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Abstract: This paper analyzes the determinants of a firm's patent output using data for 2000-

2008 which enables us to take into account the role of workers' skills, other firm's innovation  

(process, product, organization) as well as other important firm characteristics including 

unobserved firm-level heterogeneity. 

The main results, robust across specifications, suggest a positive and significant effect of process 

innovation and workers' skills on patent counts while product innovation becomes an important 

determinant in explaining forward citations. The inclusion of unobserved heterogeneity is 

essential in the analysis and seems to affect our results. 
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1. Introduction 

 

Research on knowledge-based firms have identified various conclusive drivers that explain the 

firm's patent output. Usually, these drivers (known as technology push and demand pull effects) 

that have been identified in the literature (e.g., see Hall, 2011 for recent references) include R&D 

(process, product, intra - and extramural), human capital, competitive effects and economies of 

scope in addition to geographical and industry-specific characteristics. Some literature has also 

emphasized the persistence of patenting whereby the knowledge covered by past patents can be 

used as an input to further patenting (see, for example Hall and Harhoff, 2012). When looking at 

data characteristics, another important stylized fact is that given the innovative intensity of a 

firm, some firms decide to apply for patents while others do not (see Hall et al., 2013 for 

references). As a result, the skewness nature of patent statistics is prevalent in many studies. In 

particular, it is well known that a large share of patents is applied for by only a small number of 

firms (see for example, Licht and Zoz, 2000; Vancauteren et al., 2015). 

Based on several variants of patent data models, a preponderance of innovation studies 

generally find that patents increase with R&D while the size-innovation and competition-

innovation relationships often yield contrasting results. This is not surprising since theoretical 

models also show different predictions on the relationship between innovation, on the one hand, 

and size and competition, on the other.1 Therefore, some major aspects of the results on this 

type of analysis is the wide variety in market and technological characteristics that are 

embedded in theoretical models, measurement of size and competition variables and model 

                                                           
1
 For instance, on the role of competition, the seminal paper of Aghion et al. (2005) provide theoretical and empirical 

support for an inverted-U relationship between innovation (patents) and competition (Lerner index). The explanation 

of this relationship emphasizes that the escape competition effect tends to dominate for lower levels of competition 

whereas the Schumpeterian effect tends to dominate at higher levels of competition. However, a recent paper by 

Correa (2012) finds a negligible inverted U-shape when controlling for structural breaks using the Aghion et al. data. 
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specification (panel data, cross-section, dynamics, etc.) which makes it difficult to identify 

consensus effects. 

The main purpose of this paper is to analyze the determinants that explain the firm-level 

patent output in the Dutch food industry. As emphasized by Peeters and van Pottelsberghe 

(2006), the analysis explicitly takes into account the fact that (i) patents rather than other 

innovation outputs are used and (ii) that we particularly apply this analysis to the food 

processing sector. While most studies are conclusive about the economic valuation of patents 

(e.g., Bloom and Van Reenen, 2002; Sampath and Ziedonis, 2004; Hall and Harhoff, 2012; Hall et 

al., 2013)2, the motivation of this study is to provide more insights into the patenting behavior of 

firms within the food industry. More specifically, we explain firm-level patent propensities by 

determinants that are believed to be empirically important sources where we distinguish 

between the role of a workers' skills, intrinsic firm's innovation as well as other important firm 

characteristics including unobserved firm-level heterogeneity. Do firms patent because they 

employ a higher skilled workforce or is the firm itself intrinsically more innovative? What about 

the role of other firm's characteristics such as, size, ownership structure, competition? Do we 

still observe large unobserved heterogeneity once we control for other subsumed 

characteristics? How are our results affected when we control for the "quality" of patenting? 

Selecting the Dutch food processing industry provides an interesting case study as it contains 

features that are also common to other industries. By focusing on one industry, our 

understanding of what factor may or may not be important when explaining the patent behavior 

of firms and in particular, the contribution of innovation disentangled from what is originated 

from workers versus observed and unobserved firm characteristics, is also increased. 

The data on innovation is extracted from the (R&D) surveys, the Community Innovation 

Surveys, a matched employee-employers database and a database that matches the entire 

population of patents to firms for the period 2000-2008. Interesting is that the patent database 

distinguished Dutch patents and EPO patents. The double counting problem, namely that Dutch 

(and other country-group defined patents) may also count as an EPO patent is cleaned for. The 

data is available from Statistics Netherlands (and is therefore applicable to Dutch food firms). 

The comprehensiveness of the dataset allow us to contribute to the literature in various ways. 

First, we take into account sample selection bias by including firms that do not necessarily 

report their R&D efforts. As might be expected, larger patenting firms also tend to report R&D 

more often. Our data shows that about 10 percent of the patenting firms can be regarded as non-

R&D reporting firms throughout the entire sample period. However, due to the nature of the 

data we find among the R&D reporting, patenting firms missing values in some of the 

accompanying years. Given their involvement with patenting, the exclusion of these firm-level 

observations could result in biased estimates when explaining firm-level patents behavior. To 

correct for this potential problem, we adopt a two-step sample selection model applied to panel 

data with unobserved heterogeneity. 

Second, given that we can control for the presence of innovation, our analysis provides more 

insights on the determinants of a firm's patent propensity. The availability of R&D as a proxy for 

innovation enables us to assess the determinants of a firm's decision to patent as well as the 

level of patenting conditional on R&D appropriation. However, one particular characteristic that 

is inherent to the food industry is that, in addition to R&D, other innovative characteristics may 

be equally important in explaining differences in patent propensities. By merging data at the 

firm-level from different sources, we also take a closer look at the role of other firm-level 

characteristics that may affect the number of patents. We pay specific attention to the role of 

skilled labor, firm's innovative activities (products, process and organizational innovation), a 

firm's ownership structure (foreign, group membership), competition (Herfindahl) and 

economies of scope (range of goods). In addition, the richness of the panel data set enables us to 

control for firm-specific unobserved heterogeneity into innovation relating to factors such as, a 

                                                           
2
 To the extent that we can still learn much more about the size and competitive effects on innovation, an important 

finding is that patent propensities increases with firm size significantly, because larger firms can better diversity their 

fixed costs of patent application over a large number of patents (Nagaoka, et al., 2010) 
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firms's attitude towards patenting as well as other firm's characteristics. As a result, our study 

corroborates with a few existing studies of patenting and innovation at the firm-level while also 

controlling for the presence for other innovative measures (e.g., Brouwer and Kleinknecht, 1999; 

Balasubramanian and Sivadan, 2011; Moser, 2012; Hall et al., 2013). By accounting for all these 

(observed and unobserved) characteristics, we are in a better position to assess the true 

determinants of a firm's patenting behavior. Turning to the empirical evidence on the effects of 

various firm characteristics on patent propensities, no in-depth patent analysis is carried out on 

the effects of various firm characteristics at a more detailed level whereby determinants such as 

R&D, other forms of innovation (product, process, organizational), competition, scope 

economies, skills and ownership structure are incorporated in panel data framework. 

A third way in which we depart from the literature on innovation and patenting is the 

econometric treatment where take into account that the distribution of patents is usually highly 

skewed reflecting overdispersion. The consequence of this feature is that in many application 

using patent count data, distribution assumption according to Poisson, Negative binomial or any 

other popular discrete distributions may be wrongly specified if one does not deal with these 

issues. Zero-inflated count models takes these properties into account which we extend to a data 

panel analysis taking into account the unobserved heterogeneity. 

The remainder of the paper is organized as follows. In section 2 we review related literature. 

In section 3 we provide an overview of the data as well as characteristics of patenting and non-

patenting firms. Section 4 discusses the estimation method. Section 5 reports the results using 

several specifications of patent equations, and investigating the impact of R&D, product/process 

innovation, and other characteristics. Section 6 concludes. 

 

2. Innovation in the food industry and literature review 

This section provides a short overview of innovation studies in the food processing industry. By 

doing so, it increases our understanding of which factors deemed to be important in the food 

processing industry. While there is a limited work on analyzing the determinants of firm-level 

patent propensities in the food processing industry, this industry presents features that are 

common to other industries, as well. Several studies dealing with innovation in the food industry 

(see e.g. amongst others, Karantininis et al., 2011; Arundel and Kabla, 1998; Menrad, 2004; 

Peneder, 2007, Sanyang et al., 2009) point out to a low share of R&D and patented inventions.3 

Also the European Confederation of food and drink industry (CIAA) concluded that more 

innovation is needed so to cope with EU competitiveness (CIAA, 2010). One convincing reason 

why this industry is characterized by a relatively low innovation intensity is, according to Weiss 

and Wittkopp (2005) and Dobson and Chakraborty (2009), that increased power by retailers 

may decrease prices reducing product variety and innovation efforts by agri-food firms. Weiss 

and Wittkopp (2005) further empirically verify that this negative price effect is mitigated when 

manufactures have market power. In an EU-wide study, Wijnands et al. (2007) note that food 

innovation is, in comparison to other industrial sectors, less driven by radical, technological-

driven inventions. Rather, food innovation is oriented towards process technology, marketing 

and organization, and new product variations of existing products. 

While innovation activities in the food industry can be analyzed on different levels, using 

different methodological approaches, one of the other characteristics is that a high relevance of 

product innovation is found among manufacturers. Product innovation can contribute to 

deterring entry. The proliferation of brands, a typical feature in this industry, and product 

differentiation is likely to discourage entry, according to Alfranca et al. (2002). In addition, 

several studies have shown that product innovation can be characterized as incremental 

                                                           
3
 We refer to the CIAA (2010) for cross-country comparison of R&D investment levels and cross -industry 

comparisons of output innovation across world markets. 
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innovation or even imitations (see Menrad, 2004, for further references) or through patent 

licensing (Rubenstein , 2003). 

With specific reference to the Netherlands, let start with a comparative review using 

aggregated data on patents for the food sectors across major countries. In an international 

benchmarking study on innovation in the food processing sector, van Galen et al. (2013) show 

that the number of patent applications in comparison to other major European countries 

amounts the highest to 9% of all patent applications in the world.4 Despite the fact that R&D 

expenditures in this sector are low compared to other sectors, Dutch R&D expenditures, 

expressed as a percentage of turnover, ranged between 40 to 50 percent ranking at the top 

among major EU countries. In addition to R&D, the Dutch food industry scores less on innovation 

measures like "new product" and "organizational" but attains a high score on "process" 

innovation where Germany takes a leading role. As a result, the Dutch food sector is rather 

characterized by technological innovation given the high prevalence of patenting activities and 

the focus on process innovation. Focusing on sectors within the Netherlands, data on total patent 

applications during the period 2000-2006 (CBS, 2010) show that patent applications in the food 

processing industry amounts to 5% of all patent applications. This share ranks at the top 5 of 

shares within the manufacturing sector whereby the sector in audio, video and 

telecommunications accounts for 48% of all patent applications during that same period. 

Since innovation is of less central importance in the food processing sector, the control for 

non-innovative determinants is therefore essential in the analysis. A study that relates patent 

counts to various firm determinants is the work of Gopinath and Vasavada (1999). Using data 

for US food processing firms, the authors look to what extent R&D, market share and the number 

of subsidiaries affect patent counts. Results show that both firm- and industry wide R&D and 

market power increase patent count propensities. Alfranca et al. (2002), who analyze US patent 

counts collected from the 103 largest food & beverage firms around the world over the period 

1997-2004, find that the patent data exhibit an auto- regressive process confirming the success-

breeds-success hypothesis in the innovation literature. A more recent study is Alarcon and 

Polonio (2014) for a panel of 449 Spanish food firms for the period 1998-2008. Breaking down 

their sample into large versus small firms, it is shown that internal rather than external R&D is 

positive associated with patenting in the case of small firms while the opposite effect is found for 

large firms. Other determinants that seem to play an important role are technological 

cooperation with suppliers, size (proxied by the number of employees) and the export intensity, 

but only in the case of large firms. 

 

3. Data 
 

Our data consists of an unbalanced panel of 91 firms, collected from different data sources, 

representing the total population of firms engaged in patenting. We refer to firms that are 

located in the Netherlands and data is collected over the period 2000-2008. The database 

includes 91 firms that have applied for at least one patent during the years 2000-2008. Within 

the food processing industry, the patenting firms represent 99 percent of all patent applications 

during this period. These patenting firms are ultimate parent firms located in the Netherlands 

which are matched to the entire population of patents applied for at the European Patent Office 

and/or the Dutch Patent Centre (“Nederlands Octrooicentrum”) during the period 2000-2008. 

Interesting is that the patent database distinguishes Dutch patents and EPO patents. The double 

counting problem, namely that Dutch (and other country-group defined patents) may also count 

as an EPO patent is cleaned for. In case patents were applied for in name of possible subsidiaries 

in the Netherlands, these where then counted to the ultimate parent of the firm. 

                                                           
4
 The patent data in the study was measured according to the international patent classification that pertains to "food 

and food stuff", "baking" and "butchering". The other EU countries taken in the analysis include Denmark, France, 

Germany, Italy, Poland, Spain, the Netherlands, UK and USA. 
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Because the purpose of this study is to examine the determinants of patents, we first need 

reliable data of R&D investments.5 We used two complementary data sources collected by 

Statistics Netherlands. First, we extract R&D data from the Community Innovation Surveys 

which are collected in the even years of our sample period 2000-2008. For the odd years, we 

append the R&D data using the R&D surveys. Important to note is that the stratified populations 

of firms in the R&D surveys are much smaller than those populations being defined in the CIS 

waves. We return to the implication of this issue below. 

    Table I presents some descriptive statistics on the R&D and patent behavior of the sampled 

firms. The column "R&D reported" shows the sample of firms with R&D reported values in any 

of the sample years, while the column "R&D not reported" presents the sample of firms where 

R&D is reported as missing throughout the sample period. The table shows that firms that are 

engaged in both EPO and Dutch patenting mostly report R&D. This group of firms represents 44 

out of a total of 91 patenting firms and amounts to the majority of EPO patents. 

 

Table I: Innovation Data Sample 

 

Variables R&D 

reported 

R&D non-

reported 

Total firms EPO 

patents 

Dutch 

patents 

Total firm sample of 

which: 

68 23 91 2455 448 

EPO patents 14 5 19 414 0 

Dutch patent firms 21 7 28 0 139 

EPO & Dutch patent 

firms 

33 11 44 2041 309 

      

 

Data on the number of employees, ownership structure, the number of subsidiaries, a firm's 

age and the number of industry segments is taken from the general business register (in Dutch 

"Algemeen Bedrijven Register," ABR). Data on human capital is extracted from an employee-

employer matched database sourced from the Social Statistics Database also available at 

Statistics Netherlands. 

The summary statistics of our key variables are shown in the Appendix according to three 

sub-sample groups: EPO & Dutch patenting firms, Dutch only patenting firms and EPO only 

patenting firms. The statistics are based on the total sample of firms from the period 2000 to 

2008. The average firm in our sample applies approximately for 1 Dutch and 7 EPO patents a 

year, spends on average 8 million R&D, 76% of the firms are engaged in product innovation, 

75% of the firms engage in process innovation while 57% of the sampled firms do organizational 

innovation. On average, 1330 employees are employed, with an average wage bill of 57 million 

euros. The annual Herfindahl index is equal to 1.8%, 34% of the firms are foreign owned, is 

involved in approximately 3 sectors, has approximately 6 firms under control and the ratio high 

versus low skills amounts to 1.15. We note that the standard deviation suggests considerable 

variability in the data series and the distribution of the patent data series is quite skewed.     

 

4. Empirical Analysis 
 

Our empirical analysis is divided in two parts. As discussed previously, R&D is missing or not 

reported for a number of observations. First, we begin with a dynamic type 2 Tobit model which 

we extend to a panel data context, following Wooldridge (1995, 2005), which enables us to 

exploit the unobserved heterogeneity at the individual level. This modelling approach takes into 

account that non-reported R&D firms are engaged in patenting activities. In the second part of 

                                                           
5
 In the subsection 4.3. we discuss in more detail the construction for some of the variables (human capital, 

competition, size). 
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the model, we explain the propensity to patent. We allow for a panel data count model that 

correct for zero inflation.6 

 

4.1. R&D equation 

 

 To model R&D expenditure we adopt a dynamic type 2 Tobit model7 with censoring consisting 

of two equations, where one is a Probit equation determining the probability that a firm reports 

its R&D expenditure and the other equation is a censored regression explaining the amount of 

R&D invested, which is censored at zero, corresponding to zero R&D. 

The selection equation can be specified by a binary variable REP_{it} that is equal to one 

when R&D is reported by firm i in year t and zero otherwise. That is, 

 

           (1)  

where  is the corresponding latent variable,  represents the firm-specific 

heterogeneity,  is a first vector of (firm-related) independent variables, and  is an error 

term. The vector  is a vector with unknown parameters. We observe ( ) 

where observing (0,0) means that  is unobserved, because it is not reported, while 

observing (1,0) means that R&D is reported to be equal to zero. 

Firm i's R&D expenditure per employee at time t is modeled as: 

 

         (2)       

   

where  is a latent variable representing the firm's R&D effort,  reflects the firm-specific 

unobserved heterogeneity,  is a vector of independent variables representing firm 

characteristics, and  is a random error; is a vector with unknown coefficients. The vector 

 is not equal to  , i.e., we allow for an exclusion restriction, which is typical for a sample 

selection model. 

In the dynamic type 2 Tobit model, the firm-specific unobserved heterogeneity is developed 

by Wooldridge (1995, 2005). We assume the distribution of the unobserved individual effects 

(  and ) to be modeled as follows, 

     

 

where α₁₀ and α₂₀ are constants,  and are vectors including the time averages of the 

variables included in  and , δ₁ and δ₂ are the corresponding (vectors of) coefficients to 

be estimated, and  and  may be interpreted as unobserved heterogeneity that is 

uncorrelated with the regressors. To estimate this unobserved heterogeneity, we adapt a two-

step estimation method proposed by Wooldridge (1995) for sample selection in panel data 

models.8  

                                                           
6
 The materials that follow in this section is heavily drawn from Vancauteren et al. (2015). 

7
 See, for example, Amemiya (1985) on Tobit models. 

8
 Note, we follow Dustmann and Rochina-Barrachina (2007) and use a probit equation in the first step and 

an OLS estimation in the second step equation. 
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We include in the vector  the following independent variables to explain R&D 

expenditure: the number of employees ("employment") measured in logs, competitive pressure 

("competition") measured in logs, a variable indicating the number of domestic firms under 

control ("number of firms"), the number of 3-digit industry segments measured in logs 

("number of activities"), a yearly dummy variable equals 1 if the firm 's headquarter is located 

abroad ("foreign"), firm's age in logs, three dummy variables indicating whether the firm has 

been engaged in product, process and organizational innovation, a variable capturing a firm's 

endowment of human capital ("skills"), and yearly dummies. We include in the vector , the 

same variables as in vector  but replace the "number of firms" and "foreign" with a variable 

reflecting whether the firm is part of a group ("group"). To measure competition, we use the 

Herfindahl index of industrial concentration being the sum of the quadratic relative firms sizes 

based on the number of employees. We return to a more detailed discussion in subsection 4.3. 

 

4.2. The Patent Equation 

 

 The next part of the model explains the innovation output measured by the number of patents 

filed in a given year. The discreteness of patent data motivates the use of a count model. To 

present the model, we first introduce 

 

        (5) 
 

where  is the Poisson distribution parameter. Let  be the number of patents. We model 

 as 

 

         (6) 

 

where   is a time-invariant unobserved firm-effect,  is the vector of independent 

variables, and δ₃, β₃ include the unknown parameters. The time-invariant unobserved firm-

effects  is assumed to be standard normally distributed (conditionally on  and ). 

As in equations (3-4), and following Wooldridge (2005), we model the unobserved 

heterogeneity as being dependent on the average of the continuously distributed explanatory 

variables with additional random effects that are uncorrelated with the regressors. In case the 

firm's  is unobserved, we take its predicted value from the model described in the 

previous subsection. We consider  the same as  in equation (2) as motivated by previous 

patent studies as we discuss in the next section. 

In addition, the Poisson model may need to be adapted to a corresponding with-zeros model 

in case of excess zeroes, meaning more zero counts in the data than predicted by a Poisson 

model. Then, the hurdle or two-part model and the zero inflated model are two commonly used 

count models taking the excess of zeros into account. First, we focus on the panel version of the 

hurdle model; similar issues arise for the zero-inflated model. We specify 

 

    (7) 
 

where  represent the probability that firm i did pass a treshold with positive counts. Thus 

conditional on the event that the treshold is crossed, the distribution of positive patents 

outcomes follow the Poisson distribution, see Cameron and Trivedi (2013). Thus, in a hurdle 

model, the decision to patent is usually made on the basis of a first invention and the decision to 

apply for additional patentable inventions is based on the outcomes of this first decision. So, we 

might expect different decision criteria concerning the first patent and additional patents. 

In case the data generating process follows a zero inflated distribution, the model treats the 

zero counts as coming from a distinct process due to, for example, firms that never engaging in 
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the patent activity. The zero-inflated model can therefore be seen as a mixture model having two 

classes. We specify, 

 

  
  (8) 
 

in that case,  is the zero inflation parameter that captures the probability of extra zeros, 

and  is the probability distribution of the Poisson count model. Excess zeros, or zero 

inflation, occur by definition whenever . More specifically, a zero-inflated count 

model considers a probability distribution that allows for modelling two separate zeros:(i) a 

structural (inflated) zero resulting from a binary process, for example, never participating in 

patent activities, and (ii) an incidental zero as a realization of the count process of number of 

patents.9 We model the probability pit as, 

 

        (9) 
 

where   is the unobserved firm-effect (which we define similarly like  using the 

Wooldridge approach),  (which we also set to ) is the vector of independent variables and 

include the unknown parameters. To fit both the pooled hurdle and zero inflated models 

with random effects, we adopt the approach from Min and Agresti (2005) where we allow for 

possible correlation between the unobserved heterogeneity. The Poisson model (6)  assumes 

equality of the mean and the variance in the distribution of the dependent variable. As this 

property may need to be properly handled according to the data, we will also consider a 

negative binomial distribution in (5). 

 

 

4.3. Determining innovation 

A clear contribution in understanding the major determinants that drive innovation in the food 

industry has been made by Grunert et al. (1997) and Avermaete et al. (2004). While the choice of 

the above mentioned variables is motivated by the vast empirical literature which looks into 

innovation determinants (see Vancauteren et al., 2015, for a recent discussion), the specificity, 

however, of each sector is important as each one approaches innovation from different 

technological perspectives (Pavitt, 1984). For measuring innovation we consider the number of 

patent applications in line with a limited number of agri-food studies (Gopintah and Vasavada, 

1999; Rubenstein, 2003; Alfranca et al., 2004; Alarcon and Polonio, 2014) which we relate to 

R&D and, amongst other determinants, to dichotomous variables which look at whether 

companies innovate in product, process and/or organizational innovation. However, a good part 

of the agri-food literature reviewed (amongst others, Garcia and Burns, 1999; Brewin et al., 

2009; de Jong and Vermeulen, 2006; Avermaete et al., 2004) consider these dichotomous 

variables rather as proxies for innovation performance measures which in turn are, usually, 

modelled as a function of several input dependent variables. This study nonetheless does not 

follow this latter approach but instead relate the actual, observed patenting activities to 

innovative performance measures, controlling for R&D, human capital and various other factors. 

The availability of these data allows us to assess the determinants on patent propensities 

conditional on innovating. We believe that patenting behavior increases for innovative firms 

which is captured by R&D, product -, process- and organizational innovation as well as human 

capital. To our knowledge, this is the first time that this type of analysis has been conducted with 

specific reference to the agri-food industry; although other studies have considered the effect of 

innovation output measures but then on the decision to patent, rather than its intensity, and in a 

limited panel framework (Hall et al., 2013) or cross section (Brouwer and Kleinknecht, 1999; 

Pajak, 2010). 

                                                           
9
 For a detailed discussion on zero-inflated count models we refer to Cameron and Trivedi, 2013. 
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Concerning some other determinants, we also include the size of the firm, measured by the 

number of employees, and is expected to be positively correlated with innovation, following 

Schumpeter. Based on an empirical review of food innovation studies that have looked into firm 

size effects (e.g., Alfranca et al., 2014;  Huiban and Boushina, 1998; Karantininis et al., 2011) 

confirm a positive relationship. The economies of scope are also positively related to innovation 

because it lowers the risk portfolio by diversifying innovation projects across product lines. We 

capture scope economies by the number of domestic firms ("number of firms") and the number 

of industry segments ("number of activities") which corresponds to the number of different 4-

digit NACE food sectors in which the firm is involved. In this sense Acosta et al. (2009) point out 

that technological opportunities within and outside food industries may be substantial higher if 

firms diversify and look for external channels to commercialize the innovation and/or 

inventions. 

It has been hypothesized that an important factor that explains foreign direct investment is a 

firm's inventive activity. We include an annual dummy variable "foreign," representing whether 

the firm is controlled by a foreign firm. The question whether foreign controlled firms invest 

more or less in innovation remains unanswered. For instance, some research on the R&D 

activities of foreign controlled firms finds evidence that these firms invest less in innovation 

than domestic firms for the reason that these firms have better access to innovation 

endowments from the multinational enterprise and other subsidiaries (Un and Cuervo-Cazurra, 

2008). On the other hand, these firms may also have better access to capital financing which may 

induce the subsidiary to increase their innovation, which is also confirmed by a number of 

empirical studies (see the review in Narula and Zanfei, 2005; Un and Cuervo-Cazurra, 2008). 

We also take into account how competitive pressures ("competition") affect the firm's 

innovation. We measure the level of competition using a Herfindahl index of industrial 

concentration being the sum of the quadratic relative firm-sizes, 

 

      

where  is the set of the sampled food firms at time t. The variable "competition," defined as 

(1/ ), measures the degree of competition firm i faces at time t. From a strategic point of view, 

it has been noted that food firms are driven to innovate and differentiate their products by the 

need to maintain their competitive advantage through market orientation (Batterink et al., 

2006), from retailers (Weiss and Wittkopp, 2005) and their own direct competitors (Gopinath 

and Vasadava, 1999; Brewin et al., 2009). These above mentioned empirical studies point 

towards a decreasing effect of competition on innovation. However, we note that studies on the 

relationship between competition and innovation measured by patents and R&D in the food 

sector is scarce.10 

 As a final control, we also take into account the importance of human capital. We refer to 

human capital as a form of a "capability" that finds its source from knowledge, skills, workers 

diversity, training, absorptive knowledge and all other forms of knowledge driver capacities. In 

the management literature, these underlying capabilities refer to knowledge capabilities which 

refer to deeper attributes which are often not directly observable or measurable. A recent paper 

by Sutton (2012) focuses on internal factors which can cause different performance levels across 

firms. More specifically, this research paper highlights firm capabilities, which can be defined as 

the working practices or know-how that is captured by a group of people who belong to the 

company. Providing the firms' human capital with the necessary training, or attracting more 

skilled employees is one way in which firm capabilities can be acquired. Another, more indirect 

                                                           
10

 We did not include a market share based on sales data because of data constraints. In the Tobit II R&D sample 

selection equations and the patent equation, we employ variables that are extracted from the "General Business 

Register" (Statistics Netherlands) and are recorded for each firm located in the Netherlands. Sales data are available 

from the Statistics of Finance of Enterprises and are only available for a smaller selection of firms. 
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way, is through side effects that result from networking with other firms (Van Beveren & 

Vanormelingen, 2014). Taking into account workforce characteristics like gender, wages, age, 

experience, training, and education, the general consensus is that more skilled labor appears to 

be beneficial for innovation (see Galilie and Legros, 2012, for recent evidence on French 

manufacturing firms; Huiban and Boushima, 1998, for French food firms; and Avermaete et al., 

2004, for EU wide food firms). The novelty of distinguishing between the role of workers' skills 

and other forms of internal and external innovation that can be acquired by the firm, enables us 

to understand what factor may or may not be important when explaining the patent behavior of 

firm; in particular, the contribution of innovation disentangled from what is originated from 

worker capabilities versus other forms of firms' innovative characteristics. Our approach of 

measuring human capital is based on the concept of knowledgeable workers (see Horwitz et al., 

2003 for a literature review on this categorization), where we rely on classifying jobs into low- 

to high-paid level classifications according to certain threshold values based on the entire wage 

distribution (see Dobbelaere and Vancauteren, 2015, for further details on measurement and an 

application of this approach on productivity effects). On the basis of this approach, we classify 

employees as having a high-paid job if their wage is in the 81th percentile or higher of all 

registered jobs by age category and the NACE 2-digit food processing industry and a low-paid 

job if their wage is at or below the 30th wage percentile. Human capital ("high/low skills") is 

being measured being the ratio of the total number of all high and low paid jobs by firm. 

 

5. Estimation Results 

5.1. The R&D sample selection equation 

In modelling the determinants of R&D expenditure, three models where estimated taking into 

account sample selection, see Table II. In the first two columns, we present the results of a model 

with the individual effects  and  set equal to zero, using pooled data. The third and fourth 

column shows the results of the model with a partial unobserved heterogeneity where we set 

the individual effects  equal to zero such that the remaining unobserved heterogeneity is 

subsumed in the error . The fifth column is the most general model including the entire 

unobserved heterogeneity. We used the specification of the third column to calculate the inverse 

Mills Ratios. 

We first focus on the most general model (column 5). Firm size has a negative and significant 

effect on R&D intensity. The result relating a negative relationship between R&D efforts and 

employment can be reconciled with Demsetz (1969) stating that competition among small firms 

may actually produce greater research and innovation. It is important to note that our results 

from the log-linear model do agree with the finding that larger firms do significantly spend more 

on R&D in levels rather than its intensity. Among the other controls, we find that less 

competitive firms do more R&D suggesting that a rise in the market share of a firm increases its 

R&D efforts. This finding also agree with the findings of some of the above mentioned studies: 

food firms behave less competitive in the food sector. One of the underlying claims is that food 

firms behave rather monopolistic (and accrue profits) in order to make the necessary 

innovations investments. 

Looking at the impact of other forms of innovation on R&D, the results indicate that both 

process innovation and human capital is positively related to R&D intensities. Therefore, 

especially process innovation, and not product or organizational innovation, is more likely to be 

associated with developing new R&D related technology. Our finding on human capital and its 

impact on R&D is in line with the results obtained by Huiban and Boushima (1998) and 

Avermaete et al. (2004) for its impact on innovation propensities for the food industry. We note 

that the work by Adams et al. (2003) and Kanwar and Everson (2003) applied to the broader 

industrial sector also confirms a positive impact of human capital on R&D. Other variables that 
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were not significant in determining the R&D intensity are the number of activities, ownership 

status, age of the firm and multiple firm status. 
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Table II: R&D equations: selection and intensity 

Variables Probit 

(Y/N) 

R&D  

per emp. 

Probit 

(Y/N) 

R&D  

per emp. 

R&D  

per emp. 
Log(Employment) 0.342*** 

(0.043) 

-0.900*** 

(0.127) 

0.313*** 

(0.047) 

-0.954*** 

(0.138) 

-0.566*** 

(0.142) 

Log(Competition) -0.278*** 

(0.064) 

0.622*** 

(0.174) 

-0.154 

(0.113) 

0.773*** 

(0.252) 

-0.414* 

(0.230) 

# Activities -0.018 

(0.012) 

-0.023 

(0.132) 

-0.041** 

(0.012) 

-0.083 

(0.068) 

-0.093 

(0.062) 

Product Y/N 0.616*** 

(0.160) 

-0.743* 

(0.434) 

0.600*** 

(0.160) 

-0.893** 

(0.441) 

0.005 

(0.470) 

Process Y/N 0.003 

(0.148) 

0.554 

(0.385) 

0.003 

(0.148) 

0.554 

(0.388) 

0.720** 

(0.342) 

Org. Y/N 0.248** 

(0.121) 

-0.204 

(0.302) 

0.258** 

(0.120) 

-0.235 

(0.305) 

-0.109 

(0.272) 

Skills 0.147*** 

(0.035) 

0.104 

(0.096) 

0.176*** 

(0.054) 

-0.051 

(0.151) 

0.346** 

(0.143) 

Group (Y/N) 0.649*** 

(0.105) 

 0.538*** 

(0.104) 

  

Foreign - -0.672*** 

(0.247) 

- -0.697*** 

(0.235) 

-0.093 

(0.262) 

# firms - 0.007 

(0.021) 

- 0.006 

(0.022) 

-0.019 

(0.021) 

Log(Age) 0.005 

(0.051) 

-0.023 

(0.132) 

-0.121 

(0.108) 

-0.015 

(0.203) 

0.067 

(0.174) 

Intercept -11.669*** 

(2.315) 

28.751*** 

(6.382) 

-6.543 

(4.354) 

34.339*** 

(9.531) 

15.429* 

(8.731) 

      

ρ12/H0: ρ12,t =0 0.999*** 

(0.046) 

0.943*** 

(0.016) 

0.957*** 

(0.234) 

Log-likelihood 

Est. method 

# obs. 

Censored/Uncens. 

Random effects 

-1308.468 

Tobit II 

734 

502/232 

no 

-1397.267 

Tobit II 

734 

502/232 

Yes,  

-1307.916 

Min. Dist. 

734 

502/232 

Yes, full 

      
Note: ML-estimates with (robust) standard errors in parentheses. Statistical significance is indicated by stars: *: 10%, 

**: 5%, ***: 1% significance level). Reported is the change in probability that R&D is positive for a unit change in each 

of the variables. 

The results of the most general model determining R&D propensities (model 3) suggest that 

larger firms are significantly more likely to engage in R&D. Moreover engagement in product 

innovation, as well as engagement in organizational innovation and more human capital, 

increases the likelihood that food firms undertake R&D. Our model does suggest a varying 

impact of product, process and organization innovation on the decision versus the level of R&D 

outcomes: process innovation seems to play an important role in explaining the R&D level, while 

organization and product innovation affect the probability to engage in R&D. Two additional 

variables that were significant in determining the probability of R&D are the positive effect of 

group membership and the negative impact of diversification ("number of activities"). 

Comparing the estimation results of the third and the fifth column with the remaining 

columns reveal that accounting for the full unobserved heterogeneity seem to affect the 

estimation results. The results show that when the full heterogeneity is taken into account, the 

product innovation, skills and the foreign ownership controls lose their effects. Notice also that 
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the correlation term rho is significant in both the selection and level equation, pointing out the 

necessity of estimating a selection model for the unobserved intensity. 

 

5.2. The patent equation 

 

Next we consider the estimates of the patent equation discussed in subsection 4.2. The 

likelihood ratio test comparing the Poisson model with the Negative Binomial model reveals that 

the overdispersion parameter, denoted by α, equals zero (i.e., H₀:α=0) is conclusively rejected. 

Three models have been estimated using the pooled sample. The first model only includes (the 

logs) of R&D per employee and firm size estimated by ML, model II is a full model without the 

additional random effects while model III includes the entire unobserved heterogeneity. 

 

Table III: Patent equations: two-part Hurdle model 

 

Variables I 

Logit 

(Y/N) 

 

Patents 

II 

Logit 

(Y/N) 

 

Patents 

III 

Logit 

(Y/N) 

 

Patents 

Log(R&D per emp.) 0.303*** 

(0.102) 

0.080* 

(0.047) 

0.369*** 

(0.107) 

0.096** 

(0.042) 

0.325*** 

(0.109) 

0.035 

(0.039) 

Log(Employments) 1.096*** 

(0.179) 

0.574*** 

(0.105) 

0.755*** 

(0.196) 

0.362*** 

(0.117) 

0.825*** 

(0.197) 

0.554*** 

(0.156) 

# Activities   -0.117 

(0.082) 

0.000 

(0.047) 

0.021 

(0.065) 

0.072 

(0.057) 

Log(Competition) 

 

  0.200*** 

(0.076) 

0.059** 

(0.031) 

0.192** 

(0.072) 

-0.005 

(0.034) 

Product Y/N   0.638 

(0.749) 

-0.232 

(0.519) 

0.479 

(0.744) 

-1.556** 

(0.669) 

Process Y/N   -0.396 

(0.736) 

0.168 

(0.442) 

-0.407 

(0.720) 

1.341** 

(0.624) 

Org. Y/N   0.280 

(0.517) 

0.116 

(0.313) 

-0.120 

(0.518) 

0.208 

(0.347) 

Skills   0.539*** 

(0.183) 

0.335*** 

(0.118) 

0.412** 

(0.183) 

-0.061 

(0.109) 

Group (Y/N)   1.972*** 

(0.707) 

1.337** 

(0.581) 

1.743*** 

(0.704) 

0.409 

(0.684) 

Log(Age)   0.471 

(0.389) 

0.354 

(0.265) 

0.214 

(0.179) 

0.118 

(0.518) 

Intercept -9.874*** 

(1.144) 

-4.223*** 

(0.891) 

-6.100* 

(3.712) 

-5.200** 

(2.195) 

-2.361 

(3.353) 

-2.722 

(3.399) 

α 0.233*** 0.419*** 0.199*** 

 

 

 

  3.445*** 

3.610*** 

2.960** 

Log-likelihood 

# obs. 

-686.331 

734 

-636.737 

729 

-789.412 

729 

       
Note: Note: ML-estimates with (robust) standard errors in parentheses. Statistical significance is indicated by stars: *: 

10%, **: 5%, ***: 1% significance level). Reported in the logit equation is the change in probability (that patenting is 

positive) for a unit change in each of the explanatory variables. 

 

 

Turning to the contribution of R&D spending per employee on patent counts in the food 

industry, we find a positive and significant effect on both the number of patents and the 

probability part of the model. We see that including the random effects, capturing the 

unobserved ability to be innovative, results in an improvement of the log-likelihood values; 

however, the coefficients on R&D and some of the other explanatory variables are affected by 
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this inclusion. Turning to the significant effects, the coefficients of the log of employment are 

always positive, indicating that both the likelihood and the number of patents are increasing 

with firm size. When we turn to the full model, competition does seem to play a significant role 

on the probability to patent, while this effect is not significant on patent applications. When 

turning to the other firm-level innovation factors influencing patent behavior, firms which are 

engaged in product innovation apply for a lower number of patents while a firm's involvement 

with process innovation yields a higher number of patents. These innovation characteristics do 

not have any impact on the probability to apply for at least one patent. We also find a strong 

presence of random effects, and the correlation between these random effects is ascertained at a 

one percent significance. 

We explore the sensitivity of our results using an alternative distribution, where we employ a 

zero-inflated count model instead of a two part Hurdle model. Table IV provides the estimates of 

the patent equation using zero-inflated models for zero inflated Poisson (ZIP, model IV) and the 

zero inflated negative binomial (ZINB, model V) models. In each case, the same regressors enter 

the logit model for zero inflation and the count model. We note that the likelihood ratio test (not 

reported) comparing the ZINB model with the ZIP model favors the latter. Although, in the 

presence of unobserved heterogeneity and overdispersion, the ZINB model is inconsistent if 

overdispersion is wrongly specified (Staub and Winkelmann, 2013). 

 

Table IV: Patent equations: Zero-inflated model 

 

Variables IV 

ZI 

Logit 

 

Patents 

NB 

V 

ZI 

Logit 

 

Patents 

Poisson 
Log(R&D per emp.) -0.513 

(0.787) 

0.330** 

(0.094) 

-0.103 

(0.092) 

0.089** 

(0.040) 

Log(Employments) -0.814*** 

(0.211) 

1.055*** 

(0.295) 

-0.717** 

(0.324) 

0.588*** 

(0.263) 

# Activities -0.800* 

(0.321) 

0.028 

(0.139) 

0.114* 

(0.059) 

0.292*** 

(0.063) 

Log(Competition) 

 

0.827 

(0.452) 

0.265*** 

(0.076) 

-0.136* 

(0.078) 

-0.059 

(0.042) 

Product Y/N -3.266 

(3.112) 

-0.519 

(0.752) 

-2.748 

(2.323) 

-1.678* 

(0.882) 

Process Y/N 6.642 

(7.112) 

0.900** 

(0.389) 

2.073 

(2.255) 

0.896** 

(0.386) 

Org. Y/N -2.859 

(3.521) 

-0.431 

(0.472) 

-0.007 

(0.638) 

0.494 

(0.602) 

Skills 2.610 

(3.092) 

0.689*** 

(0.117) 

0.409 

(0.431) 

1.255*** 

(0.254) 

Group (Y/N) -6.684 

(8.667) 

1.261* 

(0.751) 

-1.921** 

(0.961) 

0.623 

(1.208) 

Log(Age) 0.461 

(0.644) 

0.097 

(0.252) 

0.362 

(0.359) 

0.470 

(0.415) 

Intercept -1.207 

(2.752) 

-2.873 

(2.836) 

-1.582 

(4.941) 

-12.695*** 

(4.667) 

α 0.221*** 

 

 

 

2.818*** 

3.147*** 

2.455*** 

2.475*** 

3.001*** 

2.547*** 

Log-likelihood 

# obs. 

-636.737 

729 

-689.412 

729 

     

Note: ML-estimates with (robust) standard errors in parentheses. Statistical significance is 

indicated by stars: *: 10%, **: 5%, ***: 1% significance level). 
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Generally, we find that the parameter estimates are quite similar between the ZINB and ZIP 

estimator, although there are some exceptions. We first discuss the estimation results for patent 

count model. Later we discuss the results corresponding to the zero inflation probability 

equation. As expected, the one year lagged R&D per employee (which is the corresponding semi-

elasticity of the number of patents with respect to lagged R&D), again taken at its predicted 

values from the Tobit II specification, and the elasticity of size ("employment") have a significant 

and positive impact on the number of patent applications. The "skills" turn out to have a 

significant positive effect on patent applications confirming our hypothesis that human capital 

skills and output innovation are positively correlated. The dummy variable "process" innovation 

is also positively associated with patent applications, while "product" innovation has a 

significant and negative impact according to the Poisson specification. In case of the other 

variables, the ZINB model detects a positive effect of "competition" and the "group" variable, but 

no so in the ZIP model while an opposite relationship is found for the "number of activities" 

suggesting some caution in interpreting these effects. 

Next, we discuss the estimation results corresponding to the part of the zero inflation 

probability. Under both the ZIP and the ZINB specification, the results suggest that a unit 

increase in size decreases the probability of an inflated zero patent by around 0.80. In case of the 

"number of activities", this has a positive and significant effect on the probability of an extra zero 

patent under both specifications. Only from the Poisson specification, the group variable. as well 

as competition have a negative effect on the zero inflation probability. When comparing the 

results on patents with the ZIP and ZINB specification, we see relatively minor changes of the 

log-likelihood values. 

Under the maintained assumption of two part Hurdle or zero-inflated data generating 

process, we can also calculate the total marginal effects of those variables, which appear in both 

the logit and the count part of either the Hurdle or the zero-inflated models.11 In setting the  

 probability mass to its overall mean value, the total estimated effects of each of the 

most important determinants according to the various models specifications (model III-V) are 

summarized in Table V below, 

 

Table V: Total estimated effects of patent determinants 

 

Log(R&D per emp.) 0.167**  

(0.091) 

0.638* 

(0.375) 

0.151** 

(0.070) 

log (Employment) 0.996** 

(0.314) 

1.562** 

(0.615) 

1.018*** 

(0.237) 

# activities 0.081  

(0.061) 

0.471* 

(0.285) 

0.223*** 

(0.064) 

Log(Competition) 0.104* 

(0.061) 

0.676** 

(0.269) 

0.022 

(0.036) 

Product Y/N -1.221* 

(0.711) 

0.968 

(0.957) 

-0.029 

(1.115) 

Process Y/N 1.421* 

(0.818) 

-0.291 

(0.957) 

-0.347 

(1.223) 

Skills 1.362** 

(0.571) 

1.043** 

(0.528) 

1.009*** 

(0.186) 

Group (Y/N) -1.214 

 (1.404) 

5.272 

(5.045) 

1.779** 

(0.870) 

                                                           
11

 As shown by Cameron and Trivedi (2013), the total marginal effects of any variable appearing in both  

 and  in respectively equation (6) and (9) is equal to sum of the corresponding component of δ₃ 

and δ₄, where the latter has to be multiplied by 1- . 
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Note: Total marginal effects calculated from the zero inflation and the count part of the zero inflation model; on the 

basis of the overall mean of 1- .(see footnote 11) 

 

Altogether, we observe the following. Consistent with the related work in the literature (e.g., 

Hall, 2011) our analysis based on the total estimated effects strongly suggests that patenting is 

associated with R&D intensities, even after controlling for other forms of firm-level innovation 

characteristics suggesting that the amount of patenting is not exclusively dependent on R&D. In 

the food processing sector studied here, Gopinath and Vasada (1999) for a panel of US firms and 

Alarcon and Polonio (2014) for a panel of Spanish firms, also found a positive effect. Both size 

and to lesser extent the firm's scope of activities are positively associated with patenting. The 

larger the firm and the larger the number of food sub-sectors wherein firms are involved, the 

greater the technological opportunities. As discussed in section 4.3. with specific reference to the 

food industry, our results corroborate with a majority of other studies that have also confirmed 

that size is a strong determinant to explain innovation. An overall competition effect is also 

partially confirmed by the data; however, we note that these significant effects can be driven by 

either the positive effects on probability to patenting or on the amount of patenting. 

To the extent that R&D may be considered as one of the most important determinants in 

explaining patent propensities, our evidence suggests that there is no clear robust total effect of 

the firms' past and current introduction of new products and process innovation on patent 

stocks. Roper and Hewitt-Dundas (2008) and Farber and Hensen (2004) examining the 

relationship between patents granted and sales of innovative products using manufacturing data 

for a group of major European countries did not find a significant relationship neither. The lack 

of any clear statistically robust effect could be explained by a number of factors. According to 

Mansfield (1986) and Hall (2011), very few additional inventions were commercially introduced 

because of patent protection. Faber and Hensen (2004) note that rather the economic 

infrastructure conditions shape the patent innovation activities. Less surprising is the strong 

positive relationship between patent stock counts (rather than its probabilities) and the 

engagement in past and current process innovation. As discussed previously, technical 

innovation has played a prominent role in launching new products, which is considered as a 

characteristics of this industry. We may also infer that a positive relationship between process 

innovation and patenting (merely as patent counts) may be explained by a technological 

complementarity effect whereby secrecy and/or technical disclosure may be less of an issue. 

Our results are also consistent with the view that high wage firms, as a proxy to a capture 

high quality and/or skilled workforce, is associated with more patenting. An important 

implication from this result is that this added explanatory dimension of innovation is significant 

and contributes in explaining one of the most important aspects of a firm's patenting behavior. 

The high positive coefficients clearly indicate that higher skills especially influence the amount 

of patenting. Indeed, this results helps us also to understand and to categorize the jointly impact 

of other forms of output innovation. 

 

5.3. Some additional robustness checks 

 

A few caveats should be born in mind while interpreting the above results. First, it is reasonable 

to expect that not only the number of patent applications but also the "quality" of the patents can 

be explained by our determinants. In order to test this, we adopt the same specification as in 

equations (6-8), where the dependent variable is measured as the total number of forward 

citations per patent, which is the number of times the patent is cited in other patents later. A 

large number of forward citations means that the patent builds upon subsequent innovations. It 

also means that such patents tend to yield more profits for the firm holding the patent (Nagaoka 

et al., 2010). The analysis is conducted to patents with forward citations of the most recent 

patents (December, 2015). The results are presented in Table 6 below. 
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Table VI: Patent citation equations: Two-part Hurdle model 

 

Variables III’ 

Logit 

(Y/N) 

 

Patents 

 

IV’ 

ZI 

Logit 

 

Patents 

NB 

V’ 

ZI 

Logit 

 

Patents 

Poisson 
Log(R&D per emp.) 0.500*** 

(0.008) 

0.035 

(0.039) 

0.337 

(0.272) 

0.482*** 

(0.089) 

0.021 

(0.153) 

0.571** 

(0.238) 

Log(Employments) 0.976** 

(0.406) 

1.028** 

(0.479) 

0.033 

(0.058) 

0.534** 

(0.243) 

-0.025 

(0.387) 

0.741** 

(0.325) 

# Activities 0.087** 

(0.039) 

0.082 

(0.047) 

-0.333** 

(0.148) 

0.144 

(0.094) 

-0.260 

(0.158) 

0.149** 

(0.070) 

Log(Competition) 

 

-0.101 

(0.114) 

0.164 

(0.172) 

-0.045 

(0.747) 

-0.319 

(0.419) 

-0.117 

(0.253) 

-0.307** 

(0.136) 

Product Y/N 0.497 

(0.459) 

0.409* 

(0.249) 

-4.055 

(6.551) 

2.687* 

(1.610) 

3.341** 

(1.395) 

3.748** 

(1.674) 

Process Y/N 0.549 

(0.742) 

0.829 

(0.794) 

5.568 

(4.916) 

3.797*** 

(1.021) 

1.917** 

(0.852) 

2.271 

(1.397) 

Org. Y/N 0.219 

(0.529) 

0.196 

(0.356) 

0.246 

(1.301) 

-0.284 

(0.742) 

-0.557 

(0.754) 

-0.851 

(0.623) 

Skills 0.408** 

(0.200) 

0.639 

(0.459) 

-1.312 

(0.549) 

-0.269 

(0.481) 

-0.507* 

(0.304) 

0.242 

(0.233) 

Group (Y/N) 0.981** 

(0.247) 

0.784 

(0.987) 

-5.967*** 

(1.748) 

0.986 

(0.755) 

-2.016** 

(1.021) 

-0.864 

(0.627) 

Log(Age) 0.214 

(0.179) 

-0.084 

(0.758) 

1.038 

(1.144) 

-0.649 

(0.762) 

1.196* 

(0.692) 

-0.062 

(0.260) 

Intercept -5.003** 

(3.353) 

-3.753** 

(1.541) 

5.601 

(3.522) 

-1.769 

(1.115) 

11.173*** 

(2.251) 

-6.007*** 

(2.187) 

α 0.707**   

 

 

 

0.506** 

0.107 

1.006*** 

2.090*** 

3.451*** 

2.544*** 

2.383*** 

3.192*** 

2.456*** 

Log-likelihood 

# obs. 

-333.930 

729 

-219.749 

729 

-451.268 

729 

Note: ML-estimates with (robust) standard errors in parentheses. Statistical significance is indicated by stars: *: 10%, 

**: 5%, ***: 1% significance level). Reported in the logit equation is the change in probability (that patenting is 

positive) for a unit change in each of the explanatory variables. 

 

When patent citations are used as an indicator for the technological importance of the patent, 

our results show that the coefficient on the effect of product innovation becomes much more 

important in determining the citations probability, as well as the number of citations, while we 

found in the previous analysis a negative and significant coefficient on the actual number of 

patents. The impact of process innovation is negligible. Furthermore, the effect of the R&D 

coefficient does not have any effect on the probability that a patent will be forwarded cited. 

Another interesting finding is that the results in terms of the effect of skills on patent citations 

becomes very weak or insignificant. 

As another robustness check, we analyzed the dynamics of the model, that is, considering the 

time lags in the innovation determinants and the effect of lagged patent counts on current patent 

counts while addressing unobserved heterogeneity. Regarding the choice on time lags, we tested 

for the best fitting lags, and we obtained more significant results, using the Bayes Information 

Criteria, with lagged R&D up to one year and the variables for product/process/organization 

innovation expressed as a 1/0 dummy variable taking the value 1 if the firm has been in current 
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or prior years engaged in of the innovation activities. Note that one of the particularities of the 

innovation dummies is that, for each period, innovation incidence pertains to any of the three-

year period. We also considered the specification by the current period dummy but did not affect 

our key results. Regarding the specification by including the lagged patent behavior, we 

considered two specifications: expressed as a dummy variable and another specification by 

including lagged patent counts. However, because of convergence problems, we did not obtain 

satisfactory results. Therefore as a final robustness check we also re-estimated the patent 

equation in dynamic form using the system GMM, which includes fixed effects and tackles 

endogeneity of the right-hand-side variables by using their lagged values (in first differences and 

levels) as instruments. Therefore, under the assumption that current random shocks are 

uncorrelated with past values from firm-level regressors, we use past values from t-2 onwards 

as instruments and t-1 periods for the innovation dummies. Using the full specification, the 

effect of persistence in the log number of patents and citations is now confirmed. The 

persistence in patent counts has an elasticity of 0.20, while the effects of the log of R&D per 

employee remain fairly robust with an elasticity of 0.03. The effect of the other variables are 

very similar to the ones presented in Table 3 and 4; however, the effect of output innovation on 

patents becomes insignificant. We note that the test for the validity of the instruments using the 

Sargan test yields the problem of weak instruments, and we note that the estimates obtained are 

sensitive to the instruments used. 

 

 

6. Conclusion 

In this paper, we have estimated several alternatives of count models for panel data, with the 

main purpose of analyzing a firm's patent output in the food processing industry, using firm-

level data for the period 2000-2008. Empirical evidence indicates that patent output increases 

with R&D intensities and skills, after controlling for other innovation output measures, other 

firm-level characteristics and unobserved heterogeneity. The importance of unobserved 

heterogeneity, which captures managerial know-how, other forms of ability or other time-

invariant characteristics, is confirmed. In this sense, the availability of these other innovative 

determinants enables us to better assess in which way R&D and skills translate into higher 

patent activities. In addition, we are also in a better position to assess the true determinants of 

patenting.  

The results are in line with a robust finding inferred by food innovation studies. First, we find 

that process innovation has a major impact on patent counts. Second, our results are also 

consistent with the view that high wage firms, as a proxy to capture high quality and/or skilled 

workforce, is associated with more patenting. Third, the results suggest that the time-invariant 

unobserved firm-level characteristics are deemed to be very important for determining R&D and 

patenting. The inclusion of unobserved heterogeneity affect especially the other innovation 

determinants. Fourth, when we control for the quality of patenting, product becomes an 

important determinant in explaining the patent counts, and the effect of process innovation 

becomes insignificant. Finally, we also find that dynamics are import by including the lagged 

number of patent counts, however, the significance of product and process innovation vanishes, 

while the other determinants remain unaffected.  

Our results have some direct policy relevance.  Over the past decade, policy makers have 

regarded the transformation towards a knowledge-based economy, a key priority towards 

higher growth performance.  Consequently, policy makers have laid out numerous incentives in 

enhancing innovation activities. From the firm-size perspective, our results reveal that small 

firms tend to be the smallest innovators measured by their R&D reporting frequencies, their 

R&D levels, and the number of patents issues. However, our results indicate that especially 

smaller firms yield higher innovation intensities. From the perspective of designing policies with 

the aim to increase innovation, not only the size effect is important as our results reveal 

heterogeneous drivers of innovation in terms of human capabilities, firm-intrinsic R&D and 
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output-related innovation activities as well as other unobserved firm-level heterogeneity. More 

research should be oriented towards analyzing this type of variable impacts.   
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Appendix 
 
Table A1: Sample Means and Standard Deviations 

 
 EPO & Dutch patent 

firms 

(n=320, firm-years) 

Mean (St.Dev.) 

EPO only 

patent firms 

(n=171, firm-years) 

Mean (St.Dev.) 

Dutch only 

patent firms 

(n=243, firm-years) 

Mean (St.Dev.) 

EPO patent applications 7.086 (34.146) 2.421 (6.125) 0 

Dutch patent applications 1.075 (3.154) 0 0.573 (2.607) 

R&D (M euro) 8.856 (22.759) (n=144) 5.469 (10.291) (n=75) 4.659 (3.086) (n=95) 

D (product) 0.768 (0.424) 0.820 (0.386) 0.703 (0.417) 

D (process) 0.756 (0.420) 0.611 (0.499) 0.621 (0.487) 

D (organization) 0.570 (0.430) 0.402 (0.494) 0.388 (0.497) 

Employment 1330.7 (1778.9) 1061.319 (1717.024) 268.507 (230.691) 

Wages (M euro) 57.299 (69.784) 57.123 (76.452) 11.938 (13.493) 

Herfindahl 0.018 (0.023) 0.014 (0.022) 0.003 (0.003) 

D (foreign) 0.340 (0.474) 0.444 (0.498) 0.596 (0.491) 

Ratio high/low skills 1.156 (1.310) 1.026 (1.223) 0.608 (1.412) 

# activities 3.085 (3.069) 3.395 (3.165) 2.317 (2.356) 

# subsidiaries 5.889 (9.271) 5.697 (8.628) 2.827 (2.899) 

 


