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We calculate analytically the stochastic thermodynamic properties of an isothermal Brownian engine
driven by a duo of time-periodic forces, including its Onsager coefficients, the stochastic work of each
force, and the corresponding stochastic entropy production. We verify the relations between different
operational regimes, maximum power, maximum efficiency, and minimum dissipation, and reproduce the
signature features of the stochastic efficiency. All of these results are experimentally tested without
adjustable parameters on a colloidal system.
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I. INTRODUCTION

The efficiency of a machine is a central, founding
principle in thermodynamics. Carnot realized that the
impossibility of a perpetuum mobile (of the second kind)
implies that the efficiency of a thermal machine is bounded
from above and that this bound is universal, independent of
the details in composition or construction of the engine [1].
His key insight was that maximum efficiency is reached
when operating in the immediate vicinity of an equilibrium
point. A machine operating under this condition can
function equally well as an engine and as a refrigerator.
Carnot’s work eventually led Clausius to introduce a new
state function, the entropy, and to show that the upper
bound of Carnot was tantamount to the famous second
law of thermodynamics, i.e., the increase of the total
entropy [2].
In the original Clausius formulation of thermodynamics,

the entropy is well defined only for systems in equilibrium,
and the second law refers to the increase of the total entropy
of a closed system. Through the work primarily of
Prigogine, it became clear that one can also define entropy
in a state of local equilibrium [3,4]. Together with Onsager,
he laid the groundwork for linear irreversible thermody-
namics, a theory that was further developed in detail for
chemical and hydrodynamical systems [4–6]. Onsager
provided as an additional ingredient the symmetry of a
properly defined response, or Onsager matrix L, L ¼ LT

(for variables that are even under time reversal). The
symmetry derives from the reversibility of the microscopic
laws. As the off-diagonal elements of the Onsager matrix
describe, for a thermal engine, the machine and refrigerator

functions, respectively, this symmetry extends the com-
plementarity, noted by Carnot, between these two modes of
operations into the linear realm of irreversible thermody-
namics. Although numerous examples of Onsager sym-
metry have been documented [6], they are mostly limited to
steady-state systems. Most thermodynamic machines, on
the other hand—in particular, the Carnot engine—operate
under a time-periodic protocol. Surprisingly, it is only
recently [7–14] that such systems have been discussed in
the context of linear irreversible thermodynamics and that
the corresponding Onsager matrix and its symmetry proper-
ties have been uncovered. One significant novelty is that the
Onsager symmetry is generalized to the Onsager-Casimir
relationL ¼ ~LT , where the tilde stands for the matrix when
operating under the time-inverse protocol. The breaking of
the Onsager symmetry seems to have a number of puzzling
consequences, in particular, concerning the efficiency at
maximum power and efficiency at minimum dissipation,
which have been clarified recently [15–17].
“Standard” thermodynamics deals with macroscopic

systems. Since the very beginning, questions have been
posed about its applicability to small-scale devices, with
the Maxwell demon the most notable illustration. Over the
past two decades, thermodynamics has been extended to
describe small systems, including their thermal fluctua-
tions. The most striking result is that the second law—the
positivity of entropy production—is replaced by a sym-
metry property for the probability distribution of this
quantity, which reproduces the positivity for the average
as a subsidiary consequence. The implications on the
fluctuating efficiency of a small-scale engine were eluci-
dated more recently [18–36]. One surprising conclusion is
that the maximum efficiency, corresponding to a reversible
operation, can occur by chance but is, for a time-symmetric
operation, exponentially less likely than any other finite
efficiency. The specific form of the probability distribution
for the efficiency (or, more precisely, its large deviation
function) is, in the regime of linear response, fully specified
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in terms of the Onsager coefficients, providing a novel
relation between fluctuation and dissipation.
The connection between Carnot efficiency and the

second law puts a special emphasis on thermal machines.
The second law, however, applies equally well to iso-
thermal energy transformations, in which one form of
“work” is transformed into another form of “work.”
Such transformations are actually ubiquitous in biological
systems, for example, the notable role of adenosine
triphosphate as energy converter in the cell [37,38]. In
this case, efficiency is defined as output over input work.
Maximum efficiency is again reached for a reversible
operation and is equal to 1, expressing the thermodynamic
possibility of a lossless work transformation.
The main purpose of this paper is to explicitly test and

illustrate, both theoretically and experimentally, the afore-
mentioned crucial features of stochastic thermodynamics
on an exactly solvable isothermal Brownian engine, driven
by a duo of time-periodic forces. In particular, we evaluate
explicitly the Onsager matrix, describing the dissipation
and interaction of these two forces, verify the Onsager-
Casimir relation, and check the newly discovered connec-
tion between different operational regimes of the engine
(maximum power, maximum efficiency, minimum dissi-
pation). Turning to the stochastic features, we verify the
fluctuation theorem, evaluate the probability distribution of
stochastic efficiency and the corresponding large deviation
function, and check its signature features. Last but not least,
all these results are experimentally tested and reproduced
without adjustable parameters on a colloidal system.

II. LINEAR IRREVERSIBLE THERMODYNAMICS

We consider an open system in contact with one or
several (ideal) reservoirs of heat, particles, or both, which
can exchange work with one or several (ideal) work
sources. The rate of change of its entropy has two
contributions, an entropy flow term _Se, representing the
exchange of entropy with the environment, and an entropy
production contribution _Si, describing the internal irrevers-
ible processes:

_S ¼ _Se þ _Si: ð1Þ

The second law requires that the entropy production be
non-negative:

_Si ≥ 0: ð2Þ

Furthermore, the entropy production can, at a steady state,
typically be written as a bilinear sum over the constitutive
irreversible processes [6,39,40]:

_Si ¼
X
n

JnXn: ð3Þ

Here, the X’s represent, for each process, the thermo-
dynamic forces quantifying the applied nonequilibrium
constraint, for example, a gradient in chemical potential.
The J’s represent the corresponding fluxes, for example, a
work or particle flow. The second law stipulates that, given
a single constraint _Si ¼ JX, flow and force have to be in the
“same direction,” JX ≥ 0 (for example, particles moving
to lower chemical potential). But with two flows, one
contribution to the entropy production can be negative,
provided the overall entropy production is positive:

_Si ¼ _Si;1 þ _Si;2 ð4Þ

has to be non-negative, but considering the constitutive
processes,

_Si;1 ¼ J1X1; _Si;2 ¼ J2X2; ð5Þ

one can have a “load” _Si;1 ¼ J1X1 < 0 if the “drive”
_Si;2 ¼ J2X2 ≥ −J1X1. This observation corresponds, in
fact, to the defining principle of an engine. In the best-
known example, the heat engine, a “downhill” flow of heat
produces work via an “uphill” flow against the other (e.g.,
mechanical, chemical, or electrical) force. The principle,
however, applies equally well to isothermal energy trans-
formations, where one form of work is transformed into
another form of work—a “work-to-work” engine.
From the above discussion and from Eq. (3) for the

entropy production, a natural alternative definition of a
thermodynamic efficiency η̄ is

η̄ ¼ −
_Si;1
_Si;2

¼ −
J1X1

J2X2

≤ 1: ð6Þ

The universal upper bound 1 is reached for zero entropy
production, i.e., for a reversible operation. Note that this
equilibrium point is also the point of flux reversal; i.e.,
an infinitesimal change of the forces at this point can switch
the direction of both fluxes, exchanging “drive” and
“load.” The definition of efficiency is then modified
to η̄ ¼ −J2X2=J1X1.
A further simplification arises by noting that in many

cases—chemical reactions being a notable exception—the
forces are effectively weak (e.g., weak gradients). Since the
fluxes vanish in the absence of the forces (which corre-
sponds to an equilibrium state), a Taylor expansion to
lowest order in the forces gives

J1 ¼ L11X1 þ L12X2; J2 ¼ L21X1 þ L22X2: ð7Þ

These, together with Eqs. (1)–(3), form the core equations
of linear irreversible thermodynamics. The second law now
stipulates that the quadratic form
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_Si ¼ L11X2
1 þ ðL12 þ L21ÞX1X2 þ L22X2

2 ≥ 0; ð8Þ

has to be non-negative, implying

L11 ≥ 0; L22 ≥ 0; ðL12 þ L21Þ2 ≤ 4L11L22: ð9Þ

Onsager discovered an important additional constraint
on these coefficients [39,40]. He showed that, for properly
defined fluxes and forces (and variables that are even under
time reversal), the matrix of the Onsager coefficients L
also has to be symmetric, with L12 ¼ L21. More generally,
microscopic reversibility implies the Onsager-Casimir
symmetry L12 ¼ ~L21, where the tilde refers to inversion
of the variables that are odd under time inversion [41] (for
example, a velocity field [42] or a magnetic field [4,43]).
Recently, it was realized that the Onsager-Casimir sym-
metry should also apply to variables that are even under
time reversal but are driven periodically by a time-
asymmetric force [8–12,14,44]. The latter situation is of
great interest, as many engines operate in a time-
asymmetric fashion. For example, the time reverse of a
Carnot cycle no longer functions as an engine but rather as
a refrigerator or heat pump.
Concerning the operational conditions of an engine, one

may obviously be interested in maximizing the output,
P ¼ −TF1J1, which is typically proportional to an output
power and where T is the temperature of the power-
producing device. But one may also be interested in
maximizing the efficiency η̄ or in minimizing the dissipa-
tion _Si. The simplest way to perform such optimizations
is to vary the load parameter F1. The optimization is,
however, hampered by a trade-off between power and
efficiency, which makes it impossible to optimize both
features at the same time. In fact, within the linear
approximation of Eq. (7), straightforward algebra implies
that power and efficiency in both regimes are linked [17]:

η̄MP ¼
�

PME

2PMP − PME

�
η̄ME; ð10Þ

where the subscripts MP and ME refer to the engine
operating under maximum power and maximum
efficiency, respectively. This relation further splits into
two separate conditions when the Onsager symmetry is
valid [13,17,45,46]:

PME

PMP
¼ 1 − η̄2ME; η̄MP ¼ η̄ME

1þ η̄2ME
: ð11Þ

Furthermore, these two regimes can also be linked to the
limit of minimal dissipation (subscript mD):

PmD ¼ 0; T _SmD ¼
�

1

η̄MP
− 2

�
PMP: ð12Þ

III. GAUSSIAN STOCHASTIC IRREVERSIBLE
THERMODYNAMICS

The above discussion refers to macroscopic systems,
with no reference whatsoever to fluctuations. However, it
turns out that a thermodynamic description that includes
fluctuations away from a “thermodynamic limit” leads to a
much more profound and satisfying formulation of the
second law. This should not, in retrospect, be a surprise as,
from the very beginning, Boltzmann himself stressed that
the second law should be understood and interpreted in a
statistical sense. We briefly review the salient features of
this stochastic thermodynamics [47,48] in the context of a
Gaussian approximation, which is relevant for the work-to-
work engine we introduce below. The first observation to
make is that the quantities observed in an experiment
will fluctuate from one run to another. We denote such
fluctuating quantities by the lower-case version of their
macroscopic analogue; for example, the fluctuating work
delivered by the engine is represented by w, the fluctuating
flux by j, etc. The stochastic entropy production for an
engine thus reads [cf. Eq. (3)]

_si ¼ _si;1 þ _si;2; ð13Þ

with

_si;1 ¼ j1X1; _si;2 ¼ j1X2: ð14Þ

Note that the thermodynamic forces are supposed here to be
imposed by macroscopic constraints and hence are not
fluctuating. The second law is now replaced by a symmetry
property, sometimes referred to as the fluctuation theorem.
The quantities of interest are the sample averages of the two
contributions to the entropy production, measured over a
time t:

σ1 ¼
1

t

Z
t

0

dt0 _si;1; σ2 ¼
1

t

Z
t

0

dt0 _si;2: ð15Þ

The fluctuation theorem (in its simple asymptotic form)
imposes the following constraint:

Pðσ1; σ2Þ
~Pð−σ1;−σ2Þ

∼ exp

�Z
t

0

dt0 _si=kB

�

¼ exp ½ðσ1 þ σ2Þt=kB�: ð16Þ

Here, ~P denotes the probability distribution for the time-
reversed experiment. The ∼ sign refers to the fact that the
relation is valid for asymptotically large times. (The result
may be valid for all times under supplementary conditions;
see, e.g., Ref. [49].)
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To study the implications of the fluctuation theorem,
we consider the situation in which the fluctuations in the
sample entropy fluxes σ1 and σ2 are described by a bivariate
Gaussian distribution, with averages hσii and covariance
matrix Cij ¼ hσiσji − hσiihσji:

Pðσ1; σ2Þ ¼
1

2π
ffiffiffiffiffiffiffiffiffiffiffi
detC

p e−ð1=2Þ
P

i;j
ðσi−hσjiÞC−1

ij ðσj−hσjiÞ: ð17Þ

This Gaussian ansatz is typically valid for asymptotic long
times and, even then, only as a first approximation of a
large deviation function. In the model that we discuss in the
following, it is exact and valid for all times; hence, we write
an equality sign here. Combined with the fluctuation
theorem, Eq. (16), we derive fluctuation-dissipation rela-
tions between the Onsager coefficients, which characterize
the average response, and corresponding correlation

functions (other conditions relate forward to time-reverse
averages; see the Appendix for more details):

Cij ∼ kBXiXj
ðLij þ LjiÞ

t
: ð18Þ

Within the Gaussian approximation Eq. (17), the stochastic
thermodynamic properties of the engine are fully charac-
terized in terms of the Onsager response coefficients. In
particular, one can discuss the novel issue of stochastic
efficiency η:

η ¼ −
σ1
σ2

: ð19Þ

Its probability distribution, being the ratio of correlated
Gaussian random variables, is given by [24,28,50]

PtðηÞ ¼
Z

∞

−∞
dσ1

Z
∞

−∞
dσ2δ

�
ηþ σ1

σ2

�
ptðσ1; σ2Þ

¼
ecðηÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−½aðηÞ2 þ 2bðηÞcðηÞ�

p h
2þ jaðηÞjffiffiffiffiffiffi

bðηÞ
p eaðηÞ2=2bðηÞ

ffiffiffiffiffiffi
2π

p
erf

�
jaðηÞjffiffiffiffiffiffiffiffi
2bðηÞ

p
�i

2bðηÞπjhσ1i þ ηhσ2ij
; ð20Þ

with

aðηÞ ¼ C22ηhσ1i − C11hσ2i þ C12ðhσ1i − ηhσ2iÞ
detC

;

bðηÞ ¼ C11 þ 2C12ηþ C22η
2

detC
;

cðηÞ ¼ −
C22hσ1i2 − 2C12hσ1ihσ2i þ C11hσ2i2

2 detC
: ð21Þ

At this stage, the above expression for PtðηÞ is a purely
mathematical result, obtained from Eqs. (17) and (19). To
incorporate thermodynamic information, we consider the
large t limit. PtðηÞ then assumes a large deviation form:

PtðηÞ ∼ exp ½−tJ ðηÞ�; ð22Þ

characterized by the large deviation function J ðηÞ:

J ðηÞ ¼ − lim
t→∞

1

t
lnPtðηÞ: ð23Þ

The latter can be calculated explicitly from Eq. (20)
[18,24,28,29]. One finds

J ðηÞ ¼ − lim
t→∞

2bðηÞcðηÞ þ aðηÞ2
2bðηÞt

¼ lim
t→∞

ðhσ1i þ ηhσ2iÞ2
2tðC11 þ 2ηC12 þ η2C22Þ

: ð24Þ

This expression can be further simplified by combining
with the thermodynamic expressions for the averages
ðσii ¼ JiXi, cf. Eqs. (7), (14), and (15), and the constraint
imposed by the fluctuation theorem on the correlation
function Cij, cf. Eq. (18). One thus obtains the following
elegant expression in terms of response coefficients and
thermodynamic forces:

J ðηÞ ¼ 1

4kB

�
½X1 ηX2 �L

�
X1

X2

��
2

½X1 ηX2 �L
�
X1

ηX2

� : ð25Þ

As can be verified by inspection (noting J ¼ LX), the large
deviation function has a minimum equal to zero at the
most probable value of the efficiency, J ðη̄Þ ¼ 0, with η̄
given by Eq. (6). Any efficiency different from this
macroscopic efficiency becomes exponentially unlikely
in the large time limit. A more surprising feature is that
J ðηÞ is a nonconvex, nonmonotonic function. It converges
to the single asymptotic value, J22=ð4kBL22Þ, for η → �∞,
and displays a single other extremum, namely a maximum,
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at an intermediate value of η, which is larger than η̄.
Furthermore, this value is located at reversible efficiency,
ηrev ¼ 1, if and only if the Onsager matrix satisfies
L12 ¼ L21 [29].
To complete the connection with cyclic thermodynamic

small-scale machines, and in particular with the concrete
model we discuss in the following, we note that the above
results remain valid for periodically driven systems, with all
quantities replaced by their average over one period. Time t
is replaced by the number of cycles n. Hence, it will be
sufficient to evaluate the corresponding Onsager coeffi-
cients to characterize the stochastic thermodynamic
properties, at least within the Gaussian linear-response
approximation expounded above. In particular, we con-
clude that for a machine operating under a time-symmetric
protocol, reversible efficiency becomes exponentially less
likely than any other finite efficiency. We expect to see this
signature appear as a pronounced minimum, developing in
the probability distribution PnðηÞ for the efficiency as the
number of cycles n is increased.

IV. GAUSSIAN STOCHASTIC IRREVERSIBLE
THERMODYNAMICS FOR A BROWNIAN DUET

We consider a single overdamped Brownian particle
moving in one dimension obeying a Langevin equation:

_zðtÞ ¼ −γ−1
∂
∂zUðz; tÞ þ

ffiffiffiffiffiffiffi
2D

p
ξðtÞ: ð26Þ

Here, ξðtÞ is a Gaussian white noise:

hξðtÞi ¼ 0; hξðtÞξðt0Þi ¼ δðt − t0Þ; ð27Þ

where γ is the friction coefficient, D the diffusion constant,
T the temperature of the bath, and zðtÞ the position of the
particle. The friction coefficient is linked to the diffusion
coefficient by the Einstein relation D ¼ kBT=γ.
In order to confine the particle, one part of the potential

UðzÞ corresponds to a static harmonic trapping potential
κz2=2. In order to operate as an engine, we apply, in
addition, a time-periodic forcing FðtÞ. Before including the
effect of the fluctuations, we first describe the average
behavior.
To do this, consider a macroscopic object with a single

(nonfluctuating) degree of freedom Z (e.g., its position) in a
potential UðZÞ ¼ κZ2=2, with κ the spring constant. It
undergoes overdamped motion in a heat bath at temperature
T subject to an additional time-dependent external force
FðtÞ. From a thermodynamic point of view, the object
with its spring energy is an open system. For simplicity, we
assume that it has no further “internal structure” that is
modified by the elongation of the spring; hence, the entropy
of the system remains unchanged under elongation—think
of a particle in an externally applied parabolic potential
rather than a particle attached to a rubber spring. The heat

bath is supposed to be ideal; i.e., it exchanges heat in a
reversible way and does not produce entropy on its own. If
we neglect inertia, the equation of motion for the object is

_Z ¼ γ−1½−κZ þ FðtÞ�: ð28Þ

Let us first consider “loading” the spring. This can be
done reversibly, by applying a force infinitesimally larger
than the restoring spring force. We set FðtÞ ≈ κZðtÞ.
The work done in bringing the object from an initial
position Zi ¼ 0 slowly to a final position Zf is

W ¼ R Zf

0 FðtÞdZðtÞ ¼ 1
2
κZf

2, which equals exactly the
increase of internal energy of the spring. By the first
law, no heat is exchanged with the bath, and ΔeS ¼ 0. As
the entropy of the system is unchanged under elongation,
ΔS ¼ ΔiSþ ΔeS ¼ 0, or ΔiS ¼ −ΔeS ¼ 0, as expected
for a reversible process.
Alternatively, we can load the spring abruptly, by

switching on a constant force F0 at time t ¼ 0. We set
FðtÞ ¼ F0θðtÞ, where θ is the Heaviside step function.
Under the influence of this force, the average particle
position shifts from the initial position Zi ¼ 0 to the final
position Zf ¼ F0=κ. The work is just force times displace-
ment:W ¼ F0Zf ¼ F2

0=κ. As before, the Brownian particle
gains potential energy ΔE ¼ κZf

2=2 ¼ F2
0=ð2κÞ ¼ W=2,

which is, however, less than the work that is performed.
According to the first law, ΔE ¼ W þQ, the heat towards
the system, Q ¼ ΔE −W ¼ −F2

0=ð2κÞ, is then negative.
An amount −Q has thus been dissipated in the bath.
Since ΔS ¼ ΔiSþ ΔeS ¼ 0, we conclude that ΔiS ¼
−ΔeS ¼ Q=T ¼ F2

0=ð2TκÞ is positive, as it should be.
For the above construction to operate as an engine, we

need to add a resetting mechanism; i.e., the object needs to
return to its original state. We then need to repeat the same
operation over and over again, which can be achieved
by considering a time-periodic driving FðtÞ ¼ Fðtþ T Þ,
with T the period of the driving. The equation of motion,
Eq. (28), can still be solved exactly. After an initial
transient, the system will settle into a “steady state” in
the long-time limit t → ∞:

ZðtÞ ¼ 1

γ

Z
∞

0

dτe−kτ=γFðt − τÞ;
_EðtÞ ¼ κZðtÞ _ZðtÞ;
_WðtÞ ¼ FðtÞ _ZðtÞ;
_QðtÞ ¼ _EðtÞ − _WðtÞ ¼ −γ _ZðtÞ2: ð29Þ

A crucial observation to make is that this steady state is
time periodic: ZðtÞ inherits the periodicity of the driving
ZðtÞ ¼ Zðtþ T Þ, and so do the other variables. Hence, it is
quite natural to investigate the behavior of the system when
averaging over one period T . It will be convenient to do so
in terms of the time-periodic driving written as
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FðtÞ ¼ F0gðtÞ; ð30Þ

with gðtÞ a time-periodic, dimensionless function gðtÞ ¼
gðtþ T Þ and F0 a measure of the amplitude of the
driving FðtÞ.
Returning to the thermodynamic picture, we first make

the important observation that the energy is the total
derivative of the periodic function κZ2ðtÞ=2; hence, its
change over one period is identically zero. Consequently,
the system is merely dissipating, in the course of every
period, the input work into output heat. The corresponding
entropy production, averaged over one period (still denot-
ing it, by a slight abuse of notation, as _Si), is given by

_Si ¼
1

T

Z
T

0

dt
_WðtÞ
T

¼ −
1

T

Z
T

0

dt
_QðtÞ
T

¼ γ

TT

Z
T

0

dt _ZðtÞ2: ð31Þ

One can now rewrite this result as follows in the “standard
notation” of linear irreversible thermodynamics:

_Si ¼ XLX; ð32Þ

with the (scalar) thermodynamic force defined as

X ¼ F0

T
: ð33Þ

The Onsager coefficient is most easily obtained by first
replacing, in Eq. (31), one factor _Z by its expression from the
equation of motion Eq. (28). Noting that the integral over
one period ofZ _Z is zero and replacing the second factor _Z by
using Eq. (29), one immediately finds the following exact
expression for the (scalar) Onsager coefficient L:

L ¼ T
T γ

Z
T

0

dt
Z

∞

0

dτgðtÞ_gðt − τÞe−kτ=γ: ð34Þ

The second law implies that this coefficient should be
non-negative. This is most easily verified by using a Fourier
series for the function gðtÞ, periodic with frequency
ω ¼ 2π=T :

gðtÞ ¼
X∞
n¼1

½an sin ðnωtÞ þ bn cos ðnωtÞ�: ð35Þ

One finds (setting ω0 ¼ ωtr ¼ ωγ=κ)

L ¼ T
2γ

X∞
n¼1

n2ω02

n2ω02 þ 1
ða2n þ b2nÞ ≥ 0: ð36Þ

Note that the entropy production Eq. (32) can also be
written as

_Si ¼ JX; J ¼ LX; ð37Þ

with J the (scalar) flux.
The above dissipative machine appears to be utterly

uninteresting. It is, however, clear from Sec. II how to
transform it into a genuine engine by applying a periodic
modulation that is the sum of two separate contributions,
FðtÞ ¼ F1ðtÞ þ F2ðtÞ. Here, F1ðtÞ ¼ F1ðtþ T Þ ¼
F1;0g1ðtÞ plays the role of the load and F2ðtÞ ¼ F2ðtþ
T Þ ¼ F2;0g2ðtÞ the role of the drive. The two forces could
be mechanical, electrical, chemical, or some mixture but
need not be further specified. Equation (29) remains valid
with the understanding that the work rate can be split into
two separate contributions, coming from F1 and F2,
respectively:

_WðtÞ ¼ _W1ðtÞ þ _W2ðtÞ;
_W1ðtÞ ¼ F1ðtÞ _ZðtÞ;
_W2ðtÞ ¼ F2ðtÞ _ZðtÞ: ð38Þ

Similarly, the entropy production, averaged over one period
[cf. Eq. (31)], can be written as follows [cf. Eq. (4)]:

_Si ¼ _Si;1 þ _Si;2;

_Si;1 ¼
1

T

Z
T

0

dt
_W1ðtÞ
T

;

_Si;2 ¼
1

T

Z
T

0

dt
_W2ðtÞ
T

: ð39Þ

Alternatively, the entropy production can be expressed in
terms of vectorial forces X, fluxes J, and the Onsager
matrix L:

_Si ¼ XJ ¼ XLX; X ¼ F0

T
; J ¼ LX: ð40Þ

F0 ¼ ðF1;0; F2;0Þ denotes the amplitude of the perturba-
tions. The components of the 2 × 2 Onsager matrix L can
be read off from Eq. (34):

Lij ¼
T
T γ

Z
T

0

dt
Z

∞

0

dτgiðtÞ_gjðt − τÞe−kτ=γ: ð41Þ

The macroscopic efficiency of the work-to-work conver-
sion is given by
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η̄ ¼ −
_Si;1
_Si;2

¼ −
1
T

R
T
0 dt _W1ðtÞ

1
T

R
T
0 dt _W2ðtÞ

¼ −
X1ðL11X1 þ L12X2Þ
X2ðL21X1 þ L22X2Þ

:

ð42Þ

We finally return to the Langevin description, Eq. (26),
and consider its stochastic thermodynamics operating as a
work-to-work transforming engine subject to the time-
periodic forces FðtÞ ¼ F1ðtÞ þ F2ðtÞ, operating in a con-
fining harmonic potential [51]. We can repeat the deriva-
tions given above in terms of the stochastic thermodynamic
quantities, which we identify by a lower-case notation.
Focusing on the issue of stochastic efficiency, we make the
crucial observation that the stochastic work rates _wiðtÞ ¼
FiðtÞ_zðtÞ are correlated Gaussian random variables, and,
hence, so are the sample averages of the stochastic entropy
productions:

σi ¼
1

nT

Z
nT

0

dt
FiðtÞ_zðtÞ

T
: ð43Þ

We can thus copy the conclusions from the previous section
concerning the stochastic efficiency:

η ¼ −
σ1
σ2

¼ −
1
nT

R
nT
0 dt _w1ðtÞ

1
nT

R
nT
0 dt _w2ðtÞ

: ð44Þ

In view of the exact Gaussian nature of the sample entropy
productions, cf. Eq. (43), the results Eqs. (20)–(24) apply
for any number of cycles n, while Eq. (25) applies only in
the large-n limit. The Onsager coefficients are given in
Eq. (41). As one can verify explicitly, they are related to
the correlation functions by Eq. (18), as should be the case
for a bona fide physical model that obeys the fluctuation
theorem.
The above, a “spring duet,” corresponds arguably to the

simplest possible thermodynamic engine, in which a
particle in a quadratic potential functions as the engine
transforming a Gaussian stochastic input work w2 into a
Gaussian stochastic output work w1. Both standard and
stochastic thermodynamics are fully described in terms of
Onsager coefficients that characterize the average response
properties per cycle.
An interesting novel feature is that, by virtue of the time-

periodic nature of the perturbation, the Onsager matrix
need not be symmetric. In fact, the matrix displays the
aforementioned Onsager-Casimir symmetry L12 ¼ ~L21,
where the tilde refers to the same setup but under time-
reversed drivings, ~FðtÞ ¼ FðT − tÞ. This Onsager-Casimir
symmetry can be easily seen if the two driving forces, F1ðtÞ
and F2ðtÞ, differ by only a phase. As a general shift in time
of the driving forces does not alter the average entropy
production, it is clear that the amount of dissipation in the
absence of F1ðtÞ would be the same as the amount of
dissipation in the absence of F2ðtÞ; i.e., L11 ¼ L22. On the

other hand, the system under study would be exactly the
same (up to a shift in time) if the driving were time inverted
and F1ðtÞ and F2ðtÞ interchanged, which means that
X1J1 ¼ X2

~J2. Combining these two results immediately
gives L12 ¼ ~L21.

V. EXPERIMENTAL TESTS

In order to test these ideas experimentally, we use a
micron-scale colloidal particle in a feedback trap [52–54].
The feedback trap is designed around a microscope that
includes a camera read out and a sample cell with attached
electrodes. The sample cell is filled with deionized water
and a solution of silica beads. In such traps, the particle is
freely diffusing but subject to controllable electric forces.
There is no true potential but rather a virtual potential that is
imposed by the feedback loop. In brief, the experiment
rapidly and repeatedly executes the following sequence:

(i) A camera images the particle.
(ii) A computer algorithm identifies the particle and

determines its position.
(iii) The force corresponding to the real potential is

calculated.
(iv) The force is output by setting the appropriate

electrode voltage.
The last step is the most delicate, requiring essentially
continuous calibration in order to combat drifts over the
hours-long duration of the experiments [55]. Another
requirement is that the feedback loop cycle time ts be
short compared to the relaxation time, tr ¼ γ=κ [56].
In these experiments, ts ¼ 0.005 sec, while the relaxation
time tr is of the order of a few 100 msec.
Experiments are done on a set of nominally identical

but, in reality, slightly different colloidal particles. To allow
combining data sets from different particles, we present the
experimental results in terms of dimensionless parameters.
We thus define “natural” scales for time tr, length xr, and
force Fr as a function of the diffusion coefficient D, the
friction coefficient γ, and the stiffness of the potential κ.
These are given by

tr ¼
γ

κ
; zr ¼

ffiffiffiffiffiffiffi
Dtr

p
; Fr ¼

ffiffiffiffiffiffiffi
Dtr

p
κ: ð45Þ

In terms of these quantities, we also define a natural energy
scale, Er ¼ zrFr ¼ kBT, using the Einstein relation. Then,
using primes for scaled, dimensionless quantities, we have

t0 ¼ t
tr
; T 0 ¼ T

tr
;

z0 ¼ z
zr
; F0

i;0 ¼
Fi;0

Fr
: ð46Þ

The scaled equation of motion no longer depends explicitly
on the experimental parameters.
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_z0ðt0Þ ¼ −z0ðt0Þ − F0
1;0g1ðt0Þ − F0

2;0g2ðt0Þ þ
ffiffiffi
2

p
Rðt0Þ: ð47Þ

A. Onsager coefficients: Experimental analysis

The first set of experiments tests Onsager-Casimir
symmetry. For the time-forward driving, we set

g1ðt0Þ ¼
ffiffiffi
2

p
sinðω0t0Þ;

g2ðt0Þ ¼
ffiffiffi
2

3

r
½sinðω0t0Þ þ cosðω0t0Þ þ cosð2ω0t0Þ�: ð48Þ

The time-inverted process is obtained by reversing the time
dependency of the driving. Let us now fix some parameters:

κ ¼ kBT
0.4D × ð1 secÞ ; T 0 ¼ 2.5;

Fi;0 ¼ F0
i;0kBT=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.4D × ð1 secÞ

p
: ð49Þ

The diffusion coefficient was not known a priori and is
measured during the experiment. In dimensional units,
one cycle takes 1 sec. We set F0

2;0 ¼ 5 and vary F0
1;0

between −10 and 10. We measure 100 cycles for each
value of F0

1;0. The experimentally determined positions
z0ðt0Þ can now be used to calculate the work rates,
_̄Wi ¼ 1

T 0
R
T 0
0 dt0 _Fi

0ðt0Þz0ðt0Þ, for each cycle. As the feedback
loop operates in discrete time steps, the integral becomes
the sum

_̄Wi ¼
1

T 0
XN
k¼1

ðF0
i;kþ1 − F0

i;kÞ
z0kþ1 þ z0k

2
; ð50Þ

where N is the number of time steps per cycle.

Figure 1 plots _̄W1=ðF0
1;0Þ ¼ L11F0

1;0 þ L12F0
2;0 and

_̄W2=F0
2;0 ¼ L21F0

1;0 þ L22F0
2;0 as a function of F0

1;0 and
shows linear least-squares fits to the result, whose slope and
intercept determine the dimensionless Onsager coefficients.
We can do the same for the time-reversed process.
Table I compares the experimental results with the

analytical predictions from Eq. (41). We see that the
Onsager-Casimir relations, L ¼ ~LT , are indeed verified
to high precision, and so are the second law constraints:
L11>0, L22>0, and 4L11L22≈3.18≥ ðL12þL21Þ2≈1.01.
The small (≲5%) but statistically significant differences
between experimental results and analytical theory may
reflect the finiteness of the time steps used in the feedback
loop or other minor systematic experimental errors.
Next, we show explicitly how breaking time-reversal

symmetry of the driving function leads to an asymmetry of
the Onsager response matrix L. The driving functions are

g1ðt0Þ ¼ cos ðω0t0Þ þ cos ð2ω0t0Þ;
g2ðt0Þ ¼ cos ðω0t0Þ þ ε sin ð2ω0t0Þ: ð51Þ

In Fig. 2(a), we report the asymmetry, ðL12 − L21Þ=
ðL12 þ L21Þ, as a function of ε, which characterizes the
amount of time-reversal symmetry breaking in g2ðt0Þ,
illustrated in Fig. 2(b). Classical Onsager symmetry,
L12 ¼ L21, is restored if ϵ ¼ 0. As in Table I, the difference
between the slope of the experimental results and that of the
theoretical prediction results from the finite update time ts
of the feedback loop.

B. Power-efficiency-dissipation relations

In a second set of experiments, we test the power-
efficiency-dissipation relations, Eqs. (11) and (12), using
the time-symmetric driving functions

g1ðt0Þ ¼ cosðω0t0Þ;

g2ðt0Þ ¼ cosðω0t0Þ þ 1

8
cosð4ω0t0Þ: ð52Þ

FIG. 1. Experimentally determined _̄Wi=F0
1;0, i ¼ 1, 2, for the

forward (a) and time-reversed (b) processes. Typical errors are
around�0.1kBT=tr. Error bars are not shown, as they are smaller
than the markers indicating the mean values of the data. Solid
lines are least-squares linear fits.

TABLE I. Experimentally determined Onsager coefficients for
forward and reversed protocols, with theoretical predictions. The
superscript T denotes the transpose of the matrix.

Index ~LT L Lanalytical

11 0.864� 0.006 0.87� 0.01 0.863
12 0.302� 0.006 0.30� 0.01 0.300
21 0.701� 0.009 0.705� 0.004 0.697
22 0.931� 0.009 0.913� 0.006 0.896
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We set T 0 ¼ 2.5, F0
2;0 ¼ 5, and vary F0

1;0 between −5.5 and
0, taking 700 cycles of data per value of F0

1;0.
Figure 3 shows fits to the power, entropy production, and

efficiency. From the extrema, we find

PMP ¼ 2.68� 0.03; η̄MP ¼ 0.477� 0.02;

PME ¼ 1.3� 0.2; η̄ME ¼ 0.73� 0.03;

PmD ¼ 0.2� 0.2; _SmD ¼ 0.29� 0.05: ð53Þ

In the minimum-dissipation limit, the average of the
measured power is of the same order as its dispersion.
This is in line with the general theoretical prediction that
the power should vanish in this limit; PmD ¼ 0. In fact,
the above values verify all power-efficiency-dissipation
relations Eqs. (11) and (12):

PME

PMP
¼ 0.48� 0.08

≈ 1 − η̄2ME ¼ 0.47� 0.05;

η̄ME

1þ η̄2ME
¼ 0.476� 0.006 ≈ η̄MP;�

1

η̄MP
− 2

�
PMP ¼ 0.3� 0.1 ≈ _SmD;

PmD ≈ 0: ð54Þ

C. Efficiency fluctuations

We now study the efficiency fluctuations under time-
symmetric driving. In this case, the large deviation function
should have a maximum at the reversible efficiency
ηrev ¼ 1, implying a corresponding local minimum (dip)

in the probability distribution at ηrev ¼ 1 that emerges for
larger times.
For the driving, we set

g1ðt0Þ ¼
ffiffiffi
2

p
cosðω0t0Þ;

g2ðt0Þ ¼
1ffiffiffiffiffi
13

p ½−5 cos ðω0t0Þ þ cosð4ω0t0Þ�: ð55Þ

Furthermore, we set T 0 ¼ 1.25, F0
1;0 ¼ F0

2;0 ¼ 10, and
κ ¼ kBT=½0.8D × ð1 secÞ�)]. In dimensional units,
D ¼ 0.25 μm2= sec, γ ¼ kBT=D, ~T ¼ 1 sec, and F1;0 ¼
F2;0 ¼ 10

ffiffiffi
5

p
kBT=μm. Following Eq. (44), the efficiency is

defined as η ¼ −½R nT 0
0 dt0 _w1ðt0Þ�=½

R
nT 0
0 dt0 _w2ðt0Þ�. We can

look at the probability distributions for n ¼ 1, 2, and 4
cycles. From these three distributions, we can calculate the
large deviation function via the extrapolation procedure
described in Appendix A of Ref. [28]. For the experimental
analysis, we use the same data, which include 78000
cycles, for the different distributions, by just looking at
the different cycles separately or by measuring the effi-
ciency over multiple cycles.
Figure 4 shows the efficiency probability distributions

when calculated by averaging the work values over n ¼ 1,
2, and 4 cycles. The probability distributions clearly agree
with the Gaussian predictions, showing a local minimum at
η ≈ 1. Figure 5 shows the measured large deviation
function for efficiency, along with the curve calculated,

FIG. 2. Asymmetry of Onsager coefficients.
(a) ðL12 − L21Þ=ðL12 þ L21Þ versus temporal asymmetry. The
red markers denote the experimental results, the solid black line
the theoretical curve. T 0 ¼ 2.5 and F0

2;0 ¼ 5. F0
1;0 varies from

−10 to þ10 for each ε. Work rates _̄Wi are calculated from 150
cycles. (b) Illustration of the driving function g2ðt0Þ, for ε ¼ 0.5
(red line, asymmetric), compared to the symmetric case, ε ¼ 0
(black line, symmetric). MD

FIG. 3. Power (a), efficiency (b), and entropy production (c) as
a function of F0

1. The solid lines are least-squares fits.

BROWNIAN DUET: A NOVEL TALE OF THERMODYNAMIC … PHYS. REV. X 6, 041010 (2016)

041010-9



with no adjustable parameters, from Eq. (25). The maxi-
mum at reversible efficiency, η ¼ 1, and the agreement with
Gaussian predictions are clearly visible.
Although investigating directly the efficiency distribu-

tion PnðηÞ for a large number of cycles n would require
more data than we can collect from a single particle, we can
use summary statistics instead. Since PnðηÞ → η−2 for large
jηj, the average is not defined; however, the median is an
appropriate, robust statistic to use for such fat-tailed
distributions [57]. Figure 6 shows the median as a function
of the number of cycles n. Surprisingly, its value, while
positive for small n (as obvious from Fig. 4), becomes
negative for n≳ 10 cycles. In the n → ∞ limit, it converges
to a macroscopic value that, from simulations, is estimated
to be η̄ ≈ −0.93. One could classify the performance regime

as a tease: it acts as an engine (typical η > 0) when its
performance is evaluated over short time intervals but as a
dud (typical η < 0) over longer time intervals.
Why is the behavior evaluated at small cycle number so

different from the long-time, macroscopic limit? In the
small-n limit, the dynamics is dominated by equilibrium
fluctuations, which leads to an efficiency distribution that is
peaked around the Carnot efficiency. These equilibrium
fluctuations are, however, non-extensive in time and die out
in the long-time limit. Thus, the “typical” value steadily
decreases, approaching its macroscopic (negative) value in
the limit of infinitely long time intervals. The convergence
to this macroscopic value is very slow, as the large
deviation function has very small asymptotes,

lim
η→�∞

JðηÞ ¼ 0.013; ð56Þ

which in turn is a consequence of the fact that the engine
operates near the so-called “singular coupling” limit [24], as

F0
2;0

F0
1;0

ffiffiffiffiffiffiffi
L22

L11

s
− 1 ¼ 7.1 × 10−4 and

detL
L11L22

¼ 4.0 × 10−2

ð57Þ

are both close to zero. The slow convergence has been
verified experimentally, as shown in Fig. 6.

VI. DISCUSSION AND CONCLUSION

We see that Brownian duets are a simple setting that is
easy to analyze both theoretically and experimentally. Their
importance stems from their role in raising and illustrating
important, fundamental issues in thermodynamics. The
second law of thermodynamics is typically derived via
the discussion of the Carnot cycle. An explicit exact
calculation of this setup is, however, possible only for a
macroscopic system operated with an ideal gas in the
reversible regime. Reversibility conveys to the construction
the crucial property that it can function both as a thermal
engine and as a refrigerator. Combined with the assumed

FIG. 5. Large deviation function for the efficiency J ðηÞ,
defined in Eq. (23), for symmetric driving. Solid line is calculated
using Eq. (25).

FIG. 6. Median of the efficiency distribution as a function of the
number of cycles n. Dotted line indicates macroscopic efficiency,
η̄ ≈ −0.93. Error bars estimated via the bootstrap method [58].

FIG. 4. Efficiency distributions for symmetric driving. The
solid lines show the theoretical probability densities, calculated—
not fit—from Eqs. (20) and (21). Error bars are calculated as the
square root of counts in each histogram bin. Figure (a) shows the
probability density for 1 cycle, (b) for 2 cycles and (c) for 4
cycles.
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impossibility of a perpetuum mobile of the second kind,
one can hence derive the famous inequalities, i.e., that
efficiencies must be smaller than the Carnot efficiency and
the “famous” positivity of entropy production.
While this derivation is one of the most beautiful in

science, its drawbacks and shortcomings raise several
fundamental questions. As an example of a technical issue,
how can an ideal gas stay at equilibrium while expanding
adiabatically in the absence of a heat bath? More funda-
mentally, the macroscopic limit, in which fluctuations are
ignored, obscures the statistical nature of the second law
and even conveys a belief—still broadly held—that the
second law is a property of macroscopic systems alone.
Following the footsteps of Boltzmann, nonequilibrium

statistical mechanics has partially bridged some of the gaps
in the derivation and understanding of the second law. The
basic connection between fluctuation and dissipation is core
to the famous Onsager symmetry, fluctuation-dissipation
theorem, and Green-Kubo relations. These derivations, how-
ever, make no direct connection to thermodynamicmachines.
Furthermore, they often require a somewhat disturbing mix-
up between the micro and macro worlds. For example, to
connect with the world of equilibrium fluctuations, Onsager
assumes the regression hypothesis, stating that macroscopic
disturbances regress on average in the same way as micro-
scopic deviations caused by spontaneous fluctuations.
Conversely, the derivation of microscopic linear response à
la Green-Kubo has been justly criticized in its application to
linear response for macroscopic laws [59,60].
The present work proceeds from and partially completes

the work of Einstein, Langevin, and Smoluchowski, by
focusing on the statistical physics at the mesoscopic level
of Brownian particles. Both underdamped and the over-
damped description of Brownian motion we consider here
have served well as an exemplar for nonequilibrium
statistical physics. By introducing the duet of two periodic
forces acting on a Brownian particle, we connect with
classic discussions of thermodynamic machines [61].
Stochastic thermodynamics, with the second law replaced
by a symmetry property for the probability distribution of
the entropy production, provides the key ingredients to
analyze this novel tale of efficiency. The intimate relation
between fluctuation and dissipation is brought into full
light, as all aspects of this engine, including the telltale
properties of its fluctuating efficiency, can be expressed in
terms of the (linear response) Onsager coefficients.
The Brownian duet model has further advantages: It can

be solved in full analytic detail. Its experimental imple-
mentation, including the gathering of sufficient statistics
and its possible technological applications, poses no special
challenges. Compared to the Carnot-engine construction, it
does miss the heat-to-work transformation, as well as some
aspects of stochastic thermodynamics that have already
been illustrated by a mesoscopic Stirling engine involving a
single Brownian particle in a breathing harmonic potential

[64]. However, nonisothermal conditions are not natural in
the Brownian world—in the Stirling-engine experiment,
heating requires a strong laser pulse—nor, in fact, in most
of the biological world. Furthermore, applying stochastic
thermodynamics to a heat-to-work transformation is more
involved because of the non-Gaussian distribution of heat
fluctuations [65–68], rendering the theoretical analysis and
interpretation of the engine and its efficiency much more
complicated [69].
In any case, in this article, we present the first exper-

imental observation of the dependence of the symmetry of
Onsager response coefficients on that of the driving force;
of the remarkable relations between power, efficiency, and
dissipation that hold in the linear-response regime; and of
the maximum of the large deviation function at reversible
efficiency, a prediction that is ultimately a consequence of
microscopic reversibility. We also observe that the
Brownian duet can function in a “tease” mode: when
examined at short time intervals, it acts as a motor in
the sense that a typical efficiency is positive, but when
examined at longer time intervals, it acts as a dud. These
tests illustrate the power of stochastic thermodynamics in
extending a subject, developed in the 19th century to
describe macroscopic heat engines, to the mesoscopic,
fluctuating world that is so much the focus of science in
the 21st century.
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APPENDIX: COVARIANCE AND
ONSAGER MATRIX

Inserting the expressions for the probability distribution
for the entropy production in the forward process, Eq. (17),
and the one for the time-reversed process (the superscript
tilde referring to the time-reversed quantities),

~Pðσ1; σ2Þ

¼ 1

2π
ffiffiffiffiffiffiffiffiffiffi
det ~C

p exp

�
−
1

2

X
i;j

ðσi − h ~σiiÞ ~C−1
ij ðσj − h ~σjiÞ

�
;

ðA1Þ

into the fluctuation theorem, Eq. (16) implies that the
following equality should hold:

ðσ − hσiÞC−1ðσ − hσiÞ − ð−σ − h ~σiÞ ~C−1ð−σ − h ~σiÞ

þ log
detC

det ~C
¼ −

2t
kB

1σ: ðA2Þ
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Here, σ is the vector with components σ1, σ2 and 1 the
vector with components 1, (1) Note that we are considering
the sample average entropy productions over a time t. Their
average and correlation function are thus a function of this
time. Since we are using the time-asymptotic form of the
fluctuation theorem, the above equality, as the ones that
follow below, should always be understood in the sense of a
long-time limit. The former equation should be valid for
any σ; hence, we can equate separately the zeroth-, first-,
and second-order terms of this quantity. For the second
order, we find

σC−1σ ¼ σ ~C−1σ; ðA3Þ

which has to be valid for all values of σ. Since C and ~C
cannot differ by an antisymmetric part as both matrices are
fully symmetric, we conclude that

C ¼ ~C: ðA4Þ

As a result, logðdetC= det ~CÞ is identically zero. The first-
order term in σ gives

ðhσi þ h ~σiÞC−1σ ¼ t
kB

1σ: ðA5Þ

As this has to be valid for all σ, we conclude that

h ~σi ¼ t
kB

C1 − hσi: ðA6Þ

Finally, identification of the zeroth-order term leads to

hσiC−1hσi ¼ h ~σiC−1h ~σi: ðA7Þ

Using Eq. (A6) to eliminate h ~σi, we then have

1C1 ¼ 2kB
t

1hσi: ðA8Þ

Finally, noting that hσ1i ¼ J1X1 and hσ2i ¼ J2X2, one
finds

C11 þ C22 þ C12 þ C21

¼ 2kB
t

½X2
1L11 þ X2

2L22 þ X1X2ðL12 þ L21Þ�: ðA9Þ

Since the fluctuation theorem holds for all applied forces,
the above result is valid for any X1 and X2. Setting X1 and
X2 separately to zero then leads to

C11 ¼
2kB
t

X2
1L11; C22 ¼

2kB
t

X2
2L22: ðA10Þ

Equation (18) from the main text follows immediately.
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