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Abstract

In this paper we employ homogenization techniques to provide a rigorous derivation

of the Darcy scale model for precipitation and dissolution in porous media. The starting

point is the pore scale model in [13], which is a coupled system of evolution equations,

involving a parabolic equation which models ion transport in the fluid phase of a periodic

porous medium, coupled to an ordinary differential equations modeling dissolution and

precipitation at the grains boundary.

The main challenge is in dealing with the dissolution and precipitation rates, which

involve a monotone but possibly discontinuous function. In order to pass to the limit in

these rate functions at the boundary of the grains, we prove strong two scale convergence

for the concentrations at the microscopic boundary and use refined arguments in order

to identify the form of the macroscopic dissolution rate, which is again a discontinuous

function. The resulting upscaled model is consistent with the Darcy scale model proposed

in [20].

1 Introduction

In this paper, we employ rigorous homogenization techniques to derive the Darcy scale model

for dissolution and precipitation in a porous medium. The starting point is the micro (pore)

scale model analyzed in [13, 36], where the existence and uniqueness of a solution are proved.

The challenging part is due to the dissolution and precipitation, involving non-Lipschitz, pos-

sibly discontinuous rates, and leading to solutions lacking regularity. Using homogenization

techniques, here we give a rigorous derivation of the macro scale counterpart, which is in good

agreement with the Darcy scale model proposed empirically in [20].

At the micro scale, the medium consists of periodically repeating solid grains surrounded

by voids (the pores). The pore space forms a periodically perforated domain (the grains
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being the perforations in the domain) which is completely filled by a fluid (e.g. water). The

fluid is flowing around the solid grains, transporting solutes, which are dissolved ions. The

solute may further diffuse in the fluid, whereas at the grain surfaces, the solute may react and

precipitate, forming a thin layer of an immobile species (salt) attached to these boundaries.

The reverse process of dissolution is also possible.

Encountered at the boundary of the perforations, the precipitation process is modeled by

a rate function that is monotone and Lipschitz continuous with respect to the solute concen-

trations. This is consistent with the mass action kinetics. Concerning dissolution, at sites on

the grain boundary where precipitate is present, it will be dissolved at a constant rate. A

special situation is encountered when no precipitate is present at one site, when no dissolution

is possible. Besides, at such a location a precipitate layer (meaning an effective occurrence

of the immobile species) is only possible if the fluid is ”oversaturated”. This means that the

precipitation rate exceeds a threshold value, the so-called solubility product. In the ”under-

saturated” regime, when the precipitation rate is below the solubility product, no effective

gain in the precipitate is possible. This can be seen as an instantaneous dissolution of any

precipitate formed in undersaturated conditions, so the overall result of these processes en-

countered at the time scale of interest is null. In other words, the precipitation rate is in

balance with the dissolution rate. Between oversaturation and undersaturation, the precipi-

tation rate equals the solubility product, which is an equilibrium value. In this case neither

precipitation nor dissolution is encountered.

Note that the undersaturated regime is encountered for any value of the precipitation

rate that is below the solubility product. Since the overall rate is zero, at sites where no

precipitate is present, the dissolution rate should take a value between zero (no dissolution)

and the equilibrium one (the solubility product), in order to balance the dissolution rate.

In literature ([20, 12, 11, 10]) this has been modelled by taking the dissolution rate as a

member of a multi-valued graph (a scaled Heaviside graph). Further, in [13, 36] the existence

and uniqueness of the micro scale model has been studied along a sequence of a regularised

Heaviside graph. Passing the regularisation parameter to zero, the limit dissolution rate

becomes a discontinuous function. In this paper, this limit function is taken to model the

dissolution rate.

The major challenge in the present work is in dealing with the dissolution rate that is

non-Lipschitz and may even become discontinuous. This poses difficulties in obtaining the

convergence of the precipitation and dissolution rates, and the correct identification of their

limits. In particular, we follow the ideas in [30] and [26] and show the strong two-scale

convergence of the species at the grain boundaries. This is based on unfolding/localization

operators [5, 6], and allows us to identify the limit of the (pore scale) dissolution rate.
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1.1 Literature review

The macro scale model for the present problem has been proposed in [20] and further discussed

in [10, 11, 12], where the main focus is related to travelling waves. Its pore scale counterpart

has been analyzed in [13] and [36], where existence and uniqueness results are obtained.

Furthermore, in [13] a two dimensional strip was considered as a model geometry for deriving

rigorously the macro scale model by a transversal averaging procedure.

One important assumption here is that the layer of the species attached to the grain

boundaries (the precipitate) is very thin compared to the pore thickness, so eventual changes

in the geometry at the pore-scale can be neglected. This allows decoupling the equations

modelling the flow from those describing the chemical processes. This assumption is justified

whenever the density of the deposited layer is very large compared to the typical density of

the solute. Contrary to this, [22, 32, 33, 34]) consider the alternative approach, where the

precipitate layer induces non-negligible changes in the pores, leading to a model involving free

boundaries at the micro scale. In this context and for a simplified geometry, upscaled models

are derived formally in [33] for moderate Péclet numbers. The same situation, but now under

a dominated transport regime - high Péclet numbers, is considered in [22]. The upscaled

model is similar to Taylor dispersion, and includes the effects of the changing geometry and

of the reactions at the micro scale. Similar models are also obtained in [35] for biofilm growth,

in [39] for drug release from collagen matrices and in [37] for a reactive flow model involving

an evolving microstructure. In [35, 39] a level set function is used to describe the unknown

microstructure (a free boundary) and a formal approach is used to obtain the upscaled model.

In contrast, in [37] the evolution of the microstructure is assumed to be a priori known but

a rigorous approach is used for the upscaling. For the domain with rough boundaries, the

effective boundary conditions for the dissolution and precipitation model involving free and

rough boundaries are obtained formally in [25].

The dissolution and precipitation model under discussion here refers to the situation

when the precipitate does not affect the domain. For such a model, in domains with rough

boundaries, effective boundary conditions are derived rigorously in [21]. This model has

also been subjected to algorithmic developments and numerical analysis. We recall that the

convergence of numerical schemes is analyzed in [9] for the micro scale model, and in [24, 23]

for the macro scale model.

The Darcy scale model in [20] was derived rigorously in [13] for a simplifed setting: a two-

dimensional strip. In this case, a simple transversal averaging procedure can be applied and a

one-dimensional Darcy model is derived. Here we consider a more general situation, when the

porous medium is modeled by a periodically perforated domain in Rd(d = 2, 3, . . . ). Clearly,

this requires a different upscaling approach and the techniques for 2D-thin strip can not be

used. For the rigorous derivation of the macroscopic model, we use the two-scale convergence

concept developed in [2, 31] and extended further in [29] to include model components defined
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Figure 1: Left: the porous medium Ω consisting of ε-scaled perforated cells distributed period-
ically; the total void space is Ωε. Right: a reference cell containing the flow/reactive transport
part (the pore Y ) and the perforation (the solid grain) Y0 separated by the interface ΓG. Note
that the geometry remains fixed in time for a given ε.

on lower dimensional manifolds (the grain boundaries).

We mention [17, 18] for pioneering works on rigorous homogenization of reactive flow

models, including the derivation of upscaled models from well-posed microscopic (pore-scale)

models. Since then many publications have considered similar problems; we restrict here to

mention papers that are very close to the present contribution. The coupled flow and trans-

port models for miscible displacement has been treated in [16]. Non-Lipschitz but continuous

reaction rates are considered in [8], but for one species. In [29] and [26] the two-scale conver-

gence framework is extended for variables defined on lower-dimensional manifolds. Rigorous

homogenization results for reactive flows including adsorption and desorption at the bound-

aries of the perforations, but in dominating flow regime (high Peclét numbers) are obtained

in [3, 4, 28]. The two-scale convergence approach has been extended to include the mechanics

of the porous media and finds application in several fields including the biological, mechanical

etc. A recent work dealing with combining the reactive flow with the mechanics of cells is

[19]. Similarly, the effect of electric field on the reactive transport of ions has been included

in [38, 41] with [38] dealing with Stokes flow coupled to a reactive transport model. Of par-

ticular relevance to the present work is the work of [26] where non-linear reaction terms on

the surface are treated using the techniques of periodic unfolding.

2 Setting of the model

Let ε > 0 be a sequence of strictly positive numbers tending to zero, with the property that
1
ε ∈ N. Let [0, T ] denote a time interval, with T > 0.

We consider here a three-dimensional domain Ω = (0, 1)3, but extending this work to
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any d-dimensional case is straightforward. Ω consists of two subdomains: the perforations

(representing the solid grains) and the perforated domain (the pore space) filled with fluid

and where flow, diffusion and transport is taking place, see Fig 1. At the micro scale, the

domain of interest (the fluid part) is denoted by Ωε, and the boundary of the perforations by

ΓεG. Thus, the boundary of the domain Ωε consists of two parts

∂Ωε = ∂Ω ∪ ΓεG.

The outer unit normal to ∂Ωε is denoted by ν.

The microscopic structure of Ωε and ΓεG is periodic, and is obtained by the repetition of

the standard cell Z = (0, 1)3 scaled with the small parameter ε. We denote by Y and Y0 the

fluid part, respectively the perforation in Z. On ∂Y0, we denote by ν the unit normal to ΓG

pointing into the perforation Y0. We assume that

1. Y 0 ⊂ Z, Y = Z \ Y 0,

2. Y0 is a set of strictly positive measure, with piecewise smooth boundary ΓG = ∂Y0.

Let

Es :=
⋃

k∈Z3

Y k
0 =

⋃

k∈Z3

(Y0 + k).

Then the fluid part of the porous medium Ωε and the total boundary of the perforations ΓεG
are defined as follows:

Ωε = Ω \ εEs, ΓεG = Ω ∩ ε
⋃

k∈Z3

∂Y k
0 .

Finally, for any t ∈ (0, T ] we define

Qt = (0, t]×Q,

where Q is one of the sets Ω, Ωε, ΓG,Γ
ε
G or ∂Ω.

2.1 The micro scale model

Let us now formulate the equations which model the processes at the microscopic level. The

microscopic model contains two components: the equations for the flow, and the equations

for the reactive transport. For the flow, we consider the Stokes system

{
ε24qε = ∇P ε,
∇ · qε = 0,

(2.1)

for all x ∈ Ωε. In the above (2.1), qε stands for the fluid velocity, P ε denotes the pressure

inside the fluid. With a proper scaling, when bringing the model to a dimensionless form the
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dynamic viscosity becomes ε2 (see e.g. [15], p. 45). We complement Stokes equations by

assigning no-slip boundary conditions at the boundary of the perforations and given Dirichlet

boundary conditions at the outer boundary ∂Ω,

qε = 0, on ΓεG, and qε = qD, on ∂Ω, (2.2)

where qD is such that

∫

∂Ω

ν · qD = 0. As mentioned above, we assume that the chemical

processes neither change the micro scale geometry, nor the fluid properties. Therefore the

flow component does not depend on the other components of the model, and can be com-

pletely decoupled. This means that one can solve first the Stokes system (2.1) with the given

boundary conditions (2.2) to obtain the fluid velocity qε.

The main interest in this paper is in the subsystem modeling the chemical processes. This

takes into account two solute (mobile) species, which are transported by the fluid. In the

fluid, these species are diffusing, but no reactions are taking place there. The corresponding

model is therefore a convection-diffusion equation in the fluid part Ωε. Following [20, 13], we

simplify the analysis by considering only one immobile species, having the concentration uε.

This is justified if the two species are having the same diffusion coefficient. Accounting for

more species is fairly straightforward.

The chemical processes are encountered at the boundary of perforations, where the mo-

bile species react forming the precipitate. The reaction result is an immobile species (the

precipitate) attached to this boundary and having the concentration vε. The precipitate may

be dissolved, becoming a source of mobile species in the fluid. As given in the mathematical

model (2.3) below, the precipitation and dissolution are rates in the ordinary differential equa-

tion defined in every location on the boundary of perforations. Finally, the partial differential

equation and the ordinary one are coupled through the boundary conditions.

With the concentrations uε and vε introduced above, the reactive transport is described

by the following equations





∂tu
ε +∇ · (qεuε −D∇uε) = 0, in ΩεT ,

−Dν · ∇uε = εn∂tv
ε, on ΓεTG ,

∂tv
ε = k(r(uε)− wε), on ΓεTG ,

wε ∈ H(vε), on ΓεTG .

(2.3)

The system (2.3) is complemented by the following initial and boundary conditions,





uε(0, ·) = uI in Ωε,

vε(0, ·) = vI on ΓεG,

uε = 0, on ∂ΩT ,

(2.4)
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As mentioned above, qε solves the Stokes system (2.1)-(2.2), which is not affected by the

chemistry and therefore we assume it given. Hence, the unknowns of the microscopic model

are uε, vε, and wε. In particular, wε describes the dissolution rate; the specific choice in

(2.3)4 will be explained below. Note that uε is defined in the domain Ωε, while vε and wε are

defined on the boundaries of perforations, ΓεG. The physical constant D is a (given) diffusion

coefficient, assumed constant. Further, k is a dimensionless reaction rate constant, which we

assume of moderate order w.r.t. ε and is normalized to 1. In physical sense, this means that

the precipitation sites are homogeneous. Also note that assuming that D and k are moderate

w.r.t. ε implies that the time scales of diffusion, transport and chemical processes are of the

same order. Finally, n is a constant denoting the valence of the solute and for simplicity, we

will be taking it as 1.

Clearly, (2.3)2 relates the change in the precipitate to the normal flux of the ions at the

boundaries, assuming the no-slip boundary condition for qε. Also observe the appearance

of ε in the boundary flux. As will be seen below, this allows to control the growth of the

precipitate when passing to the limit in the homogenization step. We refer to Chapter 1 of

[15] for a justification of this choice based on the geometry of the pores, and to [13], Remark

1.2 for an equivalent interpretation.

We proceed now by explaining the precipitation rate r(uε) and the dissolution rate wε

appearing in the last two equations of (2.3). We assume first that

Assumptions on r

The precipitation rate r depends on the solute concentration, where

r : R→ [0,∞) is locally Lipschitz in R. (A.1)

There exists a unique u∗ ≥ 0, such that

r(uε) =

{
0 for uε ≤ u∗,
strictly increasing for uε ≥ u∗ with r(∞) =∞.

(A.2)

An example where these assumptions are fulfilled is given in [20], where a model based on

mass-action kinetics is considered. Note that a value u∗ > 0 exists such that

r(u∗) = 1.

With the proper scaling, this value is exactly the solubility product mentioned in the intro-

duction. As explained, this value is taken at an equilibrium concentration: if uε(t, x) = u∗,

neither precipitation, nor dissolution is encountered in x at time t.
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Finally, the dissolution rate satisfies

wε ∈ H(vε), (2.5)

where H(·) denotes the Heaviside graph,

H(u) =





{0} if u < 0,

[0, 1] if u = 0,

{1} if u > 0.

(2.6)

This means that whenever precipitate is present, hence vε(t, x) > 0, in this point dissolution

is encountered at a constant rate, 1 by scaling. One may view this as a surface process:

it does not matter how much precipitate is present in one location x on the boundary of

perforations at some time t, the dissolution will be encountered strictly at the surface of the

precipitate and not in the interior. A more interesting situation appears at sites where the

precipitate is absent, thus vε(t, x) = 0. Then a value has to be specified for the dissolution

rate wε(t, x) ∈ [0, 1]. Two important features should be accounted for: no dissolution is

allowed whenever precipitate is absent, and further no precipitation should be encountered in

the undersaturated regime, when uε(t, x) < u∗. As explained in [13, 20, 36], whenever vε = 0,

the rate wε depends also on the solute concentration uε at the boundary. Specifically, in the

oversaturated regime, when uε > u∗ (the value u∗ being introduced above) we take wε = 1.

Since r(uε) > 1, this means that the overall precipitation/dissolution rate is strictly positive,

resulting in a net gain in the precipitate. In the undersaturated regime one hase uε < u∗, thus

r(uε) ≤ 1. Then the solute concentration cannot support an effective gain in precipitate, and

the overal rate remains 0. In particular, dissolution should be avoided in this case. To achieve

this, we take wε = r(uε) ∈ [0, 1) and the overall rate becomes 0. Finally, since r(u∗) = 1, the

case uε = u∗ leads to an equilibrium, regardless of the value of vε. This can be summarized

as

wε =





0 if vε < 0,

min{r(uε), 1} if vε = 0,

1 if vε > 0.

(2.7)

The dissolution rate is defined for unphysical, negative values of vε for the sake of complete-

ness. We will prove below that whenever the initial precipitate concentration is non-negative,

no negative concentrations can be obtained. Note that in the above relation, wε ∈ H(vε) is a

discontinuous function of vε and not an inclusion (in contrast to (2.5)-(2.6), the value of wε

is well specified in the case vε = 0). This choice is justified also from mathematical point of

view, as regularization arguments employed in [13] for obtaining the existence of a solution

lead to the above form for wε.
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2.2 The variational formulation of the microscopic problem

When defining a weak solution we use common notations in the functional analysis: with Q

being either Ω, Ωε, ∂Ω, ΓG or ΓεG, we denote by L2(Q) the square–integrable functions on Q

(in the sense of Lebesgue). For Q = Ωε or Q = Ω, the space H1
0 (Q) restricts the space H1(Q)

of functions having all first order partial derivatives in L2 to those elements vanishing on ∂Ω

(in the sense of traces). (·, ·)Q stands for the scalar product in L2(Q); if Q = Ωε or Q = Ω,

it also denotes the duality pairing between H1
0 (Q) and H−1(Q) – the dual of H1

0 (Q). The

corresponding norm is denoted by ‖·‖Q, or simply ‖·‖ (where self understood). By L∞(Q) we

mean functions that are essentially bounded on Q, and the essential supremum is denoted by

‖u‖∞,Q. Further, for a Banach space V we denote by L2(0, T ;V ) the corresponding Bochner

space equipped with the standard inner product (where applicable) and norm. Besides, χI

denotes the characteristic function of the set I.

Before stating the definition of a weak solution, we introduce the function spaces

Uε := {u ∈ L2(0, T ;H1
0 (Ωε)) : ∂tu ∈ L2(0, T ;H−1(Ωε))},

Vε := H1(0, T ;L2(ΓεG)),

Wε := {w ∈ L∞(ΓεTG ) : 0 ≤ w ≤ 1}.

Then a weak solution is introduced in

Definition 2.1. A triple (uε, vε, wε) ∈ Uε × Vε ×Wε is called a weak solution to (2.3)-(2.4)

if uε(0, ·) = uI , v
ε(0, ·) = vI ,

(∂tu
ε, φ)ΩεT +D(∇uε,∇φ)ΩεT − (qεuε,∇φ)ΩεT = −ε(∂tvε, φ)ΓεT

G
,

(∂tv
ε, θ)ΓεT

G
= (r(uε)− wε, θ)ΓεT

G
,

(2.8)

for all (φ, θ) ∈ L2(0, T ;H1
0 (Ωε))× L2((0, T )× ΓεG), and wε satisfies (2.7) a.e. in ΓεTG .

For the boundary and initial conditions we assume the following

uI ∈ H1
0 (Ω), vI ∈ H1(Ω), and 0 ≤ uI , vI ≤M0 a.e., (A.3)

with an ε-independent constant M0 > 0. Further, wI satisfies (2.7).

Note that uI , vI are defined in the entire Ω. In Definition 2.1 above, the initial conditions

are the restrictions of uI and vI to Ωε, respectively, ΓεG. Since uε and vε are also continuous

in time vector valued functions, the initial conditions make sense. Further, the initial precip-

itation concentration vI is assumed in H1(Ω) and for the micro scale model, we consider its

trace on ΓεG. For simplicity we considered homogeneous conditions on ∂Ω, but the extension

to non-homogeneous ones can be carried out without major difficulties.

The existence of weak solutions to (2.3)-(2.7) is proved in [13] (see Th. 2.21) by regular-
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izing the Heaviside graph. Clearly, the solutions of the regularized problems depend on the

regularization parameter. Passing this parameter to zero, one obtains a convergent sequence

of solutions; its limit is a weak solution to the original problem, in the sense of Definition 2.1.

Furthermore, the uniqueness of a solution is obtained in [36] ((Th. 2, Cor. 1) by proving the

following contraction result with respect to the initial values

Theorem 2.1. Assume (A.1) and (A.2) and let (u(i)ε , v(i)ε , w(i)ε) ∈ Uε,Vε,Wε, i = 1, 2 be

two solutions in the sense of Definition 2.1, obtained for the initial values u
(i)
I , v

(i)
I (i = 1, 2)

respectively. Then for any t ∈ (0, T ] it holds

∫

Ωε

|u(1)ε(t, x)− u(2)ε(t, x)|dx+ ε

∫

Γε
G

|v(1)ε(t, s)− v(2)ε(t, s)|ds

≤
∫

Ωε

|u(1)
I (x)− u(2)

I (x)|dx+ ε

∫

Γε
G

|v(1)
I (s)− v(2)

I (s)|ds (2.9)

3 The macroscopic model and the main result

In this paper, we let ε → 0 and investigate the limit behaviour of the solutions to the

microscopic system (2.1)-(2.2), (2.3)-(2.4). The main result is in proving the convergence of

the micro-scale reactive transport model in (2.3) to the unique solution to the homogenized

(macroscopic) system of differential equations (3.4)-(3.5) defined below.

For completeness, we start by mentioning existing results for the flow component. The

macroscopic variables (q, P ) satisfy the Darcy law

∇ · q = 0, q = −K∇P, (3.1)

for x ∈ Ω, and boundary condition

−K∇P · ν = qD · ν,

for x ∈ ∂Ω. The permeability tensor K has the components

kij =
1

|Y |

∫

Y

χji (y)dy, for all i, j ∈ {1, 2, 3}, (3.2)
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where χji is the i-th component of χj = (χj1, χ
j
2, χ

j
3) solving the cell problems (j ∈ {1, 2, , 3})

(PDj )





−∆yχ
j(y) = ∇yΠj(y) + ej , in Y

∇y · χj(y) = 0, in Y

χj(y) = 0, on ΓG

χj ,Πj are Z − periodic.

(3.3)

As shown in the L. Tartar’s Appendix of [40] (also see Propositions 4 and 6 of [18]), qε is

uniformly bounded in the L2(Ωε) norm. With χε being the indicator function for Ωε, the

extension χεqε has a weak limit q solving the Darcy model (3.1).

The homogenized model component referring to the reactive transport, the solution triple

(u, v, w) representing the upscaled solute concentration, precipitate concentration, and the

macroscopic dissolution rate are solution to the system





∂t

(
u+ |ΓG|

|Y | v
)

= ∇ · (S∇u− qu) ,

∂tv = (r(u)− w),

w ∈ H(v),

(3.4)

for all x ∈ Ω and t ∈ (0, T ]. In addition, analogous to (2.7), macroscopic w satisfies,

w =





0 if v < 0,

min{r(u), 1} if v = 0,

1 if v > 0.

(3.5)

The components of the diffusion tensor S are defined by

(S)i,j = D


δij +

1

|Y |

∫

Y

∂yjξidy


 , for all i, j ∈ {1, 2, 3}. (3.6)

The functions ξi are solutions of the following cell problems (i ∈ {1, 2, 3})

(PCi )





−∆ξi = 0 in Y,

ν · ∇ξi = ν · ei on ΓG

ξi is Z periodic and
∫
ξidy = 0.

(3.7)
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The system (3.4) is complemented by the boundary and initial conditions





u(0, ·) = uI in Ω,

v(0, ·) = vI in Ω,

u = 0, on ∂ΩT

(3.8)

As for the macro scale model, we are interested in the reactive transport component of

the upscaled model, for which a weak solution is defined below.

Definition 3.1. A triple (u, v, w) with u ∈ L2(0, T ;H1
0 (Ω)); ∂tu ∈ L2(0, T ;H−1(Ω)), v ∈

H1(0, T ;L2(Ω)), w ∈ L∞(0, T ;L2(Ω)) is called a weak solution to (3.4)-(3.8) if (u(0), v(0)) =

(uI , vI), and

(∂tu, φ)ΩT +D(S∇u,∇φ)ΩT = (qu,∇φ)ΩT −
|ΓG|
|Y |

(∂tv, φ)ΩT ,

(∂tv, θ)L2(ΩT ) = (r(u)− w, θ)L2(ΩT ) , (3.9)

w ∈ H(v), satisfying (3.5)

for all (φ, θ) ∈ L2(0, T ;H1
0 (Ω))× L2(0, T ;L2(Ω)).

The main result is as follows:

Theorem 3.1. As ε ↘ 0, the sequence of micro-scale weak solutions (uε, vε, wε) of problem

(2.7) - (2.8) converges to the unique weak solution (u, v, w) of the upscaled model (3.9).

The notion of convergence will be made more precise in the following sections. We remark

that the effective solution (u, v, w) does not depend on the microscopic variable y ∈ ΓG. This

results from the fact that initial conditions are considered homogeneous and the processes

at the boundaries of perforations are also homogeneous. Finally, since the flow component

is completely decoupled from the reactive transport, it is sufficient to quote existing results

for the transition from the micro scale (Stokes) model to the upscaled (Darcy) one. In this

sense we refer to [1, 15, 40], where two-scale convergence results have been obtained (see e.g.

Theorem 1.4 in [15]).

4 Uniform estimates for the microscopic solutions and exten-

sion properties

First, we provide estimates for the solutions of the microscopic problem that are uniform with

respect to ε. These will allow passing to the limit ε ↘ 0, and obtaining the solution to the

homogenized model. In doing so, we recall the a-priori estimates obtained in [13], without

considering particularly the homogenization problem. According to Remarks 2.12 and 2.14
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of [13], in the case of a periodically perforated medium (this being the situation here), these

estimates are ε-uniform. From [13, 36] one has:

Theorem 4.1. Assume (A.1) and (A.2), there exists a unique weak solution to (2.3)-(2.7)

in the sense of Definition 2.1. Moreover, this solution satisfies the following estimates

0 ≤ uε, vε ≤M, 0 ≤ wε ≤ 1, (4.1)

‖uε‖2L∞(0,T ;L2(Ωε)) + ‖∇uε‖2L2(ΩεT ) + ‖∂tuε‖2L2(0,T ;H−1(Ωε))

+ ε‖vε‖2L∞(0,T ;L2(Γε
G)) + ε‖∂tvε‖2L2(ΓεT

G )
≤ C, (4.2)

where the constants C > 0 and M > 0 are independent of ε.

Remark 4.1. In the above reference [13], the above estimates are derived under the as-

sumption of the flow qε being uniformly bounded in L∞ norm. However, a slight change of

arguments in the proof of Lemma 2.11 that gives these estimates in [13] shows that this as-

sumption can be relaxed to have only uniform L2 bound which is available for Stokes model

as remarked before (see [1, 15, 18]). This is immediate in the case of homogeneous Dirichlet

boundary data for the flow as has been assumed here (in the case of inhomogeneous Dirichlet

boundary data for qε, it is straightforward to extend the same result by assuming L2 smooth-

ness of the gradient of the extension of the boundary data). To see this, note that from Lemma

2.7, Cor. 2.8 in [13], the L∞ estimates for uε, vε depend only on the initial and boundary

data and is independent of the bounds on qε. Using this in equation (2.16) from [13], the

bound on ∂tu
ε is easily obtained with qε being L2 bounded. We spare the full details.

For passing to the limit in the nonlinear reaction terms, especially on ΓεG, one needs strong

convergence for the solute concentration uε with respect to appropriate topologies. A first

step in obtaining this is to extend uε and ∂tu
ε from Ωε to the entire domain Ω. Since Ωε is

connected and has a Lipschitz boundary, there exists a linear and bounded extension operator

Fε : L2(0, T ;H1(Ωε)) → L2(0, T ;H1(Ω))

uε 7→ ũε

which preserves the estimates on the solution uε from Theorem 4.1, excepting that one for

the time derivative, see e.g. [7]. Concerning the time derivative, we consider the following

extension, see [27, 14]: For a function uε ∈ L2(0, T ;H1(Ωε)) with ∂tu
ε ∈ L2(0, T ;H−1(Ωε)),

the extension of the time derivative is defined by ∂t (χΩεuε), where χΩε is the characteristic

function of Ωε. For this extension the following holds

(∂t (χΩεuε) , φ)Ω = (∂tuε(t), φχΩε)Ωε for all φ ∈ H1(Ω) and a.e. t ∈ (0, T ),
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and we have the estimate

‖∂t (χΩεuε)‖L2(0,T ;H−1(Ω)) ≤ ‖∂tuε‖L2(0,T ;H−1(Ωε)). (4.3)

5 Compactness of the microscopic solutions

To pass to the limit in the microscopic equations, we will use the notions of two-scale conver-

gence and unfolding operator. Let us first recall the definitions of these concepts. The concept

of two-scale convergence was introduced in [2, 31] and later extended to periodic surfaces in

[29]. We give here the version of two-scale convergence for time depending functions.

Definition 5.1. A sequence uε ∈ L2((0, T ) × Ω) is said to converge two-scale (weakly) to a

limit u ∈ L2((0, T )× Ω× Z) iff

lim
ε↘0

T∫

0

∫

Ω

uε(t, x)φ(t, x,
x

ε
)dxdt =

T∫

0

∫

Ω

∫

Z

u(t, x, y)φ(t, x, y)dydxdt

for all φ ∈ C([0, T ]× Ω;C∞per(Z̄)).

Definition 5.2. A sequence vε ∈ L2((0, T ) × ΓεG) is said to converge two-scale to a limit

v ∈ L2((0, T )× Ω× ΓG)) iff

lim
ε↘0

ε

T∫

0

∫

Γε
G

vε(t, x)φ(t, x,
x

ε
)dxdt =

T∫

0

∫

Ω

∫

ΓG

v(t, x, y)φ(t, x, y)dσydxdt

φ ∈ C([0, T ]× Ω;C∞per(Γ)).

A weakly convergent sequence vε ∈ L2((0, T ) × ΓεG) converges strongly in the two-scale

sense on ΓεG, if additionally there holds

lim
ε↘0

√
ε||vε||L2((0,T )×Γε

G) = ||v||L2((0,T )×Ω×ΓG).

Especially to handle the nonlinear terms on ΓεG, we need the strong two scale convergence.

To prove such results, we employ the characterization of two-scale convergence by means of

the unfolding operator, see e.g. [5, 6, 26].

Definition 5.3. For a given ε > 0, we define a boundary unfolding operator Dε mapping

measurable functions on (0, T )× ΓεG to measurable functions on (0, T )× Ω× ΓG by

Dεf(t, x, y) = f
(
t, ε
[x
ε

]
+ εy

)
, y ∈ ΓG, (t, x) ∈ (0, T )× Ω.
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The relation between two-scale convergence and convergence of the unfolded sequence is

given in the following lemma.

Lemma 5.1. For a sequence vε ∈ L2((0, T )×ΓεG) with
√
ε||vε||L2((0,T )×Γε

G) ≤ C the following

statements are equivalent

(i) vε → v weakly/strongly in the two scale sense on ΓεG.

(ii) Dεvε → v weakly/strongly in L2((0, T )× Ω× ΓG).

Based on the estimates proved in the preceding section, the following compactness prop-

erties of the microscopic solutions are proved.

Lemma 5.2. There exists limit functions

u ∈ L2(0, T ;H1(Ω)), ∂tu ∈ L2(0, T ;H−1(Ω)), u1 ∈ L2(0, T ;L2(Ω;H1
per(Z)),

v ∈ L2((0, T )× Ω× ΓG), ∂tv ∈ L2((0, T )× Ω× ΓG), w ∈ L2((0, T )× Ω× ΓG),

such that up to a subsequence

1. ũε ⇀ u weakly in L2(0, T ;H1(Ω)),

2. ũε two-scale converges to u,

3. ∇ũε two-scale converges to ∇xu+∇yu1,

4. ∂t (χΩεuε) ⇀ |Y |∂tu weakly in L2(0, T ;H−1(Ω)),

5. ũε → u strongly in L2((0, T )× Ω),

6. vε two-scale converges to v,

7. ∂tv
ε two-scale converges to ∂tv,

8. wε two-scale converges to w.

We will later show that these limit functions satisfy the upscaled model (3.9); for economy

we retain the same notations for the variables solving the upscaled model.

Proof. The first result follows directly by using estimates (4.2) and the properties of the

extension operator Fε. The results in items 2. and 3. follow from standard compactness

arguments in [2]. To show 4., we observe that (4.3) and the estimate of the time derivative

in (4.2) imply the existence of a limit function ζ ∈ L2(0, T ;H−1(Ω)), such that up to a

subsequence ∂t (χΩεuε) converges weakly to ζ in L2(0, T ;H−1(Ω)). Integration by parts in

time and 2. shows that ζ = |Y |∂tu. The strong convergence of ũε in L2((0, T ) × Ω) follows

from [27]. The convergence results from items 6. to 8. follow from standard compactness

results for sequences defined on periodic surfaces, see e.g. [29] and estimates (4.2).
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Using the compactness results from Lemma 5.2, we are able to show the convergence of

the nonlinear term on ΓεG modeling the precipitation process.

Corollary 5.1. The function r(uε) converges strongly in two-scale to r(u).

Proof. Using the Lipschitz continuity of r and the trace inequality from [17] Lemma 3, we

obtain

ε‖r(uε)− r(u)‖2
ΓεT
G
≤ Cε‖uε − u‖2

ΓεT
G
≤ C

(
‖ũε − u‖2L2((0,T )×Ω) + ε2‖∇(ũε − u)‖2L2((0,T )×Ω)

)
.

Lemma 5.2 implies the strong convergence of ũε to u in L2((0, T )×Ω). As stated before, the

estimates (4.2) carry over to the extension ũ and hence ‖∇(ũε − u)‖L2((0,T )×Ω) is bounded.

This yields

lim
ε↘0

ε‖r(uε)− r(u)‖2
ΓεT
G

= 0. (5.1)

Moreover, by Lemma 1.3.2 in [29], we have that for any function f ∈ C0(Ω̄;C0
per(ΓG)) there

holds

lim
ε↘0

ε

∫

Γε
G

f
(
x,
x

ε

)
dx =

∫

Ω

∫

ΓG

f(x, y)dxdy.

This result can be extended to functions f ∈ L2((0, T ) × Ω;C0
per(ΓG)). Using these results,

we obtain for all φ ∈ C0((0, T )× Ω;C0
per(ΓG))

∣∣∣∣∣∣∣

∫

ΓεT
G

εr(uε)φ(x,
x

ε
)dxdt−

∫

ΩT

∫

ΓG

r(u)φ(x, y)dydxdt

∣∣∣∣∣∣∣
≤

∫

ΓεT
G

∣∣∣ε(r(uε)− r(u))φ(x,
x

ε
)
∣∣∣ dxdt+

∣∣∣∣∣∣∣

∫

ΓεT
G

εr(u)φ(x,
x

ε
)dxdt−

∫

ΩT

∫

ΓG

r(u)φ(x, y)dydxdt

∣∣∣∣∣∣∣
→ 0.

The weak two-scale convergence together with (5.1) then imply the strong two-scale conver-

gence of r(uε) to r(u). Thus, the corollary is proved.

Let us now turn our attention to the limit of the nonlinear precipitation rate wε. Observe

that the two-scale convergence of wε to w does not provide the explicit form for the function

w stated in (3.5). Identifying the form of w requires new arguments due to wε being possibly

discontinuous in vε. This is done in two steps. First, we prove the strong two-scale convergence

of vε to v. In doing so we use the unfolding operator and the monotonicity of wε. In a second

step, we use the strong two-scale convergence of vε to analyze different cases which arise when

the limit v takes the value zero or is positive.
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Theorem 5.1. The sequence vε converges to v stongly in the two-scale sense on ΓεG, or

equivalently, Dεvε converges strongly to v in L2((0, T )× Ω× ΓG).

Proof. Let us recall (2.7), and note that wε(vε) is monotonically increasing with respect to vε.

This also implies that Dεwε is monotone with respect to Dεvε. With the change in variable

x 7→ ε[xε ] + εy, y ∈ ΓG the equation (2.8)2 reads on the fixed domain (0, T )× Ω× ΓG

∂tD
εvε = Dεr(uε)−Dεwε.

We will prove below that the unfolded sequence Dεvε is a Cauchy sequence and hence will

converge strongly in L2((0, T )×Ω×ΓG). Our approach is close to that used in [26] (also see

[30] for similar results by using translation estimates). The strong convergence of Dεr(uε) to

r(u) in L2((0, T ) × Ω × ΓG) and the monotonicity of Dεwε will be used to obtain this. Let

m,n be two natural number with n > m. Now T εnvεn − T εmvεm satisfies

d

dt
‖T εnvεn − T εmvεm‖2L2(ΓG×Ω) =∫

ΓG×Ω

{T εnvεn − T εmvεm} {T εnr(uεn)− T εnwεn − T εmr(uεm) + T εmwεm} dxdy. (5.2)

Noting that (2.7) gives monotonicity of Dεwε with respect to Dεvε, we have

(T εnvεn − T εmvεm) (T εnwεn − T εmwεm) ≥ 0. (5.3)

Using (5.3) in (5.2), the right hand side is estimated as

d

dt
‖T εnvεn − T εmvεm‖2L2(ΓG×Ω)

≤
∫

ΓG×Ω

{T εnvεn − T εmvεm} {T εnr(uεn)− T εmr(uεm)} dxdy

≤ 1

2
‖T εnvεn − T εmvεm‖2L2(ΓG×Ω) +

1

2
‖T εnr(uεn)− T εmr(uεm)‖2L2(ΓG×Ω).

Now integrate in time and notice that as (n,m)→∞, due to strong convergence of Dεr(uε)

the second term goes to 0 uniformly. Using Gronwall’s lemma we conclude that

‖T εnvεn − T εmvεm‖2
L2(ΓT

G×Ωh)
→ 0 as n,m→∞

uniformly and hence establishing the strong convergence of Dεvε in L2((0, T )×Ω× ΓG).

Let us now prove that w has the structure of (3.5).
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Theorem 5.2. The limit function w from Lemma 5.2 satisfies w ∈ H(v) and we have

w =





1, v > 0,

min(r(u), 1), v = 0,

0, v < 0.

(5.4)

Proof. We first recall that

Dεr(uε)→ r(u) strongly in L2((0, T )× Ω× ΓG),

Dεvε → v strongly in L2((0, T )× Ω× ΓG),

Dεwε → w weakly in L2((0, T )× Ω× ΓG),

Dεwε ∈ H(Dεvε) and satisfies (2.7).

Since Dεvε → v strongly in L2((0, T )×Ω×ΓG) we have Dεvε → v a.e.. According to Theorem

4.1, Dεvε is non-negative and converges strongly to v implying v is also non-negative. We

have only two situations, either v(t, x, y) > 0 or v(t, x, y) = 0. In the first case and with

µ := v(t, x, y)/2 > 0, the pointwise convergence implies the existence of an εµ > 0 such that

Dεvε > µ for all ε ≤ εµ. Then for any ε ≤ εµ we have Dεwε = 1 implying w = 1.

For a.e. (t, x, y) such that v(t, x, y) = 0, we have the following situations:

(a) u(t, x) > u∗

From the convergence of Dεuε(t, x, y), there exists an ε∗ such that for ε ≤ ε∗, we have

Dεuε(t, x, y) > u∗. This gives, using monotonicity of r, r(Dεuε)(t, x, y) > 1 and recall

the definition (2.7) to obtain Dεwε(t, x, y) = 1. This implies that Dεwε(t, x, y)→ 1.

(b) u(t, x) ∈ [0, u∗)

Again the convergence of Dεuε(t, x, y) implies that for small enough ε, Dεuε(t, x, y) ∈
[0, u∗). In this case, r(Dεuε)(t, x, y) ≤ 1 leading to Dεwε = r(Dεuε) using (2.7). With

continuity of r, we get Dεwε(t, x, y) converges to r(u)(t, x).

(c) u(t, x) = u∗

Using similar arguments as above, r(u)(t, x) = 1 and r(Dεuε)(t, x, y) → 1. Hence,

Dεwε(t, x, y) = min(r(Dεuε), 1)→ 1.

In line with the micro scale model we define w = 0 for v < 0. Collecting the above cases,

Dεwε converges a.e. to w̃ where

w̃ =





1, v > 0,

min(r(u), 1), v = 0,

0, v < 0.

(5.5)

Combining this with the weak−∗ convergence of Dεwε to w, we get w = w̃. This completes

the identification of w satisfying (3.5).
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6 Derivation of the macroscopic model.

In this section, we use the convergence results derived above to pass to the limit in the

microscopic mode for ε↘ 0. The following theorem holds.

Theorem 6.1. The limit triple (u, v, w) obtained in Lemma 5.2 is the solution to the upscaled

model (3.9).

Proof. We first pass to the limit in (2.8)2. Using the convergence results 7. and 8. from

Lemma 5.2, and the Corollary 5.1, we immediately obtain (3.9)2. Since (3.9)3 is proved in

Theorem 5.2, it remains to derive the macroscopic equation (3.9)1. For this purpose, let

φ ∈ C∞0 (0, T ) and ψ ∈ H1(Ω), and consider (2.8)1 in the following equivalent form

∫ T

0
(∂t (χΩεuε) , ψ)Ωφ(t)dt+D

∫ T

0
(∇ũε, χε∇ψ)Ωφ(t)dt−

∫ T

0
(qεχεũε,∇ψ)Ωφ(t)dt

= −ε
∫ T

0
(∂tv

ε, ψ)Γε
G
φ(t)dt, (6.1)

where χε is the characteristic function for Ωε. Now, we choose as test function ψ(x) =

ψ0(x) + εψ1(x, xε ) with ψ0 ∈ C∞0 (Ω) and ψ1 ∈ C∞0 (Ω;C∞per(Z)). This gives

∫ T

0
(∂t (χΩεuε) , ψ0 + εψ1(·, ·

ε
))Ωφ(t)dt (6.2)

+D

∫ T

0
(∇ũε, χε(∇ψ0 + ε∇xψ1(·, ·

ε
) +∇yψ1(·, ·

ε
)))Ωφ(t)dt

−
∫ T

0
(qεχεũε,∇ψ0 + ε∇xψ1(·, ·

ε
) +∇yψ1(·, ·

ε
))Ωφ(t)dt

= −ε
∫ T

0
(∂tv

ε, ψ0 + εψ1(·, ·
ε

))Γε
G
φ(t)dt,

For ε↘ 0 and using Lemma 5.2 and (3.9)2, we obtain

−|Y |
T∫

0

(∂tu, ψ0)φ(t)dt+D

T∫

0

∫

Ω×Y

(∇xu(t, x) +∇yu1(t, x, y),∇xψ0(x) +∇yψ1(x, y))φ(t)dt

−|Y |
T∫

0

∫

Ω

q(x)u(t, x)∇ψ0(x)φ(t)dt+ |ΓG|
T∫

0

∫

Ω

(r(u)− w,ψ0)φ(t)dt = 0.

Note that to pass to the limit in the convective term in (6.2), we used the weak convergence

of χεqε to q (see e.g. the proof of Proposition 14 in [18]). The above equation is equivalent

to the macroscopic equation (3.9)1, where the homogenized matrix S is given by (3.6), see

e.g. [2]. This completes the proof of the theorem.
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7 Uniqueness of the macroscopic model

We conclude with a uniqueness argument.

Theorem 7.1. Problem (3.4)-(3.8) has a unique solution.

Proof. Assume that there exist two solution triples (u1, v1, w1) and (u2, v2, w2). Define:

U := u1 − u2, V := v1 − v2, W := w1 − w2.

Clearly, at t = 0, we have U(0, x) = V (0, x) = W (0, x) = 0 for all x ∈ Ω. In terms of the

differences defined above, we have the resulting equations as:

(∂tU, φ) + (DS∇U,∇φ) + (∇ · (qU), φ) = −|ΓG|
|Y |

(r(u1)− r(u2)−W,φ), (7.1)

(∂tV, θ) = (r(u1)− r(u2)−W, θ), (7.2)

for all (φ, θ) ∈ L2(0, T,H1
0 (Ω))× L2(0, T ;L2(Ω)).

The uniqueness is proved as follows: first we use (7.2) to estimate V in terms of U . This

estimate can be then used in (7.1) to show that for all t, the norm of U(t) is bounded by the

initial condition, which is zero here. This establishes the uniqueness for U and thereby for V

from the previous estimate. The uniqueness for W follows directly from (3.5).

Taking θ = χ(0,t)V in (7.2) gives

1

2
‖V (t, ·)‖2 =

∫ t

0

∫

Ω
(r(u1)− r(u2))V (s, x)dxds−

∫ t

0

∫

Ω
WV (s, x)dxds.

Since wi ∈ H(vi) and H(·) is monotone, WV is non-negative. The integral in the last term

is thus non-negative. Using the Lipschitz continuity of r, this gives

1

2
‖V (t, ·)‖2 ≤ 1

2

∫ t

0
L2
r‖U(s, ·)‖2ds+

1

2

∫ t

0
‖V (s, ·)‖2ds.

Employing Gronwall’s inequality one gets

‖V (t, ·)‖2 ≤ C exp(t)

∫ t

0
‖U(s, ·)‖2ds ≤ C(T )

∫ t

0
‖U(s, ·)‖2ds. (7.3)

The above estimate bounds V in terms of U and will be used below to estimate U in terms

of initial conditions. Letting t ∈ (0, T ] fixed arbitrary and with ψ ∈ H1
0 (Ω), taking φ = θ =

χ(0,t)ψ in (7.1) - (7.2), multiplying the second by |ΓG|
|Y | and adding it to the first, since U and

V are both 0 at t = 0 one gets

(U(t), ψ) + (DS

∫ t

0
∇U(s)ds,∇ψ) +

|ΓG|
|Y |

(V (t), ψ) = −(q

∫ t

0
∇U(s)ds, ψ).
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Here we have used the fact that q is divergence free and does not depend on time. Now we

choose ψ(x) = U(t, x) to obtain

‖U(t, ·)‖2 +D
(
S
∫ t

0 ∇U(s, ·)ds,∇U(t, ·)
)

+ |ΓG|
|Y | (V (t, ·), U(t, ·))

≤ −(S1/2
∫ t

0 ∇U(s)ds, S−1/2qU(t, x))

≤ µ
2

∥∥∥S1/2
∫ t

0 ∇U(s, ·)
∥∥∥

2
+

2M2
q

µαS
‖U(t, ·)‖2,

where µ > 0 is any positive constant. In the above, we have used that S is symmetric positive

definite, and hence, there exists αS > 0 such that (Sξ, ξ) > αS(ξ, ξ) for any ξ ∈ R3.

From (7.3) and choosing µ properly, a C > 0 exists s.t.

‖U(t, ·)‖2 + 2D
(
S
∫ t

0 ∇U(s, ·)ds,∇U(t, ·)
)
≤ C

(∫ t
0 ‖U(z, ·)‖2dz +D

∥∥∥S1/2
∫ t

0 ∇U(s, ·)
∥∥∥

2
)
.

With

E(t) :=

∫ t

0
‖U(s, ·)‖2ds+D

∥∥∥∥S1/2

∫ t

0
∇U(s, ·)ds

∥∥∥∥
2

,

the above becomes

E′(t) ≤ C E(t).

Clearly, E(0) = 0 and E(t) ≥ 0 for all t, which immediately gives E(t) = 0 for all t. This

ensures that U(t) = 0 and, by (7.3), V (t) = 0. This concludes the proof of uniqueness.

Remark 7.1. Recall that the flow problem is independent of the transport variables. The

above derivation of the limit equations and the uniqueness result provide an independent proof

for the existence and uniqueness of the upscaled model involving both flow and transport (3.1)

- (3.8).
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