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Regular and slow-fast codimension 4 saddle-node

bifurcations

Renato Huzak

Abstract

Using geometric singular perturbation theory, including the family blow-
up as one of the main techniques, we prove that the cyclicity, i.e. maxi-
mum number of limit cycles, in both regular and slow-fast unfoldings of
nilpotent saddle-node singularity of codimension 4 is 2. The blow-up tech-
nique enables us to use the well known results for slow-fast codimension
1 and 2 Hopf bifurcations, slow-fast Bogdanov-Takens bifurcations and
slow-fast codimension 3 saddle and elliptic bifurcations.

1 Introduction

In planar slow-fast systems Xε,µ a curve of singularities, called the critical curve,
appears for ε = 0 where ε is a singular perturbation parameter and µ ∈ Rp,
µ ∼ 0. The critical curve typically consists of normally hyperbolic singularities
(the linearized vector field at a normally hyperbolic singularity has one zero
eigenvalue with corresponding eigenvector tangent to the critical curve) and
one contact point (often called turning point). We assume the contact point is
of nilpotent type, for µ = 0. It is shown in [DMDR11] that any smooth family
of planar slow-fast vector fields Xε,µ, locally near the nilpotent contact point for
(ε, µ) ∼ (0, 0), is smoothly equivalent (preserving (ε, µ)) to the following normal
form: {

ẋ = y − f(x, µ)

ẏ = ε
(
g(x, ε, µ) +

(
y − f(x, µ)

)
h(x, y, ε, µ)

)
(1)

for smooth functions f , g and h and f(0, 0) = ∂xf(0, 0) = 0.

Remark 1. In this paper we focus on smooth families of vector fields (smooth
stands for C∞-smoothness).

In this paper, we assume the nilpotent contact point is of order two (∂
2f
∂x2 (0, 0) 6=

0). After a smooth coordinate change and a smooth rescaling of time (see
[DMD11b]), the family (1) can be brought into the form{

ẋ = y
ẏ = −xy + εg̃(x, ε, µ) + εy2H(x, y, ε, µ)

(2)

where g̃ and H are smooth functions.

We call the order of vanishing of g̃(x, 0, 0) at x = 0, which is ≥ 0, the singu-
larity order at the contact point (x, y) = (0, 0) (see [DMDR11]). The determi-
nation of small-amplitude limit cycles (i.e. limit cycles in a fixed neighborhood
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of the origin (x, y) = (0, 0)) in planar slow-fast systems (2) has recently been
the subject of many investigations, and the main goal of this paper is to give
a complete analysis of the small-amplitude limit cycles in (2) when the singu-
larity order at the contact point is 4. When the contact point is a slow-fast
jump point (i.e. the singularity order is 0), then it is easy to see that there
are no limit cycles (see [DR96], [KS01], [MKKR94]). If the singularity order is
1, small-amplitude limit cycles may be generated by a (slow-fast) Hopf bifur-
cation as g̃(0, ε, µ) varies through the origin. Small-amplitude limit cycles in a
codimension 1 slow-fast Hopf case have been studied in [KS01] generalizing the
Van der Pol system (see [DR96]). In [DR09], a slow-fast Hopf point of higher
codimensions in Liénard setting (H ≡ 0 in (2)) has been dealt with. The main
result in [DR09] gives finite upper bounds for the number of small-amplitude
limit cycles in analytic families or in smooth families with finite codimension.
In a general (“non-Liénard”) setting, a codimension 2 slow-fast Hopf point, in
the presence of center, has been treated in [Huz16]. The maximum number of
small-amplitude limit cycles in this case is shown to be 2 (we refer to this paper
for more details). When the singularity order at the contact point in (2) is 2,
we deal with a slow-fast unfolding of a Bogdanov-Takens point, and it is shown
that from this point, at most one limit cycle may perturb (see [DMD11a]). This
case was easier to treat due to the presence of the symmetry-breaking quadratic
term αx2 (α 6= 0) in g̃. When the singularity order at the contact point is 3, the
family (2) is called the slow-fast unfolding of a saddle singularity of codimen-
sion 3 (+) or the slow-fast unfolding of an elliptic singularity of codimension
3 (–), depending on the sign in front of the cubic term in g̃ (see [HDMD13]).
In analogy with the results for the slow-fast Hopf point, the number of small-
amplitude limit cycles in this codimension 3 case depends on the higher order
terms in g̃, and, in the presence of the quartic term αx4 (α 6= 0) in g̃, it is shown
that the maximum number of limit cycles of both the slow-fast saddle point of
codimension 3 and the slow-fast elliptic point of codimension 3 is 2. This cyclic-
ity result follows from [HDMD13], [HDMD14] and [Huz16]. The cases with the
singularity order at the contact point ≥ 4 have not yet been studied and, as
mentioned above, in this paper we investigate the small-amplitude limit cycle
phenomenon in the slow-fast codimension 4 case. The reason we study this case
is twofold. On one hand, the presence of the quartic term eliminates possibility
of symmetric behavior of (2) and therefore simplifies our study, to some extent.
On the other hand, we treat the codimension 4 case using a recursive approach
which enables us to utilize the well known results for the slow-fast system (2)
with the singularity order ≤ 3.

The recursive approach can be used to treat slow-fast codimension n bifur-
cations for all n ≥ 5. This is a topic of further study. Clearly, the study of
the codimension n case becomes more difficult as the codimension increases.
In order to be able to apply the recursive approach to the higher codimension
cases, one has to study the codimension 3 case when the coefficient in front of
the quartic term is close to 0 (hence the case not treated in [HDMD13]), one has
to deal with a conjecture, formulated by Dumortier and Roussarie in [DR09],
which has been solved only in some low codimension cases (we refer to [DR09]
and [FTV13] for more details), . . . .

We point out that detectable limit cycles (hence not small-amplitude limit
cycles) that pass near such a codimension n nilpotent contact point, for all (odd)
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n, have been studied in [DMD11b].

The slow-fast unfoldings (2) can be seen as slow-fast variants of “regular”
unfoldings of planar nilpotent singularities. In fact, consider a smooth unfolding
of the nilpotent singularity, i.e., a smooth family Xµ with X0 having a nilpotent
singularity at the origin of R2. Then Xµ is smoothly conjugate, respecting µ,
to {ẋ = y, ẏ = F (x, µ) +yG(x, µ) +y2Q(x, y, µ)} where F , G and Q are smooth
functions, F (x, 0) = O(x2), G(x, 0) = O(x) and Q = O((||(x, y)|| + ||µ||)N ),
for N as large as required (see [Tak74] and [Dum]). Like in the slow-fast case,
when ∂G

∂x (0, 0) 6= 0, we may assume that G(x, µ) = −x after a smooth coordinate
change and a smooth rescaling of time. We write F (x, 0) = ρ2x

2+· · · . If ρ2 6= 0,
we deal with a well known (regular) unfolding of a Bogdanov-Takens point (see
[Tak74], [Bog76], [RW95] for more details). When ρ2 = 0 and ρ3 6= 0, we deal
with a nilpotent saddle, focus or elliptic singularity of codimension 3 studied
in [DRSZ91]. Note that the focus case cannot be observed in the slow-fast
codimension 3 case due to the presence of the small parameter ε (see [HDMD13]).
As far as we know, the regular cases of codimension ≥ 4 (ρ2 = ρ3 = 0) have not
been treated. We refer to [DDM04] for an overview of the known results and
remaining problems. In the present paper, we also give a complete analysis of
the small-amplitude limit cycles in the regular codimension 4 case (ρ2 = ρ3 = 0
and ρ4 6= 0).

Techniques used in the study of regular cases are essentially different from
those used in the study of slow-fast cases because in the slow-fast setting, the
cyclicity results have to have a uniform limit not only as regular perturbation
parameters tend to 0, but also as the singular perturbation parameter ε→ 0. In
the codimension 4 case, we will show that techniques from geometric singular
perturbation theory can be used to deal not only with the slow-fast case but
also with the regular case. This is due to the fact that the regular codimension
n nilpotent singularity, for all n ≥ 4, is of slow-fast type after a suitable blow-up
(see [Pan02], [DMD11b]). The blow-up will be explained in detail in Section
2 in the regular codimension 4 case. Like in the slow-fast case, the regular
codimension n case, with n ≥ 5, is a topic of further study.

Now suppose that the singularity order at the contact point in (2) is equal
to 4. Then we can write

g̃(x, ε, µ) =

k=3∑
k=0

ρk(ε, µ)xk + ρ4(ε, µ)x4(1 +O(x))

where ρk(0, 0) = 0, k ≤ 3, and ρ4(0, 0) 6= 0. We may assume that ρ4(ε, µ) = ±1
after a rescaling of the coordinates (x, y) and a time rescaling. As in [DMD11a]
and [HDMD13] we consider the ρk(ε, µ) as new independent parameters, and we
denote by λ the parameter (ε, µ) appearing inside the functions g̃ and H in (2).
For the sake of generality we take λ to be in an arbitrary compact subset Λ of
some Euclidean space. Note that a minus sign in front of x4 can be changed into
a plus sign by applying (x, t) → (−x,−t). Thus it suffices to study slow-fast
system Xε,b,λ, where Xε,b,λ stands for{

ẋ = y
ẏ = −xy + ε

(
b0 + b1x+ b2x

2 + b3x
3 + x4 + x5G(x, λ)

)
+ εy2H(x, y, λ)

where G and H are smooth, ε ≥ 0 is the singular perturbation parameter close
to 0, b = (b0, b1, b2, b3) is regular perturbation parameter close to 0 and λ ∈ Λ.
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Similarly, in the regular codimension 4 case, it suffices to study X1,b,λ, under
the given conditions on parameters (b, λ). Thus from now on we focus on the
family Xε,b,λ, with ε ∈ [0,M ], where M > 1 is an arbitrarily large fixed real
number. When ε ≥ 0 and ε ∼ 0, we call the family Xε,b,λ slow-fast codimension 4
saddle-node bifurcations (in short, the singular case). When ε > 0 uniformly, we
deal with regular codimension 4 saddle-node bifurcations (in short, the regular
case). It is not so hard to see that the origin of Xε,0,λ is a nilpotent saddle-node,
for each (ε, λ) ∈]0,M ]× Λ (see Section 2).

We say that the cyclicity of the origin (x, y) = (0, 0) of Xε,b,λ is bounded
by N if there exist a neighborhood V of (x, y) = (0, 0) and a neighborhood W
of (0, 0, 0, 0) in b-space such that for each (ε, b, λ) ∈ [0,M ]×W × Λ the system
Xε,b,λ has at most N limit cycles inside V . The minimum of such N is the
cyclicity of the origin. We can now state the main result of this paper.

Theorem 1.1. The cyclicity of the origin of Xε,b,λ is 2.

Theorem 1.1 will be proved in Sections 2 and 3. Though this result is very
simple to state, its proof is very involved. In fact, to understand the dynamics
near the origin, we have to blow up the family Xε,b,λ at the origin using the
so-called blowing-up for families of vector fields introduced for the first time in
the context of slow-fast systems (see [DR96]). Blowing up the phase coordinates
(x, y) and the parameter b, we generate a slow-fast system of type (2) in the
new phase coordinates (x̄, ȳ), with a new singular perturbation parameter that
is independent of ε, and with the singularity order ≤ 3 at the contact point
(x̄, ȳ) = (0, 0). Thus we may use the known results for small-amplitude limit
cycles in the (x̄, ȳ)-space (hence limit cycles in a fixed neighborhood of (x̄, ȳ) =
(0, 0)). Besides these small limit cycles, we may encounter so-called detectable
canard limit cycles in the (x̄, ȳ)-plane, i.e., limit cycles passing from a stable
branch of the critical curve to un unstable branch, when crossing the turning
point (x̄, ȳ) = (0, 0). The detectable canard limit cycles have been studied in
[DMD08] (resp. in [DMD10]) when the singularity order at (x̄, ȳ) = (0, 0) is 1
(resp. 3). When the singularity order at (x̄, ȳ) = (0, 0) is 0 or 2, the detectable
canard limit cycles are not possible (see Sections 3.1 and 3.4). Note that both
the small-amplitude limit cycles and the detectable canard limit cycles in the
(x̄, ȳ)-plane become small-amplitude limit cycles of the original family Xε,b,λ

because their size tends to 0 in the (x, y)-plane as b→ 0.

The proof of Theorem 1.1 consists of two steps:

1. Find the cyclicity of each limit periodic set in the (x̄, ȳ)-plane which can
bifurcate in the small-amplitude limit cycles or the detectable canard limit
cycles. As these bifurcations are of different nature they cannot be studied
in a uniform way and we have to use different technical methods.

2. Glue together the different local results to obtain the cyclicity of the origin
(x, y) = (0, 0) on which each of these limit periodic sets is blown down.

This is the most common method used in the study of the cyclicity of contact
points (see [KS01], [DR09], [DMD11a], [Huz16]). Clearly, this gluing method
becomes more difficult to apply as the singularity order at the contact point
increases. On one hand, the so-called slow dynamics along the critical curve in
the (x̄, ȳ)-plane becomes more complex (hence limit periodic sets from which de-
tectable canard limit cycles bifurcate are very diverse), and on the other hand we
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have to develop new techniques that enable us to glue together small-amplitude
limit cycles and canard limit cycles in the (x̄, ȳ)-plane, with the singularity order
at (x̄, ȳ) = (0, 0) equal to 3 (see Section 3.6).

When H = 0 in (2), (2) becomes a family of (generalized) slow-fast Liénard
vector fields. A motivation to study the slow-fast Liénard vector fields can
be found in [Dum06] and [Rou07]. It is closely related to the second part
of Hilbert’s 16th problem which is in essence to determine maximal number
of limit cycles a planar polynomial vector field may have if the polynomial
degree of the vector field is given (see [Sma00]). More precisely, given any
polynomial generalized Liénard equation {ẋ = y, ẏ = −f(x)y − g(x)}, where
deg f = n and deg g = m, find the uniform bound L(m,n) on the number of
limit cycles in terms of the two degrees. It has been shown that L(1, 2) = 1
([LdMP77]), L(1, 3) = 1 ([LL12]), L(2, 1) = 1 ([Cop89]), L(3, 1) = 1 ([DL96]
and [DR90]) and L(2, 2) = 1 ([DL97]). If we want to contribute to finding
L(m, 1) for m ≥ 4, then we have to study (see [Dum06]) slow-fast Liénard
vector fields {ẋ = y, ẏ = −xy+ ε(b0 + b1x+ ...+ bl−1x

l−1±xl+O(xl+1))} where
l = 0, 1, ...,m−1, ε > 0 is the singular parameter kept small and (b0, b1, ..., bl−1)
are regular perturbation parameters close to 0. Thus Theorem 1.1 can help us
find L(5, 1). Note that Theorem 1.1 implies that the above slow-fast Liénard
equation, with l = 4, has at most 2 limit cycles in an arbitrary compact set
in the phase space, by taking (ε, b0, b1, b2, b3) sufficiently small (detectable limit
cycles that pass near the contact point are not possible because l = 4 is even,
see [DMD11b]).

Planar limit cycles of slow-fast type also appear quite often in applications
where they have been used to model electrical circuits, (bio)chemical reactions
([Moe02], [GS09], [KS11], . . . ), predator-prey systems ([BNRS06], [LZ13], . . . ),
neural models ([DMW15], . . . ), epidemic models ([LLMZ14], . . . ), etc.

2 Blow-up in the parameter space and family
blow-up

2.1 Blow-up in the parameter space and statement of the
results

Consider the family Xε,b,λ from the previous section. Like in [HDMD13], we
first blow up the origin in (b0, b1, b2, b3)-space by means of a quasi-homogeneous
blow-up:

(b0, b1, b2, b3) = (r4B0, r
3B1, r

2B2, rB3), r ≥ 0, B = (B0, B1, B2, B3) ∈ S3.

Clearly, we can study a complete neighborhood of b = 0 by studying each value
of (r,B) with r ∼ 0 and with B on a 3-sphere. Instead of working with the
spherical coordinates, in the proof of Theorem 1.1 it is more convenient to use
one of the following 8 traditional charts (or regions) covering the 3-sphere:

• Jump region

(b0, b1, b2, b3) = (±r4, r3B1, r
2B2, rB3), (B1, B2, B3) ∈ K0, where K0 is a

sufficiently large compact set in R3.
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• Saddle region

(b0, b1, b2, b3) = (r4B0,+r
3, r2B2, rB3), B0 ∈ U1, (B2, B3) ∈ K1, where

U1 is a sufficiently small neighborhood of the origin in R and where K1 is
a sufficiently large compact set in R2.

• Slow-fast Hopf region

(b0, b1, b2, b3) = (r4B0,−r3, r2B2, rB3), B0 ∈ U1, (B2, B3) ∈ K1, where
U1 is a sufficiently small neighborhood of the origin in R and where K1 is
a sufficiently large compact set in R2.

• Slow-fast Bogdanov-Takens region

(b0, b1, b2, b3) = (r4B0, r
3B1,±r2, rB3), (B0, B1) ∈ U2, B3 ∈ K2, where

U2 is a sufficiently small neighborhood of the origin in R2 and where K2

is a sufficiently large compact set in R.

• Slow-fast codimension 3 saddle region

(b0, b1, b2, b3) = (r4B0, r
3B1, r

2B2,+r), (B0, B1, B2) ∈ U3 where U3 is a
sufficiently small neighborhood of the origin in R3.

• Slow-fast codimension 3 elliptic region

(b0, b1, b2, b3) = (r4B0, r
3B1, r

2B2,−r), (B0, B1, B2) ∈ U3 where U3 is a
sufficiently small neighborhood of the origin in R3.

It is obvious that for any small U1, U2 and U3 we can take K0, K1 and K2 large
enough such that we cover a complete neighborhood of the origin in the b-space
by the chosen charts. More precisely, in the proof of Theorem 1.1 we first choose
a sufficiently small U3 and fix it. Then we take a K2 as large as required and
fix it. For the fixed U3 and K2, and for a sufficiently small and fixed U2, we
choose K1 as large as needed. Finally, for the fixed U3, K2, U2, K1, and for a
sufficiently small but fixed U1, we take a large K0. (See statements of Theorem
2.1–Theorem 2.5.) Note that the compact sets K0, K1 and K2 become larger
as the size of U1, U2 and U3 tends to 0.

Taking into account this blow-up in the b-space, we arrive at an (ε, B, r, λ)-
family Xε,B,r,λ of planar vector fields where Xε,B,r,λ stands for ẋ = y

ẏ = −xy + ε
(
r4B0 + r3B1x+ r2B2x

2 + rB3x
3 + x4 + x5G(x, λ)

)
+εy2H(x, y, λ).

The family Xε,B,r,λ can exhibit different kinds of limit cycle bifurcations near the
origin in the (x, y)-plane, depending on the region in the parameter space b, i.e.,
depending on how (b0, b1, b2, b3) approaches (0, 0, 0, 0). In each region defined
above, we find maximum number of small-amplitude limit cycles of Xε,B,r,λ

(see Theorem 2.1–Theorem 2.5). Theorem 1.1 follows directly from Theorem
2.1–Theorem 2.5.

Theorem 2.1 (The jump region). Let B0 = +1 or B0 = −1. Given any B1
i >

0, i = 1, 2, 3. There exist a neighborhood V of (x, y) = (0, 0) and r0 > 0 such
that the family Xε,B,r,λ has no periodic orbits in V for each (ε, B1, B2, B3, r, λ) ∈
[0,M ]× [−B1

1 , B
1
1 ]× [−B1

2 , B
1
2 ]× [−B1

3 , B
1
3 ]× [0, r0]× Λ.

6



Theorem 2.1 will be proved in Section 3.1. In the jump region a contact point
of jump type described in Section 1 will appear after blowing up the origin in
the (x, y, r)-space, in both regular and singular cases.

Theorem 2.2 (The saddle region). Let B1 = +1. Given any B1
i > 0, i = 2, 3.

There exist a neighborhood V of (x, y) = (0, 0), r0 > 0 and B1
0 > 0 such that

Xε,B,r,λ has no periodic orbits in V for each (ε, B0, B2, B3, r, λ) ∈ [0,M ] ×
[−B1

0 , B
1
0 ]× [−B1

2 , B
1
2 ]× [−B1

3 , B
1
3 ]× [0, r0]× Λ.

Theorem 2.2 will be proved in Section 3.2. A contact point of saddle type
with the singularity order 1 will appear after blow-up of the origin (x, y, r) =
(0, 0, 0), in both regular and singular cases.

Theorem 2.3 (The slow-fast Hopf region). Let B1 = −1. Given any B1
i > 0,

i = 2, 3. There exist a neighborhood V of (x, y) = (0, 0), r0 > 0 and B1
0 > 0

such that Xε,B,r,λ has at most 2 limit cycles in V for each (ε, B0, B2, B3, r, λ) ∈
[0,M ]× [−B1

0 , B
1
0 ]× [−B1

2 , B
1
2 ]× [−B1

3 , B
1
3 ]× [0, r0]× Λ.

Theorem 2.3 will be proved in Section 3.3. The most difficult part of the
paper is dealing with the slow-fast Hopf region. After blowing up (x, y, r) =
(0, 0, 0), in both regular and singular cases, we find a (slow-fast) Hopf bifurca-
tion of codimension 1 or 2 at the origin in the new phase coordinates (x̄, ȳ),
and at B0 = 0. The codimension depends on the parameter B2 (see Section
3.3). As discribed in Section 1, we also have to consider all limit periodic sets
that can generate detectable canard limit cycles in (x̄, ȳ)-plane by perturbation.
The gluing method, introduced in Section 1, becomes very involved because,
to find all the limit periodic sets and to glue them together, we have to vary
2-dimensional parameter (B2, B3) kept in a large compact set.

Theorem 2.4 (The slow-fast Bogdanov-Takens region). Let B2 = +1 or B2 =
−1. Given any B1

3 > 0. There exist a neighborhood V of (x, y) = (0, 0), r0 > 0,
B1

0 > 0, B1
1 > 0 such that Xε,B,r,λ has at most 1 (hyperbolic) limit cycle in V for

each (ε, B0, B1, B3, r, λ) ∈ [0,M ]×[−B1
0 , B

1
0 ]×[−B1

1 , B
1
1 ]×[−B1

3 , B
1
3 ]×[0, r0]×Λ.

Theorem 2.4 will be proved in Section 3.4. Similar to previous cases, a blow-
up of (x, y, r) = (0, 0, 0) is needed to find a well-known slow-fast unfolding of
a Bogdanov-Takens point described in Section 1, in both regular and singular
cases.

Theorem 2.5 (The slow-fast codimension 3 saddle/elliptic region). Let B3 =
+1 or B3 = −1. There exist a neighborhood V of (x, y) = (0, 0), r0 > 0 and
a (B0, B1, B2)-neighborhood U3 of the origin such that Xε,B,r,λ has at most 2
limit cycles in V for each (ε, B0, B1, B2, r, λ) ∈ [0,M ]× U3 × [0, r0]× Λ.

Though there is no distinction between the saddle case and the elliptic case
in formulation of the statements in Theorem 2.5, the proof of Theorem 2.5
in the saddle case is different from the proof of Theorem 2.5 in the elliptic
case. In the elliptic case, after blowing up (x, y, r) = (0, 0, 0), we have to glue
together a contact point of codimension 3 elliptic type, described in Section 1,
and (detectable) limit periodic sets, in both regular and singular cases. In the
saddle case, this gluing is not needed due to a special slow dynamics in (x̄, ȳ)-
plane. Theorem 2.5 in the saddle case (resp. in the elliptic case) will be proved
in Section 3.5 (resp. in Section 3.6).

As mentioned above, one of the crucial steps in proving Theorem 2.1–
Theorem 2.5 is the blow-up of the familyXε,B,r,λ at the origin (x, y, r) = (0, 0, 0).
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2.2 Blow-up of the origin (x, y, r) = (0, 0, 0) in charts

Our goal is to include r in the phase space and blow up the origin in (x, y, r)-
space. This allows us to use the recursive approach explained in Section 1. We
blow up the origin (x, y, r) = (0, 0, 0) using the blow-up transformation

(x, y, r) = (ux̄, u2ȳ, ur̄), u ≥ 0, r̄ ≥ 0, (x̄, ȳ, r̄) ∈ S2. (3)

This blow-up transforms the r-family of two-dimensional problems Xε,B,r,λ

into a less degenerate u-singular (see Section 2.2.1) three-dimensional prob-
lem, allowing us to replace an r-uniform neighborhood of (x, y) = (0, 0) by a
neighborhood inside {u ≥ 0} of a larger object, the so-called blow-up locus
{(u, x̄, ȳ, r̄); u = 0, x̄2 + ȳ2 + r̄2 = 1, r̄ ≥ 0} (see Figure 1). As usual, we study
the dynamics in the blown-up coordinates in different charts.

Remark 2. Note that in this paper our focus is not on a “classical” blow-
up (see [DR96]) of nilpotent contact points in singular perturbation problems,
which includes a singular perturbation parameter; that type of desingularization
has already been done in [DR09], [DMD11a], [HDMD13], [HDMD14], [Huz16].

x̄ = −1

x̄ = +1

ȳ = −1

r̄ = +1

Figure 1: Different charts near the blow-up sphere in (x, y, r)-space. The chart
{ȳ = +1} is not shown: it is on the back side of the sphere and is the symmetric
counterpart of {ȳ = −1}.

2.2.1 The family chart

We take r̄ = +1 in (3) and keep (x̄, ȳ) in a large compact set D. In this
traditional rescaling chart, after division by u > 0, the blown-up field is an
(ε, B, u, λ)-family of 2-dimensional vector fields Xf

ε,B,u,λ:
˙̄x = ȳ
˙̄y = −x̄ȳ + εu

(
B0 +B1x̄+B2x̄

2 +B3x̄
3 + x̄4 + ux̄5G(ux̄, λ)

)
+εuȳ2H(ux̄, u2ȳ, λ).

(4)

The blown-up vector field can be also treated as an (ε, B, λ)-family of 3-dimensional
vector fields if we add u̇ = 0 to (4).
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Observe that because u ∼ 0 we deal in (4) with a singular perturbation
problem, in both the singular case (ε ∼ 0) and the regular case (ε 6= 0 uniformly).
One might think that this singular perturbation problem, in the singular case,
is far more degenerate than the original Xε,B,r,λ since the family Xf

ε,B,u,λ in the
singular case is singularly perturbed in 2 parameters, u and ε. But this is not
true. We introduce the following slow-fast system:

˙̄x = ȳ
˙̄y = −x̄ȳ + ε̄

(
B0 +B1x̄+B2x̄

2 +B3x̄
3 + x̄4 + ux̄5G(ux̄, λ)

)
+ε̄ȳ2H(ux̄, u2ȳ, λ),

(5)

where ε̄ ∼ 0 is the singular perturbation parameter. We denote the family (5)
by XF

ε̄,B,u,λ. The family XF
ε̄,B,u,λ is a special case of (2) with the singularity

order at the contact point (x̄, ȳ) = (0, 0) at most 3 because (B0, B1, B2, B3) 6=
(0, 0, 0, 0) ((B0, B1, B2, B3) ∈ S3). Thus, we may apply the well-known results

described in Section 1. On the other hand, since Xf
ε,B,u,λ = XF

εu,B,u,λ, we obtain

complete information about the number of limit cycles in the family Xf
ε,B,u,λ,

for ε ∈ [0,M ] and u ∼ 0, by studying limit cycle bifurcations that may occur in
XF
ε̄,B,u,λ, for ε̄ ∼ 0 and u ∼ 0. From now on, we thus focus on only the family

XF
ε̄,B,u,λ, for ε̄ ∼ 0 and u ∼ 0, in the region D.

2.2.2 The phase-directional charts

Since our goal is to study limit cycles of Xε,B,r,λ in a neighborhood of the origin
in the (x, y)-plane that does not shrink to the origin as r → 0, we also have
to consider the dynamics in the blown-up coordinates in the phase-directional
rescaling charts “x̄ = ±1, ȳ = ±1” (Figure 1). Thus we have to study the
dynamics of Xε,B,r,λ + 0 ∂

∂r in the blown-up coordinates near the “equator”
{(u, x̄, ȳ, r̄); u = 0, r̄ = 0, x̄2 + ȳ2 = 1}. It will be clear from the following
analysis that the dynamics in an (ε, B, λ)-uniform neighborhood of the equator
is like in Figure 2, where (ε, B, λ) ∈]0,M ]× S3 × Λ.

1. The phase-directional chart {x̄ = +1}
In the phase-directional chart {x̄ = +1} the blow-up map (3) has the form

(x, y, r) = (U,U2Ȳ , UR̄), U ≥ 0.

In these new coordinates Xε,B,r,λ+0 ∂
∂r becomes (after division by U > 0):

U̇ = UȲ
˙̄R = −R̄Ȳ
˙̄Y = −Ȳ − 2Ȳ 2 + εU

(
1 +O(U, R̄, Ȳ 2)

)
.

(6)

It is easy to see the following facts. On {U = 0, R̄ = 0}, (6) has singulari-
ties at Ȳ = − 1

2 and Ȳ = 0. The first one is a hyperbolic (resonant) saddle
(the eigenvalues of the linear part at this singularity are (− 1

2 ,
1
2 , 1)), and

the second one is a semi-hyperbolic singularity with the Ȳ -axis as stable
manifold and a 2-dimensional center direction, transverse to the Ȳ -axis.
An (ε, B, λ)-family of center manifolds at (U, R̄, Ȳ ) = (0, 0, 0) is expressed
by

Ȳ = εU
(
1 +O(U, R̄)

)
,

9



and the related center behavior is given by

{U̇ = εU2
(
1 +O(U, R̄)

)
, ˙̄R = −εR̄U

(
1 +O(U, R̄))}.

2. The phase-directional chart {x̄ = −1}
We study the part of the sphere where x̄ ∼ −1 by applying the coordinate
change (U, R̄, t)→ (−U,−R̄,−t) to (6). Note that the directional blow-up
formula in the chart {x̄ = −1} is (x, y, r) = (−U,U2Ȳ , UR̄), U ≥ 0.

3. The phase-directional charts {ȳ = +1} and {ȳ = −1}
The directional blow-up formula in the charts {ȳ = +1} and {ȳ = −1} is
given by

(x, y, r) = (UX̄,±U2, UR̄), U ≥ 0.

Besides the singularities we already found in the charts {x̄ = +1} and
{x̄ = −1}, there are no extra singularities in the part of the equator
covered by the charts {ȳ = ±1}. The dynamics near the equator in the
chart {ȳ = +1} is regular pointing from left to right. Near X̄ = 0, the
dynamics near the equator in the chart {ȳ = −1} points from right to left.

D

(b)

D

(a)

Figure 2: A bird’s eye view of the blow-up of (x, y, r) = (0, 0, 0), for ε ∈]0,M ].
(a) The dynamics of Xε,B,r,λ + 0 ∂

∂r in the family chart (the region D) and in

the phase-directional charts, for r = UR̄ = 0. The critical curve of Xf
ε,B,0,λ

connects two semi-hyperbolic singularities on the equator. (b) The dynamics of
Xε,B,r,λ+0 ∂

∂r in a fixed neighborhood of the equator, for each level r = UR̄ > 0,
outside the region D.

It is clear from Figure 2(a) that the origin (x, y) = (0, 0) of Xε,0,λ is a
(nilpotent) saddle-node singularity, for each (ε, λ) ∈]0,M ]× Λ.

2.2.3 Combining the family chart and the phase-directional charts.
Slow-fast analysis in the family chart

Figure 2 indicates that in order to prove Theorem 2.1–Theorem 2.5, we need to
study only singular perturbation problem (5) in an arbitrarily large compact set
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D. Indeed, it is obvious that orbits which spend some time in the neighborhood
of the equator in Figure 2(b) cannot be closed in a small neighborhood of (x, y) =
(0, 0). Therefore all small-amplitude limit cycles have to be confined to D. From
this together with (3) we can conclude that the size of the small-amplitude limit
cycles in the (x, y)-plane tends to 0 as r → 0, or equivalently as b→ 0.

The rest of the section is devoted to the study of the slow-fast structure of
XF
ε̄,B,u,λ given by (5). The curve of singularities of XF

0,B,u,λ is {ȳ = 0}. We call
the set {ȳ = 0} the critical curve. As usual, the critical curve consists of semi-
hyperbolic singularities, with the exception of the origin (x̄, ȳ) = (0, 0), where
we have a nilpotent contact point. Note that the curve is normally attracting
when x̄ > 0 and normally repelling when x̄ < 0. See the region D in Figure
2(a). Clearly, orbits of the so-called fast subsystem XF

0,B,u,λ are parabolas

ȳ = − 1
2 x̄

2 + c, and the dynamics of XF
ε̄,B,u,λ, away from the critical curve, is

given more or less by the dynamics of XF
0,B,u,λ.

On the other hand, the dynamics of XF
ε̄,B,u,λ near the critical curve, for

x̄ 6= 0, can be studied using the so-called slow dynamics. More precisely, cen-
ter manifolds at the semi-hyperbolic singularity (x̄, ȳ, ε̄) = (x̄, 0, 0), x̄ 6= 0, of
XF
ε̄,B,u,λ + 0 ∂

∂ε̄ are given by

ȳ = ε̄
(B0 +B1x̄+B2x̄

2 +B3x̄
3 + x̄4 + ux̄5G(ux̄, λ)

x̄
+O(ε̄)

)
.

From the first equation in (5) we obtain the dynamics inside these center man-
ifolds:

˙̄x =
dx̄

dt
= ε̄
(B0 +B1x̄+B2x̄

2 +B3x̄
3 + x̄4 + ux̄5G(ux̄, λ)

x̄
+O(ε̄)

)
.

We find the slow dynamics along the critical curve (but outside the contact
point) after dividing the last equation by ε̄ and letting ε̄→ 0:

x̄′ =
dx̄

dτ
=
dx̄

ε̄dt
=
B0 +B1x̄+B2x̄

2 +B3x̄
3 + x̄4 + ux̄5G(ux̄, λ)

x̄
, x̄ 6= 0. (7)

The reader is referred to [DR96] for more details about the definition of slow
dynamics.

There are essentially two kinds of closed curves (so-called limit periodic sets)
that may bifurcate in limit cycles of XF

ε̄,B,u,λ, for ε̄ > 0 and u > 0: canard limit
periodic sets Γȳ, ȳ > 0, consisting of the orbit of the fast subsystem through the
point (0, ȳ) and the piece of the critical curve between the α-limit set and the
ω-limit set of that fast orbit, and the nilpotent contact point (x̄, ȳ) = (0, 0) from
which so-called small-amplitude limit cycles in the (x̄, ȳ)-plane may bifurcate.
Clearly, if limit cycles appear near Γȳ, then the slow dynamics allows the passage
from the attracting part of the critical curve to the repelling part of the critical
curve, for some parameters (B, u, λ). Of course, the passage near the contact
point has to be studied separately from the rest of the critical curve since the
slow dynamics is not defined at x̄ = 0. As mentioned in Section 1, the passage
near the contact point and the limit cycles bifurcating from the contact point, in
the slow-fast system XF

ε̄,B,u,λ, have already been dealt with before (see Section
3).
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3 Proofs of Theorem 2.1–Theorem 2.5

In this section we prove Theorem 2.1–Theorem 2.5. We focus on XF
ε̄,B,u,λ in an

arbitrarily large (but fixed) compact set D in the (x̄, ȳ)-plane (Figure 2) and,
depending on the chosen region in the parameter space b (see Section 2.1), we
detect all limit periodic sets, for ε̄ = u = 0, in D that can generate limit cycles
by perturbation, for ε̄ > 0 and u > 0. We find maximum number of limit cycles
near each such limit periodic set, and we glue together the local results to obtain
the cyclicity of D.

3.1 The jump region

In the jump region, we consider the slow-fast system XF
ε̄,(±1,B1,B2,B3),u,λ where

the parameters (B1, B2, B3) are kept in an arbitrary compact set, ε̄ ∼ 0, u ∼ 0
and where λ ∈ Λ. The contact point of XF

ε̄,(±1,B1,B2,B3),u,λ is of jump type and,

as explained in Section 1, there are no limit cycles. We also refer to [HDMD13],
Section 3.4, for a detailed study of the jump case. Indeed, after making a blow-
up at the origin (x̄, ȳ, ε̄) = (0, 0, 0), we see that there are no singularities of
XF
ε̄,(±1,B1,B2,B3),u,λ in a fixed neighborhood of the origin in the (x̄, ȳ)-plane for

ε̄ > 0. Thus there are no small-amplitude periodic orbits of XF
ε̄,(±1,B1,B2,B3),u,λ

under the given conditions on the parameters. Since the slow dynamics (7) in
the jump region does not point from the right to the left for x̄ ∼ 0 and x̄ 6= 0

(x̄′ = ±1+O(x̄)
x̄ ), we have no limit cycles close to canard limit periodic sets Γȳ.

This concludes the proof of Theorem 2.1.

3.2 The saddle region

The proof of Theorem 2.2 can be found in [HDMD13], Section 3.5. However,
for the sake of completeness, we give a sketch of the proof of this result. We
consider XF

ε̄,(B0,1,B2,B3),u,λ where the parameters (B2, B3) are kept in an arbi-

trary compact set in R2, ε̄ ∼ 0, B0 ∼ 0, u ∼ 0 and where λ ∈ Λ. After blowing
up the origin (x̄, ȳ, ε̄) = (0, 0, 0), it can be easily seen that there is one hyper-
bolic saddle of XF

ε̄,(B0,1,B2,B3),u,λ in a fixed neighborhood of (x̄, ȳ) = (0, 0) for

ε̄ ∼ 0, ε̄ > 0, B0 ∼ 0, u ∼ 0 (see [HDMD13]). Thus we have no small-amplitude
periodic orbits under the given conditions on the parameters. Since the slow
dynamics (7) in the saddle case points from the left to the right near x̄ = 0
(x̄′ = 1 +O(x̄) > 0, for B0 = 0), no limit cycles bifurcate from Γȳ.

3.3 The slow-fast Hopf region

In this section we prove Theorem 2.3. Besides the proof of Theorem 2.5 in the
elliptic case, the proof of Theorem 2.3 is the technically most difficult part of
this paper.

We consider the singular perturbation system XF
ε̄,(B0,−1,B2,B3),u,λ and, like

in Section 3.2, we suppose that (ε̄, B0, u) ∼ (0, 0, 0), λ ∈ Λ and (B2, B3) ∈
[−B1

2 , B
1
2 ] × [−B1

3 , B
1
3 ] where B1

2 > 0 and B1
3 > 0 are arbitrarily large, but

fixed, real numbers. We write B = [−B1
2 , B

1
2 ]× [−B1

3 , B
1
3 ]. From Section 3.7 of

[HDMD13], it follows that, in order to prove Theorem 2.3, it suffices to study
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the singular perturbation system XF
δ2,(δB̄0,−1,B2,B3),u,λ

:
˙̄x = ȳ
˙̄y = −x̄ȳ + δ2

(
δB̄0 − x̄+B2x̄

2 +B3x̄
3 + x̄4 + ux̄5G(ux̄, λ)

)
+δ2ȳ2H(ux̄, u2ȳ, λ),

(8)

where δ ∼ 0 is the new singular perturbation parameter, (B̄0, u) ∼ (0, 0),
(B2, B3) ∈ B and λ ∈ Λ. Indeed, we have to make the following rescaling:

(ε̄, B0) = (δ2E, δB̄0), δ ≥ 0, δ ∼ 0, E ≥ 0, (E, B̄0) ∈ S1.

As usual, we use different charts covering the sphere S1. When (ε̄, B0) =
(δ2E,±δ), with E ∼ 0 and E ≥ 0, then after a blow-up (x̄, ȳ, δ) = (vx̃, v2ỹ, vδ̃),
with v ≥ 0, δ̃ ≥ 0 and (x̃, ỹ, δ̃) ∈ S2, at (x̄, ȳ, δ) = (0, 0, 0), the system
XF
δ2E,(±δ,−1,B2,B3),u,λ in the family chart {δ̃ = 1} becomes (after division by

v): {
˙̃x = ỹ
˙̃y = −x̃ỹ + E

(
± 1 +O(x̃)

)
+ EO(ỹ2)

The origin (x̃, ỹ) = (0, 0) is now a jump point for this slow-fast system and
limit cycles cannot appear. Therefore it suffices to deal with the chart {E = 1}
in which we have (ε̄, B0) = (δ2, δB̄0), with B̄0 in a large compact set. After
studying the system XF

δ2,(δB̄0,−1,B2,B3),u,λ
in different charts of the blow-up at

(x̄, ȳ, δ) = (0, 0, 0), given by

(x̄, ȳ, δ) = (vx̃, v2ỹ, vδ̃), v ≥ 0, δ̃ ≥ 0, (x̃, ỹ, δ̃) ∈ S2, (9)

we find that limit cycles of XF
δ2,(δB̄0,−1,B2,B3),u,λ

occur only if B̄0 ∼ 0 (for

B̄0 = 0 a center appears on the blow-up locus of the blow-up (9)). We refer to
[HDMD13] for more details.

From the following theorem it follows that the limit cycles may bifurcate
from the contact point (x̄, ȳ) = (0, 0) in the slow-fast system (8), for δ > 0 and
B̄0 ∼ 0. In other words, at B̄0 = 0, a (slow-fast) Hopf bifurcation takes place.

Theorem 3.1. (i) Let B0
2 > 0 be any arbitrarily small fixed number and let

K := B ∩ {|B2| ≥ B0
2}. There exist small δ0 > 0, B̄0

0 > 0, u0 > 0 and
a neighborhood U of (x̄, ȳ) = (0, 0) such that the following statements are
true.

1 The family XF
δ2,(δB̄0,−1,B2,B3),u,λ

has at most 1 (hyperbolic) limit cy-

cle in U for each (δ, B̄0, B2, B3, u, λ) ∈ [0, δ0] × [−B̄0
0 , B̄

0
0 ] × K ×

[0, u0]× Λ.

2 When we fix (δ,B2, B3, u, λ) ∈]0, δ0]×K × [0, u0]×Λ, the B̄0-family
XF
δ2,(δB̄0,−1,B2,B3),u,λ

undergoes, in U and at B̄0 = 0, a Hopf bifurca-

tion of codimension 1. Assume (B2, B3) ∈ K and B2 > 0. When B̄0

increases there is in U an attracting hyperbolic focus and no limit cy-
cle; when B̄0 decreases there is in U a repelling hyperbolic focus and
an attracting limit cycle of which the size monotonically grows as B̄0

decreases. Assume (B2, B3) ∈ K and B2 < 0. When B̄0 decreases
there is in U a repelling hyperbolic focus and no limit cycle; when B̄0

increases there is in U an attracting hyperbolic focus and a repelling
limit cycle of which the size monotonically grows as B̄0 increases.
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(ii) There exist small δ0 > 0, B̄0
0 > 0, B0

2 > 0 and u0 > 0 and a neighborhood
U of (x̄, ȳ) = (0, 0) such that the family XF

δ2,(δB̄0,−1,B2,B3),u,λ
has at most

2 limit cycles in U for each (δ, B̄0, B2, B3, u, λ) ∈ [0, δ0]× [−B̄0
0 , B̄

0
0 ]×B∩

{|B2| ≤ B0
2} × [0, u0]× Λ.

Proof. Let’s prove (i). The contact point (x̄, ȳ) = (0, 0) in slow-fast system (8)
is a slow-fast Hopf point of codimension 1 (for the exact definition of the notion
of slow-fast Hopf point we refer to [DR09]). To see it we refer to [HDMD13],
Section 3.7. Note that the codimension is 1 because the coefficient B2 in front of
the quadratic term x̄2 ∂

∂ȳ in (8) is nonzero. From [HDMD13] it follows that (8)

has at most 1 (hyperbolic) limit cycle in a (δ, B̄0, B2, B3, u, λ)-uniform neigh-
borhood of the contact point, and that, for δ > 0 and at B̄0 = 0, a (slow-fast)
Hopf bifurcation of codimension 1 takes place, with the properties described in
the statement 2.

The statement (ii) follows from [Huz16], Sections 3–5. For the sake of com-
pleteness, we give here a sketch of the proof of (ii). Using the coordinate change
Y = ȳ+ 1

2 x̄
2, we arrive at a representation of (8) in the so-called Liénard plane:

˙̄x = ȳ − 1
2 x̄

2

˙̄y = δ2
(
δB̄0 − x̄+B2x̄

2 +B3x̄
3 + x̄4 + ux̄5G(ux̄, λ)

)
+δ2(ȳ − 1

2 x̄
2)2H(ux̄, u2(ȳ − 1

2 x̄
2), λ),

(10)

where we denote Y again by ȳ. Since we assume B2 ∼ 0 and the coefficient
in front of the quartic term x̄4 ∂

∂ȳ in (10) is nonzero, the origin (x̄, ȳ) = (0, 0)

is a slow-fast Hopf point of codimension 2 (see [DR09]). To prove that the
cyclicity of (x̄, ȳ) = (0, 0) in (10) is bounded by 2, we need to blow up the origin
(x̄, ȳ, δ) = (0, 0, 0) using the blow-up formula (9). In the family directional chart

{δ̃ = +1} (10) becomes (after division by v > 0):{
˙̃x = ỹ − 1

2 x̃
2

˙̃y = B̄0 − x̃+B2vx̃
2 +B3v

2x̃3 + v3
(
x̃4 +H(0, 0, λ)(ỹ − 1

2 x̃
2)2 +O(v)

)
.

(11)
We denote this vector field by Xv,B̄0,B2,B3,u,λ. It can be easily seen that the
vector field X0,0,B2,B3,u,λ is of center type with the center at (x̃, ỹ) = (0, 0)
and that −e−ỹX0,0,B2,B3,u,λ is a Hamiltonian vector field and its Hamilto-
nian is H(x̃, ỹ) = e−ỹ(ỹ − 1

2 x̃
2 + 1). We write J0(h) =

∫
γh
e−ỹdx̃, J1(h) =∫

γh
e−ỹx̃2dx̃ and J2(h) =

∫
γh
e−ỹx̃4dx̃ + H(0, 0, λ)

∫
γh
e−ỹ(ỹ − 1

2 x̃
2)2dx̃, where

γh := {H(x̃, ỹ) = h}, h ∈]0, 1], is a closed curve oriented counter-clockwise.
Based on [FTV13], it was shown in Section 4 of [Huz16] that the system
{ ddhJ0,

d
dhJ1,

d
dhJ2} of analytic functions is a strict Chebyshev system on [h0, 1]

of degree 2, for all small h0 > 0 (For a definition of a strict Chebyshev system
we refer to [DR09]). This implies that any fixed compact set in the (x̃, ỹ)-plane
can produce at most 2 limit cycles (we refer once more to Section 4 of [Huz16]
for more details).

The size of these limit cycles tends to 0 as δ = v → 0. Therefore we also
have to consider limit cycles in the (x̄, ȳ)-plane that are unbounded in the (x̃, ỹ)-
plane and close to the origin in the (x̄, ȳ)-plane, for which the essential part of
the study has to be done in the phase directional charts of (9). They have been
studied in Section 3 of [Huz16] by using strict Chebyshev systems of degree 2.
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In Section 5 of [Huz16], it has been proven that the cyclicity of (x̄, ȳ) = (0, 0)
in (10) is bounded by 2 by gluing the local results and constructing a “global”
strict Chebyshev system of degree 2.

On the other hand, the slow dynamics of (8), which is given by

x̄′ = −1 +B2x̄+B3x̄
2 + x̄3 + ux̄4G(ux̄, λ), (12)

points from the right to the left at least near x̄ = 0. Thus, canard limit cycles
can also arise in the (x̄, ȳ)-plane. Now let’s detect all the canard limit periodic

sets Γȳ in (8) from which the canard limit cycles may bifurcate. Clearly, since
(δ, B̄0, u) ∼ (0, 0, 0) in (8), the limit periodic sets Γȳ have to be studied at
(δ, B̄0, u) = (0, 0, 0). The following analysis of the slow dynamics (12) will show
that the limit periodic sets Γȳ are like in Figure 3.

Let’s write

d(x̄, B2, B3, u, λ) = −1 +B2x̄+B3x̄
2 + x̄3 + ux̄4G(ux̄, λ).

The discriminant

J = B2
2B

2
3 − 4B3

2 + 4B3
3 − 18B2B3 − 27

of the cubic x̄-polynomial d(x̄, B2, B3, 0, λ) ∈ R[x̄] can be used to find
out how many real zeros d(x̄, B2, B3, 0, λ) has. It is obvious that the
cubic polynomial d(x̄, B2, B3, 0, λ) has at least one positive zero. The
set {J = 0} in the parameter space (B2, B3) is symmetric with respect
to the line B3 = −B2, and consists of two curves: SN1 ∪ {(−1, 1)} ∪
SN2 and the cusp curve SN3 ∪ {(3,−3)} ∪ SN4. For each parameter
value (B2, B3) ∈ SN1 ∪ {(−1, 1)} ∪ SN2 (resp. (B2, B3) ∈ SN3 ∪ SN4),
d(x̄, B2, B3, 0, λ) has a negative double zero (resp. a positive double zero).
For (B2, B3) = (3,−3), d(x̄, B2, B3, 0, λ) has a (positive) triple zero. When
(B2, B3) is in the region between the curves SN1 ∪ {(−1, 1)} ∪ SN2 and
SN3 ∪ {(3,−3)} ∪ SN4 (J < 0), the cubic polynomial has one real zero.
For each (B2, B3) in the region above the curve SN1 ∪ {(−1, 1)} ∪ SN2

(resp. under the curve SN3∪{(3,−3)}∪SN4), the cubic polynomial has 2
distinct negative zeros and 1 positive zero (resp. 3 distinct positive zeros).
We have J > 0 for each (B2, B3) in these two regions.

Remark 3. The zeros of d(x̄, B2, B3, 0, λ) correspond to the singularities
of the slow dynamics (12) for u = 0. We denote the negative singularities
by x̄1

L, x̄
2
L and the positive singularities by x̄1

R, x̄
2
R, x̄

3
R.

The limit periodic sets Γȳ are very diverse and their fast orbit may end up
in a regular point of the slow dynamics on both sides of the critical curve,
in a singularity of the slow dynamics on one side of the critical curve, or
in a singularity on both sides of the critical curve. In order to detect those
Γȳ the fast orbit of which ends up in a zero of d(x̄, B2, B3, 0, λ) on both
sides of the critical curve (note that −x̄1

L = x̄1
R in Figure 3(l),(n)), we

have to solve the following system:{
d(x̄, B2, B3, 0, λ) = 0

d(−x̄, B2, B3, 0, λ) = 0,
(13)
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where x̄ > 0. After adding and subtracting these two equations, we get

x̄ =
√
−B2 =

1√
B3

, B2 < 0, B3 > 0. (14)

Thus, the system (13) has a solution x̄ > 0 if and only if (B2, B3) ∈
{(B2, B3)|−B2B3 = 1, B2 < 0, B3 > 0}∩B (see the curve C1∪{(−1, 1)}∪
C2 in Figure 3). When the solution exists, it is unique and given by (14).
When (B2, B3) ∈ C2, a Γȳ with the above property cannot occur because
the zero x̄1

L ∈]x̄2
L, x̄

1
R[ does not allow the passage from the right to the left

on the interval [x̄2
L, x̄

1
R] in Figure 3(k).

Remark 4. It can be easily seen that x̄1 6= 0 is a zero of d(x̄, B2, B3, 0, λ)
if and only if 1

x̄1
is a zero of d(x̄,−B3,−B2, 0, λ). Thus, if we know the

limit periodic sets Γȳ for (B2, B3) ∈ B, then we can easily find the limit
periodic sets Γȳ for (−B3,−B2) ∈ B.

The value x̄0 =
√
−B2, B2 < 0, tells us when to use Lemma 3.3(iii). More

precisely, in Figures 3(g) to 3(o) we find the limit periodic sets Γȳ with

the property that ȳ < −B2

2 =
x̄2

0

2 . The cyclicity of those limit periodic sets
can be studied by using Lemma 3.3(iii). We refer to Sections 3.3.2–3.3.6
for more details.

(a)

x̄2
L x̄1

L x̄1
R

(b)

x̄1
Rx̄1

L

(c)

x̄1
R

(d)

x̄2
Rx̄1

R

(e)

x̄1
R x̄2

R x̄3
R

(f)

x̄2
Rx̄1

R

(g)

x̄0 x̄1
R

(h)

x̄0 x̄1
Rx̄1

L

(i)

x̄0 x̄1
R−x̄0 x̄1

L

(j)

x̄0 x̄1
R−x̄0x̄

2
L x̄1

L

(k)

x̄1
R = x̄0x̄2

L = −x̄0 x̄1
L

(l)

x̄1
R = 1x̄1

L = −1

(m)

x̄1
R x̄0x̄2

L −x̄0 x̄1
L

(n)

x̄1
R = x̄0x̄2

L x̄1
L = −x̄0

(o)

x̄1
Rx̄0x̄1

Lx̄2
L

(a)
SN1

SN3

SN2

(b)

(c)

(d)

(e)
(f)

SN4

(g)

(h)

(i)

(j)

(k)C2
(l)

(m)

(n)
(o)

B2

B3C1

Figure 3: Canard limit periodic sets Γȳ, for (δ, B̄0, u) = (0, 0, 0) and (B2, B3) ∈
B, with indication of slow dynamics. Singularities of the slow dynamics (12),
for u = 0, are denoted by x̄1

L, x̄
2
L, x̄

1
R, x̄

2
R, x̄

3
R. The value x̄0 =

√
−B2, B2 < 0,

tells us where to use Lemma 3.3(iii).

Since the slow dynamics (12) is regular with possible isolated singularities
located away from the contact point (x̄, ȳ) = (0, 0), to find the cyclicity of
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the limit periodic sets Γȳ given in Figure 3, we can use the results given in
[DMD08]. Following [DMD08], we study the limit cycles of XF

δ2,(δB̄0,−1,B2,B3),u,λ

near ∪ȳ∈[µ,η]Γȳ, 0 < µ < η, as zeros of a difference map. We first define a section
S = {x̄ = 0}, parametrized by ȳ ∈ [µ, η], and a second section T = {x̃ = 0} that
we define along the blow up locus of the blow-up (9) at the origin (x̄, ȳ) = (0, 0).

The section T is located in the family chart {δ̃ = 1} and parametrized by the
blow-up coordinate ỹ. By following the orbits of XF

δ2,(δB̄0,−1,B2,B3),u,λ
in forward

and backward time we can define transition maps from S to T , denoted by
respectively F1 and F2. Closed orbits of XF

δ2,(δB̄0,−1,B2,B3),u,λ
are given by zeros

of the difference map
∆ = F1 − F2.

Following [DMD08], ∂∆
∂ȳ can be given in terms of a divergence integral. More

precisely, if we write τ = (δ, B̄0, B2, B3, u, λ), then we have

∂∆

∂ȳ
(ȳ, τ) = − 1

δ4
L+(ȳ, τ) exp I+(ȳ, τ)−

(
− 1

δ4
L−(ȳ, τ) exp I−(ȳ, τ)

)
(15)

where L± are strictly positive functions due to the chosen parameterizations of
S and T , and where

I±(ȳ, τ) =

∫
O±(ȳ,τ)

div (±XF
δ2,(δB̄0,−1,B2,B3),u,λ)dt

where O+(ȳ, τ) (resp. O−(ȳ, τ)) is the orbit through the point (0, ȳ) ∈ S, in
positive time (resp. in negative time) until it hits the section T . If we introduce
the analytic function A(α, β) = expα−exp β

α−β > 0 if α 6= β and A(α, α) = expα

(see [DR09]), and if we write I = I+ − I−, then (15) can be written as

∂∆

∂ȳ
(ȳ, τ) = − 1

δ6
A(α, β)

(
δ2I(ȳ, τ) +O(δ2)

)
(16)

with
α = I+(ȳ, τ) + ln(L+(ȳ, τ))

and
β = I−(ȳ, τ) + ln(L−(ȳ, τ)).

We don’t specify the O(δ2)-term in (16) since it is not the leading order part
in the expression δ2I + O(δ2). We refer to [DMD08] for more details. Us-
ing Rolle’s theorem, it can be shown that the number of periodic orbits of
XF
δ2,(δB̄0,−1,B2,B3),u,λ

near the set ∪ȳ∈[µ,η]Γȳ, at the τ -level, is bounded by 1+

the number of zeros (counting multiplicity) of δ2I w.r.t. ȳ ∈ [µ, η].
The following is a simple but important observation.

Lemma 3.2. Suppose that, for a fixed parameter τ , δ2I has precisely one zero
(counting multiplicity) in [µ, η] which we denote by ȳ0. If δ2 ∂I

∂ȳ (ȳ0, τ) < 0 and if

two limit cycles occur near the set ∪ȳ∈[µ,η]Γȳ, then the smaller limit cycle (resp.
the bigger limit cycle) has to be (hyperbolically) repelling (resp. attracting).

Proof. The lemma follows directly from (16).

17



Lemma 3.2 helps us glue local cyclicity results together in Sections 3.3.3–
3.3.6.

It follows from [DMD08] that the main tool for studying zeros of δ2I is the
slow divergence integral along [−

√
2ȳ,
√

2ȳ]:

I(ȳ, B2, B3, u, λ) =

∫ √2ȳ

−
√

2ȳ

wdw

d(w,B2, B3, u, λ)
. (17)

Note that the divergence of (8) on the critical curve {ȳ = 0} is −x̄ for δ =
0, while dt = dw

d(w,B2,B3,u,λ) . The α-limit set (resp. the ω-limit set) of the

orbit of the fast subsystem XF
0,B,u,λ through the point (0, ȳ) is {(−

√
2ȳ, 0)}

(resp. {(
√

2ȳ, 0)}). The slow divergence integral I is well defined for any
value (ȳ, B2, B3, u, λ), with the property that d(w,B2, B3, u, λ) < 0 for all
w ∈ [−

√
2ȳ,
√

2ȳ]. Clearly, I is well defined for ȳ ∼ 0.

Lemma 3.3. The following statements are true:

(i) Take any small µ > 0. There is a small u0 > 0 such that for any
value (ȳ1, B2, B3, u, λ) ∈ [µ, 1

µ ] × B × [0, u0] × Λ, with the property that

d(w,B2, B3, u, λ) < 0 for all w ∈ [−
√

2ȳ1,
√

2ȳ1], the slow divergence in-
tegral I(ȳ, B2, B3, u, λ) has at most 1 zero (counting multiplicity) w.r.t
ȳ ∈ [µ, ȳ1].

(ii) Take any small µ > 0. There exist sufficiently small ρ0 > 0, B0
2 > 0

and u0 > 0 such that for any (ȳ, B2, B3, u, λ) ∈ [µ, 1
µ ] × (B ∩ {B2 ≥

−B0
2}) × [0, u0] × Λ, with the property that d(w,B2, B3, u, λ) < 0 for all

w ∈ [−
√

2ȳ,
√

2ȳ], we have that I(ȳ, B2, B3, u, λ) < −ρ0.

(iii) Let µ > 0 and B0
2 > 0 be arbitrarily small and µ <

B0
2

4 . There exist small
ρ0 > 0 and u0 > 0 so that for each (B2, B3, u, λ) ∈ (B ∩ {B2 ≤ −B0

2}) ×
[0, u0]×Λ and ȳ ∈ [µ, −B2

2 −µ], with the property that d(w,B2, B3, u, λ) < 0
for all w ∈ [−

√
2ȳ,
√

2ȳ], we have that I(ȳ, B2, B3, u, λ) > ρ0.

Proof. First of all we notice that

I(ȳ, B2, B3, u, λ) =

∫ √2ȳ

−
√

2ȳ

wdw

d(w,B2, B3, u, λ)

=

∫ √2ȳ

0

w
( 1

d(w,B2, B3, u, λ)
− 1

d(−w,B2, B3, u, λ)

)
dw

=

∫ √2ȳ

0

−2w2(B2 + w2 + uO(w3))

d(w,B2, B3, u, λ).d(−w,B2, B3, u, λ)
dw. (18)

Let’s prove the statement (i). Clearly, the derivative of I with respect to ȳ
is given by

∂I

∂ȳ
(ȳ, B2, B3, u, λ) =

−2
√

2ȳ
(
B2 + 2ȳ + uO((

√
2ȳ)3)

)
d(
√

2ȳ, B2, B3, u, λ).d(−
√

2ȳ, B2, B3, u, λ)
. (19)

Since (B2, B3) ∈ B, u ∼ 0 and ȳ in a compact set [µ, 1
µ ], the expression (19) has

at most 1 zero (counting multiplicity) w.r.t ȳ ∈]0, ȳ1], where ȳ1 ∈ [µ, 1
µ ] has the
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property from the statement (i). Using Rolle’s theorem we find that the slow
divergence integral I has at most 2 zeros (counting multiplicity) w.r.t ȳ ∈]0, ȳ1].
Since I(0, B2, B3, u, λ) = 0, the slow divergence integral I has at most 1 zero
counting multiplicity w.r.t ȳ ∈]0, ȳ1], and the first statement of the lemma is
proved.

Let’s prove the statement (ii). First, we suppose that B2 ∈ K ⊂]0, B1
2 ] where

K is compact. Since B2 ∈ K, u ∼ 0 and w in a compact set, there is ρ1 > 0
such that B2 + w2 + uO(w3) ≥ ρ1 in (18). From (18), we get

I(ȳ, B2, B3, u, λ) ≤ −ρ1

∫ √2ȳ

0

2w2

d(w,B2, B3, u, λ).d(−w,B2, B3, u, λ)
dw

≤ −ρ1

∫ √2µ

0

2w2

d(w,B2, B3, u, λ).d(−w,B2, B3, u, λ)
dw < −ρ0,

where ρ0 > 0. The last inequality follows from the fact that the last integral is
strictly positive, uniformly in (B2, B3) ∈ B, B2 ∈ K, u ∼ 0 and λ ∈ Λ. This
concludes the proof of the statement (ii) for B2 ∈ K.

Suppose now that B2 ∼ 0. From (18) we have

I(ȳ, B2, B3, u, λ) =

∫ √2µ

0

−2w2(B2 + w2 + uO(w3))

d(w,B2, B3, u, λ).d(−w,B2, B3, u, λ)
dw

+

∫ √2ȳ

√
2µ

−2w2(B2 + w2 + uO(w3))

d(w,B2, B3, u, λ).d(−w,B2, B3, u, λ)
dw. (20)

If we denote by I1 the first integral on the right of (20), it can be checked that

I1 = −(
√

2µ)3
(2B2

3
+ µ

(4

5
+

4(B3
2 + 2B2B3)

5
+O(µ)

))
. (21)

Since µ > 0 is small and fixed and B3 in a compact set, the expression (21)
implies existence of ρ0 > 0 such that I1 < −ρ0, assuming that B2 ∼ 0 is
sufficiently small. On the other hand, since B2 ∼ 0, u ∼ 0, ȳ ≥ µ and w in
a compact set, we have that the second integral on the right of (20) is strictly
negative. This concludes the proof of the statement (ii) for B2 ∼ 0.

Let’s prove the statement (iii). Suppose that (B2, ȳ) ∈ K where K is an
arbitrary compact subset of

{
(B2, ȳ)| − B1

2 ≤ B2 < 0, 0 < ȳ < −B2

2

}
. Since

(B2, ȳ) ∈ K, u ∼ 0, and w ≤
√

2ȳ, we have that B2 + w2 + uO(w3) ≤ −ρ1 in
(18), for some ρ1 > 0. In the similar way as in the first part of the proof of the
statement (ii), from this inequality we obtain that I(ȳ, B2, B3, u, λ) > ρ0, for
some ρ0 > 0.

Remark 5. Lemma 3.3 will be used to find out how many limit cycles can occur
near a Γȳ the fast orbit of which ends up in a singularity of the slow dynamics
on at most one side of the critical curve. To find the number of limit cycles near
a Γȳ the fast orbit of which ends up in a singularity of the slow dynamics on both
sides of the critical curve, we will investigate the zeros of the “full” divergence
integral δ2I using normal-form theory. See [DMD08] for more details.

To finish the proof of Theorem 2.3, we cover the compact set B in the
(B2, B3)-space by 7 sets (see Figure 4), and in each of these sets, we combine
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Theorem 3.1, Lemma 3.2, Lemma 3.3, [DMD08], [Huz16] to find the number
of small-amplitude limit cycles in the original (x, y)-space (see Sections 3.3.1–
3.3.7). We point out that the small-amplitude limit cycles in the (x, y)-space
cannot be studied uniformly in (B2, B3) ∈ B and different gluing techniques
have to be used in each set.

(a)

K

(b)

K

(c)

K

(f)

W

(e)

V

(d)

V

(g)

V

Figure 4: Seven sets covering the compact set B in (B2, B3)-space. For each
set, we glue the local cyclicity results near (x̄, ȳ) = (0, 0) and Γȳ to obtain
the cyclicity of the origin (x, y) = (0, 0) using different gluing techniques. The
gluing methods are not uniform in (B2, B3) ∈ B.

First, we take a sufficiently small neighborhood W of (B2, B3) = (−1, 1) (see
Figure 4(f)). Then we choose “tubular” neighborhoods V of C1 and SN2 as in
Figures 4(d)–(e) such that we cover a complete (tubular) neighborhood of the
curve C1 ∪ {(−1, 1)} ∪ SN2. We also choose a tubular neighborhood V of the
B3-axis as in Figure 4(g). Now, if we take compact sets K large enough (see
Figures 4(a)–(c)), we cover the compact set B.

Remark 6. We denote singularities of the slow dynamics (12), for u > 0, again
by x̄1

L, x̄
2
L, x̄

1
R, x̄

2
R, x̄

3
R (see Sections 3.3.1–3.3.7). For example, when x̄ = x̄1

R is a

hyperbolic singularity of the slow dynamics for (B2, B3, u) = (B̃2, B̃3, 0), the slow
dynamics (resp. the vector field XF

δ2,(δB̄0,−1,B2,B3),u,λ
) has a persistent hyper-

bolic singularity (resp. a persistent hyperbolic saddle) near x̄ = x̄1
R (resp. near

(x̄, ȳ) = (x̄1
R, 0)), for (B2, B3, u) ∼ (B̃2, B̃3, 0) (resp. for (δ, B̄0, B2, B3, u) ∼

(0, 0, B̃2, B̃3, 0), δ > 0), which we denote again by x̄1
R (resp. by (x̄1

R, 0)). For

each (δ, B̄0, B2, B3, u) ∼ (0, 0, B̃2, B̃3, 0) and λ ∈ Λ, the stable manifold at the
hyperbolic saddle (x̄1

R, 0) intersects the section S = {x̄ = 0} at a point de-
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noted by (x̄, ȳ) = (0, 1
2 (x̄1

R)2). This notation makes sense because the ω-limit
set of the fast orbit of the fast subsystem XF

0,(0,−1,B̃2,B̃3),0,λ
through the point

(x̄, ȳ) = (0, 1
2 (x̄1

R)2) is {(x̄1
R, 0)}. Keeping in mind this notation we study the

cyclicity of Γ 1
2 (x̄1

R)2 by looking at zeros of ∆, δ2I or I for ȳ ∼ 1
2 (x̄1

R)2 and

ȳ < 1
2 (x̄1

R)2.

Remark 7. We suppose that the compact set D, introduced in Section 2.2, is
large enough such that all limit periodic sets Γȳ (and singularities of the slow
dynamics) in Figures 3(a) to 3(o) are contained in D.

3.3.1 The parameter region {B2 > 0}

Let B0
2 > 0 be any arbitrarily small fixed number. We consider slow fast systems

XF
δ2,(δB̄0,−1,B2,B3),u,λ

, given in (8), with (δ, B̄0, u) ∼ (0, 0, 0), (B2, B3) ∈ K :=

B ∩ {B2 ≥ B0
2} (see Figure 4(a)) and λ ∈ Λ. In this section we prove:

• The family XF
δ2,(δB̄0,−1,B2,B3),u,λ

has at most 1 (hyperbolically attracting)

limit cycle in D for each (δ, B̄0, u) ∼ (0, 0, 0), (B2, B3) ∈ K and λ ∈ Λ.

Theorem 3.1(i) implies that (8) has at most 1 (hyperbolic and attracting) limit
cycle in a (δ, B̄0, B2, B3, u, λ)-uniform neighborhood of the contact point (x̄, ȳ) =
(0, 0) because the parameter B2 is strictly positive. Since (B2, B3) ∈ K, canard
limit periodic sets Γȳ that generate limit cycles by perturbation can be found
in Figures 3(a) to 3(f). Since the slow dynamics has no negative singularities
in Figures 3(c) to 3(f) and x̄1

R < −x̄1
L in Figures 3(a) to 3(b), the fast orbit of

any Γȳ in Figures 3(a) to 3(f) may end up in a singularity of the slow dynamics
on at most one side of the critical curve. Thus, to obtain the cyclicity of Γȳ, it
suffices to deal with the slow divergence integral (17).

By Lemma 3.3(ii), for any µ > 0 small, there exist small ρ0 > 0 and u0 > 0
such that for any (ȳ, B2, B3, u, λ) ∈ [µ, 1

µ ] ×K × [0, u0] × Λ, with the property

that the slow dynamics d(w,B2, B3, u, λ) < 0 for all w ∈ [−
√

2ȳ,
√

2ȳ], we have
that I(ȳ, B2, B3, u, λ) < −ρ0. Now, using the results of [DMD08], we find that
the cyclicity of set ∪ȳ∈[µ, 12 (x̄1

R)2]Γȳ in Figures 3(a) to 3(e) and the cyclicity of

set ∪ȳ∈[µ, 12 (x̄2
R)2]Γȳ in Figure 3(f) is 1 (I 6= 0). Since I is strictly negative, the

limit cycle generated from such sets has to be hyperbolic and attracting for
δ ∼ 0, δ > 0 and (B2, B3, u, λ) ∈ K × [0, u0] × Λ. Note that the limit cycle
generated from (x̄, ȳ) = (0, 0) is also hyperbolically attracting. Thus, at most 1
(hyperbolically attracting) limit cycle can be generated from set ∪ȳ∈[0, 12 (x̄1

R)2]Γȳ
in Figures 3(a) to 3(e) or from set ∪ȳ∈[0, 12 (x̄2

R)2]Γȳ in Figure 3(f). This concludes
the proof of the statement.

3.3.2 The parameter region above the curve C1 ∪ {(−1, 1)} ∪ SN2

In this section we suppose that (B2, B3) ∈ K, where K is a compact set as in
Figure 4(b), and we prove:

• The family XF
δ2,(δB̄0,−1,B2,B3),u,λ

has at most 1 (hyperbolically repelling)

limit cycle in D for each (δ, B̄0, u) ∼ (0, 0, 0), (B2, B3) ∈ K and λ ∈ Λ.

The proof of this statement is very similar to the proof of the statement in
Section 3.3.1. Since B2 is strictly negative in K, Theorem 3.1(i) implies that
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the family XF
δ2,(δB̄0,−1,B2,B3),u,λ

has at most 1 (hyperbolically repelling) limit

cycle in a fixed neighborhood of the contact point. Since the parameter (B2, B3)
is kept in the compact set K, we deal with limit periodic sets Γȳ in Figures 3(j),
3(k) and 3(m). Since −x̄1

L < x̄1
R uniformly in (B2, B3) ∈ K, we consider Γȳ,

ȳ ∈]0, 1
2 (x̄1

L)2]. Clearly, the α-limit set of the fast orbit of Γȳ may be the
(simple) singularity x̄1

L of the slow dynamics. As in Section 3.3.1, we use the
slow divergence integral I.

Since −x̄1
L < x̄0 =

√
−B2 uniformly in (B2, B3) ∈ K (i.e. 1

2 (x̄1
L)2 < −B2

2
uniformly in (B2, B3) ∈ K), Lemma 3.3(iii) implies that for any µ > 0 small
there exist ρ0 > 0 and u0 > 0 sufficiently small such that I(ȳ, B2, B3, u, λ) > ρ0

for each ȳ ∈ [µ, 1
2 (x̄1

L)2[ and (B2, B3, u, λ) ∈ K × [0, u0] × Λ. (Note that near
x̄ = x̄1

L the slow dynamics has a persistent simple singularity, for u ∼ 0 and
u > 0, that we denote again by x̄1

L.) Now, following [DMD08], we find that
the cyclicity of ∪ȳ∈[µ, 12 (x̄1

L)2]Γȳ is 1 (I 6= 0) and that the generated limit cycle

is hyperbolically repelling (I > 0). Since the small-amplitude limit cycle in the
(x̄, ȳ)-space is also hyperbolically repelling, we have at most 1 (hyperbolically
repelling) limit cycle near ∪ȳ∈[0, 12 (x̄1

L)2]Γȳ.

3.3.3 The parameter region between the curves C1 ∪ {(−1, 1)} ∪ SN2

and {B2 = 0}

We keep the parameter (B2, B3) in a compact set K as in Figure 4(c). In this
section we will prove:

• The family XF
δ2,(δB̄0,−1,B2,B3),u,λ

has at most 2 limit cycles in D for each

(δ, B̄0, u) ∼ (0, 0, 0), (B2, B3) ∈ K and λ ∈ Λ. Fixing (δ,B2, B3, u, λ),
with δ > 0, the B̄0-family XF

δ2,(δB̄0,−1,B2,B3),u,λ
contains a saddle-node

bifurcation of limit cycles, in D and at some B̄0
0 > 0.

We focus on limit periodic sets Γȳ, ȳ ∈]0, 1
2 (x̄1

R)2], in Figures 3(g), 3(h) and 3(o)
(x̄1
R < −x̄1

L uniformly in (B2, B3) ∈ K). Clearly, the slow divergence integral I,
given in (17), is well defined for ȳ ∈]0, 1

2 (x̄1
R)2[, (B2, B3, λ) ∈ K × Λ and u ∼ 0,

and
lim

ȳ→ 1
2 (x̄1

R)2
I(ȳ, B2, B3, u, λ) = −∞. (22)

On the other hand, since 0 < −B2

2 < 1
2 (x̄1

R)2 uniformly in (B2, B3) ∈ K
(note that 0 < x̄0 < x̄1

R uniformly in (B2, B3) ∈ K), Lemma 3.3(iii) implies
that for any µ > 0 small there exist ρ0 > 0 and u0 > 0 sufficiently small
such that I(ȳ, B2, B3, u, λ) > ρ0 for each (B2, B3, u, λ) ∈ K × [0, u0] × Λ and
ȳ ∈ [µ, −B2

2 − µ]. From this together with (22) and Lemma 3.3(i) we conclude
that I has precisely 1 (simple) zero in [µ, 1

2 (x̄1
R)2[, which is denoted by ȳ0, and

that ∂I
∂ȳ (ȳ0, B2, B3, u, λ) < 0, for each (B2, B3, u, λ) ∈ K× [0, u0]×Λ. Using the

results of [DMD08], we have that the cyclicity of ∪ȳ∈[µ, 12 (x̄1
R)2]Γȳ is bounded by

2 (I has at most 1 zero counting multiplicity). Using the results of [Dum11],
we find that the B̄0-family XF

δ2,(δB̄0,−1,B2,B3),u,λ
, for fixed (B2, B3, λ) ∈ K × Λ,

(δ, u) ∼ (0, 0) and δ > 0, undergoes, near Γȳ0 and at B̄0 = B̄0
0 ∼ 0, a saddle-

node bifurcation of limit cycles (I has a simple zero). Thus, the cyclicity of the
set ∪ȳ∈[µ, 12 (x̄1

R)2]Γȳ is 2.
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When 2 limit cycles appear near the set ∪ȳ∈[µ, 12 (x̄1
R)2]Γȳ, the smaller one

(resp. the bigger one) has to be hyperbolically reppeling (resp. hyperbolically
attracting) because ∂I

∂ȳ (ȳ0, B2, B3, u, λ) < 0 (see Lemma 3.2). Since a small
limit cycle generated by the Hopf bifurcation of codimension 1, near the contact
point, is hyperbolically repelling (see Theorem 3.1(i) (B2 < 0)), it is clear that
the cyclicity of ∪ȳ∈[0, 12 (x̄1

R)2]Γȳ is 2. This implies the statement and B̄0
0 > 0.

3.3.4 The parameter region near the curve SN2

In this section we show that

• There exists a sufficiently small tubular neighborhood V of the curve SN2

as in Figure 4(d) such that XF
δ2,(δB̄0,−1,B2,B3),u,λ

has at most 2 limit cycles

in D for each (δ, B̄0, u) ∼ (0, 0, 0), (B2, B3) ∈ V and λ ∈ Λ.

Taking into account Figure 3(i) we have to study the cyclicity of Γȳ for
all ȳ ∈]0, 1

2 (x̄1
R)2]. Note that, since −x̄1

L <
√
−B2 < x̄1

R for (B2, B3) ∈ SN2,
there are no canard limit periodic sets Γȳ the fast orbit of which ends up in
a singularity of the slow dynamics on both sides of the critical curve. We use
Lemma 3.3(iii) to find that for any small µ > 0 the slow divergence integral
I is strictly positive for each (B2, B3) near the curve SN2, u ∼ 0, λ ∈ Λ
and ȳ ∈ [µ, −B2

2 − µ], with the property that d(w,B2, B3, u, λ) < 0 for all
w ∈ [−

√
2ȳ,
√

2ȳ]. From this together with Lemma 3.3(i), we have that, if 2 limit
cycles occur near ∪ȳ∈[µ, 12 (x̄1

R)2]Γȳ, then there exists a simple zero ȳ0 ∈ [µ, 1
2 (x̄1

R)2[

of I (i.e. a simple zero of δ2I) with the property that ∂I
∂ȳ (ȳ0, B2, B3, u, λ) < 0.

Like in Section 3.3.3, combining Theorem 3.1(i)(B2 < 0) and Lemma 3.2, at
most 2 limit cycles may bifurcate from ∪ȳ∈[0, 12 (x̄1

R)2]Γȳ.

3.3.5 The parameter region near the curve C1

In this section our goal is to prove:

• There is a sufficiently small tubular neighborhood V of the curve C1 as in
Figure 4(e) such that XF

δ2,(δB̄0,−1,B2,B3),u,λ
has at most 2 limit cycles in

D for each (δ, B̄0, u) ∼ (0, 0, 0), (B2, B3) ∈ V and λ ∈ Λ.

For (δ, B̄0, u) = (0, 0, 0) and (B2, B3) ∈ C1, we detect canard limit periodic
sets Γȳ that can generate limit cycles by perturbation (see Figure 3(n)):

Γȳ, ȳ ∈]0,
−B2

2
].

Note that the fast orbit of Γ−B2
2

connects two hyperbolic singularities x̄ =

−
√
−B2 and x̄ =

√
−B2 of the slow dynamics. The family XF

δ2,(δB̄0,−1,B2,B3),u,λ

has a persistent hyperbolic saddle near (x̄, ȳ) = (
√
−B2, 0) (resp. near (x̄, ȳ) =

(−
√
−B2, 0)) with ratio of eigenvalues −δ2ν1, ν1 = 2(1−B2

√
−B2)

−B2
+O(δ, B̄0, u) >

0 (resp. with ratio of eigenvalues −δ2ν2, ν2 = 2(1+B2

√
−B2)

−B2
+ O(δ, B̄0, u) >

0). Note that ν2 is strictly positive because −1 < B2 uniformly in V . Since
ν1 6= ν2 and the slow dynamics is regular for (B2, B3) ∈ C1, u = 0 and x̄ ∈
] −
√
−B2,

√
−B2[, [DMD08] implies that the cyclicity of the slow-fast two-

saddle-limit periodic set Γ−B2
2

is bounded by 2. More precisely, it has been
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proved in [DMD08](Lemma 4.11) that δ2I has at most 1 zero near ȳ = −B2

2 ,
(δ, B̄0, u) = (0, 0, 0) and (B2, B3) ∈ C1, which is simple. Moreover, since ν1 >
ν2, the derivative δ2 ∂I

∂ȳ , calculated in the simple zero of δ2I (if it exists), is
strictly negative.

On the other hand, Lemma 3.3(iii) implies that for any µ > 0 small there
exist ρ0 > 0 and u0 > 0 sufficiently small and a small tubular neighborhood V
of C1 such that I(ȳ, B2, B3, u, λ) > ρ0 for each (B2, B3, u, λ) ∈ V × [0, u0] × Λ
and ȳ ∈ [µ, −B2

2 − µ]. Thus, near ∪
ȳ∈[µ,

−B2
2 −µ]

Γȳ at most 1 limit cycle may
appear.

When ȳ ∈ [µ, −B2

2 − µ], we have that δ2I − I = O(δ) + O(1).δ2 log δ where
O(δ) and O(1) are smooth, including at δ = 0. This follows from [DMD05]
due to the fact that the slow dynamics is regular along [−

√
2ȳ,
√

2ȳ] for ȳ ∈
[µ, −B2

2 − µ], u ∼ 0 and for (B2, B3) near C1. Thus, δ2I is strictly positive for

each ȳ ∈ [µ, −B2

2 − µ], (δ, B̄0, u) ∼ (0, 0, 0), δ > 0, (B2, B3) near C1 and λ ∈ Λ.
Putting all the informations about δ2I together, we find that δ2I has at most

1 zero (counting multiplicity) w.r.t ȳ ∈ [µ, −B2

2 [, for each (δ, B̄0, u) ∼ (0, 0, 0),
δ > 0, (B2, B3) near C1 and λ ∈ Λ. Thus, we conclude that the cyclicity of
∪
ȳ∈[µ,

−B2
2 ]

Γȳ is bounded by 2. From this together with Theorem 3.1(i)(B2 < 0),

Lemma 3.2 and with the fact that δ2 ∂I
∂ȳ < 0 in a possible simple zero of δ2I, we

find that the cyclicity of ∪
ȳ∈[0,

−B2
2 ]

Γȳ is also bounded by 2.

3.3.6 The parameter region near the point (−1, 1)

Here we prove:

• There is a neighborhood W of (B2, B3) = (−1, 1) (see Figure 4(f)) such
that XF

δ2,(δB̄0,−1,B2,B3),u,λ
has at most 2 limit cycles in D for all (δ, B̄0, u) ∼

(0, 0, 0), (B2, B3) ∈W and λ ∈ Λ.

In Figure 3(l), we detect canard limit periodic sets Γȳ from which limit cycles
may bifurcate for (δ, B̄0, u) ∼ (0, 0, 0), δ > 0, (B2, B3) ∼ (−1, 1) and λ ∈ Λ:

Γȳ, ȳ ∈]0,
1

2
].

For u = 0 and (B2, B3) = (−1, 1), the slow dynamics (12) has a singularity of
multiplicity 1 at x̄ = 1 and a singularity of multiplicity 2 at x̄ = −1. These 2
singularities are connected by the fast orbit of the limit periodic set Γ 1

2
. Since

we deal with different multiplicities at x̄ = 1 and x̄ = −1, Theorem 2.26 of
[DMD08] implies that the cyclicity of Γ 1

2
is bounded by 3. In this section our

principal goal is to prove that the set ∪ȳ∈[0, 12 ]Γȳ can produce at most 2 limit
cycles by gluing local cyclicity results together. This gluing method will enable
us to improve the existing upper bound for the number of limit cycles bifurcating
from Γ 1

2
, and it will be clear that it can be used in the more general framework

of [DMD08].
At x̄ = 1 and near the parameter value (B̄0, B2, B3, u) = (0,−1, 1, 0) we use

a Ck-normal form (see [DMD08]):{
v̇1 = δ2ν1v1

v̇2 = −v2,
(23)
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where −δ2ν1, ν1 > 0, is ratio of eigenvalues of a persistent hyperbolic saddle
of XF

δ2,(δB̄0,−1,B2,B3),u,λ
near (x̄, ȳ) = (1, 0). In these new coordinates the point

(x̄, ȳ) = (1, 0) is located at (v1, v2) = (0, 0). Following [DMD08] or [HDMD13],
we have

δ2I+(ȳ, τ) =

∫ 1

α+(ȳ,τ)

−1 + ν1δ
2

ν1v1
dv1 +O(1),

near ȳ = 1
2 . The integral in the expression for δ2I+ is the divergence integral

(multiplied by δ2) calculated in the normal form coordinates from {v2 = 1}
to {v1 = 1} where we assume that the orbit O+(ȳ, τ) intersects the plane
{v2 = 1} in a point with v1 = α+(ȳ, τ). Clearly, α+ is a Ck-diffeomorphism

with α+( 1
2 , 0, 0,−1, 1, 0, λ) = 0 and ∂α+

∂ȳ < 0. The O(1)-term represents the

contribution in the divergence integral I+ (multiplied by δ2) due to the passage
along the fast fiber until we reach {v2 = 1} and the passage along the attracting
part of the critical curve between {v1 = 1} and the section T , where the slow
dynamics is regular. It is δ-regularly Ck in (ȳ, B̄0, B2, B3, u, λ), i.e. O(1) and all
its derivatives up to order k w.r.t. (ȳ, B̄0, B2, B3, u, λ) are continuous including
at δ = 0.

At x̄ = −1 and near the parameter value (B̄0, B2, B3, u) = (0,−1, 1, 0) we
have a Ck-normal form (see [DMD08]):{

v̇1 = −δ2h(v1, τ)
v̇2 = v2,

(24)

where h(v1, 0, 0,−1, 1, 0, λ) has a zero of multiplicity 2 at v1 = 0. Similarly, we
find that

δ2I−(ȳ, τ) =

∫ 1

α−(ȳ,τ)

−1 + δ2 ∂h
∂v1

(v1, τ)

h(v1, τ)
dv1 +O(1),

near ȳ = 1
2 . The integral in the expression for δ2I− is the divergence integral

(multiplied by δ2) in the normal form coordinates between the section {v2 = 1}
and the section {v1 = 1}, following orbits in negative time. The orbit O−(ȳ, τ)
intersects the plane {v2 = 1} in a point with v1 = α−(ȳ, τ). The function α−
and the O(1)-term have the same properties like α+ and the O(1)-term in the
expression for δ2I+.

Thus, we get

δ2 ∂I
∂ȳ

(ȳ, τ) =
(1− ν1δ

2)∂α+

∂ȳ (ȳ, τ)

ν1α+(ȳ, τ)

−
(
1− δ2 ∂h

∂v1
(α−(ȳ, τ), τ)

)∂α−
∂ȳ (ȳ, τ)

h(α−(ȳ, τ), τ)
+O(1),

near ȳ = 1
2 . Using the above expression and the properties of α± and h, we

finally get

δ2 ∂I
∂ȳ

(ȳ, τ) =
β0 + β1(ȳ − 1

2 ) +O
(
(ȳ − 1

2 )2
)

ν1α+(ȳ, τ)h(α−(ȳ, τ), τ)
(25)

where β0 = O(δ, B̄0, B2 + 1, B3 − 1, u) and

β1 = −ν1
∂α+

∂ȳ
(
1

2
, 0, 0,−1, 1, 0, λ)

∂α−
∂ȳ

(
1

2
, 0, 0,−1, 1, 0, λ)

+O(δ, B̄0, B2 + 1, B3 − 1, u).
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Clearly, the coefficient β1 is strictly negative. From this together with (25) and
Rolle’s theorem we conclude that ∂I

∂ȳ has at most 1 zero (counting multiplicity)

near ȳ = 1
2 .

On the other hand, since for any small fixed µ > 0 the slow dynamics is
regular along [−

√
2ȳ,
√

2ȳ] for ȳ ∈ [µ, 1
2 − µ] by taking u ∼ 0 and (B2, B3) ∼

(−1, 1), we find that δ2I = I + O(δ) + O(1).δ2 log δ and δ2 ∂I
∂ȳ = ∂I

∂ȳ + O(δ) +

O(1).δ2 log δ where ȳ ∈ [µ, 1
2−µ], O(δ) and O(1) are smooth functions including

at δ = 0 (see [DMD05]). Using these expressions, Lemma 3.3(iii) and (19), we
find that

I(ȳ, τ) > 0,
∂I
∂ȳ

(ȳ, τ) > 0 (26)

for ȳ ∈ [µ, 1
2 − µ], (δ, u) ∼ (0, 0), δ > 0 and (B2, B3) ∼ (−1, 1).

We will prove that I has at most 1 zero (multiplicity taken into account)
w.r.t. ȳ ∈ [µ, 1

2 [. Moreover, if I has a simple zero at ȳ = ȳ0, then ∂I
∂ȳ (ȳ0, τ) < 0

(this will follow directly from the first inequality in (26)).
Assume that I has at least 2 zeros, counting multiplicity, in [µ, 1

2 [. Then
the 2 zeros of I have to be located near ȳ = 1

2 due to the first inequality in

(26). This implies, using (26) and Rolle’s theorem, that ∂I
∂ȳ has at least 2 zeros

(counting multiplicity) near ȳ = 1
2 . This is in clear contradiction to the fact

that ∂I
∂ȳ has at most 1 zero (counting multiplicity) near ȳ = 1

2 .
Like in Sections 3.3.3–3.3.5, we conclude now that the set ∪ȳ∈[0, 12 ]Γȳ can

produce at most 2 limit cycles.

Remark 8. Let’s explain how this technique can be used to prove the statement
from Section 3.3.5. At x̄ =

√
−B2 and near the parameter values (B̄0, u) = (0, 0)

and (B2, B3) ∈ C1 we can use the normal form (23). At x̄ = −
√
−B2 we use the

normal form {v̇1 = −δ2ν2v1, v̇2 = v2}. The expression for δ2 ∂I
∂ȳ near ȳ = −B2

2

is similar to (25):

δ2 ∂I
∂ȳ

= L.
(
β0 + β1(ȳ +

B2

2
) +O

(
(ȳ +

B2

2
)2
))

where L > 0 and where β1 < 0 because ν1 > ν2. Thus, ∂I
∂ȳ has at most 1 zero

(counting multiplicity) near ȳ = −B2

2 . The rest of the proof of the statement
from Section 3.3.5 is now similar to the proof of the statement from this section.

3.3.7 The parameter region near the line {B2 = 0}

Our goal is to prove that

• There is a small tubular neighborhood V of the line {B2 = 0} as in Figure
4(g) such that XF

δ2,(δB̄0,−1,B2,B3),u,λ
has at most 2 limit cycles in D for

each (δ, B̄0, u) ∼ (0, 0, 0), (B2, B3) ∈ V and λ ∈ Λ.

In order to prove this statement we use the gluing method developed in [Huz16].
In Figures 3(a) to 3(c), we find Γȳ from which limit cycles can bifurcate for

(δ, B̄0, B2, u) ∼ (0, 0, 0, 0) and δ > 0:

Γȳ, ȳ ∈]0,
1

2
(x̄1
R)2].
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By Lemma 3.3(ii), for any µ > 0 small, there exist small ρ0 > 0, u0 > 0 and
a tubular neighborhood V of the line {B2 = 0} in the B such that for any
(ȳ, B2, B3, u, λ) ∈ [µ, 1

2 (x̄1
R)2[×V × [0, u0]× Λ we have that I(ȳ, B2, B3, u, λ) <

−ρ0. Thus, the set ∪ȳ∈[µ, 12 (x̄1
R)2]Γȳ can produce at most 1 (hyperbolically at-

tracting) limit cycle. Moreover, from (16) we find that

∂∆

∂ȳ
(ȳ, τ) > 0 (27)

for each (δ, B̄0, u) ∼ (0, 0, 0), δ > 0 and (ȳ, B2, B3, λ) ∈ [µ, 1
2 (x̄1

R)2[×V × Λ.
Following Section 5 of [Huz16], for each (δ, B̄0, u) ∼ (0, 0, 0), δ > 0 and

(B2, B3, λ) ∈ V ×Λ, we can extend smoothly the difference map ∆ to a smooth

section S̃ parametrized by ȳ ∈ [0, 1
2 (x̄1

R)2[. More precisely, the section S̃ extends
smoothly the section S = {x̄ = 0, ȳ ∈ [µ, 1

2 (x̄1
R)2[} up to the focus (x̄, ȳ) =

(x̄τ , 0) ∼ (0, 0) of the family XF
δ2,(δB̄0,−1,B2,B3),u,λ

. We denote the extension of

∆ again by ∆. Since ȳ = 0 represents the focus, we have

∆(0, τ) = 0, (28)

under the given conditions on the parameter τ .
Theorem 3.1(ii) implies that XF

δ2,(δB̄0,−1,B2,B3),u,λ
has at most 2 limit cycles

in a τ -uniform neighborhood of (x̄, ȳ) = (0, 0). Thus the difference map ∆ has
at most 2 zeros (counting multiplicity) on the interval ]0, µ] (under the given
conditions on the parameter τ). Moreover, it has been proved in Section 5 of
[Huz16], based on the study of Chebyshev systems of degree 2, that ∂∆

∂ȳ (ȳ, τ)

has at most 2 zeros (multiplicity taken into account) on the interval ]0, µ].
If we suppose now that ∆ has at least 3 zeros on the interval ]0, 1

2 (x̄1
R)2[

(hence at least 3 limit cycles occur), then Rolle’s theorem and (28) imply that
∂∆
∂ȳ (ȳ, τ) has at least 3 zeros on the interval ]0, 1

2 (x̄1
R)2[. These 3 zeros have to

be located on the interval ]0, µ] due to (27). This is in contradiction to the fact
that ∂∆

∂ȳ (ȳ, τ) has at most 2 zeros on ]0, µ]. Thus the set ∪ȳ∈[0, 12 (x̄1
R)2]Γȳ can

produce at most 2 limit cycles.

3.4 The slow-fast Bogdanov-Takens region

In this section we prove Theorem 2.4. We consider the systemXF
ε̄,(B0,B1,±1,B3),u,λ

where ε̄ ∼ 0, (B0, B1) ∼ (0, 0), u ∼ 0, λ ∈ Λ and where B3 is in an arbitrary
compact set in R. This singular perturbation problem represents standard slow-
fast Bogdanov-Takens bifurcations which have been studied in [DMD11a]. It is
shown in [DMD11a] that XF

ε̄,(B0,B1,±1,B3),u,λ has at most one (hyperbolic) limit

cycle in a uniform neighborhood of (x̄, ȳ) = (0, 0) for (ε̄, B0, B1, u) ∼ (0, 0, 0, 0).
(The size of this small-amplitude limit cycle tends to 0 as (B0, B1) → (0, 0).)
On the other hand, note that for (B0, B1) = (0, 0) the slow dynamics near
x̄ = 0 (but x̄ 6= 0) is given by x̄′ = ±x̄(1 + O(x̄)). Thus, the passage from the
attracting part of the critical curve to the repelling part of the critical curve
is not possible. As a consequence, there are no limit cycles near Γȳ. See also
[HDMD13], Section 3.6.
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3.5 The slow-fast codimension 3 saddle region

In this section our goal is to prove Theorem 2.5 in the saddle case B3 = +1.
We consider the family XF

ε̄,(B0,B1,B2,+1),u,λ:
˙̄x = ȳ
˙̄y = −x̄ȳ + ε̄

(
B0 +B1x̄+B2x̄

2 + x̄3 + x̄4 + ux̄5G(ux̄, λ)
)

+ε̄ȳ2H(ux̄, u2ȳ, λ),
(29)

where (ε̄, B0, B1, B2, u) ∼ (0, 0, 0, 0, 0) and λ ∈ Λ. The family (29) repre-
sents slow-fast codimension 3 saddle bifurcations which have been studied in
[HDMD13] and [Huz16]. More precisely, since the coefficient in front of the
term x̄4 ∂

∂ȳ in (29) is 1 (hence different from zero, uniformly over the parameter

(ε̄, B0, B1, B2, u, λ)), [HDMD13] and [Huz16] imply that (29) has at most two
limit cycles in an (ε̄, B0, B1, B2, u, λ)-uniform neighborhood of (x̄, ȳ) = (0, 0),
and that the size of these limit cycles tends to zero as (B0, B1, B2)→ (0, 0, 0).

For (B0, B1, B2) = (0, 0, 0), the slow dynamics (7) is given by x̄′ = x̄2(1 +
O(x̄)), clearly pointing from the left to the right near x̄ = 0. Thus, no limit
cycles bifurcate from canard limit periodic sets Γȳ. This concludes the proof of
Theorem 2.5 in the saddle case.

3.6 The slow-fast codimension 3 elliptic region

In this section our focus is on well-known slow-fast codimension 3 elliptic bi-
furcations XF

ε̄,(B0,B1,B2,−1),u,λ with (ε̄, B0, B1, B2, u) ∼ (0, 0, 0, 0, 0), and λ ∈ Λ.

The cyclicity of (x̄, ȳ) = (0, 0) (resp. the cyclicity of canard limit periodic
sets Γȳ) in the slow-fast codimension 3 elliptic bifurcations has been studied in
[HDMD13], [HDMD14] and [Huz16] (resp. in [DMD10]). We glue together these
local results to obtain the cyclicity of the compact set D in the (x̄, ȳ)-plane.

We claim that, in order to prove Theorem 2.5 in the elliptic case B3 = −1, it
is sufficient to apply the gluing method to the family XF

δ2,(δr̃3B̄0,−r̃2,r̃B̄2,−1),u,λ
:

˙̄x = ȳ
˙̄y = −x̄ȳ + δ2

(
δr̃3B̄0 − r̃2x̄+ r̃B̄2x̄

2 − x̄3 + x̄4 + ux̄5G(ux̄, λ)
)

+δ2ȳ2H(ux̄, u2ȳ, λ),
(30)

where (δ, B̄0, r̃, u) ∼ (0, 0, 0, 0), B̄2 is kept in an arbitrary compact subset K
of R and where λ ∈ Λ. Indeed, in [HDMD13] and [DMD10] the (B0, B1, B2)-
parameters were reparametrized by introducing weighted spherical coordinates:
(B0, B1, B2) = (r̃3B̃0, r̃

2B̄1, r̃B̄2), r̃ ≥ 0, (B̃0, B̄1, B̄2) ∈ S2. Like in this paper,
different regions in the parameter space (B0, B1, B2) were used: the jump region

{B̃0 = ±1}, the saddle region {B̄1 = +1}, the slow-fast Hopf region {B̄1 =
−1} and the slow-fast Bogdanov-Takens region {B̄2 = ±1}. It was shown
in [HDMD13] (resp. in [DMD10]) that in the jump region, the saddle region
and in the slow-fast Bogdanov-Takens region the family XF

ε̄,(B0,B1,B2,−1),u,λ has

at most 1 (hyperbolic) limit cycle near (x̄, ȳ) = (0, 0) (resp. no limit cycles
Hausdorff-close to Γȳ). Thus, for the parameters kept in these regions, the set
D can produce at most 1 limit cycle. In the slow-fast Hopf region, in which
(B0, B1, B2) = (r̃3B̃0,−r̃2, r̃B̄2) with B̃0 ∼ 0 and B̄2 ∈ K, the study of the
cyclicity of D is much more delicate because we can find limit cycles not only
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near (x̄, ȳ) = (0, 0) but also Hausdorff-close to Γȳ. Like in Section 3.3, it is
possible to show that we have limit cycles in the family XF

ε̄,(B0,B1,B2,−1),u,λ, with

the parameter (B0, B1, B2) kept in the slow-fast Hopf region, only if (ε̄, B̃0) =
(δ2, δB̄0) where B̄0 ∼ 0. We refer to [HDMD13] or [DMD10] for more details.
Thus, in the rest of this section we will focus on the slow-fast system (30).

Remark 9. When the parameter B̄2 6= 0, the family (30) has at most 1 limit
cycle near (x̄, ȳ) = (0, 0), generated by a Hopf bifurcation of codimension 1 (see
Theorem 3.7(i)). When B̄2 ∼ 0, the origin (x̄, ȳ) = (0, 0) is shown to produce
at most 2 limit cycles (see Theorem 3.7(ii)). If the parameter B̄2 is kept in
a compact set K ⊂ R \ [−2, 2] and (δ, B̄0, r̃, u) ∼ (0, 0, 0, 0), then there is no
canard explosion in the (x̄, ȳ)-plane, i.e., there are no limit cycles near Γȳ.
Indeed, a saddle-node bifurcation of singularity occurs in the family (30) near
(x̄, ȳ) = (r̃ ¯̄x, r̃2 ¯̄y) = (r̃(±1), r̃20) and for parameter value (δ, B̄0, B̄2, r̃, u) close
to (0, 0,±2, 0, 0), δ > 0 and r̃ > 0. When |B̄2| > 2, two hyperbolic singularities,
generated by the saddle-node bifurcation, don’t allow passage from the attracting
part of the critical curve to the repelling part of the critical curve in the (x̄, ȳ)-
plane. Thus, we have no limit cycles Hausdorff-close to Γȳ. When |B̄2| < 2,
the passage is possible. See [HDMD13] or [DMD10] for more details. Thus, for
B̄2 ∈ K ⊂ R \ [−2, 2], the set D cannot produce more than 2 limit cycles. From
now on we keep B̄2 in a compact set K = [−2− ρ, 2 + ρ], where ρ > 0.

We detect canard limit periodic sets Γȳ from which limit cycles of (30) can
bifurcate (see Figure 5):

Γȳ, ȳ ∈]0,
1

2
x̄2
R].

We denote by x̄R = x̄R(u,B1, B2, λ) ∼ 1 a simple singularity of the slow dy-
namics of (30):

x̄′ = B1 +B2x̄+ x̄2(−1 + x̄+ ux̄2G(ux̄, λ)), (31)

where (B1, B2) = (−r̃2, r̃B̄2) ∼ (0, 0). Note that the passage from the attracting
part of the critical curve to the repelling part of the critical curve might be
possible because for (B1, B2) = (0, 0) the slow dynamics (31) is strictly negative
for x̄ < x̄R, with the exception of the origin x̄ = 0, where it has a saddle-node
singularity.

x̄R

Figure 5: Canard limit periodic sets Γȳ, with indication of slow dynamics.

Remark 10. We cannot use the results of [DMD08] to study the cyclicity of
Γȳ because the slow dynamics (31) has a singularity at the contact point for
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B1 = B2 = 0 and, as a consequence, the slow divergence integral

I(ȳ, B1, B2, u, λ) =

∫ √2ȳ

−
√

2ȳ

wdw

d(w,B1, B2, u, λ)
, ȳ ∈]0,

1

2
x̄2
R[,

becomes ∞−∞ as (B1, B2)→ (0, 0). The function d(x̄, B1, B2, u, λ) is the right
hand side of (31). As shown in [DMD10], it is better to deal with δ2 ∂I

∂ȳ which is

well approximated by the (well defined) derivative of the slow divergence integral

∂I

∂ȳ
(ȳ, B1, B2, u, λ) =

−2
√

2ȳ
(
B2 + 2ȳ + uO((

√
2ȳ)3)

)
d(
√

2ȳ, B1, B2, u, λ).d(−
√

2ȳ, B1, B2, u, λ)
.

See Remark 12. Clearly, for any fixed small µ > 0 we have that ∂I∂ȳ (ȳ, B1, B2, u, λ)

is strictly negative for all ȳ ∈ [µ, 1
2 x̄

2
R − µ] and λ ∈ Λ, by taking the parameter

(B1, B2, u) sufficiently small. Thus ∂I
∂ȳ has no zeros on the interval [µ, 1

2 x̄
2
R−µ]

under the given conditions on the parameters, and, by Theorem 5 of [DMD10],
we find that the set ∪ȳ∈[µ, 12 x̄

2
R−µ]Γȳ produces at most 2 limit cycles. Since The-

orem 5 of [DMD10] cannot be applied to limit periodic sets Γȳ the fast orbit of
which ends up in a singularity of the slow dynamics, we have to study separately
the cyclicity of Γ 1

2 x̄
2
R

(see Section 3.6.1).

Our gluing method consists in studying the graphs of the difference map near
the contact point and the graphs of the difference map near the set ∪ȳ∈[µ, 12 x̄

2
R]Γȳ,

and finding out how the “local” graphs can be put together to give “global”
graphs of the difference map near the set ∪ȳ∈[0, 12 x̄

2
R]Γȳ. Once we have the global

graphs, it will be straightforward to see that the set ∪ȳ∈[0, 12 x̄
2
R]Γȳ can produce

at most 2 limit cycles.

More precisely, if we denote the parameter (δ, r̃3B̄0,−r̃2, r̃B̄2, u, λ) by τ and
if we use the notation introduced in Section 3.3, we get the following expression
for the derivative of the difference map near ∪ȳ∈[µ, 12 x̄

2
R]Γȳ:

∂∆

∂ȳ
(ȳ, τ) = − 1

δ6r̃4
A(α, β)

(
δ2I(ȳ, τ) +O(δ2)

)
, (32)

where ȳ ∈ [µ, 1
2 x̄

2
R[, δ > 0 and r̃ > 0.

Remark 11. For each τ with δ > 0, the stable manifold at the hyperbolic saddle
of (30), near the hyperbolic singularity x̄ = x̄R of the slow dynamics, intersects
the section S = {x̄ = 0} at a point which we denote by (x̄, ȳ) = (0, 1

2 x̄
2
R). Thus,

to find the cyclicity of Γ 1
2 x̄

2
R

, we have to study ∆, δ2I for ȳ ∼ 1
2 x̄

2
R and ȳ < 1

2 x̄
2
R.

If we compare expression (32) to the expression (16), we can see that the
extra-term 1

r̃4 appears in (32). This is due to the fact that in the definition
of the section T we have to combine now two blow-up constructions: the so-
called primary blow-up (x̄, ȳ) = (r̃ ¯̄x, r̃2 ¯̄y), and the so-called secondary blow-up
(¯̄x, ¯̄y) = (δx̃, δ2ỹ) similar to (9). The section T = {x̃ = 0} is parametrized by ỹ.
We refer to [DMD10] for more details.

Remark 12. From [DMD08] and [DMD10] it follows that ∆ and O(δ2) in

(32) (resp. ∂∆
∂ȳ and ∂O(δ2)

∂ȳ ) are Ck-functions in (ȳ, δ, r̃, B̄0, B̄2, u, λ) (resp.
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Ck-functions in (ȳ, τ)) with a Ck-extension to the boundary of their domain.
Moreover, it has been proved in [DMD10] that δ2 ∂I

∂ȳ is a Ck-function in (ȳ, τ),

ȳ ∈ [µ, 1
2 x̄

2
R − µ], with a Ck-extension to the boundary of its domain, and equal

to ∂I
∂ȳ (ȳ, B1, B2, u, λ) + O(δ). Following Remark 10, we obtain now that the

derivative of the expression δ2I(ȳ, τ)+O(δ2) in (32) w.r.t. ȳ is strictly negative
on the segment ȳ ∈ [µ, 1

2 x̄
2
R − µ].

In Section 3.6.1 we prove

Proposition 3.4. Consider the difference map ∆(ȳ, τ) on the interval [µ, 1
2 x̄

2
R[,

with δ > 0 and r̃ > 0. There arise 3 possibilities:

(a) ∆(ȳ, τ) is strictly decreasing (∂∆
∂ȳ (ȳ, τ) < 0 for all ȳ ∈ [µ, 1

2 x̄
2
R[).

(b) There exists ȳ0 ∈ [µ, 1
2 x̄

2
R[ such that ∂∆

∂ȳ (ȳ, τ) < 0 for all ȳ ∈ [µ, ȳ0[,
∂∆
∂ȳ (ȳ0, τ) = 0, ∂2∆

∂ȳ2 (ȳ0, τ) > 0 and ∂∆
∂ȳ (ȳ, τ) > 0 for all ȳ ∈]ȳ0,

1
2 x̄

2
R[.

(c) ∆(ȳ, τ) is strictly increasing (∂∆
∂ȳ (ȳ, τ) > 0 for all ȳ ∈ [µ, 1

2 x̄
2
R[).

(a) (b) (c)

Figure 6: The graphs of the difference map ∆ on the interval [µ, 1
2 x̄

2
R[.

As a simple consequence of Proposition 3.4 and Rolle’s theorem, at most 2
limit cycles can bifurcate from the set ∪ȳ∈[µ, 12 x̄

2
R]Γȳ for δ > 0 and r̃ > 0.

Following [Huz16] (Sections 6 and 7), for each fixed value (δ, r̃, B̄0, B̄2, u, λ),
δ > 0 and r̃ > 0, the difference map ∆ can be Ck-extended to a smooth
section S̃ parametrized by ȳ ∈ [0, 1

2 x̄
2
R[, where ȳ = 0 represents a focus (x̄, ȳ) =

(x̄τ , 0) ∼ (0, 0) of (30). After the primary blow-up, this focus can be detected
near the origin in the (¯̄x, ¯̄y)-plane. See Figure 7. Like in Section 3.3.7, we have
∆(0, τ) = 0.

If, for a fixed τ , with δ > 0 and r̃ > 0, ∆ has no zeros on the interval ]0, µ],
then, by Proposition 3.4, the system (30) has at most 2 limit cycles in D. Thus,
it suffices to consider only those parameters τ for which ∆ has at least 1 zero
on the interval ]0, µ]. The following proposition will be proved in Section 3.6.2.

Proposition 3.5. There exist small µ > 0, δ0 > 0, r̃0 > 0, B̄0
0 > 0 and u0 > 0

such that for each (δ, r̃, B̄0, B̄2, u, λ) ∈]0, δ0]×]0, r̃0]× [−B̄0
0 , B̄

0
0 ]×K× [0, u0]×Λ,

with the property that ∆ has at least 1 zero (counting multiplicity) on the interval
]0, µ], the graph of ∆ on [0, µ] can be found in Figures 8(a) to 8(j). In each
of these figures, ∆ and ∂∆

∂ȳ have at most 2 zeros (counting multiplicity) w.r.t.

ȳ ∈]0, µ].
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B̄0 < 0 B̄0 > 0

S̃ S̃

T T

Figure 7: The dynamics of (30) near the focus (x̄, ȳ) = (x̄τ , 0) ∼ (0, 0), for a

fixed parameter τ , with δ > 0 and r̃ > 0. The section S̃ and the section T in
the (x̄, ȳ)-plane.

Combining Proposition 3.4 and Proposition 3.5 (i.e., gluing the graphs given
in Figure 6 and Figure 8), we see that the difference map ∆ (and its deriva-
tive ∂∆

∂ȳ ) has at most 2 zeros (counting multiplicity) w.r.t. ȳ ∈]0, 1
2 x̄

2
R[. This

concludes the proof of Theorem 2.5 in the elliptic case.

3.6.1 Proof of Proposition 3.4

In this section we prove that for any fixed small µ > 0 there exist small ρ0 > 0,
δ0 > 0, u0 > 0 and a small neighborhood W of the origin in R3 such that δ2 ∂I

∂ȳ is

a Ck-function in (ȳ, τ) ∈ [µ, 1
2 x̄

2
R[×[0, δ0]×W×[0, u0]×Λ, and δ2 ∂I

∂ȳ (ȳ, τ) < −ρ0

for (ȳ, τ) ∈ [µ, 1
2 x̄

2
R[×[0, δ0] ×W × [0, u0] × Λ. This statement, the expression

(32) and the first part of Remark 12 imply Proposition 3.4.
Taking into account the second part of Remark 12, it suffices to prove the

statement for ȳ ∼ 1
2 x̄

2
R. Since the slow dynamics (31) is regular for x̄ < 0 and

(B1, B2, u) = (0, 0, 0) (see Figuree 5), [DMD10] implies that δ2 ∂I−
∂ȳ (ȳ, τ) is a

bounded Ck-function which we denote by O(1). We don’t specify this O(1)-
term because it will not be the leading order term in δ2 ∂I

∂ȳ (ȳ, τ).

It remains to study δ2 ∂I+

∂ȳ (ȳ, τ), along the orbit O+(ȳ, τ) of (30) from the

point (0, ȳ) to the section T . The following lemma (see [DMD08]) allows us to
study the divergence integral in normal form coordinates:

Lemma 3.6. Let Ψ : V ⊂ Rn → V ′ ⊂ Rn : y 7→ x = Ψ(y) be a diffeomorphic
transformation between two local charts of an n-dimensional manifold. Let X
be a vector field defined on V ′ and let Y = Ψ∗(X) be the pull back of this vector
field on V . Then ∫

Ψ(O)
divRnXdt =

∫
O divRnY dt+ log J(y2)

J(y1)

where O is an orbit of Y from one point y1 of V to another point y2 and
where J(y) is the Jacobian determinant of the transformation Ψ. Let h.Y be an
equivalent vector field on V for some strictly positive function h. Then∫

O divRn(Y )dt =
∫
O divRn(hY )dt′ − log h(y2)

h(y1) ,

where dt′ = dt/h.
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(a) (b) (c) (d)

µ µ µ µ

(e) (f) (g) (h)

µ

µ µ µ

(i) (j)

µ

µ

Figure 8: All possible graphs of the difference map ∆ on the interval [0, µ], with
the property that ∆ has at least 1 zero on the interval ]0, µ]. In figures (e) and
(f) we have ∂∆

∂ȳ (µ, τ) = 0.

At x̄ = x̄R and near τ = (0, 0, 0, 0, 0, λ) we use the Ck-normal form (23)
where −δ2ν1, ν1 = ν1(τ) > 0, is ratio of eigenvalues of a hyperbolic saddle of
(30) near (x̄, ȳ) = (x̄R, 0). The orbit O+(ȳ, τ) intersects the section {v2 = 1}
(resp. the section {v1 = 1}) in a point with v1 = α+(ȳ, τ) (resp. in a point with
v2 = α0

+(ȳ, τ)), where α+(ȳ, τ) (resp. α0
+(ȳ, τ)) is Ck due to Theorem 2.16 of

[DMD08]. Now we split up δ2I+ in three parts:

δ2I+(ȳ, τ) = δ2I1(ȳ, τ) + δ2I2(ȳ, τ) + δ2I3(ȳ, τ).

The divergence integral I1(ȳ, τ) is taken along the fast part of the orbit
O+(ȳ, τ) between the point (0, ȳ) and the point (v1, v2) = (α+(ȳ, τ), 1). Since
the vector field (30) is (locally) C∞-conjugate to a divergence free flow box,
along the fast fiber, I1(ȳ, τ) is equal to Ck-log-terms in Lemma 3.6. Thus,
δ2I1(ȳ, τ) and δ2 ∂I1

∂ȳ (ȳ, τ) are O(δ2) and Ck.

The divergence integral I2(ȳ, τ) is taken along the orbit O+(ȳ, τ) between
the point (v1, v2) = (α+(ȳ, τ), 1) and the point (v1, v2) = (1, α0

+(ȳ, τ)). Using
Lemma 3.6 we find that

δ2 ∂I2

∂ȳ
(ȳ, τ) =

(1− ν1δ
2)∂α+

∂ȳ (ȳ, τ)

ν1α+(ȳ, τ)
+O(δ2),

where O(δ2) is Ck. See also Section 3.3.6. Since ∂α+

∂ȳ < 0 uniformly in ȳ ∼ 1
2 x̄

2
R,

α+ > 0 for ȳ < 1
2 x̄

2
R and α+ → 0 as ȳ → 1

2 x̄
2
R, we conclude that δ2 ∂I2

∂ȳ (ȳ, τ)

tends to −∞ as ȳ → 1
2 x̄

2
R.

The divergence integral I3(ȳ, τ) is taken along the orbit O+(ȳ, τ) between
the point (v1, v2) = (1, α0

+(ȳ, τ)) and the section T . We can write I3 as

I3(ȳ, τ) = Ĩ3(α0
+(ȳ, τ), τ),
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where Ĩ3(v2, τ) is the divergence integral along the orbit O+(ȳ, τ) between the
point (v1, v2) = (1, v2) and the section T . Since the slow dynamics is regular

in this part, [DMD10] implies that δ2 ∂Ĩ3

∂v2
(v2, τ) is O(1) and Ck. Thus, the

derivative

δ2 ∂I3

∂ȳ
(ȳ, τ) = δ2 ∂Ĩ3

∂v2
(α0

+(ȳ, τ), τ)
∂α0

+

∂ȳ
(ȳ, τ)

is O(1) and Ck. Again, there is no need to specify the O(1)-term since it is
bounded.

Putting all the informations together we find that δ2 ∂I+

∂ȳ (ȳ, τ) is Ck and

tends to −∞ as ȳ → 1
2 x̄

2
R. Since δ2 ∂I−

∂ȳ (ȳ, τ) is bounded we conclude that

δ2 ∂I
∂ȳ (ȳ, τ) is Ck and strictly negative for ȳ ∼ 1

2 x̄
2
R and ȳ < 1

2 x̄
2
R.

3.6.2 Proof of Proposition 3.5

The combined results of [HDMD13], [HDMD14] and [Huz16] imply Proposition
3.5. However, for the sake of completeness, we give a sketch of the proof of
Proposition 3.5.

Let us recall that the parameter B̄2 is kept in a compact set.

Theorem 3.7. The following statements are true.

(i) Let B̄0
2 > 0 be any arbitrarily small fixed number. There exist small δ0 > 0,

r̃0 > 0, B̄0
0 > 0, u0 > 0 and a neighborhood U of (x̄, ȳ) = (0, 0) such that

the following statements are true.

1 The family (30) has at most 1 (hyperbolic) limit cycle in U for each
(δ, r̃, B̄0, B̄2, u, λ) ∈ [0, δ0]×[0, r̃0]×[−B̄0

0 , B̄
0
0 ]×{|B̄2| ≥ B̄0

2}×[0, u0]×
Λ.

2 When we fix (δ, r̃, B̄2, u, λ) ∈]0, δ0]×]0, r̃0]×{|B̄2| ≥ B̄0
2}× [0, u0]×Λ,

the B̄0-family (30) undergoes, in U and at B̄0 = 0, a Hopf bifurca-
tion of codimension 1. Assume B̄2 ≥ B̄0

2 . When B̄0 increases there
is in U an attracting hyperbolic focus and no limit cycle; when B̄0

decreases there is in U a repelling hyperbolic focus and an attracting
limit cycle of which the size monotonically grows as B̄0 decreases.
Assume B̄2 ≤ −B̄0

2 . When B̄0 decreases there is in U a repelling
hyperbolic focus and no limit cycle; when B̄0 increases there is in U
an attracting hyperbolic focus and a repelling limit cycle of which the
size monotonically grows as B̄0 increases.

(ii) There exist small δ0 > 0, r̃0 > 0, B̄0
0 > 0, B̄0

2 > 0, u0 > 0 and a
neighborhood U of (x̄, ȳ) = (0, 0) such that the family (30) has at most 2
limit cycles in U for each (δ, r̃, B̄0, B̄2, u, λ) ∈ [0, δ0]× [0, r̃0]× [−B̄0

0 , B̄
0
0 ]×

[−B̄0
2 , B̄

0
2 ]× [0, u0]× Λ.

Theorem 3.7(i) follows directly from Theorem 2.4 of [HDMD13]. Theorem
3.7(ii) follows from Theorem 2.2 of [Huz16] because the coefficient in front of
the term x̄4 ∂

∂ȳ in (30) is nonzero.

Take a fixed small B̄0
2 > 0. Theorem 3.7(i) implies that there is a small µ > 0

such that for each (δ, r̃, B̄0, u) ∼ (0, 0, 0, 0), δ > 0, r̃ > 0, λ ∈ Λ and B̄2 ≥ B̄0
2

(resp. B̄2 ≤ −B̄0
2), with the property that ∆ has at least 1 zero on the interval

34



]0, µ], the graph of ∆ can be found in Figures 8(a) to 8(b) (resp. Figures 8(c)
to 8(d)). To prove that in this case ∂∆

∂ȳ has precisely 1 zero on ]0, µ], we need

to have a look at the proof of Theorem 2.4 in [HDMD13] (Section 3.7). In fact,
using the primary blow-up, it has been proved in Section 3.7 of [HDMD13] that
there is a small M > 0 such that ∂∆

∂ȳ has precisely 1 zero (counting multiplicity)

w.r.t. ȳ ∈]0, r̃2M ] (the proof was based on [DR09] and [FTV13]), and that ∂∆
∂ȳ

is strictly positive (resp. strictly negative) for B̄2 ≥ B̄0
2 (resp. B̄2 ≤ −B̄0

2) and
ȳ ∈]r̃2M,µ] (the slow divergence integral, obtained after the primary blow-up,
is strictly negative (resp. strictly positive) when B̄2 ≥ B̄0

2 (resp. B̄2 ≤ −B̄0
2)).

On the other hand, Theorem 3.7(ii) implies that there is a small µ > 0
such that for each (δ, r̃, B̄0, B̄2, u) ∼ (0, 0, 0, 0, 0), δ > 0, r̃ > 0, and λ ∈ Λ the
difference map ∆ has at most 2 zeros (counting multiplicity) w.r.t. ȳ ∈]0, µ].
Moreover, from the proof of Theorem 2.2 in [Huz16] and from the fact that the
coefficient in front of the term x̄4 ∂

∂ȳ in (30) is strictly positive, it can be seen

that, if ∆ has at least 1 zero on the interval ]0, µ], then the graph of ∆ can be
found in Figures 8(a) to 8(j). In fact, the following rescaling in the parameter
space (B̄2, r̃) was made in [Huz16]:

(B̄2, r̃) = ρ̃( ¯̄B2, ¯̄r), (
¯̄B2, ¯̄r) ∈ S1, ¯̄r > 0, ρ̃ ∼ 0, ρ̃ > 0.

Let’s suppose that ∆ has at least 1 zero on the interval ]0, µ]. There are 2
possibilities:

1. Let ¯̄B2 be strictly positive or close to 0. There is a small M > 0 such
that ∂∆

∂ȳ has at most 2 zeros (counting multiplicity) w.r.t. ȳ ∈]0, r̃2M [

(see Section 7.1 in [Huz16]), and ∂∆
∂ȳ is strictly positive for ȳ ∈ [r̃2M,µ]

(see Theorem 6.5(a) in [Huz16]). Note that this result implies that, if ∆
has precisely 2 zeros (counting multiplicity) on ]0, µ], then ∆ is strictly
positive for ȳ ∼ 0 and ȳ > 0.

2. Let ¯̄B2 be strictly negative. There is a small M > 0 such that ∂∆
∂ȳ has

precisely 1 zero (counting multiplicity) w.r.t. ȳ ∈]0, r̃2M [ and ∆ is strictly
positive for ȳ ∼ 0 and ȳ > 0 (see Section 7.1 in [Huz16]), and ∂∆

∂ȳ has at

most 1 zero (counting multiplicity) w.r.t. ȳ ∈ [r̃2M,µ] and ∂∆
∂ȳ is strictly

negative at ȳ = r̃2M (see Theorem 6.5 (b) and (c) in [Huz16]).
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