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Summability of canard-heteroclinic saddle

connections

Karel Kenens

Abstract

For a given (real analytic) slow-fast system{
ẋ = εf(x, y, ε)
ẏ = g(x, y, ε),

that admits a slow-fast saddle and that satisfies some mild assumptions,
the Borel-summability properties of the saddle separatrix tangent in the
direction of the critical curve are investigated: 1-summability is shown.
It is also shown that slow-fast saddle connections of canard type have
summability properties, in contrast to the typical lack of Borel-summability
for canard solutions of general equations.

1 Introduction

In this paper we deal with Gevrey-asymptotic methods to state properties of in-
variant manifolds of certain (real analytic) slow-fast systems. Slow-fast systems,
presented in a standard form, are systems that can be represented as

{
ẋ = εf(x, y, ε)
ẏ = g(x, y, ε),

where ε is a small parameter (typically strictly positive) that identifies the
time scale separation between the speed of the x-variable and the speed of the
y-variable. Under mild conditions of normal hyperbolicity, Fenichel [1] showed
the existence of Ck-smooth invariant manifolds y = ψ(x, ε), tending towards the
zero set of g(x, y, 0). In general, these invariant manifolds are not C∞ smooth,
but only Ck for arbitrary k. It does imply that, still under normal hyperbolicity
condition, there exists a unique power series expansion y =

∑∞
n=0 ψn(x)εn,

which can be the object of study from a formal point of view. It is well-known
that the series is typically divergent, and the divergence can be controlled: it is
of the order at most Gevrey-1.

Gevrey-1 series can sometimes correspond to unique functions, just like con-
vergent series; in that case the series is called 1-summable (see for example [2]).
Unfortunately, Fenichel manifolds are rarely 1-summable, and clearly whenever
the invariant manifolds are not infinitely smooth, one cannot expect the asymp-
totic series to be summed to a smooth object. But even in the more restrictive
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case where Fenichel manifolds are C∞, the corresponding power series are typ-
ically not 1-summable. This paper deals with isolated situations where the
summability can be obtained, of course under some restrictions.

The first restriction that we impose is on the dimensions of the slow and fast
variables: we proceed in the context of planar systems, i.e. x, y ∈ R. In that
context, we assume the presence of an analytic curve y = ψ0(x) which solves
the equation g(x, y, 0) = 0. This curve is called the critical curve. Normal
hyperbolicity of the vector field at some point (x0, y0) means (besides y0 =
ψ0(x0)) that

∂g

∂y
(x0, y0, 0) 6= 0.

This implies, of course, that for each x in a neighbourhood of x0 the system
ẏ = g(x, y, 0) has a hyperbolic equilibrium point at ψ0(x).

The formal invariant manifold, which arises from Fenichel theory, will be
denoted y = ψ̂(x, ε) =

∑∞
n=0 ψn(x)εn. We may now distinguish several cases,

depending on the order of zero of the function

h(x) = f(x, ψ0(x), 0) (1)

at the point x0 (which more or less defines the center manifold behaviour):

(1) h(x0) 6= 0. This is the regular case. The slow dynamics shows a drift along
the x-axis with nonzero speed.

(2) h(x0) = 0, h′(x0) 6= 0. This is the slow-fast saddle case or slow-fast node
case.

(3) h(x0) = · · · = h(p)(x0) = 0, h(p+1)(x0) 6= 0. The slow dynamics has a
singularity of order p+ 1, p ≥ 1.

In case (1), the system does not have a nearby singular point for ε 6= 0. Local
Fenichel manifolds are shown to be C∞ but are in general not summable; it is
well-known that summability properties cannot be derived from a local study
of the system, but is related to global properties of the system of differential
equations (see for example [3]). In case (2), we focus on the slow-fast saddle case,
where h′(x0) · ∂g∂y (x0, y0, 0) < 0. The slow-fast saddle perturbs to a hyperbolic
saddle when ε > 0, and the object of study is the ε-family of stable and unstable
separatrices. The properties will be explained in detail in Theorem 3.1, here we
restrict ourselves to mentioning that the separatrix in the direction of the critical
curve is 1-summable in the positive ε-direction. The slow-fast node case will
not be considered (from a dynamical systems point of view, it is less relevant).

Case (3) is the more difficult one, since in general up to p + 1 singular
points may bifurcate from (x0, y0) when ε > 0, following elementary catastrophy
theory. We do not trace the summability properties of such singularities in
generality here, but mention that the restricted case (3) where the singularity
of order p + 1 is preserved for ε > 0 has been treated before in [4]: the center-
separatrix is shown to exhibit “monomial summability” properties, mixing the
phase variable x and ε in describing the summability properties.
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In both the second and third case, a local study suffices to conclude whether
or not 1-summability of ψ̂(x, ε) is present or not. In the first case however, this

is no longer true: in that case it is possible to prove 1-summability of ψ̂(x, ε) at
x = x0 whenever the slow dynamics can take the point in negative time (resp.
positive time) towards a point where 1-summability was found, for example near
a slow-fast saddle, all the while remaining on an attracting (resp. repelling) part
of the critical curve.

Intuitively, the description above says that slow curves that originate from
a slow-fast saddle have summability properties. In the case when two such slow
curves come together in a contact/turning point, the meaning of which will
be explained later on, we will match them together using an extra breaking
parameter and thus form canard curves. The main theorem can intuitively be
described as follows:

Theorem 1.1. A heteroclinic saddle connection between two persistent slow-fast
saddles on a slow manifold of a real analytic planar slow-fast system is summable
w.r.t. the singular parameter (in the positive real direction), uniformly for x in
compact subsets of the domain of the critical curve not including the turning
point.

For more precise statements we refer to Theorem 5.11. This theorem can be
applied to singular analytic differential equations like

ε(x− c)(d− x)
dy

dx
= a+ xm−1y + εF (x, y, ε, a), c < 0 < d, m even.

Theorem 1.1 then shows the existence of a m-summable control curve a =
A(ε1/m) along which the equation has a m-summable solution y = y(x, ε1/m)
w.r.t. ε1/m, uniformly on arbitrary compact subsets of [c, d] which do not include
the turning point x = 0.

The organisation of the paper is as follows: Section 2 starts with some
notations and definitions that we will use. In Section 3 we present a local
study of the summability near slow-fast saddles; the result is formulated in
Theorem 3.1. In Section 4, we show how to use the slow dynamics to extend the
local 1-summability properties along the critical curve; the results of that section
are gathered in Theorem 4.1. In Section 5, we show how summability properties
are carried over to canard points, see Theorem 5.1. The combinations of these
three theorems lead to a proof of Theorem 1.1, which is formulated precisely in
Theorem 5.11 at the end of the paper.
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2 Some definitions and properties

2.1 Gevrey series

Definition 2.1. Let V ⊂ C` be open, ` ≥ 1, and let B > 0 and s ≥ 0. A formal
series

f̂(x, ε) =

∞∑

n=0

fn(x)εn

is Gevrey-s of type B in ε, uniformly for x in V , if fn ∈ O(V ) for all n ∈ N
and there exists A > 0 such that

sup
x∈V
|fn(x)| ≤ ABnΓ(1 + sn).

It is easy to see that the set of Gevrey-s series, for a fixed s, forms an algebra.
Furthermore, Gevrey-0 series correspond to convergent series and hence define
analytic functions on V × B

(
0, 1

B

)
. Besides the algebra property, we state

without proof the following well-known fact regarding compositions:

Lemma 2.2. ([5]) Suppose that G(x, y, ε) is an analytic function on V ×
B(0, r1) × B(0, r2) and f̂(x, ε) is a formal Gevrey-s series in ε, uniformly for
x in V , and without constant term i.e. f0(x) = 0. Then the formal series

G(x, f̂(x, ε), ε) is also Gevrey-s.

2.2 Gevrey functions

Notation 2.3. For θ ∈ [0, 2π[, δ ∈]0, 2π[ and r > 0 we denote the (open) sector
in the direction θ with opening δ and radius r by

S(θ, δ, r) =
{
z ∈ C

∣∣ 0 < |z| < r, Arg(ze−iθ) ∈ ]− δ
2 ,

δ
2 [
}
.

The infinite sector ∪r>0S(θ, δ, r) in the direction θ is denoted by S(θ, δ).

Definition 2.4. Consider some sector S and a subset V ⊂ C`, ` ≥ 1. Let s ≥ 0
and f̂(x, ε) =

∑∞
n=0 fn(x)εn a formal series in ε with coefficients in O(V ). We

say that a function f(x, ε), analytic on V × S, is Gevrey-s asymptotic to the

formal series f̂(x, ε), with respect to ε, uniformly for x ∈ V , if for every ε ∈ S
and every N ∈ N0 we have

sup
x∈V

∣∣∣∣∣f(x, ε)−
N−1∑

n=0

fn(x)εn

∣∣∣∣∣ ≤ CD
NΓ(1 + sN) |ε|N

for certain C,D > 0. We denote this by

f(x, ε) ∼s
∞∑

n=0

fn(x)εn
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Remark 2.5. The Gevrey property of the series
∑
n fn(x)εn is an immediate

consequence of the fact that some function is Gevrey-asymptotic to it. Addi-
tionally, the characterization of Gevrey functions implies C∞ smoothness at the
vertex ε = 0 (this requires a small proof).

We have the following useful result:

Theorem 2.6. Consider an analytic function F : D → C, where D ⊂ C is an
open set, and a function g : S(θ, δ, r) → D, Gevrey-s asymptotic to a formal
series. The composition function F ◦ g is also Gevrey-s asymptotic to a formal
series on S(θ, δ, r̃), where r̃ ≤ r.

2.3 Summability

Definition 2.7. Given k > 0 and a Gevrey- 1
k series

f̂(x, ε) =

∞∑

n=0

fn(x)εn.

We say that f̂ is Borel k-summable in a direction θ ∈ [0, 2π[ if there exist r, τ > 0

and a function f(x, ε) analytic on V × S(θ, πk + τ, r) such that f ∼ 1
k
f̂ .

Remark 2.8. If k ≤ 1
2 , the k-sum will be a function defined for ε in a sector on

the Riemann surface of the logarithm.

Definition 2.9. Let, for k > 0, f̂(x, ε) :=
∑∞
n=1 fn(x)εn be a Gevrey- 1

k series
in ε (without constant coefficient), uniformly for x ∈ V ⊂ C`. We define the
formal Borel transform of order k (with respect to ε) of this series to be

Bk(f̂)(x, η) =

∞∑

n=1

fn(x)

Γ(1 + (n−1)
k )

ηn−1.

We see that the formal Borel transform of order k of a type B Gevrey- 1
k

series is a convergent series for (x, η) ∈ V × B(0, 1/B) since, for example, the
following bound can be found (see [6])

Γ(1 + n
k )

Γ(1 + (n−1)
k )

<

√
π

e

(
n

k
+

1

2

) 1
k

.

The following theorem gives an equivalent definition for k-summability.

Theorem 2.10. ([7]) Let f̂(x, ε) =
∑∞
n=1 fn(x)εn be a Gevrey- 1

k series, k > 0,
uniformly for x ∈ V ⊂ C`. For every θ ∈ [0, 2π[, the following two statements
are equivalent

• The series f̂ is Borel k-summable in the direction θ with Borel sum f(x, ε).
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• There exists a sector S(θ, τ) for τ > 0 such that Bk(f̂)(x, η) admits ana-
lytic continuation to S(θ, τ) of exponential growth at most of order k, i.e.
there exist M,ν > 0 such that for all η ∈ S(θ, τ)

sup
x∈V

∣∣∣Bk(f̂)(x, η)
∣∣∣ ≤Meν|η|

k

.

Moreover the function f is unique in the case the statements are true.

3 Summability of slow curves near slow-fast sad-
dles

We consider a real analytic slow-fast vector field in standard form, as stated in
the introduction: {

ẋ = εf(x, y, a, ε)
ẏ = g(x, y, a, ε).

(2)

We added an extra parameter, in view of its necessity in Section 5, but stress
that it will not affect the results here. We assume furthermore

f(x0, y0, a0, 0) = g(x0, y0, a0, 0) = 0, (3)

∂g

∂y
(x0, y0, a0, 0) < 0, (4)

(
∂g

∂x
.
∂f

∂y
− ∂g

∂y
.
∂f

∂x

)
(x0, y0, a0, 0) > 0. (5)

These conditions characterize the point (x0, y0) as a slow-fast saddle: using the
IFT and (3–4) we know that the zero set of g(x, y, a0, 0) = 0 is given by a
curve y = ψ0(x) with ψ′0(x) computable using implicit differentiation. With the
expression of ψ′0(x) in mind, the left hand side of (5) shares the sign with that
of h′(x0), where h is given in (1) in Section 1. Equations (3–5) hence correctly
reflect the case (2) of slow-fast saddles reported in Section 1.

One can see, by once again utilizing the IFT, that there exists an analytic
parametric curve (xs(ε, a), ys(ε, a)), defined for (ε, a) near (0, a0) along which
system (2) has a singularity (hyperbolic of saddle type when ε > 0). Our main
result in this section is:

Theorem 3.1. Under the conditions (3–5), system (2) has an (ε, a)-family of
analytic invariant graphs x = ψs(y, ε, a) that correspond to the stable separatrix
of the saddle (xs, ys) for ε > 0. There is an (ε, a)-family of invariant graphs
y = ψu(x, ε, a), defined for ε ≥ 0 that correspond to the unstable separatrix
of the saddle (xs, ys) for ε > 0. It is furthermore 1-summable w.r.t. ε in the
positive real direction (uniformly for (x, a) in a neighbourhood of (x0, a0)).

The statement regarding the analyticity of the stable separatrix is a classic
statement, just added for the sake of completeness and to contrast the properties
of the unstable separatrix.
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With elementary changes of coordinates and time we can reduce the question
concerning the unstable separatrix to a similar one where f(x, y, a, ε) = x,
(x0, y0) = (0, 0) and g(x, y, a, ε) = O(y, ε). (In fact, it amounts to analytically
straightening the critical curve and the analytic stable separatrix.) The second
statement of Theorem 3.1 is then a direct consequence of:

Theorem 3.2. Consider the analytic equation

εx
dy

dx
= ϕ(x)y + εH(x, y, a, ε), (6)

defined in a neighbourhood of (x, y, a, ε) = (0, 0, a0, 0), and satisfying

(i) ϕ is (real) analytic and defined near 0;

(ii) ϕ(0) < 0.

This equation has a solution y(x, a, ε) defined for (x, a) in a polydisc around
(0, a0) and for ε in a complex sector containing the positive real direction. Fur-
thermore, it is 1-summable w.r.t. ε in the positive real direction.

The proof of Theorem 3.2 is spread over the coming subsections.

Remark 3.3. While the positive real direction for ε is dynamically the most
relevant one, it should be clear from the proof that the summability also extends
to other directions in the (open) right half-plane. This directions in the left half-
plane are excluded because in that direction, the Borel transform could exhibit
singularities (imposed by the negative linear part of the governing equation)
as the example below shows. We note that the negative ε-direction no longer
corresponds to a slow-fast saddle, but rather to a node.

Example 3.4. By lemma 3.5 below, the equation

εx
dy

dx
= −y + εLog

(
1

1− x

)

has a formal series solution which is Gevrey-1 in ε, uniformly for x ∈ B(0, 1
2 ).

One can show that the Borel transform (w.r.t. ε), F (x, η), of this series satisfies
the equation

x

∫ η

0

∂F

∂x
(x, s)ds+ F (x, η) = Log

(
1

1− x

)
.

The unique solution to this equation is given by F (x, η) = Log
(

1
1−xe−η

)
which

clearly has singularities when η is taken in a direction in the left half-plane. By
theorem 2.10 this implies that there can be no summability in these directions.

3.1 Existence of formal Gevrey-1 solution

Lemma 3.5. Equation (6) (under the conditions of Theorem 3.2) is formally
solved by a unique series

ŷ(x, a, ε) =

∞∑

n=1

yn(x, a)εn.
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This series is Gevrey-1 in ε, uniformly for (x, a) ∈ B(0, s)× B(a0, r) for suffi-
ciently small r, s > 0.

Proof. We refer to [8] for a proof based on the method of majorating series
and on the use of modified Nagumo norms (we note that in our case the use of
standard Nagumo norms is sufficient). For properly referencing [8], the left-hand
side of (6) should not have contained the factor x causing an extra degeneracy,
but in a remark at the end of Section 4 of [8], the authors do mention that
this generalization does not affect their results (which is also quite clear from
reading the proof). Please note that, in that reference, the extra parameter a
is included for a different reason, but it is clear that it does not have effect on
the results.

Using this result we deduce that the formal Borel transform of order 1,

B1(ŷ)(x, a, η) =

∞∑

n=1

yn(x, a)

(n− 1)!
ηn−1, (7)

defines an analytic function on some polydisc around 0. The next section is
devoted to discussing its analytic continuation in the η-direction.

3.2 The equation in the Borel plane

The formal expansion obtained in lemma 3.5 will be examined in the Borel plane,
by comparing it with a solution of the Borel-transformed version of equation (6).
Inspired by [9], The analytic continuation of (7) is achieved by directly applying
a fixed point argument in an appropriate Banach space in the Borel plane.

3.2.1 Setting up appropriate Banach spaces

Definition 3.6. Fix an infinite sector S = S(θ, δ) with θ ∈ [0, 2π[, δ ∈]0, 2π[,
and choose r > 0. For µ > 0 and f : B(a0, r)× S → C we define

||f ||µ,S = sup
(a,η)∈B(a0,r)×S

|f(a, η)| (1 + µ2 |η|2)e−µ|η|.

and we denote the space of analytic functions B(a0, r) × S → C with a finite
bound w.r.t. ‖ · ‖µ,S by Gµ.

At first sight, the chosen norm seems somewhat artificial and to some extent
it is: the extra factor 1 + µ2 |η|2 is only added so that the norm behaves well
w.r.t. convolution product, see below. The exponential factor is added to ensure
that functions of at most exponential growth would fit in the space.

Theorem 3.7. For every µ > 0, Gµ is a Banach space.

We will omit a proof but just give as a hint that the introduced norm is
equivalent to a sup-norm on bounded subsectors, and therefore the convergence
of Cauchy sequences can be done for each bounded subsector. The analyticity
of the Cauchy limit would follow from the equivalent property on subsectors.
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Properties 3.8. ([8])

(i) ‖f‖µ̃,S ≤ ‖f‖µ,S if µ̃ ≥ µ and thus Gµ ⊂ Gµ̃.

(ii) ‖f ∗ g‖µ,S ≤ 4π
µ ‖f‖µ,S ‖g‖µ,S with f ∗ g the convolution

(f ∗ g) (a, η) =

∫ η

0

f(a, s)g(a, η − s)ds.

Definition 3.9. Consider the formal series F (x, a, η) =
∑∞
k=0 fk(a, η)xk with

fk ∈ Gµ. We introduce the norm

‖F‖µ,S =

∞∑

k=0

‖fk‖µ,S µ−k,

and define

Gµ{x} = {F =

∞∑

k=0

fk(a, η)xk : fk ∈ Gµ, ‖F‖µ,S <∞}.

Each element of Gµ{x} defines an analytic function on B
(
0, µ−1

)
×B(a0, r)×

S of at most of exponential growth as η → ∞. Properties 3.8 extend trivially
to similar properties on Gµ{x}, and we furthermore have

‖xF‖µ,S =
1

µ
‖F‖µ,S , ∀F ∈ Gµ{x},

which can be simply checked. Like Gµ is a Banach space, so will Gµ{x} be a
Banach space. We don’t provide details.

3.2.2 Equation (6) in the Borel plane

Let us now take the Borel transform of equation (6), which we will do term by
term. Recall that ŷ is the formal solution of this equation and that we have
shown the Gevrey-1 property (Theorem 3.5). It follows that Ŷ := B1(ŷ) is well-
defined near the origin and is a convergent series in the three variables (x, a, η)
(recall that η is the coordinate that parameterizes the Borel plane). Cauchy’s
inequalities imply that also dŷ

dx is Gevrey-1, so we already know that (by using
the well known fact that the Borel transform of a product of two Gevrey series
is given by the convolution product of their respective Borel transforms)

B1 ( ϕ(x)ŷ ) = ϕ(x)Ŷ , B1

(
εx
dŷ

dx

)
= x

(
1 ∗ dŶ

dx

)
.

In order to transform the third term in the equation, εH(x, ŷ, ε, a), (which is
Gevrey-1 due to lemma 2.2), we write

H(x, y, a, ε) =

∞∑

k=0

Hk(x, a, ε)yk (8)
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and infer that

B1(εH(x, ŷ, a, ε)) =

∞∑

k=0

(
B1(εHk) ∗ Ŷ ∗k

)
, (9)

where use the notation F ∗k := F ∗. . .∗F (k times) the k-fold convolution product
(For k = 0 the term in the term in the series in (9) evaluates to B1(εHk), and
not B1(εHk) ∗ 1, since 1 is not the unity w.r.t. convolution). Statement (9)
follows from the following arguments in the rest of this subsection.

It is clear that for every K ∈ N0 the formal series

εH(x, ŷ(x, a, ε), a, ε)

and
K∑

k=0

εHk(x, a, ε) (ŷ(x, a, ε))
k

have equal coefficients for at least ε1, . . . , εK . Since they are both Gevrey-1
(lemma 2.2), it is an easy calculation that there exist A,B > 0 (independent of
K) such that

∣∣∣∣∣B1 (εH(x, ŷ, a, ε)) (x, a, η)−
K∑

k=0

(
B1 (εHk) ∗η B1 (ŷ)

∗ηk
)

(x, a, η)

∣∣∣∣∣

=

∣∣∣∣∣B1 (εH(x, ŷ, a, ε)) (x, a, η)− B1

(
K∑

k=0

εHk(x, a, ε)ŷk

)
(x, a, η)

∣∣∣∣∣

≤ AB (B |η|)K (1 +K(1−B |η|))
(B |η| − 1)

2 .

This clearly implies (by letting K → ∞) that (9) holds for η in a sufficiently
small neighbourhood of 0.

We are now ready to consider the transformed equation of (6):

x

(
1 ∗ ∂Ŷ

∂x

)
= ϕ(x)Ŷ +

∞∑

k=0

(
B1(εHk) ∗ Ŷ ∗k

)
. (10)

All involved functions in equation are analytic, for (x, y, η) ∈ B(0, s)×B(a0, r)×
B(0, C) for some C > 0.

3.2.3 Solving the equation in the Borel plane

In this subsection we show the existence of a unique solution of (10) in Gµ{x}.
To prepare a fixed point argument, the following formulation of equation (10)
will prove to be useful,

Ŷ = T

(
(ϕ(x)− ϕ(0))Ŷ +

∞∑

k=0

(
B1(εHk) ∗ Ŷ ∗k

))
, (11)
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where T is the linear operator T : Gµ{x} → Gµ{x} : F 7→ T (F ), so that T (F )
satisfies the linear equation

x

(
1 ∗ ∂

∂x
T (F )

)
− ϕ(0)T (F ) = F. (12)

In order to deal with the fixed-point equation (11), we still have to fix a specific
sector in the definition of Gµ for our results to hold. Let 0 < δ < π, we will work
in the sector S(0, δ), which we denote simply by S. We give a few preparatory
results.

Proposition 3.10. For each k ≥ 1, the function e
kη
ϕ(0) ∈ Gµ and has norm 1.

Furthermore, 1 ∗ kekη/ϕ(0) = ϕ(0)ekη/ϕ(0) − ϕ(0).

Proof. Both the kernel function (1 + µ2 |η|2)e−µ|η| that is used in the definition

of the norm and the function |e
kη
ϕ(0) | are decreasing as |η| is increased. (We have

used that ϕ(0) < 0 and 0 < δ < π). So the norm is simply the modulus of the
function evaluated at the origin η = 0. The equality regarding the convolution
is just a simple calculation.

Lemma 3.11. If F (x, a, η) =
∑∞
k=0 fk(a, η)xk ∈ Gµ{x} then also

F̃ :=

∞∑

k=1

k
(
fk ∗ e

kη
ϕ(0)

)
xk ∈ Gµ{x}, with ‖F̃‖µ,S ≤

|ϕ(0)|∣∣cos( δ2 )
∣∣ ‖F‖µ,S .

Proof. By the previous lemma and the properties of convolution, it is easy to
see that k(fk∗ekη/ϕ(0)) ∈ Gµ with norm bounded by 4π

µ ·‖fk‖µ,S ·‖kekη/ϕ(0)‖µ,S .
However, the last factor grows with k so this bound would not suffice to prove
the lemma. We can however improve the bound on the convolution, essentially
using the exponentially decaying shape of the second factor in the convolution:
for each (a, η) ∈ B(a0, r)× S
∣∣∣k
(
fk ∗ e

kη
ϕ(0)

)∣∣∣ = |η| k
∣∣∣∣
∫ 1

0

fk(a, tη)e
(1−t)k
ϕ(0)

ηdt

∣∣∣∣

≤ |η| k
∫ 1

0

|fk(a, tη)| e
(1−t)k
ϕ(0)

Re(η)dt

≤ |η| k sup
a,z
|fk(a, z)|

∫ 1

0

e
(1−t)k
ϕ(0)

|η| cos( δ2 )dt

=
|ϕ(0)|
cos( δ2 )

sup
a,z
|fk(a, z)|

(
1− e

k|η| cos( δ
2

)

ϕ(0)

)
≤ |ϕ(0)|

cos( δ2 )
sup
a,z
|fk(a, z)|

where the sup is taken for z ∈ S, |z| ≤ |η| and a ∈ B (a0, r).

11



Because (1 + µ2 |η|2)e−µ|η| is decreasing with respect to |η|, we get

∣∣∣k
(
fk ∗ e

kη
ϕ(0)

)∣∣∣ (1 + µ2 |η|2)e−µ|η| ≤
(
|ϕ(0)|
cos( δ2 )

sup
a,z
|fk(a, z)|

)
(1 + µ2 |η|2)e−µ|η|

≤ |ϕ(0)|∣∣cos( δ2 )
∣∣ sup
a,z
|fk(a, z)| (1 + µ2 |z|2)e−µ|z|

≤ |ϕ(0)|∣∣cos( δ2 )
∣∣ ‖fk‖µ,S ,

which gives the requested improved bound on ‖k(fk ∗ ekη/ϕ(0))‖µ,S after taking
the sup. We conclude that

∥∥∥∥∥
∞∑

k=1

k
(
fk ∗ e

kη
ϕ(0)

)
xk

∥∥∥∥∥
µ,S

≤ |ϕ(0)|∣∣cos( δ2 )
∣∣
∞∑

k=1

‖fk‖µ,S µ−k =
|ϕ(0)|∣∣cos( δ2 )

∣∣ ‖F‖µ,S

such that F̃ indeed lies in Gµ{x} with the requested bound on its norm.

Lemma 3.12. The linear operator T introduced in (12) is well-defined as an
operator from Gµ{x} into itself, and is given by

T : F =

∞∑

k=0

fk(a, η)xk 7→ −1

ϕ(0)
F − 1

ϕ(0)2

∞∑

k=1

k(fk ∗ e
kη
ϕ(0) )xk,

Moreover ‖T‖ ≤ 1
|ϕ(0)|

(
1 + 1

cos( δ2 )

)
.

Proof. The right-hand side is well-defined because of lemma 3.11, and the bound
on the operator norm essentially is an easy consequence of the same lemma.
Remains to show that T (F ) satisfies the convolution equation (12). To do so,
it suffices to check this for each fkx

k, due to the linearity. Let

αk = T (fkx
k) =

( −1

ϕ(0)
fk −

1

ϕ(0)2
(fk ∗ ke

kη
ϕ(0) )

)
xk,

Now it is elementary to check that x(1 ∗ dαkdx ) = − 1
ϕ(0) (fk ∗ ke

kη
ϕ(0) )xk, merely

using the associativity and commutativity of ∗ and Proposition 3.10. We directly
conclude that x(1 ∗ dαkdx )− ϕ(0)αk = fkx

k.

Let us now focus our attention again on (11) and define the map

V : Gµ{x} → Gµ{x} : F 7→ T

(
(ϕ(x)− ϕ(0))F +

∞∑

k=0

B1(εHk) ∗ F ∗k
)
. (13)

It is not yet clear whether or not the expression in the right-hand is a well-
defined element of Gµ{x}. This will be a consequence of the next two lemmas.
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Lemma 3.13. The space Gµ{x} is closed under multiplication with analytic
functions (in x) with radius of convergence strictly larger than 1/µ i.e. let
F ∈ Gµ{x} and g(x) ∈ O (B(0, r)) with r > 1/µ then

g.F ∈ Gµ{x}, and ‖g.F‖µ,S ≤
( ∞∑

k=0

|gk|µ−k
)
‖F‖µ,S .

Note that ϕ(x) − ϕ(0) = O(x) so the norm of the linear operator F 7→
T ((ϕ(x) − ϕ(0))F ) is of the order O(µ−1), which we may choose as small as
required upon increasing µ.

Proposition 3.14. Let γ(x, a, ε) =
∑∞
n=0

∑∞
i=0 γni(a)xiεn be bounded analytic

on B(0, s)×B(a0, r)×B(0, s). If µ ≥ 2/s, then γ has a Borel transform inside
Gµ{x}, with

‖B1 (εγ)‖µ,S ≤ 32 sup
(x,a,ε)

|γ(x, a, ε)| ,

where the sup is taken over all (x, a, ε) ∈ B(0, s)×B(a0, r)×B(0, s).

Proof. Denote ‖γ‖ := sup(x,a,ε) |γ(x, a, ε)|. The Borel transform is formally
given by

B1(εγ) =

∞∑

i=0

( ∞∑

n=0

γni(a)

n!
ηn

)
xi.

Using Cauchy’s inequalities, we obtain |γni(a)| ≤ ‖γ‖ s−i−n. We have

∣∣∣∣∣
∞∑

n=0

γni(a)

n!
ηn

∣∣∣∣∣ ≤
‖γ‖
si

∞∑

n=0

1

n!

( |η|
s

)n
=
‖γ‖
si

e|η|/s

which means that
∑∞
n=0

γni(a)
n! ηn is an entire analytic function w.r.t. η. Fur-

thermore
∥∥∥∥∥
∞∑

n=0

γni(a)

n!
ηn

∥∥∥∥∥
µ,S

≤ sup
η∈S

‖γ‖
si

(
1 + µ2 |η|2

)
e|η|(

1
s−µ) =

‖γ‖K (µ, s)

si

for some positive constant K(µ, s). In fact, under condition that µ ≥ 2
s , an

easy calculation shows that K(µ, s) < 16. It already implies that all coefficient
functions appearing in B1(εγ) are in Gµ, for µ > 2

s . Finally,

‖B1(εγ)‖µ,S =

∞∑

i=0

∥∥∥∥∥
∞∑

n=0

γni(a)

n!
ηn

∥∥∥∥∥
µ,S

µ−i

≤ 16 ‖γ‖
∞∑

i=0

(
1

sµ

)i
=

16

1− 1
sµ

‖γ‖ ≤ 32 ‖γ‖ ,

provided µ ≥ 2
s .

13



Corollary 3.15. Let Hk be as in (8). There exists a C0, so that given any
C ≥ C0, we can choose µ large enough in order that the map

F 7→
∞∑

k=0

B1(εHk) ∗ F ∗k.

is well-defined B(0, C) ⊂ Gµ{x} → B(0, C0). It is then Lipschitz with Lipschitz
constant that is O( 1

µ ) for µ→∞.

Proof. Recall that H(x, y, a, ε) =
∑∞
k=0Hk(x, a, ε)yk is bounded analytic near

(0, 0, a0, 0), say on B(0, s) × B(0, R) × B(a0, r) × B(0, s) for some r, s, R > 0.
Denote with ‖H‖ the sup of |H(x, y, a, ε)| on this domain. Then Cauchy’s
estimate shows that

sup
(x,a,ε)

|Hk(x, a, ε)| ≤ ‖H‖R−k.

It follows from lemma 3.14 that B1(εHk)∗F ∗k ∈ Gµ{x} provided F is, and that
the norm of B1(εHk) is bounded from above by 32‖H‖R−k, all this as long as
µ ≥ 2

s . To continue, we introduce the shortcut M0 := ‖B1(εH0)‖µ,S and find

∥∥∥∥∥
∞∑

k=0

(
B1(εHk) ∗ (F )

∗nk
)∥∥∥∥∥

µ,S

≤M0 +

∞∑

k=1

(
4π

µ

)k
‖B1(εHk)‖µ,S ‖F‖

k
µ,S

≤M0 + 32 ‖H‖
∞∑

k=1

(
4π

Rµ

)k
‖F‖kµ,S

= M0 + 32 ‖H‖
4π ‖F‖µ,η

Rµ− 4π ‖F‖µ,S
.

By restricting F to B(0, C) ⊂ Gµ{x}, we find for µ large enough that the image
of the map is well-defined in Gµ{x}, with norm bounded by C0 := 2M0. (Note
that C0 does not grow as µ grows.) Finally, we prove the Lipschitz property by
estimating the norm difference between the image of two elements F1 and F2 in
B(0, C), which amounts to bounding

32 ‖H‖
∞∑

k=1

4π

µ

1

Rk
∥∥F ∗k1 − F ∗k2

∥∥
µ,S

By the binomial theorem and using that

‖F1 − F2‖µ,S ≤ 2C, ‖F2‖µ,S ≤ C ≤ 2C

14



we get

∥∥F ∗k1 − F ∗k2

∥∥
µ,S

=
∥∥∥(F2 + (F1 − F2))

∗k − F ∗k2

∥∥∥
µ,S

=

∥∥∥∥∥
k∑

i=1

(
k

i

)
F ∗k−i2 ∗ (F1 − F2)

∗i

∥∥∥∥∥
µ,S

≤
(

4π

µ

)k−1 k∑

i=1

(
k

i

)
(2C)k−1 ‖F1 − F2‖µ,S

≤ 2

(
16πC

µ

)k−1

‖F1 − F2‖µ,S

since k ≥ 1 and µ is large. We conclude that the Lipschitz constant is bounded
by

32 ‖H‖
∞∑

k=1

(
4π

µ

1

Rk
× 2

(
16πC

µ

)k−1
)

=
256π

µR
‖H‖

∞∑

k=1

(
16πC

Rµ

)k−1

.

The involved summation is bounded from above by 2 if µ is sufficiently large,
implying that the Lipschitz constant is bounded by 512π

µR .

Theorem 3.16. For sufficiently large µ, the map V from (13) is well-defined
as a map from a closed ball around 0 in Gµ{x} into itself, that is a contraction
with Lipschitz constant less than 1. There exists a unique F ∈ Gµ{x} satisfying

x

(
1 ∗ ∂F

∂x

)
= ϕ(x)F +

∞∑

k=0

(
B1(εHk) ∗ F ∗k

)
.

Proof. Recall that

V(F ) = T

(
(ϕ(x)− ϕ(0))F +

∞∑

k=0

(
B1(εHk) ∗ F ∗k

)
)
.

Choose C0 as in the above lemma, and let C = 2C0 max{1, ‖T‖}. Then for
‖F‖ ≤ C:

‖V(F )‖ ≤ ‖T‖ · (O(1/µ).C + C0) ≤
(

1

2
+O(1/µ)

)
C ≤ C,

whenever µ is large enough. Here we have used the bounds obtained in the
above lemmas. At the same time, the contraction property follows from the
boundedness of the Lipschitz constant of T together with the fact that the
Lipschitz constants of F 7→ (ϕ(x)−ϕ(0))F and of the map in the above lemma
are both O(µ−1).

The second statement follows directly from the Banach fixed point theorem.
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The solution F ∈ Gµ{x} defines an analytic function F (x, a, η) (of at most
exponential growth as |η| → ∞) on B(0, µ−1)×B(a0, r)×S. We can now easily
extend its domain to B(0, µ−1)×B(a0, r)× (S ∪B(0, R)) by using lemma 3.5.
Note that a priori it is not directly clear that the solution given in Theorem 3.16
should coincide with the Borel transform Ŷ of the formal expansion given in
lemma 3.5. We can argue as follows to see that they do coincide.

By reformulating theorem 3.16 to apply on a sector S̃ of finite radius that
completely fits insideB(0, R), the unicity given by the fixed-point theorem shows
that the restriction of the already known solution F coincides with the solution
on the restricted sector. On the other hand, since the fixed-point equation is
the Borel-transformed version of the formal equation (6), the Borel transform Ŷ
of the expansion from lemma 3.5 should also coincide with the given fixed-point
solution. Hence our claim is verified.

We have thus shown that the Borel transform of the formal solution found
in lemma 3.5 can be continued analytically to an infinite sector in the real
direction, with the continuation being of exponential growth at most of order
1. Combining this with theorem 2.10 proves theorem 3.2.

4 Tracing summability along the critical curve

4.1 Statement of the result

In the previous section, summability properties of slow curves near a hyperbolic
saddle have been derived. At the same time, we can refer to [4] to conclude that
equations of the form

εxp+1 dy

dx
= λ(x)y +O(y2, ε),

with p ≥ 1, enjoy similar results: when λ(0) < 0, then it is easily seen from
the monomial summability (w.r.t. the monomial εxp) proved in [4] that for a
sufficiently small neighbourhood of a compact interval, lying close to 0, on the
strictly positive real axis, the equation has a solution that is 1-summable w.r.t. ε
in directions close to the real axis.

The question that is answered in this section is whether or not the 1-
summability of a slow curve at a given location x = x0 implies the 1-summability
of a slow curve at another location. In other words, is the summability infor-
mation carried along the slow curve? The answer is given by the next theorem.
Like in the previous section, an additional parameter a is added for the sake of
generality but this parameter does not have any influence on the proof or the
result.

Theorem 4.1. Consider the real analytic slow-fast family of vector fields

{
ẋ = εf(x, y, a, ε)
ẏ = g(x, y, a, ε),

(14)
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with a critical curve given by the graph y = ψ0(x) (for a = a0), x ∈ [x0, x1] ⊂ R.
Suppose that the unperturbed vector field is normally hyperbolically attracting at
points of the critical curve, which means

∂g

∂y
(x, ψ0(x), a0, 0) < 0, ∀x ∈ [x0, x1].

Suppose furthermore that f(x, ψ0(x), a0, 0) > 0 for all x ∈ [x0, x1] (in other
words the slow dynamics is regular along the critical curve and directed from
left to right).

Then 1-summability w.r.t. ε of the formal slow curve at x ∈ C near x0

and for ε in a complex sector containing the positive real axis implies the 1-
summability w.r.t. ε of the formal slow curve at x ∈ C near [x0, x1] and for ε
in a (possibly smaller) complex sector containing the positive real axis, all the
time keeping a sufficiently close to a0.

Remark 4.2. Readers who are familiar with the terminology of complex relief
functions (see [10] for example) can see that the normally attracting nature
of the critical curve and the fact that the theorem is stated on a compact
real interval means that the straight path from x0 to x1 is a descending path
according to the complex relief function associated with the slow-fast vector
field. It is hence well-known that points close to x0 and for ε > 0 can be
easily integrated towards x1 without straying from the critical curve. Up to
the knowledge of the author, the literature does not contain a statement that
carries summability information along a descending path.

It is not hard (in fact this is the topic of the next subsection) to translate the
question in Theorem 4.1 to a question regarding analytic differential equations
of the form

ε
dy

dx
= y + εH(x, y, a, ε), (15)

defined for (x, y, a, ε) in a complex neighbourhood of [x0, x1]×{0}×{a0}×{0}.
Using this reduction, theorem 4.1 is a direct consequence of the next theorem.
We will elaborate a bit on this in a minute.

Theorem 4.3. Given the analytic equation (15) defined for (x, y, a, ε) in a
complex neighbourhood of [X1, 0]× {0} × {a0} × {0}, and with X1 < 0.

Then 1-summability w.r.t. ε of the formal solution at x ∈ C near 0 and for
ε in a complex sector containing the positive real axis implies the 1-summability
w.r.t. ε of the formal slow curve at x ∈ C in a neighbourhood, independent
of the parameter a, of [X1, 0] and for ε in a (possibly smaller) complex sector
containing the positive real axis, all the time keeping a sufficiently close to a0.

Remark 4.4. In general, equations of the form (15) will not have a 1-summable
solution (not even in isolated directions).
Consider, for example, an entire function h whose set of zeroes is given by

∞⋃

k=1

k−1⋃

j=0

{
kei

2j
k π
}
.
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Such a function exists by the Weierstrass theorem, see [11].
We claim that the equation

ε
dy

dx
= y +

ε

h(x)

has no 1-summable solution in any direction. Indeed, assuming that such a
solution does exist, would imply that the Borel transformed equation

1 ∗ ∂Y
∂x

= Y +
1

h(x)

has a solution, Y (x, η), which is defined for η in some infinite sector. One can
see easily that the unique solution of the above equation is given by − 1

h(x+η) .

This function is clearly, by construction of h, not defined on any infinite sector.

4.2 Theorem 4.3 implies Theorem 4.1

Under the conditions of Theorem 4.1, we can make a time rescaling to reduce
(14) to

{
ẋ = ε

ẏ = G(x, y, a, ε), with G(x, y, a, ε) := g(x,y,a,ε)
f(x,y,a,ε) .

From the conditions imposed on ∂g
∂y easily follows λ0(x) := ∂G

∂y (x, ψ0(x), a0, 0) <

0 for all x ∈ [x0, x1]. Let us now extend the critical curve defined for a = a0 to
critical curves for nearby values of a, using the implicit function theorem: there
exists a unique analytic ψ(x, a) such that G(x, ψ(x, a), a, 0) = 0 and ψ(x, a0) =
ψ0(x). After writing y = ỹ + ψ(x, a), we find

{
ẋ = ε
˙̃y = λ(x, a)ỹ +O(ỹ2) +O(ε),

where λ(x, a) = ∂G
∂y (x, ψ(x, a), a, 0). Note that λ(x, a) = λ0(x) + O(|a − a0|),

meaning that we may assume that λ(x, a) has a strictly negative real part. Now
define

u(x, a) =

∫ x

x0

λ(s, a)ds,

where we limit this function to a sufficiently small (and simply connected) neigh-
bourhood of [x0, x1] and a near a0. Writing x̃ = u(x, a), we obtain after yet
another time rescaling and reversal

{
˙̃x = ε
˙̃y = ỹ +O(ỹ2) +O(ε),

Denote

X1 := u(x1, a0) =

∫ x1

x0

λ(s, a0)ds < 0.
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One can see that the mapping (x, a) 7→ (u(x, a), a) is analytic with an analytic
inverse on an environment of [x0, x1]×{a0} mapping this last set onto [X1, 0]×
{a0}. Since the result in theorem 4.3 is obtained on an environment of [X1, 0]×
{a0}, going back to the original variables will yield a result on an environment
of [x0, x1]× {a0}, which is indeed the goal in theorem 4.1.

Dropping the tildes, invariant manifolds of the above system of differential
equations are solution curves of

ε
dy

dx
= y + y2C(x, y, a, ε) + εD(x, y, a, ε),

for some analytic functions C and D. We can now further reduce to a more
elementary form with C = 0 by applying a singular transformation y = εY :

ε
dY

dx
= Y + εY 2C(x, y, a, ε) +D(x, εY, a, ε) = Y +D(x, 0, a, 0) +O(ε).

The equation in Theorem 4.3 is obtained after a final translation in the Y
direction: Y 7→ Y +D(x, 0, a, 0).

4.3 Proof of Theorem 4.3

We may make the following assumptions about equation (15), which we repeat
here for the sake of convenience:

ε
dy

dx
= y + εH(x, y, a, ε). (16)

(H1) H is bounded and analytic on U × B(0, r) × B(a0, r) × B(0, r) for some
r > 0 and some open complex neighbourhood U of [X1, 0].

(H2) Equation (16) has an (a, ε)-family of bounded analytic solutions G(x, a, ε)
defined for (x, a, ε) in B(0, s) × B(a0, s) × S(0, π + σ, s) for some s > 0
and some σ > 0. Recalling Definition 2.7, the assumption made here is a
consequence of the assumption formulated in Theorem 4.3 regarding the
1-summability w.r.t. ε of a solution of the ode near 0.

The proof of Theorem 4.3 essentially contains two steps. In a first step,
we analytically continue the initial solution G(x, a, ε) defined near 0 towards
X1 (actually a bit further) by using the ode. This will provide a solution near
[X1, 0] and for ε in some sector of opening angle a bit larger than π. In the
second and final step, we construct an other solution of the ode near [X1, 0]
but on a complementary complex sector for ε and describe the relation with
the analytically continued solution from step 1. We finally apply the well-
known Ramis-Sibuya theorem to conclude the 1-summability of the analytically
continued solution. This method has been used before in the literature, for
example in [3].

Note that lemma 3.5 also applies to this equation thus G(x, a, ε) = O(ε) and
we may assume, by choosing s sufficiently small

(H3) |G(x, a, ε)| < r
2 , for all (x, a, ε) ∈ B(0, s)×B(a0, s)× S(0, π + σ, s).

19



α

0−Λ

B(0, s)

X1

S (0, 2α,Λ)− Λ

{
Λ
(
eiτ − 1

)
| τ ∈ [−α, α]

}

Figure 1: S (0, 2α,Λ)− Λ

4.3.1 Analytic continuation of the initial solution

We continue with the notations introduced in hypotheses (H1) and (H2) above
and specify the set on which we want to find a solution to (16).
Choose some −Λ < X1 (thus −Λ ∈ R) such that [−Λ, 0] ⊂ U . There then exists
a small enough half-opening angle α < π

2 such that

S (0, 2α,Λ)− Λ ⊂ U.

(see figure 1.) We furthermore assume that

{
Λ
(
eiτ − 1

)
| τ ∈ [−α, α]

}
⊂ B(0, s).

(In other words, the terminating arc of the sector S (0, 2α,Λ) − Λ with vertex
−Λ lies inside B(0, s), again see figure 1.) Our aim is to analytically continue
the initial solution provided in (H2) on B(0, s) to the domain S (0, 2α,Λ)−Λ.

Proposition 4.5. Let a, z ∈ C. If |a| < |z| then

|Arg(z + a)−Arg(z)| ≤ sin−1 |a|
|z| .

Lemma 4.6. Let (H1), (H2) and (H3) be satisfied. Let 0 < σ′ < max{σ, α} be
fixed. The initial solution y = G(x, a, ε) of (16) can be analytically continued to
a solution defined on

S (0, 2α,Λ)− Λ×B(a0, s)× S (0, π + σ′, s′) ,

for sufficiently small s′ > 0. Moreover this continued solution is bounded by
r/2.

Proof. Define
M = sup

x,y,a,ε
|H (x, y, a, ε)| ,
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where the supremum is taken for x ∈ S(0, 2α,Λ)− Λ, |y| < r, |a− a0| < r,
ε ∈ S(0, π + σ, s). We will define conditions on s′ so that for any given ε ∈
S(0, π + σ′, s′), any given a ∈ B(a0, s) and any given z ∈ S (0, 2α,Λ)− Λ it is
possible to integrate (16) along a well-chosen path towards z. Independence of
path and analytic dependence on parameters and initial conditions ensures that
this method yields an analytic solution on the required domain.

In the remainder of the proof we hence fix z, a and ε. The integration path
is the linear path from z0 to z, where z0 := Λ(eiβ − 1) (β still to be specified,
|β| ≤ α, which is located on the terminating arc of the sector S(0, 2α,Λ)− Λ)
and which lies inside the definition domain of the initial solution defined in (H2).
The ode, restricted to the path from z0 to z, parameterized by p(t) = (1−t)z0+tz
is given by:

dγ

dt
=
z − z0

ε
(γ + εH(p(t), γ, a, ε)) (17a)

γ (0) = G(z0, a, ε). (17b)

It suffices to show that this equation has a maximal solution defined on an
interval ]t2, t1[ with t1 > 1. Suppose by contradiction that t1 ≤ 1. Clearly
the right hand side of (17a) is defined (for all parameters (a, ε)), for (x, γ) on
the compact set [0, 1] × B(0, r/2). If we prove that |γ(t)| ≤ r/2 we thus get
a contradiction. We prove it by showing that if there exists an t∗ ∈]0, 1[ with
|γ(t∗)| = r/2 we must have

d

dt

(
t 7→ |γ(t)|2

)
(t∗) < 0

which implies what we are aiming for. After some calculations one finds that
this derivative is given by

2 Re

(
z − z0

ε
γ(t∗) (γ(t∗) + εH(p(t∗), γ(t∗), a, ε))

)
.

Consequently it is sufficient to show that

∣∣∣∣arg

(
z − z0

ε
γ(t∗) (γ(t∗) + εH(σ(t∗), γ(t∗), a, ε))

)
− π

∣∣∣∣ <
π

2
.

Now define ρ = 1
2 (α− σ′) > 0 and choose s′ < s such that s′ < (r/2M) sin ρ

which implies that the next inequality is satisfied (remember that ε ∈ S(0, π +
σ′, s′)):

|εH(p(t∗), γ(t∗), a, ε)| ≤ s′M ≤
r

2
sin ρ.

By proposition 4.5 we then have, since

arg
(
γ (t∗)

)
= − arg (γ (t∗)) and |γ (t∗)| =

r

2
,
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that
∣∣∣∣arg

(
z − z0

ε
γ(t∗) (γ(t∗) + εH(p(t∗), γ(t∗), a, ε))

)
− π

∣∣∣∣

<

∣∣∣∣arg
z − z0

ε
− π

∣∣∣∣+ ρ =

∣∣∣∣arg
z0 − z
ε

∣∣∣∣+ ρ.

Given that z lies in a sector with opening angle α and that z0 can be chosen
freely on the ending arc, it is easy to see that the argument of z0 − z can be
freely chosen between −α and α.
When the argument of ε is nonnegative we choose

α

2
< arg(z0 − z) <

1

2
(π + σ′ − α),

while for arg(ε) < 0 we take

−1

2
(π + σ′ − α) < arg(z0 − z) < −

α

2
.

One can see that such a choice can be made by the assumptions α < π
2 , 0 < σ′

and that they guarantee that
∣∣arg z0−z

ε

∣∣ < 1
2 (π+ σ′ −α). It follows that we get

∣∣∣∣arg

(
z − z0

ε
γ(t∗) (γ(t∗) + εH(p(t∗), γ(t∗), a, ε))

)
− π

∣∣∣∣

<
1

2
(π + σ′ − α) + ρ =

π

2

given the definition of ρ in this proof.

4.3.2 Gevrey asymptotics of the extension

We are now quite close to showing Theorem 4.3. It remains to show that the
analytic continuation provided in Lemma 4.6 is 1-summable w.r.t. ε uniformly
for x near [X1, 0].

Let y = G(x, a, ε) be the continuation provided by Lemma 4.6. We will
define a second solution y = G′(x, a, ε) defined for x near [−Λ, 0], but for ε on a
different sector. We will then consider the difference G−G′ for ε in overlapping
sectors and show that it is exponentially small w.r.t. |ε| as ε→ 0. Following the
Ramis-Sibuya characterization of Gevrey-1 functions ([12]) we then conclude
that both G and G′ are Gevrey-1 asymptotic to the same formal power series
Ĝ(x, a, ε), uniformly for (x, a) given near (−Λ, a0). Furthermore, since the ε-
sector of G has opening angle larger than π, G will be 1-summable w.r.t. ε in
the bisecting direction.

Lemma 4.7. Assume (H1), (H2) and (H3) are satisfied. Let 0 < τ < π
2 be

fixed. The solution of

ε
dy

dx
= y + εH(x, y, a, ε)

y(−Λ, a, ε) = 0

22



is defined and analytic on V × B(a0, s) × S (π, π − τ, s′′) for some s′′ > 0 and
V a neighbourhood of [−Λ, 0]. We may assume that the solution is bounded by
r/2.

Proof. The proof is completely analogous to the proof of Lemma 4.6. Note that
when comparing the situation described in Lemma 4.6 with the one here, it is
relevant to see that the real part of ε is negative here, and hence exponential
attraction is experienced while continuing the solution at x = −Λ to values of
x in [−Λ, 0] which in essence lie to the right of −Λ in the complex plane.

The following lemma finishes the proof of theorem 4.3.

Lemma 4.8. Using the notations and assumptions from lemma 4.6, lemma 4.7,
together with the extra assumption σ′

2 < τ < σ′, we have the following.

Denote ν = min {s′, s′′}. The solution from lemma 4.6, limited to

Ṽ ×B(a0, s)× S (0, π + σ′, ν) ,

with Ṽ a neighbourhood of [X1, 0], is Gevrey-1 asymptotic, in ε, to a formal
series, uniformly for (x, a) and thus it is 1-summable.

Remark 4.9. It is possible to prove the above result on (almost) the entire
domain of the x variable which was found in lemma 4.6, this is however not
necessary for our goal and would make the proof more convoluted.

Proof of lemma 4.8. Denote G(x, a, ε) the solution found in lemma 4.6 and
G′(x, a, ε) the solution from the above lemma. If we put

∆(x, a, ε) = G(x, a, ε)−G′(x, a, ε),

it satisfies the following equation

ε
d∆

dx
= ∆ + ε (H(x,G(x, a, ε), a, ε)−H(x,G′(x, a, ε), a, ε))

∆(−Λ, a, ε) = G (−Λ, a, ε) .

Since

H(x,G(x, a, ε), a, ε)−H(x,G′(x, a, ε), a, ε)

=

∫ 1

0

∂H

∂y
(x, (1− s)G′(x, a, ε) + sG(x, a, ε), a, ε) ds

︸ ︷︷ ︸
R(x,a,ε)

∆(x, a, ε)

it must hold that

∆(x, a, ε) = G(−Λ, a, ε)e
∫ x
−Λ
R(w,a,ε)dwe

x+Λ
ε .

Denote
M̃ = sup

x,y,a,ε
|H(x, y, a, ε)| ,
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where the supremum is taken for x ∈ S(0, 2α,Λ)− Λ, |y| < r, |a− a0| < r,
ε ∈ S (0, π + σ′, ν)

By Cauchy’s inequalities it holds that (remember that both G and G′ are
bounded by r/2)

|R(x, a, ε)| ≤ 3

r
M̃

for all (x, a, ε) in its domain. It follows that

|∆(x, a, ε)| ≤ |G(−Λ, a, ε)| e|
∫ x
−Λ
R(w,a,ε)dw|eRe( x+Λ

ε )

≤ r

2
e

3M̃|x+Λ|
r e| x+Λ

ε | cos(arg( x+Λ
ε ))

≤ r

2
e

3M̃Λ
r e| x+Λ

ε | cos(arg( x+Λ
ε )).

To make further estimates we will restrict ourselves to the following domain for
the x variable. Define

Ṽ :=
(
V ∩ S (0, σ′ − τ,Λ)− Λ

)
\B
(
−Λ,

X1 + Λ

2

)
.

Notice that for x ∈ Ṽ we have |x+ Λ| ≥ X1+Λ
2 . It is furthermore cumbersome

but easy to check that for x ∈ Ṽ and ε ∈ S(0, π + σ′, ν) ∩ S(π, π − τ, ν),

arg

(
x+ Λ

ε

)
∈
]
π

2
− σ′

2
+ τ,

3π

2
+
σ′

2
− τ
[
.

Consequently we have

|∆(x, a, ε)| ≤ r

2
e

3M̃Λ
r e
−X1+Λ

2|ε| cos
(
π
2 +σ′

2 −τ
)

for all (x, a, ε) ∈ Ṽ ×B(a0, s)× S(0, π + σ′, ν) ∩ S(π, π − τ, ν).
The Ramis-Sibuya theorem guarantees the existence of a formal Gevrey-1

series

Ĝ(x, a, ε) =

∞∑

n=0

gn(x, a)εn,

where the gn are analytic on Ṽ ×B(a0, s), such that G ∼1 Ĝ w.r.t ε ∈ S(0, π+

σ′, ν) uniformly for (x, a) ∈ Ṽ ×B(a0, s). Thus G is 1-summable.

5 Canard-heteroclinic saddle connections

In this section we will limit ourselves to slow-fast systems with a turning point
which can be transformed, locally around the turning point, into a system of
the form 




ẋ = ε
ẏ = pxp−1y + εH(x, y, a, ε)
ε̇ = 0.

(18)
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Where H is analytic and satisfies H(0, 0, a0, 0) = 0, ∂H
∂a (0, 0, a0, 0) 6= 0, notice

that p has to be an even number for x = 0 to be a turning point.
It is shown in [13] that every system of the form





ẋ = ε
ẏ = ϕ(x)y + εH(x, y, a, ε)
ε̇ = 0,

with ϕ(x) a real analytic function with a zero of order p − 1 at x = 0 and
H(0, 0, a0, 0) = 0, ∂H

∂a (0, 0, a0, 0) 6= 0, can be transformed into this form. The
authors also give some conditions on more general systems, such that the nec-
essary transformation exists.

Setting u = ε1/p, using the branch of the p-th root for which 11/p = 1, we
prove the following theorem

Theorem 5.1. Suppose H(x, y, a, ε) is a bounded analytic function on

B(0, r)×B(0, r)×B(a0, r)×B (0, r)

with H(0, 0, a0, 0) = 0, ∂H
∂a (0, 0, a0, 0) 6= 0. Moreover let there exist invariant

manifolds of system (18), G1(x, a, ε) and G2(x, a, ε), 1-summable in the real
direction and defined on

B(∓λ, s)×B(a0, r)× S (0, π + σ, r)

for certain λ, s > 0.
Then there exists a function a(u), p-summable in the real direction, such

that the system





ẋ = up

ẏ = pxp−1y + upH(x, y, a(u), up)
u̇ = 0,

(19)

has an invariant manifold of the form y = G(x, u), defined for x ∈ [−λ, λ] and
which is p-summable in the direction 0 in u, uniformly for x in compact sets of
[−λ, λ] which do not include the turning point x = 0.

Remark 5.2. Notice that by the results from the previous sections the existence
of such invariant manifolds is guaranteed if there are slow-fast saddles present
on both the attracting an repelling part of the critical curve.

5.1 Extension of invariant manifolds to 0

The general idea of the proof is to again extend the invariant manifolds until
they reach x = 0 and then search for conditions on the parameter a guaranteeing
that the two extensions are matched. The continuation of these manifolds will
be done under two transformations which resemble, using the terminology of
blow-up maps, the phase-directional rescaling and family rescaling chart.
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5.1.1 Phase-directional rescaling chart

The first chart we concentrate ourselves upon is a phase-directional rescaling
chart, given by

x = v

y = vy

u = vu

which is clearly an analytic map with an analytic inverse between a domain and
its image, provided that the domain does not contain any points where v = 0.
Applying this transformation to the system (19) gives





v̇ = vpup

ẏ = vp−1 (p− up) y + vp−1upH (v, vy, a, (vu)
p
)

u̇ = −vp−1up+1.

Dividing by the common factor vp−1 we arrive at




v̇ = vup

ẏ = (p− up) y + upH (v, vy, a, (vu)
p
)

u̇ = −up+1.
(20)

Since invariant manifolds of the second system will also be invariant manifolds
of the first system, we may focus on the second one.

In the following lemma we use the notations, by which we described the
domain where equation (19) holds.

Proposition 5.3. Let p be even, k ∈ {0, . . . , p − 1}, ρ, θ1, θ2,∆ > 0 satisfying
ρ+ θ1 + θ2 + ∆ < π

2 , v0 ∈ B(0, r)\{0}, 0 < R < r and K ∈ C with |K| < R.
There exists a U > 0 such that for

u1 ∈ S
(

2πk

p
,
π

p
− 2

p
(ρ+ θ1 + θ2 + ∆) ,

p
√
U

)

v1 ∈ ((vp0 + S (π + arg (vp0) , 2θ1)) ∩ S (arg (vp0) , 2θ2))
1
p = Ω (v0, θ1, θ2) ,

where the branch of the p-th root is chosen such that (vp0)
1
p = v0 and the branch

line lies opposite to the point vp0 , we have the following. (See figure 2 for an
example of an Ω (v0, θ1, θ2).)

The solution of the initial value problem given by equation (20) supplemented
with

v(0) = v0 ; y(0) =
K

v0
; u(0) =

v1u1

v0

is defined on
[
0,

vp1−v
p
0

p(u1v1)p

]
with the endpoint given by

(
v1, y

(
vp1 − vp0
p(u1v1)p

)
, u1

)
.

Moreover
∣∣∣y
(
a,

vp1−v
p
0

p(u1v1)p

)∣∣∣ ≤ R
|v0| .
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Figure 2: Ω(−1, 0.1, 0.3)

Proof. This can be found in [14], by making some minor modifications to propo-
sition 6.20.

Consider the invariant manifolds y = G1 (x, a, up) and y = G2 (x, a, up) of
system (19). By restricting them to

B(∓λ)×B(a0, r)× S
(

0,
π + σ

p
, s

)

for s > 0 sufficiently small, we may assume that |G1,2(x, a, up)| < R (we use
the notations from proposition 5.3). Choose furthermore an α > 0 such that
2pα < π and

{
∓λeiβ |β ∈ [−α, α]

}
⊂ B(∓λ)

Corollary 5.4. We reuse the notations from proposition 5.3. The extra demand
0 < pα− ρ− θ1 −∆ < σ

2 is also needed.
Under these conditions, there exists a U > 0 such that the system

v̇ = vup

ẏ = (p− up) y + upH (v, vy, a, (vu)
p
)

u̇ = −up+1.

has two analytic invariant manifolds. The first, (v,Υ1(v, a, u), u), is defined for
(v, a, u) in

⋃

β∈[−α,α]

Ω
(
−λeiβ , θ1, θ2

)
×B(a0, r3)× S

(
π,
π

p
− 2

p
(ρ+ θ1 + θ2 + ∆) ,

p
√
U

)

The second, (v,Υ2(v,A, u), u), is defined for (v, a, u) in

⋃

β∈[−α,α]

Ω
(
λeiβ , θ1, θ2

)
×B(a0, r3)× S

(
0,
π

p
− 2

p
(ρ+ θ1 + θ2 + ∆) ,

p
√
U

)

Moreover, both |Υ1(v, a, u)| and |Υ2(v, a, u)| are bounded by R
λ
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Proof. Since the proof is analogous for both invariant manifolds, we prove the
existence of the manifold Υ1.

Let (v1, u1) be elements from the domain specified in the lemma. Consider
the following initial value problem





v̇ = vup

ẏ = (p− up) y + upH (v, vy, a, (vu)
p
)

u̇ = −up+1.

(21a)

v(0) = −λ ; y(0) = −G1 (−λ, a, (v1u1)p)

λ
; u(0) = −v1u1

λ
. (21b)

We have that

v(t) = v1u1

(
pt+

(
λ

v1u1

)p) 1
p

y(t) =
G1 (v(t), a, (v1u1)p)

v(t)

u(t) =

(
pt+

(
λ

v1u1

)p)− 1
p

is a solution to the above problem and it is defined for t in a neighbourhood of

{
λp

p(v1u1)p
(
epiβ − 1

)
|β ∈ [−α, α]

}
.

Using proposition 5.3 we also know that the system consisting of (21a) with
initial values

v(0) = −λeiβ̃ ; y(0) = −
G1

(
−λeiβ̃ , a, (v1u1)p

)

λeiβ̃
; u(0) = −v1u1

λeiβ̃
,

with β̃ chosen such that v1 ∈ Ω
(
−λeiβ̃ , θ1, θ2

)
, has a solution defined for t in a

neighbourhood of

[
0,

vp1−
(
λeiβ̃

)p
p(v1u1)p

]
.

Consequently the solution to the problem (21a) with initial values (21b) is

defined for t in a neighbourhood of some path between 0 and
vp1−λ

p

p(v1u1)p . By

analytic dependence upon initial values we have that the general solution to
(21a); (21b),

v(v1u1; t) , y(v1u1; t) , u(v1u1; t),

consists of analytic functions in the variables v1u1 and t. It follows that the
map

(v1, u1) 7→
(
v1, y

(
v1u1;

vp1 − λp
p(v1u1)p

)
, u1

)

is also analytic. The inequality follows readily from proposition 5.3.
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Lemma 5.5. Take λ̃ > 0 sufficiently small such that S
(
π, 2

(
α+ θ2

p

)
, λ̃
)

is

contained in
⋃
β∈[−α,α] Ω

(
−λeiβ , θ1, θ2

)
. The function Υ1(v, a, u) from corollary

5.4 is Gevrey- 1
p asymptotic to a formal series for v ∈ S

(
π, 2

(
α+ θ2

p

)
, λ̃
)

,

uniformly for (a, u). An analogous statement holds for Υ2(v, a, u).

Proof. The proof can be given in a nearly identical manner as the proofs of
proposition 6.24 and theorem 6.25 in [14].

Proposition 5.6. Let

f̂1,2(v, a, u) =

∞∑

n=0

f1,2
n (a, u)vn

be the formal series associated to Υ1 resp. Υ2 as in lemma 5.5. The coefficient
of v0 is given by

−H(0, 0, a, 0)

p

∫ ∞

1

z
1
p−1e

1−z
up dz

for both formal series

Proof. Since the proof is exactly the same for Υ1 and Υ2 we only treat Υ1.
Since (v,Υ1, u) is an invariant manifold of system (20) it must hold that

vup
∂Υ1

∂v
(v, a, u)− up+1 ∂Υ1

∂u
(v, a, u)

= (p− up)Υ1(v, a, u) + upH (v, vΥ1(v, a, u), a, (vu)
p
) .

Since Υ1(v, a, u) ∼ 1
p
f̂1(v, a, u) w.r.t. v it follows that

Υ1(v, a, u)
v→0−−−→ f1

0 (a, u)

∂Υ1

∂v
(v, a, u)

v→0−−−→ f1
1 (a, u)

∂Υ1

∂u
(v, a, u)

v→0−−−→ ∂f1
0

∂u
(a, u).

Consequently we must have

−up+1 ∂f
1
0

∂u
(a, u) = (p− up)f1

0 (a, u) + upH (0, 0, a, 0) ,

moreover by proposition 5.3 it must hold that limu→0 f
1
0 (a, u) = 0. This implies

that the following identity holds

f1
0 (a, u) = −H(0, 0, a, 0)

∫ u

0

t−1e
∫ u
t
sp−p
sp+1 dsdt

= uH(0, 0, a, 0)

∫ 0

u

t−2eu
−p−t−pdt.
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Using the path γ(z) = uz−
1
p with z ∈ [1,∞[ we get

f1
0 (a, u) = −H(0, 0, a, 0)

p

∫ ∞

1

z
1
p−1e

1−z
up dz.

5.1.2 Family rescaling chart

To let our two manifolds actually meet each other we will have to switch to
another chart, which resembles the family rescaling chart, this is given by

x = wX

y = wY

u = w

which is an analytic map with analytic inverse on domains which do not contain
w = 0. Applying this transformation to our system (19), which we repeat for
the sake of convenience,





ẋ = up

ẏ = pxp−1y + upH(x, y, a, up)
u̇ = 0

brings us, after dividing by a common factor wp, to the system




Ẋ = 1

Ẏ = pXp−1Y +H(wX,wY, a, wp)
ẇ = 0.

(22)

By corollary 5.4 and lemma 5.5, there exist two invariant manifolds of this
system (

X,XΥ1

(
wX, a,X−1

)
, w
)

defined and analytic on
{

(X,w)

∣∣∣∣ X ∈ S
(
π,
π

p
− 2

p
(ρ+ θ1 + θ2 + ∆)

)∖
B

(
0,

1
p
√
U

)
,

wX ∈ S
(
π, 2

(
α+

θ2

p

)
, λ̃

)}
×B(a0, r3)

and (
X,XΥ2

(
wX, a,X−1

)
, w
)

defined and analytic on
{

(X,w)

∣∣∣∣ X ∈ S
(

0,
π

p
− 2

p
(ρ+ θ1 + θ2 + ∆)

)∖
B

(
0,

1
p
√
U

)
,

wX ∈ S
(

0, 2

(
α+

θ2

p

)
, λ̃

)}
×B(a0, r3).
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Moreover if we take some X0 ∈ S
(

0, πp − 2
p (ρ+ θ1 + θ2 + ∆)

)
\ B

(
0, 1

p√
U

)
,

both −X0Υ1

(
−wX0, a,−X−1

0

)
and X0Υ2

(
wX0, a,X

−1
0

)
are Gevrey- 1

p asymp-

totic to a formal series for w ∈ S
(
− arg(X0), 2

(
α+ θ2

p

)
, λ̃
|X0|

)
.

Proposition 5.7. For every

X0 ∈ S
(

0,
π

p
− 2

p
(ρ+ θ1 + θ2 + ∆)

)∖
B

(
0,

1
p
√
U

)

there exist δ1, δ2 > 0 such that the solution to

dY

dX
= pXp−1Y +H(wX,wY, a, wp)

Y (X0, a, w) = X0Υ2

(
wX0, a,X

−1
0

)

is defined and analytic on

[X0, 0]×B(a0, δ1)× S
(
− arg(X0), 2

(
α+

θ2

p

)
, δ2

)
.

Furthermore, for the same X0, the solution to

dY

dX
= pXp−1Y +H(wX,wY, a, wp)

Y (−X0, a, w) = −X0Υ1

(
−wX0, a,−X−1

0

)

is also defined and analytic on

[−X0, 0]×B(a0, δ1)× S
(
− arg(X0), 2

(
α+

θ2

p

)
, δ2

)
.

Proof. This can be proved by a rather standard fixed point argument.

Remark 5.8. It can be shown that if we associate certain δ1, δ2 to a X0 as in
the proposition, those same δ1, δ2 will also allow us to prove the result for any
other

X̃0 ∈ S
(

0,
π

p
− 2

p
(ρ+ θ1 + θ2 + ∆)

)∖
B

(
0,

1
p
√
U

)

provided that
∣∣∣X̃0

∣∣∣ = |X0|.
Below, we show that the saturations of the invariant manifolds from propo-

sition 5.7 above, can be connected to each other at 0, for a good choice of
the parameter a. For this we require a Gevrey version of the implicit function
theorem.

Theorem 5.9 (Gevrey implicit function theorem). ([15, 14]) Let s > 0 and

f̂(a, ε) =

∞∑

n=0

fn(a)εn
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be a Gevrey-s series in ε, uniformly for a ∈ A, with A ⊂ C open.
Suppose there are θ ∈ [0, 2π[, λ, r > 0 and f ∈ O (A× S(θ, λ, r)) such that

f ∼s f̂ . If moreover there exists an a0 ∈ A with f0(a0) = 0 and f ′0(a0) 6= 0, we
can find an r′ > 0 and an analytic function

ã : S(θ, λ, r′)→ A

such that ã(0) = a0 and
f(ã(ε), ε) = 0

for all ε ∈ S(θ, λ, r′).
The function ã is also Gevrey-s asymptotic to a formal series

â(ε) =

∞∑

n=0

anε
n.

Consider now some X̃ > 1
p√
U

.

Lemma 5.10. Let β ∈] − π
2p + 1

p (ρ + θ1 + θ2 + ∆), π2p − 1
p (ρ + θ1 + θ2 + ∆)[,

there exists a analytic function aβ(w) defined for w ∈ S
(
−β, 2

(
α+ θ2

p

)
, ωβ

)
,

for some ωβ > 0, with aβ(w) = a0 such that Y β1 (0, aβ(w), w) = Y β2 (0, aβ(w), w).

Here Y β1 and Y β2 are the solutions associated to X̃eiβ as in proposition 5.7.
Moreover aβ(w) is a Gevrey- 1

p function.

Proof. We have

Y β1 (0, a, w) =− X̃eiβe−(X̃eiβ)
p

Υ1

(
−wX̃eiβ , a,−

(
X̃eiβ

)−1
)

+

∫ 0

−X̃eiβ
H
(
wz,wY β1 (z, a, w), a, wp

)
e−z

p

dz

and

Y β2 (0, a, w) =X̃eiβe−(X̃eiβ)
p

Υ2

(
wX̃eiβ , a,

(
X̃eiβ

)−1
)

+

∫ 0

X̃eiβ
H
(
wz,wY β2 (z, a, w), a, wp

)
e−z

p

dz.

Consider the time-(−X̃eiβ) and time-(X̃eiβ) mappings associated to the analytic
differential equation

dY

dX
= pXp−1Y +H(wX,wY, a, wp).

The above expressions are the images of −X̃eiβΥ1(−wX̃eiβ , a,−(X̃eiβ)−1) resp.
X̃eiβΥ2(wX̃eiβ , a, (X̃eiβ)−1) under these mappings. Theorem 2.6 thus shows
that these expressions are Gevrey- 1

p , uniformly in a, for w ∈ S(−β, 2(α+ θ2
p ), δ2).
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By proposition 5.6 we have

lim
w→0

Y β2 (0, a, w)− Y β1 (0, a, w)

= H(0, 0, a, 0)

(
−2X̃eiβe−(X̃eiβ)

p

p

∫ ∞

1

z
1
p−1e(1−z)(X̃eiβ)

p

dz

+

∫ −X̃eiβ

X̃eiβ
e−z

p

dz

)

= H(0, 0, a, 0)

(
−2X̃eiβ

p

∫ ∞

1

z
1
p−1e−z(X̃e

iβ)
p

dz +

∫ −X̃eiβ

X̃eiβ
e−z

p

dz

)

from which it follows that the coefficient of w0 of the formal series associated
to the Gevrey- 1

p function Y β2 (0, a, w) − Y β1 (0, a, w) is given by the expression
above. Using the Gevrey implicit function theorem 5.9, we prove the result if
we can show that

H(0, 0, a0, 0)

(
−2X̃eiβ

p

∫ ∞

1

z
1
p−1e−z(X̃e

iβ)
p

dz +

∫ −X̃eiβ

X̃eiβ
e−z

p

dz

)
= 0

and

∂H

∂a
(0, 0, a0, 0)

(
−2X̃eiβ

p

∫ ∞

1

z
1
p−1e−z(X̃e

iβ)
p

dz +

∫ −X̃eiβ

X̃eiβ
e−z

p

dz

)
6= 0.

Using our assumption in theorem 5.1 that H(0, 0, a0, 0) = 0 and ∂H
∂a (0, 0, a0, 0) 6=

0, it clearly suffices to check that

−2X̃eiβ

p

∫ ∞

1

z
1
p−1e−z(X̃e

iβ)
p

dz +

∫ −X̃eiβ

X̃eiβ
e−z

p

dz 6= 0.

One can calculate that

−2X̃eiβ

p

∫ ∞

1

z
1
p−1e−z(X̃e

iβ)
p

dz +

∫ −X̃eiβ

X̃eiβ
e−z

p

dz

= −2X̃eiβ

p

∫ ∞

0

z
1
p−1e−z(X̃e

iβ)
p

dz

= −2

p

∫ ∞(pβ)

0

z
1
p−1e−zdz

= −2

p

∫ ∞

0

z
1
p−1e−zdz

= −2

p
Γ

(
1

p

)
6= 0.
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We claim that the functions aβ are all analytic continuations of each other.
Indeed, suppose that β1 and β2 are such that

S

(
−β1, 2

(
α+

θ2

p

)
, ωβ1

)
∩ S

(
−β2, 2

(
α+

θ2

p

)
, ωβ2

)
6= ∅,

this intersection is then again a sector. By reducing the opening of this sector
slightly one can see that Υ1(−wX, a,−X−1) and Υ2(wX, a,X−1) are defined

for w in this sector and X in some neighbourhood of
{
X̃eiα |α ∈ [β1, β2]

}
. One

then sees, using the uniqueness of solutions for analytic initial value problems,
that both

Y β1

1 (0, aβ1
(w), w) = Y β1

2 (0, aβ1
(w), w)

and

Y β1

1 (0, aβ2(w), w) = Y β2

1 (0, aβ2(w), w)

= Y β2

2 (0, aβ2(w), w) = Y β1

2 (0, aβ2(w), w)

hold.
Using the uniqueness part in the Gevrey implicit function theorem we get

that aβ1
and aβ2

are analytic continuations of each other.
Combining our results gives the proof of theorem 5.1.
By collecting the results of theorems 3.1,4.1 and 5.1 we arrive at the following

conclusion.

Theorem 5.11. Consider a real analytic slow-fast family of vector fields

{
ẋ = εf(x, y, a, ε)
ẏ = g(x, y, a, ε),

with points xa, xt, xr ∈ R such that xt, a turning point, lies in between the two
other points, we may assume without loss of generality that xa < xt < xr. We
furthermore make the following assumptions.

• There exists a critical curve given by the graph y = ϕ0(x) (for a = a0),
x ∈ [xa, xr] which is hyperbolically attracting to the left of xt and repelling
to the right of this point i.e.

∂g

∂y
(x, ϕ0(x), a0, 0) < 0, x ∈ [xa, xt[,

∂g

∂y
(x, ϕ0(x), a0, 0) > 0, x ∈]xt, xr],

∂g

∂y
(xt, ϕ0(xt), a0, 0) = 0.

• The points xa and xr are slow-fast saddle points with the slow dynamics
directed from the attracting to the repelling part of the critical curve, which
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is characterized by

f(x∗, ϕ0(x∗), a0, 0) = 0;x∗ = xa, xr,(
∂g

∂x
· ∂f
∂y
− ∂g

∂y
· ∂f
∂x

)
(x∗, ϕ0(x∗), a0, 0) > 0;x∗ = xa, xr,

f(x, ϕ0(x), a0, 0) > 0;x ∈]xa, xr[.

• Locally around the turning point there exists an analytic transformation
which transforms the system into the form (18).

Under these assumptions there exists a function a(u), p-summable in the real
direction such that the system

{
ẋ = upf(x, y, a(u), up)
ẏ = g(x, y, a(u), up),

has an invariant manifold y = G(x, u) defined for [xa, xr] which is p-summable
in the real direction in u, uniformly for x in compact sets of [xa, xr] which do
not include the turning point xt.

Let us conclude by remarking that an alternative method of proving this
theorem could have used the technique of combined asymptotic developments,
developed in [13].
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