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Abstract

We present several characterizations of circle graphs, which follow from Bouchet’s
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1 Introduction

Let F be a 4-regular graph and let C be an Euler system of F , i.e., a set that includes
precisely one Euler circuit of each connected component of F . Then the interlacement
graph I(C) of C is the simple graph with vertex-set equal to the set V (F ) of vertices of
F , in which vi and vj are adjacent if and only if they are interlaced with respect to C, i.e.,
they appear in the order vi . . . vj . . . vi . . . vj or vj . . . vi . . . vj . . . vi on one of the circuits of
C. A simple graph that arises from this construction is called a circle graph.

The idea of interlacement is almost 100 years old, as it was used by Brahana in defining
his separation matrix [14]. Interlacement graphs were first discussed by Zelinka [44], who
credited the idea to Kotzig. But circle graphs did not become well known until the 1970s,
when Cohn and Lempel [20] and Even and Itai [22] used them to analyze permutations,
and Bouchet [1] and Read and Rosenstiehl [35] used them to study Gauss’ problem of
characterizing generic self-intersecting curves in the plane. Circle graphs were studied
intensively during the next few decades. Among the notable results of this intensive study
are polynomial-time recognition algorithms due to Bouchet [3], Gioan, Paul, Tedder and
Corneil [27], Naji [32] and Spinrad [36]. In recent years, interest in 4-regular graphs (and
indirectly on circle graphs) has also focused on their appearance as medials of graphs
imbedded on surfaces [21].

See Figure 1 for an example. On the left is a 4-regular graph, with an indicated Euler
circuit. To trace the Euler circuit just walk along the edges, making sure to preserve
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Figure 1: An Euler circuit and its interlacement graph.

the dash style (dashed or plain) when traversing a vertex; the dash style will sometimes
change in the middle of an edge, though. On the right is the resulting interlacement
graph.

If v ∈ V (F ), then the κ-transform C∗v is the Euler system obtained from C by revers-
ing one of the v-to-v walks within the circuit of C incident at v. As we do not distinguish
between circuits that differ only in starting point or orientation, the same Euler system
will result no matter which of the two v-to-v walks is reversed. The κ-transformations
were introduced by Kotzig [30], who proved the fundamental theorem that any two Eu-
ler systems of F are connected through some finite sequence of κ-transformations. As
noted by Read and Rosenstiehl [35], the interlacement graph I(C ∗ v) is the simple local
complement I(C)vs , the simple graph obtained from I(C) by reversing all adjacencies
among neighbors of v. Simple graphs that can be obtained from each other through local
complementations are said to be locally equivalent, and an induced subgraph of a simple
graph locally equivalent to G is called a vertex-minor of G.

We use the subscript s to distinguish simple local complementation from a closely
related operation G 7→ Gv

ns on looped simple graphs, which we call non-simple local com-
plementation. This operation reverses the adjacencies between every pair of vertices in
the open neighborhood N(v) and complements the loop status of every vertex in N(v).
Looped simple graphs that can be obtained from each other through non-simple local com-
plementations and loop complementations are said to be locally equivalent. In particular,
G is a circle graph if and only if every graph obtained from G using loop complementa-
tions is also a circle graph; consequently loops are irrelevant to characterizations of circle
graphs, and most results regarding circle graphs are stated for simple graphs.

Bouchet [7] gave a famous characterization of circle graphs: a simple graph is a circle
graph if and only if none of the three graphs pictured in Figure 2 is a vertex-minor. We
refer to this famous result as Bouchet’s theorem. Bouchet’s theorem resembles several
well-known forbidden minors characterizations of matroid classes: for instance a matroid
is binary iff U2,4 is not a minor, a binary matroid is regular iff neither F7 nor F ∗7 is a
minor, and a regular matroid is graphic iff neither M∗(K5) nor M∗(K3,3) is a minor. But
Bouchet’s theorem involves induced subgraphs rather than matroid minors, and including
local equivalence makes Bouchet’s theorem seem more complicated than the classic ma-
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Figure 2: Bouchet’s circle graph obstructions: W5, BW3 and W7.

troid results. The present paper was initially motivated by a couple of questions suggested
by this resemblance: Can Bouchet’s theorem be rephrased to characterize circle graphs
using matroids? If so, is it possible to state such a characterization without mentioning
local equivalence? It turns out that both answers are “yes”; we present several such char-
acterizations below. In the process of explaining them we also obtain other circle graph
characterizations, some of which involve local equivalence and do not explicitly mention
matroids.

To state these characterizations, we introduce some terminology. First, we note that
we follow the convention that if X and Y are finite sets then an X × Y matrix has rows
indexed by elements of X and columns indexed by elements of Y . If G is a simple graph
then we consider the adjacency matrix A = A(G) and the n × n identity matrix I as
V (G)× V (G) matrices over GF (2). Let IAS(G) be the matrix

IAS(G) =
(
I A I + A

)
.

The rows of IAS(G) inherit indices in V (G) from the rows of I and A(G). Notation
for the columns of IAS(G) follows this scheme: the v column of I is designated φG(v),
the v column of A is designated χG(v), and the v column of I + A is designated ψG(v).
The set {φG(v), χG(v), ψG(v) | v ∈ V (G)} is denoted W (G), and the binary matroid on
W (G) represented by IAS(G) is the isotropic matroid of G, M [IAS(G)] [40]. If v ∈ V (G)
then the subset {φG(v), χG(v), ψG(v)} of W (G) is the vertex triple corresponding to v.
Notice that the three columns of IAS(G) corresponding to a vertex triple sum to 0. If
v is not isolated then each of these columns has a nonzero entry, so the vertex triple is
a circuit of M [IAS(G)]. If v is isolated, instead, then {χG(v)} and {φG(v), ψG(v)} are
separate circuits of M [IAS(G)]. A transversal of W (G) is a subset that includes precisely
one element of each vertex triple, and a subset of a transversal is a subtransversal. A
transverse matroid of G is a matroid obtained by restricting M [IAS(G)] to a transversal.
(We use “transverse matroid” to avoid confusion with transversal matroids.) A transverse
circuit of G is a circuit of a transverse matroid of G.

The general theory of isotropic matroids is presented in [19] and [40]. Part of this
theory is the following result:

Theorem 1. ([19]) Let G and H be simple graphs. Then any one of the following condi-
tions implies the others:
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1. G and H are locally equivalent, up to isomorphism.

2. The isotropic matroids of G and H are isomorphic.

3. There is a bijection between W (G) and W (H), which defines isomorphisms between
the transverse matroids of G and those of H.

4. There is a bijection between W (G) and W (H), under which vertex triples and trans-
verse circuits of G and H correspond.

In particular, if G and H are locally equivalent then each sequence of local com-
plementations that may be used to obtain H from G yields an induced isomorphism
M [IAS(G)]→M [IAS(H)], which is compatible with the partitions of W (G) and W (H)
into vertex triples.

All the interlacement graphs of Euler systems of a particular 4-regular graph F are
locally equivalent (up to isomorphism); it follows that the class of circle graphs is closed
under local complementation. Theorem 1 then implies that there must be matroidal
characterizations of circle graphs using their isotropic matroids, their transverse circuits
and their transverse matroids. Circle graph characterizations involving isotropic matroids
are complicated by the fact that the class of isotropic matroids is not closed under matroid
minors. (The order of an isotropic matroid is divisible by 3, so deleting or contracting
an element of an isotropic matroid cannot yield another isotropic matroid.) In order to
derive such characterizations we need a special minor operation that is appropriate for
isotropic matroids.

Definition 2. Let G be a looped simple graph, let S be a subtransversal of W (G), and
let S ′ contain the other 2 |S| elements of W (G) that correspond to the same vertices of G
as elements of S. Then the isotropic minor of G obtained by contracting S is the matroid

(M [IAS(G)]/S)− S ′.

We use the term isotropic minor because the definition is consistent with Bouchet’s
definitions of minors of isotropic systems [2] and multimatroids [9].

Theorem 3. ([40]) The isotropic minors of G are precisely the isotropic matroids of
vertex-minors of G.

Bouchet’s theorem now leads directly to a characterization of circle graphs by excluded
isotropic minors.

Theorem 4. Let G be a simple graph. Then G is a circle graph if, and only if, the
isotropic matroids of W5, BW3 and W7 are not isotropic minors of G.

It follows that we may try to gain insight into the special characteristics of circle
graphs by contrasting their isotropic minors of size ≤ 24 with the isotropic matroids of
W5, BW3 and W7. Formulating and verifying these contrasts is facilitated by the following
four theorems, which show that isotropic matroids reflect important structural properties
of graphs.
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Theorem 5. Let G be an interlacement graph of an Euler system of a 4-regular graph F ,
and let k be a positive integer. If F has a k-circuit then G has a transverse circuit of size
≤ k.

Theorem 5 is discussed in Section 4. The next three theorems are discussed in [19].

Theorem 6. ([19]) Let G be a simple graph, and let k be a positive integer. Then G has
a transverse k-circuit if and only if some graph locally equivalent to G has a vertex of
degree k − 1.

Theorem 7. ([19]) Let G be a simple graph, and let k1, k2 be positive integers. Then
G is locally equivalent to a graph with adjacent vertices of degrees k1 − 1 and k2 − 1 if
and only if G has transverse circuits γ1, γ2 such that |γi| = ki, the largest subtransversals
contained in γ1∪γ2 are of cardinality |γ1 ∪ γ2|−2, and two of these largest subtransversals
are independent sets of M [IAS(G)].

Theorem 8. ([19]) Let G be a simple graph, and let k1, k2 be positive integers. Then
these two conditions are equivalent:

• G is locally equivalent to a graph with nonadjacent vertices of degrees k1 − 1 and
k2 − 1, which share no neighbor.

• G has disjoint transverse circuits γ1, γ2 such that |γi| = ki and γ1 ∪ γ2 is a sub-
transversal, which contains no other circuit.

Here is an illustration of the usefulness of these properties. It is easy to see that up
to isomorphism, there are only two simple 4-regular graphs with ≤ 6 vertices: one is K5

and the other is obtained from K6 by removing the edges of a perfect matching. Each
of these graphs contains several 3-circuits. A non-simple 4-regular graph must contain a
1-circuit or a 2-circuit, of course, so Theorem 5 tells us that every circle graph with ≤ 6
vertices has a transverse circuit of size ≤ 3. According to Theorem 6, this is equivalent
to saying that every circle graph with ≤ 6 vertices is locally equivalent to a graph with a
vertex of degree ≤ 2. Inspecting the matrix IAS(W5), it is not hard to see that the only
circuits of size ≤ 3 in M [IAS(W5)] are vertex triples; the smallest transverse circuits are
of size 4. It follows from Theorem 6 that no simple graph locally equivalent to W5 has a
vertex of degree ≤ 2. This is enough to verify the following.

Corollary 9. Let G be a simple graph with ≤ 6 vertices. Then any one of the following
properties implies the others.

1. G is a circle graph.

2. G has a transverse circuit of size ≤ 3.

3. G is locally equivalent to a graph with a vertex of degree ≤ 2.
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Figure 3: BW3 and BW4.

Further analysis leads to several characterizations of larger circle graphs. For instance,
here is a characterization that involves both isotropic matroids and transverse matroids.

Theorem 10. A simple graph G is a circle graph if and only if G satisfies all of the
following conditions.

1. Every transverse matroid of G is cographic.

2. Every isotropic minor of G of size < 24 has a loop or a pair of intersecting 3-circuits.

3. Suppose an isotropic minor M of G of size 24 has no loop and no pair of intersecting
3-circuits. Then every transverse matroid of M that contains two disjoint circuits
also contains other circuits.

The three conditions of Theorem 10 correspond directly to the three obstructions of
Bouchet’s theorem: condition 1 excludes BW3, condition 2 excludes W5, and condition 3
excludes W7. By the way, we state condition 2 this way only for variety. As vertex triples
are dependent sets, it is not hard to see that an isotropic matroid has a transverse circuit
of size ≤ 3 if and only if it has a loop or a pair of intersecting 3-circuits. Details of the
argument appear in the proof of Corollary 41.

Condition 1 is of particular interest for several reasons. One reason is simply that
the cographic property is more familiar than the small-circuit properties mentioned in
conditions 2 and 3. Another reason is that it is possible to explicitly construct the graphs
whose cocycle matroids are the transverse matroids of a circle graph; see Section 4 for
details. Yet another reason is that, as we show in Section 8, condition 1 suffices to
characterize a special type of circle graph.

Theorem 11. Let G be a simple graph that is locally equivalent to a bipartite graph. Then
any one of the following properties implies the others.

1. G is a circle graph.

2. Every transverse matroid of G is cographic.

3. Neither graph of Figure 3 is a vertex-minor of G.
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Figure 4: Cubic graphs locally equivalent to W5 and W7.

Bipartite circle graphs are important for two reasons. One reason is that bipartite
circle graphs correspond to planar 4-regular graphs, and the other reason is that all circle
graphs are vertex-minors of bipartite circle graphs. Details are given in Sections 8 and 9,
along with some results about the connection between the crossing number of a 4-regular
graph and the matroidal properties of its associated circle graphs.

Returning to the general case, note that conditions 2 and 3 of Theorem 10 indicate
characteristic properties of the transverse circuits of small isotropic minors of circle graphs.
Theorems 6 – 8 tell us that these properties are related to the distribution of low-degree
vertices in small vertex-minors of circle graphs.

Theorem 12. Let G be a simple graph, and let VM8(G) denote the set of graphs with 8
or fewer vertices, which are vertex-minors of G. Then G is a circle graph if and only if
every H ∈ VM8(G) satisfies at least one of the following conditions.

1. Some graph locally equivalent to H has a vertex of degree 0 or 1.

2. Some graph locally equivalent to H has a pair of adjacent degree-2 vertices.

3. Every graph locally equivalent to H has a vertex of degree 5.

As every H ∈ VM8(G) must satisfy one of the conditions, condition 3 is logically
equivalent to the simpler requirement that H itself must have a vertex of degree 5. Con-
dition 3 may also be replaced by the weaker requirement that there be a vertex of degree
≥ 4, because W5 and W7 are both locally equivalent to 3-regular graphs. See Figure 4.

Several other circle graph characterizations are presented in Sections 5–9. Although
the details differ, most are variations on the theme “circle graphs have vertex-minors with
distinctive distributions of small transverse circuits.”

Before deriving these matroidal characterizations of circle graphs, we discuss a different
kind of structural characterization of circle graphs, using delta-matroids. It is shown in
[25] that a variant of unimodularity called principal unimodularity precisely corresponds
to representability of a delta-matroid D over every field. This specializes to the usual
notion of unimodularity in case D is a matroid. In this way, this result generalizes the
well-known result that unimodular representations of matroids correspond precisely to
matroids representable over every field. It has been shown by Bouchet (see Geelen’s PhD
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thesis [25]) that circle graphs are precisely the graphs G such that for every graph G′

locally equivalent to G, G′ allows for a principal unimodular representation. In Section 2
we reformulate this characterization in terms of binary delta-matroids. Using this charac-
terization, we provide in Section 3 a characterization of isotropic matroids of circle graphs
in terms of principal unimodularity, but without mentioning local equivalence. The tech-
niques used in Section 3 are from multimatroid theory [8] and it is essentially shown that
the natural 3-matroid generalization of principal unimodularity precisely characterizes
isotropic matroids of circle graphs.

More specifically, for an isotropic matroid M [IAS(G)] and transversal T , we say that
M [IAS(G)] − T is tight if for every independent subtransversal S disjoint from T with
|S| = |V (G)| − 1 there is an element x ∈ W (G) \ T such that S ∪ {x} is a dependent
subtransversal. Also, we say that M [IAS(G)] − T is t-regular (short for “transversal-
regular”) if M [IAS(G)] − T has a representation E such that for each transversal T ′

disjoint from T , the determinant of the matrix obtained from E by restricting to the
columns of T ′ is equal to 0, 1, or −1.

We show the following (cf. Theorem 25).

Theorem 13. Let G be a simple graph. Then G is a circle graph if and only if for all
transversals T , if M [IAS(G)]− T is tight, then M [IAS(G)]− T is t-regular.

2 Characterizing circle graphs by delta-matroid reg-

ularity

In this section we recall a characterization of circle graphs using the notion of regularity
for delta-matroids and multimatroids.

2.1 Delta-matroids

A set system (over V ) is a tuple D = (V, S) such that S ⊆ 2V is a set of subsets of a
ground set V of D. For notational simplicity we write X ∈ D to denote X ∈ S. We
say that D is empty if S = ∅. A delta-matroid D is a nonempty set system (V, S) that
satisfies the following property: for all X, Y ∈ S and x ∈ X ∆Y , there is a y ∈ X ∆Y (we
allow y = x) such that X ∆{x, y} ∈ S [4]. It turns out that if all sets of D have the same
cardinality, then D is a matroid represented by its bases [4]. In this way, a delta-matroid
can be viewed as a generalization of the notion of matroid. A delta-matroid D is called
even if the cardinalities of the sets of D have equal parity. For X ⊆ V , we define the
twist of D by X as the set system D ∗X = (V, S ′) with S ′ = {X ∆Y | Y ∈ S}. It turns
out that D ∗X is an (even) delta-matroid if and only if D is an (even) delta-matroid.

2.2 Representable and regular delta-matroids

For finite sets X and Y , an X×Y -matrix A is a matrix where the rows and columns of A
are indexed by X and Y , respectively, and are not ordered. If W ⊆ X and W ⊆ Y , then
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A[W ] denotes the W×W -matrix obtained from A by removing the entries outside W . We
now fix a finite set V . A V × V -matrix A over some field F is said to be skew-symmetric
if −AT = A (note that we allow nonzero diagonal entries in case F is of characteristic
2). If A is skew-symmetric, then DA = (V, S) with S = {X | A[X] is nonsingular} is
a delta-matroid [4]. For a skew-symmetric V × V -matrix A over F, DA is even if and
only if all diagonal entries of A are zero. A delta-matroid D is said to be representable
over F if there is a skew-symmetric V × V -matrix A over F such that D = DA ∗ X for
some X ⊆ V . This notion of representability for delta-matroids generalizes the notion
of representability for matroids: a matroid M is representable over F in the standard
matroid sense if and only if M is representable over F in the delta-matroid sense. Indeed,
if M is representable by a matrix (X Y

X I E
)

in standard form, then one may verify that the delta-matroid DA corresponding to skew-
symmetric matrix V × V -matrix

A =

( X Y

X 0 E
Y −ET 0

)
is such that DA ∗X = M . The converse also holds [4].

A V ×V -matrix A over R is said to be principally unimodular if det(A[X]) ∈ {0, 1,−1}
for all X ⊆ V . (In particular, if A is principally unimodular, then each entry of A is equal
to 0, 1, or −1.) We say that D is regular if D is representable by a skew-symmetric
principally unimodular matrix over R. The following result is shown by Geelen [25].

Theorem 14 ([25]). Let D be an even delta-matroid. Then the following statements are
equivalent.

1. D is regular,

2. D is representable over every field, and

3. D is representable over both GF (2) and GF (3).

The notion of regularity for delta-matroids generalizes the notion of regularity for
matroids. Recall that a matroid M is called regular if M is representable by a totally
unimodular matrix over R, where a matrix B over R is said to be totally unimodular if
the determinant of every submatrix of B is equal to 0, 1, or −1. We may assume that B
is in standard form (I E). Now, it is easy to verify that

(X Y

X I E
)
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is totally unimodular if and only if the skew-symmetric matrix V × V -matrix

A =

( X Y

X 0 E
Y −ET 0

)
with V = X ∪ Y is principally unimodular [12].

If A is a skew-symmetric matrix over GF (2) (equivalently, A is symmetric over GF (2)),
thenDA uniquely determines A [13]. Indeed, for v ∈ V , A[{v}] = 1 if and only if {v} ∈ DA.
Moreover, for v, w ∈ V with v 6= w, we have A[{v, w}] = 1 if and only if we have either
({v, w} ∈ DA)∧ (({v} /∈ DA)∨ ({w} /∈ DA) or ({v, w} /∈ DA)∧ ({v} ∈ DA)∧ ({w} ∈ DA).
We say that D is binary if D is representable over GF (2).

2.3 Eulerian delta-matroids

A delta-matroid D is said to be Eulerian if D = DA(G) ∗X where G is a circle graph and
X ⊆ V (G) [25]. For notational convenience, this definition is slightly different from [25]
as there it is required that X = ∅. The next lemma shows that this difference is not
essential.

Lemma 15. Let G be a simple graph. Then G is a circle graph if and only if DA(G) is
Eulerian.

Proof. The only if direction is trivial. To prove the converse, let D = DA(G) be Eulerian.
Then D ∗X = DA(G′) for some circle graph G′. Hence, DA(G) = DA(G′) ∗X. It is shown
in [4] that this implies that G is locally equivalent to G′. By Theorems 1 and 4, G is a
circle graph as well.

It follows from de Fraysseix [24] that Eulerian delta-matroids are a generalization of
planar matroids (i.e., cycle matroids of planar graphs); see also [25, Theorem 4.16].

Theorem 16 ([24]). Let M be a matroid. Then M is planar if and only if M is an
Eulerian delta-matroid.

Since DA uniquely determines A, a characterization of Eulerian delta-matroids directly
implies a characterization of circle graphs. The following characterization of Eulerian
delta-matroids is from [25].

Theorem 17 ([25]). Let D be an even binary delta-matroid, i.e., D = DA(G)∗X for some
simple graph G and X ⊆ V (G). Then D is Eulerian if and only if, for every graph G′

locally equivalent to G, DA(G′) is regular.

In particular, every Eulerian delta-matroid is regular. The converse does not hold:
any regular matroid M that is not planar is a counterexample by Theorem 16. So, e.g.,
the cycle matroids of K3,3 and K5 are regular, but they are not Eulerian delta-matroids.

Since DA(G) uniquely determines G, it is natural to formulate the notion of local
equivalence for binary delta-matroids. For this we require an additional operation on
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delta-matroids. For a delta-matroid D over V and X ⊆ V , loop complementation of D
by X, denoted by D+X, is defined by Y ∈ D+X if and only if there are an odd number
of Z ∈ D with (Y −X) ⊆ Z ⊆ Y . In general D +X need not be a delta-matroid, but it
turns out that the family of binary delta-matroids is closed under loop complementation
[15, Section 5].

We now use loop complementation to reformulate Theorem 17.

Theorem 18. Let D be an even binary delta-matroid over V . Then the following state-
ments are equivalent.

1. D is Eulerian,

2. for all X ⊆ Y ⊆ V with D ∗X + Y even, we have that D ∗X + Y is regular,

3. every even delta-matroid obtainable from D by applying a sequence of + and ∗
operations is regular.

Proof. Statement 3 implies statement 2 directly. For the converse, recall that it is shown
in [15, Theorem 12] that any delta-matroid D′ obtainable from D by applying a sequence
of + and ∗ is of the form D ∗X +Y ∗Z with X ⊆ Y ⊆ V and Z ⊆ V . As twists preserve
both evenness and regularity, D ∗X + Y ∗Z is even (regular) if and only if D ∗X + Y is
even (regular). Hence the last two statements are equivalent.

It is shown in [15, Theorem 27] that for simple graphs G and G′, G′ is locally equivalent
to G if and only if DA(G′) can be obtained from DA(G) by applying a sequence of + and
∗ operations. By Theorem 17, we obtain that statement 3 implies that D is Eulerian.
Conversely, let D be Eulerian. Then D = DA(G) ∗ X for some simple graph G and
X ⊆ V (G). Let ϕ be a sequence of + and ∗ operations such that Dϕ is even. Then
(DA(G) ∗X)ϕ is even. Let Y ∈ (DA(G) ∗X)ϕ. Then (DA(G) ∗X)ϕ ∗ Y contains the empty
set and so it is equal to DA(G′) for some graph G′ by [16, Proof of Theorem 8.2]. Hence G′

is locally equivalent to G and so DA(G′) is regular (as D is Eulerian). Thus Dϕ = DA(G′)∗Y
is regular and so statement 3 holds.

Corollary 19. Let M be a binary matroid. Then M is planar if and only if every even
delta-matroid obtainable from D by applying a sequence of + and ∗ operations is regular.

3 Characterizing circle graphs by multimatroid reg-

ularity

In this section we reformulate Theorem 17 in terms of isotropic matroids.

3.1 Sheltering matroids

First we recall some notions and notation for the theory of multimatroids [8]. Let Ω
be a partition of a finite set U . A set T ⊆ U is called a transversal (subtransversal,
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respectively) of Ω if |T ∩ ω| = 1 (|T ∩ ω| ≤ 1, respectively) for all ω ∈ Ω. We denote the
set of transversals of Ω by T (Ω) and the set of subtransversals of Ω by S(Ω). A p ⊆ U is
called a skew pair of ω ∈ Ω if |p| = 2 and p ⊆ ω. We say that Ω is a q-partition if q = |ω|
for all ω ∈ Ω.

Multimatroids form a generalization of matroids. Like matroids, multimatroids can
be defined in terms of rank, circuits, independent sets, etc. Here they are defined in terms
of independent sets.

Definition 20 ([8]). Let Ω be a partition of a finite set of U . A multimatroid Z over
(U,Ω), described by its independent sets, is a triple (U,Ω, I), where I ⊆ S(Ω) is such
that:

1. for each T ∈ T (Ω), (T, I ∩ 2T ) is a matroid (described by its independent sets) and

2. for any I ∈ I and any skew pair p = {x, y} of some ω ∈ Ω with ω ∩ I = ∅,
I ∪ {x} ∈ I or I ∪ {y} ∈ I.

If Ω is a q-partition, then we say that Q is a q-matroid. Note that a 1-matroid is
essentially a matroid because in this case the partition of Ω into singletons does not
capture any additional information. A basis of Z is a set in I maximal with respect to
inclusion. For X ⊆ U , we define Z − X = (Z − X,Ω′, I) with Ω′ = {ω \ X | ω ∈ Ω}
and I ′ = {I ∈ I | I ∩X = ∅}. A multimatroid Z is called nondegenerate if |ω| > 1 for
all ω ∈ Ω. Also, nondegenerate multimatroid Z is called tight if for every independent
S ∈ S(Ω) with |S| = |Ω| − 1, there is an x ∈ U\S such that S ∪ {x} is a dependent
subtransversal.

We now consider the related notion of sheltering matroid introduced in [19]. It is a
generalization of the matroid M [IAS(G)].

Definition 21. A sheltering matroid is a tuple Q = (M,Ω) where M is a matroid over
some ground set U and Ω is a partition of U such that for any independent set I ∈ S(Ω)
of M and for any skew pair p = {x, y} of ω ∈ Ω with ω ∩ I = ∅, I ∪ {x} or I ∪ {y} is an
independent set of M .

It is shown in [19] that (M [IAS(G)],Ω) is a sheltering matroid with Ω the set of vertex
triples of G.

Matroid notions carry over straightforwardly to sheltering matroids. For example, for
X ⊆ U , we define the deletion of X from Q by Q−X = (M −X,Ω′) with Ω′ = {ω \X |
ω ∈ Ω}.

Note that if Q = (M,Ω) is a sheltering matroid, then Z(Q) = (U,Ω, I) with U the
ground set of M and I = {I ∈ S(Ω) | I is an independent set of M} is a multimatroid.
We say that Z(Q) is the multimatroid corresponding to Q. Also, we say that M shelters
the multimatroid Z(Q). Not every multimatroid is sheltered by a matroid [8]. If Z(Q)
is a q-matroid, then Q is called a q-sheltering matroid. Moreover, Q is called tight when
Z(Q) is tight.
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Let Q1 = (M1,Ω1) and Q2 = (M2,Ω2) be sheltering matroids. An isomorphism ϕ
from Q1 to Q2 is an isomorphism from M1 to M2 that respects the skew classes, i.e., if x
and y are elements of the ground set of M1, then x and y are in a common skew class of
Ω1 if and only if ϕ(x) and ϕ(y) are in a common skew class of Ω2.

For a q-partition Ω (of some finite set U), a transversal q-tuple of Ω is a sequence
τ = (T1, . . . , Tq) of q mutually disjoint transversals of Q. Note that the transversals of τ
are ordered.

3.2 Strongly Representable and Regular 2-Sheltering Matroids

Note: for notational convenience, from now on we often assume a given fixed 2-partition
Ω of some finite set U and a transversal 2-tuple τ = (T1, T2) of Ω.

We say that a matrix B over some field F strongly represents the 2-sheltering matroid
Q = (M,Ω) if

B =
(T1 T2
I A

)
is a standard representation of M with A a skew-symmetric matrix for some transversal
2-tuple τ = (T1, T2). We denote Q by Q(A, τ, 2). We use the word “strongly” because
in the companion paper [19] we also consider weaker notions of representability. Also, a
2-sheltering matroid Q is said to be strongly representable over F if there is such a matrix
B =

(
I A

)
and transversal 2-tuple τ such that Q = Q(A, τ, 2).

We say that a 2-matroid Z is strongly representable over F if there is a 2-sheltering
matroid Q strongly representable over F such that Z(Q) = Z. We say that Q (Z,
respectively) is strongly binary if Q (Z, respectively) is strongly representable over GF (2).

We now define a notion of regularity for 2-sheltering matroids. We say that a 2-
sheltering matroid Q = (M,Ω) is t-regular if Q has a strong representation B =

(
I A

)
over R such that for each T ∈ T (Ω), the determinant of the matrix obtained from B by
restricting to the columns of T is equal to 0, 1, or −1. Similarly, we say that a 2-matroid
Z is t-regular if there is a t-regular 2-sheltering matroid Q such that Z(Q) = Z.

Note that t-regularity for a 2-sheltering matroid (M,Ω) is not the same as regularity
of M . On the one hand, it can happen that M is regular but (M,Ω) is not t-regular, if no
representation of M has the required skew symmetry with respect to Ω. See [19, Section
2.3] for an example. On the other hand, it can happen that (M,Ω) is t-regular but M is
not regular. For example, let M be represented by the matrix

B =


t1,1 t1,2 t1,3 t1,4 t2,1 t2,2 t2,3 t2,4
1 0 0 0 0 1 1 1
0 1 0 0 −1 0 1 1
0 0 1 0 −1 −1 0 1
0 0 0 1 −1 −1 −1 0


and let Ω = {ω1, ω2, ω3, ω4} where ωj = {t1,j, t2,j}. Then B satisfies the definition of
t-regularity with respect to Ω. The minor M/{t1,1, t1,3} is represented by the matrix
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obtained from B by removing the first and third rows and columns:

( t1,2 t1,4 t2,1 t2,2 t2,3 t2,4
1 0 −1 0 1 1
0 1 −1 −1 −1 0

)
.

Evidently (M/{t1,1, t1,3})− t2,2 − t2,4 is isomorphic to U2,4, so M is not regular.
We now make the following observation.

Lemma 22. Let A be a V × V -matrix over R. Then A is principally unimodular if and
only if, for each transversal T of Ω, the determinant of the matrix obtained from

( V̄ V

I A
)

by restricting to the columns of T is equal to 0, 1, or −1.

3.3 Eulerian and t-regular 3-Sheltering Matroids

Note: for notational convenience, from now on we often assume a given fixed 3-partition
Ω of some finite set U and a transversal 3-tuple τ = (T1, T2, T3) of Ω.

We observed that (M [IAS(G)],Ω) is a 3-sheltering matroid. The following straight-
forward reformulation of [40, Theorem 41] shows that (M [IAS(G)],Ω) is tight.

Lemma 23 (Theorem 41 of [40]). Let A be a V × V -symmetric matrix over GF (2) and
|Ω| = |V |. Let M be the column matroid of

B =
(T1 T2 T3
I A A+ I

)
.

Then (M,Ω) is a tight 3-sheltering matroid.

We denote the tight 3-sheltering matroid (M,Ω) of Lemma 23 by Q(A, τ, 3). We
say that a 3-sheltering matroid Q is isotropic if Q = Q(A, τ, 3) for some symmetric
matrix A over GF (2). Note that each isotropic 3-sheltering matroid is isomorphic to
the isotropic 3-sheltering matroid (M [IAS(G)],Ω) for some graph G. Also note that
Q(A, τ, 3) − T3 = Q(A, (T1, T2), 2). We say that a 3-matroid Z is isotropic if Z = Z(Q)
for some isotropic 3-sheltering matroid Q.

For convenience, we also write Q(G, τ, 3) (Q(G, τ ′, 2), respectively) to denote Q(A(G),
τ, 3) (Q(A(G), τ ′, 2), respectively) for simple graphs G. For i ∈ {2, 3}, an i-sheltering
matroid Q is called Eulerian if Q = Q(G, τ, i) for some circle graph G and transversal
i-tuple τ .

We now define the notion of t-regularity for 3-sheltering matroids.

Definition 24. Let Q = (M,Ω) be a 3-sheltering matroid. Then Q is called t-regular if,
for every T ∈ T (Ω), Q− T is t-regular whenever Q− T is tight.

The main result of this section is as follows and is proved in the next subsection.

Theorem 25. Let Q be an isotropic 3-sheltering matroid. Then Q is Eulerian if and only
if Q is t-regular.
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3.4 Proof of Theorem 25

To prove Theorem 25 we translate Theorem 18 from delta-matroids to sheltering matroids.
We recall the following results from [8].

Lemma 26 ([8]). Let τ = (T1, T2) be a transversal 2-tuple of Ω. If D = (V, S) is a delta-
matroid with |V | = |Ω|, then Z(D, τ, 2) := (U,Ω,B) with B = {X ∈ T (Ω) | π(X ∩ T2) ∈
D} is a 2-matroid.

Lemma 27 ([8]). Let τ be a transversal 2-tuple of Ω. The mapping D 7→ Z(D, τ, 2) is
a one-to-one correspondence from the family of delta-matroids D over V to the family of
2-matroids over (U,Ω).

Moreover, it is shown in [10] that D is even if and only if Z(D, τ, 2) is tight. By
Lemma 22, we have the following.

Lemma 28. For every binary delta-matroid D, the 2-matroid Z(D, τ, 2) is t-regular if
and only if D is regular.

It is easy to verify that for every symmetric matrix A overGF (2) we have Z(Q(A, τ, 2))
= Z(DA, τ, 2), see also [19].

We now turn to 3-matroids.

Lemma 29 (Lemma 20 and Theorem 22 of [19]). Let Z be an isotropic 3-matroid. Then
there is a unique isotropic 3-sheltering matroid Q such that Z(Q) = Z.

We say that a 3-matroid Z is t-regular if there is a t-regular 3-sheltering matroid Q
such that Z(Q) = Z.

Lemma 30 (Theorems 13 and 16 of [17]). Let Ω be a 3-partition of some finite set U and
let T ∈ T (Ω). If Z is a strongly binary 2-matroid over (U\T,Ω′) with Ω′ = {ω\T | ω ∈ Ω},
then there is a unique tight 3-matroid Z ′ over (U,Ω) with Z ′ − T = Z.

Let D be a binary delta-matroid, then the unique tight 3-matroid corresponding to
Z(D, (T1, T2), 2) (with respect to τ and Ω), cf. Lemma 30, is denoted by Z(D, τ, 3).
Lemma 30 implies the following lemma.

A projection π of Ω is a function U → V with |V | = |Ω| such that π(x) = π(y)
if and only if x, y ∈ ω for some ω ∈ Ω. Let τ = (T1, T2, T3) be a transversal 3-tuple
and π : U → V be a projection. For v ∈ V , let pi (i ∈ {1, 2, 3}) be the unique skew
pair of ω = π−1(v) with pi ∩ Ti = ∅. We define τ ∗ v = (T1 ∆ p3, T2 ∆ p3, T3) and
τ + v = (T1, T2 ∆ p1, T3 ∆ p1)

Lemma 31 (Lemma 15 of [17]). Fix a 3-partition Ω of some finite set U , a transversal
3-tuple τ of Ω, and a projection π : U → V . Let D be a binary delta-matroid over V .
Then Z(D, τ, 3) = Z(D + v, τ + v, 3) = Z(D ∗ v, τ ∗ v, 3).

Lemma 32. Let A be a V × V -symmetric matrix over GF (2). Then Z(Q(A, τ, 3)) =
Z(DA, τ, 3).
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Proof. It is easy to verify that Z(Q(A, (T1, T2), 2)) = Z(DA, (T1, T2), 2) and the extension
to transversal 3-tuples follows from Lemma 30.

Lemma 33. Let D be a binary delta-matroid. Then D is Eulerian if and only if Z(D, τ, 3)
is t-regular (again we assume an arbitrary fixed transversal 3-tuple τ).

Proof. By Theorem 18, D is Eulerian if and only if every even delta-matroid obtainable
from D by applying a sequence of + and ∗ operations is regular.

First assume that Z(D, τ, 3) is t-regular. Let ϕ be a sequence of + and ∗ operations
such that Dϕ is even. We have Z(D, τ, 3) = Z(Dϕ, τϕ, 3). Let τϕ = (T ′1, T

′
2, T

′
3). Then

Z(D, τ, 3) − T ′3 = Z(Dϕ, τϕ, 3) − T ′3 = Z(Dϕ, (T ′1, T
′
2), 2) is tight because Dϕ is even.

Thus Z(Dϕ, (T ′1, T
′
2), 2) = Z(D, τ, 3) − T ′3 is t-regular and by Lemma 28, Dϕ is regular.

Consequently, D is Eulerian.
The reverse implication is similar. Thereto, assume that D is Eulerian. Let T ∈ T (Ω)

such that Z(D, τ, 3) − T is tight. By Lemma 31 there is a sequence ϕ of + and ∗
operations such that Z(D, τ, 3) = Z(Dϕ, τϕ, 3) and τϕ = (T ′1, T

′
2, T ). Now, Z(D, τ, 3)−

T = Z(Dϕ, τϕ, 3) − T = Z(Dϕ, τ ′, 2) where τ ′ = (T ′1, T
′
2). Since Z(D, τ, 3) − T =

Z(Dϕ, τ ′, 2) is tight, Dϕ is even. Since D is Eulerian, we have that Dϕ is regular. By
Lemma 28, Z(Dϕ, τ ′, 2) = Z(D, τ, 3)− T is t-regular.

We are now ready to prove Theorem 25.

Proof. (of Theorem 25) Let τ = (T1, T2, T3) and let Q = Q(A, τ, 3) for some symmetric
matrix A over GF (2). By Lemma 32, Z(Q) = Z(DA, τ, 3).

Assume first that Q = Q(A, τ, 3) is t-regular. Then Z(DA, τ, 3) = Z(Q) is t-regular.
By Lemma 33, DA is Eulerian. Hence DA = DA(G) ∗ X for some circle graph G and
X ⊆ V (G). By Lemma 31, Z(DA(G) ∗ X, τ, 3) = Z(DA(G), τ ∗ X, 3). By Lemma 32,
Z(DA(G), τ ∗X, 3) = Z(A(G), τ ∗X, 3). Consequently, Z(Q) = Z(Q(A(G), τ ∗X, 3)) for
some circle graph G. By Lemma 29, Q = Q(A(G), τ ∗X, 3) and so Q is Eulerian.

Now assume that Q is Eulerian. Then Z(Q) = Z(Q(A(G), τ, 3)) for some circle graph
G. Hence DA(G) is Eulerian and by Lemma 33 Z(DA(G), τ, 3) is t-regular. By Lemma 32,
Z(Q(A(G), τ, 3)) = Z(Q) is t-regular. By Lemma 29, Q = Q(A(G), τ, 3) is t-regular.

4 4-regular graphs

In this section we discuss the relationship between interlacement graphs and circuits of
4-regular graphs.

We begin by establishing some notation and terminology. We think of an edge of
a graph as consisting of two distinct half-edges, one incident on each end-vertex of the
original edge. A circuit of length ` is then a sequence v1, h1, h

′
1, v2, h2, . . . , h

′
`, v`+1 = v1

of vertices and half-edges, with the property that for each i, h′i−1 and hi are half-
edges incident on vi and {hi, h′i} is an edge incident on vi and vi+1. Vertices may
appear repeatedly on a circuit, but there must be 2` different half-edges. We do not
distinguish between circuits that differ only in orientation or starting point. That is,
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Figure 5: Two Euler circuits of K5.

if v1, h1, h
′
1, v2, h2, . . . , h

′
`, v`+1 = v1 is a circuit then for each index i, the same cir-

cuit is represented by vi, hi, . . . , h
′
`, v`+1 = v1, h1, . . . , h

′
i−1, vi and vi, h

′
i−1, . . . , h1, v1 =

v`+1, h
′
`, . . . , hi, vi.

4.1 The transition matroid

Notice that there are two ways to write a circuit as a sequence of pairs of half-edges: one
way is to pair consecutive half-edges of an edge, and the other is to pair consecutive half-
edges incident at a vertex. We call each of these latter pairs {h′i, hi+1} a single transition.
A transition at a vertex of a 4-regular graph is a pair of disjoint single transitions at the
same vertex; the 3 |V (F )|-element set that contains all the transitions of F is denoted
T(F ). (Our terminology is slightly nonstandard; for instance Bouchet used “transition”
and “bitransition” rather than “single transition” and “transition”.)

An Euler system C of F gives rise to a notational scheme for T(F ). First, arbitrarily
choose an orientation for each circuit of C. Then the three transitions at a vertex v of
F may be described as follows: one is used by C, one is not used by C and is consistent
with the orientation of the circuit of C incident at v, and the last one is inconsistent with
this orientation. (It is easy to see that changing the orientations of some circuits of C
will not change the description of any transition.) We label these three transitions φC(v),
χC(v) and ψC(v) respectively.

It is important to note that different Euler systems of F give rise to different notational
schemes for T(F ). That is, a particular transition τ ∈ T(F ) may be labeled φ for some
Euler systems, χ for others, and ψ for the rest. For example, the reader might take a
moment to verify that if C and D are the Euler circuits of K5 indicated on the left and
right in Figure 5 (respectively), and v is the vertex at the bottom of the figure, then
φC(v) = ψD(v), χC(v) = φD(v) and ψC(v) = χD(v).

Given an Euler system C of a 4-regular graph F , we use the notational scheme for T(F )
to associate transitions of F with elements of the isotropic matroid of the interlacement
graph I(C). That is, if

IAS(I(C)) =
(
I A(I(C)) I + A(I(C))

)
,

where I is an identity matrix and A(I(C)) is the adjacency matrix of I(C), then the v
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column of I is associated with the transition φC(v), the v column of A(I(C)) is associated
with the transition χC(v), and the v column of I+A(I(C)) is associated with the transition
ψC(v).

This may to seem to define many different matroids on T(F ), but in fact there is only
one:

Theorem 34. ([41]) Let C and D be any two Euler systems of a 4-regular graph F . Then
the matrices IAS(I(C)) and IAS(I(D)) represent the same binary matroid on T(F ).

We call the matroid on T(F ) defined by any matrix IAS(I(C)) the transition matroid
of F , and denote it Mτ (F ). We refer to the transverse circuits, transverse matroids and
vertex triples of I(C) as transverse circuits, transverse matroids and vertex triples of
Mτ (F ).

4.2 Circuit partitions and touch-graphs

As mentioned in Theorem 10, all transverse matroids of circle graphs are cographic. The
first special case of this property was observed by Jaeger [28], who proved that if G is a
circle graph then the binary matroid represented by the adjacency matrix of G – that is,
the transverse matroid consisting of all the χ elements of W (G) – is cographic. Jaeger
explained this result further in [29], using the core vectors of walks in a graph drawn
on a surface. In his papers introducing isotropic systems, Bouchet [2, 6] gave a different
definition, related to Jaeger’s core vectors.

Definition 35. Let F be a 4-regular graph, and P a partition of the edge-set of F into
edge-disjoint circuits. The touch-graph Tch(P ) is the graph with a vertex for each circuit
of P and an edge for each vertex of F , the edge corresponding to v incident on the vertex
or vertices corresponding to circuits of P that are incident at v.

Definition 35 is important for us because touch-graphs of circuit partitions of a 4-
regular graph F are closely related to transverse matroids of Mτ (F ). This connection is
given by the following result of [39]. (See also [18] and [38] for related results.) Recall
that the vertex cocycle associated with a vertex in a graph is the set of non-loop edges
incident on that vertex.

Theorem 36. ([39]) Let P be a circuit partition of a 4-regular graph F , let C be an Euler
system of F , and let M(C,P ) be the submatrix of IAS(I(C)) that includes those columns
that correspond to transitions included in P . Then the vertex cocycles of Tch(P ) span the
vector space

kerM(C,P ) = {w ∈ GF (2)V (F ) |M(C,P ) · w = 0}.

We state the following direct consequence explicitly, for ease of reference.

Corollary 37. If G is a circle graph then the transverse matroids of G are all cographic.
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Figure 6: A circuit partition in K5, and its touch-graph.

Proof. Let C be an Euler system of a 4-regular graph F , with G = I(C). Theorem 36
tells us that for every circuit partition P of F , the binary matroid represented by M(C,P )
is the cocycle matroid of Tch(P ). The corollary follows because the matroids represented
by the various M(C,P ) matrices are the transverse matroids of G.

Theorem 36 generalizes and unifies ideas of Bouchet [2, 11] and Jaeger [28, 29]. Jaeger’s
core vector theory includes a special case of Theorem 36, which requires (in our notation)
that P not follow the φC(v) transition at any vertex. Bouchet’s discussion of graphic
isotropic systems includes the cocycle spaces of touch-graphs, but does not include an
explicit matrix formulation.

As an example, consider the circuit partition P of K5 illustrated in Figure 6. The
reader may verify that if C and D are the Euler circuits of K5 indicated in Figure 5
then the transitions appearing in P are φC(1) = ψD(1), φC(2) = ψD(2), χC(3) = χD(3),
χC(4) = φD(4) and φC(5) = χD(5). Consequently

M(C,P ) =


1 0 1 1 0
0 1 1 1 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 1

 and M(D,P ) =


1 1 1 0 1
1 1 1 0 1
1 1 0 0 0
1 0 0 1 1
1 1 0 0 0

 .

It is a simple matter to verify that the nonzero elements of kerM(C,P ) = kerM(D,P )
are the vertex cocycles of Tch(P ), i.e., the column vectors obtained by transposing
(1, 1, 1, 0, 1), (1, 1, 0, 1, 0) and (0, 0, 1, 1, 1).

The following consequence of Theorem 36 allows us to study the transverse circuits of
circle graphs using circuits of 4-regular graphs.

Corollary 38. Let γ be a circuit of a 4-regular graph F , which is not an Euler circuit of
a connected component. Let τ(γ) denote the set of transitions involved in γ. Then τ(γ)
is a dependent set of Mτ (F ).

Proof. Let γ be v1, h1, h
′
1, v2, h2, . . . , h

′
`, v`+1 = v1. Then V (F ) = V0 ∪ V1 ∪ V2, where

Vk = {v ∈ V (F ) | there are precisely k values of i ∈ {1, . . . , `} with vi = v}. If V1 = ∅
then γ includes all four half-edges incident on each of v1, . . . , v`. Consequently no vertex

19



 
Figure 7: An Euler circuit and its interlacement graph.

of V2 neighbors any vertex outside V2, so γ is an Euler circuit of a connected component
with vertex-set V2. By hypothesis, this is not the case; hence V1 6= ∅.

Arbitrarily choose transitions at vertices of V0, and let P denote the circuit partition
that involves these transitions in addition to the elements of τ(γ). Let C be any Euler
system for F . Then Theorem 36 tells us that the vertex cocycle of γ in Tch(P ) is an
element of kerM(C,P ). This vertex cocycle is V1, considered as a set of edges in Tch(P ).

As V1 ∈ kerM(C,P ), the columns of M(C,P ) corresponding to elements of V1 sum
to 0. These columns are the columns of IAS(I(C)) corresponding to transitions of P at
vertices of V1, so they correspond to a subset of τ(γ). As V1 6= ∅, it follows that τ(γ) is
dependent in Mτ (F ).

Theorem 5 of the introduction follows readily. If γ is not an Euler circuit of a connected
component, then Corollary 38 tells us that τ(γ) contains a transverse circuit of Mτ (F ).
If γ is an Euler circuit of a connected component, then that connected component has
a non-Euler circuit γ′; necessarily |τ(γ′)| ≤ |τ(γ)|, and Corollary 38 tells us that τ(γ′)
contains a transverse circuit of Mτ (F ).

By the way, it can happen that a transverse circuit of Mτ (F ) is strictly smaller than
every circuit in F . See Figure 7 for an example. F is a simple graph, so it has no circuit
of size < 3. But the interlacement graph of the indicated Euler circuit C has a transverse
circuit of size two: if v is the vertex at the top of the figure and w is the vertex pendant
on v in I(C) then the columns of IAS(I(C)) representing φC(v) and χC(w) are equal, so
{φC(v), χC(w)} is a transverse circuit.

Before concluding this section we should explain the connection between isotropic
minors of circle graphs (as defined in Definition 2) and detachments of 4-regular graphs.
Let F be a 4-regular graph, and suppose t ∈ T(F ) is a transition at a vertex v. Then
the detachment of F along t is the 4-regular graph F ′ obtained from F by removing v
and forming two new edges from the four half-edges incident at v, pairing together the
half-edges according to t. If F has a loop at v, detachment along t may result in one or
two “free edges” that have no incident vertex; any such free edge is simply discarded.

If t is not a loop of Mτ (F ), F has an Euler system C with φC(v) = t. As illustrated
in Figure 8, F ′ then inherits an Euler system C ′ directly from C. Clearly I(C ′) is the in-
duced subgraph of I(C) obtained by removing v. Consequently IAS(I(C ′)) is the matrix
obtained from IAS(I(C)) by removing the v row and all three columns corresponding to
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Figure 8: A detachment of a 4-regular graph inherits an Euler circuit.

v. As the only nonzero entry of the φC(v) column is a 1 in the v row, the effect of these
removals is that

M [IAS(I(C ′))] = (M [IAS(I(C))]/φC(v))− χC(v)− ψC(v).

That is, Mτ (F
′) is the isotropic minor of Mτ (F ) obtained by contracting t.

If t is a loop of Mτ (F ), then Mτ (F ) is the direct sum of Mτ (F
′) and the restriction

of Mτ (F ) to the vertex triple of v. Consequently, Mτ (F
′) is again the isotropic minor of

Mτ (F ) obtained by contracting t.

5 Circle graphs with small transverse circuits

Corollary 38 suggests that in order to characterize circle graphs, we should obtain detailed
information about small circuits in small 4-regular graphs.

Proposition 39. Let F be a 4-regular graph with < 9 vertices. If F has no circuit of size
≤ 3, then F is isomorphic to K4,4.

Proof. Suppose F has no circuit of size < 3; then F is a simple graph. According to data
tabulated by Meringer [31], there are only ten simple, 4-regular graphs of order < 9, up
to isomorphism. One is K4,4. The other nine are pictured in Figure 9. It is evident that
all nine have 3-circuits.

Close inspection of Figure 9 yields a more elaborate form of Proposition 39, which
will also be useful. In stating this proposition we use a convenient shorthand, specifying
a circuit by simply listing the incident vertices in order.

Proposition 40. Let F be a simple 4-regular graph with < 9 vertices, which is not
isomorphic to K4,4. Then F has two distinct 3-circuits γ1 = v1v2w1 and γ2 = v1v2w2, and
an Euler circuit of the form v1w1v2v1w2v2. . .

Corollary 41. A simple graph G is a circle graph if and only if G satisfies these two
conditions.
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Figure 9: The simple 4-regular graphs of order ≤ 8, other than K4,4.

1. Every transverse matroid of G is cographic.

2. If an isotropic minor of G of size ≤ 24 does not have a loop or a pair of intersecting
3-circuits, then it is isomorphic to Mτ (K4,4).

Proof. Suppose G is an interlacement graph of a 4-regular graph F . Condition 1 follows
from Corollary 37.

As discussed at the end of Section 4, the isotropic minors of G are isotropic matroids
of interlacement graphs of 4-regular graphs obtained from F through detachment. Conse-
quently, if M is an isotropic minor of G of size ≤ 24 then M is the isotropic matroid of a
circle graph H with ≤ 8 vertices. Proposition 39 tells us that if H is not an interlacement
graph of K4,4 then it is an interlacement graph of a 4-regular graph with a circuit of size
≤ 3. Theorem 5 tells us that H has a transverse circuit of size ≤ 3.

If M [IAS(H)] has a loop, then of course condition 2 is satisfied. Suppose M [IAS(H)]
has no loop; then every vertex triple is a 3-circuit. If H has a transverse 2-circuit, then
H has two vertices v and w whose vertex triples include elements that are parallel in
M [IAS(H)]; there is a 3-circuit obtained by replacing one element of the vertex triple of
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v with a parallel from the vertex triple of w. If H has no transverse circuit of size ≤ 2
then it must have a transverse 3-circuit, which certainly intersects the three corresponding
vertex triples.

Suppose conversely that G satisfies both conditions. Condition 1 guarantees that
no isotropic minor of M [IAS(G)] is isomorphic to M [IAS(BW3)], which has the Fano
matroid and the dual Fano matroid as non-cographic transverse matroids. Condition 2
guarantees that no isotropic minor of G is isomorphic to M [IAS(W5)] or M [IAS(W7)],
neither of which is isomorphic to Mτ (K4,4) or has a transverse circuit of size ≤ 3. It
follows from Theorem 4 that G is a circle graph.

Conceptually, condition 1 of Corollary 41 may seem to be more interesting than condi-
tion 2, because cographic matroids are well-studied and the fact that transverse matroids
of circle graphs are cographic is explained by their connection with touch-graphs. How-
ever, we have not been able to formulate a matroidal characterization of circle graphs
that references only broad properties like “cographic.” Instead, Proposition 40 allows us
to replace condition 1 of Corollary 41 with a requirement involving 3-circuits.

Corollary 42. A simple graph G is a circle graph if and only if every isotropic minor M
of G, of size ≤ 24, satisfies at least one of the following conditions:

1. M has a transverse circuit of size ≤ 2.

2. M has a pair of transverse 3-circuits that are not both contained in any one transver-
sal of M .

3. M is isomorphic to Mτ (K4,4).

Proof. Suppose G is an interlacement graph of a 4-regular graph F , and M is an isotropic
minor of G of size ≤ 24. Then M is the isotropic matroid of an interlacement graph H
of a 4-regular graph F ′ of order ≤ 8. Suppose M has no loop or transverse 2-circuit, and
H is not an interlacement graph of K4,4. Then Theorem 5 tells us that F ′ is simple, and
Proposition 40 tells us that F ′ has two distinct 3-circuits γ1 = v1v2w1 and γ2 = v1v2w2

that share precisely one edge. Corollary 38 tells us that τ(γ1) and τ(γ2) are transverse 3-
circuits of M . As γ1 and γ2 do not involve the same transition at v1 or v2, no subtransversal
of H contains more than four elements of τ(γ1) ∪ τ(γ2).

For the converse, suppose G satisfies the statement. Then no isotropic minor of G is
isomorphic to M [IAS(W5)] or M [IAS(W7)], because neither of these isotropic matroids
is isomorphic to Mτ (K4,4) and neither has any transverse circuit of size ≤ 3. BW3 does
have transverse 3-circuits: the neighborhood circuits of the degree-2 vertices are of size
3, and the χG elements of the three degree-2 vertices also constitute a transverse circuit.
A computer search using the matroid module for Sage [34, 37] verifies that these four are
the only transverse 3-circuits of BW3, though, and clearly their union is a transversal.

Recall the notation used in the introduction: If G is a simple graph, then VM8(G)
denotes the set of vertex-minors of G with 8 or fewer vertices. Using this notation and
the fact that the isotropic minors of G are the isotropic matroids of vertex-minors of G,
we may rephrase Corollary 42 as follows.
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Corollary 43. A simple graph G is a circle graph if and only if every H ∈ VM8(G)
that is not an interlacement graph of K4,4, is locally equivalent to a graph with a vertex
of degree 0 or 1 or with two adjacent degree-2 vertices.

Proof. We first prove the if direction. Assume the right-hand side of the equivalence holds.
We invoke Corollary 42. Let M [IAS(H)] be an isotropic minor of G of size ≤ 24. We have
H ∈ VM8(G). If H is an interlacement graph of K4,4, then by Theorem 1 M [IAS(H)]
satisfies condition 3 of Corollary 42. If H is locally equivalent to a graph with a vertex
of degree 0 or 1, then by Theorem 6 M [IAS(H)] satisfies condition 1 of Corollary 42.
Finally, if H is locally equivalent to a graph with two adjacent degree-2 vertices, then by
Theorem 7 M [IAS(H)] satisfies condition 2 of Corollary 42. Thus, by Corollary 42, G is
a circle graph.

For the converse, suppose G is a circle graph and H ∈ VM8(G) is not an interlacement
graph of K4,4 and not locally equivalent to a graph with a vertex of degree 0 or 1. Then
H is isomorphic to an interlacement graph of a 4-regular graph F pictured in Figure 9.
As noted in Proposition 40, F has an Euler circuit C of the form v1w1v2v1w2v2 . . .. Then
v1 and v2 are adjacent degree-2 vertices in I(C), and H is locally equivalent to a graph
isomorphic to I(C).

6 K4,4 vs. W7

The results of the preceding section leave us with the task of distinguishing W7 from an
interlacement graph of K4,4. This task is a bit more difficult than one might expect.
For instance, it turns out that both W7 and an interlacement graph of K4,4 have 42
transverse 4-circuits, 168 transverse 6-circuits and no other transverse circuit of size ≤ 7.
Nevertheless, there are several ways to verify that W7 is not an interlacement graph of
K4,4. We mention four in this section, and several more in the next section.

6.1 A distinctive transverse matroid of W7

Notice that the transverse matroid {φ1, φ2, χ3, φ4, φ5, ψ6, ψ7, φ8} of W7 contains only two
circuits, {φ1, φ2, χ3, φ4} and {φ5, ψ6, ψ7, φ8}. (Here vertex 1 is the central vertex of the
wheel, and the outer vertices are numbered consecutively around the rim.) In contrast, it
turns out that no transverse matroid of an interlacement graph of K4,4 contains precisely
two circuits. As a first step in verifying this assertion, note that if a matroid has precisely
two circuits then the circuit elimination property guarantees that the two circuits must
be disjoint.

Theorem 44. The smallest transverse circuits of Mτ (K4,4) are of size 4, and there is
no non-transverse 4-circuit. If a transverse matroid M of Mτ (K4,4) contains two disjoint
circuits then they are of size 4, and M contains six transverse circuits of size 4.

Proof. Let V (K4,4) = {1, 2, 3, 4, a, b, c, d}, and consider the Euler circuit C given by the
double occurrence word a1b2c3b4a3d4c1d2. If I is the V (I(C))×V (I(C)) identity matrix
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Figure 10: The cocycle matroid of this graph is isomorphic to a transverse matroid of W7,
but not of Mτ (K4,4).

then IAS(I(C)) is the V (I(C))×W (I(C)) matrix

0 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0
0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0
0 0 1 0 1 0 0 1 0 0 1 1 1 0 0 1

I 1 1 1 1 0 0 1 0 1 1 1 1 1 0 1 0
0 1 1 0 0 0 1 0 0 1 1 0 0 1 1 0
0 0 0 0 1 1 0 1 0 0 0 0 1 1 1 1
1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1


.

The rows are indexed in 1, 2, 3, 4, a, b, c, d order, as are the columns in each part of(
I I(C) I + I(C)

)
.

Computer programs and visual inspection indicate that no single column is identically
0, no two columns sum to 0, and every set of three columns that sum to 0 corresponds to
a vertex triple. The circuits of size 4 are all transverse circuits, and there are 42 of them.
These circuits fall into two sets:

• For each of the six 2-element subsets {i, j} of {1, 2, 3, 4} and each of the six 2-element
subsets {x, y} of {a, b, c, d}, there is a transverse circuit that includes the transitions
determined by the single transitions ixj, xjy, jyi and yix. For instance, {φC(1),
φC(a), χC(2), φC(b)} and {χC(3), χC(c), φC(4), φC(d)} are transverse circuits of
this type.

• For each of the six 2-element subsets {i, j} of {1, 2, 3, 4}, there is a transverse circuit
that includes the transitions determined by the single transitions iaj, ibj, icj and
idj. Notice that {i, j} and its complement in {1, 2, 3, 4} determine the same four
transitions, so there are only three transverse circuits of this type. Similarly, there
are three transverse circuits corresponding to 2-element subsets of {a, b, c, d}. For
instance, {i, j} = {1, 2} and {3, 4} both yield {φC(a), φC(b), χC(c), φC(d)} and
{x, y} = {a, b} and {c, d} both yield {φC(1), χC(2), χC(3), φC(4)}.

Now, suppose a transverse matroid M of Mτ (K4,4) contains two disjoint circuits. As
M has 8 elements and Mτ (K4,4) has no transverse circuit of size < 4, the two circuits must
both be of size 4. If the two disjoint circuits are of the first type, then after re-indexing we
may suppose they arise from the circuits 1a2b and 3c4d. Then M also contains transverse
circuits of the first type corresponding to the circuits 1c2d and 3a4b. Moreover, M contains
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Figure 11: The connected, cubic simple graphs of order 8.

the transverse circuits of the second type corresponding to {1, 2} (or {3, 4}) and {a, b}
(or {c, d}). If the two disjoint transverse circuits are of the second type, we may presume
one corresponds to {1, 2} (or {3, 4}) and the other to {a, b} (or {c, d}). Then M contains
the transverse circuits of the first type that correspond to the circuits 1a2b, 3c4d, 1c2d
and 3a4b. Finally, it is impossible for the two disjoint circuits to include one of the first
type and one of the second type.

Corollary 45. Every interlacement graph of an Euler circuit of K4,4 is of diameter ≤ 2.

Proof. According to Theorem 8, a graph of diameter > 2 has a subtransversal that con-
tains two disjoint circuits, whose union contains no other circuit. Theorem 44 tells us that
Mτ (K4,4) has no such subtransversal.

6.2 Interlacement graphs of K4,4 are not 3-regular

We call a simple graph strictly supercubic if all the vertices are of degree ≥ 3, and there
is at least one vertex of degree > 3.

Proposition 46. Every interlacement graph of an Euler circuit of K4,4 is strictly super-
cubic.

Proof. Let G be an interlacement graph of K4,4; then M [IAS(G)] ∼= Mτ (K4,4), so The-
orem 44 tells us that the smallest transverse circuits in M [IAS(G)] are of size 4. By
Theorem 6, this implies that all the vertices of G are of degree ≥ 3. If any vertex is of
degree > 3 we are done, so we may suppose G is 3-regular.

If G is not connected it has two components, each isomorphic to K4. But then if v
and w are adjacent vertices of G, {ψG(v), ψG(w)} is a transverse 2-circuit of M [IAS(G)],
contradicting Theorem 44. We conclude that G is connected.

Let v1 and v2 be nonadjacent vertices of G. If they share all their neighbors, then
{χG(v1), χG(v2)} is a transverse 2-circuit of M [IAS(G)]. Theorem 44 tells us that this is
impossible. On the other hand, if they share no neighbor then the diameter of G is > 2.
Corollary 45 tells us that this is impossible.

According to Meringer [31], there are five connected, simple 3-regular graphs with
8 vertices. They are displayed in Figure 11. We observe that the first of these graphs
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Figure 12: A local equivalence.

has a pair of nonadjacent vertices that share all their neighbors, and each of the next
three has a pair of nonadjacent vertices that share no neighbor. It is not immediately
apparent, but the fifth graph pictured in Figure 11 is locally equivalent to the fourth
(up to isomorphism); see Figure 12 for details. (It is easy to see that the last graph in
Figure 12 is isomorphic to the fourth graph in Figure 11, if you first observe that each
has precisely two 3-circuits.)

By the way, there is a considerably longer proof of Proposition 46 that may be of
interest in spite of its length. Theorems 6 and 44 tell us that if G is an interlacement
graph of K4,4 then all the transverse circuits of G are of size ≥ 4, and all the vertices of
G are of degree ≥ 3. Consequently, G is either cubic or strictly supercubic. According to
[42], though, every 3-regular circle graph has transverse circuits of size 2; hence G is not
3-regular.

Corollary 47. Every interlacement graph of an Euler circuit of K4,4 has a vertex of
degree 5.

Proof. As observed at the beginning of this section, a computer search (again using the
matroid module for Sage [34, 37]) indicates that the transverse circuits of Mτ (K4,4) of
size < 9 are all of size 4, 6 or 8. Consequently Theorem 6 guarantees that if G is an
interlacement graph of an Euler circuit of K4,4 then the vertex-degrees in G are elements
of the set {3, 5, 7}. Proposition 46 assures us that G must have at least one vertex of
degree 5 or 7.

Suppose G has no vertex of degree 5. If v1 and v2 both have degree 7 then the ψG(v1)
and ψG(v2) columns of IAS(G) are the same, so {ψG(v1), ψG(v2)} is a transverse 2-circuit
of G. But Mτ (K4,4) has no transverse 2-circuit, so this cannot be the case. That is, G
must have one vertex v1 of degree 7, and seven vertices of degree 3. The induced subgraph
G−v1 is then 2-regular. As G is simple, there are only two possibilities: G−v1 is either a
7-circuit or the disjoint union of a 3-circuit and a 4-circuit. The former is impossible, as v1
would neighbor all the vertices on the 7-circuit and consequently G would be isomorphic
to W7. The latter is also impossible: two nonadjacent vertices v and w on the 4-cycle
would have identical open neighborhoods in G, as v and w would have the same neighbors
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Figure 13: The cocycle matroid of this graph is isomorphic to a transverse matroid of
Mτ (K4,4), but not of W7.

on the 4-cycle and v and w would also be adjacent to v1; consequently {χG(v), χG(w)}
would be a transverse 2-circuit in M [IAS(G)].

We conclude that G must have a vertex of degree 5.

6.3 A distinctive transverse matroid of Mτ(K4,4)

Here is another way to distinguish W7 from an interlacement graph of K4,4.

Proposition 48. Let P be a 4-element circuit partition of K4,4. Then either Tch(P )
is obtained from a 4-cycle by doubling all edges, or Tch(P ) is obtained from a complete
graph by doubling two non-incident edges. In contrast, the nullity-3 transverse matroids
of W7 are all isomorphic to the cocycle matroid of a complete graph with two non-incident
edges doubled.

Proof. The proposition has been verified with computer programs (again using Sage [34,
37]).

7 Circle graph characterizations

As discussed in the introduction, we deduce circle graph characterizations from Bouchet’s
theorem and the observations of Sections 5 and 6 by combining conditions that exclude
W5, BW3 and W7 as vertex-minors, and do not exclude any circle graph. For instance,
Corollary 41 and Theorem 44 yield Theorem 10 in this way, and Corollaries 43 and 47
yield Theorem 12. Other characterizations are obtained using different combinations of
the properties listed below. Properties not mentioned earlier in the paper have been
verified using Sage [34, 37].

Properties of W5: It is locally equivalent to a cubic graph, it has no transverse circuit
of size ≤ 3, and it is not locally equivalent to any graph with a vertex of degree ≤ 2.

Properties of BW3: It has some non-cographic transverse matroids, and it is not locally
equivalent to a graph with either a vertex of degree ≤ 1 or adjacent vertices of degree 2.

Properties of W7: It is locally equivalent to a 3-regular graph of diameter 3, it is not
locally equivalent to any graph with a vertex of degree ≤ 2, it has no transverse circuit
of size ≤ 3, it has the cocycle matroid of the graph of Figure 10 as a transverse matroid,
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it does not have the cocycle matroid of the graph of Figure 13 as a transverse matroid, it
has 42 transverse matroids of nullity 3, and its isotropic matroid has 336 automorphisms.

Properties of a circle graph of order ≤ 8 not associated with K4,4: It has transverse
circuits of size ≤ 3, it has cographic transverse matroids, and it is locally equivalent to a
graph with a vertex of degree ≤ 1 or a pair of adjacent degree-2 vertices.

Properties of a circle graph associated with K4,4: It has cographic transverse matroids,
it has a vertex of degree 5, its diameter is ≤ 2, it does not have the cocycle matroid of
the graph of Figure 10 as a transverse matroid, it does not have a transverse matroid
with two disjoint circuits and no other circuit, it has the cocycle matroid of the graph
of Figure 13 as a transverse matroid, it has 45 transverse matroids of nullity 3, and its
isotropic matroid has 1152 automorphisms.

8 Bipartite circle graphs

In this section we discuss Theorem 11 of the introduction, and several associated results.
These results differ from the characterizations of general circle graphs discussed above in
that they do not rely on Bouchet’s theorem. Their foundation is an earlier result of de
Fraysseix [24]; a proof is included for the reader’s convenience.

Proposition 49. ([24, Proposition 6]) Let G be a bipartite simple graph, with vertex
classes V1 and V2. Then G is a circle graph if and only if the transverse matroid φG(V1)∪
χG(V2) is a planar matroid.

Proof. Let the adjacency matrix of G be

A =

(
0 A12

A21 0

)
.

Then the transverse matroids M1 = φG(V1) ∪ χG(V2) and M2 = χG(V1) ∪ φG(V2) are
represented by

(
I1 A12

)
and

(
A21 I2

)
, where I1 and I2 are identity matrices. As A12

and A21 are transposes of each other, M1 and M2 are dual matroids.
If G is a circle graph then Corollary 37 tells us that M1 and M2 are both cographic.

They are each other’s duals, so they must be planar.
Suppose conversely that M1 is a planar matroid; then M2 is planar too. Let H be a

plane graph whose cycle matroid is M1. We presume that H is connected, its dual H∗ is
connected, and H and H∗ may be drawn together in the plane in such a way that all their
edges are smooth curves, in general position. We identify E(H) and E(H∗) with V (G).

H has a spanning tree T corresponding to the basis φG(V1) of M1. Choose an ε-
neighborhood D of T ; D is homeomorphic to a disk, so its boundary ∂D is homeomorphic
to a circle. As long as ε is sufficiently small, each element e ∈ E(H) − E(T ) intersects
D in two short arcs. Use e to label the end-points of these arcs on ∂D. Also choose two
points of ∂D for each edge of T , one on each side of the midpoint; label these two points
with that edge. If we trace the circle ∂D and read off the labeled points in order then we
obtain a double occurrence word W , in which each edge of H appears twice.
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Consider an edge e ∈ E(T ), and write W as eW1eW2. Let γ be a simple closed curve
obtained by following ∂D from one point labeled e to the other point labeled e, and then
crossing through D back to the first point labeled e. Clearly then γ encloses one connected
component of T − e. If e′ is an edge of the connected component of T − e enclosed by γ,
then both points of ∂D labeled e′ appear on γ. If e′ is an edge of the connected component
of T − e not enclosed by γ, then neither point of ∂D labeled e′ appears on γ. Either way,
we see that e and e′ are not interlaced with respect to W .

Now consider an edge e ∈ E(H)− E(T ), and write W as eW1eW2. Suppose e′ 6= e ∈
E(H)−E(T ). If e′ appears precisely once in W1, then it is not possible to draw e and e′

without a crossing outside D; as there is no such crossing, it cannot be that e′ appears
precisely once in W1. That is, e and e′ are not interlaced with respect to W . Considering
the preceding paragraph, we deduce that the interlacement graph I(W ) is bipartite, with
E(T ) and E(H)− E(T ) as vertex-classes.

Again, let e ∈ E(H) − E(T ), and write W as eW1eW2. Remove all appearances of
edges not in T from W1 and W2; the result is two walks in T connecting the end-vertices
of e. If we remove the edges that appear twice in either of these walks, we must obtain
the unique path in T connecting the end-vertices of e. We conclude that the fundamental
circuit of e with respect to T in H coincides with the closed neighborhood of e in I(W ).
As T is a spanning tree of H corresponding to the basis φG(V1) of M1, the fundamental
circuit of e with respect to T in H is the same as the closed neighborhood of e in G.

As G and I(W ) are both bipartite simple graphs with a vertex-class corresponding to
V1 = E(T ), it follows that G = I(W ).

Note that in the situation of Proposition 49, G is a special kind of circle graph: it
is an interlacement graph of a planar 4-regular graph F . To construct such an F , start
with the closed curve ∂D mentioned in the proof of Proposition 49. F has a vertex at
the midpoint of each edge of T , and a vertex outside D on each edge of E(H) − E(T );
edges are inserted so that the word W corresponds to an Euler circuit of F . It is a simple
matter to draw F in the plane using the closed curve ∂D as a guide.

Proposition 49 implies the following.

Theorem 50. Let G be a simple graph. Then each of these conditions implies the others.

1. G is the interlacement graph of an Euler system of a planar 4-regular graph.

2. There are disjoint transversals T1, T2 of W (G) such that r(T1)+r(T2) = |V (G)| and

M [IAS(G)] | (T1 ∪ T2)

is a planar matroid.

3. G is locally equivalent to a bipartite graph, and all the transverse matroids of G are
cographic.
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Proof. If G is a circle graph associated with a planar 4-regular graph then it is well known
that G is locally equivalent to a bipartite circle graph; see [35] for instance. This and
Corollary 37 give us the implication 1⇒ 3.

Suppose condition 3 holds, and let H be a bipartite graph locally equivalent to G.
As there is an induced isomorphism between the isotropic matroids of G and H, we may
verify condition 2 for G by verifying it for H. Let V (H) = V1 ∪ V2 with V1 and V2 both
stable sets of H. Then the adjacency matrix of H is

A =

(
0 A12

A21 0

)
.

Consider the transversals T1 = φH(V1) ∪ χH(V2) and T2 = φH(V2) ∪ χH(V1). Notice that
r(Ti) = |Vi| for each i, so r(T1) + r(T2) = |V (G)|. Moreover, the transverse matroids
M [IAS(H)] | T1 and M [IAS(H)] | T2 are represented by

(
I1 A12

)
and

(
A21 I2

)
, where

I1 and I2 are identity matrices. As A12 and A21 are transposes, these two matroids are
duals. Both are cographic by condition 3, so both are planar. Notice that

(
I A

)
=

(
I1 0 0 A12

0 I2 A21 0

)
,

and consequently

M [IAS(H)] | (T1 ∪ T2) = (M [IAS(H)] | T1)⊕ (M [IAS(H)] | T2)

is a direct sum of planar matroids. It follows that M [IAS(H)] | (T1 ∪ T2) is a planar
matroid.

Suppose now that condition 2 holds, and G has transversals T1, T2 as described. Let
B1 be a basis of M [IAS(G)] | T1, let V1 = {v ∈ v(G) | B1 contains an element of the
vertex triple of v}, and let V2 = V (G) − V1. Let B2 ⊆ T2 consist of the elements of T2
corresponding to elements of V2. As discussed in [19, Section 4], B = B1 ∪ B2 is a basis
of M [IAS(G)] and there is a graph H that is locally equivalent to G, such that (a) an
induced isomorphism β : M [IAS(G)] → M [IAS(H)] maps B to {φH(v) | v ∈ V (H)}
and (b) H is bipartite with vertex-classes β(V1) and β(V2). It follows from (b) that for
i 6= j ∈ {1, 2} the induced isomorphism maps Ti to φH(Vi) ∪ χH(Vj). Proposition 49 and
the subsequent discussion imply that condition 1 holds.

It is important to realize that although BW3 is the only one of Bouchet’s circle graph
obstructions with non-cographic transverse matroids, condition 3 of Theorem 50 does not
imply that a bipartite non-circle graph must have BW3 as a vertex-minor. For instance,
a computer search using Sage [34, 37] indicates that BW3 is not a vertex-minor of the
bipartite graph BW4 pictured on the left in Figure 14. Nevertheless BW4 is not a circle
graph. One way to verify this assertion is to observe that the transverse matroid {χ1, φ2,
χ3, φ4, χ5, φ6, χ7, φ8, φ9} is not cographic. Indeed, this transverse matroid is isomorphic
to the cycle matroid M(K3,3); an isomorphism is indicated by the labels 1, 2, . . . , 9 in the
figure. (Notice that the labels denote vertices of BW4 and edges of K3,3.) Another way
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Figure 14: BW4 and K3,3.

to verify that BW4 is not a circle graph is to obtain W5 as a vertex-minor; this can be
done by performing local complementations with respect to vertices 2, 4 and 7, and then
removing them.

Observe that the implication 3⇒ 1 of Theorem 50 tells us that the converse of Corol-
lary 37 holds for graphs that are locally equivalent to bipartite graphs. This observation
yields the equivalence between the first two properties mentioned in Theorem 11 of the
introduction. The next result implies that the third property mentioned in Theorem 11
is equivalent to the the first two.

Corollary 51. Let G be a bipartite simple graph. Then G is a circle graph if and only if
neither BW3 nor BW4 is a vertex-minor.

Proof. Of course, if BW3 or BW4 is a vertex-minor then G is not a circle graph.
For the converse, suppose G is not a circle graph. If V1 and V2 are the vertex-classes

of G then Proposition 49 tells us that the transverse matroid M = φG(V1) ∪ χG(V2) is
not a planar matroid. As noted in the proof of Proposition 49, the transverse matroid
M∗ = φG(V2) ∪ χG(V1) is the dual of M ; so of course M∗ is not planar either.

Suppose for the moment that M is minor-minimal with regard to nonplanarity. Then
M or M∗ is isomorphic to one of F7, M(K3,3), M(K5), so G is a fundamental graph of
one of these matroids. The fundamental graphs of a binary matroid are all equivalent
under edge pivots, so they are certainly locally equivalent; hence it suffices to verify that
one fundamental graph of each of F7, M(K3,3), and M(K5) has BW3 or BW4 as a vertex-
minor. BW3 is a fundamental graph of F7, and BW4 is a fundamental graph of M(K3,3).
For K5, consider the fundamental graph pictured on the left in Figure 15. (The labels
indicate an isomorphism between the transverse matroid {φ1, χ2, χ3, χ4, χ5, χ6, χ7, φ8,
φ9, φ10} and M(K5).) Clearly BW3 is a vertex-minor, obtained by first performing local
complementations at the vertices 2, 3, 4, and then removing them.

Proceeding inductively, suppose that M is not minor-minimal with regard to nonpla-
narity. Then there is an m ∈ M such that M/m or M −m is also nonplanar. If M −m
is nonplanar, then M∗/m = (M −m)∗ is nonplanar. Consequently by interchanging V1
and V2 if necessary, we may presume that M/m is nonplanar.

If m = φG(v) ∈ φG(V1) then M/m is a transverse matroid of G − v , so applying the
inductive hypothesis to G− v implies that BW3 or BW4 is a vertex-minor of G. If m =
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Figure 15: A fundamental graph of K5.

χG(v) ∈ χG(V2) is a loop of M , then v is an isolated vertex of G, and again we may apply
the inductive hypothesis to G− v. If m = χG(v) ∈ χG(V2) is not a loop of M , then v has
a neighbor w ∈ V1. In this case the edge pivot Gvw is a bipartite graph with vertex classes
V1∆{v, w} and V2∆{v, w}, and an induced isomorphism β : M [IAS(G)]→M [IAS(Gvw)]
has β(φG(w)) = χGvw(w) and β(χG(v)) = φGvw(v) [40]. As β(M) is isomorphic to M , it
too is nonplanar; and so is β(M)/φGvw(v) ∼= M/χGvw(v). As β(M)/φGvw(v) is a transverse
matroid of Gvw− v, the inductive hypothesis implies that BW3 or BW4 is a vertex-minor
of Gvw, and hence of G.

9 Crossing numbers of 4-regular graphs

A simple construction indicates that every 4-regular graph can be obtained from a planar
4-regular graph through detachment. Examples appear in Figure 9: the graphs in the top
corner positions are detachments of the planar graphs directly below them.

Theorem 52. Every 4-regular graph is a detachment of a planar 4-regular graph.

Proof. Draw a 4-regular graph F in the plane, with its edges in general position. That is,
the only failures of planarity are points where two edges cross. To obtain a planar graph
with F as a detachment, replace each edge-crossing with a vertex.

This leads to yet another characterization of circle graphs:

Corollary 53. A graph is a circle graph if and only if it is a vertex-minor of a bipartite
circle graph.

Proof. If G is a vertex-minor of any circle graph (bipartite or not), then G itself is a circle
graph. For the converse, suppose G is a circle graph associated with a 4-regular graph F .
According to Theorem 52, F is a detachment of a plane 4-regular graph F̂ ; then G is a
vertex-minor of every circle graph associated with F̂ , as discussed at the end of Section
4. Theorem 50 tells us that some circle graph associated with F̂ is bipartite.
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Consequently, a simple graph is a circle graph if and only if it is a vertex-minor of some
graph that satisfies Theorem 50. Considering condition 2 of Theorem 50, one might hope
that Corollary 53 would lead to a characterization of circle graphs using some matroidal
property of the unions of pairs of transversals. We do not know what such a property
might be, though.

We close with some comments about the connection between pairs of transverse ma-
troids of circle graphs and a well-known measure of non-planarity, the crossing number.

Proposition 54. Let G be a simple graph. If G is the interlacement graph of an Euler
system of a 4-regular graph of crossing number k, then there are disjoint transversals
T1, T2 of W (G) such that r(T1) + r(T2) ≤ |V (G)|+ k.

Proof. If k = 0, the result follows from Theorem 50. Proceeding inductively, suppose
k ≥ 1 and F is a 4-regular graph of crossing number k with G as interlacement graph.
Let F ′ be the graph obtained by replacing one crossing with a vertex v. Then by the
inductive hypothesis Mτ (F

′) has disjoint transversals T ′1, T
′
2 such that r(T ′1) + r(T ′2) ≤

|V (G)| + 1 + k − 1. As M [IAS(G)] = Mτ (F ) is an isotropic minor of Mτ (F
′) obtained

by removing the vertex triple of v, T ′1 and T ′2 yield disjoint transversals T1, T2 of W (G).
Contraction and deletion cannot raise ranks, so r(T1) ≤ r(T ′1) and r(T2) ≤ r(T ′2).

Proposition 54 detects the crossing numbers of some 4-regular graphs. For instance,
consider the 4-regular graph F pictured in the lower left-hand corner of Figure 9. Observe
that F has precisely four 3-circuits, in two pairs each of which has a shared edge. No
circuit partition can include two 3-circuits that share an edge, so a circuit partition of F
includes at most two 3-circuits. As F has 16 edges, it follows that every circuit partition
includes ≤ 4 circuits. Theorem 36 then tells us that every transversal of Mτ (F ) is of rank
≥ 5, so the smallest possible value of r(T1) + r(T2) is 10. According to Proposition 54,
this fact guarantees that the crossing number of F is ≥ 2; as the drawing in Figure 9 has
two crossings, we conclude that the crossing number of F is 2.

Proposition 54 is not always so precise. For instance, the reader will have little trouble
finding a pair of 4-element circuit partitions in K4,4 that do not share any transition. The
corresponding transversals of Mτ (K4,4) are of rank 5, so they satisfy Proposition 54 with
k = 2. But it is well known that the crossing number of K4,4 is 4, not 2.

Let F now denote the 7-vertex 4-regular graph pictured in the middle of the top row
of Figure 9. The figure suggests that the crossing number of F is 2, and it is not very hard
to show that this is indeed the case. However Figure 16 indicates two partitions of E(F )
into four circuits. According to Theorem 36 both of the corresponding transversals of
Mτ (F ) have rank 4, so they satisfy the necessary condition of Proposition 54 with k = 1.
They do not satisfy the stronger necessary condition of Proposition 55, though.

Proposition 55. Suppose G is the interlacement graph of an Euler system of a 4-regular
graph of crossing number 1, but is not the interlacement graph of an Euler system of any
planar 4-regular graph. Then there are disjoint transversals T1, T2 of W (G) such that
r(T1) + r(T2) = |V (G)|+ 1 and M [IAS(G)] | (T1 ∪ T2) is a planar matroid.
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Figure 16: Two circuit partitions in a graph of crossing number 2.

Proof. Suppose F is a 4-regular graph with an Euler system C such that I(C) = G,
and F has crossing number 1. Let F ′ be a planar 4-regular graph with a vertex v such
that detachment at v yields F . Let τ0(v) be the transition that is detached. It is not
part of the boundary circuit of a face of F ′; if it were, the detachment would be planar.
Mτ (F

′) has transversals T ′1, T
′
2 as in Theorem 50, and τ0(v) is not included in either T ′1

or T ′2; let τ1(v) ∈ T ′1 and τ2(v) ∈ T ′2 be the other two transitions at v. Then Mτ (F ) =
(Mτ (F

′)/τ0(v))− τ1(v)− τ2(v).
Let S = T ′1 ∪ T ′2 ∪ {τ0(v)}, and recall that

Mτ (F
′) | (T ′1 ∪ T ′2) = (Mτ (F

′) | T ′1)⊕ (Mτ (F
′) | T ′2).

Then the matroidM = Mτ (F
′) | S has five kinds of circuits: (i) Each circuit ofMτ (F

′) | T ′1
or Mτ (F

′) | T ′2 is also a circuit of M . (ii) The vertex triple {τ0(v), τ1(v), τ2(v)} is a circuit
of M . (iii) For each circuit γ1 of Mτ (F

′) | T ′1 that contains τ1(v), M also has the circuit
(γ1−{τ1(v)})∪{τ0(v), τ2(v)}. (iv) For each circuit γ2 of Mτ (F

′) | T ′1 that contains τ2(v),
M also has the circuit (γ2 − {τ2(v)}) ∪ {τ0(v), τ1(v)}. (v) For each pair of circuits γ1, γ2
as in (iii) and (iv), M has the circuit (γ1 − {τ1(v)}) ∪ (γ2 − {τ2(v)}) ∪ {τ0(v)}.

Let T1, T2 be the transversals in Mτ (F ) that correspond to T ′1 and T ′2. Then r(T1) +
r(T2) ≤ r(T ′1) + r(T ′2) = |V (F ′)| = |V (F )|+ 1. Also,

Mτ (F ) | (T1 ∪ T2) = (M − τ1(v)− τ2(v))/τ0(v)

has only two kinds of circuits: (i) Each circuit of Mτ (F
′) | T ′1 or Mτ (F

′) | T ′2 that does
not intersect the vertex triple {τ0(v), τ1(v), τ2(v)} is a circuit of M . (ii) Each circuit γ
listed under (v) above yields a circuit γ−{τ0(v)} in M . That is to say, if M1 and M2 are
the matroids obtained by modifying Mτ (F

′) | T ′1 and Mτ (F
′) | T ′2 by using a single label

for both τ1(v) and τ2(v), then Mτ (F ) | (T1 ∪ T2) is the 2-sum M1 ⊕2 M2. As Mτ (F
′) | T ′1

and Mτ (F
′) | T ′2 are both planar matroids, so is Mτ (F ) | (T1 ∪ T2).

It remains only to note that Theorem 50 tells us that the inequality r(T1) + r(T2) ≤
|V (F )| + 1 must be an equality, for otherwise G would be the interlacement graph of an
Euler system of a planar 4-regular graph.
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We do not know whether it is possible to significantly sharpen Proposition 54 for k > 1.
If it is possible, examples indicate that the sharpened version must be quite different from
Proposition 55. For the graph F pictured in Figure 16, a computer search using Sage
[34, 37] finds that there are no two disjoint transversals of Mτ (F ) whose union is a planar
matroid. The situation in Mτ (K4,4) is even more restrictive: there are no two disjoint
transversals whose union is a regular matroid.
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