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Abstract Fitness and precision are two widely studied criteria to de-
termine the quality of a discovered process model. These metrics measure
how well a model represents the log from which it is learned. However,
often the goal of discovery is not to represent the log, but the underlying
system. This paper discusses the need to explicitly distinguish between
a log and system perspective when interpreting the fitness and precision
of a model. An empirical analysis was conducted to investigate whether
the existing log-based fitness and precision measures are good estimators
for system-based metrics. The analysis reveals that incompleteness and
noisiness of event logs significantly impact fitness and precision measures.
This makes them biased estimators of a model’s ability to represent the
true underlying process.

Keywords: Conformance Checking, Evaluation Metrics, Process Model
Quality

1 Introduction

Due to the enormous growth of event data during the last decades, organizations
are dealing with the challenge of extracting useful knowledge from it, and ex-
ploiting it to gain competitive advantages. Process mining provides ways to reach
this goal, by getting a better understanding of business processes and improving
them [1]. The origin of process mining dates back to the end of the previous cen-
tury [5,12], and focused on discovering the process control-flow from event logs
which contain recorded process behaviour. While the domain has grown much
broader, control flow discovery is the most mature research track within process
mining. For an overview of existing process discovery algorithms, witness [13].
In order to quantify the quality of a discovered process model, different qual-
ity dimensions have been defined [21], i.e. fitness, precision, generalization and
simplicity. For each of the dimensions, several metrics have been developed and
implemented, of which an overview can be found in [8].

Existing fitness and precision metrics typically measure the quality of a model
with respect to the event log it was learned from. They thereby do not take into
account that the event log is a limited sample of the real unknown process and



possibly contains measurement errors. Since the underlying process is not known
in real-life settings, the quality of a discovered process model as a representation
of the underlying process cannot be determined directly. So far, little empirical
research has been done to analyse whether the existing fitness and precision
measures can be trusted as estimators of the behavioural similarity between the
discovered model and the underlying system.

In this paper, the need to explicitly distinguish between a log and system
perspective when interpreting the fitness and precision of a model, is highlighted.
Experiments are conducted to examine whether the quality of a model with
respect to the event log can be used as an unbiased estimator for the quality of
the model with respect to the underlying process. Both the metrics their ability
to estimated the quality of models unbiasedly, as their ability to unbiasedly rank
a given collection of models from worst to best will be investigated.

The next section introduces the evaluation framework. Section 3 describes
the experimental set-up. The results of this experiment are discussed in Section
4. Section 5 discusses the role of generalization and its link with the proposed
framework. Finally, Section 6 provides an overview or related work and Section
7 concludes the paper.

2 Different perspectives in measuring model quality

The four classical quality dimensions are fitness, precision, generalization and
simplicity [1]. Fitness, precision and generalization can be visualized using a Venn
diagram[9], as is shown in Fig. 1.3 In this figure, M , L and S refer to the process
behaviour which belongs to the model, event log and system, respectively. It
therefore abstracts from the representational language of the model. According
to the author [9], the system S refers to the context of the process, e.g., the
organization, rules, economy, etc.

Figure 1. Venn diagram representing the behaviour in the process model (M), event
log (L) and system (S) [9].

In this paper, a slightly more tangible definition of system will be used.
It will refer to the behaviour which is real, i.e. the underlying process. This

3 In this paper, the simplicity dimension will not be taken into account, as it is not
directly related to the behaviour of the discovered model.



process, generally unknown, defines the actual way in which work can be done.
Note that the system is broader than only a prescriptive model used for the
configuration of an information system, but can also include certain unwritten
rules or customs. Everything which appears in the event log but is not part of
the system is regarded as noise. Examples are measurement errors resulting from
system outages. On the other hand, real though infrequent behaviour will not
be perceived as noise in this paper.

Figure 1 points out that a discrepancy exists between the system and the
event log. Process discovery tasks can thus be conducted using different ob-
jectives. Firstly, business users might be interested in the relation between the
discovered model and the event log. In such a case, the objective will be to find
a model which perfectly mimics the behaviour in the event log. Secondly, one
might be interested in the relationship between the discovered model and the
true underlying system. To understand the way work is actually be done, the
objective will be to learn a model that exactly represents the system behaviour.

Following the well-known definitions of fitness and precision [10], it is evident
that both dimensions try to tell something about the relationship between event
log and model. Generalization, being defined in [9] as the likelihood of previously
unseen but allowed behaviour being supported by the process model, appears to
aim at assessing the relationship between the model and the system. However, the
effectiveness of existing measures in achieving these goals remains unexplored.

In the remainder of this section, we articulate four alternative quality di-
mensions based on Fig. 1 and the work in [9]. Two of these dimensions measure
the distance between a model and an event log, and correspond to the classical
dimensions of fitness and precision. The other two quantify the distance between
a model and a system. The four dimensions will be defined conceptually in terms
of L, M and S, after some preliminary notations have been introduced.

2.1 Preliminaries

Definition 1 (Activity sequences). We define A as the activity alphabet. A∗

is the set of all finite sequences over A, representing the universe of traces. A
trace σj ∈ A∗ is a finite sequence of activities.

Definition 2 (Event log, model, system). An event log L is a multiset of
traces, i.e. L ∈ B(A∗), where B(A∗) is the set of all mutlisets of A.

Definition 3 (Model, system). A model M and a system S are subsets of
the universe of traces, i.e. M ∈ P(A∗) and S ∈ P(A∗), where P(A∗) is the power
set of A∗. M and S represent the domain of all possible models and systems,
respectively, whereby M = S = P(A∗). L represents the domain of all possible
logs, whereby L = B(A∗).

2.2 Model-log distance

The fit between an event log and a process model is monitored by two ratios [9],
corresponding to the known concepts of fitness and precision. Given event log
L, the log-fitness and log-precision of a model M can be defined as follows.



Definition 4 (Log-fitness). Log-fitness is a function F : M×L → [0, 1], which
quantifies how much of the behaviour in the event log is captured by the model.
This can be defined as [9]:

F (M,L) =
|L ∩M |

|L|
(1)

Definition 5 (Log-precision). Log-precision is a function P : M×L → [0, 1],
which quantifies how much of the behaviour in the model was observed in the
event log. This can be defined as [9]:

P (M,L) =
|L ∩M |

|M |
(2)

Only when both log-fitness and log-precision are equal to 1, then L = M , i.e.
the event log and the model represent exactly the same behaviour. These metrics
are orthogonal to each other, making it possible to construct models which score
poorly on one criterion and excellent on the other. Acting as complementary
forces, maximizing log-fitness and log-precision simultaneously maximizes the fit
between the model and the event log.

2.3 Model-system distance

By drawing the analogy, it is evident that two similar dimensions are needed
to quantify the match between the model and the system. Firstly, there is a
need for a metric that ensures the selection of models that contain all possible
real behaviour. Secondly, a metric that favors the selection of models that only
contain real behaviour is needed. Therefore, given the system S, the system-
fitness and system-precision of a model M can be defined as:

Definition 6 (System-fitness). System-fitness is a function F : M × S →
[0, 1], which quantifies how much of the behaviour in the system is captured by
the model. This can be defined as [9]:

F (M,S) =
|S ∩M |

|S|
(3)

Definition 7 (System-precision). System-precision is a function P : M ×
S → [0, 1], which quantifies how much of the behaviour in the model is part of
the system. This can be defined as [9]:

P (M,S) =
|S ∩M |

|M |
(4)

When event logs are incomplete and contain noise, log-based and system-
based metrics will diverge. Depending on the goal, business users should then
direct their attention to one pair of metrics. Note that the above formulas are
rather coarse-grained. While in reality more fine-grained measures are preferred,
these formulas suffice to distinguish the different concepts.



3 Experimental analysis

3.1 Goal of the experiments

The goal of the experiments conducted in this paper is twofold. Firstly, the goal
is to analyse whether existing metrics are unbiased estimators of the true system
fitness and precision. Secondly, the goal is to analyse whether the ranking of a
set of models, based on existing metrics, also represents the true ranking in
representing the underlying system.

Note that both abilities - estimation and ranking - have different impacts:
when the quality of models with respect to the system is consistently overestim-
ated, the ranking of the models will remain valid. However, when the biases are
highly variable among models, also the ranking of models will be perturbed.

Unbiased estimation For the first goal of the experiment the quality of a
set of models was measured both with respect to the event log it was learned
from and the underlying system that generated the event log. The fitness value
obtained from replaying event log L onto model M is represented as F (M,L)
for any fitness-measure. Conversely the fitness value obtained when comparing
the system S with model M is represented as F (M,S). Equivalently, we can
compute P (M,L) and P (M,S) for any precision metric. Note that F (M,L)
and P (M,L) represent log-fitness and log-precision, as defined in Equation 1
and 2, respectively, while F (M,S) and P (M,S) represent system-fitness and
system-precision as expressed in Equation 3 and 4, respectively.

To investigate whether F (M,L) and P (M,L) are unbaised estimates of
F (M,S) and P (M,S), respectively, we define the difference between these values
for both fitness and precision as follows.

∆F (M,L, S) = F (M,L)− F (M,S) (5)

∆P (M,L, S) = P (M,L)− P (M,S) (6)

For example, F ab(M,L), the log-fitness as measured by the Alignment Based
Fitness metric will be an unbiased estimator of F ab(M,S), if E[∆F ab] = 0. When
this value is positive, F ab(M,L) is said to overestimate F ab(M,S). Both ∆F and
∆P will be analysed for logs with and without noise, and with varying levels of
completeness.

Unbiased ranking In order to examine whether the ranking which log-based
metrics define on a set of models represent the true ranking of these models
with respect to the underlying system, a second analysis will be done. Even
when existing metrics are biased estimators, if they still rank different models
accurately, they can still be used to compare the quality of models. In order
to investigate this, a limited set of discovered models will be compared with a
collection of event logs generated by the same system. These event logs will have
different levels of completeness and noise. The actual set up of the experiments
will be discussed in the following paragraph.



Table 1. Experimental set up.

Characteristic Value

Number of systems 10
Completeness Levels 100%, 75%, 50%, 25%
Noise levels 0%, 5%, 10%, 15%
Number of event logs for each combination 5

Discovery algorithms Heuristics[24]
Inductive[18]
ILP[10]

Fitness Metrics Alignment Based Fitness[3](ab)
Negative Event Recall[7](ne)
Token-Based Fitness[20](tb)

Precision Metrics Alignment Based Precision[3](ab)
Best Align Etc Precision[4](ba)
Negative Event Precision[7](ne)
One Align Etc Precision[4](oa)

Generalization Metrics Alignment Based Generalization[3](ab)
Negative Event Generalization[7](ne)

Total number of event logs 800 logs
Total number of models 2400 models

3.2 Set up

The set up of the experiments was based on the framework for comparing process
mining algorithms in [22]. The design is explained in more detail below. Table
1 shows an overview of the key-characteristics of the experiment, including the
overall scale of the experiment.

1. Generate 10 systems, which will act as ground truth process models.

2. Estimate the number of different traces which can be generated by the sys-
tems, in order to target the completeness of the logs to be simulated.

3. Simulate the enactment of each system to produce artificial event logs with
different levels of noise and completeness. Furthermore, simulate a ground
truth event log for each system.

4. For each log, mine a set of process models using discovery algorithms.

5. Compute the quality of the models using the selected metrics
a. For each model, compute process quality metrics both in relation to the

log it was discovered from, and in relation to the ground truth event log.

b. For a set of randomly selected models for each system, compute the
quality metrics in relation to all the event logs generated by that system.

Generation of systems In total 10 random models were artificially generated,
in order to be used as systems, using the methodology in [17]. The generated
systems were process trees. Each system has been generated according to its
own characteristics, i.e. the expected number of activities, the different types
of process operators (sequence, choice, parallel, etc.), the occurrence of silent
activities and the occurrence of duplicate tasks.



Determine number of paths In order to target the completeness of event logs
during log simulation, the number of unique activity sequences in each model was
computed using the algorithm in [16]. In order to cope with loops, a maximum
number of iterations was taken into account for this calculation. This can be
justified by adapting a so-called fairness assumption, which states that a task of
a process cannot be postponed indefinitely. The assumption therefore rules out
infinite behaviours that are considered unrealistic [6].

Simulation of event logs Each of the artificial systems was used to simulate
event logs with different levels of completeness and noise. Both the completeness
and noise level of the logs were controlled explicitly during the simulation. The
amount of noise as well as the amount of completeness has been defined at the
level of activity sequences. Four different levels were defined for each character-
istic, resulting in 16 different types of logs. For each type, 5 different logs were
simulated, amounting to a total of 80 logs per system. Next to these, a ground
truth event log, with perfect completeness and without noise is created for each
system.

The levels of completeness are 100%, 75%, 50% and 25%. A log of 100%
completeness is obtained by simulating the system until the simulated event log
contains the same number of unique paths as calculated in the previous step,
say n. A log of 75% is obtained by simulating the system until 0.75n different
paths have been seen, etc.

The levels of noise have been defined at 0%, 5%, 10% and 15%. A log with
5% noise is created by taking 0.05/0.95 = 5.26% of the traces of a noise-free log.
To this subset of traces, different types of noise are added: missing head, missing
body, missing tail or missing activity [19]. These noisy traces are then added to
the original event log. The resulting event log consequently has n(1 + 0.0526)
traces, of which 0.0526n are noisy. The noise level will thus be 5%.

Model discovery For each log, several process models are discovered using
process discovery algorithms. ProM 6.5 was used for the discovery of the process
models. Default values were used for all parameters.

Conformance checking Regarding the first goal of the experiment, the quality
of each of the discovered models was examined both with respect to the event
log from which the model was discovered, and with respect to the ground truth
event log. Furthermore, concerning the second goal, for a randomly selected set
of 10 discovered models for each system, the quality with respect to all event logs
generated by that system was measured. Table 1 shows the measures that were
used in the analysis. Each measure was given a short label for simplicity. All
calculations were performed using the benchmarking framework CoBeFra [8].



4 Results

4.1 Estimation biases

In order to visually analyse estimation biases of fitness metrics, Fig. 2 show the
distribution of ∆F as boxplots for the different fitness measures, conditioned on
the completeness and noisiness of the event logs. Note that, next to the ideal
levels of noise and completeness, only the 15% noise level and 50% completeness
level are depicted due to space limitations. Nevertheless, these levels of noise and
completeness seem to be representative for real-life event logs [19,25]. Note that
the asterisks represent the mean difference, while the middle horizontal lines of
the boxplots represent the median values.
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Figure 2. Distribution of ∆F for fitness measures

It can be observed that noise causes the average difference between log and
system-based measurement of fitness metrics to be negative, which means that
the fitness-measures generally underestimate the real system-fitness. In these
cases, models are presumably being punished because they cannot replay be-
haviour that is not even real. On the other hand, the incompleteness of event
logs does not seem to bias the fitness measures significantly, although for some
measures it clearly decreases its precision as an estimator. Note that variability
in the case when completeness is 100% and noise is 0% is the mere result of
sampling variability in the composition of the event logs.

Fig. 3 shows the same graph for precision metrics. In contrast to system-
fitness, system-precision appears to be slightly underestimated by most precision
metrics when the event log is incomplete. Indeed, when event logs contain less
behaviour, each model’s log-precision will decrease, while the system-precision
is independent of log completeness. Furthermore, the presence of noise seems to
have an adverse effect.

In addition to the visual analysis, a Kruskal-Wallis test was done for each
fitness and precision metric, to see whether there are statistically significant
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differences between ∆F or ∆P for different levels of noise and completeness. It
can be observed in Table 2 that for all the metrics, the hypothesis that there are
no significant differences among the groups, is rejected.

Table 2. Results of Kruskal-Wallis rank sum test by completeness and noise

Fitness Metrics Kruskal-Wallis χ2 Precision Metrics Kruskal-Wallis χ2

Alignment Based Fitness 120.7946∗∗∗ Alignment Based Precision 1114.2523∗∗∗

Negative Event Recall 352.5966∗∗∗ Negative Event Precision 1006.2333∗∗∗

Token-based Fitness 320.5694∗∗∗ Best Align Precision 587.7634∗∗∗

One Align Precision 1276.3387∗∗∗

Note:
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

In order to further understand these differences, Table 3 and 4 show the
average difference between log and system measures, for fitness and precision
metrics, respectively. The levels of statistical significance indicated in these table
reflect whether this mean is different from zero. Since the data suffers from non-
normality, the non-parametric Wilcoxon signed rank test was used.

Note that for each metric, 16 different tests were done. In order to limit the
family-wise error to 5%,, the Bonferonni correction was applied. Therefore, aach
individual test has to be at a signficance level of 1− 0.95(1/16) = 0.0032, annot-
ated with the + symbol in Table 3 and 4. It can be seen that for fitness metrics,
there is indeed a bias for noisy logs. The bias for noise-free but incomplete logs
is less prevalent and not significant at a 0.32% significance level. However, it
must be observed that this corrected significance level is very restrictive, as the
Kruskall-Wallis test already pointed out that biases do exist. Notwithstanding
the statistical significance, the real impact of the bias is limited.

For precision metrics, it is clear that both noisiness and incompleteness of
event log creates significant biases for the quality metrics. It is remarkable that
∆P was found to be significantly different from zero for the Negative Event



Table 3. Mean ∆F for fitness metrics under differing noise and completeness levels.

Noise
Metric Completeness 0% 5% 10% 15%

Alignment Based Fitness 100% -0.0003∗∗ -0.0061+ -0.0124+ -0.0179+

75% -0.0017∗∗∗ -0.0072+ -0.0134+ -0.0185+

50% -0.0007 -0.0062+ -0.012+ -0.018+

25% 0.0000 -0.0059+ -0.013+ -0.0179+

Negative Event Recall 100% 0.0005 -0.0016+ -0.0039+ -0.0058+

75% 0.0000 -0.0018+ -0.0039+ -0.0058+

50% 0.0011∗∗ -0.0017+ -0.0035+ -0.0059+

25% 0.0017∗∗ -0.0001∗∗ -0.0043+ -0.0048+

Token-based Fitness 100% 0.0004 -0.0048+ -0.0109+ -0.0161+

75% 0.0007∗ -0.0035+ -0.0078+ -0.0135+

50% 0.0009∗∗ -0.0028+ -0.0079+ -0.0115+

25% 0.0016 -0.0012+ -0.0044+ -0.0056+

Note:
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01;+p<0.0032

Based on Wilcoxon signed rank test with continuity correction

Precision and One-Align Precision metrics under the condition of noise-free and
complete logs. Further experiments have to be conducted to see whether this
result is reproducible.

Table 4. Mean ∆P for precision metrics under differing noise and completeness levels.

Noise
Metric Completeness 0% 5% 10% 15%

Alignment Based Precision 100% -0.0004 0.0726+ 0.093+ 0.0989+

75% -0.0025+ 0.0539+ 0.0729+ 0.0895+

50% -0.008+ 0.0343+ 0.0617+ 0.0653+

25% -0.0195+ 0.0069 0.0162+ 0.0239+

Best Align Precision 100% 0.0004 0.064+ 0.0827+ 0.1008+

75% -0.004+ 0.0401+ 0.0508+ 0.0609+

50% -0.0098+ 0.0233+ 0.04+ 0.0446+

25% -0.0261+ -0.0042 0.0137 0.01
Negative Event Precision 100% -0.0009+ 0.0786+ 0.0887+ 0.1076+

75% -0.0056+ 0.0398+ 0.0637+ 0.0803+

50% -0.0102+ 0.0228+ 0.0392+ 0.0518+

25% -0.0255+ -0.0062+ -0.0074∗∗ 0.0082

One Align Precision 100% -0.0002∗∗ 0.0637+ 0.0873+ 0.0872+

75% -0.0036+ 0.0456+ 0.0615+ 0.0752+

50% -0.0111+ 0.0224+ 0.0485+ 0.0506+

25% -0.0286+ -0.0014 0.0079∗ 0.0174+

Note:
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01;+p<0.0032

Based on Wilcoxon signed rank test with continuity correction

It is clear that precision measures, and to a lesser extent fitness measures, are
not always unbiased nor reliable estimators of the system-alignment, as they fail
to adequately estimate a model’s system-fitness and system-precision. However,
if these estimation errors are consistent among all models, the correct ranking of
models will be preserved. It is therefore essential to investigate how the effects
of noise and completeness differ among models.



4.2 Ranking biases

In order to investigate ranking biases, 10 of the discovered models for each system
were randomly chosen. Subsequently, the quality of these models with respect
to all event logs generated from this system was measured. The relationship
between the value of these metrics and the level of noise and completeness were
subsequently analyzed. Fig. 4 shows the relationship between the level of com-
pleteness and the fitness and precision values. Note that only noise-free logs were
considered in this graph, in order to isolate the effect of (in)completeness.
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Figure 4. Relating fitness and precision measures to the completeness of logs

Each line in this Figure represents one of the 10 models, and its height repres-
ents the average fitness (precision) value at a given level of completeness. These
values were averaged over all logs at the given completeness level and over all
fitness (precision) metrics. Since fitness (precision) metrics were largely correl-
ated, they are not longer individually distinguished from each other. Moreover,
the graphs for individual metrics were found to be similar. Note that the map-
ping between each of the lines and the models is irrelevant for our purpose. Also
observe that this figure only shows the results for one of the systems, though the
results for other systems were found to be similar.

When one would draw a vertical line at a certain level of completeness, the
intersections with the lines of the graph define a ranking on the models. The
intersection with the highest line refers to the model which is perceived the
best, while the lowest intersection will point out which model is the worst. Con-
sequently, when the lines of two different models cross one another, the ranking
between these two models will change. The intersections with the y-axis reflect
to correct ranking of the models with respect to the underlying system, as logs
are complete and noise-free at this point. Under such circumstances, metrics
are unbiased estimators of system-quality, as was demonstrated in Section 4.1.
The more cross-overs that take place between lines when moving rightwards, the
more the true ranking is distorted.
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Figure 5. Relating fitness and precision measures to the amount of noise

In can thus be seen that only a very limited number of cross-overs occur
concerning the ranking of both fitness and precision under increasing levels of
incompleteness. Thus, incomplete logs seem to induce only a minimal ranking
bias. The same analysis is done for the impact of noise in Fig. 5. Here it can be
seen that for both fitness and precision, several cross-overs occur, distorting the
ranking of models. Moreover, note that the fact that the best model is not always
impacted by the perturbations in the ranking, does not solve the problem. After
all, there is no guarantee that this best model will always be found.

It can be concluded that the existence of noise impacts the measurement of
fitness and precision. Not only do they fail at estimating the quality of models
correctly under these circumstances, the impact varies greatly among different
models, which in turn significantly confuses their ranking. On the other hand,
incompleteness of event logs only slightly biases the existing fitness and precision
metrics when assessing a models quality with respect to the underlying system.

5 The role of generalization

It can be argued that the generalization quality dimension somewhat matches
the system-based perspective, in particular system-fitness. In order to conduct
a thorough analysis, we therefore also investigate the distance between the gen-
eralization measures ab and ne on the one hand, and both system-fitness and
system-precision on the other hand.

This distance, for each log and model is defined as∆GF (M,L, S) = G(M,L)−
F ab(M,S) for system-fitness, and ∆GP (M,L, S) = G(M,L) − P ab(M,S) for
system-precision. For the sake of clarity, generalization measures were only com-
pared with one system-fitness and one system-precision measure, i.e. F ab and
P ab. These measures where chosen because of their relatively intuitive interpret-
ations. The distribution of ∆GF and ∆GP can then be analyzed as before, for
both the alignment based and negative event generalization metrics. This was
done in Figure 6.
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It can be observed that Gne is a relatively good estimator of system-fitness,
although it is biased when logs are both noisy and incomplete. On the other
hand, there does not seem to be any relationship with system-precision, as one
would expect based on the definition of generalization. However, Gab is not a
good predictor of system-fitness, nor system-precision. Moreover, it should be
noted that the generalization measures were hardly correlated (0.176), which
confirms the fact that generalization remains a vague and ambiguous concept,
both regarding its definition and its implementations.

6 Related work

Over time, many challenges within the field of process discovery, such as dealing
with duplicate tasks and non-free choice constructs have been tackled [13]. Con-
sequently, new process discovery algorithms increasingly focus on outperforming
existing algorithms rather than tackling new challenges. This shift in research
requires an agreed-upon and scientifically sound evaluation framework to com-
pare different process mining algorithms. Recently, first attempts towards the
development of an evaluation framework have been made [8,10,21]. The set of
evaluation measures is the area which has received most attention so far.

In [2], the author states that “process discovery and conformance checking
aim to tell something about the unknown real process rather than the example
traces in the event log”. The author therefore claims that, the one and only goal
of process discovery would be to represent the true underlying process. However,
existing quality metrics are mostly focussed on the relationship between the
model and the event log. Furthermore, little empirical evidence exists so far.

The problem of log incompleteness is well acknowledged in literature. In [25],
the authors defined different estimators of log completeness. The application of
these on several real-life data sets showed that the estimated coverage of event
logs is only about 50%, bearing in mind that the estimators were even found to
be over-estimating the coverage when tested on artificial event logs.



Noise has been defined less unambiguously. According to [15], noise covers the
occurrence of errors, the incompleteness of the event log, as well as exceptional
behaviour. Other authors have equated noise only with exceptional behaviour [1].
Finally, some authors have defined noise as measurement errors [23]. The latter
definition has been adopted in this paper, as it matches the classical definition
of noise in the field of data mining.

Dealing with incomplete as well as noisy event logs has been tackled by
several process discovery algorithms, notably the Heuristics Miner [24] and the
Inductive Miner [18]. In the field of declarative process models, [14] systemat-
ically analysed the sensitivity of mined declarative constrains to noise. Using
similar types of noise as in this paper, the authors empirically confirmed which
types of declarative constraints are (not) resilient to certain types of noise.

Another approach towards handling noise in process discovery was proposed
in [11]. Here, handling of noise is regarded as a preprocessing step, i.e. cleaning
the log, before discovery algorithms are applied. While this view on managing
noise in event logs definitely has its merits, more research is needed on how to
distinguish noise in an event log, and how to do this in an automatic way.

Despite the efforts towards handling noise in process discovery, the concepts
of noise and log-incompleteness are not incorporated in most process quality
measures. As a result, one must be cautious to use the same quality measures
when the goal is rather to describe the underlying process. A notable exception
has been the work on artificial negative events [7]. The induction of negative
events explicitly supports the fact that event logs are not complete. The negative
events aim at delineating the system by defining its complement Sc. The related
quality metrics are thus expected to be more suitable for measuring a process
model’s alignment with the system rather than the event log, although this is
not exactly clear from the analyses.

7 Conclusions and future work

This papers suggest that there are different objectives within process discovery.
To gain information on how work is done in a business process, the objective of
process discovery is to learn a model which provides a good representation of
the underlying process, i.e. the system. However, when process discovery is used
for auditing purposes, the mere objective might be to discover a model which is
limited to the behaviour described in the event log.

Although discovery algorithms have been able to tackle noisiness and incom-
pleteness of event logs, existing quality measures are predominantly focused on
the event log as the unmistaken truth. In order to examine whether these meas-
ures still perform well in case of noisy and incomplete event logs, their sensitivity
to these issues was investigate. The results show that both fitness and precision
measures are very sensitive to noise, which makes them biased estimators of
system-precision. Moreover, when event logs are incomplete, the variability of
the measurements increase. Under these circumstances, there is no guarantee
that the metrics will be able to correctly assess a models quality with respect



to the underlying system, and rank different models accordingly. Furthermore,
it is unclear what existing generalization measures quantify. Moreover, the two
generalization measures under consideration were found to be hardly correlated.

Ranking biases clearly need to be further investigated from a more statistical
point of view. Further research concerning the existing generalization measures
is also needed to uncover their added value. Moreover, it should be investigated
how existing measures can be corrected in order to remove their bias as estimator
for system-fitness and system-precision in the presence of noise and incomplete
event logs, which is especially needed for precision measures. Also, the need for
confidence intervals for quality metrics should be further investigated, in order
to assess the reliability of their results.
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