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Abstract: Since the seminal paper by Cook and Weisberg (1982), local in-
fluence, next to case deletion, has gained popularity as a tool to detect influ-
ential subjects and measurements for a variety of statistical models. For the
linear mixed model the approach leads to easily interpretable and computation-
ally convenient expressions, not only highlighting influential subjects, but also
which aspect of their profile leads to undue influence on the model’s fit (Ver-
beke and Lesaffre 1998). Ouwens, Tan, and Berger (2001) applied the method to
the Poisson-normal generalized linear mixed model (GLMM). Given the model’s
non-linear structure, these authors did not derive interpretable components but
rather focused on a graphical depiction of influence. In this paper, we consider
GLMMs for binary, count, and time-to-event data, with the additional feature
of accommodating overdispersion whenever necessary. For each situation, three
approaches are considered, based on: (1) purely numerical derivations; (2) using
a closed-form expression of the marginal likelihood function; and (3) using an
integral representation of this likelihood. The methodology is illustrated in case
studies of A Clinical Trial in Epileptic Patients.

Keywords: Boundary condition; Case deletion; GLMM; Combined model; Local
Influence.

1 Introduction

Next to linear mixed models (LMM) for hierarchical Gaussian data (Ver-
beke and Molenberghs 2000), generalized linear mixed models (GLMM)
have become a tool for routine use for the analysis of a hierarchical data of
a variety of data types over the last twenty years (Molenberghs and Ver-
beke, 2005). Like with every statistical model, after formulating and fitting
a model, an assessment of model fit and a diagnostic analysis is advisable.
In this paper, we are concerned with the detection of influential subjects.
A large variety of diagnostic tools is available for linear and generalized lin-
ear models. Cook and Weisberg and and Chatterjee and Hadi (1988) pro-
vide early treatises. In classical linear regression, Cook’s distances (Cook
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1977a, 1977b, 1979) have been used extensively. Linear mixed models, un-
like linear models, generally do not allow for closed-form parameter estima-
tors. Further, residual analysis is not straightforward, given the presence
of both fixed-effect and random-effects covariates, so that even uniquely
defining residuals is not possible. For these and related reasons, Lesaffre
and Verbeke (1998) chose local influence (Cook 1986, Backman, Nacht-
sheim, and Cook 1987) to examine influence in linear mixed models.
In this study, we extend local influence for the GLMM in several ways.
First, we consider outcomes of binary, count, and time-to event type. Sec-
ond, using the extension proposed by Molenberghs, Verbeke, and Demétrio
(2007) and Molenberghs et al (2010), we flexibly allow for overdispersion in
the GLMM, by introducing conjugate random effects, in addition to normal
ones. This model is referred to as the combined model. Third, apart from
numerical derivations of local influence, we examine two alternative routes:
(a) closed forms for the marginal likelihood such as proposed in Molen-
berghs et al (2010) and (b) the marginal likelihood with integral form.
The closed forms in (a) do not always exist; while they are available for
the probit-(beta-)normal, Poisson-(gamma-)normal, and Weibull-(gamma-
)normal, they are not for the logit-(beta-)normal. Even when they do, they
may be somewhat unwieldy and therefore, route (b) is more promising.

2 Local Influence for GLMM

Local influence was presented by Cook (1986) and used by several authors
since. The impact of individuals and measurements on the analysis is as-
sessed by comparing standard maximum likelihood estimates with those
resulting from slightly perturbing the contribution of an individual or a
measurement. Lesaffre and Verbeke (1998) introduced an influence assess-
ment paradigm for the linear mixed model.
Cook (1986) derived a convenient computational scheme.Let ∆i be the
s-dimensional vector of second-order derivatives of log-likelihood `(θ|ω),

w.r.t. perturbation ωi and all components of θ, and evaluated at θ = θ̂ and
ω = ω0. Also, write ∆ for the s× r matrix with ∆i in the ith column. Let
L̈ denote the s×s matrix of second derivatives of `(θ), evaluated at θ = θ̂.

For any unit vector h in Ω, it follows that: Ch = 2
∣∣∣ h′∆′L̈∆h

∣∣∣ . Various

choices for h have received attention. First, as will be done here, one can
focus on subject i only, by choosing h = hi, the zero vector with a sole 1 in

the ith position. Local influence then is Ci ≡ Chi
= 2

∣∣∣ ∆′iL̈∆i

∣∣∣ . Lesaffre

and Verbeke (1998) showed that local influence Ci can be re-expressed as

Ci = 2||L̈|| ||∆i||2 cos(ϕi), (1)

where ϕi is the angle between vec(−L̈) and vec(∆i∆i
′).
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The integral-based approach can be used as an alternative way to alle-
viate complexities with the explicit marginal likelihood expressions. The
marginal density corresponding to the linear mixed model is defined as:
f̃(yi) =

∫
f̃(yi|β, bi)f̃(bi|D) dbi, with the log-likelihood contribution of

the ith individual takes the form: `i(θ) =
∑N
i=1 f̃(yi).

For count data,the first derivative of log-likelihood contribution for ith
subject as followed:

∂`i(β, D)

∂β
=

ni∑
j=1

{yij − E(yij |bi)}xij =

ni∑
j=1

rijxij , (2)

∂`i(β, D)

∂djk
= −1

2
(2− δjk)

{
(D−1)jk − (D−1D−1)jk

q∑
k=1

Var(bik)

}
,(3)

where djk is a component of D and δjk is one if j is equal to k, and zero
otherwise. Interpretable expressions can now be derived using (1). It showed

||∆i||2 =

 ni∑
j=1

rijxij

 ni∑
j=1

rijxij

′

+
∑
k,l

{
−1

2
(D−1)kl +

1

2
(D−1D−1)klVar(bi)

}2

.

Let Ci = C1i + C2i with:

C1i = 2||L̈|| ||rixi||2 cos(ϕi), (4)

C2i =
1

2
||L̈|| ||(D−1)kl − (D−1D−1)klVar(bi)||2 cos(ϕi), (5)

where rixi =
∑ni

j=1 rijxij . Note that C1i and C2i are the contributions of
subject i to local influence Ci from β and D, respectively. Reconstructing
the component C1i and C2i leads to the interpretable components that can
be described local influence. Hence, the interpretable components of Ci in
the case of the Poisson-normal model can be described using the ‘length of
the fixed effect’ (||xix′i||), the ‘squared length of the residual’ (||ri||2), and
the ‘squared of random effect variability’ (Var(bi)

2).
In binary cases, the local influence for both probit and logit normal models
have been derived.The first derivatives for probit-normal model are:

∂`i(ξ, D)

∂ξ
= [I − (Xiξ)−1]Xi, (6)

∂`i(ξ, D)

∂djk
=

3

2
L−1

(
Ini
− ZiMiM

′
i(D

−1D−1)jkZ
′
i

)
, (7)

where Mi =
(
D−1 + Z ′iZi

)−1
. It also follows that

||∆i||2 = [I− (Xiξ)−1]2XiX
′
i+
∑
k,l

9

4L2

(
Ini
− ZiMiM

′
i(D

−1D−1)jkZ
′
i

)2
.
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Thus, also for this case, the components ||Xi||2 and ||ZiZi
′||2 turn up.

Evidently, the same binomial expression is used, but now with logit(λij) =
x′ijξ + z′ijbi.The derivatives of logit-normal model take the form:

∂`i(ξ, D)

∂ξ
=

ni∑
j=1

xij

∫
1

1 + exp(µij)
τ̃(bi|yi)dbi, (8)

∂`i(ξ, D)

∂djk
= −1

2
(2− δjk)

{
(D−1)jk − (D−1D−1)jkVar(bi)

}
, (9)

where µij = x′ijξ + z′ijbi. It also follows that

||∆i||2 ∝

 ni∑
j=1

xij

 ni∑
j=1

xij

′+∑
k,l

(
−1

2
(D−1)kl +

1

2
(D−1D−1)klVar(bi)

)2

.

Reconstructing the fixed- and random-effects components, respectively, like
in the Poisson case, leads to C1i = 2||L̈|| ||xi||2 cos(ϕi) and C2i as in
(5). Hence, the interpretable components of Ci for the logit-normal model
can be described using the length of fixed effect (||xi||2) and the squared
random-effects variability, Var(bi)

2 (i.e., the sum of all variances), in anal-
ogy with the Poisson-normal model. The same is true for the Weibull-
normal model, as will be seen next.
The first derivative for Weibull case take the form:

∂`i(ξ, D)

∂ξ
=

ni∑
j=1

xij − λ
ni∑
j=1

yρijxij exp(µij), (10)

∂`i(ξ, D)

∂djk
= −1

2
(2− δjk)

[
(D−1)jk − (D−1D−1)jkVar(bi)

]
, (11)

where δjk = 1 if j = k and 0 otherwise. It further follows that

||∆i||2 =

 ni∑
j=1

xij

 ni∑
j=1

xij

′ − 2

ni∑
j=1

xijQ
′
i +QiQ

′
i

+
∑
k,l

{
−1

2
(D−1)kl +

1

2
(D−1D−1)klVar(bi)

}2

,

where Qi = λ
∑ni

j=1 y
ρ
ijxij exp(µij).

Like in the Poisson-normal and binary-normal cases, a decomposition Ci =
C1i +C2i follows, with C1i = 2||L̈||

{
||xi||2 − 2xiQi + ||Qi||2

}
cos(ϕi) and

C2i as in (5). Hence, interpretable components analogous to the earlier
settings arise.
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3 Application

The Epileptic dataset consisted of 89 patients with 2 different group of
treatments, placebo and a new anti-epileptic drug (AED). Patients were
followed (double-blind) during 16 weeks (some patients until 27 weeks).
The outcome of interest is the number of epileptic seizures experienced
during the most recent week. Poisson-normal (P-N) model as well as the
combined model with gamma random effect (PGN) have been fitted as
follow:

ln(λij) =

{
(β00 + bi) + β01tij if placebo
(β10 + bi) + β11tij if treated,

(12)

where Yij represent the number of epileptic seizures patient i experiences
during week j, tij is the time point at which Yij has been measured and the
random intercept bi ∼ N(0, d). Parameter estimates are given in Table 1.
Figure 1 contain index plots (versus patient ID) for various local influence
analyses. The top row represents local influence for (P-N) model, yet in
below rows for (PGN) model. Patients #38, #49, and #62 stand out with
large total influence Ci when compared to other patients. Importantly,
influences show a major drop when switching from (P-N) to (PGN). To get
further insight as to why these subject have higher influence than others,
plots with interpretable components are given in Figure 2: ‘squared length
of the fixed effects’ ||xix′i||, ‘squared length of the residual’ ||ri||2, and
‘random-effect variability’ Var(bi)

2. It is hardly surprising that #38 stands
out in terms of ||ri||2. Influences on #49 and #62 are less pronounced.

4 Discussion

It has been showed from this study that the influential subject for hier-
archical model can be detect using local influence approach. And it was
found that the combined model can be used to reduced the influence effect
of the subject. Moreover, the interpretable components can be use as the
tools to evaluate in which way the influence subject affect the estimation
in modeling process.
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Poisson-Normal:

Combined Model:

FIGURE 1. Plot of Local Influence

FIGURE 2. Plot of Interpretable components of Local Influence

TABLE 1. Parameter estimates (standard errors) for the P-N and PGN models.

Effect Par. P-N PGN

Interc. plac. β00 0.818(0.168) 0.911(0.176)
Slope plac. β01 -0.014(0.004) -0.025(0.008)
Interc. treat. β10 0.648(0.170) 0.656(0.178)
Slope treat. β11 -0.012(0.004) -0.012(0.007)
Treat. eff. β11 − β10 0.002(0.006) 0.013(0.011)
Treat. eff. β11/β10 0.840(0.398) 0.475(0.335)
Std. rand. int. σ 1.076(0.086) 1.063(0.087)
Overdisp. par. α 2.464(0.211)


