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Abstract We present an interior penalty discontinuous Galerkin scheme for a two-phase porous media
flow model that incorporates dynamic effects in the capillary pressure. The approximation of the mass-
conservation laws is performed in their original formulation, without introducing a global pressure. We
prove the existence of a solution to the emerging fully discrete systems and the convergence of the scheme.
Error-estimates are obtained for sufficiently smooth data.

Keywords Dynamic capillary pressure · Interior penalty discontinuous Galerkin method · Error
estimates · h-p convergence

1 Introduction

Flow and transport processes in porous media are of high interest in many different fields of application.
Examples in this sense are the geological CO2-storage [39], reactive transport in porous media [40],
designing of diapers [20], filters, etc. In view of their relevance, a proper understanding of such systems
is essential. This can be achieved by means of experiments, which are, however, not always possible
nor feasible. Alternatively, mathematical modeling and simulation tools, relying on mathematical and
numerical analysis can provide relevant knowledge with minimal societal or environmental impact.

In this context, porous media flow models have been developed for describing such processes at
various scales [8,32], and many different simulation and discretization techniques have been proposed in
the literature. Since local mass conservation is an important feature of the porous media flow models, it is
desirable that these numerical schemes have this feature as well. Important classes of methods sharing this
property are finite volume methods [27,32], or mixed finite element methods [41,40,23], or discontinuous
Galerkin methods [25,3,44,7].

Over the last couple of decades more and more interest has been paid to so-called non-standard effects
like hysteresis and dynamic capillarity. This has lead to new modeling and discretization approaches.
Typically appearing at smaller scales like the laboratory scale, such effects can explain experimental
results like saturation overshoot [19] that are ruled out by standard models. At larger scales, it is common
to neglect the capillary effects, and the resulting models are of hyperbolic type. However, defining the
physically relevant (entropy) solution in this case still requires to use information emerging from smaller
scales and thus to account for the non-equilibrium effects whenever appropriate [34,22].

Common models for two phase flow in porous media are assuming a nonlinear, algebraic relationship
between the phase pressure difference and the saturation of one of the phases (say, wetting). Such rela-
tionships are obtained experimentally, but based on measurements that were made over long times so that
the phases are at equilibrium [32,39]. Here we consider the case where the pressure difference - saturation
relationship also involves a dynamic term, as proposed in [31,30]. In contrast to standard, equilibrium
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based porous media flow models, non-equilibrium models can explain effects like saturation overshoot or
finger-pattern formation, which have been observed experimentally. The ability of non-equilibrium models
to explain experimental results as mentioned above is has been proved by means of mathematical analy-
sis. For example, the occurrence of non-monotonic travelling wave profiles depending on the magnitude
of the dynamic capillarity effects has been analyzed rigorously in [22]. The existence and uniqueness of
weak solutions for such types of models has been proved in [42,35,37,28,13], while appropriate numerical
schemes are analyzed in [11,35,33].

In this paper we analyze a primal interior penalty discontinuous Galerkin (DG) discretization method
for such non-equilibrium porous media flow models. Such methods have grown more popular in the last
decades due to their versatility and easy adaptation to include heterogenities, parallelization, and hp-
adaptivity. Although well developed for standard, equilibrium based two-phase flow problems [24], DG
methods have not been implemented and analyzed yet for two phase flow with dynamic capillarity effects.

A common approach when dealing with such models is to employ the so-called global pressure, which
allows rewriting the system in such a way that some nonlinear factors in the higher order terms become
linear [14]. The advantage of this approach is that the a priori estimates can be obtained separately for
each of the transformed pressures, which can then be used to estimate the saturation. This approach
is followed in [24]. The drawback of this approach lies in the fact that the global pressure is not a
physical quantity, and one needs to postprocess the results for extracting information that is relevant for
the original application. Therefore, instead of reformulating the mass balance equations in terms of the
global pressure, here only the original physical unknowns are used. This leads to a strong coupling of
the mass balance equations, making impossible to obtain directly the a priori estimate for the pressure.
Instead, one has to estimate both pressure and saturation simultaneously, as done in [27] and [35]. Noting
that these two papers are considering finite volume and finite element approaches and that the former
does not include dynamic capillarity effects, in this paper we provide the rigorous convergence proof for
an interior penalty DG approximation of the two-phase flow model involving dynamic capillarity.

The paper is organized as follows. The mathematical model is presented in Section 2, the emphasis lying
on the dynamic capillarity effects. The discretization is given in Section 3, together with the assumptions
and the basic notations and for the interior penalty DG approximation. In Section 4, we give the main
results of the paper: the existence of a solution to the nonlinear systems appearing after a complete
discretization in space and time, and prove the convergence of the scheme by obtaining error estimates.
Finally, Section 5 provides a numerical example confirming the theoretical estimates.

Notation In what follows we let Ω ⊂ Rd (d = 2 or 3) be an open bounded polygonal domain (the porous
medium) with boundary Γ and T > 0 is a maximal, finite time. Both are considered dimensionless. The
notations below are common in the functional analysis [1] and will be used in what follows. Whenever
values on Γ are involved, these should be understood in the sense of traces Recalling the definitions of
the traces [26].

- Lp(Ω) (1 ≤ p < ∞) is the usual space of functions that are p-Lebesgue integrable and L∞(Ω) is
the space of functions that are essentially bounded in Ω. The elements of W k,p(Ω) are the functions
admitting weak derivatives up to order k that are again in Lp. For simplicity, we use the notation
Hk(Ω) for W k,2(Ω).

- For 1 ≤ p ≤ ∞ , ‖ · ‖Lp(Ω) and ‖ · ‖Wk,p(Ω) are the standard norms in Lp(Ω), respectively W k,p(Ω).

A simplified notation will be used for the norm in W k,2(Ω), namely ‖ · ‖Ω,k.
- Hk

0 (Ω) denotes the subspaces of Hk(Ω) taking the value 0 on the boundary (in the sense of traces).
- Lq([0, T ],W k,p(Ω)) denotes the Bochner space of vector spaced valued functions f : [0, T ]→W k,p(Ω)

that are p-Bochner integrable on [0, T ].
- H1([0, T ], L2(Ω)) denotes the Bochner space of L2(Ω) valued functions admitting a weak time-

derivative in L2([0, T ];L2(Ω)).

As for the domain Ω, the traces on Γ will lie in spaces like Lp(Γ ), Hk(Γ ), etc. In particular, by H
1
2 (Γ )

we mean the traces on Γ of H1(Ω) functions.
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2 Mathematical model

We consider a (Darcy scale) model for the flow of two incompressible and immiscible fluids (wetting,
respective non-wetting) through a porous medium. This is based on the following assumptions:

- All physical processes are isothermal.
- Gravitational forces are neglected.
- The flow velocities lie well within the Darcy regime.
- The porous matrix is rigid and has homogeneous characteristics.

We mention that neglecting gravitational effects is only for the ease of presentation. Including such effects
can be done without any particular mathematical difficulty, but would lead to more complex calculations.

2.1 Governing equations

Under the assumptions stated above, the mathematical model [32,39] includes the mass conservation
laws for each phase (the wetting and non-wetting, α = n or w):

∂t(Sαφρα) +∇ · (ραuα) = qα . (1)

Here φ denotes the porosity of the medium, ρα the fluid phase densities, Sα the saturation of phase α,
and qα the volumetric sources or sinks. Further, uα is the Darcy velocity of the phase α, given by

uα = −λα(Sα)K∇pα . (2)

Here pα is the pressure of the phase α, K the intrinsic permeability tensor, and λα =
kr,α
µα

is the

phase α mobility function, with relative permeability kr,α and dynamic viscosity µα. Observe that the
model is assumed dimensionless, but the notations are referring directly to the corresponding dimensional
quantities.

2.2 Closure relationships

As resulting from above, there are six unknown quantities (phase saturations, pressures and velocities)
whereas only four equations are available. Observe that assuming that only two phases are present in the
system one gets

Sw + Sn = 1. (3)

The system is closed by the phase pressure difference - saturation relationship (for standard models, [32]),
or its non-equilibrium version involving the time derivative of the saturation [31]

pc := pn − pw = pc(Sw, ∂tSw) . (4)

2.3 Primary variables

The model above can be reduced to three equations one by choosing three primary unknowns. For
example, letting these be the water saturation Sw, the non-wetting phase pressure pn and the phase
pressure difference pc = pn − pw one gets

− ∂tSwφ−∇ · (λn(Sw)K∇pn) = qn,

∂tSwφ−∇ · (λw(Sw)K (∇pn −∇pc)) = qw,

pc = pc(Sw, ∂tSw). (5)
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2.4 Constitutive relationships

Dynamic effects in the phase pressure difference As mentioned above, a common assumption in modelling
the flow of two phases in porous media is that the phase pressure difference and the saturation are related
through a nonlinear, algebraic relation. These are the so-called standard, equilibrium models: for a given
medium and knowing that the wetting phase saturation has a certain value in a given location, the phase
pressure difference has a fixed value depending only on the medium itself and the value of the saturation.
This assumes a static distribution of the two phases inside the pores of the medium. In this context,
several possible parameterizations relating pc and Sw by using medium specific parameters have been
proposed in the literature. Examples are the Brooks-Corey model [9], or the van Genuchten model [46,
38]. Such models are valid whenever the processes are very slow, so the dynamics of the flow, and in
particular the redistribution of the phases inside pores before achieving equilibrium is disregarded.

Experimental results have proved the limitation of such equilibrium models. For example, the experi-
ments in [19] show that non-monotonic saturation profiles (overshoots) can be obtained during infiltration
processes in a dry porous medium, and that the amplitude of such overshoots depend on the flow velocity.
Such results are ruled out for equilibrium models, which would predict monotonic profiles regardless of
the chosen parameterization. Therefore alternative modelling theories were required, such as

pc = pc,eq(Sw)− τ∂tSw , (6)

involving the time derivative of the saturation the one in [31]. Here pc,eq is the capillary pressure at
equilibrium, and τ accounts for the dynamic effects. In this paper τ is assumed to be a positive constant.

Relative permeabilities The focus in this work is on the dynamic effects in the phase pressure differ-
ence. Therefore for the relative permeability functions, equilibrium models like Brooks-Corey [9] or van
Genuchten [46] in conjunction with the Mualem and Burdine framework [38,10] are assumed.

2.5 Initial and boundary conditions

The system is completed by the following initial and boundary conditions:

For all x ∈ Ω and at t = 0,

Sw(x, 0) = s0(x) with, s0 ∈ H1(Ω). (7)

For all x ∈ Γ and all t ∈ [0, T ],

pc(x, t) = pDc (x) , pn(x, t) = pDn (x) (8)

with pDn ∈ H
1
2 (Γ ) , pDc ∈ H

1
2 (Γ )

where s0, pDn and pDc are given functions. Note that the boundary value of Sw is defined implicitly by the
Dirichlet conditions for pc.

Remark 1 For the sake of clarity, here only Dirichlet boundary conditions are considered. The subse-
quent proofs can be extended towards other different boundary conditions ate the expense of technical
calculations. Also, the boundary values are assume constant in time.

2.6 Weak formulation

The weak formulation of the model in (5)-(6) with the initial and boundary conditions (7)-(8) is

Problem 1 (Weak formulation) Find the triple (sw, pn, pc) s.t. sw ∈ H1([0, T ], H1(Ω)), sw = s0 at
t = 0, pn − pDn ∈ L2([0, T ], H1

0 (Ω)), pc − pDc ∈ L2([0, T ], H1
0 (Ω)), and for all ψp ∈ H1

0 (Ω), ψs ∈ H1
0 (Ω),

and almost every t ∈ [0, T ] it holds

−
∫
Ω

∂tSwφψp +

∫
Ω

λn(Sw)K (∇pn) · ∇ψp =

∫
Ω

qnψp,∫
Ω

∂tSwφψp +

∫
Ω

λw(Sw)K (∇pn −∇pc) · ∇ψp =

∫
Ω

qwψp, (9)∫
Ω

pcψs =

∫
Ω

pc,eq(Sw)ψs −
∫
Ω

τ∂tSwψs.
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Existence and uniqueness results for Problem 1 are obtained in [12,13,28,37,35].

3 Numerical scheme

Preliminaries Let T be a decomposition of the domain Ω into N non-degenerate elements Ti. We assume
that T is admissible in the sense of the Definition 2.1 in [17]. Let F denote the union of all faces Fj , and
let h be the maximal diameter of the elements.

Given Ti ∈ T and Fi ∈ F , we define a set F (Ti) of all the faces associated with the element Ti, s.t.,

F (Ti) :=

 ⋃
Fj∈F

Fj : Fj ⊂ Ti

 ,

and, a set T (Fi) of all the elements sharing the face Fi, s.t.,

T (Fi) :=

 ⋃
Tj∈T

Tj : Fi ⊂ Tj

 .

In the conformiong case, T (Fi) consists of exactly two elements.

With each face F ∈ F connecting element Ti and Tj , we associate a normal-vector n directed from Ti
to Tj (j > i).

Let Πk(T ) denote the space of polynomials on T with degree ≤ k. For the approximation of saturation
Sw, we consider the broken Sobolev-Space with polynomials of order ks , as,

V sh (Ω) := {v ∈ L2(Ω) : v|T ∈ Π
ks(T ) for all T ∈ T } , (10)

and, for the approximation of the pressures pn and pc, we consider the broken Sobolev space with
polynomials of order kp , as,

V ph (Ω) := {v ∈ L2(Ω) : v|T ∈ Π
kp(T ) for all T ∈ T } . (11)

Note that we represent a general broken Sobolev-Space with Vh(Ω) without specifying the polynomial
order.

For ψi, ψj ∈ Vh(Ω), where, ψi = (ψ|T i)|F is the trace of F on the side of the element Ti, and similarly,
ψj = (ψ|T j )|F is the trace of F on the side of the element Tj , we define the jump J·K and the average {·}
over the face F as,

when F is an interior face : JψK =
(
ψi − ψj

)
and {ψ} =

1

2

(
ψi + ψj

)
, (12)

when F is a boundary face : JψK = ψi and {ψ} = ψi. (13)

where, the interior face connects elements T i and T j with i < j, and the boundary face has no element
adjacent to Ti.

Next, we define the following norm on the broken Sobolev-Space,

‖v‖2Ω,DG :=
∑
Ti∈T

‖∇v‖2Ti,0 +
∑
Fi∈F

1

|Fi|
‖JvK‖2Fi,0 (14)

and use the following lemma [17]:
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Lemma 1 Given a broken Sobolev-Space Vh(Ω), for any q such that,

1 ≤ q ≤ 2d

d− 2
, if d ≥ 3

1 ≤ q <∞, if d = 2 ,

there exists a constant Ĉ depending on the polynomial degree, mesh-parameters and |Ω|
such that, for all v ∈ Vh(Ω), the following inequality holds:

‖v‖Lq(Ω) ≤ Ĉ‖v‖Ω,DG . (15)

Additionally, we use the following trace inequalities, which can be found in [47], [43], or [18]:

Lemma 2 Let γ0 denote the trace operator. There exists a constant Ct independent of
the mesh size h, such that, for any T ∈ T with F ∈ F (T ) and for all v ∈ Hk(T ), the
following holds:

‖γ0v‖0,F ≤ Ct

√
1

|F |
(‖v‖0,T + |F |‖∇v‖0,T ) (16)

For v ∈ Πk(T ) and f(k) which is a function of the polynomial degree k, the following
holds:

‖γ0v‖0,F ≤ Ct

√
f(k)

|F |
‖v‖0,T (17)

We also use the following elementary lemma [24]:

Lemma 3 Let C̃ be the maximal number of elements sharing one face, and let A : T →
[0,∞) be a function defined on the triangularization T . Then, the following inequality
holds: ∑

Fi

∑
T (Fi)

A(T ) ≤ C̃
∑
Ti

A(Ti)

Finally, we state the following well known (in-)equalities for a, b ∈ R and ε ∈ R+, which are used
throughout the paper:

(a− b) · a =
1

2
(a− b)2 +

1

2
(a2 − b2) (18)

ab ≤ ε

2
a2 +

1

2ε
b2 (19)

3.1 Discretization in space

The weak form (9) of the mathematical model governed by the Eqn-set (5) is discretized in space using
an interior penalty discontinuous Galerkin numerical scheme.

Problem 2 (Spatial discretization) Given the penalty parameters σn, σw ∈ R+, the parameter θ ∈
{−1, 0, 1} and the function f(·) introduced in Lemma 2 depending on the polynomial order kp, find
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sw ∈ V sh (Ω), pn ∈ V ph (Ω) and pc ∈ V ph (Ω), s.t., for all ψs ∈ V sh (Ω), ψn ∈ V ph (Ω) and ψw ∈ V ph (Ω) the
following holds:

PDE-1:
∑
Ti∈T

∫
Ti

−∂tswφψn +
∑
Ti∈T

∫
Ti

λn(sw)K∇pn∇ψn

−
∑
Fi∈F

∫
Fi

{λn(sw)K∇pn · n}JψnK + θ
∑
Fi∈F

∫
Fi

JpnK{λn(sw)K∇ψn}

+σn
∑
Fi∈F

∫
Fi

f(kp)

|Fi|
JpnKJψnK

= θ
∑
Fi∈Γ

∫
Fi

JpDn K{λn(sD)K∇ψn}+ σn
∑
Fi∈Γ

∫
Fi

f(kp)

|Fi|
JpDn KJψnK (20)

PDE-2:
∑
Ti∈T

∫
Ti

∂tswφψw +
∑
Ti∈T

∫
Ti

λw(sw)K∇(pn − pc)∇ψw

−
∑
Fi∈F

∫
Fi

{λw(sw)K∇(pn − pc) · n}JψwK

+θ
∑
Fi∈F

∫
Fi

{λw(sw)K∇ψw · n}Jpn − pcK + σw
∑
Fi∈F

∫
Fi

f(kp)

|Fi|
Jpn − pcKJψwK

= θ
∑
Fi∈Γ

∫
Fi

{λw(sD)K∇ψw · n}JpDn − pDc K + σw
∑
Fi∈Γ

∫
Fi

f(kp)

|Fi|
JpDn − pDc KJψwK (21)

ODE-Pc:
∑
Ti∈T

∫
Ti

pcψs =
∑
Ti∈T

∫
Ti

pc,eq(sw)ψs −
∑
Ti∈T

∫
Ti

τ∂tswψs (22)

The parameters σn and σw penalize discontinuities in the solutions (i.e., jumps) over the faces. The
choice of θ = −1 gives the non-symmetric- (NIPG) scheme, θ = 0 gives the incomplete- (IIP) scheme,
and θ = 1 gives the symmetric-interior-penalty (SIPG) scheme.

3.2 Discretization in time

For the discretization in time, we use an implicit Euler scheme. We subdivide the time domain [0, T ] into
N intervals of size ∆t > 0 with T = N ·∆t. The i-th discrete time-step is denoted by ti, s.t., ti = i ·∆t.

Given a sufficiently smooth function g(x, t), the time derivative of g is approximated by:

∂−gn+1 :=
g(tn+1, x)− g(tn, x)

∆t
(23)

3.3 Discrete system

Using Problem 2 and Eqn. (23), the fully-discrete scheme can be written as:

Problem 3 (Discrete problem at tn+1) Let Pnn ∈ V ph (Ω), Pnc ∈ V ph (Ω) and Snw ∈ V sh (Ω), find
Pn+1
n ∈ V ph (Ω), Pn+1

c ∈ V ph (Ω) and Sn+1
w ∈ V sh (Ω), s.t., for all ψs ∈ V sh (Ω), ψn ∈ V ph (Ω) and ψw ∈ V ph (Ω),

the following holds:

PDE-1:
∑
Ti∈T

∫
Ti

−∂−Sn+1
w φψn +

∑
Ti∈T

∫
Ti

λn(Sn+1
w )K∇Pn+1

n ∇ψn

−
∑
Fi∈F

∫
Fi

{λn(Sn+1
w )K∇Pn+1

n · n}JψnK
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+ θ
∑
Fi∈F

∫
Fi

JPn+1
n K{λn(Sn+1

w )K∇ψn}+ σn
∑
Fi∈F

∫
Fi

f(kp)

|Fi|
JPn+1
n KJψnK

= θ
∑
Fi∈Γ

∫
Fi

JpDn K{λn(sD)K∇ψn}+ σn
∑
Fi∈Γ

∫
Fi

f(kp)

|Fi|
JpDn KJψnK (24)

PDE-2:
∑
Ti∈T

∫
Ti

∂−Sn+1
w φψw +

∑
Ti∈T

∫
Ti

λw(Sn+1
w )K∇(Pn+1

n − Pn+1
c )∇ψw

−
∑
Fi∈F

∫
Fi

{λw(Sn+1
w )K∇(Pn+1

n − Pn+1
c ) · n}JψwK

+ θ
∑
Fi∈F

∫
Fi

{λw(Sn+1
w )K∇ψw · n}JPn+1

n − Pn+1
c K

+ σw
∑
Fi∈F

∫
Fi

f(kp)

|Fi|
JPn+1
n − Pn+1

c KJψwK

= θ
∑
Fi∈Γ

∫
Fi

{λw(sD)K∇ψw · n}JpDn − pDc K

+ σw
∑
Fi∈Γ

∫
Fi

f(kp)

|Fi|
JpDn − pDc KJψwK (25)

ODE-Pc:
∑
Ti∈T

∫
Ti

Pn+1
c ψs =

∑
Ti∈T

∫
Ti

pc,eq(S
n+1
w )ψs −

∑
Ti∈T

∫
Ti

τ∂−Sn+1
w ψs (26)

4 Numerical Analysis

In this section we prove that the scheme is well-posed and convergent. We first show the existence of a
discrete solution using a fix-point argument, followed by the energy estimates for the discrete solutions.
Finally, we show convergence of the scheme by proving some error estimates.

Preliminaries We make the following assumptions to prove existence and convergence of the numerical
scheme:

(A1) The initial and boundary conditions in (7) and (8) are sufficiently smooth. Additionally, the initial
condition is compatible with the boundary condition.

(A2) The permeability matrix K ∈ Rd×d is symmetric and positive definite, i.e. there exist two constants
κ and κ, s.t., for any vector x ∈ Rd, the following holds:

κ‖x‖2 ≤ xTKx ≤ κ‖x‖2

(A3) The equilibrium capillary pressure function pc,eq(·) is in C2(R), and is assumed to be positive, bounded
and decreasing. Let Pc,eq(·) define the primitive, i.e.:

Pc,eq(S) :=

{∫ S
1
pc,eq(ξ)dξ =

∫ S
0
pc,eq(ξ)dξ −

∫ 1

0
pc,eq(ξ)dξ for S ≤ 1

0 otherwise
. (27)

It can be inferred that Pc,eq(S) is concave and negative.
(A4) The functions λw(·) and λn(·) are Lipschitz-continuous and bounded from above and below by the

constants 0 < λα < λα <∞.

For the error analysis, let sw(t, x), pn(t, x) and pc(t, x) be the exact solutions of the problem. For
simplicity, we will use siw = sw(ti, x), pin = pn(ti, x) and pic = pc(ti, x). We denote the approximations
of pn(t), pc(t), and sw(t) for all t ∈ [0, T ] with, p̃n(t) ∈ V ph (Ω), p̃c(t) ∈ V ph (Ω), and s̃w(t) ∈ V sh (Ω),
respectively, and assume that p̃n(t) ∈W 1,∞(Ω), p̃c(t) ∈W 1,∞(Ω) and s̃w(t) ∈W 1,∞(Ω) for all t ∈ [0, T ].
We also assume that the solutions possess enough regularity, such that the the following approximation
properties are fulfilled:



Analysis of an IPDG scheme for two phase flow with dynamic capillary effects 9

For all t ∈ [0, T ] and T ∈ T , for p̃n(t) ∈W 1,∞, p̃c(t) ∈W 1,∞ and s̃w(t) ∈W 1,∞

there exists a constant C independent of h, ks, kpn , kpc and ∆t s.t.,

for 0 < q ≤ lpn , ‖pn(t)− p̃n(t)‖T,q ≤ C
hmin(kpn+1,lpn )−q

k
lpn−q
pn

‖pn(t)‖T,lpn , (28)

for 0 < q ≤ lpc , ‖pc(t)− p̃c(t)‖T,q ≤ C
hmin(kpc+1,lpc )−q

k
lpc−q
pc

‖pc(t)‖T,lpc , (29)

for 0 < q ≤ ls , ‖sn(t)− s̃n(t)‖T,q ≤ C
hmin(ks+1,ls)−q

kls−qs

‖sn(t)‖T,ls . (30)

The proof for the results (28), (29) and (30) can be found in [2].

Further, we write the numerical errors for i = 1, . . . , N as,

eis,h = Si − s̃iw, eis = s̃iw − si, eipα,h = P iα − p̃iα, eipα = p̃iα − piα .

4.1 Existence of a discrete solution

We now prove the existence of a discrete solution for the Problem 3.

For a given real numbers Pn,l ∈ R, Pc,l ∈ R and Sw,k ∈ R, we define P̃n, P̃c ∈ V ph (Ω) and S̃w ∈ V sh (Ω)
by,

P̃n =

dp∑
l=0

Pn,lϕ
p
l P̃c =

dp∑
l=0

Pc,lϕ
p
l S̃w =

ds∑
k=0

Sw,kϕ
s
k , (31)

where, ϕpi and ϕsk are elements of a basis for V ph (Ω) and V sh (Ω) and dp ∈ N and ds ∈ N denote the

dimension. We define the coefficient vectors P̂n, P̂c ∈ Rdp and Ŝw ∈ Rds by:

P̂n =
(
Pn,1, Pn,2, . . . , Pn,dp

)T
P̂c =

(
Pc,1, Pc,2, . . . , Pc,dp

)T
Ŝw =

(
Sw,1, Sw,2, . . . , Sw,ds

)T
. (32)

Furthermore, for given real numbers Snw,k ∈ R, we define Pw,l ∈ R for l = 0, . . . , dp and dSw,k ∈ R for
k = 0, . . . , ds , with,

Pw,l := Pn,l − Pc,l , and dSw,k =
1

∆t
(Sw,k − Snw,k) , (33)

which gives us P̃w ∈ V ph (Ω), Snw ∈ V sh (Ω) and d̃Sw ∈ V sh (Ω), s.t.,

P̃w := P̃n − P̃c =

dp∑
i=0

Pw,iϕ
p
i , and d̃Sw :=

1

∆t
(S̃w − Snw) =

ds∑
k=0

dSw,kϕ
s
k . (34)

The coefficient vectors P̂w ∈ Rdp and d̂Sw ∈ Rds are defined analogous to (32).

Next, we define 〈·, ·〉`2 as the `2-scalar product on R2dp+ds , and ‖·‖`2 as the induced `2-norm on R2dp+ds .

Note that for a coefficient vector X̂ ∈ R2dp+ds and the induced vector X̃ ∈ V ph (Ω) × V ph (Ω) × V sh (Ω)
there exists constants c > 0, c ∈ R and C > 0, C ∈ R such that the following inequality holds:

c‖X̃‖Ω,0 ≤ ‖X̂‖2`2 = 〈X̂, X̂〉`2 ≤ C‖X̃‖Ω,0 . (35)
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Using the definitions (31), (33) and (34) in (24)-(26), we define FPni , FPci , FSk ∈ R for i = 0, 1, . . . , dp
and k = 0, 1, . . . , ds, s.t.,

FPnl :=
∑
Ti∈T

∫
Ti

− 1

∆t
(S̃w − Snw)φϕpl +

∑
Ti∈T

∫
Ti

λn(S̃w)K∇P̃n∇ϕpl

−
∑
Fi∈F

∫
Fi

{λn(S̃w)K∇P̃n · n}Jϕpl K

+ θ
∑
Fi∈F

∫
Fi

JP̃nK{λn(S̃w)K∇ϕpl }+ σn
∑
Fi∈F

∫
Fi

f(kp)

|Fi|
JP̃nKJϕ

p
l K

− θ
∑
Fi∈Γ

∫
Fi

JpDn K{λn(sD)K∇ϕpl } − σn
∑
Fi∈Γ

∫
Fi

f(kp)

|Fi|
JpDn KJϕpl K , (36)

FPcl :=
∑
Ti∈T

∫
Ti

1

∆t
(S̃w − Snw)φϕpl +

∑
Ti∈T

∫
Ti

λw(S̃w)K∇(P̃n − P̃c)∇ϕpl

−
∑
Fi∈F

∫
Fi

{λw(S̃w)K∇(P̃n − P̃c) · n}Jϕpl K

+ θ
∑
Fi∈F

∫
Fi

{λw(S̃w)K∇ϕpl · n}JP̃n − P̃cK + σw
∑
Fi∈F

∫
Fi

f(kp)

|Fi|
JP̃n − P̃cKJϕpl K

− θ
∑
Fi∈Γ

∫
Fi

{λw(sD)K∇ϕpl · n}Jp
D
n − pDc K− σw

∑
Fi∈Γ

∫
Fi

f(kp)

|Fi|
JpDn − pDc KJϕpl K , (37)

FSk :=
∑
Ti∈T

∫
Ti

φP̃cϕ
s
k −

∑
Ti∈T

∫
Ti

φpc,eq(S̃w)ϕsk −
∑
Ti∈T

∫
Ti

φτ
1

∆t
(S̃w − Snw)ϕsk . (38)

As before, we define analogous to (32) the coefficient vectors F̂Pn , F̂Pc ∈ Rdp and F̂S ∈ Rds . Observe
that, if FPni = FPci = FSk = 0 for all i = 0, 1, . . . , dp and k = 0, 1, . . . , ds, then P̃n, P̃c and S̃w are a
solution to the Problem 3.

The definitions (31)-(38) define a continuous mapping P : R2dp+ds → R2dp+ds by,

P(P̂n, P̂w, d̂Sw) = (F̂Pn , F̂Pc , F̂S) .

Existence To prove existence of a solution to our system, we use Lemma 1.4, p. 164, in [45]:

Lemma 4 Let X be a finite dimensional Hilbert space with scalar product 〈·, ·〉 and norm
‖ · ‖ and let P be a continuous mapping from X into itself such that,

〈P (ξ) , ξ〉 > 0 for ‖ξ‖ = k > 0 .

Then, there exists a ξ ∈ X, ‖ξ‖ ≤ k s.t.,

P(ξ) = 0 .

Another version of this lemma can be found in Chapter IV of [29].

To apply Lemma 4 we chose R2dp+ds as the Hilbert space X and we use the scalar product 〈·, ·〉`2 and
the norm ‖ · ‖`2 . Further, let

(
P̂n P̂c Ŝw

)
∈ R2dp+ds and define R > 0 as

R :=〈
(
P̂n P̂c Ŝw

)
,
(
P̂n P̂c Ŝw

)
〉 = 〈P̂n, P̂n〉+ 〈P̂w, P̂w〉+ 〈d̂Sw, d̂Sw〉.
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Specifically, we show that whenever

R >
∑
Ti∈T

∫
Ti

φ
1

∆t
|Pc,eq(Snw)|+

(
σn
2

+
λn

2
θ2C2

t C̃

λn

) ∑
Fi∈Γ

f(kp)

|Fi|
‖pDn ‖2Fi,0

+

(
σw
2

+
λw

2
θ2C2

t C̃

λw

) ∑
Fi∈Γ

f(kp)

|Fi|
‖pDw‖2Fi,0,

then one gets

〈F̂Pn , P̂n〉+ 〈F̂Pc , P̂w〉+ 〈F̂S , d̂Sw〉 =

dp∑
i=0

Pn,iF
Pn
i +

dp∑
i=0

(Pn,i − Pc,i)FPci +

ds∑
k=0

dSw,kF
S
k > 0 , (39)

which gives the following existence result:

Lemma 5 For sufficiently large σn, σw , the Problem 3 has a solution.

Proof We estimate the terms (I) :=
∑dp
i=0 Pn,iF

Pn
i , (II) :=

∑dp
i=0 Pw,iF

Pc
i , and (III) :=

∑ds
k=0 dSw,kF

S
k

separately.

Estimate for (I) We start with:

(I) =
∑
Ti∈T

∫
Ti

λn(S̃w)
∣∣∣K 1

2∇P̃n
∣∣∣2 + σn

∑
Fi∈F

∫
Fi

f(kp)

|Fi|
JP̃nK2

− (1− θ)
∑
Fi∈F

∫
Fi

{λn(S̃w)K∇P̃n · n}JP̃nK−
∑
Ti∈T

∫
Ti

1

∆t
(S̃w − Snw)φP̃n

− θ
∑
Fi∈Γ

∫
Fi

JpDn K{λn(sD)K∇P̃n} − σn
∑
Fi∈Γ

∫
Fi

f(kp)

|Fi|
JpDn KJP̃nK

= P1 + P2 − P3 − P4 − P5 − P6 .

Using the assumption (A4) for P1 + P2, we get:

P1 + P2 ≥ λn
∑
Ti∈T

∥∥∥K 1
2∇P̃n

∥∥∥2
Ti,0

+ σn
∑
Fi∈F

f(kp)

|Fi|
‖JP̃nK‖2Fi,0 . (40)

Using Cauchy-Schwarz inequality together with the assumption (A4), we get:

P3 ≤ λn(1− θ)
∑
Fi∈F

‖{K 1
2∇P̃n}‖Fi,0‖JP̃nK‖Fi,0 .

For a fixed face Fi, let T± be the adjacent elements. By the trace inequality (17), the following holds:

λn(1− θ)
∑
Fi∈F

‖{K 1
2∇P̃n}‖Fi,0‖JP̃nK‖Fi,0

≤ λn(1− θ)Ct

√
f(kp)

|Fi|
1

2

∑
FiF

(∥∥∥K 1
2∇P̃n

∥∥∥
T+,0

+
∥∥∥K 1

2∇P̃n
∥∥∥
T−,0

)
‖JP̃nK‖Fi,0 .

Further, with Lemma 3 and Cauchy-Schwarz inequality we obtain:

λn(1− θ)Ct

√
f(kp)

|Fi|
1

2

∑
Fi∈F

(∥∥∥K 1
2∇P̃n

∥∥∥
T+,0

+
∥∥∥K 1

2∇P̃n
∥∥∥
T−,0

)
‖JP̃nK‖Fi,0
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≤

(∑
Ti∈T

∥∥∥K 1
2∇P̃n

∥∥∥2
Ti,0

) 1
2
(
λn

2
(1− θ)2C2

t C̃
f(kp)

|Fi|
∑
Fi∈F

‖JP̃nK‖2Fi,0

) 1
2

,

which, on using the scaled Young’s inequality, leads to:

P3 ≤
ε1
2

∑
Ti∈T

∥∥∥K 1
2∇P̃n

∥∥∥2
Ti,0

+
1

2ε1
λn

2
(1− θ)2C2

t C̃
∑
Fi∈F

f(kp)

|Fi|
‖JP̃nK‖2Fi,0 . (41)

The term P5 is estimated in a similar way as P3 leading to:

P5 ≤
ε2
2

∑
Ti∈T

∥∥∥K 1
2∇P̃n

∥∥∥2
Ti,0

+
1

2ε2
λn

2
θ2C2

t C̃
∑
Fi∈Γ

f(kp)

|Fi|
‖pDn ‖2Fi,0 , (42)

and, the term P6 is estimated as:

P6 ≤
ε3
2

∑
Fi∈Γ

f(kp)

|Fi|
‖P̃n‖2Fi,0 +

σ2
n

2ε3

∑
Fi∈Γ

f(kp)

|Fi|
‖pDn ‖2Fi,0 . (43)

Choosing ε1 = ε2 =
λn
2 , and ε3 = σn in (40), (41), (42) and (43), we get the following estimate for the

term (I):

(I) ≥
∑
Ti∈T

∫
Ti

− 1

∆t
(S̃w − Snw)φP̃n +

∑
Ti∈T

λn

2
‖K 1

2∇P̃n‖2Ti,0

+

(
σn
2
− (1− θ)2λn

2
C2
t C̃

2λn

) ∑
Fi∈F

f(kp)

|Fi|
‖JP̃nK‖2Fi,0

−

(
σn
2

+
λn

2
θ2C2

t C̃

λn

) ∑
Fi∈Γ

f(kp)

|Fi|
‖pDn ‖2Fi,0 (44)

Estimate for (II) To estimate term (II), we follow the same steps as for term (I). We use the assumption
(A4), trace inequalities from Lemma 2, Lemma 3, Cauchy-Schwarz and scaled Young’s inequality, in that

order, and with ε4 = ε5 =
λw
2 and ε6 = σw, we arrive at the following estimate:

(II) ≥
∑
Ti∈T

∫
Ti

1

∆t
(S̃w − Snw)φP̃w +

∑
Ti∈T

λw

2
‖K 1

2∇P̃w‖2Ti,0

+

(
σw
2
− (1− θ)2λw

2
C2
t C̃

2λw

) ∑
Fi∈F

f(kp)

|Fi|
‖JP̃wK‖2Fi,0

−

(
σw
2

+
λw

2
θ2C2

t C̃

λw

) ∑
Fi∈Γ

f(kp)

|Fi|
‖pDw‖2Fi,0 . (45)

Estimate for (III) We start with:

(III) =
∑
Ti∈T

∫
Ti

φP̃c
1

∆t
(S̃w − Snw)−

∑
Ti∈T

∫
Ti

φpc,eq(S̃w)
1

∆t
(S̃w − Snw)

+
∑
Ti∈T

∫
Ti

φτ
1

∆t2
(S̃w − Snw)2 .

Using the primitive defined in (27), we get the following estimate:

(III) ≥
∑
Ti∈T

∫
Ti

φP̃c
1

∆t
(S̃w − Snw) +

∑
Ti∈T

∫
Ti

φ
1

∆t

(
|Pc,eq(S̃w)| − |Pc,eq(Snw)|

)
+
∑
Ti∈T

∫
Ti

φτ
1

∆t2
(S̃w − Snw)2 . (46)
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Combined estimate For sufficiently large σn and σw, using (15) from Lemma 1 with q = 2, and summing
the estimates (44), (45) and (46), we obtain:

dpn∑
i=0

Pn,iF
Pn
i +

dpc∑
j=0

Pw,jF
Pc
j +

ds∑
k=0

dSw,kF
S
k ≥

C‖P̃n‖2Ω,0 + C‖P̃w‖2Ω,0 + C‖d̃Sw‖2Ω,0 +
∑
Ti∈T

∫
Ti

φ
1

∆t
|Pc,eq(S̃w)| −

∑
Ti∈T

∫
Ti

φ
1

∆t
|Pc,eq(Snw)|

−

(
σn
2

+
λn

2
θ2C2

t C̃

λn

) ∑
Fi∈Γ

f(kp)

|Fi|
‖pDn ‖2Fi,0 −

(
σw
2

+
λw

2
θ2C2

t C̃

λw

) ∑
Fi∈Γ

f(kp)

|Fi|
‖pDw‖2Fi,0 . (47)

Observe that the positivity of the last but one terms in (44) and (45) is only guaranteed under restrictions
on σn and σw. However, these restrictions do not depend on the time step or the argument in the mapping
P. Now, one can choose the radius R as announced above to guarantee that the right hand side in (47)
is positive, and using (35) leads to the estimate (39), and the existence of a zero for P and hence of a
solution to Problem 3 follows directly by Lemma 4.

4.2 Discrete energy estimate

Lemma 6 For sufficiently large σn and σw, there exists a constant C independent of ∆t, h and the
polynomial degrees kp and ks, s.t., the following energy estimate holds:

∆t

N∑
n=0

∑
Ti∈T

∥∥∂−Sn+1
w

∥∥2
Ti,0

+∆t

N∑
n=0

∑
Ti∈T

∥∥∥K 1
2∇Pn+1

n

∥∥∥2
Ti,0

+∆t

N∑
n=0

∑
Fi∈F

f(kp)

|Fi|
‖JPn+1

n K‖2Fi,0

+∆t

N∑
n=0

∑
Ti∈T

‖K 1
2∇Pn+1

w ‖2Ti,0 +∆t

N∑
n=0

∑
Fi∈F

f(kp)

|Fi|
‖JPn+1

w K‖2Fi,0 +
∑
Ti∈T

∫
Ti

|Pc,eq(SN+1
w )|

≤ C
∑
Ti∈T

∫
Ti

|Pc,eq(S0
w)|+ C∆t

N∑
n=0

∑
Fi∈Γ

f(kp)

|Fi|
‖pDn ‖2Fi,0 + C∆t

N∑
n=0

∑
Fi∈Γ

f(kp)

|Fi|
‖pDw‖2Fi,0 (48)

Proof Starting with the discrete system at tn+1 (i.e. Problem 3), we test in (24) with Pn+1
n , in (25) with

Pn+1
w = Pn+1

n − Pn+1
c and in (26) with ∂−Sn+1

w .

Note that we define a generic constant C = C(τ, σα, λα, λα, θ, Ct, C̃) for α = w, n. We proceed with the
same steps as in the proof of Lemma 5 and obtain:∑

Ti∈T
φτ
∥∥∂−Sn+1

w

∥∥2
Ti,0

+
λn

2

∑
Ti∈T

∥∥∥K 1
2∇Pn+1

n

∥∥∥2
Ti,0

+ (σn −
1

2λn
λn

2
(1− θ)2C2

t C̃
2)
∑
Fi∈F

f(kp)

|Fi|
‖JPn+1

n K‖2Fi,0

+
λw

2

∑
Ti∈T

‖K 1
2∇Pn+1

w ‖2Ti,0 + (σw −
1

2λw
λw

2
(1− θ)2C2

t C̃
2)
∑
Fi∈F

f(kp)

|Fi|
‖JPn+1

w K‖2Fi,0

≤
∑
Ti∈T

∫
Ti

1

∆t

(
Pc,eq(S

n+1
w )− Pc,eq(Snw)

)
+

(
σn
2

+
λn

2
θ2C2

t C̃
2

λn

) ∑
Fi∈Γ

f(kp)

|Fi|
‖pDn ‖2Fi,0

+

(
σw
2

+
λw

2
θ2C2

t C̃
2

λw

) ∑
Fi∈Γ

f(kp)

|Fi|
‖pDw‖2Fi,0

The final estimate (48) is obtained by multiplying the above inequality by ∆t and summing over all
n = 0 . . . N .
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4.3 Error Estimates

After showing the existence of a discrete solution and deriving the general energy estimates, we now
show a convergence result for the scheme.

4.3.1 Estimate for the non-wetting phase

Lemma 7 For a sufficently large σn there exists a constant C independent of h, ∆t, kp and ks such
that the following estimate holds:∑

Ti∈T

∫
Ti

[
−∂−Sn+1

w + ∂tsw
]
φen+1

pn,h
+
∑
Ti∈T

‖K 1
2∇en+1

pn,h
‖2Ti,0 +

∑
Fi∈F

f(kp)

|Fi|
‖Jen+1

pn,h
K‖2Fi,0

≤ C

(
5

2λn
+

3f(ks)

2σnf(kp)

)
λ′n‖K

1
2∇p̃n+1

n ‖2Ω,∞
∑
Ti∈T

‖en+1
s,h ‖

2
Ti,0 + Cλ′n

5

2λn
‖K 1

2∇p̃n+1
n ‖2Ω,∞‖en+1

s ‖2Ω,0

+
3f(ks)

2σnf(kp)
λ′nC̃‖K

1
2∇p̃n+1

n ‖Ω,∞(‖en+1
s ‖2Ω,0 + h2‖∇en+1

s ‖2Ω,0)

+ C
5λn
2λn
‖K 1

2∇en+1
pn ‖

2
Ω,0 + C

(
3σnC

2
t C̃

2
+

5θλn
2
C2
t C̃

λn

)
(h−2‖en+1

pn ‖
2
Ω,0 + ‖∇en+1

pn ‖
2
Ω,0)

+ C
3λn

2
C2
t C̃

2σn

(∥∥∥K 1
2∇en+1

pn

∥∥∥2
Ω,0

+ h2
∥∥∥K 1

2∇2en+1
pn

∥∥∥2
Ω,0

)

Proof We subtract (20) and (24) and test with en+1
pn,h

to get:∑
Ti∈T

∫
Ti

[
−∂−Sn+1

w + ∂tsw
]
φen+1

pn,h
+
∑
Ti∈T

∫
Ti

[
λn(Sn+1

w )K∇Pn+1
n − λn(sw)K∇pn

]
∇en+1

pn,h

+ σn
∑
Fi∈F

∫
Fi

f(kp)

|Fi|
[
JPn+1
n K− JpnK

]
Jen+1
pn,h

K

=
∑
Fi∈F

∫
Fi

[
{λn(Sn+1

w )K∇Pn+1
n · n} − {λn(sw)K∇pn · n}

]
Jen+1
pn,h

K

− θ
∑
Fi∈F

∫
Fi

[
JPn+1
n K{λn(Sn+1

w )K∇en+1
pn,h
} − JpnK{λn(sw)K∇en+1

pn,h
}
]

We rewrite this equation componentwise as:

P1 + P2 + P3 = P4 ,

and estimate each component individually.

We expand each term P1 to P4 by adding and subtracting p̃n.

Estimate for P2

P2 =
∑
Ti∈T

∫
Ti

[
λn(Sn+1

w )K∇en+1
pn,h

+ (λn(Sn+1
w )− λn(sw))K∇p̃n+1

n + λn(sw)K∇en+1
pn

]
∇en+1

pn,h

=P2,1 + P2,2 + P2,3

where, we estimate P2,1, P2,2 and P2,3 as:

P2,1 ≥
∑
Ti∈T

λn‖K
1
2∇en+1

pn,h
‖2Ti,0 (49)

P2,2 ≤
∑
Ti∈T

∫
Ti

λ′n(Sn+1
w − sn+1

w )K∇p̃n+1
n · ∇en+1

pn,h
≤
∑
Ti∈T

∫
Ti

λ′n(en+1
s,h + en+1

s )K∇p̃n+1
n · ∇en+1

pn,h
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≤ε2,2
2

∑
Ti∈T

‖K 1
2∇en+1

pn,h
‖2Ti,0 + λ′n

2 1

2ε2,2
‖K 1

2∇p̃n+1
n ‖2Ω,∞

∑
Ti∈T

(
‖en+1
s,h ‖

2
Ti,0 + ‖en+1

s ‖2Ti,0
)

(50)

P2,3 ≤
ε2,3
2

∑
Ti∈T

‖K 1
2∇en+1

pn,h
‖2Ti,0 +

λn
2

2ε2,3

∑
Ti∈T

‖K 1
2∇en+1

pn ‖
2
Ti,0 (51)

Estimate for P3

P3 =σn
∑
Fi∈F

∫
Fi

f(kp)

|Fi|

[
Jen+1
pn,h

K + Jen+1
pn K

]
Jen+1
pn,h

K = P3,1 + P3,2

where, P3,1 =σn
∑
Fi∈F

f(kp)

|Fi|
‖Jen+1

pn,h
K‖2Fi,0 , (52)

and, P3,2 ≤
ε3,2
2

∑
Fi∈F

f(kp)

|Fi|
‖Jen+1

pn,h
K‖2Fi,0 +

1

2ε3,2
σ2
nC

2
t C̃(h−2‖en+1

pn ‖
2
Ω,0 + ‖∇en+1

pn ‖
2
Ω,0) (53)

Estimate for P4

P4 =(1− θ)
∑
Fi∈F

∫
Fi

[
{λn(Sn+1

w )K∇en+1
pn,h
· n}}

]
Jen+1
pn,h

K

+
∑
Fi∈F

∫
Fi

[
{(λn(Sn+1

w )− λn(sw))K∇p̃n+1
n · n + {λn(sw)K∇en+1

pn · n}
]
Jen+1
pn,h

K

− θ
∑
Fi∈F

∫
Fi

[
Jen+1
pn K{λn(sw)K∇en+1

pn,h
}+ Jp̃n+1

n K{(λn(Sn+1
w )− λn(sw))K∇en+1

pn,h
}
]

=P4,1 + · · ·+ P4,5

where, we estimate P4,1 to P4,4 separately, in the same way as Equation (41) in Lemma 5:

P4,1 ≤
ε4,1
2

∑
Ti∈T

∥∥∥K 1
2∇en+1

pn,h

∥∥∥2
Ti,0

+ (1− θ)2 1

2ε4,1
λn

2
C2
t C̃
∑
Fi

f(kp)

|Fi|
‖Jen+1

pn,h
K‖2Fi,0 (54)

P4,2 ≤λ′nC̃‖K
1
2∇p̃n+1

n ‖Ω,∞
∑
Fi∈F

∫
Fi

{(en+1
s,h + en+1

s )}Jen+1
pn,h

K

≤ε4,2
2

∑
Fi

f(ks)

|Fi|
‖Jen+1

pn,h
K‖2Fi,0 +

1

2ε4,2
λ′n

2
C̃‖K 1

2∇p̃n+1
n ‖2Ω,∞

2∑
Ti∈T

‖en+1
s,h ‖

2
Ti,0

+
1

2ε4,2
λ′n

2
C̃‖K 1

2∇p̃n+1
n ‖2Ω,∞(‖en+1

s ‖2Ω,0 + h2‖∇en+1
s ‖2Ω,0) (55)

P4,3 ≤

(
λn

2
C2
t C̃

∑
Ti∈T

(∥∥∥K 1
2∇en+1

pn

∥∥∥2
Ti,0

+ |Fi|2
∥∥∥K 1

2∇2en+1
pn

∥∥∥2
Ti,0

)) 1
2

·

(∑
Fi

f(kp)

|Fi|
‖Jen+1

pn,h
K‖2Fi,0

) 1
2

≤λn
2
C2
t C̃

1

2ε4,3

(∥∥∥K 1
2∇en+1

pn

∥∥∥2
Ω,0

+ h2
∥∥∥K 1

2∇2en+1
pn

∥∥∥2
Ω,0

)
+
ε4,3
2

∑
Fi

f(kp)

|Fi|
‖Jen+1

pn,h
K‖2Fi,0 (56)

P4,4 ≤
ε4,4
2

∑
Ti∈T

∥∥∥K 1
2∇en+1

pn,h

∥∥∥2
Ti,0

+
1

2ε4,4
θ2λn

2
C2
t C̃(h−2‖en+1

pn ‖
2
Ω,0 + ‖∇en+1

pn ‖
2
Ω,0) (57)

If p̃n+1
n is continuous, the jump term in P4,5 vanishes making P4,5 = 0. Otherwise, we proceed with the

same steps as for P4,4. We use the continuity of pn to replace Jp̃n+1
n K by Jen+1

pn K and get the following
estimate for P4,5:

P4,5 ≤
ε4,5
2

∑
Ti∈T

∥∥∥K 1
2∇en+1

pn,h

∥∥∥2
Ti,0

+
1

2ε4,5
θ2λn

2
C2
t C̃(h−2‖en+1

pn ‖
2
Ω,0 + ‖∇en+1

pn ‖
2
Ω,0) (58)
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Combined estimate Putting the estimates (49) to (58) together, we get:

∑
Ti∈T

∫
Ti

[
−∂−Sn+1

w + ∂tsw
]
φen+1

pn,h

+
(
λn −

ε2,2
2
− ε2,3

2
− ε4,1

2
− ε4,4

2
− ε4,5

2

) ∑
Ti∈T

‖K 1
2∇en+1

pn,h
‖2Ti,0

+

(
σn −

f(kp)ε3,2
2

− f(ks)ε4,2
2

− f(kp)ε4,3
2

− (1− θ)2 f(kp)

2ε4,1
λnCtC̃

) ∑
Fi∈F

1

|Fi|
‖Jen+1

pn,h
K‖2Fi,0

≤
(

1

2ε2,2
+

1

2ε4,2

)
λ′n

2‖K 1
2∇p̃n+1

n ‖2Ω,∞
∑
Ti∈T

‖en+1
s,h ‖

2
Ti,0

+ λ′n
2 1

2ε2,2
‖K 1

2∇p̃n+1
n ‖2Ω,∞‖en+1

s ‖2Ω,0 +
1

2ε4,2
λ′n

2
C̃‖K 1

2∇p̃n+1
n ‖2Ω,∞(‖en+1

s ‖2Ω,0 + h2‖∇en+1
s ‖2Ω,0)

+
λn

2

2ε2,3

∑
Ti∈T

‖K 1
2∇en+1

pn ‖
2
Ti,0 +

1

2ε3,2
σ2
nC

2
t C̃

∑
Ti∈T

(|Fi|−2‖en+1
pn ‖

2
Ti,0 + ‖∇en+1

pn ‖
2
Ti,0)

+ λn
2
C2
t C̃

1

2ε4,3

(∥∥∥K 1
2∇en+1

pn

∥∥∥2
Ω,0

+ h2
∥∥∥K 1

2∇2en+1
pn

∥∥∥2
Ω,0

)
+

(
1

2ε4,4
+

1

2ε4,5

)
θ2λn

2
C2
t C̃(h−2‖en+1

pn ‖
2
Ω,0 + ‖∇en+1

pn ‖
2
Ω,0) (59)

Choosing ε2,2 = ε2,3 = ε4,1 = ε4,4 = ε4,5 =
λn

5
, and ε3,2 =

f(ks)

f(kp)
ε4,2 = ε4,3 =

σn
3

, we arrive at the

desired estimate for the non-wetting phase.

4.3.2 Estimate for the wetting phase

Lemma 8 For a sufficently large σw there exists a constant C independent of h, ∆t, kp and ks such
that the following estimate holds:∑

Ti∈T

∫
Ti

[
−∂−Sn+1

w + ∂tsw
]
φen+1

pw,h
+
∑
Ti∈T

‖K 1
2∇en+1

pw,h
‖2Ti,0 +

∑
Fi∈F

f(kp)

|Fi|
‖Jen+1

pw,h
K‖2Fi,0

≤C
(

5

2λw
+

3f(ks)

2σwf(kp)

)
λ′w‖K

1
2∇p̃n+1

w ‖2Ω,∞
∑
Ti∈T

‖en+1
s,h ‖

2
Ti,0 + Cλ′w

5

2λw
‖K 1

2∇p̃n+1
w ‖2Ω,∞‖en+1

s ‖2Ω,0

+
3f(ks)

2σwf(kp)
λ′wC̃‖K

1
2∇p̃n+1

w ‖Ω,∞(‖en+1
s ‖2Ω,0 + h2‖∇en+1

s ‖2Ω,0)

+ C
5λw
2λw
‖K 1

2∇en+1
pw ‖

2
Ω,0 + C

(
3σwC

2
t C̃

2
+

5θλw
2
C2
t C̃

λw

)
(h−2‖en+1

pw ‖
2
Ω,0 + ‖∇en+1

pw ‖
2
Ω,0)

+ C
3λw

2
C2
t C̃

2σw

(∥∥∥K 1
2∇en+1

pw

∥∥∥2
Ω,0

+ h2
∥∥∥K 1

2∇2en+1
pw

∥∥∥2
Ω,0

)

Proof The proof is the same as for the non-wetting phase (Section 4.3.1) and is therefore left out.
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4.3.3 Estimate for the capillary pressure

Lemma 9 There exists a constant C independent of h, ∆t, kp and ks such that the following
estimate holds:

φ
∑
Ti∈T

∫
Ti

en+1
pc,h

∂−en+1
s,h +

|p′c,eq|φ
2

∑
Ti∈T

∂−‖en+1
s,h ‖

2
Ti,0

+
|p′c,eq|φ

2

∑
Ti∈T

1

∆t
‖en+1
s,h − e

n
s,h‖2Ti,0 + φτ

∑
Ti∈T

‖∂−en+1
s,h ‖

2
Ti,0

≤3φ

2τ

∑
Ti∈T

∫
Ti

‖en+1
pc ‖

2
Ti,0 +

|p′c,eq|φ
4

∑
Ti∈T

‖en+1
s,h ‖

2
Ti,0 +

L2
pcφ

|p′c,eq|
∑
Ti∈T

‖en+1
s ‖2Ti,0

+
τφ

2
∆t

∑
Ti∈T

∫ tn+1

tn

‖∂tts̃n+1
w ‖2Ti,0 dt+

3τφ

2

∑
Ti∈T

‖∂ten+1
s ‖2Ti,0 (60)

Proof We subtract (26) in Problem 3 from (22) in Problem 2, and use ψpc = φ∂−en+1
s,h to get

φ
∑
Ti∈T

∫
Ti

en+1
pc,h

∂−en+1
s,h + φ

∑
Ti∈T

∫
Ti

en+1
pc ∂−en+1

s,h

− φ
∑
Ti∈T

∫
Ti

(pc,eq(S
n+1
w )− pc,eq(s̃n+1

w ) + pc,eq(s̃
n+1
w )− pc,eq(sw))∂−en+1

s,h

+ φ
∑
Ti∈T

∫
Ti

τ(∂−en+1
s,h + (∂− − ∂t)s̃n+1

w + ∂te
n+1
s )∂−en+1

s,h

= φ
∑
Ti∈T

∫
Ti

en+1
pc,h

∂−en+1
s,h + Pc1 + Pc2 + Pc3

= 0 . (61)

Estimate for Pc1 We use Hölder’s and Young’s inequality to obtain

Pc1 ≤
φ2

2εpc1

∑
Ti∈T

∫
Ti

‖en+1
pc ‖

2
Ti,0 +

εpc1
2

∑
Ti∈T

∫
Ti

‖∂−en+1
s,h ‖

2
Ti,0 (62)

Estimate for Pc2

Pc2 =− φ
∑
Ti∈T

∫
Ti

(pc,eq(S
n+1
w )− pc,eq(s̃n+1

w ))∂−en+1
s,h − φ

∑
Ti∈T

∫
Ti

(pc,eq(s̃
n+1
w )− pc,eq(sw))∂−en+1

s,h

=Pc2,1 + Pc2,2. (63)

Here Pc2,1 is estimated as

Pc2,1 =φ
∑
Ti∈T

∫
Ti

|p′c,eq(ξ)|en+1
s,h ∂

−en+1
s,h ≥ φ|p

′
c,eq|

∑
Ti∈T

∫
Ti

en+1
s,h ∂

−en+1
s,h

=
|p′c,eq|φ

2

∑
Ti∈T

∂−‖en+1
s,h ‖

2
Ti,0 +

|p′c,eq|φ
2

∑
Ti∈T

1

∆t
‖en+1
s,h − e

n
s,h‖2Ti,0.

For Pc2,2, using Young’s Inequality and the Lipschitz continuity one has

Pc2,2 ≤φ
∑
Ti∈T

∫
Ti

Lpce
n+1
s en+1

s,h ≤
εpc22

2

∑
Ti∈T

‖en+1
s,h ‖

2
Ti,0 +

L2
pcφ

2

2εpc22

∑
Ti∈T

‖en+1
s ‖2Ti,0
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Estimate for Pc3

Pc3 =φτ
∑
Ti∈T

‖∂−en+1
s,h ‖

2
Ti,0 + φτ

∑
Ti∈T

∫
Ti

(∂− − ∂t)s̃n+1
w ∂−en+1

s,h + φτ
∑
Ti∈T

∫
Ti

∂te
n+1
s ∂−en+1

s,h

=Pc3,1 + Pc3,2 + Pc3,3 (64)

We approximate the consistency error in Pc3,2 using a Taylor expansion

1

∆t
(s̃n+1
w − s̃nw)− ∂ts̃n+1

w =
1

∆t

∫ tn+1

tn

(t− tn)∂tts̃
n+1
w dt ,

which leads to the following estimate for Pc3,2

Pc3,2 ≤
τ2φ2

2εpc32

∑
Ti∈T

‖(∂− − ∂t)s̃n+1
w ‖2Ti,0 +

εpc32
2

∑
Ti∈T

‖∂−en+1
s,h ‖

2
Ti,0

≤εpc32
2

∑
Ti∈T

‖∂−en+1
s,h ‖

2
Ti,0 +

τ2φ2

6εpc32
∆t

∑
Ti∈T

∫ tn+1

tn

‖∂tts̃n+1
w ‖2Ti,0 dt .

To estimate Pc3,3, we use Young’s inequality:

Pc3,3 ≤
εpc33

2

∑
Ti∈T

‖∂−en+1
s,h ‖

2
Ti,0 +

τ2φ2

2εpc33

∑
Ti∈T

‖∂ten+1
s ‖2Ti,0

Combined estimate We substitute the estimates (62), (63) and (64) into (61) to get

φ
∑
Ti∈T

∫
Ti

en+1
pc,h

∂−en+1
s,h +

|p′c,eq|φ
2

∑
Ti∈T

∂−‖en+1
s,h ‖

2
Ti,0

+
|p′c,eq|φ

2

∑
Ti∈T

1

∆t
‖en+1
s,h − e

n
s,h‖2Ti,0 + φτ

∑
Ti∈T

‖∂−en+1
s,h ‖

2
Ti,0

≤ φ2

2εpc1

∑
Ti∈T

∫
Ti

‖en+1
pc ‖

2
Ti,0 +

εpc1
2

∑
Ti∈T

∫
Ti

‖∂−en+1
s,h ‖

2
Ti,0

+
εpc22

2

∑
Ti∈T

‖en+1
s,h ‖

2
Ti,0 +

L2
pcφ

2

2εpc22

∑
Ti∈T

‖en+1
s ‖2Ti,0

+
εpc32

2

∑
Ti∈T

‖∂−en+1
s,h ‖

2
Ti,0 +

τ2φ2

6εpc32
∆t

∑
Ti∈T

∫ tn+1

tn

‖∂tts̃n+1
w ‖2Ti,0 dt

+
εpc33

2

∑
Ti∈T

‖∂−en+1
s,h ‖

2
Ti,0 +

τ2φ2

2εpc33

∑
Ti∈T

‖∂ten+1
s ‖2Ti,0

Setting εpc1 = εpc32 = εpc33 =
φτ

3
and, εpc22 =

|p′c,eq|φ
2

, we get the desired estimate.

4.3.4 Convergence result

We are now in a position to deduce the following theorem about the convergence of the scheme:
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Theorem 1 For sufficiently large σn and σw, there exists a constant C independent of h and ∆t,
s.t., the following estimate holds:

∑
Ti∈T

‖eN+1
s,h ‖

2
Ti,0 +

N∑
n=0

∑
Ti∈T

‖en+1
s,h − e

n
s,h‖2Ti,0 +∆t

N∑
n=0

∑
Ti∈T

‖∂−en+1
s,h ‖

2
Ti,0

+∆t

N∑
n=0

∑
Ti∈T

(
‖∇en+1

pw,h
‖2Ti,0 + ‖∇en+1

pn,h
‖2Ti,0

)
+∆t

N∑
n=0

∑
Fi∈F

f(kp)

|Fi|

(
‖Jen+1

pw,h
K‖2Fi,0 + ‖Jen+1

pn,h
K‖2Fi,0

)

≤C
∑
Ti∈T

‖e0s,h‖2Ti,0 + C
h2min(ks+1,ls)

k2ls−2s

(
1 +

1

k2s

)
∆t

N∑
n=0

‖sw(t)‖2Ω,ls + C∆t2

+C
h2min(ks+1,ls)

k2lss
∆t

N∑
n=0

‖∂tsw(t)‖2Ω,ls + C
h2min(kpn+1,lpn )−2

k
2lpn−2
pn

(
1 +

1

k2pn
+ k2pn

)
∆t

N∑
n=0

‖pn(t)‖2Ω,lpn

+C
h2min(kpc+1,lpc )−2

k
2lpc−2
pc

(
1 +

1

k2pc
+ k2pc

)
∆t

N∑
n=0

‖pc(t)‖2Ω,lpc

Proof We add the results of Lemma 7, 8, and 9, and rearrange them to get:∑
Ti∈T

∫
Ti

[
−∂−Sn+1

w + ∂tsw
]
φen+1

pn,h
+
∑
Ti∈T

∫
Ti

[
∂−Sn+1

w − ∂tsw
]
φen+1

pw,h

+φ
∑
Ti∈T

∫
Ti

en+1
pc,h

∂−en+1
s,h +

|p′c,eq|φ
2

∑
Ti∈T

∂−‖en+1
s,h ‖

2
Ti,0

+
|p′c,eq|φ

2

∑
Ti∈T

1

∆t
‖en+1
s,h − e

n
s,h‖2Ti,0 + φτ

∑
Ti∈T

‖∂−en+1
s,h ‖

2
Ti,0

+
∑
Ti∈T

(
‖K 1

2∇en+1
pw,h
‖2Ti,0 + ‖K 1

2∇en+1
pn,h
‖2Ti,0

)
+
∑
Fi∈F

f(kp)

|Fi|

(
‖Jen+1

pw,h
K‖2Fi,0 + ‖Jen+1

pn,h
K‖2Fi,0

)
≤ 3φ

2τ

∑
Ti∈T

∫
Ti

‖en+1
pc ‖

2
Ti,0 +

|p′c,eq|φ
4

∑
Ti∈T

‖en+1
s,h ‖

2
Ti,0 +

L2
pcφ

|p′c,eq|
∑
Ti∈T

‖en+1
s ‖2Ti,0

+
τφ

2
∆t

∑
Ti∈T

∫ tn+1

tn

‖∂tts̃n+1
w ‖2Ti,0 dt+

3τφ

2

∑
Ti∈T

‖∂ten+1
s ‖2Ti,0

+
∑
α=w,n

[
C

(
5

2λα
+

3f(ks)

2σαf(kp)

)
λ′α‖K

1
2∇p̃n+1

α ‖2Ω,∞
] ∑
Ti∈T

‖en+1
s,h ‖

2
Ti,0

+
∑
α=w,n

[
C

5λ′α
2λα
‖K 1

2∇p̃n+1
α ‖2Ω,∞‖en+1

s ‖2Ω,0 +
3f(ks)λ′αC̃

2σαf(kp)
‖K 1

2∇p̃n+1
α ‖Ω,∞(‖en+1

s ‖2Ω,0 + h2‖∇en+1
s ‖2Ω,0)

+C
5λα
2λα

∑
Ti∈T

‖K 1
2∇en+1

pα ‖
2
Ti,0 + C

(
3σαC

2
t C̃

2
+

5θ2λα
2
C2
t C̃

λα

)
(h−2‖en+1

pα ‖
2
Ω,0 + ‖∇en+1

pα ‖
2
Ω,0)

+ C
3λα

2
C2
t C̃

2σα

(∥∥∥K 1
2∇en+1

pα

∥∥∥2
Ω,0

+ h2
∥∥∥K 1

2∇2en+1
pα

∥∥∥2
Ω,0

)]
(65)

We combine the first three summation terms of (65) to get:∑
Ti∈T

∫
Ti

[
−∂−Sn+1

w + ∂tsw
]
φen+1

pn,h
+
∑
Ti∈T

∫
Ti

[
∂−Sn+1

w − ∂tsw
]
φen+1

pw,h
+ φ

∑
Ti∈T

∫
Ti

en+1
pc,h

∂−en+1
s,h

=
∑
Ti∈T

∫
Ti

φ
[
∂−en+1

s,h + (∂− − ∂t)s̃n+1
w + ∂te

n+1
s

]
(en+1
pn,h
− en+1

pc,h
− en+1

pn,h
) + φ

∑
Ti∈T

∫
Ti

en+1
pc,h

∂−en+1
s,h =
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=
∑
Ti∈T

∫
Ti

φ
[
−(∂− − ∂t)s̃n+1

w en+1
pc,h
− ∂ten+1

s en+1
pc,h

]
=

= Ps1 + Ps2

Estimate for Ps1

Ps1 ≤
εps1

2

∑
Ti∈T

‖en+1
pc,h
‖2Ti,0 +

φ2

6εps1
∆t

∑
Ti∈T

∫ tn+1

tn

‖∂tts̃n+1
w ‖2Ti,0 dt . (66)

Estimate for Ps2

Ps2 ≤
εps2

2

∑
Ti∈T

‖en+1
pc,h
‖2Ti,0 +

φ2

2εps2

∑
Ti∈T

‖∂ten+1
s ‖2Ti,0 (67)

To absorb the error ‖en+1
pc,h
‖2Ti,0, we use the triangle inequality together with Lemma 1 to get the following

estimate:∑
Ti∈T

‖en+1
pc,h
‖2Ti,0

≤
∑
Ti∈T

‖∇en+1
pn,h
‖2Ti,0 +

∑
Fi∈F

f(kp)

|Fi|
‖Jen+1

pn,h
K‖2Fi,0 +

∑
Ti∈T

‖∇en+1
pw,h
‖2Ti,0 +

∑
Fi∈F

f(kp)

|Fi|
‖Jen+1

pw,h
K‖2Fi,0 . (68)

After substituting the estimates (66) and (67) together with the estimate (68) into the estimate (65),

and choosing εps1 = εps2 =
1

2
we get:

|p′c,eq|φ
2

∑
Ti∈T

∂−‖en+1
s,h ‖

2
Ti,0 +

|p′c,eq|φ
2

∑
Ti∈T

1

∆t
‖en+1
s,h − e

n
s,h‖2Ti,0 +

φτ

2

∑
Ti∈T

‖∂−en+1
s,h ‖

2
Ti,0

+
1

2

∑
Ti∈T

(
‖K 1

2∇en+1
pw,h
‖2Ti,0 + ‖K 1

2∇en+1
pn,h
‖2Ti,0

)
+

1

2

∑
Fi∈F

f(kp)

|Fi|

(
‖Jen+1

pw,h
K‖2Fi,0 + ‖Jen+1

pn,h
K‖2Fi,0

)
≤
∑
α=w,n

[
C

(
5

2λα
+

3f(ks)

2σαf(kp)

)
λ′α‖K

1
2∇p̃n+1

α ‖2Ω,∞ +
|p′c,eq|φ

4

] ∑
Ti∈T

‖en+1
s,h ‖

2
Ti,0

+
L2
pcφ

|p′c,eq|
‖en+1
s ‖2Ω,0 +

3φ

2τ
‖en+1
pc ‖

2
Ω,0 +

(
τφ

2
+
φ2

3

)
∆t

∫ tn+1

tn

‖∂tts̃n+1
w ‖2Ω,0 dt+

(
3τφ

2
+ φ2

)
‖∂ten+1

s ‖2Ω,0

+
∑
α=w,n

[
C
λ′α5

2λα
‖K 1

2∇p̃n+1
α ‖2Ω,∞‖en+1

s ‖2Ω,0 +
3f(ks)λ′αC̃

2σαf(kp)
‖K 1

2∇p̃n+1
α ‖Ω,∞(‖en+1

s ‖2Ω,0 + h2‖∇en+1
s ‖2Ω,0)

+C
5λα
2λα
‖K 1

2∇en+1
pα ‖

2
Ω,0 + C

(
3σαC

2
t C̃

2
+ C

5θ2λα
2
C2
t C̃

λα

)
(h−2‖en+1

pα ‖
2
Ω,0 + ‖∇en+1

pα ‖
2
Ω,0)

+ Cλα
2
C2
t C̃

3

2σα

(∥∥∥K 1
2∇en+1

pα

∥∥∥2
Ω,0

+ h2
∥∥∥K 1

2∇2en+1
pα

∥∥∥2
Ω,0

)]
(69)

Using a generic constant C, we rewrite (69) as:

|p′c,eq|φ
2

∑
Ti∈T

∂−‖en+1
s,h ‖

2
Ti,0 +

|p′c,eq|φ
2

∑
Ti∈T

1

∆t
‖en+1
s,h − e

n
s,h‖2Ti,0 +

φτ

2

∑
Ti∈T

‖∂−en+1
s,h ‖

2
Ti,0

+
1

2

∑
Ti∈T

(
‖K 1

2∇en+1
pw,h
‖2Ti,0 + ‖K 1

2∇en+1
pn,h
‖2Ti,0

)
+

1

2

∑
Fi∈F

f(kp)

|Fi|

(
‖Jen+1

pw,h
K‖2Fi,0 + ‖Jen+1

pn,h
K‖2Fi,0

)
≤

(
C +

|p′c,eq|φ
4

) ∑
Ti∈T

C‖en+1
s,h ‖

2
Ti,0 + C‖en+1

s ‖2Ω,0 + C‖en+1
pc ‖

2
Ω,0 + C∆t

∫ tn+1

tn

‖∂tts̃n+1
w ‖2Ω,0 dt

+C‖∂ten+1
s ‖2Ω,0 + Ch2‖∇en+1

s ‖2Ω,0 +
∑
α=w,n

[
C‖∇en+1

pα ‖
2
Ω,0 + Ch−2‖en+1

pα ‖
2
Ω,0 + Ch2

∥∥∇2en+1
pα

∥∥2
Ω,0

]
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Multiplying the above inequality by ∆t, summing over n = 0, . . . , N , and absorbing ‖eN+1
s,h ‖2Ω,0, we get:(

|p′c,eq|φ
2

− C∆t

) ∑
Ti∈T

‖eN+1
s,h ‖

2
Ti,0 +

|p′c,eq|φ
2

N∑
n=0

∑
Ti∈T

‖en+1
s,h − e

n
s,h‖2Ti,0 +

φτ

2
∆t

N∑
n=0

∑
Ti∈T

‖∂−en+1
s,h ‖

2
Ti,0

+
∆t

2

N∑
n=0

∑
Ti∈T

(
‖K 1

2∇en+1
pw,h
‖2Ti,0 + ‖K 1

2∇en+1
pn,h
‖2Ti,0

)
+
∆t

2

N∑
n=0

∑
Fi∈F

f(kp)

|Fi|

(
‖Jen+1

pw,h
K‖2Fi,0 + ‖Jen+1

pn,h
K‖2Fi,0

)

≤
|p′c,eq|φ

2

∑
Ti∈T

‖e0s,h‖2Ti,0 +

(
C +

|p′c,eq|φ
4

)
∆t

N−1∑
n=0

∑
Ti∈T

C‖en+1
s,h ‖

2
Ti,0 + C∆t

N∑
n=0

‖en+1
s ‖2Ω,0

+C∆t

N∑
n=0

‖en+1
pc ‖

2
Ω,0 + C∆t2

∫ T

0

‖∂tts̃n+1
w ‖2Ω,0 dt+C∆t

N∑
n=0

‖∂ten+1
s ‖2Ω,0 + Ch2∆t

N∑
n=0

‖∇en+1
s ‖2Ω,0

+
∑
α=w,n

[
C∆t

N∑
n=0

‖∇en+1
pα ‖

2
Ω,0 + Ch−2∆t

N∑
n=0

‖en+1
pα ‖

2
Ω,0 + Ch2∆t

N∑
n=0

∥∥∇2en+1
pα

∥∥2
Ω,0

]

For a sufficiently small ∆t, we use Grönwall’s inequality, and postulate that there exists a constant
independent of ∆t, h, kpor ks, s.t.:(
|p′c,eq|φ

2
− C∆t

) ∑
Ti∈T

‖eN+1
s,h ‖

2
Ti,0 +

|p′c,eq|φ
2

N∑
n=0

∑
Ti∈T

‖en+1
s,h − e

n
s,h‖2Ti,0 +

φτ

2
∆t

N∑
n=0

∑
Ti∈T

‖∂−en+1
s,h ‖

2
Ti,0

+
∆t

2

N∑
n=0

∑
Ti∈T

(
‖K 1

2∇en+1
pw,h
‖2Ti,0 + ‖K 1

2∇en+1
pn,h
‖2Ti,0

)
+
∆t

2

N∑
n=0

∑
Fi∈F

f(kp)

|Fi|

(
‖Jen+1

pw,h
K‖2Fi,0 + ‖Jen+1

pn,h
K‖2Fi,0

)

≤
|p′c,eq|φ

2

∑
Ti∈T

‖e0s,h‖2Ti,0 + C∆t

N∑
n=0

‖en+1
s ‖2Ω,0 + C∆t

N∑
n=0

‖en+1
pc ‖

2
Ω,0 + C∆t2

∫ T

0

‖∂tts̃n+1
w ‖2Ω,0 dt

+C∆t

N∑
n=0

‖∂ten+1
s ‖2Ω,0 + Ch2∆t

N∑
n=0

‖∇en+1
s ‖2Ω,0

+C∆t

N∑
n=0

‖∇en+1
pn ‖

2
Ω,0 + Ch−2∆t

N∑
n=0

‖en+1
pn ‖

2
Ω,0 + Ch2∆t

N∑
n=0

∥∥∇2en+1
pn

∥∥2
Ω,0

+C∆t

N∑
n=0

‖∇en+1
pw ‖

2
Ω,0 + Ch−2∆t

N∑
n=0

‖en+1
pw ‖

2
Ω,0 + Ch2∆t

N∑
n=0

∥∥∇2en+1
pw

∥∥2
Ω,0

Using the error estimates (28), (29) and (30), and the triangle inequality for the error terms in pw =
pn − pc, we can write:(
|p′c,eq|φ

2
− C∆t

) ∑
Ti∈T

‖eN+1
s,h ‖

2
Ti,0 +

|p′c,eq|φ
2

N∑
n=0

∑
Ti∈T

‖en+1
s,h − e

n
s,h‖2Ti,0 +

φτ

2
∆t

N∑
n=0

∑
Ti∈T

‖∂−en+1
s,h ‖

2
Ti,0

+
∆t

2

N∑
n=0

∑
Ti∈T

(
‖K 1

2∇en+1
pw,h
‖2Ti,0 + ‖K 1

2∇en+1
pn,h
‖2Ti,0

)
+
∆t

2

N∑
n=0

∑
Fi∈F

f(kp)

|Fi|

(
‖Jen+1

pw,h
K‖2Fi,0 + ‖Jen+1

pn,h
K‖2Fi,0

)

≤C
∑
Ti∈T

‖e0s,h‖2Ti,0 + C∆t

N∑
n=0

h2min(ks+1,ls)

k2lss
‖sw(t)‖2Ω,ls + C∆t2

+C∆t

N∑
n=0

h2min(ks+1,ls)

k2lss
‖∂tsw(t)‖2Ω,ls + Ch2∆t

N∑
n=0

h2min(ks+1,ls)−2

k2ls−2s

‖sw(t)‖2Ω,ls

+C∆t

N∑
n=0

h2min(kpn+1,lpn )−2

k
2lpn−2
pn

‖pn(t)‖2Ω,lpn + Ch−2∆t

N∑
n=0

h2min(kpn+1,lpn )

k
2lpn
pn

‖pn(t)‖2Ω,lpn

+Ch2∆t

N∑
n=0

h2min(kpn+1,lpn )−4

k
2lpn−4
pn

‖pn(t)‖2Ω,lpn + C∆t

N∑
n=0

h2min(kpc+1,lpc )−2

k
2lpc−2
pc

‖pc(t)‖2Ω,lpc
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+Ch−2∆t

N∑
n=0

h2min(kpc+1,lpc )

k
2lpc
pc

‖pc(t)‖2Ω,lpc + Ch2∆t

N∑
n=0

h2min(kpc+1,lpc )−4

k
2lpc−4
pc

‖pc(t)‖2Ω,lpc

from where, the stated estimate follows.

From the Theorem we can directly deduce the following Corollary:

Corollary 1 For sufficiently smooth solutions pn ∈ L2([0, T ], Hkp+1(Ω)), pc ∈ L2([0, T ], Hkp+1(Ω))
and sw ∈ H2([0, T ], Hks+1(Ω)) and sufficiently large σn and σw, there exists a constant C indepen-
dent of h and ∆t, s.t., the following estimate holds:

‖eN+1
s,h ‖

2
Ω,0 +∆t

N∑
n=0

‖∂−en+1
s,h ‖

2
Ω,0 +∆t

N∑
n=0

(
‖en+1
pc,h
‖2Ω,DG + ‖en+1

pn,h
‖2Ω,DG

)
≤C∆t2 + C

h2ks

k2kss

+ C
h2kpn

k
2kpn−2
pn

+ C
h2kpc

k
2kpc−2
pc

5 Numerical Experiments

In this section, we verify the convergence rates derived in Theorem 1 through numerical experiments.
We consider an analytical solution to compute the L2- and H1-errors. We show the h and ∆t dependence
through successive refinement of the spatial mesh, respectively of the time step.

Problem definition We consider the domain Ω = (0, 1)× (0, 1) ⊂ R2 and t ∈ [0, 1]. The properties of the
phases and the porous medium are listed in Table 1.

Table 1: Properties for Test problem 1

Phase Properties
dyn. viscosity water µw 1
dyn. viscosity oil µn 1
density water ρw 1
density oil ρn 1
Hydraulic Properties
abs. permeability K 1
res. water saturation Srw 0
res. oil saturation Srn 0
porosity ϕ 0.4
retardation coefficient τ 1
Brooks-Correy Parameters
entry pressure pd 1
pore size distr. index λ 2

The right hand side in the equations are chosen such that the exact solution for t ≥ 0 equals:

pn(t, x, y) =
1

4
cos((x+ y)π − t) +

1

2

Sw(t, x, y) =
1

4
sin((x+ y)π − t) +

1

2
pc(t, x, y) = pc,eq(Sw(t, x, y))− τ∂tSw(t, x, y)

Implementation We chose θ = 1, which gives a NIPG scheme, and the penalty parameters as σw =
σn = 10. We implement the numerical scheme in the C++ based DUNE-PDELab framework [4,6,5]. For
linearization, we use the Newton-Raphson scheme with a line-search strategy [16]. We solve the resulting
linear system with SuperLU solver [15].
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(a) pn (b) pc (c) sw (d) Plot over the diagonal Y =
X,

legend: Sw,pn and pc

Fig. 1: Simulation results at t = 1.

Simulation To show the spatial convergence ratese, we make five simulations each for polynomial orders
1 and 2, with the following mesh and time step refinements:

p-order=1 p-order=2
no. of elements time step size time step size

Run-1: 2× 2 ∆t = 1 ∆t = 1 ,
Run-2: 4× 4 ∆t = 1/2 ∆t = 1/4 ,
Run-3: 8× 8 ∆t = 1/4 ∆t = 1/16 ,
Run-4: 16× 16 ∆t = 1/8 ∆t = 1/64 ,
Run-5: 32× 32 ∆t = 1/16 ∆t = 1/256 .

Additionally, to show the time convergence rates, make five simulations with polynomial order 2 and
the following mesh and time step refinements:

p-order=2
no. of elements time step size

Run-1: 2× 2 ∆t = 1 ,
Run-2: 4× 4 ∆t = 1/2 ,
Run-3: 8× 8 ∆t = 1/4 ,
Run-4: 16× 16 ∆t = 1/8 ,
Run-5: 32× 32 ∆t = 1/16 .

In this case, the time steps are chosen such that the error due to time discretization is dominating.

Results The solution of the problem at time t = 1 and with a refinement of 32× 32 is shown in Figures
1a, 1b and 1c.

In Figure 2, we show the spatial convergence rates for the test problem. Figures 2a and 2b show the
calculated error for piecewise linear polynomials for the non-wetting pressure pn, capillary pressure pc, and
wetting saturation sw. Figures 2c and 2d show the calculated error for piecewise quadratic polynomials for
pn, pc, and sw. In Figure 3, we show the temporal convergence rates for the test problem, with piecewise
quadratic polynomials for pn, pc, and sw.

Observe the agreement with the theoretical convergence rates obtained in Theorem 1. In the first case,
expected is a linear convergence rate. In the second case, using quadratic polynomials, we chose the time
step 1

4 -th of the size of the spatial mesh. This prevents that the errors due to the time discretization dom-
inate, affecting the convergence rates. To show the time convergence as in case two we choose quadratic
polynomials. However, this time the time step is half of the size of the spatial discretization, so that
the error due to time discretization becomes dominating. The expected convergence rates for each of the
cases are plotted in green for reference.
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(b) L2 error for piecewise linear polynomials
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(c) H1 error for piecewise quadratic polynomials
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(d) L2 error for piecewise quadratic polynomials

Fig. 2: Spatial convergence rates.
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Fig. 3: Temporal convergence rates
L2 error for piecewise quadratic polynomials.

6 Conclusions

We have presented a fully implicit interior penalty discontinuous Galerkin numerical scheme for a two-
phase porous media flow model, where dynamic effects are incorporated in the capillary pressure. The
proposed scheme is based on quantities that have a direct physical meaning (like saturation, or phase
pressure) and avoids using concepts like Kirchhoff transform or global pressure. Building on a fixed
point argument, we have proved the existence of a fully discrete solution. Further, we have shown the
convergence of the scheme by obtaining a-priori error estimates, in dependence of the polynomial degree,
the mesh-size, and the time-step-size.

Further aspects related to this model and the proposed discretization will be considered in the forthcom-
ing research. Clearly, space-time adaptivity and domain decomposition schemes can increase the efficiency
of the method discussed here. In this sense, we note that the emerging fully discrete systems are nonlin-
ear, and therefore efficient linearization (iterative) techniques have to be developed and their convergence
analyzed. A good starting point are the schemes discussed in [36]. Also, the possibility to extend such
schemes towards models including hysteresis, or defined in heterogeneous domains with or without entry
pressures [21,33].
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O.: DUNE Web page (2011). Http://www.dune-project.org
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