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Abstract. In order to differentiate from competitors in terms of cus-
tomer service, warehouses accept late orders while providing delivery in
a quick and timely way. This trend leads to a reduced time to pick an
order. The objective of this research is to simulate and evaluate the in-
teraction between several storage, batching, zone picking and routing
policies in order to reduce the order picker travel distance. The value of
integrating these four operation policy decisions is proven by a real-life
case study. A full factorial ANOVA provides insight into the interactions
between storage, batching, zoning, and routing policies. The results of
the study clearly indicate that warehouses can achieve significant benefits
by considering storage, batching, zone picking, and routing policies si-
multaneously. Awareness of the influence of an individual policy decision
on the overall warehouse performance is required to manage warehouse
operations, resulting in enhanced customer service.

Keywords: order picking; storage; order batching; zone picking; rout-
ing; warehouse policies interactions

1 Introduction

As customer markets globalize, supply chains are increasingly depending on ef-
ficient and effective logistical systems to distribute products across a large geo-
graphical area. Warehouses are important parts of supply chains, and therefore
warehouse operations need to work in an efficient and effective way. A warehouse
can be defined as a facility where activities of receiving, storage, order picking,
and shipping are performed [9].

Order picking management, in particular organizing efficient and flexible or-
der picking systems, has been identified as an important and complex planning
operation. In order to differentiate from competitors in terms of customer ser-
vice, warehouses accept late orders from customers while providing delivery in
a quick and timely way. By accepting late orders, the remaining time to pick



2 T. van Gils et al.

an order is reduced. Furthermore, the order behavior of customers has changed
from ordering few and large orders to many orders consisting of only a limited
number of order lines [6]. The changed order behavior can be ascribed to up-
coming e-commerce markets and forces warehouses to handle a larger number
of orders, while order picking time has shortened.

Four operational policy decisions can be distinguished with respect to order
picking: storage location assignment, order batching, zone picking, and routing.
In this paper several policies for each decision are considered and potential inter-
actions between these decisions are investigated in order to manage order picking
operations more efficiently. While the number of publications dealing with one
specific order picking policy decision is extensive [6,9], only a limited number
of researchers examine different decisions simultaneously (e.g. [12,13,15,17]),
even though the efficiency of different order picking policy decisions seems to be
interdependent [9]. The effect of zoning in combination with other order picking
decisions, such as storage, routing and batching, has received especially little
research attention. Therefore, the study’s main objective is to analyze storage,
batching, zoning, and routing in order to minimize the distance traveled by or-
der pickers, with particular emphasis on the relation between these four order
picking decisions. To the best of our knowledge, this study is the first to analyze
the interaction of the four main operational order picking policy decisions (i.e.
storage, batching, zoning, and routing).

The main contribution of this paper is the integration of storage, order batch-
ing, zone picking, and routing in order to improve order picking activities of a
real-life warehouse. Furthermore, insights into the interactions between the four
operational policy decisions are provided by performing a full factorial analysis of
variance (ANOVA). It determines the impact of storage location assignment, or-
der batching, zone picking, and routing on the distance traveled by order pickers,
as well as the relation between each of the four order picking policy decisions.

The remainder of the paper is organized as follows. Section 2 is devoted to
describe the context of the problem. In Sect. 3, the case study and the assump-
tions linked to the case are described. Subsequently, the experimental design is
presented in Sect. 4, followed by the empirical results of the real-life case in Sect.
5. Managerial implications of this study are discussed in Sect. 6. Finally, Sect. 7
is devoted to the concluding remarks and future research directions.

2 Problem Context

Order picking as a warehouse function arises because goods are received in large
volumes and customers order small volumes of different products. Each customer
order is composed of one or more order lines, with every order line representing a
single stock keeping unit (SKU) [6]. In order to manage order picking operations,
warehouse managers are confronted with four operational decisions, in particular
storage location assignment, order batching, zone picking, and routing.

The storage location assignment problem can be defined as determining the
physical location at which incoming products are stored. One way to obtain a
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more efficient order picking process is to allocate fast moving products to storage
locations closely located to the depot, rather than randomly assigning SKUs to
storage locations. As traveling in a warehouse is often the dominant factor in
order picker’s activities, the travel distance reduction resulting from turnover
based storage location assignment policies, will contribute to a more efficient
order picking process. A turnover based storage assignment policy defines prod-
uct classes by some measure of demand frequency of the product. Within-aisle
storage, where all products in a pick aisle belong to the same class, across-aisle
storage, where each product class is located across several pick aisles, diago-
nal storage, where product classes are located with respect to the depot, and
perimeter storage where product classes are located around the perimeter of the
warehouse are frequently used policies to locate the product classes in the order
picking area [17].

Furthermore, batch picking, instead of picking each order separately, allows
warehouses to handle a larger number of orders in shorter time windows. By
picking multiple orders in a single picking tour, the order picker travel distance
per order will be reduced. The order batching problem is concerned with deciding
on rules defining which orders to combine on a pick list in order to minimize the
order picker travel distance. The most straightforward algorithm for creating
pick lists is a priority rule based algorithm, in which orders are prioritized and
assigned to pick lists based on their priority (e.g. first-come-first-served (FCFS)).
Seed algorithms generate batches by selecting an initial seed order (e.g. select
the smallest order), after which unassigned customer orders are added to the
seed order according to an order congruency rule (e.g. add an order such that
the number of additional pick locations is minimal). Three other order batching
heuristics can be distinguished: savings algorithms, data mining approaches, and
metaheuristics. The reader is referred to [11] for an extensive overview of order
batching algorithms.

Another practice of moving to a more efficient order picking process is di-
viding a warehouse into different smaller areas, being order picking zones. In
contrast to strict order picking, in which order pickers are allowed to retrieve
SKUs in the entire order picking area, each order picker is assigned to a single
zone and responsible for picking all SKUs of an order belonging to this zone. As
a consequence each order picker travels in a pre-specified part of the warehouse
and thus travel time will be reduced. The assignment of items to different zones
is mainly based on physical properties of products such as size and weight. Other
allocation policies that may be considered are based on product demand proper-
ties, such as customer type and order frequency. If order integrity is violated (i.e.
customer orders are split into separate pick lists), additional sorting activities
are required to consolidate orders after retrieving the SKUs [14].

Finally, the purpose of considering routing policies is to sequence the items
on the pick list in order to reduce the order picker travel distance. The prob-
lem of routing order pickers in a warehouse is mainly solved by using heuristics.
The routing problem cannot be solved to optimality for every warehouse lay-
out within reasonable computation times. A growing number of picking aisles,
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or larger pick lists result in fast increasing computing times. Furthermore, op-
timal routes may seem illogical to order pickers, resulting in deviations from
the specified optimal routes. As an alternative to the optimal route, several
more straightforward routing heuristics are proposed in the literature, including
aisle-by-aisle, traversal or S-shape, return, midpoint, and largest gap. The aisle-
by-aisle routing policy is the most straightforward routing method, where order
pickers visit every pick aisle containing at least one pick location through the
entire length. Traversal routes are closely related to aisle-by-aisle routes. Order
pickers only traverse every subaisle (i.e. the part of a pick aisle that is within
one warehouse block) containing at least one pick location through the entire
length. Another straightforward routing policy is the return strategy, where or-
der pickers enter and leave each aisle containing at least one pick location from
the same end. A midpoint routing policy extends the return strategy by requir-
ing the order picker to return if he reaches the aisle midpoint. At the midpoint,
the order picker returns and leaves the aisle from the same end as he entered the
aisle. The largest gap strategy is similar to the midpoint strategy except that a
picker enters an aisle only as far as the start of the largest gap within an aisle,
instead of the midpoint. The largest gap is defined as the maximum distance
between any two adjacent pick locations within a single aisle, or the maximum
distance between an aisle end and a pick location [16, 18].

Previous research has focused on either storage, batching, zoning, or routing.
The number of studies analyzing interactions between these operational ware-
house policies are limited. Several simulation studies analyze combinations of two
operational order picking policies (e.g. storage-routing [16, 17], zoning—batching
[21], and routing—batching [20, 3, 4]), while [2,13, 12, 15] investigate the combina-
tion of storage, batching, and routing policies. This paper differs from previous
studies by analyzing the four main operational policy decisions simultaneously.

3 Case Study

In order to analyze the effect of integrating storage, batching, zoning, and rout-
ing, real-life data are used. The case study is based on a large warehouse located
in Belgium. The warehouse stores approximately 90.000 SKUs on a surface of
30.000 square meter. In accordance with the large majority of order picking sys-
tems in Western Europe, the warehouse is fully manually operated. Automated
picking systems are only useful in case of valuable, small and delicate products
[6]. These kind of products are limited in the warehouse under consideration.
Strict order picking is currently applied in combination with random storage
location assignment. Customer orders are transformed into pick lists according to
the FCFS rule. Order pickers follow the aisle-by-aisle routing policy to retrieve
all items on the pick list. The policy combination of random storage, FCFS
batching, strict order picking, and aisle-by-aisle routing is used as benchmark
in order to evaluate other storage, batching, zoning, and routing policies. As
discussed before, choosing the optimal combination of different order picking
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policies is crucial for warehouse managers in order to minimize the distance
traveled by order pickers and consequently reduce the order throughput time.
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Fig. 1. Warehouse layout

The warehouse under consideration is shown in Fig. 1. The traditional multiple-
block warehouse layout is frequently used in practice [17], making results of the
study easily transferable to other warehouses. Furthermore, cross aisles have
proven to result in significant efficiency benefits [18]. Besides traditional ware-
house layouts with parallel pick aisles and straight middle aisles, alternative
warehouse layouts, such as fishbone designs, can improve the order picking per-
formance in case of a small number of items on the pick list [1]. As the batch
capacity is limited to 26 orders in our problem setting, the fishbone design will
likely be outperformed by the traditional warehouse layout. The warehouse in
the simulation experiment has the following properties:

— The order picking area is divided into two warehouse blocks, each consisting
of 16 picking aisles. The picking aisles are two-sided and wide enough for two-
way travel. However, crossing the aisle is required in order to pick items from
both sides of the same aisle, as the aisle width is 2.7 meter. The dimensions
of the aisles, as well as the warehouse block configuration and the zone
configuration (in case zone picking is applied) are shown on Fig. 1.
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— Order picking is completed manually using a picking vehicle with a capacity
of 26 orders.

— Each picking tour starts and ends at the decentralized depot. The depot is
marked as D in the bottom left corner of Fig. 1.

— A sort-while-pick strategy is used, maintaining order integrity, so that no
downstream sorting is required. The picking vehicle is able to sort 26 different
orders during a pick tour.

— All storage locations have an equal size.

In order to evaluate the order picking policies, the average travel distance
is used as performance criterion. The average travel speed in both cross aisles
and pick aisles is assumed to be equal. So, minimizing the distance traveled by
order pickers is equivalent to minimizing the average travel time of order pickers,
reducing the required labor hours for picking a particular number of orders.
Order pickers are assumed to be able to traverse the aisles in both directions
and to be able to change direction within the aisles.

4 Experimental Design

The objective of this research is to reduce the order picker travel distance, which
results in a more efficient order picking process, by simulating and evaluating
combinations of storage, batching, zone picking, and routing policies. Simultane-
ously analyzing storage location assignment, order batching, zone picking, and
routing policies using a factorial design provides insights into the impact of each
operational order picking decision on the distance traveled by order pickers, as
well as into the relation between the operational order picking decisions. In the
experiments of this paper five different storage location assignment policies, two
order batching policies, five zone picking policies, as well as five routing policies
are analyzed. The four factors and their associated factor levels are summarized
in Table 1. The baseline scenario of this experiment is indicated in italic.

Table 1. Experimental factor setting

Factor Factor levels (number of levels)

Storage (S) Random; across-aisle; within aisle; diagonal; perimeter (5)
Batching (B) FCFS; seed (2)

Zone picking (Z) Strict; 2 zones (CT); 2 zones (PF); 4 zones (CT); 4 zones (PF) (5)
Routing (R) Aisle-by-aisle; traversal; return; largest gap; optimal (5)

CT = storage zone assignment based on customer type
PF = storage zone assignement based on pick frequency

Besides randomly assigning SKUs to storage locations, four turnover based
storage location assignment policies are simulated, in particular across-aisle
assignment, within-aisle assignment, diagonal assignment and assigning SKUs
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across the perimeter of the order picking area. Within each product class, in
case of turnover based storage location assignment, each SKU is randomly as-
signed to only one storage location.

The currently used FCFS batching policy actually results in a random cre-
ation of pick lists in terms of travel distance, as FCFS batching does not take the
location of SKUs in the order picking area into account. A seed order batching
algorithm is used as an alternative to create batches. The order that requires
the smallest number of picking aisles to visit, is selected as seed order. Next,
the order that minimizes the number of additional aisles to visit in the route is
added to the pick list. This algorithm is repeated until the batch contains 26
orders. Subsequently a new seed order is selected. The combination of this seed
order selection rule and this accompanying order selection rule have yielded good
results for different storage location assignment and routing policies [13,12].

Strict order picking is compared to four zone picking policies. Both the num-
ber of zones as well as the storage zone assignment policy should be determined
in case of zone picking. In the simulation experiments, the warehouse is divided
into either two or four order picking zones, and SKUs are assigned to order pick-
ing zones based on customer type (CT) or pick frequency (PF). This results in
four additional zone picking policies.

In addition to the aisle-by-aisle routing heuristic, the travel distance for re-
turn, traversal, largest gap, and the optimal route is computed. As the routing
problem cannot be solved to optimality for a multiple-block warehouse in rea-
sonable computing times, the Lin-Kernighan-Helsgaun (LKH) heuristic for the
traveling salesman problem (TSP) is used to approximate the optimal route [10].
The LKH heuristic has shown to provide excellent results, both in a general TSP
context, and in the context of routing order pickers in a warehouse. Theys et al.
[19] reported an average optimality gap of 0.1 % for different warehouse settings.

To sum up, the simulation experiment consists of 250 possible combinations
of policies (i.e. five storage location assignment policies X two batching policies
x five zone picking policies x five routing policies). To reduce the stochastic ef-
fect from order generation, 30 replications per policy combination are performed,
resulting in 7,500 observations. During each replication, all combinations of stor-
age, batching, zoning and routing are tested on the same 1,690 randomly gen-
erated orders. Order sizes follow an exponential distribution with mean of 2.65
order lines. This factorial setting results in a 5 x 2 x 5 x 5 full factorial design.

The results of the simulation experiments are analyzed by a full factorial
ANOVA. The assumptions under which the ANOVA F statistic is reliable, are in-
dependent observations, homogeneity of variance, as well as normally distributed
observations. For each replication, all combinations of storage, batching, rout-
ing and zoning are simulated on the same randomly generated orders in order to
stress the effects of policy decisions. Consequently, the 7,500 observations are not
independently and a repeated measures ANOVA with storage, batching, rout-
ing, and zoning as within-subjects factors is required to analyze the main and
interaction effects of the policy decisions [5]. Since the homogeneity assumption
is violated, the F-test Type I error rate increases. The Greenhouse-Geisser (G-
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G) correction of the degrees of freedom is used to compensate for the increased
F-test type I error rate. The G-G adjustment is the most conservative correc-
tion to compensate for the violation of sphericity [5,8]. In order to ensure the
last ANOVA assumption (i.e. normality), the experimental design is balanced.
The F statistic is quite robust to violations of normality when group sizes are
equal [5]. In the simulation experiments in this paper, a balanced 5 x 2 X 5 x
5 full factorial repeated measures ANOVA, with storage, batching, zoning, and
routing as the within-subjects factors, is used to prove the value of studying the
four operation policy decisions in an integrated manner.

5 Empirical Results

First, results of the repeated measures ANOVA are discussed in Sect. 5.1. Subse-
quently, the impact of each individual operational order picking policy decision,
as well as the interaction effects between policy decisions are analyzed in Sect.
5.2 and 5.3 respectively.

5.1 ANOVA Results

In order to get a first insight into the results of the simulation experiments, the
route lengths of the different factor combinations are analyzed by a 5 x 2 x
5 x 5 full factorial repeated measures ANOVA on average travel distance. The
results of the repeated measures ANOVA are shown in Table 2. The first three
columns show the sum of squares, the G-G degrees of freedom and the resulting
mean square for the main and interactions effects, as well as for the residuals.
The last two columns are devoted to the F statistic and the p-value for testing
the statistical significance of storage, batching, zoning, and routing, as well as
all interactions between the four operational policy decisions.

Table 2 indicates that the main effects of storage location assignment, or-
der batching, zoning and routing are statistically significant. This means that
there is a significant difference between the five storage location policies, the
two order batching policies, the five zoning policies, as well as the five different
routing policies on the average distance traveled by order pickers, respectively.
The decision on which storage, which batching, which zoning, and which routing
policy to use does influence the average route length.

Furthermore, Table 2 shows that all factors in the simulation experiment
are significantly interacting with each other. All of the six two-way interactions,
all three-way interactions, as well as the four-way interaction between storage,
batching, zoning and routing are statistically significantly different form zero.
As three out of the four factors in the experiment contain five levels, the 30
replications give rise to a large number of observations. Null hypotheses are
much easier rejected with a large number of factor levels and a large number
of observations because of a greater probability that one of the factor levels is
interacting with another factor level [7]. However, the ANOVA shows strong
statistically effects, both for the main effects and the interaction effects. Given
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Table 2. 5 x 2 x 5 x 5 full factorial repeated measures ANOVA on average
travel distance

Sum of squares df Mean square F p-value
Main effects
Storage (S) 26,895,933,301 291 9,237,614,573 13,853.95 0.000
Batching (B) 181,937,289,935 1.00 181,937,289,935 284,683.12 0.000
Zoning (Z) 358,908,254,822 2.57 139,604,086,655 60,486.02 0.000
Routing (R) 79,222.871,786 2.18 36,318,042,321 229,618.82  0.000
Two way interaction
S x B 11,070,135 3.27 3,383,774 11.14 0.000
S X Z 16,831,331,146 7.61  2,211,840,545 3,526.56 0.000
S xR 8,595,751,592 7.03 1,222,476,423 11,468.01 0.000
B x Z 16,416,356,030 291 5,634,479,183 9,634.53 0.000
B xR 5,391,003,315 2.74 1,966,180,751 47,170.76 0.000
Z x R 12,905,574,845 6.00 2,152,147,805 18,137.89 0.000
Three way interaction
Sx B XZ 621,242,209 8.43 73,716,968 179.82  0.000
Sx B xR 505,815,157 8.47 59,717,570  1,132.60 0.000
SXZxR 6,383,449,026 13.79 463,008,935  2,894.19 0.000
BXxZxR 703,844,710 6.98 100,770,162 1,642.05 0.000
Four way interaction
SxBXxXxZxR 478,689,655 15.11 31,682,633 330.12 0.000
Residuals
Between subjects 330,171,235 29.00 11,385,215
Within S 56,300,343 84.44 666,786
Within B 18,533,524 29.00 639,087
Within Z 172,078,430 74.56 2,308,039
Within R 10,005,553 63.26 158,167
Within S x B 28,813,836  94.87 303,705
Within S X Z 138,409,444 220.68 627,196
Within S X R 21,736,707 203.91 106,599
Within B x Z 49,413,333 84.49 584,821
Within B x R 3,314,322 79.51 41,682
Within Z X R 20,634,248 173.90 118,655
Within S X B x Z 100,189,592 244.39 409,950
Within S x B x R 12,951,295 245.63 52,726
Within S X Z x R 63,962,727  399.82 159.979
Within B X Z x R 12,430,509 202.55 61,369
Within S x B x Z x R 42,053,031 438.16 95,977
Total 716,889,475,792 7,499.00

the significance of the effects, the main and interaction effects are examined in
more detail in the next sections.

5.2 Main Effect of Storage, Batching, Routing and Zone Picking

Table 3 summarizes the average route length in meters for each operational policy
decision over all combinations with other policies, as well as the relative difference
between each order picking policy and the average best performing policy within
each operational decision area. Additionally, the statistical significance of all
levels of the different experimental factors are analyzed using a Bonferroni t-
test. The Bonferroni method seems to be the most robust technique in terms of
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Table 3. Average travel distance for each operational order picking policy (in meter)

Storage Mean Batching Mean Zoning Mean Routing Mean

[1]  Within-aisle 25,831.1 Seed 23,016.4 4 zones (CT) 19,916.0 Optimal 22,814.0
Diagonal 26,220.9 FCFS 32,866.9 4 zones (PF) 24,577.2 Traversal 26,945.9

Gap over [1] (%) 1.5 30.0 19.0 15.3
Across-aisle 27,283.4 Mean 27,941.6 2 zones (CT) 25,355.3 Largest gap 27,035.7

Gap owver [1] (%) 5.8 21.5 15.6
Random 30,142.2 2 zones (PF) 29,489.9 Return 31,405.2

Gap over [1] (%) 14.8 32.5 27.4
Perimeter 30,230.6 Strict 40,369.7 Aisle-by-aisle 31,507.4

Gap over [1] (%) 14.6 50.7 27.6
Mean 27,941.6 Mean 27,941.6 Mean 27,941.6

power and control of the Type I error rate for evaluating multiple hypotheses
[7]. The test results are summarized in Table 4. If two order picking policies are
listed in the same subset in table 4, differences fail to be statistically significant.
The simulation results of storage location assignment policies, order batching
policies, routing policies and zoning policies are discussed independently below.

Table 4. Post hoc multiple Bonferroni t-test for each operational policy decision
on average travel distance (familywise error rate = 0.01)

Storage Batching Zoning Routing
Within-aisle [ Seed [ 4 zones (CT) [ Optimal [
Diagonal [ FCFS [ 4 zones (PF) [ Traversal [
Across-aisle [ 2 zones (CT) [ Largest gap [
Random 2 zones (PF) [ Return [
Perimeter Strict [ Aisle-by-aisle [

The within-aisle storage location assignment policy is on average the best
performing method for assigning SKUs to individual storage locations, followed
by the diagonal and across-aisle storage policy. Except for the perimeter storage
location assignment policy, all turnover based storage policies (i.e. within-aisle,
across-aisle, and diagonal) are able to outperform the random assignment of
SKUs to storage locations. These three turnover based storage policies are in the
three top subsets in Table 4 and result in statistically significantly shorter travel
distances compared to the random and perimeter storage location assignment
policy. Random and respectively perimeter assignments yield on average 14.3 %
and 14.6 % larger route lengths compared to the best performing method. These
two storage policies form a single subset in the Bonferroni t-test, indicating that
the average travel distance is on average not statistically significantly different.
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Two subsets are composed by evaluating the two batching policies (Table 4),
giving evidence that the mean route length is statistically significantly different
for each order batching policy. Simulations show that the seed order batching
policy on average results in 30 % shorter route lengths compared to FCFS batch-
ing (Table 3). This result is rather obvious as the seed rules take the product
locations of each order into account in composing pick lists, while FCFS batching
results in a random composition of pick lists in terms of travel distances.

The policy of dividing the warehouse into order picking zones outperforms
the strict order picking policy. The average travel distance halves when changing
from strict order picking to the best performing zone picking policy, i.e. the
customer type storage zone assignment in which the order picking area is divided
into four order picking zones. All sixteen picking aisles can be visited in a single
pick tour in case of strict order picking, while a maximum of either eight or four
aisles should be entered if the warehouse is respectively divided into two or four
order picking zones. So each order picker only traverses a small part of the order
picking area in order to retrieve all items on the pick list.

Tables 3 and 4 show that the optimal routing policy results in the smallest
average distance traveled by order pickers. The optimal routing procedure is in
the top performing subset as items on the pick list are sequenced in order to min-
imize the route length. The optimality gap for the four routing heuristics (i.e.
traversal, largest gap, return, and aisle-by-aisle) is on average 15.3 %, 15.6 %,
27.4%, and 27.6 % respectively. The results of the simulation experiments show
statistically significant differences between all routing policies. However, the av-
erage route length difference between traversal and largest gap, as well as the
mean difference between return and aisle-by-aisle are rather limited. Return and
aisle-by-aisle routes are the most straightforward and worst performing routing
heuristics. The traversal routing policy outperforms the aisle-by-aisle heuristic,
because the traversal routing policy allows order pickers to leave an aisle in the
middle cross-aisle, which results in shorter routes. The largest gap heuristic ex-
tends the return routing policy by requiring the order picker to return as he
reaches the largest gap within an aisle. Consequently, largest gap routes outper-
form routes in which the order picker always returns to the middle cross-aisle.

5.3 Interaction Effects

The results of the simulation experiments are graphically illustrated in Fig. 2,
disaggregated into combinations of storage location assignment policies, order
batching policies, zoning policies, and routing policies. The interaction plot shows
all two-way interactions between the four operational order picking policies. The
lines on the graph illustrate the average travel distance for a particular order
picking policy combination. The three graphs in the first column show the av-
erage travel distance in function of the different storage location assignment
policies per batching, zoning and routing policy in the respective first, second
and third graph of the first column. The graphs in the three remaining columns
illustrate the average route length in function of the different batching, zoning
and routing policies in an equivalent way. Most lines on the graphs converge and
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some even cross. For example, the lines of the aisle-by-aisle routing heuristic
and the return policy are crossing on the graph illustrating the interaction be-
tween batching and routing, while the return, traversal, and largest gap routing
heuristic converge when changing from the FCFS to the seed batching policy. The
converging and crossing lines are in accordance with the results of the ANOVA
in Table 2, indicating that there are strong interactions between the different
operational order picking decisions.

The significant interactions between the different order picking policies orig-
inate from the fact that some combinations of warehouse policies yield excellent
performances (e.g. perimeter storage assignment in combination with largest gap
routing), while other combinations result in large average travel distances (e.g.
FCFS batching in combination with return routing). From Fig. 2, the combi-
nation of the perimeter storage policy and the largest gap routing policy is an
example of a well performing combination. Since fast moving SKUs are stored
along the periphery of the warehouse blocks and the largest gap routes tend to
follow the periphery of the warehouse, this combination of order picking policies
outperforms other combinations of routing heuristics and perimeter storage loca-
tion assignment. Aisle-by-aisle, traversal, as well as return routes show a strong
increase in travel distance in combination with the perimeter storage compared
to other storage location assignment policies.

Combinations of the straightforward routing policies (i.e. aisle-by-aisle and
return) with FCFS batching appear to be inefficient. FCFS batching, which
in fact results in a random creation of batches, generates pick lists with SKUs
located in a large number of aisles and SKUs are diffused within each aisle. Aisle-
by-aisle routes can work efficiently only if the number of aisles to be visited is
minimized, while return routes aim to minimize the travel distance within a
pick aisle. This results in a large travel distance when combining FCFS batching
with either the aisle-by-aisle or return routing policy. The average route length
difference between FCFS and seed batching is much larger when combined with
aisle-by-aisle and return routing compared to other routing methods.

In addition to some excellent performing and some inefficient combinations,
the statistically significant interaction can be further explained by the fact that
shifting from a bad performing factor level to a good performing level within
the same factor results in much smaller performance benefits when other order
picking policies are already efficiently performed compared to the situation in
which other order picking policies on average result in large travel distances.
For example the effect of different storage location assignment policies is not
consistent over all levels of zoning. By dividing the warehouse into order picking
zones, the effect of shifting to a more efficient storage policy on the route length
is reduced compared to the strict order picking policy. The reason for this signif-
icant interaction term can be found in the smaller area that is crossed by order
pickers to retrieve all items on the pick list in case of two or four order picking
zones, as well as in case of turnover based storage location assignment. Zoning
policies as well as storage policies aim to increase the density of SKUs retrieved
in each aisle. Consequently, the performance impact resulting from changing the
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Fig. 2. Average travel distance in meter for each combination of storage, batching,

zoning and routing policy
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storage policy is far greater in combination with strict order picking, compared
to other zone picking policies.

6 Managerial Implications

The results of the simulation experiments show the importance of storage, batch-
ing, zoning, and routing decisions in order to manage order picking activities
efficiently. This section discusses the practical implications of this research for
warehouse managers.

Compared to the benchmark (i.e. strict order picking in combination with
random storage assignment, FCFS batching, and aisle-by-aisle routing), all pro-
posed combinations perform better. Over the 30 replications, the benchmark
results in an average travel distance of 58,983.89 meter. The order picking pro-
cess can be performed 76.9% more efficiently by dividing the warehouse into
four order picking zones in combination with customer type zone assignment,
within-aisle storage location assignment, seed batching, and optimal routing.
This combination results in a mean route length of 13,608.14 meter. As the sim-
ulation experiments have focused on operational order picking policy decisions
only, the proposed combinations are rather easy to implement and result in large
performance benefits.

We should note that maintaining order integrity can not be generalized to all
warehouses as not all warehouses can divide their orders across customer types.
However, even when SKUs are assigned to zones base on pick frequency, the av-
erage route length can be reduced with 72.6 % compared to the benchmark. The
mean route length for pick frequency zone assignment is minimized in combina-
tion with four zones, within-aisle storage location assignment, seed batching, and
optimal routing, and results in an average travel distance of 16,147.10 meter.

In addition, the study of storage, batching, zone picking, and routing poli-
cies allows warehouse managers to determine the relations between order picking
policies. The simulations provide insights into some excellent performing com-
binations (e.g. 2 zones (CT) and seed batching), as well as several inefficient
policy combinations (e.g. FCFS batching and return routing). Furthermore, all
main effects as well as all interaction effects have proven to be statistically sig-
nificant. This implicates that warehouse managers should consider decisions on
storage, batching, zoning, and routing simultaneously in order to minimize the
distance traveled by order pickers and consequently reduce the order through-
put time. Warehouse managers should be aware of the strong relations between
order picking policies in order to optimize the overall warehouse performance.

7 Conclusions

The delivery of e-commerce markets forces warehouses to handle a growing num-
ber of orders in shorter time windows. Awareness of the influence of an individual
warehouse operation on the overall warehouse performance is required to manage
warehouse operations, resulting in enhanced customer service.
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In this paper, the relation between storage, batching, zone picking, and rout-
ing policies is studied for the first time. The results of the study clearly indicate
that warehouses can achieve significant benefits by considering storage, batching,
zone picking, and routing policies simultaneously. The combination of within-
aisle storage, seed batching, zone picking (4 zones and customer type zone as-
signment), and the optimal route results in the lowest route length. As traveling
is the dominant factor in order picking operations, the order picking process can
be performed more efficiently. As a result, warehouse managers can either reduce
the number of order pickers or reduce the customer order throughput time.

The simulation results of our study contribute to both practitioners and aca-
demic research. The evaluation of an extensive range of order picking policies
helps warehouse managers to reduce the order throughput time. The simulated
order picking policies can be easily implemented and immediately result in signif-
icant performance benefits. This paper is limited to the four main order picking
policy decisions. However in future research, these order picking policies could
be enlarged to other operational decisions, such as workforce planning decisions
and alternative zone configurations. Furthermore, simulating other warehouse
layouts may allow us to achieve higher practical and managerial relevance. En-
larging the simulation experiment will provide insight into more warehouse policy
interactions, helping warehouse managers to further reduce the order throughput
time, which can result in faster deliveries.
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