldrich, Belgium; G3893), rabbit MBP (Merck Millipore, 

Belgium, AB980), rabbit Iba-1 (Wako, Germany; 016-20001), goat anti-Iba-1 

(Abcam, UK; ab107159), rat anti-CD4 (BD Biosciences, Belgium; 553043), 

rabbit anti-neurofilament (NF) (ThermoFisher Scientific, Belgium; T.400.5) and 

rat anti-MHC-II (Santa Cruz; sc-59322). To identify alternatively activated 

microglia/macrophages, sections were permeabilized using 0.1% Triton X-100 

for 30 minutes and treated with 20% serum in Tris-buffered saline (TBS, pH 7.5) 

for 2 hours. Incubation with primary goat anti-Arg-1 antibody (Santa Cruz, 

Germany; sc-18354), diluted 1:50 in TBS containing 10% milk powder (TBS-M), 

was performed overnight at 4°C. Following repeated washing steps, secondary 
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antibodies were applied for 1 hour at RT. These consisted of: donkey anti-goat 

Alexa fluor 555 (Thermo Fisher Scientific, Belgium; A21432), donkey anti-goat 

DyLight 650 (Abcam, UK; ab96934), goat anti-rat Alexa fluor 568 (Thermo 

Fisher Scientific, Belgium; A11077), goat anti-rat DyLight 650 (Abcam, UK; 

ab6565), goat anti-mouse Alexa fluor 568 (Thermo Fisher Scientific, Belgium; 

A11004), goat anti-rabbit Alexa fluor 488 (Thermo Fisher Scientific, Belgium; 

A11008) and goat anti-rat Alexa fluor 488 (Thermo Fisher Scientific, Belgium; 

A11006). DAPI (1:1000; Sigma-Aldrich, Belgium) counterstaining was 

performed for 10 minutes and sections were mounted using fluorescence 

mounting medium (DAKO, Belgium). Immunofluorescence analysis was 

performed using a Nikon Eclipse 80i fluorescence microscope and NIS-Elements 

Viewer 4.0 software was used for image processing. 

5.3.7 Histological quantification in WT BALB/c and WT C57BL/6 mice 

For measurement of lesion size and demyelinated area, 5 to 7 serial sections per 

animal (WT BALB/c: 6-8 animals per group, WT C57BL/6: 9-10 animals per 

group) containing the lesion centre as well as consecutive rostral and caudal 

areas were analysed, as previously described (23, 29, 30, 32, 33). Briefly, lesion 

size was evaluated using anti-GFAP immunofluorescence, while the 

demyelinated area was evaluated using anti-MBP immunofluorescence, by 

delineating the area devoid of staining. For measurement of astrogliosis and 

inflammatory infiltrate in WT BALB/c mice, 5 to 7 sections per animal (7-9 

animals per group) were analysed. Quantification of astrogliosis (GFAP 

expression) and microglial activation (Iba-1 expression) was performed using an 

intensity analysis with ImageJ open source software (NIH), within square areas 

measuring 100µm X 100µm extending 600µm rostral to 600µm caudal from the 

lesion epicentre. Lesion area and graft area were identified as outlined in Figure 

5.3A. To quantify classically activated and alternatively activated 

microglia/macrophages at the lesion or graft site, sections were stained for 

MHC-II and Arg-1 respectively. Intensity analysis was performed within square 

areas measuring 350µm X 350µm, placed at the site with the greatest 

fluorescence staining intensity. T-helper cells were identified by double staining 
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against CD4 and Iba-1 in order to exclude CD4+ microglial cells and quantified 

by counting the number of CD4+ T cells throughout the entire spinal cord 

section as previously described (23, 29, 30, 32, 33). Quantification of 

microglia/macrophage and axon interactions was performed by counting the 

number of contacts between neurofilament+ dystrophic axon bulbs and Iba-1+

microglia/macrophages. Dystrophic axonal bulbs were identified based on their globular 

and bulbus morphology extending from an axon fibre as previosly described (36, 37). A 

contact was determined when a cell-cell interaction was observed between a dystrophic 

axonal bulb and an Iba-1+ cell which contained a DAPI+ nucleus. Analysis was 

performed in two standardised areas rostral and caudal from the lesion epicentre 

and the mean number of contacts in these two areas was calculated per animal 

(16, 17). 

5.3.8 Histological quantification in CX3CR1eGFP/+ CCR2RFP/+ mice

For quantitative phenotypic analyses of macrophage and/or microglia responses 

at both the lesion and graft site, 5 to 7 sections per animal (graft: 6-11 animals 

per group, lesion: 9-14 animals per group) were analysed using TissueQuest 

immunofluorescence analysis software 14 days post injury (TissueGnostics 

GmbH, v3.0), as previously described (27, 36, 37). For each of region of interest 

(graft/lesion site), an entire picture taken at 10X magnification was used for 

quantification and the surface area in the XY plane was determined. According to 

previously established procedures, the following parameters were quantified at 

the lesion and graft site: the cellular density of eGFP-RFP+ macrophages 

(CCR2RFP/+), eGFP+RFP+ double positive microglia/macrophages (CX3CR1eGFP/+

CCR2RFP/+) as well as eGFP+RFP- microglia (CX3CR1eGFP/+) in both MSC and

MSC/IL-13-treated groups. Although the presence of a double positive 

CX3CR1eGFP/+ CCR2RFP/+ population is prominent, we hypothesise that these cells

are blood derived and of peripheral origin given that it is a known limitation that 

CCR2RFP/+ monocytes can down-regulate their reporter over time and show 

phenotypic evolution (38). Therefore, we consider this double population 

throughout the rest of the manuscript as one which falls under the macrophage 
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classification. Based on the above cell density calculations, the proportion of 

microglia or macrophages at the graft and lesion site expressing MHC-II or Arg-

1 were calculated as follows: (i) eGFP-RFP+MHC-II+/Arg-1+ cells, (ii) 

eGFP+RFP+MHC-II+/Arg-1+ cells, (iii) eGFP+RFP-MHC-II+/Arg-1+ cells, (iv) eGFP-

RFP+MHC-II-/Arg-1- cells, (v) eGFP+RFP+MHC-II-/Arg-1- cells, (vi) eGFP+RFP-

MHC-II-/Arg-1- cells. Put simply, we identify the number of classically or 

alternatively activated CCR2RFP/+ macrophages and CX3CR1eGFP/+ CCR2RFP/+

macrophages or CX3CR1eGFP/+ microglia, at both the graft and lesion site.

5.3.9 Statistical analysis 

All statistical analyses were performed using Prism 5.0 software (GraphPad 

Software, San Diego, CA, USA). The BMS locomotion tests as well as histological 

evaluation of astrogliosis and microglia/macrophage intensities were analysed 

using a two-way ANOVA for repeated measurements with Bonferroni correction 

for multiple comparisons. All other differences between two groups were 

evaluated using the nonparametric Mann-Whitney U-test. Differences were 

considered statistically significant when p<0.05. Data shown represent mean 

values per experimental group ± SEM. 

5.4 Results 

5.4.1 Transplantation of MSC/IL-13 improves functional recovery and 

reduces lesion size and demyelinated area. 

In the first part of this study, we investigated whether MSCs which were 

genetically engineered to express IL-13 could improve functional recovery 

following SCI in BALB/c and C57BL/6 mice. Mice were treated with either vehicle 

(NaCl), control MSCs (MSC) or IL-13-secreting MSCs (MSC/IL-13) immediately 

after SCI and functional recovery was measured 4 weeks post injury using the 

BMS. In BALB/c mice, both MSC and MSC/IL-13-treated animals displayed a 

significantly improved functional recovery, compared with NaCl controls (Figure 
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5.1A). Lesion size quantification revealed a significant decrease in mice receiving 

transplantation of MSC/IL-13 compared with control MSCs and NaCl (Figure 

5.1B). Similarly, demyelinated area was significantly decreased in MSC/IL-13-

treated mice compared with control MSC and NaCl (Figure 5.1C). In contrast to 

Balb/C mice, treatment with MSC/IL-13 in C57BL/6 mice, significantly improved 

functional recovery compared with control MSCs or NaCl (Figure 5.1D). 

Additionally, there was a corresponding significant decrease in both lesion size 

(Figure 5.1E) and demyelinated area (Figure 5.1F) in MSC/IL-13 compared with 

control MSCs or NaCl. In both mouse backgrounds, immunofluorescence 

stainings for GFAP (Figure 5.1G-I) and MBP (Figure 5.1J-L) were used to analyse 

lesion size and demyelinated area respectively. Taken together, these data 

demonstrate that on a functional level, BALB/c mice can benefit from both MSC 

and MSC/IL-13 grafts, while C57BL/6 mice require MSC/IL-13 grafts for 

improved outcome. However, on the histopathological level, both BALB/c and 

C57BL/6 mice benefit from MSC/IL-13 grafts to reduce lesion size and 

demyelination. 



Chapter V: Cell-based delivery of interleukin-13 directs alternative activation of 

macrophages resulting in improved functional and histopathological outcome 

following spinal cord injury 

114 



Chapter V: Cell-based delivery of interleukin-13 directs alternative activation of 

macrophages resulting in improved functional and histopathological outcome 

following spinal cord injury 

115 

Figure 5.1: Transplantation of MSC/IL-13 improves functional recovery 

and reduces lesion size and demyelinated area in mice following SCI. 

(A) BALB/c mice receiving transplantation of MSCs or MSC/IL-13 show a

significantly increased BMS score following SCI. *** p < 0.0001 and * p <

0.05, n = 16-19/group. Image analysis revealed a significant decrease in (B)

lesion size and (C) demyelinated area in the MSC/IL-13 treated animals,

compared with MSC and NaCl groups *** p < 0.0001, n = 6-8/group. (D)

C57BL/6 mice receiving transplantation of MSC/IL-13 show a significantly

increased BMS score following SCI, compared with MSC or NaCl controls. * p <

0.05, n=12-17/group. Image analysis for GFAP and MBP staining also

revealed a significant decrease in (E) lesion size and (F) demyelinated area

respectively in MSC/IL-13-treated animals, compared with MSC and NaCl

controls *** p < 0.0001, ** p < 0.01, * p < 0.05; n = 8-10/group.

Representative photomicrographs are shown of BALB/c spinal cord sections

including the injury epicentre of (G, J), NaCl-treated (H, K) MSC and (I, L)

MCS/IL-13-treated mice. Sections were stained for (G-I) GFAP and (J-L) MBP

to determine the lesion size and demyelinated area as depicted by the dotted

white line. Scale bars G-L = 500µm.

5.4.2 MSC/IL-13 transplantation has no significant effect on the 

presence of microglia/macrophages at the lesion site in both BALB/c 

and C57BL/6 mice, but leads to a significant reduction in astrogliosis in 

C57BL/6 mice 

In a first attempt to understand why MSC/IL-13, but not MSC grafts, reduce 

lesion size and demyelination, we investigated the degree of 

microglia/macrophage (Figure 5.2A, I) and astroglial (Figure 5.2B, J) responses 

in both BALB/c and C57BL/6 mice respectively, 4 weeks post injury. For 

analysis, quantification of Iba-1 (Figure 5.2C-E, K-M) and GFAP (Figure 5.2F-H, 

N-P) intensity was performed 600μm caudal and 600μm rostral from the lesion

site, in squares measuring 100μm x 100μm in BALB/c and C57BL/6 mice 

respectively. There was no significant difference observed in the presence of 

microglia/macrophages in mice treated with MSC or MSC/IL-13 compared with 

NaCl controls in both BALB/c and C57BL/6 mouse backgrounds (Figure 5.2A, I 

respectively). Additionally, there was no significant difference in astrogliosis in 

MSC or MSC/IL-13 treated mice compared with NaCl controls in BALB/c mice 
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(Figure 5.2B). However, there was a significant reduction in astrogliosis in 

C57BL/6 mice treated with MSC/IL-13, compared with MSC on NaCl controls 

(Figure 5.2J).  



Chapter V: Cell-based delivery of interleukin-13 directs alternative activation of 

macrophages resulting in improved functional and histopathological outcome 

following spinal cord injury 

117 

Figure 5.2: MSC/IL-13 transplantation has no significant effect on the 

presence of microglia/macrophages at the lesion site in both BALB/c 

and C57BL/6 mice, but leads to a significant reduction in astrogliosis in 

C57BL/6 mice 

In BALB/c mice, there was no significant difference observed in the presence of 

(A) microglia/macrophages or (B) astrogliosis in (C,F) NaCl (D,G) MSC or

(E,H) MSC/IL-13 treated animals as measured via intensity analysis for Iba-1

and GFAP respectively. In C57BL/6 mice, there was no significant difference

observed in the presence of (I) microglia/macrophages in (K) NaCl (L) MSC or

(M) MSC/IL-13 treated animals. However, quantification of GFAP in C57BL/6

mice revealed a significant decrease in (J) astrogliosis in mice treated with (P)

MSC/IL-13 compared with (O) MSC or (N) NaCl treated mice. (C-H, K-P) All

analyses were quantified within square areas of 100µm X 100µm just below the

lesion site, extending 600µm rostral to 600µm caudal from the lesion epicentre.

Data represents mean ± SEM, * p < 0.05; n = 7-11/group.

5.4.3 Transplantation of MSC/IL-13 increases the number of 

neuroprotective, alternatively activated macrophages at the graft site 

and increases the number of CD4+ T-cells throughout the spinal cord 

To further investigate the effects of MSC/IL-13 grafting, we characterised the 

classically activated and alternatively activated microglia/macrophage 

phenotypes at the level of the graft site (Figure 3A: (ii)) by performing an 

intensity analysis for MHC-II and Arg-1 respectively. While there was no 

difference in MHC-II intensity between the MSC and MSC/IL-13-graft (Figure 

5.3B, D + F), there was a significant increase in Arg-1 intensity within the 

MSC/IL-13 graft region compared with that of the MSC graft (Figure 5.3G, I + 

K). The graft site regions of interest (ROI) analysed using MHC-II and Arg-1 

intensity analysis are shown in Figure 5.3C+E (white box) and Figure 5.3H+J 

respectively. The ROIs in Figure 5.3C+E are shown at a higher magnification in 

Figure 3D+F and the ROIs in Figure 5.3H+J are shown in Figure 5.3I+K. These 

data strongly suggest that the secretion of IL-13 from MSC grafts, significantly 

increase the presence of an alternatively activated microglia/macrophage 

phenotype at the graft site. Quantification of CD4+ T cells throughout the spinal 

cord revealed a significant increase in the number of CD4+ T cells in MSC/IL-13 
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treated mice, compared with MSC and NaCl treated controls both BALB/c (Figure 

5.3L-O) and C57BL/6 Figure 5.3P-S) mouse backgrounds. 
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Figure 5.3: Transplantation of MSC/IL-13 increases the number of 

neuroprotective, alternatively activated macrophages at the graft site 

and increases the number of CD4+ T-cells throughout the spinal cord 

(A) To identify the lesion and graft site regions of interest, we have included an

overview of a SCI section stained with GFAP+DAPI containing the (i) V-shaped

lesion site and (ii) DAPI+ intense MSC graft site encapsulated by GFAP+

astrocytes. To determine the presence of (B) classically activated and (G)

alternatively activated microglia/macrophages, sections were stained for (C-F)

MHC-II or (H-K) Arg-1 respectively. (B) There was no significant difference in

MHC-II levels between MSC and MSC/IL-13 graft regions. (G) There was a

significant increase in Arg-1 levels within the MSC/IL-13 graft region compared

to the MSC graft. Representative photomicrographs indicating the graft locations

in (C+E) MHC-II and (H+J) Arg-1 stained sections (white boxes) within the

corresponding regions of interest (ROI) are shown. Areas shown in D+F are

higher magnifications of the ROIs shown in C+E and areas shown in I+K are

higher magnifications of the ROIs shown in H+J (white boxes). Scale bars:

A,C,E, H+J = 500µm and D+F, I+K = 100µm. Data represent mean ± SEM. **

p < 0.01; n = 6-8/group. CD4 staining in spinal cord sections revealed a

significant increase in the number of CD4+ T cells in both (L) BALB/c and (P)

C57BL/6 mice treated with MSC/IL-13, compared with MSC or NaCl-treated mice

4 weeks after SCI. Representative photomicrographs of spinal cord sections

treated with (M+Q) NaCl, (N+R) MSC or (O+S) MSC/IL-13 from BALB/c and

C57BL/6 mice respectively are shown. White arrow heads in M-O and Q-S

indicate CD4+ T-cells. Scale bars: M-O and Q-S = 50µm. Data represents mean

± SEM, *** p < 0.0001, ** p < 0.01, * p < 0.05; n = 7-11/group.



Chapter V: Cell-based delivery of interleukin-13 directs alternative activation of 

macrophages resulting in improved functional and histopathological outcome 

following spinal cord injury 

121 



Chapter V: Cell-based delivery of interleukin-13 directs alternative activation of 

macrophages resulting in improved functional and histopathological outcome 

following spinal cord injury 

122 

Figure 5.4: Transplantation of MSC/IL-13 increases the number of 

neuroprotective, alternatively activated macrophages and decreases the 

number of microglia at the graft site 

(A) Cell density quantification at the graft site revealed no significant differences

in the total number of microglia/macrophages in MSC or MSC/IL-13-treated

mice. (B) Further characterisation of the microglia/macrophage populations

revealed a significant increase in the number of GFP-RFP+ macrophages and a

significant decrease in GFP+RFP- microglia in MSC/IL-13-treated mice compared

with MSC controls. (C+F) DAPI+ cells localises the position of the graft.

Representative photomicrographs of (D+G) CX3CR1eGFP/+ microglia and (E+H)

CCR2RFP/+ macrophages are shown from MSC and MSC-IL-13-treated mice

respectively. (I) Detailed phenotypic analysis of microglia/macrophage

populations expressing MHC-II revealed a significant increase in the number of

GFP-RFP+MHC-II+ and GFP-RFP+MHC-II- macrophages as well as a significant

decrease in GFP+RFP-MHC-II- microglia in (L) MSC/IL-13-treated animals

compared with (J) MSC controls. MHC-II activation is shown in the top shaded

bar stacks and ### represents significant differences in MHC-II- cells and *** in

MHC-II+ cells. A representative photomicrograph outlining the distribution of

DAPI+/GFP+/RFP+/MHC-II+ cells at the graft site in (K) MSC and (M) MSC/IL-

treated animals is shown. The corresponding relative distribution of MHC-II-

expressing microglia and macrophages at (N) control MSC and (O) MSC/IL-13

graft sites is shown. (P) Analysis of microglia/macrophage populations

expressing Arg-1 revealed a significant increase in the number of GFP-RFP+Arg-

1+ and GFP+RFP+Arg-1+ macrophages, GFP+RFP-Arg-1+ microglia, as well as a

significant decrease in the number of GFP+RFP+Arg-1- macrophages and

GFP+RFP-Arg-1- microglia in (S) MSC/IL-13-treated animals compared with (Q)

MSC controls. Arg-1 activation is shown in the top shaded bar stacks and ###

represents significant differences in Arg-1- cells and *** in Arg-1+ cells. A

representative photomicrograph outlining the distribution of

DAPI+/GFP+/RFP+/Arg-1+ cells at the graft site in (R) MSC and (T) MSC/IL-

treated animals is shown. The corresponding relative distribution of Arg-1-

expressing microglia and/or macrophages at (U) control MSC and (V) MSC/IL-

13 graft sites is shown. Microglia and macrophages are encircled in red and

green respectively. Immunofluorescence colours: BLUE = DAPI, GREEN =

microglia, RED = macrophages, MAGENTA = Arg1+ or MHC-II+

microglia/macrophages. Scale bars C-H, J-M and Q-T = 200µm. Data represent

mean ± SEM. *** & ### p < 0.0001, ** p < 0.01, * p < 0.05; n = 6-

11/group.
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5.4.4 Transplantation of MSC/IL-13 increases the number of 

neuroprotective, alternatively activated macrophages and decreases the 

number of microglia at the graft site 

The data provided above demonstrate that MSC/IL-13 grafts significantly 

increase the presence of alternatively activated microglia/macrophage 

phenotypes at the level of the graft site. However, in order to investigate which 

of the two cell types (microglia or macrophages) was responsible for the 

increase in Arg-1 expression, we took advantage of the C57BL/6 CX3CR1eGFP/+

CCR2RFP/+ mouse model. This model allows us to distinguish between eGFP+RFP-

microglia (green) as well as eGFP-RFP+ macrophages (red) and eGFP+RFP+ 

macrophages (yellow) as outlined in the materials and methods section. 

Following SCI, we grafted MSC or MSC/IL-13 and investigated the graft-immune 

response by performing immunofluorescence stainings for MHC-II and Arg-1. We 

then calculated the cell density of microglia and macrophages at the graft site. 

Although there was no significant difference observed in the total 

microglia/macrophage cell density when comparing MSC and MSC/IL-13 grafts 

(Figure 5.4A), there was a clear difference in the origin and phenotype of 

infiltrating immune cells in MSC/IL-13 grafts as compared to those in MSC 

grafts. Further quantification revealed a significant increase in the number of 

eGFP-RFP+ macrophages and significant decrease in the number of eGFP+RFP- 

microglia in MSC/IL-13-treated, compared with control MSCs. There was no 

significant difference in the number of eGFP+RFP+ graft-infiltrating macrophages 

between MSC and MSC/IL-13 grafts (Figure 5.4B, C-H). Based on these cell 

density calculations, the proportion of MHC-II+ or Arg-1+ expressing cells within 

the eGFP-RFP+ and eGFP+RFP+ macrophage population, as well as within the 

eGFP+RFP- microglia population, was calculated as outlined in the materials and 

methods (Figure 5.4I + P respectively). For MHC-II expression (Figure 5.4I-M), 

there was a significant increase in the number of MHC-II- and MHC-II+ eGFP-

RFP+ macrophages at the graft site in MSC/IL-13-treated mice compared with 

control MSCs. The proportion of MHC-II- and MHC-II+ eGFP+RFP+ macrophages 

at the graft site was unaltered between MSC and MSC/IL-13 grafts. In contrast, 

we noted a significant reduction in MHC-II- eGFP+RFP- microglia at the MSC/IL-
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13 graft site as compared to the MSC graft, while the low number of MHC-II+ 

eGFP+RFP- microglia remained unaltered. This relative distribution of MHC-II 

expression within microglia and macrophage populations in MSC and MSC/IL-13 

grafts is also represented in the corresponding pie charts (Figure 5.4N+O). 

When comparing Arg-1 expression between MSC and MSC/IL-13 grafts (Figure 

5.4P-T), there was a significant increase in the Arg-1+ eGFP-RFP+ and 

eGFP+RFP+ macrophage populations, as well as the eGFP+RFP- microglia 

population, in the MSC/IL-13-treated mice. Subsequently, there was a 

significant decrease in the Arg-1- eGFP+RFP+ macrophage population and Arg-1- 

eGFP+RFP- microglia population, while the low amount of Arg-1- eGFP-RFP+

macrophages remained unchanged. The distribution of Arg-1 expression within 

microglia and macrophage populations in MSC and MSC/IL-13 grafts is also 

represented in the corresponding pie charts (Figure 5.4U+V). In summary, these 

results indicate that the number of macrophages is significantly higher and the 

number of microglia is significantly lower at the MSC/IL-13 graft site compared 

to control MSC grafts. Of the total macrophage populations present in MSC/IL-13 

grafts, 30% express MHC-II (Figure 5.4O) while 53% express Arg-1 (Figure 

5.4V) [purple + white segments]. Of the microglia present in MSC/IL-13 grafts, 

5% express MHC-II (Figure 5.4O), while 15% express Arg-1 (Figure 5.4V) [grey 

segments]. Taken together, we demonstrate that there is a 10% increase in the 

number of MHC-II+ immune cells and a 50% increase in the number of Arg-1+ 

immune cells at MSC/IL-13 graft site compared to control MSC grafts. These 

results indicate that the secretion of IL-13 from MSC grafts induces a broad 

spectrum of alternatively activated infiltrating macrophages at the graft site.  
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Figure 5.5: Transplantation of MSC/IL-13 increases the number of 

infiltrating neuroprotective, alternatively activated macrophages and 

decreases the number of microglia at the lesion site 

(A) Cell density quantification at the graft site revealed a significant increase in

the number of microglia/macrophages present between MSC and MSC/IL-13

treated animals. (B) Further characterisation of the microglia/macrophage

populations revealed a significant increase in the number of GFP-RFP+ and

GFP+RFP+ macrophages as well as a significant decrease in GFP+RFP- microglia in

MSC/IL-13-treated mice compared with MSC controls. (C+F) DAPI+ cells

localises the lesion site and (*) denotes the lesion epicentre. Representative

photomicrographs of (D+G) CX3CR1eGFP/+ microglia and (E+H) CCR2RFP/+

macrophages at the lesion site are shown from MSC and MSC-IL-13-treated

mice respectively. (I) Detailed phenotypic analysis of microglia/macrophage

populations expressing MHC-II revealed a significant increase in the number of

GFP-RFP+MHC-II+ and GFP-RFP+MHC-II- macrophages as well as a significant

decrease in GFP+RFP-MHC-II- microglia in (L) MSC/IL-13-treated animals

compared with (J) MSC controls. MHC-II activation is shown in the top shaded

bar stacks and ### represents significant differences in MHC-II- cells and *** in

MHC-II+ cells. A representative photomicrograph outlining the distribution of

DAPI+/GFP+/RFP+/MHC-II+ cells at the lesion site in (K) MSC and (M) MSC/IL-

treated animals is shown. The corresponding relative distribution of MHC-II-

expressing microglia and macrophages at (N) control MSC and (O) MSC/IL-13

lesion sites is shown. (P) Analysis of microglia/macrophage populations

expressing Arg-1 revealed a significant increase in the number of GFP-RFP+Arg-

1+, GFP+RFP+Arg-1+ macrophages and GFP+RFP-Arg-1+ microglia, as well as a

significant decrease in the number of GFP+RFP+Arg-1- macrophages and

GFP+RFP-Arg-1- microglia in (S) MSC/IL-13-treated animals compared with (Q)

MSC controls. Arg-1 activation is shown in the top shaded bar stacks and ###

represents significant differences in Arg-1- cells and *** in Arg-1+ cells. A

representative photomicrograph outlining the distribution of

DAPI+/GFP+/RFP+/Arg-1+ cells at the lesion site in (R) MSC and (T) MSC/IL-

treated animals is shown. The corresponding relative distribution of Arg-1-

expressing microglia and macrophages at (U) control MSC and (V) MSC/IL-13

graft sites is shown. Microglia and macrophages are encircled in red and green

respectively. Immunofluorescence colours: BLUE = DAPI, GREEN = microglia,

RED = macrophages, MAGENTA = Arg1+ or MHC-II+ microglia/macrophages).

Scale bars C-H, J-M and Q-T = 200µm. Data represent mean ± SEM. *** & ###

p < 0.0001, * p < 0.05; n = 9-14/group.
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5.4.5 Transplantation of MSC/IL-13 increases the number of 

infiltrating neuroprotective, alternatively activated macrophages and 

decreases the number of microglia at the lesion site 

Although analysis on the effects of IL-13 at the MSC graft site showed an 

increase in the number of neuroprotective, alternatively activated macrophages 

present, we hypothesised that a shift in the microglia/macrophage response at 

the spinal cord lesion site may also be possible, given the strong clinical benefit 

observed in MSC/IL-13-treated mice. Therefore, we also investigated the 

parameters described above at the lesion site in CX3CR1eGFP/+ CCR2RFP/+ mice

receiving MSC or MSC/IL-13 following SCI. Cell density quantification at the 

lesion site revealed a significant increase in the total number of 

microglia/macrophages in mice treated with MSC/IL-13 compared with control 

MSCs (Figure 5.5A). More specifically, there was a significant increase in the 

number of eGFP-/RFP+ macrophages (red) and eGFP+/RFP+ macrophages 

(yellow), while the number of eGFP+/RFP- microglia (green) was significantly 

decreased, in MSC/IL-13-treated compared with control MSC-treated mice 

(Figure 5.5B, C-H). Similarly to the method described above at the graft site, we 

also calculated the proportion of MHC-II+ or Arg-1+ expressing microglia and 

macrophages at the lesion site. For MHC-II expression (Figure 5.5I-M), there 

was a significant increase in the numbers of MHC-II- and MHC-II+ eGFP-RFP+ 

macrophages at the lesion site in MSC/IL-13-treated mice compared with control 

MSCs. The proportion of MHC-II- eGFP+RFP+ macrophages at the lesion site was 

unaltered between MSC and MSC/IL-13 grafts, while the number of MHC-II+ 

eGFP+RFP+ macrophages at the lesion site was significantly increased following 

MSC/IL-13 grafting. In contrast, we noted a significant reduction in MHC-II- 

eGFP+RFP- microglia at the lesion site following MSC/IL-13 grafting, compared 

with control MSCs, while the number of MHC-II+ eGFP+RFP- microglia remained 

unchanged. This relative distribution of MHC-II expression within microglia and 

macrophage populations at the lesion site following MSC and MSC/IL-13 

grafting, is also represented in the corresponding pie charts (Figure 5.5N+O). 

When comparing Arg-1 expression at the lesion site following MSC and MSC/IL-

13 grafting (Figure 5.5P-T), there was a significant increase in Arg-1+ eGFP-RFP+ 
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and eGFP+RFP+ macrophage populations, as well as the eGFP+RFP- microglia 

population, in MSC/IL-13-treated mice. Subsequently, there was a significant 

decrease in the Arg-1- eGFP+RFP- microglia population, while Arg-1- eGFP-RFP+

and Arg-1- eGFP+RFP+ macrophage populations remained unaltered. This relative 

distribution of Arg-1 expression within microglia and macrophage populations at 

the lesion site following MSC and MSC/IL-13 grafting, is also represented in the 

corresponding pie charts (Figure 5.5U+V). These results indicate that similarly 

to the graft site, the number of macrophages is significantly higher and the 

number of microglia is significantly lower at the lesion site following MSC/IL-13 

grafting as compared with control MSCs. Of the macrophage populations present 

at the lesion site following MSC/IL-13 grafting, 36% express MHC-II (Figure 

5.5O), while 67% express Arg-1 (Figure 5.5V) [purple + white segments]. Of 

the microglia present at the lesion site following MSC/IL-13 grafting, 11% 

express MHC-II (Figure 5.5O), while 8% express Arg-1 (Figure 5.5V) [grey 

segments]. This demonstrates that there is a 24% increase in the number of 

MHC-II+ immune cells and a 60% increase in the number of Arg-1+ immune 

cells at the lesion site following MSC/IL-13 grafting as compared to control 

MSCs. Taken together, these results indicate that the secretion of IL-13 from 

MSC grafts (and/or the presence of alternatively activated 

microglia/macrophages at the MSC/IL-13 graft site), leads to an increased 

infiltration of peripheral macrophages visible at the lesion site. These 

macrophages in turn appear to undergo alternative activation, thereby providing 

neuroprotection and improved therapeutic outcome following SCI. 

5.4.6 Transplantation of MSC/IL-13 decreases the number of 

macrophage-axon interactions 

Finally, we investigated how the presence of alternatively activated microglia 

and macrophages at the lesion site following MSC/IL-13 grafting, may have 

influenced the corresponding SCI pathology in both BALB/c (Figure 5.6A) and 

C57BL/6 (Figure 5.6H) mice. For this, we quantified the number of 

microglia/macrophage-axon interactions using Iba-1 and neurofilament staining. 
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In both mouse backgrounds, we analysed two areas rostral and caudal from the 

lesion epicentre (Figure 5.6B-D, I-K: white boxes) and counted the number of 

microglia/macrophage-axon contacts (Figure 5.6E-G, L-N). In BALB/c mice, we 

observed a significant decrease in the number of microglia/macrophage-axon 

contacts in both MSC (Figure 5.6F) and MSC/IL-13 (Figure 5.6G) treated mice 

compared with NaCl control mice (Figure 5.6E). In C57BL/6 mice, we obsreved a 

significant decrease in the number of microglia/macrophage-axon contacts in 

MSC/IL-13 treated mice (Figure 5.6N) compared with MSC-treated (Figure 5.6M) 

and NaCl control mice (Figure 5.6L). These results indicate that both MSC and 

MSC/IL-13 (in a BALB/c background) and MSC/IL-13 (in a C57BL/6 

background), may be driving activated macrophages located at the lesion site to 

a more alternatively actived, neuroprotective phenotype. This in turn leads to a 

reduction in the number of destructive macrophage-axon contacts. 
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Figure 5.6: Transplantation of MSC/IL-13 decreases the number of 

microglia/macrophage-axon contacts 

(A) Quantification of microglia/macrophage and axon contacts in BALB/c mice

following staining for Iba-1 and neurofilament respectively, revealed a significant

decrease in the number of contacts in both MSC and MSC/IL-13 treated mice

compared with NaCl controls. Representative photomicrographs from (B) NaCl,

(C) MSC and (D) MSC/IL-13 treated BALB/c mice indicates the areas (two white

boxed regions) where microglia/macrophage and axon contacts were quantified

rostral and caudal from the lesion epicentre. A larger magnification of the white

boxes labelled (a, b, c) are shown in (E, F, G) respectively. The white boxed

regions (i-iii) in photomicrographs (E-G) are shown at a higher magnification to

indicate examples of microglia/macrophage and axon contacts. (H)

Quantification of microglia/macrophage and axon contacts in C57BL/6 mice,

revealed a significant decrease in the number of contacts in MSC/IL-13 treated

C57BL/6 mice compared with MSC and NaCl controls. Representative

photomicrographs of the areas quantified (two white boxed regions) are shown

from (I) NaCl, (J) MSC and (K) MSC/IL-13 treated mice. A larger magnification

of the white boxes labelled (a, b, c) are shown in (L, M, N) respectively. The

white boxed regions (i-iv) in photomicrographs (L-M) are shown at a higher

magnification to indicate examples of microglia/macrophage and axon contacts.

Scale bars B-D, I-K = 200µm, E-G, L-N = 50µm.  *** p < 0.0001, * p < 0.05;

n = 4-10/group.

5.5 Discussion 

The goal of this study was to compare the potentially beneficial properties and 

unravel key immune response changes following engraftment of control MSCs or 

MSCs overexpressing IL-13 in a well-established mouse SCI model. Although 

treatment with MSCs has been previously shown to exert positive effects in 

rodent models of SCI (5, 6), their pro-longed therapeutic effects and success in 

human clinical trials have been limited (41, 42). Genetic modification of MSCs, 

for example by overexpression of neurotrophic or growth factors, can further 

enhance their well-known beneficial effects and improve therapeutic outcome 

following CNS trauma (reviewed in (43)). In this study, we show that 

transplanted MSCs, which continuously secrete IL-13, significantly improve 

histopathological and functional recovery compared with NaCl controls following 
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SCI in BALB/c and C57BL/6 mice. The correlation between histopathological (i.e. 

decreased lesion size, demyelinated area and astrogliosis) and functional 

recovery was highly evident in C57BL/6 mice following grafting of IL-13 

producing MSCs. Interestingly, in BALB/c mice, IL-13 contributed to 

histopathological recovery (decreased lesion size and demyelinated area), but 

did not further promote an additional functional improvement induced by control 

MSCs. This variation may be attributed to the well-recognised immunological 

phenomenon that BALB/c mice are more Th2-orientated whilst C57BL/6 are 

more Th1-orientated (44, 45). Additionally, it has been reported that BALB/c 

mice display a higher recovery following SCI compared with C57BL/6 mice as 

measured using the BMS (35). This may explain the one point difference in the 

final BMS score between BALB/c and C57BL/6 mice (score of 4 versus 3 

respectively). Furthermore, these data suggest that treatment with IL-13 may 

be unable to further enhance what is already a rather Th2-primed 

microenvironment (Hendrix and Nitsch, 2007) resulting in a ceiling effect in 

BALB/c mice. 

It has been well described that IL-13 is capable of polarising microglia and 

macrophages towards an alternatively activated M2a phenotype (25, 46). 

Therefore, we first investigated whether transplantation of MSCs secreting IL-13 

could influence the microglia/macrophage phenotype in vivo within the MSC 

graft site. Our data confirm that MSC graft-associated microglia/macrophages 

can be efficiently driven towards an Arg-1 expressing state of alternative 

activation in vivo, in both BALB/c and C57BL/6 mice. Given the lacking effect on 

microglia/macrophage cell number following treatment with MSC or MSC/IL-13, 

we consider cell phenotype (classically or alternatively activated), to be the most 

critical factor of interest when determining effects on functional outcome. 

Further discrimination between MSC-associated microglia and macrophages 

following grafting of IL-13 producing MSCs in CX3CR1eGFP/+ CCR2RFP/+ C57BL/6

mice revealed that the majority of Arg-1 expressing cells are of peripheral 

monocyte/macrophage origin. The peripheral origin of Arg-1 expressing cells is 

however not surprising as control MSC grafts already attract, in addition to 
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microglia, high numbers of peripheral monocytes/macrophages. Subsequently, 

IL-13 is able to further modulate the MSC graft site by increasing the number of 

Arg-1 expressing macrophages and microglia and decreasing the overall number 

of microglia. Although subject to debate and further investigation, we may argue 

that Arg-1 expressing microglia and macrophages are induced in situ upon 

contact with IL-13-secreting MSCs, rather than being specifically attracted.  

T cell analysis within the spinal cord showed a significantly increased number of 

CD4+ T cells in animals treated with MSC/IL-13. An additional double staining 

for CD4 and FOXP3 (data not shown), ruled out the presence of FOXP3+ 

regulatory T cells. The specific subtype of the T cells is unclear and previous 

studies from our group revealed that specific T cell immunophenotyping after 

CNS injury can be challenging and prone to artifacts, due to the low number of T 

cells present in the CNS (47). The high number of T cells in MSC/IL-13 treated 

mice may be due to the restriction of T cell chemotaxis by IL-13 (48), thereby 

leading to an accumulation of T cells within an area where they are highly 

activated. Since transplantation of MSC/IL-13 exerts beneficial effects on the 

injured spinal cord, it is tempting to speculate that the attracted T cells are also 

those with beneficial properties (Hendrix and Nitsch, 2007).  

As the introduction of alternatively activated microglia and macrophages is 

established by the presence of IL-13 at the graft site, we hypothesised that a 

phenotypic shift in the microglia/macrophage response may also be possible at 

the spinal cord lesion site. Similarly to our observations at the MSC/IL-13 graft 

site, we observed an increase in Arg-1 expressing macrophages and microglia 

and an overall decrease in microglia, at the lesion site in mice receiving MSC/IL-

13 grafts. An interesting question consequently arises as to how Arg-1 

expressing microglia/macrophages are induced at the lesion site. We can 

speculate, that the induction of alternatively activated microglia/macrophages at 

the lesion site may be due to passive diffusion of IL-13 from the MSC/IL-13 graft 

site. Upon contact with lesion-associated microglia or infiltrating macrophages, 

this may in turn result in a shift towards a more neuroprotective cell phenotype. 

Although this hypothesis seems highly plausible, one cannot exclude the 
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possibility that other factors (aside from IL-13), may be secreted from the MSC 

graft or alternatively activated microglia/macrophages at the MSC/IL-13 graft 

site. These derived factors, either alone or in combination, may also influence 

the phenotypic properties of lesion-associated microglia/macrophages. 

Furthermore, as discussed above, specific recruitment of alternatively activated 

monocytes/macrophages directly from peripheral blood may not be evident, 

however, their recruitment via the MSC/IL-13 graft site cannot be excluded. An 

important observation which should be taken into consideration for future 

experiments, is the presence of the double positive CX3CR1eGFP/+ CCR2RFP/+ cell

population. We as well as others hypothesise that these double positive cells are 

blood derived macrophages given the known limitation that CCR2RFP/+ monocytes 

can down-regulate their reporter over time and show phenotypic evolution (40). 

It has also been shown that resident microglia consist primarily of CX3CR1eGFP/+

cells, while blood-derived macrophages are made up of both CX3CR1eGFP/+ as well

as CCR2RFP/+ macrophage populations (Evans et al., 2014). In this study, we 

therefore consider these double positive cells to be part of the macrophage 

population. The arrival of promising microglia-specific markers (49, 50) may be 

useful in future studies to clarify whether the double-positive cells are primarily 

infiltrating macrophages. It is clear that evaluation of the inflammatory infiltrate 

is that of a complex one and variation occurs not only in the type of 

disease/trauma model but also in the time-point under investigation. 

Although the variation in immunological background between BALB/c and 

C57BL/6 is a well know phenomenon (44, 45), we have not observed any 

immunological differences in our transplantation systems in either mouse strain. 

As shown in this study, transplantation of MSC/IL-13 leads to a significant 

increase in Arg1+ cells at the graft sites in both BALB/c and C57BL/6 mice 

(Figures 3G + 4P respectively). Additionally, our group has performed an in 

depth analysis of graft site remodelling upon MSC transplantation in the CNS of 

BALB/c, FBV or C57BL/6 mouse backgrounds (25, 26, 39). Upon MSC 

transplantation in all of the above mouse strains, cells undergo hypoxic stress 

within the first 24 hours and the core of the graft becomes apoptotic and 
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necrotic. This is followed by early infiltration of neutrophils on day 1. From days 

3-7, the graft becomes infiltrated by macrophages and surrounded by microglia.

At this point, astrocytes begin forming a barrier which encapsulates the graft 

(51). Based on these studies and our current results, we conclude that there is 

no obvious difference in the graft site response between BALB/c and C57BL/6 

mice. 

Finally, we suggest a potential mode-of-action for the observed neuroprotective 

effects following grafting of IL-13 producing MSCs. Based on our data, and in 

agreement with current literature, we can put forward two mechanistic 

explanations. Firstly, it has been shown that a reduction in CX3CR1 signaling on 

microglia/macrophages reduces their pro-inflammatory nature and leads to 

improved outcome following spinal cord injury (52). Therefore, the decrease in 

eGFP+RFP- microglia, which we observed at the lesion site following grafting of 

MSC/IL-13, may correlate with the improved functional outcome shown in 

MSC/IL-13-treated mice following SCI. The way in which IL-13 actually reduces 

the number of microglia in this model remains speculative, however it may be 

explained by a previously described ability of IL-13 to directly induce apoptosis 

in activated microglia (53). Secondly, it has recently been demonstrated that 

CNS axons undergo lengthy retraction from the site of damage following SCI and 

that activated macrophages play a direct role in this retraction via destructive 

physical interactions with the injured axons (16, 17, 37). Therefore, the 

observed conversion of lesion-infiltrating macrophages into an Arg-1 expressing 

alternatively activated phenotype upon MSC/IL-13 grafting, may have rendered 

these cells less neuro-destructive. The latter suggests a correlation with the 

significant decrease in macrophage-axon contacts observed at the lesion site in 

BALB/c mice following treatment with MSC or MSC/IL-13 and in C57BL/6 mice 

following treatment with MSC/IL-13. It is tempting to speculate that a 

corresponding reduction in axonal dieback, may lead to the significantly 

improved histopathological and functional outcome observed following SCI. In 

BALB/c mice, the reduction in the number of macrophage-axon contacts in MSC 

and MSC/IL-13 treated animals correlates with the increased functional outcome 
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observed in MSC and MSC/IL-13 treated mice, compared with NaCl controls. On 

the other hand, in C57BL/6 mice, only animals treated with MSC/IL-13 displayed 

an improved functional recovery and the decrease in the number of 

macrophage-axon contacts was also observed exclusively in MSC/IL-13 treated 

mice. We hypothesise that an increase in alternatively activated macrophages 

and microglia may promote wound healing, regeneration and functional recovery 

via the secretion of  pro-regenerative factors such as IL-10,  insulin-like growth 

factor-1 (IGF-1) and vascular growth factor-A (VEGF-A) (54). Taken together, 

these data provide evidence that MSCs can be successfully used as carriers for 

the local delivery of a beneficial cytokine such as IL-13 and lead to improved 

functional and histopathological recovery in a mouse model of SCI (Figure 5.7). 

Figure 5.7: Schematic representation of the lesion and graft site in MSC 

compared with MSC/IL-13 treated mice following SCI. 

In MSC treated mice, the lesion and graft site contain classically activated 

macrophages as well as a low number of alternatively activated macrophages 

and microglia. Both regions are encapsulated by GFAP+ astrocytes. The lesion 

area consists of resident microglia within and around the lesion site, whilst the 

graft site contains resident microglia at the graft border. Following treatment 
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with MSC/IL-13, the histological appearance and cell distribution differs 

substantially within the spinal cord. There is a decrease in lesion size as well as 

classically activated macrophages and resident microglia at both the lesion and 

graft site. There is also a dramatic increase in the number of alternatively 

activated macrophages and microglia at both the lesion and graft site. Both the 

lesion and graft sites remain encapsulated by GFAP+ astrocytes. Treatment with 

MSC/IL-13 alters the immune cell distribution and phenotype leading to 

improved functional recovery in a mouse model of SCI. 

5.6 Conclusion 

In conclusion, this study demonstrates that transplantation of IL-13-secreting 

MSCs significantly improves functional recovery following SCI in mice. Grafted 

MSC/IL-13 decrease lesion size and demyelinated area by over 40%, 

presumably by locally decreasing the number of resident microglia and 

increasing the number of alternatively activated macrophages, at both the graft 

and lesion site. These changes to the immune environment point towards a 

switch to a less neuro-destructive macrophage phenotype, as suggested by the 

significant reduction in macrophage-axon contacts at the lesion site. These data 

provide evidence that MSCs can be successfully used as carriers for the local 

delivery of a beneficial cytokine such as IL-13 and lead to improved functional 

and histopathological recovery in a mouse model of SCI. 
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In order to put the work described in this thesis into perspective, referring to the 

original research question is a good starting point: Is immunomodulation a 

potential therapy for spinal cord injury repair? As outlined in chapters III, IV and 

V, the answer to this question very much depends on a number of varying 

factors, i.e. immunomodulatory factor in question, method of administration, 

dosing etc. In order to answer this question, the described research has led to a 

number of scientific observations and conclusions. These are outlined and 

discussed below. 

6.1 IL-25: an unattractive therapeutic target 

We as well as others have shown that cytokines associated with Th2 cells such 

as IL-4 (1-3) and IL-10 (4, 5), are capable of promoting neuronal survival and 

regeneration, and also improve functional outcome after SCI. IL-25, a member 

of the IL-17 family, has been suggested to be a key player in the origin of a type 

2 response (6, 7). Given that the limited studies available at the beginning of 

this project suggested a protective role of IL-25 in neuroinflammation (reviewed 

in (8, 9)), we aimed to investigate it’s therapeutic potential after SCI. As outline 

in chapter III, we investigated whether increasing levels of IL-25, can promote 

functional recovery in a mouse model of SCI. Furthermore, we aimed to 

distinguish between local and systemic effects of treatment. To our surprise, we 

found that local application of IL-25 led to a significant worsening in motor 

performance after SCI, compared with PBS controls. At the histological level, 

these results were accompanied by a 30% increase in lesion size and 

demyelinated area. On the other hand, systemic IL-25 treatment did not 

influence functional recovery and there was no effect of systemic IL-25 

treatment on lesion size or demyelinated area. These results indicate that both 

dosing and route of administration play a major role in determining the 

therapeutic effect of IL-25. 

Furthermore, our results were rather unexpected as systemic IL-25 has been 

previously shown to suppresses EAE symptoms in a relapse-remitting model (7). 

Additionally, delivery of IL-25 to the CNS in two different models of 

neuroinflammation, was able to drive microglia and macrophages to a more 
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anti-inflammatory and tissue-protective phenotype (10). Upon investigation of 

the way in which IL-25 may be exerting its detrimental effects, we observed no 

significant effects of various concentrations of IL-25 on survival of 

oligodendrocytes, astrocytes, microglia or primary cortical neuronal cells in vitro. 

Therefore, the mechanistic action of IL-25 remains unclear. However, given that 

it is not caused by a direct effect on the above cell types, it is probable that 

administration of IL-25 following SCI activates an indirectly mediated cascade of 

detrimental immune events.  

Additionally, Mearns et al recently questioned the role of IL-25 in the induction 

of a potentially beneficial Th2-cell response and demonstrated that IL-25 is 

dispensable during the differentiation and development of Th2 cells (11). We 

demonstrated that IL-25 failed to have an effect systemically and even 

worsened functional outcome when applied locally. This suggests that the direct 

involvement of IL-25 in driving a Th2 response remains questionable. Therefore, 

one can conclude that IL-25 is not a promising candidate for immunomodulatory 

therapy after SCI.  

6.2 IL-13: a potential therapeutic target 

In continuation with our hypothesis that cytokines associated with inducing a 

Th2 response may have therapeutic potential for treatment of SCI, our next 

factor of interest was IL-13. IL-13 has been shown to be a key factor, capable of 

inducing a macrophage phenotype switch from a rather ‘detrimental’ M1 

phenotype to a more ‘beneficial’ alternatively activated, M2 phenotype (12, 13). 

Therefore, we hypothesised that treatment with IL-13 may also lead to a switch 

in vivo towards a more neuroprotective microglia/macrophage phenotype, 

resulting in improved functional recovery and therapeutic outcome.  

6.2.1 Treatment with recombinant IL-13: prospects vs. limitations  

IL-13, a cytokine closely related to IL-4 (13), is a canonical anti-inflammatory 

Th2 cytokine, which in some contexts can also be pro-inflammatory (14). IL-13 

has been shown to exert neuroprotective effects in EAE, by decreasing 

inflammatory cell infiltration and axonal loss as well as reducing clinical 
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symptoms (15-17). Similarly to the IL-25 experimental set-up, we tested 

whether recombinant murine IL-13, administered either as a single dose locally 

to the spinal cord or via repeated systemic injections, improves functional 

recovery after SCI in mice, as outlined in chapter IV. While no clinical effect 

was observed following local administration of IL-13, systemic administration of 

IL-13 lead to a significant increase in functional outcome as well as a significant 

increase in the number of Arg-1+ alternatively activated microglia/macrophages. 

Following these results, we have once again demonstrated that route of 

administration is a crucial aspect to consider when developing cytokine therapy 

for CNS trauma. Systemic administration of IL-13 resulted in a significantly 

improved functional outcome compared with PBS treated controls, which 

persisted for 12 weeks post injury. Surprisingly, we found no significant effect of 

IL-13 treatment on lesion size, demyelination or astrogliosis, ruling out any 

direct effect of IL-13 on lesion remodelling. However, there was a significant 

increase in the number of Arg-1+ microglia/macrophages at the lesion site in IL-

13-treated mice, suggesting a potential link between neuroprotective

microglia/macrophages and improved functional outcome. Taken together, these 

results make it difficult to pin-down the exact mechanistic effect of IL-13 

treatment. Systemic administration proves promising, however further research 

at this stage is still required to fine-tune the method of administration and 

identify the link between polarization of microglia/macrophages and functional 

recovery. Therefore, one can conclude that IL-13 is a promising candidate for 

immunomodulatory therapy after SCI, but further investigation is necessary to 

fine-tune its therapeutic potential. 

6.3 MSCs as carriers of IL-13: an attractive therapeutic 

target 

To build upon the use of recombinant IL-13 in the previous section, here we put 

forward our method of choice to continuously deliver local IL-13 to the injured 

spinal cord. As described in chapter V, to do this, we made use of MSCs 

genetically modified to secrete IL-13. We transplanted MSC/IL-13 immediately 

following SCI and investigated their therapeutic effects compared with control 
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MSCs. Our results indicated that transplanted MSCs which continuously secrete 

IL-13, not only significantly improve functional recovery following SCI in mice, 

but also decrease lesion size and demyelinated area by over 40%. Detailed 

histological analyses in CX3CR1eGFP/+ CCR2RFP/+ transgenic mice indicated that

transplantation of MSC/IL-13 decreases the number of resident microglia and 

increases the number of alternatively activated macrophages at both the graft 

and lesion site. Additionally, we observed a reduced number of macrophage-

axon contacts in the MSC/IL-13 group, potentially linked to a reduction in axonal 

dieback and improved functional outcome. 

6.3.1 MSC/IL-13 improve functional recovery and histopathological 

outcome 

Although treatment with MSCs has been previously shown to exert positive 

effects in rodent models of SCI (18, 19), their pro-longed therapeutic effects and 

success in human clinical trials have been limited (20, 21). Genetic modification 

of MSCs, for example by overexpression of neurotrophic or growth factors, can 

further enhance their well-known beneficial effects and improve therapeutic 

outcome following CNS trauma (reviewed in (22)). Here, we have shown for the 

first time that transplanted MSCs, which continuously secrete IL-13, significantly 

improve histopathological and functional recovery compared with NaCl controls 

following SCI in both BALB/c and C57BL/6 mice. 

While the correlation between histopathological and functional recovery was 

highly evident in C57BL/6 mice following grafting of IL-13 producing MSCs, this 

was less clear in BALB/c mice where IL-13 contributed solely to 

histopathological, but not functional recovery. This variation may be attributed 

to the well-recognised immunological phenomenon that BALB/c mice are more 

Th2-orientated whilst C57BL/6 are more Th1-orientated (23, 24). This suggests 

that IL-13 may be unable to further enhance what is already a rather Th2-

primed microenvironment in BALB/c mice. Nevertheless, we have demonstrated 

that in order to achieve substantial tissue protection and/or remodelling at the 

SCI lesion site, the presence of IL-13 in both C57BL/6 as well as BALB/c mice, is 

required. 
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6.3.2 The CX3CR1eGFP/+ CCR2RFP/+ transgenic mouse model: an

invaluable tool for cell phenotyping and quantification following SCI 

In order to differentiate between resident microglia and infiltrating 

macrophages/monocytes, we took advantage of the CX3CR1eGFP/+ CCR2RFP/+

transgenic mouse model. These mice were cross bred in house at Antwerp 

University. Resulting double transgenic mice have one allele of the CX3CR1 gene 

replaced by eGFP and the other allele of the CCR2 gene replaced by RFP (25). 

This results in the presence of green fluorescent microglia and red fluorescent 

infiltrating macrophages/monocytes. This model, combined with the use of 

TissueQuest software, allowed us to quantify in detail, microglia and 

macrophage cell densities and phenotypes at both the graft and lesion site. We 

have demonstrated that the use of TissueQuest is highly quantitative and also 

more accurate than a standard intensity analysis, using for example Image J. 

Additionally, this transgenic mouse model and quantification method has also 

been successfully implemented in various experimental setups by our 

collaborators at Antwerp University (25-27). We therefore recommend that this 

be used as the gold-standard method for detailed graft-host cell quantification 

upon stem cell transplantation. 

6.3.3 Successful induction of M2a, alternatively activated microglia and 

macrophages in vivo following treatment with MSC/IL-13 

Numerous studies have demonstrated that IL-13 is a key factor in inducing a 

macrophage phenotype switch from a rather pro-inflammatory, ‘detrimental’ M1 

phenotype to a more ‘beneficial’ alternatively activated, M2 phenotype (12, 13). 

However, these studies have demonstrated this phenomenon in vitro, which 

does not always translate well to the in vivo situation, given the complex 

microenvironment that exists. Following systemic administration of IL-13 after 

SCI, we observed improved functional outcome and an increase in the number 

of Arg-1+ alternatively activated microglia/macrophages at the lesion site. In our 

studies using MSC/IL-13, our method of delivery was more localised. Using the 

CX3CR1eGFP/+ CCR2RFP/+ transgenic mouse model, we demonstrated an

upregulation of both MHC-II and Arg-1, primarily on peripheral macrophages 

invading the graft and lesion site. Given that the joint expression of MHC-II and 

Arg-1 is indicative of a neuroprotective, anti-inflammatory, M2a phenotype (28), 



Chapter VI: Conclusions & Future Perspectives 

151 

this suggests that the secretion of IL-13 leads to a successful induction of M2a 

macrophages at both the MSC transplantation site and spinal cord lesion area. 

Additionally, a collaborative research project running in parallel at Antwerp 

University also demonstrated efficient in vivo induction of M2 alternatively 

activated microglia and macrophages following transplantation of MSC/IL-13 in 

the cuprizone model of neuroinflammation (Le Blon et al, under revision).  

6.3.4 Decrease in the number of axon-macrophage contacts following 

treatment with MSC/IL-13: the missing mechanistic link? 

In order to piece together the link between alternatively activated microglia and 

macrophages and an improved functional and histopathological outcome 

following SCI, we took to the literature in an attempt to understand how IL-13 

may be exerting its beneficial effects. It is a well-known phenomenon that CNS 

axons undergo lengthy retraction from the site of damage following SCI, but we 

learned that activated macrophages play a direct role in this retraction via cell-

cell interactions with the injured axons (29, 30). Therefore, the observed 

increase in Arg-1 expressing, alternatively activated lesion-infiltrating 

macrophages upon MSC/IL-13 grafting, may have rendered these cells less 

neuro-destructive. We observed a potentially correlative significant decrease in 

the number of macrophage-axon contacts at the lesion site in MSC/IL-13-treated 

mice compared with control MSC- or NaCl-treated mice. This in turn may have 

reduced the level of axonal dieback, resulting in an improved histopathological 

and functional outcome. Taken together, one can conclude that MSCs can be 

successfully used as carriers for the local delivery of IL-13 and that this delivery 

system is a highly attractive candidate for immunomodulatory therapy after SCI. 

6.4 Future perspectives 

Previous research within the Department of Morphology at Hasselt University 

has greatly contributed to our understanding of cytokine therapy following SCI 

(3, 31, 32). Additionally, research at the Laboratory of Experimental Hematology 

at Antwerp University has greatly contributed to our understanding of the neuro-

immune response following MSC transplantation in the CNS (26, 33, 34). In this 
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thesis, we have combined these areas of expertise by investigating the 

therapeutic effects of immunomodulatory cytokine treatment as well as MSC 

transplantation following SCI. We also focused on discriminating between 

microglia and macrophages in order to underline the phenotypic responses 

following MSC and MSC/IL-13 transplantation. Therefore, our findings build upon 

the research at both Hasselt and Antwerp Universities and open the door to a 

variety of new research questions, which are outlined below. 

6.4.1 What are the alternative methods for local delivery of IL-13 

following SCI? 

Although the data discussed in this thesis are of huge fundamental importance, 

we must look forward towards translating this to a clinical setting. In parallel 

with this study, our groups are currently working on assessing these 

alternatives. One ongoing possibility, is the use of allogeneic (‘off-the shelf’) 

instead of autologous, IL-13-secreting MSCs. We have already shown that IL-13-

secretion from allogeneic MSC grafts can prolong their immunological survival 

compared with control allogeneic MSCs (33), however their therapeutic efficacy 

following SCI, still needs to be established. Despite this progress, there are still 

several safety concerns (e.g. immunogenicity and tumorogenicity), which are 

inevitably associated with stem cell transplantation and limit its applicability 

clinically. Therefore, we are also currently investigating the effects of local or 

intravenous administration of IL-13-producing macrophages following SCI. The 

choice of genetically-engineered macrophages for delivery of IL-13 is clinically 

relevant given that they can be generated in a relatively short period of time 

(35) compared with autologous MSCs. Additionally, for intravenous cell

administration, we have previously shown that macrophage/dendritic cell 

populations, can, unlike MSC populations, safely pass the lung circulation (36). 

Furthermore, we  have recently shown that alternative activation of 

microglia/macrophages in vivo requires sustained stimulation with IL-13 (33), 

which makes macrophages genetically engineered to continuously secrete IL-13, 

a logical choice. 
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6.4.2 What is the mechanism behind the beneficial effects of IL-13 

following SCI? 

In Chapter V, the results obtained following transplantation of MSC or MSC/IL-13 

in a mouse model of SCI were discussed in detail. In short, mice treated with 

MSC/IL-13 showed a significant improvement in both clinical and 

histopathological outcome following SCI. However, the question regarding how 

IL-13 secreted from MSCs is exerting these beneficial effects, still remains 

unanswered. The most plausible mechanism as discussed, may be a direct effect 

of IL-13 on microglia apoptosis. Alternatively, IL-13 may act via an indirect 

induction of on M2a-activated macrophages. However, it is most likely a 

combination of both. In order to further investigate this mechanism of action, 

future experiments will include transplantation of IL-13-producing MSC in IL-4 

receptor type II knockout (IL4RII-/-) mice, given this receptor binds both IL-4 

and IL-13 (13, 37). Transplantation of MSC/IL-13 in this knockout model, will 

enable us to investigate the effects of IL-13 signaling in depth. This, in 

combination with transplantation experiments using IL-13-secreting 

macrophages, will help reveal whether IL-13 receptor signalling in either 

microglia or macrophages, is more relevant in mediating IL-13-induced 

neuroprotection. Unravelling the true mechanism of action of IL-13 is currently 

one of our top priorities. Given that this research question is currently being 

tackled, we hope to determine whether IL-13 has a therapeutic future in human 

clinical trials in the near future. 
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SCI is a devastating pathology which has a significant impact on life expectancy 

and quality, and also bears considerable economic burden. Despite considerable 

progress in palliative care, there is currently no therapeutic intervention 

available which leads to functional recovery. Therefore, there is an urgent need 

to develop new strategies and therapies. Inflammatory responses are a major 

component of the secondary injury phase and play a key role in regulating the 

pathogenesis of acute and chronic SCI. However, the continual and dual role of 

the neuroinflammatory response leaves it difficult to decide upon a single 

modulatory strategy. Additionally, the role of certain immunomodulatory 

cytokines which are up- or down-regulated in response to SCI still remains 

unclear. In this thesis, we focus on the type-2 cytokines: IL-25 and IL-13 and 

investigate their therapeutic potential for treatment of SCI. Understanding the 

interaction of these factors with the surrounding microenvironment and 

exploiting their modulatory effects on cells such as microglia and macrophages, 

may provide a vital therapeutic tool in developing strategies for treating CNS 

trauma.  

Firstly, we examined the effects of local or systemic application of IL-25 after 

SCI (Chapter III). The data presented in this thesis demonstrated that IL-25 

failed to have an effect systemically and even worsened functional outcome 

when applied locally. Therefore, one can conclude that IL-25 is not a promising 

candidate for immunomodulatory therapy after SCI. 

In the second part of this study, we focused on investigating the therapeutic 

potential of the Th2, anti-inflammatory cytokine, IL-13. In addition to its 

immunomodulatory effects, IL-13 is also a well-known inducer of the M2 

microglia/macrophage phenotype. We demonstrated that local application of IL-

13 had no effect on functional recovery. However, systemic application 

significantly improved recovery after SCI and also lead to a significant increase 

in the number of Arg-1+ alternatively activated microglia/macrophages. 

(Chapter IV). These results make it difficult however, to pin-down the exact 

mechanistic effect of IL-13 treatment. Systemic administration proves 

promising, but further research at this stage is still required to identify the link 

between polarisation of microglia/macrophages and functional recovery. 

Therefore, one can conclude that IL-13 is a promising candidate for 
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immunomodulatory therapy after SCI, but further investigation is necessary to 

fine-tune its therapeutic potential. 

In the final part of this thesis, we aimed to optimise a continuous local delivery 

system for IL-13. In order to achieve this, we choose to use MSCs as carriers, 

given that these stem cells already possess the ability to exert positive effects in 

rodent models of SCI. We investigated the use of autologous MSCs which were 

genetically modified to secrete IL-13, as a potential therapeutic strategy to 

modulate the immune response and improve functional recovery after SCI. Our 

results indicated that transplanted MSCs which continuously secrete IL-13, not 

only significantly improve functional recovery following SCI in mice, but also 

decrease lesion size and demyelinated area by over 40%. Detailed histological 

analyses in the CX3CR1eGFP/+ CCR2RFP/+ transgenic mouse model indicated that

transplantation of MSC/IL-13 decreases the number of resident microglia and 

increases the number of alternatively activated macrophages at both the graft 

and lesion site. Additionally, we observed a reduced number of macrophage-

axon contacts in the MSC/IL-13 group, potentially linked to a reduction in axonal 

dieback and improved functional outcome (Chapter V). These data indicate that 

MSCs can be successfully used as carriers for the local delivery of IL-13 and that 

this delivery system is a highly attractive candidate for immunomodulatory 

therapy after SCI. 

Taken together, we have demonstrated in this thesis that immunomodulatory 

therapy using IL-13, provides great therapeutic potential for treatment of SCI. 

However, further research is still required to identify the exact mechanisms 

behind these beneficial effects.  
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Een ruggenmergletsel is een ernstige aandoening met een significante impact op 

de levensverwachting en –kwaliteit. Daarenboven heeft het ook een belangrijke 

economische impact. Ondanks de grote vooruitgang in de palliatieve zorg is er 

tot op heden geen therapeutische interventie beschikbaar die kan leiden tot 

functioneel herstel. Daarom is het van belang om nieuwe strategieën en 

therapieën te ontwikkelen. De secundaire schade na een ruggenmergletsel is 

grotendeels het gevolg van inflammatoire reacties. Deze spelen een belangrijke 

rol in de pathogenese van zowel acute als chronische ruggenmergschade. De 

voortdurende en tweedelige rol van de neuro-inflammatoire respons maakt het 

moeilijk om één strategie te vinden om deze te moduleren. Bovendien is de 

functie van bepaalde immuun-modulerende cytokinen, die na 

ruggenmergschade hoger of lager tot expressie komen, nog onbekend. In deze 

thesis ligt de focus op type-2 cytokinen: IL-25 en IL-13 en het onderzoek naar 

hun therapeutisch potentieel als behandeling voor ruggenmergletsels. De 

interactie van deze factoren met hun omgeving en het gebruik van hun 

modulerende effecten op bepaalde celtypes zoals microglia en macrofagen, 

kunnen een belangrijke therapeutische tool vormen in het ontwikkelen van 

strategieën voor de behandeling van CZS trauma.  

Ten eerste hebben we de effecten van lokale of systemische toediening van IL-

25 na ruggenmergschade onderzocht (Hoofdstuk III). De resultaten in deze 

thesis geven aan dat IL-25 geen effect heeft na systemische administratie. 

Daarenboven verslechterde het functioneel herstel na lokale toediening. Hieruit 

kan men besluiten dat IL-25 niet veelbelovend is als een immuun-modulerende 

therapie na een ruggenmergletsel. In het tweede deel van deze studie ligt de 

nadruk op het therapeutisch potentieel van IL-13; een Th2 en anti-inflammatoir 

cytokine. Naast de immuun-modulerende effecten is IL-13 ook gekend voor de 

inductie van het M2 microglia/macrofaag fenotype. Wij tonen aan dat lokale 

toediening van IL-13 geen effecten op functioneel herstel heeft. Daarentegen 

verbeterde het functioneel herstel significant na systemische toediening. 

Daarnaast deed IL-13 ook het aantal Arg-1+ alternatief geactiveerde 

microglia/macrofagen significant stijgen. (Hoofdstuk IV). Deze resultaten 

maken het moeilijk om het exacte mechanisme van de effecten van IL-13 aan te 

duiden. Systemische toediening is veelbelovend maar verder onderzoek is 
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vereist om de link tussen microglia/macrofaag polarisatie en functioneel herstel 

te identificeren. Hieruit kan men besluiten dat IL-13 een goede kandidaat is voor 

immuun-modulerende therapie na ruggenmergschade, maar verder onderzoek is 

nodig om het therapeutische potentieel te finetunen. Het laatste deel van deze 

thesis had tot doel de continue lokale toediening van IL-13 te optimaliseren. Om 

dit te bereiken hebben we mesenchymale stamcellen (MSC) als dragers van IL-

13 gekozen, aangezien deze stamcellen reeds positieve effecten bereikten in 

knaagdiermodellen voor een ruggenmergletsel. Wij hebben het gebruik van 

autologe MSCs, genetisch gemanipuleerd om IL-13 uit te scheiden, onderzocht 

als mogelijke therapeutische strategie om het immuunsysteem te beïnvloeden 

en functioneel herstel te verbeteren na ruggenmergschade. Onze resultaten 

tonen aan dat getransplanteerde MSC, die continu IL-13 uitscheiden, niet alleen 

functioneel herstel na een ruggenmergletsel significant bevorderen, maar ook de 

laesie-grootte en het gedemyeliniseerde gebied verkleinen met 40%. Een 

gedetailleerde histologische analyse bij het CX3CR1eGFP/+ CCR2RFP/+ transgeen 

muismodel toonde aan dat transplantatie van MSC/IL-13 het aantal endogene 

microglia doet dalen en het aantal alternatief geactiveerde macrofagen doet 

stijgen in het getransplanteerde gebied en het laesie-gebied. Daarnaast zien we 

ook een daling in het aantal macrofaag-axon contacten in de MSC/IL-13 groep, 

mogelijk gelinkt aan een daling in axonretractie en verbeterd functioneel herstel 

(Hoofdstuk V). Deze resultaten tonen aan dat MSC succesvol gebruikt kunnen 

worden als dragers voor de lokale toediening van IL-13 en dat dit 

toedieningssysteem zeer geschikt is als immuun-modulerende therapie voor 

ruggenmergschade. 

Samengevat, met deze thesis hebben wij aangetoond dat immuun-modulerende 

therapie door middel van IL-13 een belangrijk therapeutisch potentieel bevat 

voor de behandeling van ruggenmergschade. Verder onderzoek is noodzakelijk 

om de juiste mechanismen achter deze veelbelovende effecten te identificeren. 
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tough at times the past years, but your strength and incredible positivity never 

ceases to amaze me. You are my everything. Le grá go deo. 
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 

Dank u - Merci beaucoup - Go raibh míle maith agaibh - Thank you 

Dearbhaile, August 2016 

“Do not wait to strike till the iron is hot; but make it hot by striking” 

W.B. Yeats 

 

 “Dá fhada an lá tagann an tráthnóna” 

 

 “Níl aon tinteán mar do thinteán féin” 
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