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Phytoremediation is a promising technology to clean-up contaminated soils based
on the synergistic actions of plants and microorganisms. However, to become a
widely accepted, and predictable remediation alternative, a deeper understanding of
the plant–microbe interactions is needed. A number of studies link the success of
phytoremediation to the plant-associated microbiome functioning, though whether the
microbiome can exist in alternative, functional states for soil remediation, is incompletely
understood. Moreover, current approaches that target the plant host, and environment
separately to improve phytoremediation, potentially overlook microbial functions and
properties that are part of the multiscale complexity of the plant-environment wherein
biodegradation takes place. In contrast, in situ studies of phytoremediation research at
the metaorganism level (host and microbiome together) are lacking. Here, we discuss a
competition-driven model, based on recent evidence from the metagenomics level, and
hypotheses generated by microbial community ecology, to explain the establishment of
a catabolic rhizosphere microbiome in a contaminated soil. There is evidence to ground
that if the host provides the right level and mix of resources (exudates) over which
the microbes can compete, then a competitive catabolic and plant-growth promoting
(PGP) microbiome can be selected for as long as it provides a competitive superiority
in the niche. The competition-driven model indicates four strategies to interfere with
the microbiome. Specifically, the rhizosphere microbiome community can be shifted
using treatments that alter the host, resources, environment, and that take advantage of
prioritization in inoculation. Our model and suggestions, considering the metaorganism
in its natural context, would allow to gain further knowledge on the plant–microbial
functions, and facilitate translation to more effective, and predictable phytotechnologies.

Keywords: phytoremediation, metaorganism, contaminant biodegradation, plant growth promotion

CURRENT CHALLENGES IN EXPLOITING PLANTS AND
MICROORGANISMS FOR PHYTOREMEDIATION

Phytoremediation is an environmentally sustainable, solar-powered, and cost-effective soil
remediation technology which relies on the ability of plants to intercept, take-up, accumulate,
sequestrate, stabilize or translocate contaminants (Pilon-Smits, 2005). Additional benefits of
phytoremediation include the conversion of biomass for bioenergy, sustaining of biological
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biodiversity, soil stabilization, and numerous other ecosystem
services. Contaminants that are taken-up by the plant, can be
detoxified by plant secondary metabolism or via stimulation
of plant-associated microorganisms (Pilon-Smits, 2005; Weyens
et al., 2009b). The efficiency of phytoremediation is strongly
dependent on the selection of the plant species (Vangronsveld
et al., 2009), but also on environmental factors like contaminant
concentration, soil pH, nutrient status, oxidoreduction potential
(Sessitsch et al., 2013), and in particular the soil-and plant-
associated microorganisms.

Currently, phytoremediation does not reach the level of a
highly efficient, predictable and fast clean-up technology. This
is shown by often variable outcomes at the field scale, slow and
incomplete degradation, and long clean-up time (Vangronsveld
et al., 2009; Mench et al., 2010; Gomes, 2012; Stephenson
and Black, 2014). Many studies have focused on improving
soil conditions, contaminant bio-availability and accessibility
(Robertson and Jjemba, 2005; Makris et al., 2010; De La Torre-
Roche et al., 2012), plant growth conditions (Canellas and
Olivares, 2014; Kidd et al., 2015), and the exploration and
exploitation of soil and plant-associated microorganisms during
phytoremediation (Barac et al., 2004; Weyens et al., 2010a;
Abhilash et al., 2012; Becerra-Castro et al., 2013). However,
the approaches focused for a long time on each organism
individually rather than an integrated metaorganism approach in
an ecological perspective. Optimizing the plant and its associated
microorganisms, the metaorganism, has shown to be successful
to improve plant growth in agriculture (Mendes et al., 2013;
Rout and Southworth, 2013; Berg et al., 2014), and in disease
resistance (Berendsen et al., 2012) but so far, an integrated
metaorganism approach that allows uncovering the interactions
between plant host and potentially thousands of degradative
microbial taxa naturally colonizing the host, has not been largely
performed.

In analogy to the human microbiome, the plant microbiome
is essential for the plant, protecting the host against invaders,
for the production of essential vitamins, improving nutrient
solubility, as reviewed (Mendes et al., 2013). It is argued that the
plant microbiome extends the functional potential of the host.
In addition, the microbiome is able to regulate the expression
of plant traits which lead to an improvement of the plant
physiological state (Mendes et al., 2013). Recent evidence also
emphasizes that phytoremediation success is strongly depend
on the plant microbiome activities (Hassan et al., 2014).
The impact has potentially been underestimated. To improve
phytoremediation, an enhanced understanding of the plant
and microbial interactions and responses to contaminants are
essential. One particular aspect is to better understand how a host
assembles a beneficial microbiome, and how it functions, under
contaminant stress.

Molecular data and ecological models have already let
to the understanding how insects assemble and maintain a
beneficial cuticular microbiome (Scheuring and Yu, 2012). Also
in gut microbiome research, microbiome establishment and
functioning has been thoroughly scrutinized (Rooks et al.,
2014), which has already resulted in translation to useful
therapies, but the concepts have never been explored for a

complex rhizosphere environment, let alone a contaminated
soil. Though by understanding how the host interacts, shapes
and maintains its microbiome proficient in plant-growth
promoting (PGP) and contaminant degradation, we strongly
believe that a more targeted stimulation of phytoremediation
is possible. In this review we discuss for the first time a
competition-driven model to explain the assembly of a beneficial
microbiome under contaminant stress. This is based on direct
and indirect evidence from recent phytoremediation studies,
integrated from a whole new perspective. The second part
of the review addresses the questions whether the selected
metaorganism is optimal for phytoremediation, and whether
the microbiome is highly efficient for PGP and contaminant
degradation? New challenges that are triggered from the
model are discussed and we suggest improvements in the
current approaches. Although we focus here on optimizing
the metaorganism for phytoremediation, many principles of
this competition-driven model, may apply to optimising plant–
microbial interactions during crop production, bioenergy, and
landscape management.

A COMPETITION DRIVEN MODEL TO
EXPLAIN THE ESTABLISHMENT OF A
BENEFICIAL MICROBIOME IN A
CONTAMINATED RHIZOSPHERE

Explaining how microbiomes are established and maintained is
a hot research topic in many disciplines, ranging from plant-
pathogen research (Berendsen et al., 2012), gut microbiome
research (Muegge et al., 2011) and community ecology
(Gotzenberger et al., 2012), but also potentially holds the key
to improving phytoremediation. Hosts in general receive a
lot of benefits from their associated microorganisms, such as
protection against invaders, enhancing nutrition and growth,
improving resilience in stress conditions, as has been extensively
reviewed (Mendes et al., 2013). In a study which used Arabidopsis
halleri plants grown on a natural soil and a gamma irradiated
soil, it was shown that when being grown on a natural soil
the plants accumulated higher levels of cadmium and zinc
in the tissues, indicating that microbiota are essential players
during phytoextraction (Muehe et al., 2015). Moreover, it is
increasingly accepted that hosts assemble non-random sets of
microbial symbionts with a higher proportion of beneficial
microbes than expected by chance. Also in the case of a
contaminated soil, it appears that the plant host can select
microbes with degradative genes out of a huge pool of
candidates in the bulk soil (Siciliano et al., 2001; Sipila et al.,
2008), but a detailed understanding how the host does this
lacks.

To better understand the establishment of the microbiome in
the plant rhizosphere/endosphere, this habitat is often compared
to the gut microbiomes. Gut microbiomes are shaped by
host species genotype and priority effects (transmission via
parents; Ochman et al., 2010), diet (Muegge et al., 2011), and
transplantation and disturbance (antibiotics; Rooks et al., 2014).
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In addition, recently Scheuring and Yu (2012) identified the
conditions under which insects (attine ants) could successfully
screen in a beneficial microbiome that was dominated by
antibiotic producing and resistant bacteria. For this they
distinguished three steps: first, the new host starts with a
higher proportion of beneficial antibiotic producing microbiota,
second, the ant host provides resources, which third fuel intense
competition via antibiotic production and results in competitive
dominance by antibiotic producing bacteria (Scheuring and Yu,
2012). Analogous, if we can identify the conditions under which
the plant host in a contaminated soil can select degradative traits,
than this can results in more targeted interfering.

To model the establishment of a beneficial microbiome in a
plant host is much more complex than the ant and human gut
microbiome models suggested so far. The plant host species itself
(genotype) has a large influence on the microbiome composition,
and evolves in ways (growth stage, disease state, herbivory
etc.) that changes the microbiome. In addition to plant state
and productivity, the presence of neighboring plants and in
general species richness are thought to strongly influence the
abundance of microorganisms belowground (De Deyn et al.,
2011). Further, the abiotic environment has a large impact
on the microbiome composition. Soil is much more complex
biologically, in terms of species diversity, and external abiotic
factors which adds numerous variables and uncertainty to the
model. Previous attempts to model biodegradation have shown
it is very hard to simplify the biodegradation space in units
that define contaminant degradation (see Box 1). Though an
ecological model which combines a metaorganism approach and
reductionist views seems to be most suited (Box 1).

Here, we propose that an adapted model of Scheuring and
Yu (2012) can explain some of the driving factors under which
conditions plants directly or indirectly promote the abundance

of PGP and degradative bacteria in a contaminated soil. To
demonstrate the model concept, we will focus on the plant
rhizosphere, though potentially the same interactions occur in the
phyllosphere, and plant-endosphere habitats. More in particular
our attention will be focused on the bacteria and mycorrhizal
fungi in the rhizosphere, which are by far the best studied
microorganisms in relation to phytoremediation. Plant-growth
promoting rhizobacteria (PGPR) and mycorrhizal fungi live in
a mutualistic symbiosis with the host. The plant provides root
exudates and creates habitats for the microorganisms, and, in
return, the PGP degradative bacteria and mycorrhiza promote
plant growth and detoxify the contaminants.

The Model
We propose a competition-driven model, based on the theory
described in Grime (1977) and the recent findings of Yergeau
et al. (2014), to explain the establishment and maintenance
of a beneficial microbiome in the plant rhizosphere on
contaminated soil, and suggest that (1) if plants provide abundant
resources in the rhizosphere this will favor interactions that
confer competitive advantage to degradative (and tolerant)
microorganisms depending on the contaminant concentration
level, and that (2) the establishment of such a beneficial
degradative microbiome is more efficient if there is some kind of
vertical transmission (seed transfer of degradative traits) or high
abundance of degradation genes in the microbial pool at early
stages of colonization of the soil. Thus, a higher immigration rate
of degradative (and tolerant) microbiota from the environment,
e.g., in response to specific root exudates secreted by the
host, combined with competitive interactions which favor the
screening in of these phenotypes, give shape to the rhizosphere
microbiome in a contaminated soil. Evidence to support the
competition-driven model is provided below.

BOX 1 | Complexity of contaminant degradation. A recent pyrosequencing study analyzing bacterial community diversity in the permafrost soil along the China–
Russia Crude Oil Pipeline, found then thousands of operational taxonomic units (OTUs) with 84,834 reads, numbers which by far outdid the expectations for such
an extreme habitat (Yang et al., 2012). Similarly, Bell et al. (2013b) revealed a high diversity of hydrocarbonoclastic bacteria in the rhizosphere of Salix growing on
hydrocarbon contaminated soil in Canada (Bell et al., 2013b). In line with this, recent genome insights revealed that aliphatic and aromatic catabolic genes are
abundant in the root endophytic Burkholderia sp., even if they were not exposed previously to diesel fuel in their environment (Mitter et al., 2013). These studies
suggest that catabolic genes are likely ubiquitous in the environment, though it remains to be shown whether they are active, and most proficient for soil remediation.
de Lorenzo (2008), showed that an abstraction of the biodegradation process with purely genetic and enzymatic reactions is not optimal for predicting biodegradation
rates. That is because the degradation of any given compound, whether or not expressed on plasmids, is highly influenced by many upstream (bioavailability) and
downstream factors (toxicity of intermediates, stress, nutrients). An illustrative example is the inability of strain Burkholderia xenovorans LB400 to completely degrade
polychlorinated biphenyls (PCBs) despite having in its genome all genes which are necessary to do this (Pieper and Seeger, 2008). To further illustrate the complexity
of biodegradation, contaminant degradation is usually not limited to specialist taxa but generalists are involved. In fact, co-metabolism of pollutants and interspecies
metabolism is the rule rather than exception. Finally, multiple enzymes within a cell, and degradation pathways compete for the substrates, and thus biodegradation
in a community is the result of the pan-metabolome (de Lorenzo, 2008).
To deal with this complexity, it is increasingly accepted that phytoremediation needs to be approached from a systems biology, and community ecology perspective.
Caro-Quintero and Konstantinidis (2012), provided evidence from the metagenome level that a population and community approach potentially hold true for microbial
populations, acting in distinct entities (Caro-Quintero and Konstantinidis, 2012). In addition, Sørensen et al. (2009) amongst others, pursue the understanding of the
behavior of single cells in a large community to better understand functions at the population level (Sørensen et al., 2009; Remus-Emsermann et al., 2012). Only if we
have scrutinized the single cell behaviour in complex soil microbial communities, combined with insights from the metaorganism functioning (pairing plant and microbe
omics), than we can potentially identify and predict cross-species and cross-kingdom functions, that can be targeted to increase soil remediation. In the best possible
scenario, we have a good catalog of the genome sequences and transcriptomes of all (or most important) players, which will allow to predict their metabolic activities
(Larsen et al., 2011). Many studies have already obtained relevant insights at the metaorganism level, thanks to the ongoing developments in the high-throughput
sequencing technologies. However, to further our understanding, integrating large sequencing data in models requires massive computational power, which is not
always available. Nevertheless, improvements to current research strategies, considering in situ conditions (see Table 1), would allow to gain further insight in the
functioning and significance of the microbiome for phytoremediation, potentially leading to the design of improved treatments that specifically promote highly efficient
biodegradative communities.
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Contamination Influences the
Rhizosphere and Root Microbial
Community
Siciliano et al. (2001) investigated the endosphere and
rhizosphere microbiomes of different grass species growing
on a petroleum and nitroaromatic contaminated soil, and they
revealed that contaminant concentration was a major factor
that determined rhizosphere and root-endosphere microbiome
structure and function. Moreover, there was a plant-specific
and selective effect on the prevalence of specific catabolic
genes, e.g., tall fescue rhizosphere community was characterized
by an enrichment of catabolic genotypes such as alkane
monooxygenase (alkB), naphthalene dioxygenase (ndoB), and
nitrotoluene monooxygenases (ntnM; Siciliano et al., 2001), but
there was a decrease in the prevalence of catabolic genes in the
rhizosphere of rose clover (Siciliano et al., 2003). This indicates
that plants can exert control over microbial degradative traits
in the rhizosphere, and hence phytoremediation activity. The
presence of plants also influenced the prevalence of degradation
genes outside the rhizosphere, in the surrounding bulk soil
(Siciliano et al., 2003). Another study showed that the presence
of diesel in soil significantly explained microbial community
composition and diversity, even overruling soil matrix type
effects (Sutton et al., 2013). A number of other recent studies
confirm the initial findings, that the contaminated rhizosphere
microbiomes often contain a higher abundance of catabolic
genes as determined by qPCR (Sipila et al., 2008), which are also
actively expressed as shown by a metatranscriptomics analyses
(Yergeau et al., 2014). These observations raise the question how
the plant host ‘selects’ degradative microbiota or rather traits,
given the enormous pool and variety of microorganisms in soil.

One explanation, which is still heavily debated though, is that
the beneficial plant microbiota for a part naturally coevolved
with host (e.g., via vertical transfer of degradative traits via the
seeds; Mastretta et al., 2009; Hodgson et al., 2014), or coevolution
of mycorrhiza with the plant species with selective recruitment
from the environment (Hoeksema, 2010; Davison et al., 2011).
A recent study has shown that vertical transmission of fungal
endophytes from mother plant to offspring, via seeds, is common
in forb species (e.g., Papaver rhoeas, Plantago lanceolata etc.),
suggesting that this may be a widespread phenomenon (Hodgson
et al., 2014). The transferred endophytes can influence seedling
germination rate, provide protection against herbivores and
pathogens, and stress resilience depending on the endophytes
that were present in the mother plant. Another study showed
that plants grown on cadmium soil contained a high prevalence
of seed-endophytes which produced IAA, ACC-deaminase and
displayed Cd tolerance, in vitro (Truyens et al., 2015), and these
traits were transferred from generation to generation (Truyens
et al., 2013). The other observation, whether there is ongoing
co-evolution of mutualistic fungi and the host, is currently
heavily debated (Hoeksema, 2010). De Deyn et al. (2011), showed
that the abundance of arbuscular mycorrhiza (AMF) is strongly
influenced by plant species diversity, richness and identity, which
indicates that coevolution to some extent may be ongoing.
In fact, ectomycorrhizal fungi (EMF) and AMF are crucially

important in protecting plants from toxic metals (Colpaert et al.,
2011), and organic pollutants (Bonfante and Anca, 2009), protect
physically the roots (Barea et al., 2002), and the radicals or
catabolic enzymes produced by the fungi can be involved in the
detoxification of contaminants (Harms et al., 2011).

However, if vertical transmission and coevolution would
be the only process, it would make it very difficult to explain
why similar plant cultivars in different soils contain different
microbial communities, with different phytoremediation
activities. The explanation is that the rhizosphere microbiome is
recruited for a large part from the surrounding soil environment
(Haichar et al., 2008; Berg and Smalla, 2009). In fact, plants
constantly recruit a diverse set of microbiota from the soil
environment, which may display degradative potential with
different modes of action and PGP potential to variable extents
(Croes et al., 2013; Bell et al., 2014; Yergeau et al., 2014; Truyens
et al., 2015). Hence, it is not unexpected that the host evolves a
beneficial degradative microbiome differently at different places
(Lebeis, 2014). What is the major mechanism underlying the
selective recruitment?

Root Exudates Change under
Contaminant Stress: Plants Call for
Support?
It is well known that root exudates play a large role in
shaping the rhizosphere microbiome (Berg and Smalla, 2009).
Microbiota compete for the abundant resources (Raaijmakers
et al., 2008), and thereby specific exudates can selectively attract
or repel certain species (Neal et al., 2012). Berendsen et al.
(2012) have suggested that plant beneficial traits may be selected
for because plants secrete specific root exudate compounds in
response to pathogen attack, selectively recruiting protective
microorganisms. Adoption of this idea to a contaminated soil,
hypothesizes that plants change root exudates in response to
contaminants, to favor degradative traits (‘call for support’). In
fact, a number of studies have shown that plants alter the quality
and quantity of rhizodeposits in response to contaminants (Zhou
et al., 2011). One notable study has demonstrated, using a split-
root model, that certain plant species respond in a systemic
manner to PAH-contamination (indirect effect) and that the root-
exudate induced changes in microbial community composition
was correlated with abundance changes of particular genera that
are suggested to play an important role in rhizoremediation
(Kawasaki et al., 2011). However, some researchers argue that
root exudates are not actively but passively released from plants,
and that the host does not actively recruit microbial species or
traits (Hartmann et al., 2008). The competing explanation for
the observed mutualism, is that if the hosts creates a selective
and demanding environment such that the habitat turns out
to be attractive to mutualists and symbionts, and unattractive
to pathogens or parasites, then a selective recruitment of
mutualists occurs, independent whether the host knows the
quality and quantity of the individual symbionts (Archetti
et al., 2011). Hence, if the conditions are set right by the
host, the microbial symbiont evolves to accept the host or
reject it (remain free living). Either of the opinions can be
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reconciled in which interactions between the partners could
lead to a higher immigration of degradative microorganisms
from the environment or specific secretions by the host or
associated mycorrhiza (in secondary line) that could impart a
competitive advantage to microbes that carry the appropriate
detoxification genes. In this double selective environment, the
resource availability can favor degradative PGP over pathogens.

Competition as Driving Force
We add to the rhizosphere model, competition. It is well
known that the rhizosphere is a highly competitive and selective
environment because of the abundant resources provided
by the host (Kowalchuk et al., 2002; Haichar et al., 2008;
Berg and Smalla, 2009). Yergeau et al. (2014) suggested that
a contaminated rhizosphere is more selective than a non-
contaminated rhizosphere, based on metatranscriptomics data.
They stated that under the double selective pressure, only
microorganisms that can use the specialized carbon sources
provided by the host, and can cope with the presence of
the contaminants, are highly competitive, and these will be
significantly stimulated by the host (Yergeau et al., 2014).
Evidence was based on the observation that the willow
rhizosphere microbiome on hydrocarbon contaminated soil,
showed a significant upregulation in genes coding for proteins
involved in bacterial interference competition, biofilm formation,
quorum sensing, and genes related to nutrient acquisition
compared to a non-polluted soil (Yergeau et al., 2014).

To ground the competition model further, we refer to the ideas
of Grime (1977), who suggested three primary strategies of viable
plant habitats. Grime (1977) defined two external factors, ‘stress’
(conditions that restrict plant growth, e.g., shortage of water,
and nutrients), and disturbance (partial or total destruction of
plant biomass, e.g., herbivory, pathogen attack, tillage, weather
conditions), and permutations of both factors resulted in the
delineation of three viable plant life-strategies: (1) low stress
with low disturbance, favors competitive plants, (2) high stress
with low disturbance, selects for stress-tolerant plants, and
(3) low stress with high disturbance, provides advantage to
ruderal plants (Grime, 1977). A competition-based reflection
of Grime’s idea to rhizosphere microbial communities would
hypothesize that a degradative microbiome can only evolve
when contaminant concentrations are moderate to low, and
degradation confers a competitive advantage in the rhizosphere
niche. High pollution levels with low disturbance would select
contaminant-tolerant microbial phenotypes (Figure 1). Though,
if contaminant concentrations are diffuse but the bulk soil was/is
heavily disturbed (e.g., by excavation, tillage, chemical treatment,
fertilization, etc.) this would favor ruderal microorganisms which
respond rapidly to free niches and the presence of abundant,
easy carbon sources (e.g., r-strategists), but may not contribute
to biodegradation (opportunists). Consistent with this scenario,
it has been shown that rapid-growing Pseudomonas species
and Alphaproteobacteria (r-strategists) flourish in disturbed
contaminated environments and capitalize on the resources
(Yergeau et al., 2014). However, microorganisms likely have
many more life-strategies than r/K and probably switch between
life-strategies (Fierer et al., 2012). Previously, a similar approach

has been used to better understand microbial biodiversity in
ecosystem functioning (Krause et al., 2014). Moreover, recent
evidence from the metagenomics level, supports that microbial
communities are organized in genetically and ecologically
discernible populations, which possess the attributes expected
for species (Caro-Quintero and Konstantinidis, 2012). In this
sense, a reflection of microbial traits on the competitor-ruderal-
stress tolerant life-strategy framework from a community ecology
approach of Grime (1977), may explain some of the interactions
that take place in a contaminated rhizosphere. It is to note
that the rhizosphere microbiome will not always be in one of
the extremes, but represents a compromise between conflicting
selection pressures resulting from particular combinations of
competition, stress, and disturbance (Figure 1).

TOWARDS A PLANT-METAORGANISM
APPROACH IN PHYTOREMEDIATION:
PRACTICAL APPROACHES

We have proposed a competition-driven model for the
rhizosphere microbiome to understand and identify some of the
factors that drive the assembly of a beneficial microbiome under
which PGP and degradative microbiota have a competitive
advantage in a highly contaminated soil. Although the
competition-based model may appear oversimplified, and
incorporating all partners (next to bacteria and fungi, also
archaea, arthropoda, protista, and other macro- and mesofauna
etc) will better represent phytoremediation activity, the model
shows the inherent interactive character of plant–microbial
interactions for contaminant degradation, and provides a
basis for the development of improved and more effective
phytoremediation strategies. In fact, a naturally evolved
rhizosphere microbiome may not be the most optimal for
phytoremediation activity. For degraders to abundantly colonize
the niche, there should be a high dominance at the start of the
competition (niche colonization), so that enough degraders
are present to ward-off opportunists that do not contribute to
degradation. Moreover, loss of sensitive taxa can severely alter the
way the plant host interacts with the other microbiome members
(Bell et al., 2014). Furthermore, the selected host species can in
some cases be incompatible for inoculation with certain types
of bacteria or fungi, because they are not naturally selected for
by the host. Furthermore, despite the presence of degradative
genes in the natural soil microbial communities, the persistence
of recalcitrant organic pollutants in soil, indicates that natural
attenuation is insufficient, and hence requires interfering by men.

With the model in mind, we can see that many new
opportunities have arisen to optimize the metaorganism in
phytoremediation, rather than the plant and microbe part
separately (Figure 1, Table 1). Multiple strategies can be
considered to prevent opportunists and pathogens from winning
over degradative and PGP microbes. Four strategies are proposed
which are likely to be important in redirecting the microbiome:
(1) Selecting plants not only for high biomass/rapid growth
rate, and tolerance, but also for their global interaction with the
microbiome, (2) changing the root exudates (microbial diet), (3)
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FIGURE 1 | Schematic representation of the different interactions taking place between the host and its rhizosphere microbiome, and possible ways
to interfere with rhizosphere microbiome functioning for phytoremediation. The figure is adapted from Krause et al. (2014) who extended the
competition-tolerant-ruderal life strategy of plants to microbial communities in soil. We add the plant-host to it, and use this framework for assigning life-strategies to
rhizosphere microorganisms: (S) stress-tolerant, (C) competitors, (R) ruderals, and many intermediate microbial life strategies. It is assumed that the host fuels the
interactions by providing abundant resources. S, C, or R can represent single species or functional groups of microorganisms (consortia), and the terms are used to
distinguish S (contaminant-tolerant species), competitors (degradative competitors, exploitation competitors, or interference competitors), and ruderals (rapid
growing species). Although the plant-provided resources (plant exudates) fuel higher growth rates of all microorganisms, some of the resources can be partitioned
more to beneficial, degradative microorganisms that outcompete others (e.g., by capitalizing unique carbon sources, producing antibiotics, etc.). As such, it can be
understood that degradative traits may be selected for by the host, if it confers a competitive superiority in the rhizosphere niche, meaning that biodegradation is
ideally coupled to growth (central metabolism) and detoxification. If contaminant concentrations are low, plants may preferable recruit PGP, while commensals and
pathogens capitalize on the resources. Which equilibrium is reached depends on which microbial type has the higher abundance and functional activities. Moreover,
the community can also display priority effects: it is much more difficult for pathogens/opportunists to invade a community already dominated by primary colonizers
(e.g., catabolic strains). Compared to an idealized model, the effectiveness of contaminant degradation may be limited by the presence of opportunists that do not
contribute to biodegradation but consume the same resources, or detrimental strains that inhibit the activity of catabolic strains. Disturbing the communities in their
niche, by selecting the host species (1), manipulation of their nutrients (root-exudates) (2) and corresponding niches (by disturbance) (3), or the introduction or
removal of key members (4), may significantly alter the balance and strength of interactions between them. These interventions can cause changes in the way that
microorganisms can influence each other, their niche, and the host, with consequences for phytoremediation activity.

taking into account vertical transmission and promoting a higher
‘immigration’ rate (feeding the supply lines, priority effects),
and (4) altering the competitive interactions that evolve between
host–microbe, microbe–microbe, and microbe–environment
(applying disturbance). Example research strategies and practical
approaches how to take into account this metaorganism concept
is given in Table 1, and is further discussed in the following
paragraphs.

STRATEGY 1: SELECTING PLANTS IN
FUNCTION OF THE MICROBIOME

Initial accounts in phytoremediation focused on plants with high
biomass and fast-growth, tolerance and/or high accumulation
capacities (hyperaccumulators). However, focusing on these
traits has moved away the attention to selecting plants as
a tool to change and influence the associated microbiome,
which has a substantial impact on phytoremediation outcome

(Hassan et al., 2013). In fact, it has been shown that transgenic
crops (e.g., genetically modified Bt-maize selected for higher
disease resistance) have a less diverse (simplified) rhizosphere
microbiome showing a lower level of mycorrhization and
both the total and active heterotrophic bacteria (Castaldini
et al., 2005). The potential adverse consequences of plant
domestication (Pérez-Jaramillo et al., 2015) on non-target
rhizosphere microbial communities and the long term resilience,
warrants further investigation. Selecting the plant species
(genotype or cultivar) determines for a large part microbial
community structure and function (Berg and Smalla, 2009),
and thus plant selection is an important tool to modify
plant-associated microbial communities. Therefore, alternative
plant-based selection strategies that integrate microbiome
functions by promoting the assembly of specific plant-associated
microbial communities is a novel opportunity to improve
phytoremediation and biomass yield.

Practically, one can evaluate the plant-effect on the
microbiome from an explorative approach, but also by
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TABLE 1 | Possible ways to improve phytoremediation research using a metaorganism approach.

Metaorganism approach Example research strategy

Selecting the right plant host In function of the
microbiome

A pyrosequencing study identified that native willow cultivars were associated
with a different microbial community than non-native cultivars, across a
hydrocarbon contaminated soil (Bell et al., 2014). Fungi were more sensitive to
hydrocarbon contamination then bacteria, and reacted different to willow
introduction, suggesting that plant species selection (and evolutionary history)
are not to underestimate with regard to their effect on microbiome
establishment and influence on phytoremediation activity.

Subsequent microbial
inoculation practices

Fungi grown in their soil of origin with native plant species have been shown to
be more mutualistic (more arbuscules), which can enhance the introduction of
cooperative strains at a later stage (Johnson et al., 2010)

Breeding, and transgenesis
of plants for high biomass/
rapid growth, high
tolerance, uptake and
detoxification potential

Transgenic tobacco cultivars over-expressing a bacterial nitroreductase resulted
in improved TNT detoxification, and additionally increased the functional
diversity of the rhizosphere microbial community (Travis et al., 2007), a double
positive effect which warrants further investigation.

Interfering with root-exudates (diet) Rhizoengineering There are promising outlooks to change the quality and quantity of root
exudates in the rhizosphere to optimize plant growth (Zhang et al., 2015) and
biodegradation (Narasimhan et al., 2003). Transgenic Arabidopsis plants that
exuded the xenotopic compound octopine, significantly increased the ratios of
octopine degraders (Mondy et al., 2014).

Selecting plant traits for
their global interaction with
the rhizosphere microbiome

Maize seedlings were shown to exude a high concentration of the compound
DIMBOA which exerts antimicrobial activities in the rhizosphere (Neal et al.,
2012). In addition, DIMBOA also attracts a catabolic (Neal et al., 2012), but also
recruiting a catabolic, plant-beneficial rhizobacterium Pseudomonas putida
KT2440. Can we identify more plant traits that globally interact with the
rhizosphere microbiome?

Modify the driving forces Elucidating the main factors
that influence the
plant–microbiome
interactions

Antibiotic administration altered the community structure of gastrointestinal
microbiota (Robinson and Young, 2010), similarly antibiotic addition to soil
changed the soil microbiome leading to increased hydrocarbon degradation
rates (Bell et al., 2013a). It is assumed that reduced interspecies competition
enhances the catabolic activity of degradative strains.

Studying interactions at the
single microbial cell level in
situ, and
extrapolate/confirm findings
at the population and
community level
(bottom-up).

Remus-Emsermann et al. (2012), used gfp-tagged individual Erwinia herbicola
cells as bioreporter, to better understand bacterial colonization of the leaf
surface of Phaseolus vulgaris plants. They suggested that the ‘carrying
capacity,’ can be understood as the sum of local carrying capacities
(Remus-Emsermann et al., 2012) whereby leaves contain a few sites where
individual cells can produce high numbers of offspring, and the remainder of the
leaf offers sites with low and medium reproductive success. Using such a
bottom-up approach in phytoremediation, can help to better understand
bacterial colonization of the rhizosphere at the population and community level.

Feeding the supply lines Isolation of previously
difficult to culture
degradative strains

Continued efforts in culture-based techniques including the use of improved
culture media and intelligent devices such as the i-Chip, have enabled the
cultivation of a broader collection of previously difficult to cultivate
microorganisms (Nichols et al., 2010; Stewart, 2012).

Selection of
strains/consortia to
inoculate

The identification of the core rhizosphere microbiome and core root microbiome
(Lundberg et al., 2012; Yeoh et al., 2015), i.e., strains that sufficiently depend
on host genotype, but remain consistent across different soil types and
developmental stages, allows selecting strains for their intimate interaction with
the host, which should facilitate their introduction/enrichment in the native
microbial community.

Time point of inoculation
matters, prioritization

Preemptive colonization of plant leaves with beneficial bacteria was found to
reduce, but not completely exclude, the ability of secondary colonizers to
reproduce and proliferate (Remus-Emsermann et al., 2013). These findings
have direct relevance to phytoremediation, based on preemptive exclusion of
opportunists and pathogens when there is a high level of catabolic strains at the
start.

Exploiting horizontal gene
transfer

Introduction of the endophyte Burkholderia cepacia VM1468, equipped with the
pTOM-Bu61 plasmid coding for toluene degradation, in the rhizosphere of
yellow lupine has shown to dramatically reduce toluene evapotranspiration.
Interestingly, the catabolic plasmid was found to transfer from the inoculated
strain to different members of the endogenous plant endophytic community
(Taghavi et al., 2005). As such harnessing horizontal gene transfer is a simple
and inexpensive way to enrich catabolic traits.
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proposing interventions aimed to benefit the microbiomes
and phytoremediation outcome (manipulative; Cravatt and
Kodadek, 2015). For instance, Hassan et al. (2014) recently used
pyrosequencing of amplified 16S rRNA from the rhizosphere
of 11 willow cultivars across hydrocarbon contaminated soil,
to show that rhizospheric AMF community structure varies
between the willows and that different symbionts are involved
in plant adaptation to hydrocarbon contamination (Hassan
et al., 2014). Moreover, contaminant concentration had a main
effect on AMF community structure with different AMF families
dominating at each contaminant level. In another study, it
was shown that not only the introduction of willow species in
hydrocarbon contaminated soil increased the diversity of fungal
communities, but also that the community composition diverged
when Salix genotypes were less closely related (Bell et al., 2014).

Recently, the introduction of non-native plant species in
soil has been shown to form less beneficial associations with
mycorrhizal fungi than native plant species, and this may reduce
phytoremediation activity (Johnson et al., 2010). Indeed, also
others have found that the health of locally adapted and foreign
cultivars may be different depending on the strength of their
associations with indigenous mycorrhiza (Philippot et al., 2013;
Bell et al., 2014). These data suggest that the evolutionary history
of plants should be considered when selecting plant varieties
for phytoremediation and also the origin of cultivars. Pérez-
Jaramillo et al. (2015) suggest a “back to the roots” framework
that comprises the exploration of the microbiome of indigenous
plants and their native habitats for the identification of plant
and microbial traits with the ultimate goal to reinstate beneficial
associations that may have been undermined during plant
domestication (Pérez-Jaramillo et al., 2015).

Bell et al. (2014), pointed out that plants used in
phytoremediation should also be selected so that the associated
mycorrhizal partners have a supporting effect, or at least no
antagonistic effects, on the inoculated bacteria (Bell et al., 2014).
In this respect, better understanding of highly intimate plant-
mycorrhizal fungi relationships (Hoeksema, 2010), could allow a
better predictability of potential positive or negative interactions
with other microorganisms such as bacteria. In addition,
modifications of the established rhizospheric and endophytic
microbial communities may enhance the introduction of
subsequent strains.

STRATEGY 2: INTERFERING WITH THE
DIET (ROOT EXUDATES)

During the past decade, there has been a considerable effort
to characterize the chemicals that coordinate the establishment
of the symbiotic interactions in the rhizosphere (Puschenreiter
et al., 2005; Michalet et al., 2013), but despite this increased
knowledge redirecting rhizosphere microbial communities with
the current tools is still not trivial (Quiza et al., 2015). The
nature and quantity of rhizodeposits is highly dynamic and
varies depending on the plant species, the physiological stage
of the plant, the presence or absence of plant neighbors, soil
characteristics, soil contaminants, the soil microbial community

context etc. (Chaparro et al., 2013). As a consequence of the
complexity, only the major root exudate compounds have been
identified. Though innovative tools like the micro-suction-cup
technique (Puschenreiter et al., 2005; Oburger et al., 2013) allow
in situ sampling of a broader spectrum of root exudates, which
would allow gaining further knowledge of the potential function
and significance of root educates in phytoremediation.

Because rhizodeposits play an important role in ‘selecting’
rhizosphere microbiota (Dennis et al., 2010), there has been
a major interest in changing the quality and quantity of
root-exudates via plant breeding and genetic modification to
selectively stimulate specific microbial colonization, a technique
called rhizoengineering (Van Aken et al., 2010; Quiza et al.,
2015). Rhizoengineering was based on the early observations
of Agrobacterium tumefaciens, which infects the host plant
and induces a tumor (gall formation) that excreted opines,
unusual carbon sources, that initially may have been used
exclusively by the inducing crown gall bacterium (Dessaux et al.,
1987). This work was followed by several rhizoengineering
approaches based on the favorable partitioning of opines (Oger
et al., 1997; Savka and Farrand, 1997; Narasimhan et al.,
2003). Narasimhan et al. (2003) showed enhanced depletion of
PCBs by the rhizobacterium Pseudomonas PML2, that utilized
phenylpropanoids in plant exudates as growth substrate, in the
rhizosphere of Arabidopsis. However, also other rhizobacteria
that do not necessarily harbor the metabolic enzymes for the
efficient catabolism of pollutants have been shown to utilize
the specific plant secondary metabolites for growth. Hence,
the sensitivity and specificity of these approaches should be
improved. One possible solution is the identification of plant
traits that interact with specific microbial community members
(Smith et al., 1999; Remans et al., 2007; Neal et al., 2012). For
instance, working with inbred lines of tomato plants, Smith et al.
(1999), discovered the genetic basis for interactions with the
beneficial rhizobacterium, Bacillus cereus, associated with plant
growth and disease suppression. Similarly, Remans et al. (2007),
identified two quantitative trait loci (QTLs) involved in auxin
sensing in common bean, which could be used as a screening
method for QTLs responsive to auxin producing bacteria.
These studies hold promise for the use of genetic variation in
plant species to enhance beneficial associations of plants with
rhizosphere microbiota (Remans et al., 2007; Peiffer et al., 2013).
To our knowledge there are no plant breeding strategies yet that
have evaluated plant lines for their broad interaction with the
rhizosphere microbiome. In this regard, it has been speculated to
design a minimal rhizosphere microbiome (Raaijmakers, 2015),
in analogy to the minimal genome (Juhas et al., 2011), with the
final aim to select only these microorganisms (or traits) which
are proficient for soil remediation and plant health.

STRATEGY 3: MODIFYING THE DRIVING
FORCES (DISTURBANCE)

Although competition can favor the screening in of beneficial
PGP and degradative microorganisms in the rhizosphere,
and metagenomics data confirm that many of the microbial
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genes required in phytoremediation are already present in
the environment (Sessitsch et al., 2012), in some cases this
is not sufficient to attain high biodegradation activity. The
occurrence and maintenance of contaminant degradation is the
result of various competitive interactions including interference
competition and resource exploitation, next to cooperative
interactions like co-existence, mutualism, symbiosis, etc. that
act on the partners, in space and time (Kowalchuk et al.,
2002). The identification and understanding of such forces
between the host and its microbiome, is important in order to
optimize the metaorganism. Improving the understanding of the
relationships between plant and its host poses novel challenges
like (i) designing appropriate studies that aim to understand if
relationships are direct (causal) or indirect and that may allow the
creation of new conditions, and (ii) solving issues of assessing and
statistical testing when analyzing relationships between the host
and its microbiome (e.g., dynamics, feedbacks, uncertainties) in
statistical models (Figure 1).

The final phytoremediation outcome is often assessed using
chemical analyses, but this does not provide direct information
on the contribution of plant–microbial processes or how
management could be adapted to increase phytoremediation
efficiency. To get a profound understanding of the consequences
of environmental variables as drivers of changes in community
composition and function, it is important to distinguish between
direct and indirect relationships, as both can have trade-offs
on contaminant degradation. In a direct relationship, changing
one parameter (e.g., increasing soil fertility), would decrease
or increase the second (e.g., increase crop yield), assuming the
absence of other driving forces. However, host–microbe systems
are statistically associated (negatively, positively, mixed) because
their underlying drivers are statistically linked or correlated
(indirect relationships). Both types of relationships are often
referred to as ‘interactions’ independent of their correlative or
causal nature. Conclusion about the nature of links between the
host and its microbiome can be derived from studies using large,
replicated datasets, and that use ‘manipulative’ approaches that
enable to better understand and translate detailed knowledge
of distinct biochemical processes into useful technologies.
Experimental testing in the lab is then used to further explain the
causal or correlative nature (Larsen et al., 2011). For example, to
study the relationships between host and microbes, techniques
such as the addition of fungicides/antimicrobial compounds
(Bell et al., 2013a), nutrient disturbance (Bell et al., 2013b), and
tillage (Treonis et al., 2010) have been used. Antibiotics addition
(gentamicin and vancomycin) to hydrocarbon-contaminated
soil was found to reduce bacterial and fungal abundance but
to increase hydrocarbons degradation rate, confirming that
bacterial-fungal competition in soil (Boer et al., 2005; Mille-
Lindblom et al., 2006; Hibbing et al., 2010; Lecomte et al., 2011)
is a strong influential force that also impacts biodegradation.
Other studies that used cycloheximide, chloramphenicol (Myrold
and Posavatz, 2007) and vancomycin (Robinson and Young,
2010) found similar effects on fungal and bacterial community
structure, and associated function (Siciliano et al., 2009). Soil
tillage and nutrient amendments promote homogenization, and
this mostly favors generalist taxa that are adapted to the averaged

conditions of the soil, in disadvantage of specialist taxa that
only thrive in very specific micro-niches (Mangalassery et al.,
2015).

Network models are frequently used to illustrate the nature
of relationships between biological taxa and/or environmental
variables (Ganter et al., 2013; Bolouri, 2014). Useful insights
can come from natural, low complexity communities that may
enhance the understanding of more complex systems. For
example, in wastewater treatment plants it has been shown that
biological interactions and taxonomic relatedness are dominant
factors in explaining bacterial community assembly, while
environmental variables such as sludge retention and inorganic
nitrogen only partially explained the phylogenetic variances
(Ju and Zhang, 2015). Negative co-excluding correlations were
observed between less related species which probably indicated
competitive interactions (Ju et al., 2014), and this has also
been observed in soil ecosystems (Goberna et al., 2014).
Other studies revealed a direct effect of nutrient or pollutant
disturbance on the number of active catalytic microbiota in
the rhizosphere that may lead to reductions in the specificity
of plant–microbiota interactions (Stefanowicz et al., 2008; Bell
et al., 2014; Sillen et al., 2015). Statistical models that link these
processes are rapidly emerging (Vanwonterghem et al., 2014)
illustrating this is becoming an intensively investigated research
area.

Phytoremediation is also focused on predicting contaminant
degradation and the consequences of future management
options. Here, statistical models can be used to predict
system shifts and fluctuations in phytoremediation activity as
a consequence of environmental change (e.g., contaminant
concentrations drop, plant growth stage, seasonal differences,
etc.) and anthropogenic intervention. In this respect, different
types of statistical, metabolic and ecological models are in use,
but in general further development and refinement is necessary
for obtaining reproducible results in their translation (Jimenez
et al., 2014). For example, models based on niche preference
and metabolic properties, can be used to predict microbial
processes in nutrient removal from wastewater treatment plants,
and allow to stimulate beneficial microorganisms and remove
pathogenic and competing microbes (Vanwonterghem et al.,
2014). Bell et al. (2013b), showed that the addition of nutrients
to a hydrocarbon contaminated soil let to predictable shifts in
microbial community structure, and associated degradation of
petroleum hydrocarbons. In other studies, it was found that the
presence of 2,4,6-trinitrotoluene (TNT) in soil promoted the
relative abundance of Pseudomonas in a military soil in Flanders
(Belgium; Thijs et al., personal communication) and this genus
appeared to dominate as well in a TNT-contaminated soil in
Spain (George et al., 2008), France (George et al., 2008), and
UK (Travis et al., 2008a,b). If more studies become available,
we can better understand why TNT-induced community shifts
can evolve similarly under novel conditions, and this can in turn
lead to novel treatment therapies. These examples demonstrate
that the use of models is highly instructive to elucidate the
main driving forces. It is to note that the models can never be
better than the assumptions underpinning them. Furthermore,
evaluation of uncertainties, which stem from uncertainty in the
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ability to capture relevant processes (e.g., plant-AMF ongoing co-
evolution) as well as translating and scaling the information, need
to be incorporated in current and future models.

STRATEGY 4: FEEDING THE SUPPLY
LINES

In some cases, it is reasonable to assume a low abundance of
degradative traits in the surrounding bulk soil. Nevertheless,
a higher frequency of beneficial PGP and degraders can still
be achieved, if the frequency of degradative traits or genera
is increased (enriching, inoculation), resulting in a higher net
immigration from the environment by competitive interactions
(Figure 1). However, as there is a strong competition in soil
for the introduced microbe to be accepted in the naturally
occurring microbiome, strain inoculation is challenging. The
‘first-generation’ inoculants were not always targeted, reflected
by variable outcomes in the field (Goldstein et al., 1985;
Thompson et al., 2005; Violle et al., 2010). A deeper molecular-
ecological understanding of the relationships between plants and
microbiota is necessary to provide more targeted inoculation
approaches, termed here ‘next generation inoculants.’

The first challenge is the ability to culture catabolic strains
for inoculation. For this, detailed insights at the genetic level
can provide useful information (Loper et al., 2012). For example,
as reviewed by O’Brien et al. (2013), information from the
genetic level can be used to predict the functional proteome
and metabolism, and from this the formulation of the growth
medium can be optimized to allow the cultivation of strains
previously recalcitrant to cultivation (O’Brien et al., 2013). In
addition, the approach of ‘taking the microorganisms back to
the environment’ to grow them, e.g., using diffusion sandwich
systems (Nichols et al., 2010; Stewart, 2012) or micro-Petri
dish systems (Ingham et al., 2007), are promising tools which
have proven to increase the recovery and diversity of growing
isolates, even from the rare biosphere (Shade et al., 2012). In
addition, since the genomes of representative PGPB such as
Pseudomonas, Burkholderia, Arthrobacter (Wu et al., 2011; Mitter
et al., 2013; Gkorezis et al., 2015) and AMF including Rhizophagus
irregularis (Tisserant et al., 2013) have been sequenced, this has
led to the identification of numerous genes and gene-clusters
that determine plant-associated life-styles and which can be
exploited in inoculant practices. Promising results have also been
reported of studies that use mixtures of different PGP-strains
with complementary actions, for example selected mixtures of
trichloroethylene-degraders and trace element resistant PGB
to tackle mixed pollutants (Weyens et al., 2015), PGPB and
phosphate-solubilizing bacteria, PGPB and rhizobia, PGBR and
endophytes (Rylott, 2014). In addition, partnering of mycorrhizal
fungi with mycorrhizal helper bacteria (MHB) has shown
promising results in agriculture (Frey-Klett et al., 2011), and
certainly warrants further investigation in phytoremediation.
Furthermore, combined biostimulants based on PGPB with plant
extracts, humic acids, strigolactones, nod-metabolites, etc. has
not been widely explored in phytoremediation compared to
agriculture, where it demonstrated promising results on plant

growth (Jayakumar et al., 2007). The hypothesis is that synergistic
effects occur when formulations of living microbes and organic
substances in specific combinations are applied to plants (Bakker
et al., 2012; Mendes et al., 2013). Understanding the mechanisms
of these complex interactions is not an easy task, but it opens a
new avenue in the field of inoculants.

The second challenge is the time point and frequency of
inoculation. Great efforts have already been put into getting more
target-specific placement, timing and frequency of inoculation
under different soil substrates (Afzal et al., 2011, 2013), and
determining the optimal bio-inoculant concentration (Weyens
et al., 2012), but the variable outcomes indicate that our
understanding is yet incomplete. A particular important aspect
to improve is taking into account prioritization, which means
introducing beneficial microorganisms from the start to achieve
niche saturation and competitive exclusion of opportunists or
pathogens. Bell et al. (2015) have used a pyrosequencing approach
to identify the rhizospheric fungal and bacterial communities
associated with willow cultivars in a Zn-polluted soil, and they
revealed that during the early growth stages the soil microbiome
has the greatest impact on plant function and Zn-extraction (Bell
et al., 2015). In this respect, seed-endophytes that early colonize
the root and rhizosphere provide an excellent tool to accomplish
early rhizosphere colonization, protecting the seedling from
exposure to toxic contaminants (Compant et al., 2005; Mastretta
et al., 2009; Bragina et al., 2013; Truyens et al., 2013). Recently,
Truyens et al. (2015), studied the transgenerational changes
in the seed endophytic bacterial community of Arabidopsis
thaliana exposed to cadmium, and they found that phenotypic
characteristics such as cadmium tolerance, the production of
phytohormones (auxin), and ACC-deaminase were important
selection criteria that were passed from generation to generation
(traits is what matters, not who). Also other studies have
shown that vertically transmitted seed-endophytic bacteria are
an important source for transgenerational plant adaptation to
contaminant stress such as cadmium (Mastretta et al., 2009).

Phytoremediation research is also focused on the use
of plant-endophytes to improve contaminant biodegradation
(Rylott, 2014; Ijaz et al., 2015). The longer contact time
between the contaminant and endophytic microorganisms
enhances contaminant detoxification thereby reducing the risk
of phytotoxicity and otherwise evapotranspiration of volatile
organic contaminants (e.g., TCE-dissipation; Barac et al., 2004;
Weyens et al., 2009a, 2010a,b). Harnessing the potential of these
extraordinary plant-endophyte relationships is not new, though
the recent high number of publications reflect the full ongoing
extent of this research line (Ijaz et al., 2015). In contrast to
rhizospheric strains, endophytes do not have to compete with
the large abundance and diversity of (micro)organisms that
are present in soil, thereby potentially enhancing their stable
establishment and activity. Moreover, introducing species in
the endosphere based on the analyses of the core-microbiome
reduces the number of uncontrollable environmental factors,
to give more reproducible results across environmental settings
(Lundberg et al., 2012). In fact, hydrocarbon degradation was
more efficient when endophytes were inoculated rather than
rhizospheric strains (Andria et al., 2009). The endophytes
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showed a higher level of root-colonization, gene-expression and
maintenance.

Another promising approach to increase the frequency of
degradative traits in the rhizosphere microbial community is the
transformation of indigenous microorganisms through plasmid
introduction. Horizontal transfer of plasmids across species
borders makes the stable introduction of cells in high numbers
unnecessary (Van Elzas et al., 2003). Moreover the plant-soil
interface is a hotspot for horizontal gene transfer because of
the various nutrients, and high microbial cell density (Heuer
and Smalla, 2012; Wang et al., 2014; Wei et al., 2014), which
further encourages cross-species gene transfer (Sentchilo et al.,
2013; Wang et al., 2014). Researchers have shown that catabolic
plasmids carrying toluene degradation genes were successfully
spread from root-endophytes to stem plant-endophytes, that did
not previously harbor these plasmids, and this improved the
mineralization of toluene and trichloroethylene that would have
otherwise been volatilized (Barac et al., 2004; van der Lelie et al.,
2005; Weyens et al., 2009a). Plasmid carrying microorganisms
have also been added to plant seeds (e.g., yellow lupine), and
they have shown to transfer their degradative properties to
the surrounding microbiota improving the phytoremediation of
nickel and TCE co-contamination (Weyens et al., 2010a). In
addition, the use of insects carrying disease-resistant bacteria has
also been studied, and these approaches, while not yet introduced
for the transfer of catabolic genes, may have applications in
phytoremediation research as well (Heuer and Smalla, 2012). In
the future, high-throughput metagenome sequencing of extracted
plasmid DNA, the ‘mobilome,’ will further advance our insight
in the diversity and distribution of plasmid-borne degradation
genes (Jorgensen et al., 2014), and metatranscriptomics can
be used to identify the response of plants and indigenous
microorganisms to plasmid introduction (Zhang et al., 2011).

CONCLUSION

Phytoremediation is a promising method for cleaning-up
contaminated soils. Experimental evidence underlines the
importance of the rhizosphere microbiome in phytoremediation
and plant health, and it is clear that the plant is able to
control the composition of its microbiome, and by consequence,
microbial degradation. The plant host assembles a beneficial
microbiome, though trade-offs exist between contaminant
degradation and microbes that directly benefit plant growth and
health. Therefore, the plant–microbiome may not be optimal
and need more targeted human interventions to optimize the
plant–microbiome for contaminant degradation. By integrating
the current knowledge in a competition-based model, it appears
that many new challenges and opportunities have arisen for
microbiologists, ecologists, and soil engineers. This is exemplified

by the wide diversity of plant-associated microorganisms with
potential contaminant detoxifying abilities in the rhizosphere, as
well as by difficulties to assess specific host-microbe interactions,
and statistical models to elucidate the driving forces. Future
approaches in phytoremediation should be focused on the
metaorganism rather than single organism-based interventions,
and adapt their methods accordingly. Particular emphasis
needs to be directed toward selecting plants for their broader
interaction with the microbiome and harnessing the nutritional
and signaling events between plant and microorganisms. Another
strategy is to take advantage of natural gene transfer events which
has a strong impact on community composition, contributing to
microbial community plasticity. Finally, it could be necessary to
disturb the microorganisms in their niche, in order to increase
the expression and functionality of catabolic traits. Though,
to identify the competitive forces that shape the rhizosphere
microbiome and how it affects contaminant biodegradation, both
holistic and reductionist approaches should be applied. NGS
technologies will become even more than now, an important part
of future phytoremediation research, and allows investigating
host–microbe interactions at a much higher resolution then
before. Perhaps novel insights will lead 1 day to the design of a
minimal rhizosphere or plant microbiome for phytoremediation.
To conclude, phytoremediation is challenging, but unraveling
the mechanisms through which plants control their associated
microbiome and vice versa, will open new avenues to enhance
phytoremediation efficiency and reliability. In a broader context,
understanding how to contain and sustain benefits gained from
natural systems is an important endeavor now, and in future,
to which we need to contribute, in order to reduce the human
impact on the environment and strive toward a more sustainable
society.
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