
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Determining structural route components from GPS traces

Peer-reviewed author version

KNAPEN, Luk; Hartman, Irith Ben-Arroyo; Schulz, Daniel; BELLEMANS, Tom;

JANSSENS, Davy & WETS, Geert (2016) Determining structural route components

from GPS traces. In: TRANSPORTATION RESEARCH PART

B-METHODOLOGICAL, 90, p. 156-171.

DOI: 10.1016/j.trb.2016.04.019

Handle: http://hdl.handle.net/1942/22542



Determining Structural Route Components from GPS Traces

Luk Knapena,∗, Irith Ben-Arroyo Hartmanb, Daniel Schulzc, Tom Bellemansa, Davy
Janssensa, Geert Wetsa

aHasselt University, Transportation Research Institute (IMOB) Wetenschapspark 5 bus 6 3590 Diepenbeek,
Belgium

bCaesarea Rothschild Institute, University of Haifa, Israel
cFraunhofer Institute for Intelligent Analysis and Information Systems IAIS, Schloss Birlinghoven, Sankt

Augustin, Germany

Abstract

Analysis of GPS traces shows that people often do not use the least cost path through the
transportation network while making trips. This leads to the question which structural path
characteristics can be used to construct realistic route choice sets for use in traffic simulation
models. In this paper, we investigate the hypothesis that, for utilitarian trips, the route
between origin and destination consists of a small number of concatenated least cost paths.
The hypothesis is verified by analyzing routes extracted from large sets of recorded GPS
traces which constitute revealed preference information. Trips have been extracted from the
traces and for each trip the path in the transportation network is determined by map match-
ing. This is followed by a path decomposition phase for which the algorithm constitutes the
first contribution of this paper. There are multiple ways to split a given path in a directed
graph into a minimal number of subpaths of minimal cost. By calculating two specific path
splittings, it is possible to identify subsets of the vertices (splitVertexSuites) that can be
used to generate every possible minimum path splitting by taking one vertex from each
such subset. As a second contribution, we show how the extracted information is used in
microscopic travel simulation. The distribution for the size of the minimum decomposition,
extracted from the GPS traces, can be used in constrained enumeration methods for route
choice set generation. The sets of vertices that can act as boundary vertices separating con-
secutive route parts contain way points (landmarks) having a particular meaning to their
user. The paper explains the theoretical aspects of route splitting as well as the process to
extract splitVertexSuites from big data. It reports statistical distributions extracted from
sets of GPS traces for both multimodal person movements and unimodal car trips.

Keywords: Travel behavior, Route choice, Route decomposition, Transportation
modeling, GPS traces, Big data analysis, Graph theory

1. Introduction - Context

Travel demand prediction by means of micro-simulation in activity-based models results
in an agenda for each individual for the simulated period of time. Such agenda consists of
a sequence of episodes each one of which is defined by a period of time, an activity type, a
location and the modes used to reach the location. As soon as the locations are known, the

∗Corresponding author: Tel.:+32-11-269-126
Email address: luk.knapen@uhasselt.be (Luk Knapen)

Preprint submitted to Transportation Research Part B January 31, 2016



traffic demand needs to be assigned to the transportation network. Thereto route selection
procedures are required.

Such procedures are based on utility maximization where the utility depends on person
and route characteristics (trip duration, route length, number of left turns etc). In this
paper it is proposed to integrate an additional route feature in the choice process in order
to account for the route complexity. The additional feature is the minimum number of
intermediate destinations that is required to reconstruct the path from least cost (distance,
travel time, . . . ) components. The idea is that the traveler might have mentally constructed
the path as a sequence of such intermediates (which can be landmarks) and then tries to
reach each one of them as efficiently as possible.

Availability of big data sets of GPS traces allows for statistical analysis of the structural
characteristics of large sets of routes. Our purpose is to use the automatically extracted
information (route decomposition size and candidate landmarks) in the route choice set
generation procedure in order to make it less dependent on settings determined by expert
opinion.

In the remainder of the text, we deliberately use two sets of terms; they are related as
follows:

Road Network Context : Graph Theory
Node : Vertex
Link : Edge
Route : Walk, Path
Network : Graph

The minimum size of a decomposition into least cost components was determined for
routes derived from two sets of GPS traces. For both of them the traces for each participant
were recorded for at least one week. No user interaction with the recording device was
required. Hence this data collection can be interpreted as accurate revealed preference. The
traces reflect what actually happened.

In order to extract the minimal decomposition size for each path, the recorded data are
processed using the following steps:

1. Trip detection: the sequences of GPS recordings for each traveler are broken down
into subsequences. Each such subsequence corresponds to either a trip (movement)
or a stop (stay at a particular location having a non-zero finite area). Stops are not
relevant in this study and hence are ignored in the remainder of the paper.

2. Map matching: the GPS sequence for each trip is matched to a network consisting
of links (road segments) and nodes (junctions). Map matching is applied to each
individual trip. It associates a sequence of visited links to the trip (in general a walk
in a graph). From the set of walks, the subset constituting simple paths is kept. The
other walks are ignored since they are assumed not to correspond to a trip for which
the user aims at maximal utility (minimal generalized cost) since those walks contain
at least one node that is visited multiple times without an intermediate stop to perform
an activity. Map matching of the GPS sequence for a particular trip leads to a route
in the road network that links one activity location to the chronologically next one.

3. Route Decomposition: the map-matched route corresponds to a path in a graph in
which each edge is labeled with the link travel cost. The purpose is to split the path
into a minimal number of Basic Path Components (BPC) each one of which is either

2



a least cost path or a non-least-cost-edge (i.e. a single edge which is not the least cost
connection between its vertices). Every two consecutive BPC’s in the decomposition
are separated by a splitVertex.

4. Statistical analysis of route structural characteristics.

This paper focuses on the third and fourth steps in the process. First, the problem of
route choice is sketched in order to show how the size of the minimum path decomposition
can be integrated in the existing models. After this motivation, the concept of splitting
routes into basic path components is introduced in section 4. Definitions are given, the
concept is elaborated in a mathematical way, theorems on route splitting are proved and
the used algorithm is explained. Section 5 is devoted to the interpretation of the detailed
route splitting results and their relevancy in travel behavior research. It also formulates
research questions that can be solved using the results generated by the algorithm.

Finally, the paper reports the results extracted from the available datasets. A conclusion
is presented in section 8.

2. Route Selection Context

Route selection induces a complex discrete choice problem and in general consists of
two parts: a route choice set generator and a route choice model. Prato (2009) provides a
comprehensive overview of solutions to the route choice problem. The traveler is assumed to
select an optimal route according to personal preferences while having limited information
and limited processing capacity. When predicting routes for network loading simulation,
either collective of individual choice sets need to be generated for each origin-destination
pair. The set of possible routes is huge and the traveler never has a mental representation
of the complete set. Furthermore, the choice sets considered by the traveler and the re-
searcher are not necessarily identical. Hence, in the route choice problem, multiple route
sets are considered. Several similar schemes have been proposed to classify those sets and
the one given in Kaplan and Prato (2010) is shown below: each set is derived from the one
mentioned immediately above it.

Traveler view Researcher view

Set of all possible routes for OD-pair Universal set Universal set
Set of routes feasible based on a given cri-
terion

Master set Awareness set

Set of routes from which the individual
would select

Consideration set Viable set

For both model estimation and route prediction purposes, the consideration set is con-
structed algorithmically, in general by making use of non-compensatory techniques Bovy
(2009). The consideration set is used in route choice models most of which are derived from
MNL (multinomial logit).

Several studies investigate the quality of the choice set generators and of the overall
process as well as the mutual influence of choice set generation and choice model estimation.
However the effect of including or excluding a given path characteristic is not documented.

Bekhor et al. (2006) evaluate sixteen label minimization/maximization algorithms along
with K-shortest path selection, link elimination, link penalty and stochastic link impedance
based methods. Choice sets are generated for data collected from MIT researchers and

3



choice models are estimated. The models are based on distance, free-flow travel time,
some landmarks identified by the analyst, income indicators and time spent on government
numbered routes.

The relevancy of the composition of the choice set is investigated by Prato and Bekhor
(2007). The authors investigate the effect of the choice set generation technique on the
choice model parameter estimates and on the generated predictions. The study creates two
choice sets (one generated by the branch-and-bound technique and one that merges results
from labeling, link elimination, link penalty and stochastic link trait adaptations). Six
choice models are estimated using each choice set. All models use ten explanatory variables.
The effect of combining choice set generation techniques and choice models is investigated.
The branch-and-bound generator recursively generates paths in the network and discards
paths that do not meet specific criteria (e.g. length, number of left turns at junctions etc).
Fixed settings for the criteria used. The effect of the criteria is not investigated, probably
because the branch-and-bound technique already outperforms the other ones with respect
to coverage.

Prato (2012) performs a meta analysis of the effect of the choice set generation technique
on the accuracy of the choice model estimates and on the link flow predictions. Deterministic
(K-shortest path, link penalties, branch-and-bound) and stochastic (link impedance, com-
bination of link impedance and travel taste, random walk biased to search for the shortest
path) are considered. The choice model used is the path size correction (PSC) model. The
same techniques are used to generate synthetic data and to generate objective choice sets
and choice models. This is done for several parameter sets and in pairwise combinations.
The choice models are restricted to account for route length, number of speed bumps, num-
ber of turns and the path size correction. The only investigated route generator that can
include path attributes, is the branch-and-bound technique. Several settings for thresholds
are investigated.

Since the consideration set is not observable, it can be argued that the parameters of
the consideration set construction model and the choice model shall be estimated together.
This is done by Kaplan and Prato (2010). The consideration set Cn for traveler n is derived
from the master set using a conjunctive heuristic semi-compensatory model : the probability
to find consideration set Cn is given by the probability that respondent n uses a specific
set of thresholds for the independent values. If an independent variable is out of range
w.r.t. a threshold, the corresponding route is not considered. The thresholds are unknown
in advance and they are estimated using a maximum likelihood method. The authors only
consider the route length and the number of turns.

Consideration set construction is the point where the research on route decomposition
presented in this paper fits. Up to now the feasibility of a route for inclusion in the con-
sideration set is assessed using several attributes (detour factor, number of left turns and
others): we propose to additionally include the size of the minimum path decomposition in
the assessment. The idea applies to both choice set generation an choice models (explana-
tory variables). It allows (i) to avoid overly circuitous routes and (ii) to avoid introducing
unrealistic bias towards the shortest paths.

Quality assessment using the minimum path decomposition size can be used (i) in the
consideration set construction stage (ii) or as a posterior assessment of the generated set.
In both cases, distributions for the minimum decomposition size extracted from recorded
routes are used. They can be collective or individual; the latter applies to the case where
sufficient longitudinal data for each participant are available.

Consideration set construction is discussed by several researchers. For the purpose of

4



this paper the reported research efforts are subdivided in two categories according to how
the proposed assessment can be integrated.

2.1. Assessment in choice set construction stage.

The research reported in the following papers allows to use additional route attributes
in the consideration set construction stage.

Zijpp and Catalano (2005) present the Constrained K-Shortest Paths (CKSP) technique
based on Lawler’s algorithm. In case a constraint can be evaluated on the first part of a
partially generated path only, a part of the search space can be discarded if the constraint
is not met. The CKSP method is based on consecutive least cost path evaluations and the
new minimum path decomposition size algorithm can be integrated with limited effort. If an
upper bound for the minimum decomposition size is specified in advance, the CKSP method
can discard subspaces that would deliver overly complicated paths.

Prato and Bekhor (2006) present a deterministic path generator using a branch-and-
bound (breadth-first-search) technique that constructs a connection tree of candidate paths
between a given origin and destination. Each time a link is to be added several constraints
are verified. Given constant factors are used for partial path assessment: (i) a distance
factor filters partial trips moving back to the origin, (ii) a time factor filters partial paths
taking too long, (iii) a detour factor limiting the length of partial paths relative to the
minimal distance between their endpoints and (iv) a similarity constraint that limits overlap
between candidates. The generator is applied to a network for the city of Torino, Italy.
Commuting trips were recorded using a web-tool. The branching rules account for behavioral
constraints. The authors evaluate the quality of the choice set using the concept of coverage.
The authors compare several generation techniques and reports that coverage levels attained
by branch-and-bound techniques are much higher than for other techniques. Finally, several
choice models are estimated using the generated choice sets. The results of our research
can be used in branch-and-bound rules. The size of the minimum decomposition can be
calculated for the head part each path being built; the complexity is of the same order as
the evaluation of the loop constraint mentioned by the authors. The distribution for the
minimum decomposition size extracted from GPS traces can be used to determine threshold
values.

Schüssler et al. (2010) mention the difficulty of avoiding bias when establishing route
choice sets for high resolution networks: either behaviorally advanced choice set generation
procedures are required or large sets of routes need to be explored and reduced by considering
attractivity, plausibility and similarity between routes. The authors present the Breadth
First Search Link Elimination (BFS-LE) algorithm suitable for route set generation in high
density networks. The minimum decomposition size of the path can be used as a selection
criterion in the mentioned reduction phase.

Finally, Pillat et al. (2011) investigate how path assessment can be based on thresholds
acquired from GPS recordings. The authors describe an experiment where a route choice
set is generated and compared with trips recorded from GPS traces. Preferred routes were
collected using a survey and saved in a database by identifying consecutive junctions on
a map. From those data, the maximum detour factor as a function of the travel time is
derived. In the choice set generation phase, the detour factor changes as the duration of
the partially generated path grows. The resulting generated paths are compared to trips
derived map-matched GPS traces.

In this paper we propose to use the information extracted from the GPS data to define
the selection criteria for use during route generation instead of using it for verification only.

5



2.2. Posterior assessment of the generated choice set.

In some cases it is not possible to include minimum decomposition size verification in
the route generation stage. In such cases, posterior assessment of consideration sets can be
applied to the generated results. E.g. the distribution for the minimum decomposition size
found in MATSim generated routes can be validated with the one found in GPS traces.

MATSim finds the optimal route for each traveler by micro-simulation. The movements
of cars crossing links on the road network are simulated. The time to cross each link depends
on the link characteristics and on the link occupation by other cars. Travelers execute their
daily plan and derive the time to travel from the network. The plan gets an evaluation
score at the end of the day and, under certain conditions, a new one is generated. The
basic assumption is that individuals always try to minimize their travel cost (Balmer et al.
(2009)) by finding new routes and by changing their departure times. No route choice set is
to be determined a priori but built and maintained by the genetic algorithm as an integral
part of the plan (agenda).

3. Research Objective

Each route revealed or conceived by a traveler can be decomposed into sub-routes that
are least cost routes between their endpoints. The traveler is assumed to have a set of
intermediate destinations in mind while constructing a route and to hop between them
using least cost sub-routes. The traveler does not stop in the intermediate locations but
merely uses them as anchor points in the construction process.

Graph theory is used to analyze route decomposition: definitions and theorems are
presented in Section 4. Each path in a graph can be split into least cost subpaths in several
ways. Each path has one or more minimum decompositions i.e. decompositions consisting
of the smallest number of least cost paths from which the path can be reconstructed by
concatenation.

The size of the minimum decomposition is a structural qualifier for the path that can
be used in the consideration set generation as mentioned in section 2. We, therefore, aim
to establish the probability distribution for the size of the minimum decomposition from a
set of trips extracted from GPS traces.

A utilitarian trip represents a travel where the destination is different from the origin
and the traveler moves in order to perform a planned activity at the destination location,
in other words, it is a travel for a given purpose. We investigate the following:

Hypothesis 3.1. In utilitarian trips, individuals tend to construct their route as a concate-
nation of a small number of minimal cost routes i.e. basic path components (BPC).

The individual is thought to make use of a small set of preferential intermediate locations
between the origin and destination and to travel in the most efficient way between them.
In order for route choice sets to be realistic, the distribution of the minimum decomposi-
tion size shall reflect the one found in recorded traces. Generalized route traversal cost is
approximated by considering individual link travel cost only. Node traversal cost (e.g. left
turn cost) is associated with pairs of links and is not covered by the algorithms presented
in this research.

This paper presents the decomposition technique and the distribution for the minimal
decomposition size. In a forthcoming paper we analyze the use frequency of nodes as split
nodes in the routes in order to verify the hypothesis that some nodes are preferential route
splitters due to traffic related characteristics of the network (like availability of traffic lights).

6



4. The main graph-theoretical terms, algorithms and proofs

4.1. Minimal splitting of routes into Basic Path Components

We begin with some definitions from graph-theory. Let G = (V,E) be a directed graph
with vertex set V and edge set E. The vertices correspond to nodes in a road network,
and the edges correspond to links in the network. Each edge e has a nonnegative cost c(e)
which is the effort (e.g. time or money) required to traverse the link in the network. For a
subgraph H ⊆ G, V (H)(E(H)) denote the set of vertices (edges) of H.

Definition 4.1 (walk, initial, terminal, internal vertices, internally-disjoint). A walk is a
sequence of vertices P = (v0, v1, . . . , vl), not necessarily distinct, where (vi, vi+1) ∈ E(G) for
all i = 0, 1, . . . , l−1. Vertices v0 and vl are called initial and terminal vertices, respectively,
of P , and vertices v1, . . . , vl−1 are called internal vertices of P . The walk P is said to be
connecting v0 and vl, and it is also denoted by P (v0, vl). A walk Q(v0, vl), is internally-
disjoint from P if all the internal vertices of Q, are distinct from the vertices in P .

Definition 4.2 (path, subpath, size, cost, least cost path, least cost distance ). A path is
a walk where all its vertices are distinct. For a path P = (v0, v1, . . . , vl), any subsequence of
vertices vi, vi+1, . . . , vj, where 0 ≤ i,≤ j ≤ l is a subpath of P , and is denoted by P (vi, vj).
The size of a path, denoted by |P |, is the number of edges in it (i.e. l), and the cost of a
path, denoted by c(P ) is the sum of the costs of its edges. A least cost path between u and
v is a P (u, v of least cost. The least cost distance between u and v, denoted by lc(u, v) is
the cost of the least cost path connecting u and v.

We remark that if c(e) = 1 for all e ∈ E then the cost of a path coincides with its size
and that vertex traversal cost is assumed to be zero.

The following lemma is easy to prove:

Lemma 4.3. If P = (v0, v1, . . . , vl) is a least cost path, then any subpath of P is also a least
cost path.

Proof: Assume, by contradiction, that P (vi, vj) is not a least cost path between vi and vj,
for some 0 ≤ i < j ≤ l. Let Q(vi, vj) be a path of smaller cost. Then by replacing P (vi, vj)
by Q(vi, vj) we get a walk connecting between v0 and vl of smaller cost than P . This walk
contains a path connecting v0 and vl of smaller cost than P , since we assumed that the cost
function is non-negative. This contradicts the fact that P is a least cost path.

The converse of Lemma 4.3 is false since it is possible that all the subpaths of P (v0, . . . , vl)
(except P itself) are least cost paths, but P is not a least cost path connecting v0 and vl and
there is another least cost path Q connecting v0 and vl. This fact motivates the following
definition:

Definition 4.4 ( P - shortcut, fork and join vertices). Let P = (v0, v1, . . . , vl) be a given
path. A P (vi, vj)-shortcut (or for brevity, P - shortcut, or shortcut), is a path Q(vi, vj),
internally- disjoint from P , where vi, vj ∈ V (P ), such that c(Q(vi, vj)) < c(P (vi, vj)). The
vertices vi and vj are called fork and join of the shortcut, respectively. (See Figure 1).

By Lemma 4.3 a least cost path cannot have any shortcuts.
Assume e = (u, v) is an edge in P whose cost is larger than the least cost path connecting

u and v. Then e is called a non-shortest-edge .

7



P

Q
vi

vj

Figure 1: A path P with a P (vi, vj)-shortcut. vi is a fork vertex and vj is a join vertex

Definition 4.5 ( Basic Path Component (BPC)). Given a path P , a subpath of P is called
a Basic Path Component, or for short, a BPC, if it is either a least cost path connecting its
endpoints, or P consists of a single non-shortest-edge.

Claim 4.6 (path splitting). Let P = (v0, v1, . . . , vl) be any path connecting v0 and vl. Then
E(P ) can be partitioned into BPC’s.

Proof: The trivial partition into edges (v0, v1), (v1, v2), . . . , (vl−1, vl) is an example of such
a partition.

There are many ways to do path splitting, the trivial partition is among them. We are
interested in finding a path splitting with a minimum number of basic path components.
Such a path splitting is called minimum path splitting. Each non-shortest-edge is a part in
each minimum path splitting since it constitutes a BPC. If we remove the set of non-shortest
edges in a path (each of which is a BPC), we are left with a set of disjoint paths, each of
which contains no non-shortest-edges.

From now on we will assume that P does not contain any non-shortest-edges.
We will address the following problem:

Problem 4.7 (minimum path splitting). Given a path P = (v0, v1, . . . , vl) with origin v0
and destination vl, and assume P does not contain any non-shortest-edges. Find efficiently
a minimum path splitting of P .

A vertex separating two consecutive BPC is called a splitVertex. To solve problem 4.7 we
note that a minimum path splitting will contain a minimum number of splitVertices (since,
by definition, any two consecutive basic path components are separated by a splitVertex).
Hence, an equivalent formulation of Problem 4.7 would be to find a minimum number of
splitVertices in P , denoted by vsi1 , v

s
i2
, . . . vsik , such that any subpath connecting consecutive

splitVertices will be least cost.

Lemma 4.8. Let P = (v0, v1, . . . , vl) be a path connecting v0 and vl. Assume P is not least
cost, and let Q(vi, vj) be a shortcut in P . Then any path splitting of P will contain at least
one internal vertex in the path segment P (vi, vj).

Proof: By contradiction. If no internal vertex in P (vi, vj) is a splitVertex, then P (vi, vj)
is a least cost path, contrary to the fact that Q(vi, vj) is a shortcut in P .

8



We are now ready to describe an efficient algorithm for partitioning a given path P into
a minimum number of basic path components. The algorithm begins with the initial vertex
of P , v0, and finds a maximal least cost path beginning with it. This is done using Dijkstra’s
least cost path algorithm (Dijkstra (1959)). Assume vj1 is the first vertex on P for which
P (v0, vj1) is not least cost, then the algorithm marks vj1 as a join vertex and continues with
the subpath of P beginning from the vertex prior to vj1 on P , looking for the next join
vertex in P (vj1−1, vl). We continue until no more join vertices are found. The pseudo code
is given below. See also Figure 2.

Algorithm 4.1 Algorithm for finding a partition of a path into BPC’s

Input Graph G, edge costs c, P = (v0, v1, . . . , vl) containing no non-shortest edges
start← 0;
k ← 1
while (P (vstart, vl) is not a least cost path) do

Find the first vertex vjk in P (vstart, vl) such that lc(vstart, vjk) < c(P (vstart, vjk))
start← jk − 1
k ← k + 1

end while
return join vertices vj1 , vj2 , . . . , vjk−1

Theorem 4.9. Algorithm 4.1 finds a partition of path P into a minimum number of BPC’s.

Proof: Given the output of the algorithm, we will partition the given path P into exactly
k subpaths . Define the splitVertices to be the vertices preceding the join vertices on P , i.e.
vsi = vji−1 for 1 ≤ i ≤ k − 1. Each subpath begins in a splitVertex and ends in the next
splitVertex, except for the first subpath which begins in v0 and the last subpath which ends
in vl. In other words, the subpaths are: P (v0, vs1), P (vs1 , vs2), P (vs2 , vs3) . . . , P (vsk−1

, vl). By
the algorithm, it is clear that each of these subpaths are minimum cost, and hence are BPC’s.
We are now left to prove that no other partition exists with fewer than k BPC’s. Assume, by
contradiction, that such a partition exists, with k − 1 BPC named P1, P2, . . . , Pk−1. Then,
by the pigeon hole principle, at least one BPC, say Pi contains at least one splitVertex of
P , say vst as an internal vertex of Pi and vst−1 (or v0 when t = 1) is also included in Pi .
This implies that the join vertex vjt is included in Pi, and hence Pi is not a least cost path,
which is a contradiction.

We have described an algorithm of splitting a path into a minimum number of BPC’s,
and finding splitVertices that separate between these basic path components. The algorithm
is efficient since it uses Dijkstra’s algorithm no more than k times, where k is the minimum
number of BPC’s used to partition P . Two natural questions arise here; is the partition
into a minimum number of BPC’s unique, and are the splitVertices unique? Since the
splitVertices may denote some point of interest for the traveler (otherwise a minimum cost
path would have been chosen), we are interested to find efficiently other splitVertices and
partitions into BPC’s.

We use Algorithm 4.2 to find another partition of P into BPC’s, starting from the end
of the path, and a collection of fork vertices in the given path P . This is done by ’going
backwards’ from vl to vl−1 etc. and finding the first vertex vf1 such that the subpath
P (vf1 , vl) is not a least cost path, but P (vf1+1, vl) is a least cost path. The algorithm to

9



13
js

vv 

31
fs

vv 

4
f

v

0
v

l
v

2
j

v

2
f

v

3
j

v

4
j

v
4

s
v

3
s

v

2
s

v

1
f

v

4
s

v

2
s

v

1
s

v

SplitVertex

Fork vertex

Join vertex

Edges of P

Shortcuts to P

Figure 2: A path P with join and fork vertices and basic path components.

produce fork vertices is similar to Algorithm 4.1 , except that we run it on the “reverse
graph” of G, obtained by reversing all the edges in G. Note that when all the edges in G

are reversed, the first vertex v0 of the “ reversed path ”
←−
P corresponds to the last vertex vl

of the original path P . We include the algorithm for completeness.

Algorithm 4.2 Algorithm for finding a partition of a path into BPC’s and fork vertices.

Input Graph G, edge costs c, P containing no non-shortest edges

Reverse the edges in G; Assume the reversed path is
←−
P = (vl, vl−1, . . . , v0)

start← l;
k ← 1
while (

←−
P (vstart, v0) is not a least cost path) do

Find the first vertex vfk in
←−
P (vstart, v0) such that lc(vstart, vfk) < c(

←−
P (vstart, vfk))

start← fk + 1
k ← k + 1

end while
return fork vertices vf1 , vf2 , . . . , vfk−1

Now define another set of splitVertices vsi = vfi+1 for 1 ≤ i ≤ k − 1, which are the
vertices following the fork vertices on P found in Algorithm 4.2. It is easy to see, as in the
proof of Theorem 4.9, that the k subpaths P (v0, vsk−1

), P (vsk−1
, vsk−2

), . . . , P (vs1 , vl) are all
BPC’s, and hence are a minimum partition into BPC’s. (See Figure 2).

4.2. Selecting splitVertices for minimum path splitting

We have seen in section 4.1 that there are at least two sets of splitVertices which break
up the given path P into k BPC’s. One set was obtained by looking for maximal shortest
paths starting from the beginning of P , these vertices were labeled by vs1 , vs2 . . . , vsk−1

, and
the other was obtained by looking at maximal shortest paths starting from the end vertex
of P . These were labeled as vs1 , vs2 , . . . , vsk−1

. Each such set breaks up P into exactly k
BPC’s. Denote by Si the sequence of consecutive vertices on P in which vsk−i

is the first one
and vsi is the last one, for each 1 ≤ i ≤ k − 1. We call each such sequence splitVertexSuite
(SVS). Then any partition of P into a minimum number of BPC’s is obtained by choosing

10



Figure 3: A path P and an “invisible” shortcut (v5 → v8) to P .

a unique splitVertex from each splitVertexSuite Si. Hence the number of ways of splitting
a path into a minimum number of BPC’s, NP is bounded above by

NP ≤
∏

1≤i≤k−1

|Si| (1)

The following example (see figure 3 ) shows why in some cases, this is a strict upper
bound, i.e. the actual number of partitioning P into a minimum number of BPC’s is
smaller than this bound. In figure 3 our algorithms discover the join vertices v7 and v10
and fork vertices v6 and v1. The SVS’s are S1 = {vs2 = v2, . . . , vs1 = v6} and S2 = {vs1 =
v7, . . . , vs2 = v9}. However, if for example, we choose the split vertices v3 and v9 then we do
not break up P into 3 BPC’s since the middle subpath, P (v3, . . . , v9) contains a shortcut
between v5 and v8, which was not discovered by our algorithm, and hence is not a BPC. In
fact, in this example any splitting of P into 3 BPC’s must not avoid the vertices v6 or v7 .
We conclude that formula 1 is an upper bound for the number of ways to split a path into
a minimum number of BPC’s. In the sequel paper we will show how to avoid this problem
of an “invisible shortcut” and compute precisely the number of ways to split a path into a
minimum number of Basic Path Components.

5. Interpretation of route decomposition

In Section 4 we described an algorithm for finding a partition of a path into a minimum
number of BPC’s, and finding a collection splitVertexSuites which separate between the

11



vx y

x

x

x

v

v

v

y

y

y

Trivial v

Trivial v

non-Trivial v

non-Trivial v

Figure 4: Examples of trivial and non-trivial nodes having exactly two neighbors in the road network.

basic path components. From this information, the researcher knows how many interme-
diate destinations, but not which particular combination, the traveler had in mind while
composing the route.

5.1. SplitVertexSuites and the detection of

traveler intentions. It is reasonable to assume that at least one vertex (a splitVertex )
in each splitVertexSuite, or one of its incident edges belonging to the path, has a special
meaning to the traveler; otherwise there would be no reason for a rational traveler to visit
the subpath determined by the splitVertexSuite and not take the shortcut. We do not know,
however, which vertices in the splitVertexSuites the traveler had in mind as special vertices
acting as intermediate destinations. The larger the size of a splitVertexSuite, the more
uncertain we are about the motivation of the traveler. The value of NP given by inequality
(1) is a measure for the uncertainty about the set of road landmarks motivating the selected
route.

5.2. Network Normalization

In order to calculate the uncertainty value, a preprocess step of network normalization is
required. In road networks, both directed (one-way) and undirected (bidirectional) links co-
exist. The corresponding digraph is verified in advance not to contain any sources or sinks
(to assess data quality). Parallel edges (i.e. two different edges sharing a single ordered pair
(va, vb) of vertices) are allowed in graphs representing road networks.

A trivial vertex v is defined as a vertex with exactly two neighbours, each of which
is connected to v by at most one edge in each direction and in addition indegree(v) =
outdegree(v). (see Figure 4 for examples).

In digital maps, trivial vertices (nodes) are used to subdivide road segments into parts at
locations where a road segment attribute value changes (e.g. speed limit, number of lanes,
municipality name, road owner, pavement type, etc.). These changes by themselves are
assumed to be irrelevant to the traveler while selecting a route. It is however obvious that
an aggregated measure (e.g. the fraction of the road length having good quality pavement)
can be a reason to select a particular link.

In a path of trivial vertices, either all or none belong to the same splitVertexSuite,
since no trivial vertex can be a fork or a join vertex. This observation allows for network
normalization by link contraction which removes all trivial vertices. Network normalization
does not change the number of splitVertexSuites neither does it affect the set of splitVertices
since it is reasonable to assume that trivial vertices are not splitVertices. This leads to an
unambiguous estimation of the uncertainty about the splitVertex selection. Figure 5 depicts

12



Figure 5: The largest part of the route (from Herk-de-Stad (right) to Kraainem (left)) makes use of the
E314 and E40 highways. SplitVertices (represented by green star symbols) were determined using the raw
(non-normalized) OSM network. The diagram shows the need for network normalization.

clearly the need for normalization. We add the process of network normalization after map
matching and before route splitting.

5.3. Frequency distributions to feed simulators

We are interested in probability distributions for the following parameters:

1. The minimum number of BPC’s for each route.

Distributions of the minimum number of basic path components are essential to route
generation. The distribution derived from the complete set of traces uncovers charac-
teristics for the complete observed population. Similar distributions derived for specific
individuals may reveal the existence of several behavioral categories when sufficient
longitudinal data are available.

2. The use frequency of each splitVertex at the population level.

This is a measure for the attractiveness of the vertex or its incident edges. This
provides additional input to the route generator when applied to the region where the
traces have been captured. It allows to automatically identify specific spots on the
network that serve as way points for route generation methods. Analyzing the use
frequency of road network nodes as splitVertex and the links they delimit, will elicit
network characteristics (as opposed to the minimum size of a decomposition which is a
trip characteristic). Frequently used splitVertices are interpreted as route attractors.
The question is whether they can be associated with specific elements in the road
network (highway entry/exit ramps, traffic lights, tunnels) or with specific (types of)

13



POI (point of interest) like a school, public transportation station, carpool parking
etc. This analysis requires a much larger data set than the one that was available for
research reported here.

3. The use frequency of each splitVertex at the individual level.

This may uncover short intentional stops (bring/get, pick/drop activities) that are
not discovered by the trip detector because of their short duration. Current trajec-
tory annotation literature (e.g. Giannotti et al. (2007), Zheng et al. (2009), Kuijpers
et al. (2009), Spinsanti et al. (2010), Alvares et al. (2007), Andrienko et al. (2011),
Furletti et al. (2013)) focuses on stops found in GPS traces. From mobility science
point of view, it is also relevant to annotate (i.e. to attach a meaning to) splitVer-
texSuites. Annotating splitVertices is expected to be more complex than annotating
stop locations because of the uncertainty mentioned above.

6. Data preparation steps

In order to investigate Hypothesis 3.1, a large set of GPS trajectories has been analyzed.

6.1. Belgian Person Traces

A set of 999 GPS traces recorded during the period 2006-2008 using a PDA have been
analyzed. People took the PDA with them: the result is a set of person traces as opposed
to car traces often used. Person traces contain more information but are more expensive to
collect over a long period and are sensitive to omissions because people can forget to take
the device with them. GPS recording frequency was 1[Hz].

6.1.1. Processing Method 1 : IMOB tools + OpenStreetMap Network

1. Trip detection was performed by finding recording gaps and by analyzing speed varia-
tions in sequences of GPS recordings. The detected trips can have several modes (e.g.
car-train-walk) but mode detection was not performed (although walking and biking
are quite easily identified).

2. Some trips have been detected to start/end at a petrol station located near a highway
as a result of the threshold values used for stop detection. Those were not altered
because refueling can be considered to be a shopping activity.

3. OpenStreetMap (http://www.osm.org/) was used to extract a road network for Flan-
ders (Belgium). The network has 479920 links and 372608 nodes. Trips have been
map-matched onto that network. The map matching step is crucial. Some map match-
ers try to fill (small) gaps in the recording by assuming that the traveler moved along
a least cost path (according to some criterion). This shall not be done in this research
because the hypothesis to be tested shall not be influenced by hypotheses used while
map matching. Because of the high recording frequency, it can be expected that every
road segment used by the traveler is selected by at least one GPS point. Traces of this
kind are called high density recordings. Use of high density recording was essential
to the reported research. Furthermore, map matching high density recordings can
benefit from topological information available from the network. Making use of that
information makes the matching process efficient. The map matcher for high density
recording described by Knapen et al. (2015) was used.

Trip detection and successive map matching resulted in 13098 cases.

14

http://www.osm.org/


6.1.2. Processing Method 2 : Fraunhofer tools + Navteq Network

The set of recordings used in section 6.1.1 has been map-patched to the Navteq network
which was not normalized. This network consists of 903.217 links and 748.705 nodes for
Belgium. The tool used to perform the map-matching was written by Fraunhofer IAIS. In
general the process used within this map matching tool consists of two steps.

In the first step a data preparation is done. This includes the detection of outliers and
standstills. GPS points falling in at least one of both categories were excluded from the
map matching. In addition the time gaps M [min] between two consecutively logged GPS
points, were calculated.

In the second step the map matching process is conducted. The goal is to connect each
GPS point to exactly one Navteq street segment. Here the map matcher uses a combination
of a geometrical and topological map matching. This means that both, the spatial distance
of the GPS points to the Navteq street network, and the information of the topological
connections in combination with driving restrictions, are used to assign a GPS point to a
street segment.

In addition small gaps within the GPS traces were closed by a shortest path routing.
Here we worked with three different time gaps (M = 1.0, 2.5 and 5.0[min]). When M grows,
the number of detected trips decreases and their average size (distance, number of road
network links used) grows. Furthermore, the probability that a reported trip is not a simple
path but a walk, grows because small movements are combined to a single trip.

6.2. Italian Car Traces

A set of car trajectories recorded in the region of Milano, Italy was processed using
the Fraunhofer IAIS map matcher and the Navteq network (Processing Method 2). The
numbers of nodes and links for Italy are nearly ten times larger than the corresponding
values for Belgium.

7. Analysis Results

The results for a given trip consist of zero or more splitVertexSuites and the size of
the minimum path decomposition (number of BPC). In all experiments described below,
distance along the road (as opposed to travel time) was used as the generalized cost value
to travel a road segment.

7.1. Examples of Discovered splitVertexSuites

Sample routes extracted from the recorded datasets are shown in following figures in
order to grasp the idea of the observed splitVertexSuites. All diagrams have been generated
using the Navteq network.

Figure 6 shows a trip of about 16[km] consisting of three basic components. The large
splitVertexSuite near Sint-Truiden coincides with a segment of an arterial express road which
runs parallel to the straight line north-west to it. Higher speed is allowed on the arterial
road but the distance is longer. The large size of the splitVertexSuite again shows the need
for network normalization.

Figure 7 shows part of a route starting at the right hand side, visiting the center of the city
of Geel, then moving around the city in clockwise direction, heading to the north and finally
arriving near the center of the city of Mol. The partial route shows 11 splitVertexSuites and
Figure 8 shows the lower-left part of the same route. The lower-right splitVertexSuite in
Figure 8 suggests that a particular street in the city center was an intermediate destination.

15



Figure 6: Route consisting of three basic components and showing the need for network normalization. The
rectangle measures approximately 40[km] by 25[km].

The lower-left splitVertexSuite suggests the intentional use of the ring way and/or a specific
junction.

Figure 9 shows a route of about 4 kilometers having 7 splitVertexSuites first visiting
something special at the first splitVertexSuite and then avoiding the narrow streets in a
residential area up to the 4-th splitVertexSuite which represents a location equipped with
traffic lights. The arterial road is used up to the 5-th splitVertexSuite which also contains a
junction equipped with traffic lights. The trip ends near the parking of a shopping center.
The 7-th splitVertexSuite is the upper-right one in Figure 10. It is an artifact caused by the
fact that the street labeled Van Groesbeekstraat (south of the splitVertexSuite) constructed
in 2012-2013 did not exist at the time of trajectory recording (between 2006 and 2008).

7.2. Distributions for the Size of the Splits at the Population Level

For the interpretation of the results, it is important to remind the definitions for stop
and trip. A trip is a movement between chronologically consecutive stops. A stop is location
where the traveler intends to execute an activity. Hence, a stop corresponds to a standstill
on purpose. Not every standstill constitutes a stop (e.g. waiting for a traffic light is a
standstill but not a stop). Furthermore, a splitVertex acts as an intermediate destination
when the traveler mentally constructs a route from least cost components.

Figure 11 shows the absolute and relative distributions for the number of basicCompo-
nents per trip computed for the respective complete sets of trips. Results are shown for the
cases identified in section 6 based on the map matching method and the capturing region.

1. The relative frequency distributions suggest that Hypothesis 3.1 holds. The distribu-
tions depend on the methods used for trip detection and map matching. The distri-

16



Figure 7: Part of a larger route showing a large number of splitVertexSuites.

Figure 8: Detail view of Figure 7 showing splitVertexSuites in and near the city center.

17



Figure 9: Route showing splitVertexSuites that correspond to traffic lights.

Figure 10: Detail of Figure 9 (rightmost part of the route).

18



Absolute frequency distribution for the number of basicPathComponents.

Relative frequency distribution for the number of basicPathComponents.

Figure 11: Frequency distributions (top:absolute, bottom:relative) for the number of basicComponents per
trip. The number of trips in each set depends on the map matcher used.

19



butions labeled Belgium Navteq x.y[min], differ only in the value for delay threshold
parameter used in stop-detection. The smaller the threshold value, the more stops
are detected and hence the smaller the size of the trips (expressed as the number of
links they contain). For a given sequence of GPS recordings, the more subsequences
are flagged as stops, the lower the number of detected basicPathComponents; this
occurs because some briefly visited locations will be flagged as a stop when using a
small delay threshold parameter value whereas they are detected to be a splitVer-
texSuite in the opposite case. This is reflected in the relative frequency distribution
diagram. The probability (relative frequency) to find routes having 1 basicPathCom-
ponent decreases with increasing value of the delay parameter (1.0 , 2.5 , 5.0). For the
case of 2 basicPathComponents the phenomenon is largely attenuated. Starting at 3
basicPathComponents per trip, the effect is reversed as expected.

2. For Belgium, the OSM and Navteq cases seem to slightly differ. This can have been
caused by the use of different map matching tools, based on different methods and
concepts. The Fraunhofer IAIS map matcher closes small gaps by assuming that
the traveler used the shortest path between successive recordings. The IMOB map
matcher does not use this procedure. This conclusion is not final because the cases
differ both in the network and the map matcher used.

3. The difference between the Belgian and Italian cases, however, is much larger. The
relative frequency for trips consisting of a single basicPathComponent is much larger
than for the trajectories registered in Belgium. For routes having more than one
component, the relative frequency is lower than in any Belgian case. Detail analysis is
required to find out whether this phenomenon occurs because in the Italian data set,
the pre- and post-car-trip components are missing (Italian traces are car traces).

7.3. Algorithm Execution Run Times

Table 1 summarizes characteristics of the runs. The results for the computed cases differ
as a result of:

1. the difference in map matching methods and parameters used and

2. the difference between the networks (it is suspected but not yet verified) that the
number of links between two junctions that are each others neighbors in the road
network, is larger for the Navteq network than for the OSM network (due to the
presence of trivial nodes mentioned in section 5.1).

8. Conclusions and future research

A given path in a graph can be split into BPC (Basic Path Components) that are
either least-cost paths or non-least-cost edges. We developed an algorithm that computes
efficiently the size of a minimum splitting of a given path. The algorithm’s correctness
is proved. The analysis results in a set of splitVertexSuites for a given path from which
minimum path splittings can be generated, and an upper bound for the number of possible
minimum path splittings is obtained.

The new algorithm is used to verify the hypothesis that for utilitarian trips, people tend
to compose their route from a small number of least cost paths. The feasibility to determine
the size of a minimum path decomposition is shown. This size is a measure for the structural
complexity of the path.

20



Region Belgium Belgium Belgium Belgium Italy
Case OSM Navteq Navteq Navteq Navteq

1.0[min] 2.5[min] 5.0[min] 1.0[min]
Runtime[sec] 5191 17058 25822 36424 498850
Machine calc2 calc2 lucp2364 linux1 calc4
OS Linux Linux Linux Linux Windows

Debian Debian Debian Debian Server
wheezy wheezy wheezy wheezy 2008

CPU Xeon Xeon i5 Core2 Xeon X5670
Memory 3[GB] 3[GB] 4[GB] 2[GB] 48[GB]
ClockFreq 2.8[GHz] 2.8[GHz] 2.4[Ghz] 2.4[GHz] 2.93[GHz]
Cores used 7 7 3 2 20
Trips scanned 6632 12429 9408 8020 34308
Trips dropped 694 2066 2426 2508 3427
Net number of trips 5938 10363 6982 5512 30881
Number of basic compo-
nents

12687 22921 17429 14412 56346

Number of basic compo-
nents per trip

2.14 2.21 2.50 2.61 1.82

Average number of
nodes per trip

21.68 82.47 75.43 62.20 55.37

Number of least cost
path calculations

128736 854637 526652 342846 1772569

Least cost calculations
per second

24.8 50.10 20.40 9.41 3.55

Number of trips per sec-
ond

1.14 0.61 0.27 0.15 0.06

Table 1: Run characteristics overview.

21



The resulting distributions for the number of BPC establish a criterion to assess the
plausibility of a proposed route while generating choice sets in simulators. This criterion
can be deployed (i) in the generation stage when using branch-and-bound techniques and
(ii) in the assessment stage to filter inappropriate candidates when using other techniques.
As such they provide a foundation to generate realistic routes in transportation simulation
models.
The following questions need to be addressed in future research:

1. Determine an exact computation of the number of possible ways to partition a path
into a minimum number of BPC.

2. Investigate more rigorously how the distribution for the minimum number of BPC in
a path depends on the level of detail (coarseness) of the network and the map matcher
used.

3. Design an efficient algorithm that generates routes from a given origin to a given
destination for which the travel distance and the number of basic path components
are values sampled from distributions determined from recorded trajectories.

4. Generate routes using a method such as the one described in Frejinger et al. (2009) in
order to compare the resulting splitVertexSuite size distribution with the one extracted
from GPS traces.

Acknowledgment

The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement nr 270833.

Octo Telematics, Italy (www.octotelematics.com) provided the set of trajectories for the
Milano region.

References

Alvares, L.O., Bogorny, V., Kuijpers, B., de Macedo, J.A.F., Moelans, B., Vaisman, A.,
2007. A model for enriching trajectories with semantic geographical information, in:
Proceedings of the 15th annual ACM international symposium on Advances in geographic
information systems, ACM, New York, NY, USA. pp. 22:1–22:8.

Andrienko, G., Andrienko, N., Hurter, C., Rinzivillo, S., Wrobel, S., 2011. From Movement
Tracks through Events to Places: Extracting and Characterizing Significant Places from
Mobility Data, in: IEEE Conference on Visual Analytics Science and Technology, IEEE,
Providence, Rhode Island, USA.

Balmer, M., Rieser, M., Meister, K., Charypar, D., Lefebvre, N., Nagel, K., 2009. MATSim-
T: Architecture and Simulation Times., in: Multi-Agent Systems for Traffic and Trans-
portation Engineering., Igi global edition. pp. 57–78.

Bekhor, S., Ben-Akiva, M., Ramming, M., 2006. Evaluation of choice set generation
algorithms for route choice models. Annals of Operations Research 144, 235–247.
10.1007/s10479-006-0009-8.

22

www.octotelematics.com


Bovy, P.H.L., 2009. On Modelling Route Choice Sets in Transportation Networks: A Syn-
thesis. Transport Reviews 29, 43–68,.

Dijkstra, E., 1959. A note on two problems in connexion with graphs. Numerische Mathe-
matik 1, 269–271.

Frejinger, E., Bierlaire, M., Ben-Akiva, M., 2009. Sampling of alternatives for route choice
modeling. Transportation Research Part B: Methodological 43, 984 – 994.

Furletti, B., Cintia, P., Renso, C., Spinsanti, L., 2013. Inferring human activities from
GPS tracks, in: UrbComp 13 Proceedings of the second ACM SIGKDD International
Workshop on Urban Computing, ACM, Chicago.

Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D., 2007. Trajectory pattern mining, in:
Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery
and data mining, ACM, New York, NY, USA. pp. 330–339.

Kaplan, S., Prato, C.G., 2010. Joint modeling of constrained path enumeration and path
choice behavior: a semi-compensatory approach, in: Proceedings of the European Trans-
port Conference. Association for European Transport.

Knapen, L., Bellemans, T., Janssens, D., Wets, G., 2015. Efficient Offline Map Matching of
GPS Recordings Using Global Trace Information. Unpublished results .

Kuijpers, B., Moelans, B., Othman, W., Vaisman, A., 2009. Analyzing Trajectories Using
Uncertainty and Background Information, in: Mamoulis, N., Seidl, T., Pedersen, T., Torp,
K., Assent, I. (Eds.), Advances in Spatial and Temporal Databases. Springer Berlin /
Heidelberg. volume 5644 of Lecture Notes in Computer Science, pp. 135–152. 10.1007/978-
3-642-02982-0 11.

Pillat, J., Mandir, E., Friedrich, M., 2011. Dynamic Choice Set Generation Based on Global
Positioning System Trajectories and Stated Preference Data. Transportation Research
Record 2231, 18–26.

Prato, C.G., 2009. Route choice modeling: past, present and future research directions.
Journal of Choice Modelling 2, 65 – 100.

Prato, C.G., 2012. Meta-analysis of choice set generation effects on route choice model
estimates and predictions. Transport 27, 286–298.

Prato, C.G., Bekhor, S., 2006. Applying Branch-and-Bound Technique to Route Choice Set
Generation. Transportation Research Record , 19–28.

Prato, C.G., Bekhor, S., 2007. Modeling Route Choice Behavior: How Relevant Is the
Composition of Choice Set? TRB Research Record 2003, 64–73.

Schüssler, N., Balmer, M., Axhausen, K.W., 2010. Route Choice Sets for Very High-
Resolution Data, in: TRB 2010 Annual Meeting, TRB (Transportation Research Board),
Washington, DC, USA. p. 16.

Spinsanti, L., Celli, F., Renso, C., 2010. Where you stop is who you are: understanding peo-
ple’s activities by places visited, in: Proceedings of the 5th BMI, Workshop on Behaviour
Monitoring and Interpretation 2010, EU-FET Coordination Action MODAP, Karlsruhe.
pp. 38–52.

23



Zheng, V.W., Zheng, Y., Yang, Q., 2009. Joint Learning User’s Activities and Profiles from
GPS Data, in: Proceedings of the 2009 International Workshop on Location Based Social
Networks, ACM, Seattle WA.

Zijpp, N.J.v.d., Catalano, S.F., 2005. Path enumeration by finding the constrained K-
shortest paths. Transportation Research Part B: Methodological 39, 545 – 563.

24


