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Abstract

A four-parameter extended bimodal lifetime model called the exponentiated log-sinh Cauchy

distribution is proposed. It extends the log-sinh Cauchy and folded Cauchy distributions. We

derive some of its mathematical properties including explicit expressions for the ordinary moments

and generating and quantile functions. The method of maximum likelihood is used to estimate the

model parameters. We implement the fit of the model in the GAMLSS package and provide the

codes. The flexibility of the model is illustrated by means of three real data sets.
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1 Introduction

Generalizing lifetime distributions by introducing a few extra shape parameters is an essential method

to better explore the skewness and the tails and other properties of the transformed distributions.

Following the latest trend, applied statisticians are now able to construct more generalized distribu-

tions, which provide better goodness-of-fit measures when fitted to real data rather than by using

the classical distributions. The Weibull, log-normal and log-logistic are very popular distributions for

modeling lifetime data and phenomenon with unimodal and monotone failure rates. In these cases,

they may be chosen because of their negatively and positively skewed density shapes. However, these

models do not provide reasonable parametric fits for modeling phenomenon with non-monotone fail-

ure rates such as the bathtub shaped and bimodal failure rates, which are common in reliability and

biological studies. In this paper, we study a four-parameter generalization of the exponentiated sinh
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Cauchy (ESC) distribution on the basis of the sinh Cauchy (SC) model, both proposed by Cooray

(2013), for modeling bimodal and unimodal data. The advantage of this approach for constructing

a parametric family of distributions lies in its flexibility to model both bathtub and bimodal failure

rates even though the baseline failure rate may be monotonic. The generated model is called the expo-

nentiated log-sinh Cauchy (ELSC) distribution. As we will see later, its hazard rate function (hrf) can

be constant, decreasing, increasing, upside-down bathtub (unimodal), bathtub and bimodal shaped.

Due to the great flexibility of the ELSC hrf, it thus provides a good alternative to many existing life

distributions in modeling positive real data sets.

Cooray (2013) applied the hyperbolic sine transformation to the standard Cauchy distribution by

defining the SC model, whose cumulative density function (cdf) is given by

Π(y) =
1

2
+

1

π
arctan

[
ν sinh

(
y − µ

σ

)]
, y ∈ R, (1)

where µ ∈ R and σ > 0 are the location and scale parameters, respectively, and ν > 0 is the symmetry

parameter, which characterizes the bi-modality of the distribution. The SC distribution produces both

bimodal and unimodal densities with a wide range of tail weights. It has a real support and therefore

is not appropriate for survival data. As a better alternative, we present the log-sinh Cauchy (LSC)

model.

Let Y be a random variable having cdf (1). The random variable X = eY defines the LSC

distribution, whose cdf is given by

G(x) =
1

2
+

1

π
arctan

[
ν sinh

(
log(x)− µ

σ

)]
, x > 0. (2)

The SC and LSC models are not appropriate for modeling real data, even though they have some

theoretical advantages due to their symmetric nature. To provide an asymmetry for the SC distri-

bution, Cooray (2013) proposed the ESC distribution using the exponentiated class of distributions

(Gupta and Kundu, 2001). The cdf of the exponentiated class is given by

F (x) = G(x)τ , (3)

where G(x) is the parent cdf and τ > 0 denotes an extra power shape parameter. By differentiating

(3), the probability density function (pdf) of the exponentiated class is given by

f(x) = τG(x)τ−1 g(x), (4)

where g(x) is the baseline pdf.

The paper is outlined as follows. In Section 2, we define the ELSC model by applying the expo-

nentiated generator to the LSC distribution. In Section 3, we derive a power series for the quantile

function (qf) of this distribution. In Section 4, we obtain explicit expressions for its moments. A range

of its mathematical properties is explored in Section 5 including generating function, mean deviations

and order statistics. The estimation of the model parameters by maximum likelihood is addressed in

Section 6. The performance of the maximum likelihood estimators (MLEs) is investigated through a

simulation study in Section 7. Applications to three real data sets are addressed in Section 8 to prove
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empirically the flexibility of the model. In Section 9, we provide a brief discussion of the template for

the ELSC distribution implemented in the “GAMLSS” R package (Stasinopoulos and Rigby, 2007).

We also provide the computational codes used in the applications. Finally, Section 10 ends with some

conclusions.

2 The ELSC model

We can add skewness for an extended LSC distribution by adopting the exponentiated class of distri-

butions (Gupta and Kundu, 2001) given by (3). Inserting (2) in equation (3), the ELSC cdf is given

by

F (x;µ, σ, ν, τ) =

{
1

2
+

1

π
arctan

[
ν sinh (w)

]}τ

, (5)

where w = [log(x) − µ]/σ. For τ = 1, the LSC distribution is just a special case of (5). The pdf

corresponding to (5) is given by

f(x;µ, σ, ν, τ) =
τν

x σ π

cosh (w)

[ν2 sinh2(w) + 1]

{
1

2
+

1

π
arctan

[
ν sinh(w)

]}τ−1

. (6)

Henceforth, let X ∼ELSC(µ, σ, ν, τ) be a random variable with density function (6). We can omit

sometimes the dependence on the parameters and and write simply f(x) = f(x;µ, σ, ν, τ).

The survival function and hrf ofX are given by S(x) = 1−F (x) and h(x) = f(x)/S(x), respectively.

Plots of the ELSC density, survival and hazard functions for selected parameter values are displayed

in Figures 1, 2 and 3, respectively.

In Figure 1a-b, we check the effects of the location and scale parameters µ and σ on the function

f(x). Figure 1c reveals clearly the bi-modality effect caused by the parameter ν. Further, Figure

1d reveals that the density of X is bimodal and symmetric, bimodal and right-skewed, bimodal

and left-skewed depending on the parameter τ . Figures 3a and 3b indicate that the hrf of X has

decreasing, unimodal and bimodal forms and double bathtub-shaped and unimodal and bathtub-

shaped, respectively.

We provide in Figures 4a-b a numerical investigation to identify how the parameter values change

the shapes of the hrf of X for some parameter ranges. Based on these plots, we can obtain bimodal

shapes for the hrf of X for small values of the parameters ν and τ . However, large values of these

parameters are necessary to obtain this characteristic when the parameter σ increases.

Because of the current computational facilities, several researchers construct new lifetime models to

facilitate their use in lifetime data analysis. It is a common practical technique to fit new models to real

data and develop scripts in statistical software R Team (2013). de Castro et al. (2010) implemented

some long-term survival models by taking the Weibull as the parent distribution. Rodrigues et al.

(2009) implemented the COM−Poisson cure rate model and illustrate its flexibility by means of a real

data set. Following these ideas, the ELSC model is implemented in the R software, where a short

discussion is given in Section 9.
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Figure 1: Plots of the ELSC density for fixed values of: (a) σ = 0.1, ν = 0.2 and τ = 1; (b) µ = 4,

ν = 0.3 and τ = 0.7; (c) µ = 4, σ = 0.1 and τ = 1; (d) µ = 4, σ = 0.1 and ν = 0.2.
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Figure 2: The ELSC survival function when µ = 4, σ = 0.1 and: (a) For τ = 1 and different values of

ν; (b) For ν = 0.05 and different values of τ .

3 Expansion of the quantile function

Inverting F (x) = u (for 0 < u < 1), we obtain the qf of X

x = Q(u) = exp

(
µ+ σ arcsinh

{
1

ν
tan

[
π
(
u1/τ − 0.5

)]})
. (7)
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Figure 3: The ELSC hrf: (a) For τ = 1 and different values of µ, σ and ν; (b) For µ = 4 and τ = 0.01

and different values of σ and ν.
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Figure 4: The ELSC hrf shapes as functions of ν and τ for µ = 1 and: (a) σ = 0.4; (b) σ = 0.7.

Quantiles of interest can be obtained from (7) by substituting appropriate values for u. In parti-

cular, the median of X is obtained when u = 1/2. We can also use (7) for simulating ELSC random

variables by setting u as a uniform random variable in the unit interval (0, 1). The qf of the LSC

distribution can be obtained by taking τ = 1 in equation (7).

Next, we derive an expansion for the qf of X to obtain some ELSC properties in the following

sections. Expanding (7) in power series using Mathematica, we obtain

Q(u) = eµ exp

(
∞∑

k=0

ck z
2k+1

)
,

where z = u1/τ − 0.5, ck = σ bk
(2k+1)!

(
π
ν

)2k+1
and b0 = 1, b1 = (2ν2 − 1), b2 = (16ν4 − 20ν2 + 9),

b3 = (272ν6 − 616ν4 + 630ν2 − 225), b4 = (7936ν8 − 28160ν6 + 48384ν4 − 37800ν2 + 11025), . . .

By simple transformation of quantities, we can write

Q(u) = eµ exp

(
∞∑

k=1

dk
k!

zk

)
, (8)
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where

d2j = 0 for j = 1, 2, . . . and d2j+1 = (2j + 1)! cj for j = 0, 1, 2, . . . . (9)

We can use the Bell polynomials1 to rewrite equation (8). The exponential partial Bell polynomials

in formal double series expansion are defined by Comtet (1974, p.133) as

exp

(
u
∑

m≥1

xm
tm

m!

)
=
∑

n,k≥0

Bn,k

n!
tn uk, (10)

where

Bn,k = Bn,k(x1, x2, . . . , xn−k+1) =
∑ n!

c1! c2! . . . (1!)c1(2!)c2 . . .
xc11 xc22 , . . . ,

and the summation is over all integers c1, c2, c3, . . . ≥ 0 such that c1 + 2c2 + 3c3 + · · · = n and

c1 + c2 + c3 + · · · = k. These exponential partial Bell polynomials can be evaluated in Mathematica

and Maple using BellY[n,k,{x1, . . . , xn−k+1}] and IncompleteBellB(n, k, x[1], z[2],. . . , x[n-k+1]).

Using the definition of the complete Bell polynomials and (10), equation (8) can be expressed as

Q(u) = eµ
∞∑

k=0

Bk(d1, . . . ,dk)

k!
zk,

where Bk = Bk(d1, . . . , dk) =
∑k

r=1Bk,r(d1, . . . , dk−r+1) (for k ≥ 0) is the complete Bell polynomial

of order k.

The coefficients Bk can be easily obtained using Mathematica, Maple and Sage softwares. Replacing

z in the last equation, the qf of X can be rewritten as

Q(u) = eµ
∞∑

k=0

Bk(d1, . . . ,dk)

k!
(u1/τ − 0.5)k. (11)

By expanding the binomial term, we have

Q(u) = eµ
∞∑

k=0

∞∑

j=0

(−1)k−j uj/τ

2k−j k!

(
k

j

)
Bk(d1, . . . ,dk).

Further, changing
∑∞

k=0

∑∞
j=0 by

∑∞
j=0

∑∞
k=j, we can write

Q(u) =

∞∑

j=0

pj u
j/τ , (12)

where the coefficients

pj = eµ
∞∑

k=j

(−1)k−j

2k−j k!

(
k

j

)
Bk(d1, . . . ,dk) (13)

can be evaluated using the analytical softwares cited before.

1http://en.wikipedia.org/wiki/Bell_polynomials
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Let W (·) be any integrable function in the positive real line. We can write from (6) and (12)

∫ ∞

0
W (x) f(x;µ, σ, ν, τ)dx =

∫ 1

0
W




∞∑

j=0

pj u
j/τ


 du. (14)

Equation (14) is an important result since it allows to obtain various mathematical properties for

the ELSC distribution using integrals over (0, 1). For the great majority of the applications of (14), we

can adopt ten terms in the power series. Equations (12) and (14) are the main results of this section.

The formulae derived throughout the paper can be easily handled in most symbolic computation

software platforms such as those cited before. They have currently the ability to deal with analytic

expressions of formidable size and complexity. Established explicit expressions to evaluate statistical

measures can be more efficient than computing them directly by numerical integration.

4 Moments

Some of the most important features and characteristics of a distribution can be studied through

moments (e.g., tendency, dispersion, skewness and kurtosis). Using (4), the nth moment of X can be

expressed as

µ′
n = E(Xn) = τ

∫ ∞

0
xnG(x)τ−1 g(x)dx = τ

∫ 1

0
QLSC(u)

n uτ−1du, (15)

where QLSC(u) denotes the qf of the LSC distribution.

Here, we give two explicit expressions for µ′
n. For the first one, we use the power series forQLSC(u)

n,

which follows by changing µ by nµ, σ by nσ and taking τ = 1 in (11). We have

QLSC(u)
n = enµ

∞∑

k=0

Bk(d
∗
1, . . . ,d

∗
k)

k!
(u− 0.5)k, (16)

where

d∗2j = 0 for j = 1, 2, . . . , d∗2j+1 = (2j + 1)! c∗j for j = 0, 1, 2, . . . (17)

and c∗k = k σ bk π
2k+1/(2k + 1)!.

Replacing (16) in equation (15), we have

µ′
n = τ enµ

∞∑

k=0

Bk(d
∗
1, . . . ,d

∗
k)

k!

∫ 1

0
(u− 0.5)k uτ−1du.

Let 2F1(p, q; r; y) =
∑∞

j=0(p)j (q)j y
j/[(r)j j!] be the hypergeometric function, (p)j the Pochham-

mer symbol defined by (p)j = p(p + 1) · · · (p + j − 1) = Γ(p + j)/Γ(p) = (−1)jΓ(1 − p)/Γ(1 − p − j),

and Γ(·) the gamma function.

The last equation can be expressed in terms of the hypergeometric function2 as

µ′
n = enµ

∞∑

k=0

(−1)k

2k k!
2F1(−k, τ ; τ + 1; 2)Bk(d

∗
1, . . . ,d

∗
k). (18)

2http://mathworld.wolfram.com/HypergeometricFunction.html
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The hypergeometric function 2F1(p, q; r; y) can be evaluated from Mathematica and Maple as

HypergeometricPFQ[{p,q},{r},y] and Hypergeometric([p,q],[r],y), respectively.

The second expression for µ′
n can be determined using (7) and (12) in equation (15) and changing

µ by nµ, σ by nσ and setting τ = 1. We obtain

µ′
n = τ

∞∑

j=0

p∗j
j + τ

, (19)

where p∗j = enµ
∞∑

k=j

(−1)k−j

2k−j k!

(
k

j

)
Bk(d

∗
1, . . . ,d

∗
k) and d∗k is defined by (17).

Equations (18) and (19) are the main results of this section. The central moments (µs) and

cumulants (κs) ofX are determined as µs =
∑p

k=0(−1)k
(s
k

)
µ′s
1 µ′

s−k and κs = µ′
s−
∑s−1

k=1

(s−1
k−1

)
κk µ

′
s−k,

respectively, where κ1 = µ′
1. The skewness γ1 = κ3/κ

3/2
2 and kurtosis γ2 = κ4/κ

2
2 follow from the

third and fourth standardized cumulants, respectively.

When these moments do not exist, for example, for the Cauchy, Lévy and Pareto distributions,

alternative measures for the skewness and kurtosis, based on qfs, are sometimes more appropriate for

these distributions. The measures of skewness B (Galton, 1883) and kurtosis M (Moors, 1988) are

given by

B =
Q(6/8) +Q(2/8) − 2Q(4/8)

Q(6/8) −Q(2/8)
and M =

Q(7/8) −Q(5/8) +Q(3/8) −Q(1/8)

Q(6/8) −Q(2/8)
,

respectively.

For the ELSC and LSC distributions, Galton’s skewness and Moors’ kurtosis can be computed

using the qf (7). Figure 5 displays some plots of the measures B and M as functions of the shape and

bi-modality parameters. The additional shape parameter τ has substantial effect on the skewness and

kurtosis of X.

(a) (b)

τ
ν

B

τ
ν

M

Figure 5: Plots of the measures (a) B and (b) M as functions of τ and ν for µ = 3 and σ = 0.2.

5 Other measures

In this section, we derive the generating function, mean deviations and order statistics of X.
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5.1 Generating function

The moment generating function (mgf) M(t) = E(etX) of X can be determined from equation (4) in

terms of its qf. We have

M(t) = τ

∫ ∞

0
etx G(x)τ−1 g(x)dx = τ

∫ 1

0
uτ−1 exp [tQLSC(u)] du.

Combining equations (8) and (12) when τ = 1, the mgf of X can be written as

M(t) = τ et p0
∫ 1

0
uτ−1 exp




∞∑

j=1

p∗∗j uj

j!


 du,

where p∗∗j = t pj j! and pj is given by (13). Using again the complete Bell polynomials, we have

exp




∞∑

j=1

p∗∗j uj

j!


 =

∞∑

j=0

Bj(p
∗∗
1 , . . . , p∗∗j )

j!
uj,

and then, the mgf of X follows as

M(t) = τ et p0
∞∑

j=0

Bj(p
∗∗
1 , . . . , p∗∗j )

(τ + j) j!
.

5.2 Mean deviations

For empirical purposes, the first incomplete moment m1(s) =
∫ s
−∞

x f(x) dx plays an important role

for measuring inequality, for example, mean deviations and Lorenz and Bonferroni curves. A formula

for m1(s) follows by setting u = G(x) in (4) as

m1(s) = τ

∫ s

0
QLSC(u)u

τ−1du. (20)

Here, we provide two alternatives to compute the first incomplete moment of X. First, m1(s) can

be derived from (18) by taking n = 1 as

m1(s) = τ eµ
∞∑

k=0

(1− 2s)−k (s− 0.5)k sτ

τ k!
2F1(−k, τ ; τ + 1; 2s)Bk(d1, . . . ,dk), (21)

where dk is given by (9). A second formula for m1(s) can be derived by inserting (12) in equation (20)

and setting τ = 1 as

m1(s) = τ

∞∑

j=0

pj
sτ+j

τ + j
. (22)

The main applications of equations (21) or (22) are related to the Bonferroni and Lorenz curves

defined (for a given probability π) by B(π) = m1(q)/(πµ
′
1) and L(π) = m1(q)/µ

′
1, respectively, where

µ′
1 = E(X) and q = Q(π) is the qf of X at π obtained from (7).

The mean deviations about the mean (δ1 = E(|X − µ′
1|)) and the median (δ2 = E(|X −M |)) of

X are given by

δ1(X) = 2µ′
1 F (µ′

1)− 2m1(µ
′
1) and δ2(X) = µ′

1 − 2m1(M), (23)

respectively, where M = Median(X) = Q(0.5) is the median, F (µ′
1) is easily evaluated from the cdf

(5) and m1(z) is given by (21) or (22).
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5.3 Order statistics

Order statistics make their appearance in many areas of statistical theory and practice. Suppose

X1, . . . ,Xn is a random sample from the ELSC distribution. Let Xi:n denote the ith order statistic.

Using (5) and (6), the pdf of Xi:n can be expressed as

fi:n(x) = K f(x)F (x)i−1 {1− F (x)}n−i = K

n−i∑

j=0

(−1)j
(
n− i

j

)
f(x)F (x)j+i−1

= K

n−i∑

j=0

(−1)j
(
n− i

j

)
τν

x σ π

cosh (w)

[ν2 sinh2(w) + 1]

{
1

2
+

1

π
arctan

[
ν sinh(w)

]}(j+i)τ−1

,

where w = [log(x)− µ]/σ and K = n!/[(i− 1)!(n − i)!].

6 Inference

We consider the situation when the time-to-event is not completely observed and is subject to right

censoring. Let Ci denote the censoring time. We observe xi = min{Xi, Ci} and δi = I(Xi ≤ Ci),

where δi = 1 if Xi is a time-to-event and δi = 0 if it is right censored (for i = 1, . . . , n). Let c denote

the parameter vector of the distribution of the time-to-event. Let Xi be a random variable following

(6) with the vector of parameters γ = (µ, σ, ν, τ)T . From n pairs of times and censoring indicators

(x1, δ1), . . . , (xn, δn), the log-likelihood function under non-informative censoring is given by

l(γ) = r[log(τν)− log(σπ)]−
∑

i∈F

log(xi) +
∑

i∈F

log cosh(wi)−
∑

i∈F

log
[
1 + ν2 sinh2(wi)

]

+(τ − 1)
∑

i∈F

log

{
1

2
+

1

π
arctan[ν sinh(wi)]

}
+
∑

i∈C

log

(
1−

{
1

2
+

1

π
arctan

[
ν sinh (wi)

]}τ)
, (24)

where r is the number of failures (uncensored observations).

We can obtain the MLE γ̂ of γ by maximizing the log-likelihood (24) either directly in R using the

optim function, in SAS using the NLMixed procedure and in other statistical software or by solving the

nonlinear likelihood equations obtained by differentiating (24). The score functions for the parameters

in γ are given by

Uµ(γ) = −
∑

i∈F

tanh(wi)

σ
+
∑

i∈F

ν2 sinh(2wi)

σKi
+ (τ − 1)

∑

i∈F

ν cosh(wi)

πσ Ji Ki
+
∑

i∈C

τν cosh(wi)J
τ−1
i

πσKi(Jτ
i − 1)

,

Uσ(γ) = −
r

σ
−
∑

i∈F

wi

σ
tanh(wi) +

∑

i∈F

2ν2 wi

σKi
sinh(wi) cosh(wi) + (τ − 1)

∑

i∈F

ν wi

π σ JiKi
cosh(wi)

+
∑

i∈C

τ ν wi J
τ−1

π σKi (1− Jτ
i )

cosh(wi),

Uν(γ) =
r

ν
−
∑

i∈F

2ν sinh2(wi)

Ki
+ (τ − 1)

∑

i∈F

sinh(wi)

π Ji Ki
+
∑

i∈C

τ Jτ−1
i sinh(wi)

πKi(J
τ
i − 1)
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and

Uτ (γ) =
r

τ
+
∑

i∈F

log(Ji) +
∑

i∈C

Jτ
i

Jτ
i − 1

log(Ji),

where Ji =
1
2 +

1
π arctan[ν sinh(wi)] and Ki = ν2 sinh2(wi) + 1.

The numerical maximization of the log-likelihood function (24) can also be performed in the

GAMLSS package in R. The advantage of this package is that we can use many maximization meth-

ods, which will depend only on the current fitted model. When there are no explanatory variables

or censored observations, we can use the gamlssML function for fitting (24) using a non-linear max-

imization algorithm. When we have censored observations, the additional package gamlss.cens is

required to determine numerically the observed information of the likelihood function referring to the

censored observations. The maximization algorithms adopted in the presence of censored data are the

RS and CG procedures. All methods and algorithms are described by Rigby and Stasinopoulos (2005)

and Stasinopoulos and Rigby (2007) and they are available in the documentation of the GAMLSS

package. The RS algorithm requires the first order derivatives of the logarithm of the density function

(6) given in the above equations, and the second order derivatives. The RS method, different from

the CG algorithm, does not use the cross derivatives, and thus it is faster for larger data sets. The

second order derivatives can be determined numerically in the script discussed in Section 8.

Under standard regularity conditions, the asymptotic distribution of (γ̂ − γ) is N4(0, I(γ)
−1),

where I(γ) is the expected information matrix. This asymptotic behavior holds if I(γ) is replaced by

J(γ̂), i.e., the observed information matrix evaluated at the MLE γ̂. Thus, the multivariate normal

N4(0, J(γ̂)
−1) distribution can be used to construct approximate confidence intervals for the individual

parameters.

Further, we can compute the maximum values of the log-likelihoods to obtain the likelihood ratio

(LR) statistics for testing some sub-models of the ELSC distribution. For example, the test of H0 :

τ = 1 versus H : τ 6= 1 is equivalent to compare the LSC and ELSC distributions. In this case, the

LR statistic is given by

w = 2{l(µ̂, σ̂, ν̂, τ̂ )− l(µ̃, σ̃, ν̃, 0)},

where µ̂, σ̂, ν̂ and τ̂ are the MLEs under H and µ̃, σ̃ and ν̃ are the estimates under H0.

7 Simulation

We simulate the ELSC distribution (for µ = 4, σ = 0.1, ν = 0.05, 0.6, 1.2 and τ = 0.5, 1.5, 2), con-

sidering bi-modality and unimodal forms, from equation (7) by using a random variable U having a

uniform distribution in (0, 1). We take n=50, 150 and 300 and, for each replication, we calculate the

MLEs µ̂, σ̂, ν̂ and τ̂ . We repeat this process 1, 000 times and determine the average estimates (AEs),

biases and means squared errors (MSEs). The results of the Monte Carlo study are given in Table

1. They indicate that the MSEs of the MLEs of µ, σ, ν and τ decay toward zero as the sample size

increases, as expected under standard asymptotic theory.

We conclude from the figures in Table 1 that the AEs of the parameters tend to be closer to the true

parameters when n increases. This fact supports that the asymptotic normal distribution provides an
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Table 1: The AEs, biases and MSEs based on 1,000 simulations of the ELSC distribution for µ=4 and

σ=0.1, ν = 0.05, 0.6, 1.2 and τ = 0.5, 1.5, 2, and n=50, 150 and 300.

ν = 0.05 and τ = 2 ν = 0.6 and τ = 2 ν = 1.2 and τ = 2

n Parameter AE Bias MSE AE Bias MSE AE Bias MSE

50 µ 4.001 0.001 0.001 2.913 -0.014 0.007 3.987 -0.013 0.003

σ 0.097 -0.003 0.000 0.095 -0.005 0.001 0.099 -0.001 0.001

ν 0.048 -0.002 0.001 0.635 0.035 1.371 1.321 0.121 0.433

τ 2.050 0.050 0.143 2.913 0.913 42.345 2.884 0.884 7.379

150 µ 4.000 0.000 0.000 3.996 -0.004 0.003 3.989 -0.011 0.001

σ 0.099 -0.001 0.000 0.098 -0.022 0.000 0.100 0.001 0.001

ν 0.050 0.000 0.000 0.578 -0.022 0.026 1.209 0.009 0.093

τ 2.014 0.014 0.045 2.181 0.181 1.051 2.368 0.368 1.044

300 µ 4.000 0.000 0.000 3.999 -0.001 0.002 3.996 -0.004 0.001

σ 0.100 0.000 0.000 0.098 -0.002 0.000 0.100 0.001 0.001

ν 0.050 0.000 0.000 0.580 -0.020 0.011 1.203 0.003 0.040

τ 2.008 0.008 0.023 2.062 0.062 0.293 2.145 0.145 0.321

ν = 0.05 and τ = 1.5 ν = 0.6 and τ = 1.5 ν = 1.2 and τ = 1.5

n Parameter AE Bias MSE AE Bias MSE AE Bias MSE

50 µ 4.001 0.001 0.001 3.989 -0.011 0.006 3.990 -0.010 0.003

σ 0.098 -0.002 0.001 0.097 -0.003 0.001 0.097 -0.003 0.001

ν 0.050 0.001 0.001 0.581 -0.019 0.089 1.224 0.024 0.351

τ 1.537 0.037 0.083 1.769 0.269 1.004 1.921 0.421 2.007

150 µ 4.001 0.001 0.001 3.995 -0.005 0.003 3.996 -0.004 0.001

σ 0.099 -0.001 0.001 0.097 -0.003 0.001 0.101 0.001 0.001

ν 0.050 0.001 0.001 0.578 -0.022 0.024 1.228 0.028 0.094

τ 1.508 0.008 0.026 1.610 0.110 0.297 1.631 0.131 0.319

300 µ 4.000 0.001 0.001 3.998 -0.002 0.001 3.998 -0.002 0.001

σ 0.100 0.001 0.001 0.099 -0.001 0.001 0.099 -0.001 0.001

ν 0.050 0.001 0.001 0.583 -0.017 0.011 1.197 -0.003 0.040

τ 1.508 0.008 0.013 1.550 0.050 0.129 1.562 0.062 0.107

ν = 0.05 and τ = 0.5 ν = 0.6 and τ = 0.5 ν = 1.2 and τ = 0.5

n Parameter AE Bias MSE AE Bias MSE AE Bias MSE

50 µ 3.998 -0.002 0.001 3.982 -0.018 0.008 4.003 0.003 0.003

σ 0.097 -0.003 0.001 0.100 0.000 0.002 0.094 -0.006 0.002

ν 0.049 -0.001 0.001 0.611 0.011 0.143 1.226 0.026 0.419

τ 0.503 0.003 0.012 0.578 0.078 0.127 0.498 -0.002 0.075

150 µ 4.000 0.001 0.001 3.990 -0.010 0.003 4.006 0.006 0.001

σ 0.099 -0.001 0.001 0.101 0.001 0.001 0.097 -0.003 0.001

ν 0.049 -0.001 0.001 0.600 0.000 0.038 1.200 0.000 0.122

τ 0.498 -0.002 0.004 0.538 0.038 0.040 0.485 -0.015 0.015

300 µ 4.000 0.001 0.001 3.996 -0.004 0.001 4.002 0.002 0.001

σ 0.100 0.001 0.001 0.101 0.001 0.001 0.099 -0.001 0.001

ν 0.050 0.001 0.001 0.602 0.002 0.018 1.205 0.005 0.054

τ 0.500 0.001 0.002 0.516 0.016 0.015 0.493 -0.007 0.007

adequate approximation to the finite sample distribution of the MLEs. The normal approximation can

be oftentimes improved by using bias adjustments to these estimators. Approximations to the their

biases in simple models may be determined analytically. Bias correction typically does a very good job

for correcting the MLEs. However, it may also increase the MSEs. Whether bias correction is useful

in practice depends basically on the shape of the bias function and on the variance of the MLE. In

order to improve the accuracy of these estimators using analytical bias reduction one needs to obtain

several cumulants of log-likelihood derivatives, which are notoriously cumbersome for the proposed
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model. We illustrate the convergence in Figures 6 and 7, where the true densities are given at selected

parameter values and the density functions are computed at the AEs given in Table 1 for some sample

sizes and ν = 0.05 and ν = 0.6, respectively. In Figures 8 and 9, we present the estimated densities

based on 1, 000 samples of the AEs of the parameters µ, σ, τ for ν = 0.05 and ν = 0.6, respectively,

and n = 50, 150 and 300. These plots are in agreement with the standard asymptotic theory for the

MLEs.
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Figure 6: Some ELSC density functions at the true parameter values and at the AEs for µ=4, σ=0.1,

ν=0.05 and τ=2 when: (a) n=50; (b) n=150; (c) n=300.
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Figure 7: Some ELSC density functions at the true parameter values and at the AEs for µ=4, σ=0.1,

ν=0.6 and τ=2 when: (a) n=50; (b) n=150; (c) n=300.
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Figure 8: Estimated densities from 1,000 samples for n = 50, 150, 300 of the parameters: (a) µ = 4;

(b) σ = 0.1; (c) ν = 0.05; (d) τ = 2 (based on selected parameter values in Table 1 for ν = 0.05)
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Figure 9: Estimated densities from 1,000 samples for n = 50, 150, 300 of the parameters: (a) µ = 4;

(b) σ = 0.1; (c) ν = 0.6; (d) τ = 2 (based on selected parameter values in Table 1 for ν = 0.6)

8 Applications

In this section, we provide three applications to real data to prove empirically the flexibility of the

ELSC and LSC models. The computations are performed using the gamlss subroutine in the R

software. In the first application, we give an application for bimodal data comparing the ELSC

and LSC models with other models implemented in gamlss. In the second application, we show the

flexibility of the distribution for censored data and, in the third application, we study the adequacy

of the LSC model.

Recently, Cordeiro et al. (2014) proposed the McDonald-Weibull (McW) model with scale parame-

ter λ > 0, shape parameter γ > 0 and three extra shape parameters a > 0, b > 0 and c > 0. We focus

on this model since it extends various distributions previously discussed in the lifetime literature, such

as the beta Weibull (BW) (Lee et al., 2007) (for c = 1), Kumaraswamy Weibull (KwW) (Cordeiro et

al., 2010) (for a = c), exponentiated Weibull (EW) (Mudholkar et al., 1995) (for b = c = 1), Weibull

(for a = b = c = 1) and other distributions. Besides of its flexibility, the McW model can take bimodal

forms and thus is a competitive model for the ELSC distribution.

All computations in this section are performed using the gamlss subroutine in R and the scripts

are described in Section 9.

8.1 Eruption data

First, we provide an analysis of some data on the Old Faithful Geyser in Yellowstone National Park,

Wyoming, USA. The data consist of n = 299 pairs of measurements referring to the times between the

starts of successive eruptions. These data were collected continuously from August 1st until August

15th, 1985; see Azzalini and Bowman (1990) for more details.

We compute the Hartigans’ Dip statistic D and its p-value for the test for unimodality. For i.i.d.

random variables, the null hypothesis is that Xi has a unimodal distribution. Consequently, the

alternative hypothesis is non-unimodal, i.e., at least bimodal. The Dip test can be obtained using a

function dip.test available in “diptest” R package. More details about the dip test can be obtained

in Hartigan and Hartigan (1985). Applying the Dip test to verify that a unimodal distribution would

be appropriate to fit the eruption data gives D = 0.039 with the p-value 0.002. So, we reject the null

hypothesis in favor of a bimodal distribution.
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Further, we compare the fits of the ELSC and LSC models with the models available in the

gamlss.family package. The fitDist(..., type=c(‘‘realplus’’)) function is used to fit all relevant

parametric distributions. The Box-Cox power exponential (BCPEo) distribution is selected as the best

model. For details on the distributions available in the package, see Stasinopoulos et al. (2014). Table

2 lists the MLEs (and the corresponding standard errors in parentheses) of the model parameters

and the values of the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC)

statistics for the fitted models.

We also evaluate the Cramér-von Mises (W ∗) and Anderson-Darling (A∗) statistics described by

Chen and Balakrishnan (1995). From a random sample x1, . . . , xn with empirical distribution function

Fn(x), the main objective is to test if the sample comes from a specific distribution. The W ∗ and A∗

statistics are given by

W ∗ =

(
n

∫ +∞

−∞

{Fn(x)− F (x; γ̂n)}
2dF (x; γ̂n)

) (
1 +

0.5

n

)
= W 2

(
1 +

0.5

n

)
,

A∗ =

(
n

∫ +∞

−∞

{Fn(x)− F (x; γ̂n)}
2

{F (x; γ̂)(1 − F (x; γ̂n))}
dF (x; γ̂n)

) (
1 +

0.75

n
+

2.25

n2

)
,

= A2

(
1 +

0.75

n
+

2.25

n2

)
,

respectively, where Fn(x) is the empirical distribution function and F (x; γ̂n) is the postulated distri-

bution function evaluated at the MLE γ̂n of γ. The W ∗ and A∗ statistics measure the differences

of Fn(x) and F (x; γ̂n). Thus, the lower their values, the more evidence that F (x; γ̂n) generates the

sample.

The figures in Table 2 indicate that the ELSC model has the lowest AIC and BIC values among

those values of the fitted models, and therefore it could be chosen as the best model. Further, the SEs

of the estimates for all fitted models are quite small.

Table 2: MLEs of the model parameters for the eruption data, the corresponding SEs and the AIC

and BIC statistics.

Model µ σ ν τ AIC BIC W ∗ A∗

ELSC
4.153 0.069 0.089 1.728 2328.23 2343.03 0.08 0.70

(0.008) (0.056) (0.193) (0.078)

LSC
4.193 0.065 0.101 - 2368.26 2379.36 0.32 2.18

(0.007) (0.057) (0.201) -

BCPEo
70.675 0.191 0.966 4.973 2387.22 2402.02 0.82 4.36

(0.014) (0.032) (0.271) (0.143)

Formal tests for the extra skewness parameters in the ELSC model can be based on the LR statistic

described in Section 6. Applying the LR statistic to the eruption data, we reject the null hypothesis

H0 : τ = 1 in favor of the ELSC distribution. The value of the LR statistic is w = 42.032 with the

p-value < 0.001.

More information is provided by a visual comparison of the histogram of the data with the fitted

density functions. The plots of the fitted ELSC, LSC and BCPEo densities and their cdfs are displayed
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in Figure 10. The plot of the ELSC hazard rate in Figure 11 reveals that this function has a bimodal

shape, small at the first mode and large at the second mode.
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Figure 10: Estimated (a) densities and (b) cdfs for the ELSC, LSC and BCPEo models fitted to the

eruption data.
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Figure 11: Estimated hrf for the ELSC distribution for eruption data.

8.2 Efron data

Second, we consider the data from a two-arm clinical trial discussed earlier by Efron (1988). Efron

noted that the empirical hazard functions for both samples start near zero, suggesting an initial high-

risk period at the beginning, a decline for a while, and then stabilization after about one year. He

developed and illustrated a methodology for analyzing the data using a combination of techniques of

quantal response analysis and the spline regression methods. Specifically, Efron’s data from a head

and neck cancer clinical trial consist of survival times of 51 patients in arm A who were given radiation

therapy and 45 patients in arm B who were given radiation plus chemotherapy. Nine patients in arm

A and 14 patients in arm B were lost to follow-up and were regarded as censored.
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Cordeiro et al. (2014) fitted the McW regression model to these data and noted that it provides a

good fit. Here, we consider only the survival times in days xi and compare the results of the fits of

the McW, ELSC and LSC models. Table 3 gives the MLEs (and the corresponding standard errors in

parentheses) of the parameters and the values of the AIC and BIC statistics. They indicate that the

ELSC model has the lowest values of these statistics among the values of the other fitted models, and

therefore it could be chosen as the best model.

Table 3: MLEs of the model parameters for Efron data, the corresponding SEs (given in parentheses)

and the AIC and BIC statistics.

Model µ σ ν τ AIC BIC

ELSC 4.788 2.080 2.794 2.308 1063.9 1074.1

(0.083) (0.135) (0.129) (0.097)

LSC 6.141 0.494 0.215 1 1074.4 1082.1

(0.102) (0.061) (0.151) -

λ γ a b c AIC BIC

McW 0.092 0.101 74.352 21.126 0.067 1088.5 1101.3

(0.028) (0.008) (0.655) (0.192) (0.001)

BW 0.281 0.062 167.450 60.159 1 1086.1 1096.3

(0.106) (0.005) (0.406) (0.177) -

By comparing the fits of the ELSC and LSC models using the LR statistic, we reject the null

hypothesis H0 : τ = 1 in favor of the ELSC distribution. The LR statistic is w = 12.552 with the

p-value < 0.001. Next, we compare the fits of the McW and BW models using the LR statistic.

Applying the LR statistic for testing the null hypothesis H0 : c = 1, we obtain w = 0.00039 with the

p-value almost one. So, we could not reject the BW distribution to fit these data.

The plots of the fitted ELSC, LSC and BW densities and their estimated survival functions are

displayed in Figure 12 for the current data ignoring censored observations. Clearly, the ELSC density

provides a closer fit to the histogram of the data and the corresponding estimated survival function to

the empirical survival function than the other models. The plot of the ELSC hrf in Figure 13 reveals

that it has a modal shape.

8.3 Entomology data

Third, we consider the data from a study carried out at the Department of Entomology of the Luiz

de Queiroz School of Agriculture, University of São Paulo, which aim to assess the longevity of the

mediterranean fruit fly (ceratitis capitata). The need for this fly to seek food just after emerging from

the larval stage has permitted the use of toxic baits for its management in Brazilian orchards for at

least fifty years. This pest control technique consists of using small portions of food laced with an

insecticide, generally an organophosphate, that quickly kills the flies, instead of using an insecticide

alone. Recently, there have been reports of the insecticidal effect of extracts of the neem tree leading

to proposals to adopt various extracts (aqueous extract of the seeds, methanol extract of the leaves

and dichloromethane extract of the branches) to control pests such as the mediterranean fruit fly. For
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Figure 12: (a) Estimated ELSC, LSC and BW densities for Efron data. (b) Estimated ELSC and

LSC survival functions and the empirical survival for Efron data.
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Figure 13: Estimated ELSC hazard function for Efron data.

more details, see Silva et al. (2013).

The response variable in the experiment is the lifetime of the adult flies in days after exposure

to the treatments. The experimental period was set at 51 days, so that the numbers of larvae that

survived beyond this period are considered as censored observations. The total sample size is n = 72

because four cases are lost. Therefore, the variables used in this study are: xi-lifetime of ceratitis

capitata adults in days and δi-censoring indicator.

Recently, Lanjoni (2013) fitted the Burr XII geometric type II (BXIIGII) distribution to these

data and noted that it gives a better fit than the special Burr XII model. Now, we compare the McW

and BXIIGII distributions and some of their sub-models with the ELSC and LSC models. For some

fitted models, Table 4 provides the MLEs (and the corresponding standard errors in parentheses) of

the parameters and the values of the AIC and BIC statistics. The computations are performed using

the gamlss subroutine in R. They indicate that the LSC model has the lowest AIC and BIC values
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among those values of the fitted models, and therefore it could be chosen as the best model. The LSC

model is not able to capture asymmetry but it has the bi-modality characteristic.

Table 4: MLEs of the model parameters for the entomology data, the corresponding SEs (given in

parentheses) and the AIC and BIC statistics.

Model µ σ ν τ AIC BIC

ELSC 3.018 0.852 3.367 0.907 1249.0 1261.5

(0.027) (0.091) (0.107) (0.075)

LSC 2.998 0.946 3.592 1 1247.7 1257.1

(0.029) (0.101) (0.106) -

s c k p AIC BIC

BXIIGII 14.353 1.164 4.414 0.981 1270.1 1282.7

(8.175) (0.389) (2.532) (0.0211)

BXII 34.423 2.214 2.676 1 1282.7 1292.1

(10.386) (0.232) (1.284) -

λ γ a b c AIC BIC

McW 0.079 1.718 0.883 0.329 0.049 1290.0 1305.8

(0.007) (0.223) (0.313) (0.114) (0.013)

BW 0.055 1.608 1.240 0.688 1 1289.7 1302.3

(0.017) (0.226) (0.314) (0.313) -

KwW 0.015 1.133 1 8.787 1.776 1288.9 1301.5

(0.004) (0.447) - (0.299) (0.920) -

EW 0.044 1.587 1.254 1 1 1287.5 1296.9

(0.007) (0.275) (0.368) - -

Weibull 0.0400 1.797 1 1 1 1286.1 1292.4

(0.002) (0.111) - - -

In order to assess if the model is appropriate, Figure 14a displays the empirical and estimated

cumulative distributions for the fitted ELSC and LSC models to the current data. Further, Figure

14b gives the plots of the empirical survival function and the estimated ELSC and LSC survival

functions. They indicate the LSC model provides a good fit to these data. Further, using the LR

statistic to compare the fits of these models, i.e. for testing the null hypothesis H0 : τ = 1, we obtain

w = 0.748 with the p-value= 0.387 and then we could accept the LSC distribution. The plot of its hrf

in Figure 15 reveals a modal shape.

9 Program description

The ELSC model is implemented in the gamlss function, which is fully documented in the gamlss

package (Stasinopoulos and Rigby, 2007). Here, we will omit several functions for the gamlss package

and present only the functions related to the ELSC distribution and its fit to a data set. The compu-

tational codes for the ELSC model can be downloaded from http://goo.gl/yzvoIZ. The cdf (5) and

pdf (6) can be obtained using dELSC and pELSC functions, respectively. The qf given by (7) can be
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Figure 14: (a) Estimated ELSC and LSC cdfs for entomology data. (b) Estimated ELSC and LSC

survival functions and the empirical survival for the entomology data.
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Figure 15: Estimated LSC hazard function for entomology data.

obtained using the qELSC function and samples of the ELSC model can be generated using the rELSC

function. We can use the functions listed above for the LSC sub-model by setting τ = 1 with the

tau.fix=TRUE function. To optimize the computational time, we can change the initial values of the

parameters using the parameter.fix function. Otherwise, we can increase the number of interactions

using the n.cyc function. The fit of the ELSC model to censored data can be performed using the

additional package gamlss.cens. The structure of the gamlss function is familiar to users of the R

syntax (the glm function, in particular).

10 Conclusions

The paper proposes the exponentiated log-sinh Cauchy (ELSC) distribution that can be used as an

alternative to mixture distributions in modeling bimodal data. Various mathematical properties of
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the ELSC distribution are investigated. We show that it can accommodate various shapes of the

skewness, kurtosis and bi-modality. Its model parameters are estimated by maximum likelihood.

Some numerical experiments reveal that the maximum likelihood estimation procedure performs well.

Three real data examples prove empirically that the ELSC distribution is very flexible, parsimonious,

and a competitive model that deserves to be added to existing distributions in modeling bimodal data.

The ELSC model can be fitted using the gamlss package described to facilitate its practical use by

researchers from other areas.
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