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Abstract

Several properties of the isotropic matroid of a looped simple graph are pre-
sented. Results include a characterization of the multimatroids that are associated
with isotropic matroids and several ways in which the isotropic matroid of G in-
corporates information about graphs locally equivalent to G. Specific results of
the latter type include a characterization of graphs that are locally equivalent to
bipartite graphs, a direct proof that two forests are isomorphic if and only if their
isotropic matroids are isomorphic, and a way to express local equivalence indirectly,
using only edge pivots.

Keywords: delta-matroid, interlacement, isotropic system, local equivalence, ma-
troid, multimatroid, stable set

1 Introduction

Let G be a looped simple graph, i.e., a graph in which no two edges are incident on
precisely the same set of vertices. Although we allow loops, we reserve the terms adjacent
and neighbors for pairs of distinct vertices. We do not count loops in vertex degrees,
and we do not consider v to be an element of the open neighborhood NG(v) = {w ∈
V (G) | vw ∈ E(G)}, whether v is looped or not. Also, in this paper the rows and
columns of matrices are not ordered, but are instead indexed by some finite sets X and
Y , respectively; we refer to such a matrix as an X × Y matrix. A conventional matrix is
then just a {1, . . . ,m} × {1, . . . , n} matrix. We remark that we follow this more general
convention because we will consider adjacency matrices of graphs which do not have
a canonical linear ordering of their columns and rows (because graphs do not have a
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canonical linear ordering of their vertices). Using instead conventional matrices and fixing
an arbitrary linear ordering is notationally more cumbersome due to the frequent need
for permutation matrices to permute the rows and columns. In situations where there is
an obvious natural bijection between the rows and columns of a matrix A, we may, e.g.,
refer to the “diagonal” of A.

Recently, the second author introduced the binary matroid represented over GF (2)
(the 2-element field) by the matrix

IAS(G) =
(
I A(G) A(G) + I

)
,

where I is the identity matrix and A(G) is the adjacency matrix of G, i.e., the V (G)×V (G)
binary matrix with diagonal entries equal to 1 for looped vertices, and off-diagonal entries
equal to 1 for adjacent vertices [29]. (For each v ∈ V (G), the v rows of I, A(G) and
A(G) + I constitute the v row of IAS(G).) This matroid is called the isotropic matroid
of G, and denoted M [IAS(G)]. We refer to Oxley’s book [26] for terminology regarding
matroids; we do not repeat the definitions of basic notions like circuits, connectedness,
independence, rank etc. except when these notions require special attention for isotropic
matroids.

The purpose of the present paper is to present extensions of the discussion of isotropic
matroids in [29]. Before discussing these extensions, we establish some notation and ter-
minology. The columns of IAS(G) are labeled as follows: the v column of I is designated
φG(v), the v column of A(G) is designated χG(v), and the v column of I + A(G) is des-
ignated ψG(v). The set {φG(v), χG(v), ψG(v) | v ∈ V (G)} is denoted W (G); it is the
ground set of the isotropic matroid M [IAS(G)]. The matroid M [IAS(G)] reflects alge-
braic interactions among the columns of IAS(G): A subset of W (G) is dependent (or
independent, or a basis) if and only if the corresponding set of columns of IAS(G) is lin-
early dependent (or independent, or a basis of the column space of IAS(G)); M [IAS(G)]
is the direct sum of two submatroids if and only if the two corresponding sets of columns
partition W (G) and their linear spans share only the zero vector; and so on. If v ∈ V (G)
then the subset τG(v) = {φG(v), χG(v), ψG(v)} of W (G) is the vertex triple corresponding
to v. Note that the three columns of IAS(G) corresponding to τG(v) sum to 0, so every
vertex triple is a dependent set of M [IAS(G)]. If v is not isolated then each of the three
corresponding columns of IAS(G) has a nonzero entry, so τG(v) is a circuit of M [IAS(G)].
If v is isolated, instead, then one of χG(v), ψG(v) is a loop of M [IAS(G)], and the other
is parallel to φG(v) in M [IAS(G)].

A subset S ⊆ W (G) is a subtransversal if it contains no more than one element of each
vertex triple; if S contains precisely one element from each vertex triple, it is a transversal.
The families of subtransversals and transversals of G are denoted S(G) and T (G), respec-
tively. A transverse matroid of G is a submatroid obtained by restricting M [IAS(G)] to
a transversal; we use “transverse matroid” to avoid confusion with transversal matroids.
A transverse circuit of G is a circuit of a transverse matroid, i.e., a subtransversal that is
a circuit of M [IAS(G)].

In Section 2 we provide natural abstract properties that characterize isotropic matroids
and related structures. Indeed, given a binary matroid M and a partition Ω of the ground
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set of M into sets of cardinality 3, one may wonder what the essential properties of M
are such that (M,Ω) is of the form (M [IAS(G)],W (G)) for some graph G. To elegantly
expose these essential properties, we use the theory of multimatroids.

We explain the connection between isotropic matroids and multimatroids using the
notion of a sheltering matroid, which was mentioned in passing by Bouchet [10]. A shel-
tering matroid is a matroid such that its set of transverse matroids forms a multimatroid.
In particular, an isotropic matroid is a 3-sheltering matroid with respect to the partition
of the ground set into vertex triples. We define representability of sheltering matroids
over a field F and we characterize the isotropic matroids among the GF (2)-representable
3-sheltering matroids (cf. Theorem 22). As an isotropic matroid is uniquely determined
by its multimatroid, we also characterize the multimatroids corresponding to isotropic
matroids in terms of natural properties of multimatroids (cf. Theorem 21). We moreover
consider a stronger notion of representability for 2-matroids and 2-sheltering matroids
inspired by the usual notion of representability for delta-matroids.

After discussing sheltering matroids in Section 2, we devote the rest of the paper to the
relationship between the matroidal structure of M [IAS(G)] and the graphical structures
of G and locally equivalent graphs. We need some more notation and terminology to
describe these results.

Definition 1. 1. If v ∈ V (G) then the graph obtained from G by complementing the
loop status of v is denoted Gv

` .

2. If v ∈ V (G) then the graph obtained from G by complementing the adjacency
status of every pair of neighbors of v is denoted Gv

s , and it is called the simple local
complement of G with respect to v.

3. If v ∈ V (G) then the graph obtained from G by complementing the adjacency status
of every pair of neighbors of v and the loop status of every neighbor of v is denoted
Gv

ns, and it is called the non-simple local complement of G with respect to v.

4. A graph that can be obtained from G using loop complementations and local com-
plementations is locally equivalent to G.

We should mention that Gv
s and Gv

ns are both called “local complements” of G in the
literature. For precision we use the unmodified term “local complement” only in situations
like item 4 of Definition 1, where both types of local complement are included.

Also, we note that according to Definition 1, locally equivalent graphs have the same
vertices. Consequently the equivalence relation on graphs generated by isomorphism and
local equivalence is strictly coarser than isomorphism or local equivalence alone.

The principal result of [29] is that two graphs are locally equivalent up to isomor-
phism if and only if their isotropic matroids are isomorphic. In fact, a sequence of local
complementations and loop complementations that transforms G into an isomorphic copy
of H will directly induce a corresponding isomorphism M [IAS(G)] → M [IAS(H)]; see
Section 3 for details.
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Definition 2. Let v be a vertex of G, with open neighborhood NG(v). Then the neigh-
borhood circuit of v, denoted ζG(v), is {χG(v)} ∪ {φG(w) | w ∈ NG(v)} if v is unlooped,
or {ψG(v)} ∪ {φG(w) | w ∈ NG(v)} if v is looped.

Notice that whichever of χG(v), ψG(v) is included in ζG(v), the nonzero entries of the
corresponding column of IAS(G) appear in the rows corresponding to neighbors of v;
hence ζG(v) is a transverse circuit of M [IAS(G)]. Also, if Φ(G) = {φG(v) | v ∈ V (G)}
then G is determined up to isomorphism by the submatroid of M [IAS(G)] whose ground
set is

ζ(G) = Φ(G) ∪
⋃

v∈V (G)

ζG(v).

For if v ∈ V (G) then v is looped if and only if ψG(v) ∈ ζ(G), and the open neighborhood
NG(v) is determined by the fundamental circuit of χG(v) or ψG(v) (whichever is included
in ζ(G)) with respect to the basis Φ(G).

Recall that a subset X ⊆ V (G) is stable if no two elements of X are neighbors in
G. (We consider all sets of cardinality 0 or 1 to be stable.) By the way, stable sets are
also called “independent” but we do not use that term here, to avoid any possibility of
confusion with matroid independence.

Definition 3. If X is a stable set of G then

TG(X) = {φG(v) | v /∈ X} ∪ {χG(x) | x ∈ X is unlooped} ∪ {ψG(x) | x ∈ X is looped}

is a transversal of W (G). We call the restriction M [IAS(G)] | TG(X) the neighborhood
matroid of X in G, and denote it MG(X).

Notice that TG(X) contains the neighborhood circuits of the elements of X.
A looped simple graph G may certainly have transverse circuits that are not neighbor-

hood circuits, and transverse matroids that are not neighborhood matroids. However, it
turns out that all transverse circuits and transverse matroids correspond to neighborhood
circuits and neighborhood matroids in graphs locally equivalent to G:

Theorem 4. Let T ∈ T (G). Then there is a graph H locally equivalent to G, with the
property that an induced isomorphism M [IAS(G)] → M [IAS(H)] maps the transverse
matroid M [IAS(G)] | T isomorphically to a neighborhood matroid of a stable set of H.

Theorem 5. Let S ∈ S(G). Then S is a transverse circuit of G if and only if there
is a graph H locally equivalent to G, with the property that an induced isomorphism
M [IAS(G)]→M [IAS(H)] maps S to a neighborhood circuit of H.

Here are two direct consequences of Theorems 4 and 5.

Corollary 6. Let G be a looped simple graph, and ν a positive integer. Then G has a
transverse matroid of nullity ν if and only if some graph locally equivalent to G has a
stable set of size ν.
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Corollary 7. Suppose G is a looped simple graph, and k ∈ N. Then G has a transverse
circuit of size k if and only if some graph locally equivalent to G has a vertex of degree
k − 1.

These results indicate the close relationship between M [IAS(G)] and the structures
of graphs locally equivalent to G. A special case of Theorem 4 also provides a sim-
ple explanation of the fact that M [IAS(G)] determines G up to isomorphism and lo-
cal equivalence [29]: in fact, all of the graphs included in the local equivalence class
of G are determined up to isomorphism by M [IAS(G)]. As detailed in Corollary 39,
if H is locally equivalent to G and a local equivalence induces a matroid isomorphism
β : M [IAS(G)] → M [IAS(H)], then vertex neighborhoods in H correspond directly to
fundamental circuits in M [IAS(G)] with respect to the basis β−1(Φ(H)).

In Sections 5 and 7 we discuss two more ways to use the results above: one is a
characterization of graphs that are locally equivalent to bipartite graphs, and the other
is a characterization of the local equivalence class of the wheel graph W5.

In Section 8 we discuss minors of isotropic matroids. Section 9 is focused on a special
type of minor: a parallel reduction. It turns out that parallel reductions of isotropic
matroids correspond precisely to pendant-twin reductions of graphs. In particular, the
graphs whose isotropic matroids can be resolved using parallel reductions are the same
as the graphs that can be resolved using pendant-twin reductions. These are the graphs
whose connected components are all distance hereditary [2].

As a special case, in Section 10 we prove the following striking result, which underscores
the fundamental difference between isotropic matroids of graphs and the more familiar
cycle matroids.

Theorem 8. Two forests are isomorphic if and only if their isotropic matroids are iso-
morphic.

1.1 Remarks about delta-matroids and isotropic systems

Before providing details of our results, we briefly describe the connections tying the two
kinds of matroid structures we discuss in detail (isotropic matroids and multimatroids)
to two other kinds of structures (delta-matroids and isotropic systems), which were intro-
duced earlier. Three remarks about these structures will provide some context.

(i) Beginning in the 1980s, Bouchet [4] and other authors developed a general the-
ory of delta-matroids, which includes delta-matroids associated with graphs and delta-
matroids not associated with graphs. The delta-matroids associated with graphs are
binary, i.e., they can be represented (in an appropriate sense) over GF (2). Bouchet in-
troduced isotropic systems at about the same time [3, 5]. In contrast with the theory
of delta-matroids, a general theory of isotropic systems that would include instances not
represented over GF (2) has not been fully developed, though it has been introduced by
other authors [1]. This contrast is reflected in terminology: the term “delta-matroid” does
not include an assumption that the structure is tied to GF (2), but the term “isotropic
system” does include such an assumption. Isotropic matroids are essentially equivalent
to isotropic systems [29], and are named for them.
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(ii) In the 1990s Bouchet introduced multimatroids [8, 9, 10, 11], as a way of pro-
viding a common generalization of the theories of delta-matroids and isotropic systems.
Delta-matroids are equivalent to multimatroids of a particular type, the 2-matroids, and
isotropic systems are equivalent to multimatroids of a different particular type, a sub-
class of the 3-matroids. A looped simple graph has a corresponding 2-matroid and also
a corresponding 3-matroid; the 2-matroid is equivalent to the graph’s delta-matroid, and
the 3-matroid is equivalent to the graph’s isotropic matroid and isotropic system. Conse-
quently when we explicitly discuss the 2-matroids and isotropic matroids of graphs, we are
also implicitly discussing the delta-matroids, 3-matroids and isotropic systems of graphs.

(iii) More recently, Brijder and Hoogeboom have observed that some delta-matroids
admit a loop complementation operation. They call these delta-matroids “vf-safe.” The
class of vf-safe delta-matroids properly contains the class of binary delta-matroids; for
instance all quaternary matroids are vf-safe [16]. In [15] loop complementation is used
to show that the 2-matroid corresponding to a vf-safe delta-matroid extends to a special
type of 3-matroid in a canonical way. For the binary delta-matroid associated to a graph
G, the delta-matroid loop complementation operation is compatible with graph-theoretic
loop complementation. Moreover, if the construction of [15] is applied to the binary
delta-matroid associated with a graph G, the result is the 3-matroid associated with G.
Consequently the 2-matroid, the delta-matroid, the isotropic system, the 3-matroid and
the isotropic matroid of a graph are all essentially equivalent to each other.

It might seem strange to try to explain the connections tying together four types
of objects — graphs, binary delta-matroids, isotropic systems, and multimatroids — by
introducing isotropic matroids into an already complicated situation. But there are three
natural reasons to expect isotropic matroids to yield useful insights. One reason is that the
relationship between a graph and its isotropic matroid is fairly transparent, as M [IAS(G)]
is defined directly from the adjacency matrix of G. The second reason is that unlike delta-
matroids, isotropic systems and multimatroids, which are specialized types of structures,
isotropic matroids are ordinary binary matroids. The theory of binary matroids has been
developed thoroughly since Whitney introduced matroids more than 80 years ago, and this
theory can be applied directly to isotropic matroids. The third reason is that M [IAS(G)]
contains the binary delta-matroid, isotropic system and multimatroid associated with G,
so we can see the interactions among these structures within the isotropic matroid.

In summary, we see that although the connections among delta-matroids, isotropic
systems and multimatroids are quite complicated in general, the theories are very closely
related when restricted to instances representable over GF (2). The following compila-
tion of results from various references indicates that this close relationship also includes
isotropic matroids, and that all these structures detect local equivalence.

Theorem 9. If G and H are looped simple graphs then any one of the following implies
the rest.

1. G and H are locally equivalent, up to isomorphism.

2. Up to isomorphism, the binary delta-matroid associated to H may be obtained from
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the binary delta-matroid associated to G by applying some twists and loop comple-
mentations.

3. The isotropic systems associated to G and H are strongly isomorphic.

4. The 3-matroids associated to G and H are isomorphic.

5. The isotropic matroids associated to G and H are isomorphic.

2 Sheltering matroids and their representability

In this section we define the notion of sheltering matroid and show its relationship with
the notion of multimatroid from the literature.

2.1 Multimatroids

We now recall the notion of multimatroid and related notions from [8]. Let Ω be a partition
of a finite set U . A T ⊆ U is called a transversal (subtransversal, respectively) of Ω if
|T ∩ ω| = 1 (|T ∩ ω| 6 1, respectively) for all ω ∈ Ω. We denote the set of transversals
of Ω by T (Ω) and the set of subtransversals of Ω by S(Ω). A p ⊆ U is called a skew pair
of ω ∈ Ω if |p| = 2 and p ⊆ ω. We say that Ω is a q-partition if q = |ω| for all ω ∈ Ω. A
transversal q-tuple of a q-partition Ω is a sequence τ = (T1, . . . , Tq) of q mutually disjoint
transversals of Q. Note that the elements of τ are ordered.

Multimatroids form a generalization of matroids. Like matroids, multimatroids can
be defined in terms of rank, circuits, independent sets, etc. Here they are defined in terms
of independent sets.

Definition 10 ([8]). Let Ω be a partition of a finite set U . A multimatroid Z over (U,Ω),
described by its independent sets, is a triple (U,Ω, I), where I ⊆ S(Ω) is such that:

1. for each T ∈ T (Ω), (T, I ∩ 2T ) is a matroid (described by its independent sets) and

2. for any I ∈ I and any skew pair p = {x, y} of some ω ∈ Ω with ω ∩ I = ∅,
I ∪ {x} ∈ I or I ∪ {y} ∈ I.

A multimatroid Z is said to be nondegenerate if |ω| > 1 for all ω ∈ Ω. If Ω is a
q-partition, then we say that Z is a q-matroid. If Z is a 1-matroid, then we also view
Z simply as a matroid. A basis of a multimatroid Z is a set in I maximal with respect
to inclusion. It is shown in [8] that the bases of a nondegenerate multimatroid are of
cardinality |Ω|. We say that C ∈ S(Ω) is a circuit if C is not an independent set and
C is minimal with this property (with respect to inclusion). For X ⊆ U , we define
Z[X] = (X,Ω′, I ′) with Ω′ = {ω ∩X | ω ∈ Ω, ω ∩X 6= ∅} and I ′ = {I ∈ I | I ⊆ X}. We
also define Z − X = Z[U − X]. Moreover, Z is called tight if both Z is nondegenerate
and for every S ∈ S(Ω) with |S| = |Ω| − 1, there is an x ∈ ω such that the rank of the
matroid Q[S] (recall that we associate a 1-matroid with a matroid) is equal to the rank
of the matroid Q[S ∪ {x}], where ω is the unique set in Ω such that S ∩ ω = ∅.
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2.2 Sheltering matroids

Recall the notion of sheltering matroid, which was mentioned in the introduction.

Definition 11. A sheltering matroid is a tuple Q = (M,Ω) where M is a matroid over
some ground set U and Ω is a partition of U , such that for any independent set I ∈ S(Ω)
of M and for any skew pair p = {x, y} of ω ∈ Ω with ω ∩ I = ∅, I ∪ {x} or I ∪ {y} is an
independent set of M .

Many matroid notions carry over straightforwardly to sheltering matroids. For ex-
ample, for X ⊆ U , we define the deletion of X from Q by Q − X = (M − X,Ω′) with
Ω′ = {ω \X | ω ∈ Ω, ω \X 6= ∅}.

Note that if Q = (M,Ω) is a sheltering matroid, then Z(Q) = (U,Ω, I) with U the
ground set of M and I = {I ∈ S(Ω) | I is an independent set of M} is a multimatroid.
We say that Z(Q) is the multimatroid corresponding to Q. Also, we say that Q (or
M) shelters the multimatroid Z(Q). Not every multimatroid is sheltered by a matroid
[8]. Note that for X ⊆ U , Z(Q − X) = Z(Q) − X. If Z(Q) is a q-matroid, then Q is
called a q-sheltering matroid, and Q is called tight if Z(Q) is tight. It follows from [29,
Proposition 41] that M [IAS(G)] is a tight 3-sheltering matroid, with Ω the partition of
W (G) into vertex triples.

Let Q1 = (M1,Ω1) and Q2 = (M2,Ω2) be sheltering matroids. An isomorphism ϕ
from Q1 to Q2 is an isomorphism from M1 to M2 that respects the skew classes, i.e., if
x and y are elements of the ground set of M1, then x and y are in a common skew class
of Ω1 if and only if ϕ(x) and ϕ(y) are in a common skew class of Ω2. If Q1 and Q2 are
isomorphic then Z(Q1) and Z(Q2) are isomorphic too; but the converse is far from true:

Example 12. Let U = {φ1, φ2, χ1, χ2} and Ω = {{φ1, χ1}, {φ2, χ2}}. Let Z be the multi-
matroid in which every element of S(Ω) is independent. Then Z has several nonisomorphic
sheltering matroids, including the uniform matroids U4,4, U3,4, U2,4 and the matroid with
bases {φ1, φ2}, {φ1, χ2}, {χ1, φ2} and {χ1, χ2}.

Note that in Example 12 there are sheltering matroids of ranks 2, 3 and 4. In general,
if Q = (M,Ω) is a sheltering matroid with Z(Q) nondegenerate, then M is of rank
r(M) > |Ω|, as all bases of Z(Q) are independent in M . Moreover, if Q is a sheltering
matroid with r(M) > |Ω|, then a sheltering matroid Qtr = (M tr,Ω) is obtained from Q
by truncation: M tr is the matroid whose independent sets are the independent sets of
M of cardinality < r(M). By truncating repeatedly, we conclude that a nondegenerate
multimatroid Z can be sheltered by a matroid if and only if Z can be sheltered by a
matroid of rank |Ω|.

Definition 13. We say that a sheltering matroid Q = (M,Ω) is strict if r(M) 6 |Ω|.

If Q is nondegenerate, the condition r(M) 6 |Ω| is equivalent to saying that the
family of bases of M that are (sub)transversals is equal to the family of bases of Z(Q).
In particular, r(M) 6 |Ω| is equivalent to r(M) = |Ω|.
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2.3 Representable multimatroids and sheltering matroids

We say that a sheltering matroidQ = (M,Ω) is representable over the field F if the matroid
M is representable over F. We say that a multimatroid Z is representable over F if there
is a sheltering matroid Q representable over F that shelters Z. Note that this notion
of representability for 1-matroids corresponds to the usual notion of representability for
matroids.

One might define a weaker version of representability for sheltering matroids Q =
(M,Ω) (and multimatroids Z) by requiring only that Z defines F-representable matroids
on the transversals of Ω; Bouchet and Duchamp presented a similar definition in [13]. We
do not explore this weaker version of representability in this paper.

We say that a multimatroid Z is strictly representable over F if there is a strict shel-
tering matroid Q representable over F that shelters Z.

We say that a sheltering matroid and multimatroid are binary when they are repre-
sentable over GF (2). Similarly, we say that a multimatroid is strictly binary if it is strictly
representable over GF (2). In this subsection we consider mainly 2-sheltering matroids
and 2-matroids, and in particular binary 2-sheltering matroids and binary 2-matroids.

Let A be a V × V matrix (i.e., A is a |V | × |V | matrix where the rows and columns
are not ordered, but instead indexed by V ). The principal pivot transform [30] of A with
respect to X ⊆ V with A[X] nonsingular is a V × V matrix denoted by A ∗ X. We
do not detail the definition of principal pivot transform here, but we recall three useful
properties. The first of these properties is that if

E =
(B T

I A
)

is a standard representation of some matroid M with respect to a basis B, and B′ is
another basis of M , then

E ′ =
(B′ T∆B′∆B

I A ∗ (B′ ∩ T )
)

is a standard representation of M with respect to B′. To state the second property, recall
that a matrix A is skew-symmetric if AT = −A. Thus, skew-symmetric matrices over
fields of characteristic 2 may have nonzero diagonal entries. The second useful property
of the principal pivot transform is that if A is skew-symmetric, so is A ∗ X. The third
useful property is that if A is skew-symmetric and zero-diagonal, so is A ∗X.

The following lemma is from [8, Theorem 4.1].

Lemma 14 ([8]). Let Ω be a 2-partition of U , and B a nonempty subset of T (Ω). Then B
is the set of bases of a 2-matroid over (U,Ω) if and only if for all B,B′ ∈ B and p ⊆ B∆B′

a skew pair, there is a skew pair q ⊆ B∆B′ such that B∆(p ∪ q) ∈ B (we allow p = q).

The following lemma is essentially from [4] from the context of delta-matroids. Recall
the definition of transversal q-tuple from Subsection 2.1.
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Lemma 15 ([4]). Let τ = (T1, T2) be a transversal 2-tuple of Ω, let

E =
(T1 T2
I A

)
be a matrix with A a skew-symmetric matrix over some field F, and let M be the column
matroid of E. Then Q = (M,Ω) is a 2-sheltering matroid.

Proof. To show that Z(Q) is a 2-matroid, we invoke Lemma 14. Let B1 and B2 be bases
of M , which are transversals of Ω, and let p ⊆ B1∆B2 be a skew pair. By applying
principal pivot transform, we have that M is represented by

E ′ =
(B1 T

I A′
)

for some skew-symmetric matrix A′ and some T ∈ T (Ω). Let p = {p1, p2} with p1 ∈ B1.
If B1∆p /∈ B, then the diagonal entry A′[{p2}] is zero. Since B2 is a basis, the column of
p2 in E is nonzero. Thus there is a q2 ∈ T such that

A′[{p2, q2}] =

( p2 q2
p2 0 x
q2 −x y

)
for some x ∈ F\{0} and y ∈ F. Since A′[{p2, q2}] is nonsingular, we have B1∆(p∪q) ∈ B,
where q is the skew pair containing q2.

We denote Q of Lemma 15 by Q(A, τ, 2).

Lemma 16. Let

E =
(B T

I A
)

be a matrix over GF (2), where A is zero-diagonal. Let Ω be the natural 2-partition such
that B and T are transversals of Ω. Then E represents a 2-sheltering matroid if and only
if A is symmetric.

Proof. The if direction follows from Lemma 15. For the only-if direction, assume to the
contrary that A is not symmetric. Then there are a, b ∈ T such that A[{a, b}] is of the
form ( a b

a 0 0
b 1 0

)
.

Consider I = (B \ (ωa ∪ωb))∪{a}, where ωx is the skew class of Ω containing x ∈ U . Let
M be the matroid represented by E. Note that I is an independent set of M . However,
there is no x ∈ ωb such that I ∪ {x} is an independent set of M . Thus (M,Ω) is not a
2-sheltering matroid — a contradiction.
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Proposition 17. If a tight 2-sheltering matroid Q = (M,Ω) is representable over some
field F, then r(M) = |Ω|. Consequently, Q is strictly representable over F.

Moreover, if the tight 2-sheltering matroid Q is (strictly) representable over F and
B ∈ T (Ω) is a basis of M , then for every F-standard representation

E =
(B T

I A
)

of M with respect to B, we have that A is a zero-diagonal T ×T matrix with T = E−B ∈
T (Ω).

In particular, if F = GF (2) then A is symmetric and zero-diagonal.

Proof. Let Q = (M,Ω) be a tight 2-sheltering matroid representable over F. Let B be a
basis of Q. Hence B is an independent set of M . Thus, M has a GF (2)-representation

E =

(B T

I A
0 C

)
for some matrices A and C and where I and 0 are the identity matrix and zero matrix of
suitable size. Let a ∈ T . Let ωa be the skew class of Ω containing a. Then the rank of
M [B\ωa] is smaller than the rank of M [B]. Since Q is tight, the rank of M [(B\ωa)∪{a}]
is equal to that of M [B \ ωa]. Hence both (1) the nonzero diagonal entry of A at index
a ∈ T is zero and (2) the column of C corresponding to a is zero. Consequently, C is the
zero matrix and A is zero-diagonal. Since C is the zero matrix, r(M) = |Ω|.

It follows from Lemma 16 that if F = GF (2), then A is symmetric.

In Subsection 2.5 we explain that Proposition 17 for the case F = GF (2) is closely
related to Property 5.2 of Bouchet and Duchamp [13].

We remark that Proposition 17 is also closely related to the following result shown
in [4] in the context of even delta-matroids (even delta-matroids correspond to tight 2-
matroids by [10, Theorem 5.3]). For convenience we also provide a short proof without
using delta-matroids.

Proposition 18 ([4]). Let Q be a 2-sheltering matroid having F-representation

E =
(T1 T2
I A

)
with A skew-symmetric. Then A is zero-diagonal if and only if Q is tight.

Proof. The if direction follows from Proposition 17. Note that for the if direction skew-
symmetry is not needed.

For the only-if direction we use the fact that a 2-matroid Z is tight if and only if
for any basis B and skew class ω of Z, B∆ω is not a basis (see [10, Theorem 4.2]). Let
Z = Z(Q), let B be a basis of Z, and ω be a skew class of Z. Assume that skew-symmetric
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matrix A is zero-diagonal. By applying principal pivot transform to E, we have that Q
is represented by

E ′ =
(B T

I A′
)

for some zero-diagonal skew-symmetric matrix A′ and some T ∈ T (Ω). Let ω = {x, y}
with x ∈ B. Since the diagonal entry of A′ corresponding to y is zero, there is a circuit
C ⊆ B∆ω containing y. Hence, B∆ω is not a basis. We conclude that Z is tight, and
therefore Q is tight.

The next example illustrates that not every binary 2-matroid is strictly binary. There-
fore, the condition of tightness in Proposition 17 is essential.

Example 19. Let Z be the 2-matroid over (U,Ω), where U = {a′, b′, c′, a, b, c}, Ω =
{{a′, a}, {b′, b}, {c′, c}} and the family of circuits C of Z is {{a′, b′, c′}, {a, b, c}}. Clearly,
Z is sheltered by the binary matroid M with ground set U and C as the family of circuits.
The rank of M is 4. We argue that M is the unique binary matroid that shelters Z.
Indeed, since |U | = 6, a binary matroid M ′ that shelters Z cannot have the Fano matroid
(or its dual), the cocycle matroid of K3,3, or the cocycle matroid of K5 (which have ground
set sizes 7, 9, and 10, respectively) as a minor. Hence M ′ is graphic. It is easy to see that
any graphic matroid of ground set size 6 with two disjoint triangles is isomorphic to M ;
as the ground sets of M and M ′ coincide and the elements of C are circuits in both M
and M ′, it follows that M = M ′. Since M is the unique binary matroid that shelters Z,
there cannot be a binary matroid of rank 3 that shelters Z. Thus, Z is binary but not
strictly binary.

2.4 Binary tight 3-matroids and isotropic matroids

The main results of this subsection are Theorems 21 and 22 which characterize binary
tight 3-matroids and isotropic matroids, respectively.

First we need the following result of [15].

Lemma 20 (Theorem 13 of [15]). Let Ω be a partition of some finite set U with for
each ω ∈ Ω, |ω| > 3. Let T ∈ T (Ω). If Z is a multimatroid over (U \ T,Ω′) with
Ω′ = {ω \ T | ω ∈ Ω}, then there is at most one tight multimatroid Z ′ over (U,Ω) with
Z ′ − T = Z.

Theorem 21. Let Z = (U,Ω, I) be a 3-matroid. The following statements are equivalent.

1. Z is tight and binary.

2. Z is tight and strictly binary.

3. Z = Z(Q) for some Q = (M,Ω) where M can be represented by the matrix

(T1 T2 T3
I A A+ I

)
,
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for some V × V -symmetric matrix A over GF (2) and some transversal 3-tuple τ =
(T1, T2, T3) of (U,Ω).

Proof. Trivially, Statement 2 implies Statement 1.
Assume that Statement 3 holds, and let G be the looped simple graph whose adjacency

matrix is A. We recall from [29] that M [IAS(G)] is a tight 3-sheltering matroid with Ω
the partition of W (G) into vertex triples. Thus Q = (M,Ω) is a tight 3-sheltering matroid.
Note that Q is strictly binary since M is binary and r(M) = |Ω|. Hence Statement 2
holds.

Assume now that the Statement 1 holds. Then Z = Z(Q) for some Q = (M,Ω)
such that M is binary, and Z is tight. Let T1 be a basis of Z. Let T2 = {u ∈ U |
(T1 \ ω) ∪ {u} with u ∈ ω ∈ Ω is not a basis of Z}. Since Z is tight, T2 is a transversal.
Since T1 is a basis of Z, T1 is an independent set of Q. Let

(T1 T2 T3
I A C
0 B D

)
be a representation of M with respect to T1 such that τ = (T1, T2, T3) is a transversal
3-tuple of Ω. By the definition of T2, all diagonal entries of A are zero and B is a zero
matrix (the argument is identical to the one given in the proof of Proposition 17). Since
Q−T3 is a 2-sheltering matroid, we have by Lemma 16 that A is symmetric. By applying
Lemma 20 to 2-matroid Z(Q) − T3, we see there is at most one tight 3-matroid Z ′ over
(U,Ω) with Z ′− T3 = Z(Q)− T3. The proof that Statement 3 implies Statement 2 shows
that if we take D to be the zero matrix and C to be A+ I, then this matrix represents a
3-sheltering matroid Q′ with Z(Q′) tight. Moreover, Z(Q′)−T3 = Z(Q)−T3. Therefore,
Z = Z ′ = Z(Q′), and we notice that Q′ is of the form of Statement 3 (the zero rows of
the matrix do not influence the matroid M). Hence Statement 3 holds.

While Theorem 21 shows that every binary tight 3-matroid Z is equal to Z(Q) with
Q the strictly binary tight 3-sheltering matroid of the form given by Statement 3, this
does not exclude the possible existence of some other strictly binary tight 3-sheltering
matroid Q′ = (M ′,Ω) with Z(Q) = Z(Q′). Indeed, for the distinct strictly binary tight 3-
sheltering matroids Q1 = (M1,Ω) and Q2 = (M2,Ω), where Ω = {{a1, a2, a3}, {b1, b2, b3}}
and the matroids M1 and M2 are represented by

( a1 b1 a2 b2 a3 b3
1 0 0 0 1 0
0 1 0 0 0 1

)
and

( a1 b1 a2 b2 a3 b3
1 0 0 0 1 0
0 1 0 0 1 1

)
,

respectively, we have Z(Q1) = Z(Q2). The next result shows that this cannot happen
if each ω ∈ Ω is an element of the cycle space of M ′. This result characterizes isotropic
matroids.

Theorem 22. Let Q = (M,Ω) be a 3-sheltering matroid. The following statements are
equivalent.
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1. Q is strictly binary and each ω ∈ Ω is an element of the cycle space of M .

2. M is isomorphic to some isotropic matroid where Ω is the set of vertex triples.

Proof. Assume the second statement holds. Recall that for isotropic matroids each vertex
triple is an element of the cycle space. Also, if M is isomorphic to some isotropic matroid,
then Q is obviously strictly binary.

Conversely, assume the first statement holds. Since Q is strictly binary and Z(Q) is
nondegenerate, M is of rank |Ω| and contains a basis T1 that is a subtransversal. Let

(T1 T2 T3
I A B

)
be a standard representation of M with respect to T1 such that τ = (T1, T2, T3) is a
transversal 3-tuple of Ω. Since each ω ∈ Ω is an element of the cycle space of M , the
columns belonging to each ω ∈ Ω sum to 0 and so we have B = A + I. By swapping
elements from T2 and T3, we may assume, without loss of generality, that each diagonal
entry of A is zero. By Lemma 16, A is symmetric since Q− T3 is a 2-sheltering matroid.
Hence M is isomorphic to some isotropic matroid.

In other words, if Q = (M,Ω) is a 3-sheltering matroid where M is binary and of rank
|Ω|, and each ω ∈ Ω is an element of the cycle space of M , then M is isomorphic to some
isotropic matroid (where Ω is the set of vertex triples).

Note that if Q is isomorphic to some isotropic matroid, then Q is tight. Hence, by
Theorem 22, if Q is strictly binary and each ω ∈ Ω is an element of the cycle space of M ,
then Q is tight.

2.5 Strongly representable 2-matroids

In this subsection we consider a version of representability for 2-matroids that is stronger
than representability. This stronger version corresponds to the definition of representabil-
ity of delta-matroids from Bouchet [4]. However, this definition does not seem to extend
naturally to multimatroids other than 2-matroids.

We say that a 2-sheltering matroid Q is strongly representable over some field F if
Q = Q(A, τ, 2) for some skew-symmetric matrix A over F and some transversal 2-tuple τ .
We say that a 2-matroid Z is strongly representable over F if there is a 2-sheltering matroid
Q strongly representable over F such that Z(Q) = Z. We say that Q (Z, respectively) is
strongly binary if Q (Z, respectively) is strongly representable over GF (2). If Q = (M,Ω)
is strongly representable over F, then Q is certainly strictly representable over F. By
Proposition 17, the converse holds in case Q is strictly binary and tight. Consequently, a
tight 2-sheltering matroid is strictly binary if and only if it is strongly binary.

We should mention that Proposition 17 is closely related to Property 5.2 of Bouchet
and Duchamp [13]: if an even delta-matroid is weakly binary, then it is binary. The
relationship between the results arises from two facts: if a 2-matroid is strictly binary
by our definition, then the associated delta-matroid is weakly binary by their definition;
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and a binary delta-matroid is even if and only if the associated 2-matroid is tight. Like
the property of Bouchet and Duchamp, Proposition 17 does not hold for strictly binary
2-sheltering matroids in general. In fact, their example S2 gives us the following example
of a strictly binary 2-sheltering matroid that necessarily requires that A be asymmetric.

Example 23. Let

E =


a1 b1 c1 a2 b2 c2

a 1 0 0 1 0 1
b 0 1 0 1 1 0
c 0 0 1 0 1 1

,
and B = {a1, b1, c1}. Then one may verify that the binary matroid M represented by E,
with the partition Ω = {{a1, a2}, {b1, b2}, {c1, c2}}, forms a strictly binary 2-sheltering
matroid Q = (M,Ω). However, Bouchet and Duchamp [13] observe, in the context of
delta-matroids, that Q is not strongly binary.

The interested reader can verify the observation of Bouchet and Duchamp that Q is
not strongly binary in three steps, as follows. First, find all the transversals of W (G) that
are bases of M ; there are seven, including B and (for instance) B′ = {a2, b2, c1}. Second,
for each of the six bases other than B, find the fundamental circuits of the remaining
elements. For instance, the fundamental circuits with respect to B′ are C(a1, B

′) =
{a1, a2, b2, c1}, C(b1, B

′) = {b1, b2, c1} and C(c2, B
′) = {c2, a2, b2}. The representation

of M corresponding to a basis B ∈ T (G) is a GF (2)-matrix of the form
(
I A

)
, where

the columns of A are the incidence vectors of the fundamental circuits. The third step
is to verify that none of these A matrices is symmetric. For instance, the A matrix
corresponding to B′ is not symmetric because b2 ∈ C(a1, B

′) and a2 /∈ C(b1, B
′).

We now show that every strongly binary 2-matroid can be sheltered by exactly one
strongly binary sheltering matroid.

Proposition 24. For every strongly binary 2-matroid Z, there is a unique strongly binary
2-sheltering matroid Q such that Z(Q) = Z.

Proof. Let Z(Q(A, τ, 2)) = Z(Q(A′, τ ′, 2)) for some symmetric matrices A and A′ over
GF (2). By applying principal pivot transform, we have Q(A′, τ ′, 2) = Q(A′′, τ, 2) for some
symmetric matrix A′′.

Let τ = (T1, T2). Assume A 6= A′′. If there is an x ∈ T2 such that A[{x}] 6= A′′[{x}],
then T1∆p with p the skew pair containing x is a basis of exactly one of Q(A, τ, 2) and
Q(A′′, τ, 2) — a contradiction since Z(Q(A, τ, 2)) = Z(Q(A′′, τ ′, 2)). Consequently, A and
A′′ coincide on the diagonal entries, and so A and A′′ must differ on some off-diagonal
entry. Thus there are x, y ∈ T2 such that

A[{x, y}] =

(x y

x a 1
y 1 b

)
and A′[{x, y}] =

(x y

x a 0
y 0 b

)
for some a, b ∈ {0, 1} (or the roles of A and A′ are reversed). Now, A[{x, y}] is singular
if and only if A′[{x, y}] is not singular. Hence T1∆(p ∪ q), with p and q the skew pairs
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containing x and y, is a basis of exactly one ofQ(A, τ, 2) andQ(A′′, τ, 2) — a contradiction.
Therefore, A = A′′.

3 Isomorphisms of isotropic matroids

In this section we discuss the connection between local equivalence and isomorphisms of
the isotropic matroids M [IAS(G)], and the connection between pivot equivalence and
isomorphisms of the restricted isotropic matroids M [IA(G)]. In the third subsection we
mention the surprising observation that every looped simple graph G has an associated
bipartite simple graph B(G), such that G and H are locally equivalent if and only if B(G)
and B(H) are pivot equivalent.

3.1 Compatible and non-compatible isomorphisms

We begin by summarizing the way local complementations induce isomorphisms of iso-
tropic matroids. A full account is given in [29].

Proposition 25. ([29]) If G is a looped simple graph with a vertex v then there are induced
isomorphisms βv

` : M [IAS(G)] → M [IAS(Gv
` )], β

v
ns : M [IAS(G)] → M [IAS(Gv

ns)] and
βv
s : M [IAS(G)] → M [IAS(Gv

s)]. These isomorphisms have βv
∗(αG(x)) = αGv

∗(x) for all
α ∈ {φ, χ, ψ} and x ∈ V (G), except as follows:

1. βv
` (χG(v)) = ψGv

`
(v) and βv

` (ψG(v)) = χGv
`
(v).

2. If v is not looped then βv
ns(φG(v)) = ψGv

ns
(v) and βv

ns(ψG(v)) = φGv
ns

(v).

3. If v is looped then βv
ns(φG(v)) = χGv

ns
(v) and βv

ns(χG(v)) = φGv
ns

(v).

4. If v is not looped then βv
s (φG(v)) = ψGv

s
(v) and βv

s (ψG(v)) = φGv
s
(v); also if w ∈ N(v)

then βv
s (χG(w)) = ψGv

s
(w) and βv

s (ψG(w)) = χGv
s
(w).

5. If v is looped then βv
s (φG(v)) = χGv

s
(v) and βv

s (χG(v)) = φGv
s
(v); also if w ∈ N(v)

then βv
s (χG(w)) = ψGv

s
(w) and βv

s (ψG(w)) = χGv
s
(w).

Proof. For Gv
` the assertion is obvious, as the only difference between IAS(G) and

IAS(Gv
` ) is that the χ(v) and ψ(v) columns are transposed.

For Gv
ns the situation is a little more complicated. If v is not looped, IAS(Gv

ns) can be
obtained from IAS(G) by interchanging the φG(v) and ψG(v) columns, and then adding
the v row to every other row corresponding to a neighbor of v. Elementary row operations
do not affect the matroid represented by a matrix, of course, so there is an isomorphism β :
M [IAS(G)] → M [IAS(Gv

ns)] that is given by β(φG(v)) = ψGv
ns

(v), β(ψG(v)) = φGv
ns

(v),
and otherwise β(αG(w)) = αGv

ns
(w) ∀α ∈ {φ, χ, ψ} ∀w ∈ V (G) = V (Gv

ns).
The remaining assertions follow, using compositions of loop complementations and

non-simple local complementations at unlooped vertices.
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Corollary 26. If two looped simple graphs G and H are locally equivalent (up to isomor-
phism), then there is an isomorphism β : M [IAS(G)]→M [IAS(H)], which maps vertex
triples to vertex triples.

Proof. Up to isomorphism, H can be obtained from G through a sequence of individ-
ual local complementations and loop complementations. A matroid isomorphism of the
type mentioned in the statement is the composition of the isomorphisms induced by the
individual local complementations and loop complementations.

We say that an isomorphism of this type is compatible with the partitions of W (G)
and W (H) into vertex triples, or that it is induced by a sequence of loop and local
complementations used to obtain an isomorph of H from G. Notice that there is an
associated bijection between V (G) and V (H) such that for each v ∈ V (G), β maps
the vertex triple τG(v) to the vertex triple τH(β(v)). In the special cases mentioned in
Proposition 25, this vertex bijection does not appear explicitly because it is the identity
map of V (G). In general, we use β to denote both a compatible isomorphism of isotropic
matroids and the associated vertex bijection; there is little danger of confusing the two,
because of the difference between their domains.

It turns out that the converse of Corollary 26 is also valid; details are discussed in [29].
The discussion of [29] also yields a characterization of local equivalence without allowing
for graph isomorphisms:

Proposition 27. G and H are locally equivalent if and only if there is a compatible
isomorphism β : M [IAS(G)]→M [IAS(H)] whose associated bijection V (G)→ V (H) is
the identity map of V (G) = V (H).

The most difficult result of [29] is this.

Proposition 28. ([29]) If there is an isomorphism between the matroids M [IAS(G)] and
M [IAS(H)], then G and H are locally equivalent (up to graph isomorphism).

What makes Proposition 28 difficult is the fact that unlike a compatible isomorphism,
an arbitrary matroid isomorphism between M [IAS(G)] and M [IAS(H)] need not be di-
rectly connected with any particular sequence of loop and local complementations that
relates G to H. Proposition 28 is proven in [29] by showing that an arbitrary matroid iso-
morphism may be incrementally “deformed” into a compatible isomorphism. The process
involves two types of incremental deformations; one type is focused on a pair of vertices
and the other type is focused on a set of four vertices. The second type of deformation
does not yield a precise correspondence between the four vertices to which the deformation
is applied and the four vertices that result from the deformation.

We do not provide details of this deformation process here, but we take a moment to
discuss an example. Let C5 be the graph with vertices denoted 1, 2, 3, 4 and 5, which
form a 5-cycle in the given order; that is, 1 is adjacent to 5 and 2, 2 is adjacent to 1
and 3, 3 is adjacent to 2 and 4, and 4 is adjacent to 3 and 5. Let H be the graph with
V (H) = {a, b, c, d, e}, such that a, b, c, d, e form a 5-cycle in the given order, and there is
also an edge connecting c and e. See Figure 1.
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Figure 1: C5 and H.

Here is the matrix IAS(C5), with the columns listed in an unusual order.



φ1 ψ1 χ1 ψ2 χ5 ψ3 φ4 χ3 φ2 ψ5 ψ4 χ2 χ4 φ5 φ3

1 1 1 0 1 1 0 0 0 0 1 0 1 0 0 0
2 0 1 1 1 0 1 0 1 1 0 0 0 0 0 0
3 0 0 0 1 0 1 0 0 0 0 1 1 1 0 1
4 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0
5 0 1 1 0 0 0 0 0 0 1 1 0 1 1 0


Here is the matrix IAS(H), with the columns grouped according to the vertex triples.



φa χa ψa φb χb ψb φc χc ψc φd χd ψd φe χe ψe

a 1 0 1 0 1 1 0 0 0 0 0 0 0 1 1
b 0 1 1 1 0 1 0 1 1 0 0 0 0 0 0
c 0 0 0 0 1 1 1 0 1 0 1 1 0 1 1
d 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1
e 0 1 1 0 0 0 0 1 1 0 1 1 1 0 1


We assert that these two matrices represent isomorphic binary matroids, with an

isomorphism matching matroid elements according to the given orders of the columns.
This assertion is verified by checking that the alleged isomorphism matches sets of columns
that sum to 0. We do not verify all of these matches but here are three instances:
{χ4, φ5, φ3} and {φe, χe, ψe} both sum to 0; {ψ2, χ3, ψ5, χ4} and {φb, χc, φd, φe} both sum
to 0; and {ψ2, φ4, φ2, ψ5, χ4} and {φb, φc, ψc, φd, φe} both sum to 0.

The given isomorphism M [IAS(C5)] ∼= M [IAS(H)] matches the vertices 1 and a to
each other directly, but there is no such direct matching of the other vertices. Instead, the
elements of the vertex triples corresponding to 2, 3, 4 and 5 are rearranged in a complicated
way to produce the vertex triples corresponding to b, c, d and e. Proposition 28 is satisfied
as C5 and H are locally equivalent up to isomorphism — local complementation of C5

with respect to any vertex yields a graph G isomorphic to H — but the given isomorphism
M [IAS(C5)] ∼= M [IAS(H)] is not directly connected to any isomorphism between H and
a graph locally equivalent to C5.

3.2 Transverse circuits and transverse matroids

For isotropic matroids, we have the following.
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Theorem 29. Let G and H be looped simple graphs. Then any one of the following
conditions implies the others:

1. G and H are locally equivalent, up to isomorphism.

2. There is a compatible isomorphism between the isotropic matroids of G and H.

3. There is an isomorphism between the isotropic matroids of G and H.

4. There is a bijection between W (G) and W (H), which defines isomorphisms between
the transverse matroids of G and those of H.

5. There is a bijection between W (G) and W (H), under which vertex triples and trans-
verse circuits of G and H correspond.

Proof. We begin with the implication 5 ⇒ 3. First we recall that a binary matroid is
uniquely determined by its cycle space (the span of its circuits under symmetric difference)
along with its ground set [23]. Note that every vertex triple is an element of the cycle
space of the matroid M [IAS(G)]. To verify the implication, it suffices to show that the
cycle space of M [IAS(G)] is generated by the vertex triples and the cycle spaces of the
transverse matroids. Let C be an element of the cycle space of M [IAS(G)], and let O
be the set of vertex triples ω with |C ∩ ω| > 1. Then C ′ = C ∆(∆ω∈Oω) is an element of
the cycle space, with |C ′ ∩ ω| 6 1 for every vertex triple, so C ′ is included in the cycle
space of some (in fact, every) transverse matroid which has C ′ as a subset of its ground
set. Hence C = C ′∆(∆ω∈Oω) is a sum of transverse circuits and vertex triples.

The implications 3 ⇒ 2 ⇒ 1 are verified in [29], the implication 1 ⇒ 2 is verified in
Corollary 26, and the implication 2 ⇒ 4 is obvious. The implication 4 ⇒ 5 is almost
obvious; we need only observe that if transverse matroids correspond under a bijection
between W (G) and W (H), then vertex triples must correspond too.

3.3 Local equivalence from pivot equivalence

Here is another equivalence relation often mentioned in conjunction with local equivalence.

Definition 30. Suppose vw is a nonloop edge of a simple graph G. Then the edge pivot
of G with respect to vw is

Gvw = ((Gv
s)

w
s )vs = ((Gw

s )vs)
w
s .

If H can be obtained from G using edge pivots then G and H are pivot equivalent.

It is not obvious at first glance that the two triple local complements mentioned in
Definition 30 are indeed equal, but the reader who has not seen the equality before will
have no trouble verifying it. We should mention that “pivot equivalence” is often defined
in a more complicated way for looped simple graphs: non-simple local complementations
at looped vertices are allowed, and edge pivots involving looped vertices are disallowed.
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The details are not important in this paper, though, because we discuss pivot equivalence
only in this subsection and the next, and only for simple graphs.

It is obvious that if G and H are pivot equivalent graphs then they are also locally
equivalent. Moreover, the converse is false; for instance, the complete graph Kn is not
pivot equivalent to any nonisomorphic graph, but it is locally equivalent to a star graph.
These observations indicate the well-known fact that pivot equivalence is a strictly finer
relation on simple graphs than local equivalence. A surprising consequence of Theorem 29
is that despite this fact, local equivalence is indirectly determined by pivot equivalence.
The following notion will be useful in explaining this consequence.

Definition 31. Let B be a basis of a matroid M , with ground set W . Then the fun-
damental graph GB(M) of M with respect to B is a bipartite simple graph with vertex
classes B and W − B, which has an edge connecting b ∈ B to w /∈ B if and only if b is
included in the unique circuit C(w,B) ⊆ B ∪ {w}.

Proposition 32. ([26, Prop. 4.3.2]) Let B be a basis of a matroid M . Then M is a
connected matroid if and only if GB(M) is a connected graph.

If M is a disconnected matroid then M is a direct sum ⊕Ni of connected matroids,
and a fundamental graph GB(M) is a disjoint union of fundamental graphs GB(Ni). In
particular, an isolated vertex of GB(M) corresponds to either a loop or a coloop of M .

Proposition 33. Let M1 and M2 be connected binary matroids with bases B1 and B2,
respectively. Then GB1(M1) and GB2(M2) are pivot equivalent if and only if M1 = M2 or
M1 = M∗

2 .

Proposition 33 is certainly implicit in the discussion of matroid representations in
Oxley’s book [26], though it is not explicitly stated there. An explicit statement equivalent
to Proposition 33 is proven by Oum [25, Corollary 3.5]. (Verifying the equivalence between
these statements requires the elementary observation that the vertex classes of a connected
bipartite graph are unique.)

Definition 34. For a looped simple graph G, we denote by B(G) the fundamental graph
of M [IAS(G)] with respect to the basis Φ(G) = {φG(v) | v ∈ V (G)}.

If v ∈ V (G), then the neighborhood of χG(v) (respectively ψG(v)) in B(G) gives a set
of φ columns of IAS(G) whose sum is equal to the χG(v) column (respectively the ψG(v)
column). Hence B(G) is the bipartite graph with adjacency matrix

A(B(G)) =

 0 A(G) A(G) + I
A(G) 0 0

A(G) + I 0 0

 .

Corollary 35. Two looped simple graphs G and H are locally equivalent (up to isomor-
phism) if and only if B(G) and B(H) are pivot equivalent (up to isomorphism).
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Proof. As noted above, an isolated vertex of B(G) corresponds to either a loop or a coloop
of M [IAS(G)]. As observed in Propositions 56 and 57, M [IAS(G)] has no coloop, and
a loop in M [IAS(G)] corresponds to an isolated vertex of G. It follows that B(G) has
an isolated vertex if and only if G has an isolated vertex. Isolated vertices are preserved
under local equivalence and pivot equivalence, so if either G and H are locally equivalent
(up to isomorphism) or B(G) and B(H) are pivot equivalent (up to isomorphism), then
G has an isolated vertex if and only if H has an isolated vertex. Induction on |V (G)|
allows us to assume that neither G nor H has an isolated vertex; in particular, each of
G,H has at least two vertices.

If G and H are locally equivalent (up to isomorphism), then |V (G)| = |V (H)|. Also, if
B(G) and B(H) are pivot equivalent (up to isomorphism) then 3 · |V (G)| = |V (B(G))| =
|V (B(H))| = 3 · |V (H)|. Consequently we may assume that |V (G)| = |V (H)| > 1.

Suppose for the moment that G is connected; then M [IAS(G)] is connected [29,
Section 7]. If G and H are locally equivalent (up to isomorphism) then Theorem 29 tells
us that M [IAS(G)] ∼= M [IAS(H)], so Proposition 33 implies that B(G) and B(H) are
pivot equivalent (up to isomorphism). For the converse, suppose B(G) and B(H) are
pivot equivalent (up to isomorphism). Then Proposition 33 tells us that M [IAS(G)] ∼=
M [IAS(H)] or M [IAS(G)] ∼= M [IAS(H)]∗. The latter is impossible, as the rank of
M [IAS(G)] is |V (G)| = |V (H)| and the rank of M [IAS(H)]∗ is 2 · |V (H)|. Theorem 29
tells us that M [IAS(G)] ∼= M [IAS(H)] implies G and H are locally equivalent (up to
isomorphism).

If G is not connected, let G1, . . . , Gc be its connected components. Then M [IAS(G)]
is the direct sum of the isotropic matroids of G1, . . . , Gc [29, Section 7], so B(G) is
the disjoint union of B(G1), . . . , B(Gc). The assertion of the corollary follows from the
arguments above, along with the fact that local equivalence and pivot equivalence do not
alter the vertex sets of connected components.

Before proceeding we remark on an unfortunate clash of nomenclature. Bouchet callsG
a “fundamental graph” of the isotropic system associated with G. See [5, 10] for instance.
So, although isotropic systems and isotropic matroids are equivalent (cf. Theorem 9),
their notions of fundamental graphs differ.

3.4 Pivot equivalence and M [IA(G)]

If G is a graph with adjacency matrix A(G) let IA(G) =
(
I A(G)

)
, and let M [IA(G)]

be the binary matroid represented by IA(G). We call M [IA(G)] the restricted isotropic
matroid of G. The ground set of M [IA(G)] is {φG(v), χG(v) | v ∈ V (G)} ⊆ W (G); there
is a natural partition of its elements into pairs corresponding to the vertices of G.

Proposition 36. M [IA(G)] is a 2-sheltering matroid with respect to the natural partition
of its ground set. Also, M [IA(G)] ∼= M [IA(G)]∗.

Proof. The first assertion follows from the fact that M [IAS(G)] is a 3-sheltering matroid
with respect to the partition of W (G) into vertex triples. The second assertion follows
from the fact that A(G) is symmetric, cf. [26, Theorem 2.2.8].
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Theorem 29 tells us that there is a direct relationship between local equivalence and
isotropic matroids: two graphs are locally equivalent (up to isomorphism) if and only if
their isotropic matroids are isomorphic. The following proposition indicates that there is
an analogous, but more complicated relationship between pivot equivalence and M [IA]
matroids.

Proposition 37. Let G and H be simple graphs.

1. G and H are pivot equivalent (up to isomorphism) if and only if M [IA(G)] and
M [IA(H)] are isomorphic as 2-sheltering matroids.

2. If G and H are pivot equivalent (up to isomorphism) then M [IA(G)] and M [IA(H)]
are isomorphic as matroids. However M [IA(G)] and M [IA(H)] may be isomorphic
even if G and H are not pivot equivalent (up to isomorphism).

3. If G and H are bipartite, then G and H are pivot equivalent (up to isomorphism)
if and only if M [IA(G)] and M [IA(H)] are isomorphic as matroids.

We mention Proposition 37 to clarify the significance of the preceding subsection, and
to contrast with Theorem 29; the results mentioned in Proposition 37 are known, though
perhaps not easy to recognize. Item 1 may be translated from 2-sheltering matroids
through 2-matroids to delta-matroids. The translation is “G and H are pivot equivalent
(up to isomorphism) if and only if the corresponding binary delta-matroids are twist
equivalent,” and this assertion follows from the definition of twist equivalence and Geelen’s
observation [22] that edge pivots are the only elementary pivots available for the binary
delta-matroid of a simple graph. To recognize item 3, note that if G is bipartite and M
is a binary matroid with fundamental graph G then

M [IA(G)] ∼= M

[(
I1 0 0 A1

0 I2 AT
1 0

)]
∼= M [

(
I1 A1

)
]⊕M [

(
I2 AT

1

)
] ∼= M ⊕M∗,

where I1 and I2 are identity matrices. Consequently a fundamental graph of M [IA(G)]
consists of two disjoint copies of G, so item 3 follows from Proposition 33. The positive
assertion of item 2 is easy to verify by comparing the matrices IA(G) and IA(Gvw); it
was mentioned in [29].

Here is an example to illustrate the negative assertion of item 2. Let C6 be the cycle
graph of order 6, with the conventional vertex order – vertex 1 is adjacent to vertices 6
and 2, vertex 2 is adjacent to vertices 1 and 3, etc. Let 2C3 be the disconnected graph
consisting of two disjoint copies of C3, with an unconventional vertex order: vertices 1, 3
and 5 lie on one 3-cycle, and vertices 2, 4 and 6 lie on the other. Then

A(C6) =


0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0

 and A(2C3) =


0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0
0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0

 .
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Notice that the two matrices have the same columns. Then IA(C6) and IA(2C3) also
have the same columns, so M [IA(C6)] and M [IA(2C3)] are isomorphic. However C6 and
2C3 are not pivot equivalent (up to isomorphism); they are not even locally equivalent
(up to isomorphism), as local equivalence preserves connectedness.

4 Stable sets and transverse matroids

Proposition 38. Let G be a looped simple graph, and let J be an independent set of
a transverse matroid of G. Then there is a locally equivalent graph H such that only
φH elements appear in the image of J under an induced isomorphism M [IAS(G)] →
M [IAS(H)].

Proof. According to part 1 of Proposition 25 we lose no generality if we remove all loops
in G; this avoids unnecessary proliferation of cases.

The proposition is proven by induction of the number m of non-φG elements included
in J . If m = 0 then H = G satisfies the proposition.

Proceeding inductively, suppose m > 0 and v is a vertex of G with φG(v) /∈ J .
If J contains ψG(v), then the image of J under the isomorphism βv

s : M [IAS(G)] →
M [IAS(Gv

s)] of Proposition 25 contains φGv
s
(v) in addition to every φGv

s
(w) such that

φG(w) ∈ J . As βv
s (J) has only m− 1 non-φGv

s
elements, the inductive hypothesis applies.

Suppose instead that every non-φG element of J is a χG element. We distinguish two
cases. Case 1. Suppose v and w are neighbors with χG(v), χG(w) ∈ J . Then the image of
J under the isomorphism βv

s : M [IAS(G)] → M [IAS(Gv
s)] contains ψGv

s
(w) in addition

to every φGv
s
(x) such that φG(x) ∈ J . Consequently the argument of the preceding

paragraph applies to βv
s (J). Case 2. Suppose χG(w) ∈ J and there is no neighbor v of w

with χG(v) ∈ J . It is impossible that φG(v) ∈ J ∀v ∈ N(w), as ζw = {χG(w)} ∪ {φG(v) |
v ∈ N(w)} is a circuit. Consequently there must be a v ∈ N(w) with φG(v) /∈ J . Then
the image of J under the isomorphism βv

s : M [IAS(G)]→M [IAS(Gv
s)] contains ψGv

s
(w)

in addition to every φGv
s
(x) such that φG(x) ∈ J . Consequently the argument of the

preceding paragraph applies to βv
s (J).

A special case of Proposition 38 is particularly striking. Let G be a looped simple
graph, and let B be a transversal of W (G) that is a basis of M [IAS(G)]. Then Proposition
38 tells us that there is a locally equivalent graph H and an induced isomorphism β :
M [IAS(G)] → M [IAS(H)] such that β(B) = {φH(v) | v ∈ V (H)}; we use the notation
{φH(v) | v ∈ V (H)} = Φ(H). What makes this special case striking is the fact that
we can use M [IAS(G)] to describe such a graph H explicitly. For each v ∈ V (G) let
B(v), C(v) and D(v) be the elements of τG(v), with B(v) ∈ B and C(v), D(v) /∈ B.
Then β(B(v)) = φH(β(v)). Let γv be the fundamental circuit of β(C(v)) with respect to
the basis Φ(H) of M [IAS(H)]. Considering the χH(β(v)) and ψH(β(v)) columns of the
matrix IAS(H), it is easy to see that for w 6= v ∈ V (G), β(v) and β(w) are neighbors in
H if and only if φH(β(w)) ∈ γv. (Note that γv∆{φH(β(v))} is the fundamental circuit of
β(D(v)) with respect to Φ(H), so reversing the labels of C(v) and D(v) would not affect
the validity of the preceding sentence.) As β is a matroid isomorphism, it follows that v
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and w are neighbors in H if and only if B(w) is an element of the fundamental circuit of
C(v) with respect to B in M [IAS(G)].

We summarize this special case as follows.

Corollary 39. Let G be a looped simple graph, and B ∈ T (G) a basis of M [IAS(G)].
Suppose C ∈ T (G) has B ∩ C = ∅. Let H be the graph with V (H) = V (G), in which
two vertices v and w are neighbors if and only if B(w) is an element of the fundamental
circuit of C(v) with respect to B in M [IAS(G)]. Then G and H are locally equivalent,
and there is an induced isomorphism β : M [IAS(G)]→M [IAS(H)] with β(B) = Φ(H).

Notice that we have proven indirectly that H is well defined, i.e., that B(w) is an
element of the fundamental circuit of C(v) with respect to B if and only if B(v) is an
element of the fundamental circuit of C(w) with respect to B. A direct proof of this fact
would use the same argument as the proof of Proposition 17.

Corollary 39 tells us that there is a close connection between the properties of graphs
locally equivalent to G and the properties of bases of M [IAS(G)] that are transversals of
W (G). For instance, G is locally equivalent to a d-regular graph if and only if M [IAS(G)]
has a basis B ∈ T (G) with respect to which all fundamental circuits are of size d + 1 or
d+ 2.

The next result implies Theorem 4 of the introduction.

Theorem 40. Suppose G is a looped simple graph, T ∈ T (G), and B is a basis of the
transverse matroid M = M [IAS(G)] | T . Let VB be the subset of V (G) consisting of
vertices corresponding to elements of B. Then there is a looped simple graph H that is
locally equivalent to G, such that an induced isomorphism β : M [IAS(G)]→M [IAS(H)]
has these two properties.

1. The image of V (G)−VB under the associated bijection β : V (G)→ V (H) is a stable
set of H.

2. The image of T under β is

{φH(β(v)) | v ∈ VB} ∪
⋃

v∈V (G)−VB

ζH(β(v)) .

Proof. Proposition 38 tells us that there is a graph H locally equivalent to G, such
that only φH elements appear in the image of B under an induced isomorphism β :
M [IAS(G)] → M [IAS(H)]. According to part 1 of Proposition 25, this property is not
affected if we remove all loops from H, so we may just as well assume that H is a simple
graph.

We claim that the image of T − B under β cannot include any φH or ψH element.
Note that the definition of IAS(H) implies that no set of φH columns can sum to 0, as
their nonzero entries appear in different rows. Also, no subtransversal consisting of φH

columns and a single ψH column can sum to 0, because none of the φH columns has a
nonzero entry in the same row as the diagonal entry of the ψH column. It follows that
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every subtransversal of W (H) containing some φH elements and a single ψH element is
independent. Consequently β(T −B) cannot contain any φH or ψH element, because such
an element would provide an independent set larger than B.

Suppose now that x, y ∈ V (G) − VB are two vertices of G whose images under β are
neighbors in H. Then the χH(β(x)) column of IAS(H) has a nonzero entry in the β(y)
row. As y /∈ VB, it follows that the χH(β(x)) column of IAS(H) is not an element of the
span of the φH(β(v)) columns with v ∈ VB. This is impossible, since β(B) spans β(M).
Hence there are no such x and y, i.e., β(V (G)− VB) is a stable set of H.

Theorem 40 also yields a rather complicated description of the nullity of an arbitrary
subtransversal:

Corollary 41. Let G be a looped simple graph with a subtransversal S ∈ S(G), and let ν
be a non-negative integer. Then ν is the nullity of S in M [IAS(G)] if and only if there
are a looped simple graph H and a stable set X ⊆ V (H) that satisfy these three properties:

1. H is locally equivalent to G.

2. |X| = ν.

3. An induced isomorphism β : M [IAS(G)]→M [IAS(H)] has⋃
x∈X

ζH(x) ⊆ β(S) ⊆ {φH(v) | v ∈ V (H)−X} ∪
⋃
x∈X

ζH(x) .

Proof. Suppose the three properties hold, and let T ∈ T (H) be the transversal

T = {φH(v) | v ∈ V (H)−X} ∪
⋃
x∈X

ζH(x) .

As X is a stable set in H, the transverse matroid M [IAS(H)] | T is represented by a
matrix of the form 

X N(X) Y

X 0 0 0
N(X) A I1 0
Y 0 0 I2

.
Here A records adjacencies between vertices in X and vertices in N(X), and I1, I2 are iden-
tity matrices. The elements of T corresponding to columns of A and I1 are all contained
in β(S), so |X| is the nullity of β(S) in M [IAS(H)].

Suppose conversely that the nullity of S is ν. Let VS = {v ∈ V (G) | S contains an
element of τG(v)}, and let J be an independent subset of S with |S| − ν elements. If
M is a transverse matroid of G that contains S, then M has a basis B that contains
J . The three properties of the statement follow immediately from Theorem 40, with
X = β(VS − VB).

Notice that in general, choosing a different independent set J will yield a different
locally equivalent graph H.
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5 Disjoint transversals and bipartite graphs

If G is a looped simple graph we denote by Φ(G), X(G) and Ψ(G) the transversals of
W (G) that include all the φG, χG and ψG elements (respectively). In this section we
characterize local equivalence to bipartite graphs in several ways, expanding on a result
of Bouchet [5, Corollary (3.4)].

Proposition 42. Let T1 and T2 be disjoint transversals of W (G). Then every independent
subtransversal J ⊆ T1 ∪ T2 is contained in a basis B of M [IAS(G)] that is a transversal
contained in T1 ∪ T2.

Proof. Recall that Q = (M [IAS(G)],W (G)) is a 3-sheltering matroid. Thus, Z(Q) is a
3-matroid and so Z(Q)[T1 ∪ T2] a 2-matroid and therefore nondegenerate. Recall from
Subsection 2.1 that the bases of nondegenerate multimatroids are transversals.

Corollary 43. Let T1 and T2 be disjoint transversals of W (G). Then there is a looped sim-
ple graph H locally equivalent to G, such that an induced isomorphism β : M [IAS(G)]→
M [IAS(H)] has β(T1 ∪ T2) = Φ(H) ∪X(H).

Proof. Let B be a basis of M [IAS(G)] that is a transversal contained in T1 ∪ T2. Propo-
sition 38 tells us that there is a looped simple graph H0 that is locally equivalent to G,
such that an induced isomorphism β : M [IAS(G)] → M [IAS(H0)] has β(B) = Φ(H0).
It follows that β((T1 ∪ T2)−B) is a transversal contained in X(H0)∪Ψ(H0). Loop com-
plementations at vertices of H0 that correspond to elements of β((T1 ∪ T2)−B) ∩Ψ(H0)
will produce a locally equivalent graph H that satisfies the statement.

Recall that if M1 and M2 are matroids on disjoint ground sets W1 and W2, then
their direct sum M1 ⊕M2 is the matroid on W1 ∪W2 whose rank function is given by
r(S) = r1(S ∩W1) + r2(S ∩W2).

Corollary 44. Let G be a looped simple graph. Then any one of the following conditions
is equivalent to the others:

1. G is locally equivalent to a bipartite graph.

2. G has a pair of disjoint transversals with r(T1) + r(T2) = |V (G)|.

3. G has a pair of disjoint transversals with

M [IAS(G)] | (T1 ∪ T2) = (M [IAS(G)] | T1)⊕ (M [IAS(G)] | T2).

4. G has a pair of disjoint transversals with

(M [IAS(G)] | T1) ∼= (M [IAS(G)] | T2)∗.
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Proof. If G is a bipartite graph with vertex-classes V1 and V2, let T1 and T2 be the
transversals of W (G) given by

Ti = {φG(v) | v ∈ Vi} ∪
⋃
v/∈Vi

ζG(v) .

Let M1 = M [IAS(G)] | T1, M2 = M [IAS(G)] | T2 and M12 = M [IAS(G)] | (T1 ∪ T2).
Then there is a matrix A such that M1 and M2 are represented (respectively) by

(V1 V2
V1 I1 A
V2 0 0

)
and

( V1 V2
V1 0 0
V2 AT I2

)
,

where I1 and I2 are identity matrices. It follows that M1
∼= (M2)

∗ [26, Theorem 2.2.8].
Also, M12 is represented by

(V1 V2 V1 V2
V1 I1 A 0 0
V2 0 0 AT I2

)
.

As no row of this matrix has a nonzero entry in a column corresponding to an element
of T1 and also a nonzero entry in a column corresponding to an element of T2, M12 is the
direct sum of M1 and M2.

To verify the implications 1 ⇒ 3 and 1 ⇒ 4, note that if G is locally equivalent to
a bipartite graph H then as was just observed, H has a pair of transversals that satisfy
conditions 3 and 4. The images of these transversals under an induced isomorphism
M [IAS(H)]→M [IAS(G)] are transversals of G that satisfy conditions 3 and 4.

The implication 4 ⇒ 2 is obvious. To verify the implication 3 ⇒ 2, note that if T1
and T2 satisfy condition 3 then r(T1) + r(T2) is the rank of M [IAS(G)] | (T1 ∪ T2), which
is |V (G)| by Proposition 42.

It remains to verify the implication 2 ⇒ 1. Suppose that G has a pair of disjoint
transversals with r(T1)+r(T2) = |V (G)|. By Proposition 42, M [IAS(G)] has a transverse
basis B ⊆ T1 ∪ T2. Then B1 = B ∩ T1 and B2 = B ∩ T2 are both independent sets of
M [IAS(G)]; as their cardinalities sum to r(T1) + r(T2), each Bi must be a maximal
independent subset of Ti. By Proposition 38, there is a graph H that is locally equivalent
to G, such that an induced isomorphism β : M [IAS(G)] → M [IAS(H)] has β(B) =
Φ(H). For i ∈ {1, 2} let Vi = {v ∈ V (H) | φH(v) ∈ β(Bi)}.

As β(B1) ⊆ Φ(H), no column of IAS(H) with a nonzero entry in a row corresponding
to a vertex outside V1 is in the span of the columns corresponding to elements of β(B1).
As r(β(T1)) = |B1|, every column corresponding to an element of β(T1 − B1) is in the
span of the columns corresponding to elements of β(B1); consequently no element of
β(T1−B1) corresponds to a column that includes a nonzero entry in a row corresponding
to an element of V2, so no two elements of V2 are neighbors in H. The same argument
applies if we reverse the roles of B1 and B2, so H is a bipartite graph.
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Figure 2: A graph locally equivalent to a bipartite graph.

For instance, the graph of Figure 2 might at first glance seem to resemble the wheel
graph W5. But in fact, it is quite different. A computer search indicates that the smallest
rank of a transversal of W5 is 4, but the pictured graph has two disjoint transversals
of rank 3. We leave finding them as an exercise for the reader. Here’s a hint: local
complementations at the degree-2 vertices produce a bipartite graph.

Corollary 44 has an interesting consequence, having as a special case a result regarding
bicycle spaces of planar graphs [24, Theorem 17.3.5]. The connection with planar graphs
arises from the fact that medial graphs of planar graphs are associated with bipartite
circle graphs; see the sequel to the present paper [18] for details.

Corollary 45. Suppose T1 and T2 are disjoint transversals of G, which satisfy Corol-
lary 44. Let T3 = W (G) \ (T1 ∪ T2), and for 1 6 i 6 3 let Mi be the matroid on V (G)
defined by M [IAS(G)] | Ti, using the obvious bijection between Ti and V (G). Then M1

and M2 have the same bicycle space, which equals the cycle space of M3.

Proof. M1, M2 and M3 are represented by three matrices

A1 =

(V1 V2
V1 I1 A
V2 0 0

)
, A2 =

( V1 V2
V1 0 0
V2 AT I2

)
and A3 =

( V1 V2
V1 I1 A
V2 AT I2

)
,

respectively. For 1 6 i 6 3 let Zi be the cycle space of Mi, i.e., the orthogonal complement
of the row space of Ai. Clearly then Z3=Z1 ∩ Z2. Moreover, Z1 and Z2 are orthogonal
complements of each other [26, Proposition 2.2.23], so Z1∩Z2 is the bicycle space of both
M1 and M2.

While transverse matroids of isotropic matroids are (of course) binary, Corollary 45
extends to quaternary matroids by generalizing the notion of an isotropic matroid in a
suitable way from GF (2) to GF (4); details are provided in [14, Section 3] (see also [16],
formulated there in terms of delta-matroids).

It is also worth mentioning that the converse of Corollary 45 does not hold. That
is, the condition “G has pairwise disjoint transversals T1, T2, T3 such that M1 and M2

have the same bicycle space, which equals the cycle space of M3” is not sufficient to
guarantee that G satisfies Corollary 44. For instance, M [IAS(C5)] has many sets of three
pairwise disjoint transversal bases; in the notation of Section 3, one such triple includes
T1 = {φ1, φ2, φ3, φ4, ψ5}, T2 = {χ1, χ2, ψ3, χ4, χ5} and T3 = {ψ1, ψ2, χ3, ψ4, φ5}. Any such
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transversal bases satisfy the condition quoted above, because the cycle and bicycle spaces
of M1,M2 and M3 are all {0}. But inspecting the matrix IAS(C5) displayed in Section
3, we see that no two columns are the same; as GF (2)2 has only four elements, it follows
that there is no transversal of rank 6 2. Consequently C5 does not satisfy Corollary 44.

6 Neighborhood circuits and transverse circuits

Theorem 5 of the introduction follows immediately from Corollary 41, with ν = 1. Corol-
lary 41 is also useful when ν > 1. For instance, the following four results indicate that
we can use transverse circuits to detect certain types of vertex pairs in locally equivalent
graphs.

Corollary 46. Suppose G is a looped simple graph, and k1, k2 ∈ N. Then these statements
are equivalent.

1. G is locally equivalent to some graph H with nonadjacent vertices of degrees k1 − 1
and k2 − 1, which do not share any neighbor.

2. G has a transverse matroid with two disjoint circuits of sizes k1 and k2, whose union
contains no other circuit.

Proof. Suppose G satisfies condition 1, and let v and w be vertices of H as described.
Then

ζH(v) ∪ ζH(w) ∪ {φH(x) | x ∈ V (H)− {v, w}}

is a transversal of W (H) that contains only two circuits, ζH(v) and ζH(w). The inverse
image of this transversal under an induced isomorphism β : M [IAS(G)] → M [IAS(H)]
satisfies condition 2.

For the converse, let S be the union of the two circuits mentioned in condition 2. Then
S is a subtransversal whose nullity is 2. Corollary 41 tells us that there is a graph H that
is locally equivalent to G, such that the images of the two circuits mentioned in condition
2 under an induced isomorphism M [IAS(G)] → M [IAS(H)] are both neighborhood
circuits.

Corollary 47. These two statements about a looped simple graph G are equivalent.

1. G is locally equivalent to a graph of diameter > 2.

2. G has a transverse matroid with two disjoint circuits, whose union contains no other
circuit.

Proof. This result follows immediately from Corollary 46, as a graph has diameter > 2 if
and only if it has a pair of nonadjacent vertices which do not share any neighbor.

Corollary 48. Suppose G is a looped simple graph, and k1, k2 ∈ N. Then these statements
are equivalent.
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1. G is locally equivalent to some graph H with nonadjacent vertices of degrees k1 − 1
and k2 − 1, which share a neighbor.

2. G has a transverse matroid of nullity 2, with distinct, intersecting circuits of sizes
k1 and k2.

Proof. Let v and w be vertices of a graph H that is locally equivalent to G, as described
in condition 1. Then the inverse image of

ζH(v) ∪ ζH(w) ∪ {φH(x) | x ∈ V (H)− {v, w}}

under an induced isomorphism β : M [IAS(G)]→M [IAS(H)] is a transverse matroid of
G, which satisfies condition 2.

For the converse, let M be a transverse matroid of G of nullity 2, and suppose γ1 and
γ2 are distinct, intersecting circuits of M with |γ1| = k1 and |γ2| = k2. The columns of
IAS(G) corresponding to elements of γ1 sum to 0, and so do the columns corresponding
to elements of γ2. Consequently the columns of IAS(G) corresponding to elements of
γ1∆γ2 also sum to 0. If M were to have a circuit γ3 $ γ1∆γ2, then it would also have a
circuit γ4 ⊆ (γ1∆γ2) − γ3, because the columns of IAS(G) corresponding to elements of
(γ1∆γ2)− γ3 would sum to 0. Then an independent set J of M would have to exclude an
element x of γ3 and an element y of γ4, and at least one more element: if x, y ∈ γ1 − γ2
then J would have to exclude an element z of γ2, if x, y ∈ γ2 − γ1 then J would have
to exclude an element z of γ1, and if x ∈ γ1 − γ2 and y ∈ γ2 − γ1 then J would have to
exclude some element z of γ1 ∪ γ3 − {x}, as the circuit elimination property guarantees
that γ1∪γ3−{x} is dependent. As the nullity of M is only 2, we conclude by contradiction
that γ1∆γ2 is a circuit of M .

Let J be a subset of M obtained by removing one element of γ1−γ2 and also removing
one element of γ2 − γ1. Then J is an independent set of M [IAS(G)]. Applying the
last paragraph of the proof of Corollary 41 to J , we conclude that there is a graph H
locally equivalent to G, such that the images of γ1 and γ2 under an induced isomorphism
M [IAS(G)]→M [IAS(H)] are both neighborhood circuits.

Corollary 49. Let G be a looped simple graph, and let k1, k2 ∈ N. Then these statements
are equivalent.

1. G is locally equivalent to a graph with adjacent vertices of degrees k1− 1 and k2− 1.

2. M [IAS(G)] has two transverse circuits γ1 and γ2 such that |γ1| = k1, |γ2| = k2, the
largest subtransversals contained in γ1∪γ2 are of size |γ1 ∪ γ2|−2, and two of these
largest subtransversals are independent sets of M [IAS(G)].

Proof. Suppose G is locally equivalent to a graph H with adjacent vertices v1 and v2,
of degrees k1 − 1 and k2 − 1. Then the neighborhood circuits ζH(v1) and ζH(v2) are
transverse circuits of H such that |ζH(v1)| = k1 and |ζH(v2)| = k2. As φH(v1) ∈ ζH(v2)
and φH(v2) ∈ ζH(v1), the largest subtransversals contained in ζH(v1) ∪ ζH(v2) are of size
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|ζH(v1) ∪ ζH(v2)| − 2. One independent subtransversal of maximum size contains only
φH elements, and the other includes one of χH(v1), ψH(v1) and one of χH(v2), ψH(v2),
along with every φH(w) such that w ∈ (NH(v1) ∪NH(v2))− {v1, v2}. The inverse images
of ζH(v1) and ζH(v2) under an induced isomorphism M [IAS(G)] → M [IAS(H)] are
transverse circuits of G that satisfy the requirements of the statement.

Conversely, suppose G has transverse circuits γ1 and γ2 as in the statement, and let
S ⊆ γ1 ∪ γ2 be an independent subtransversal of size |γ1 ∪ γ2| − 2. As S is independent,
it does not contain any circuit; hence S must exclude at least one element of γ1 and at
least one element of γ2. Proposition 38 tells us that there is a locally equivalent graph
H such that the image of S under an induced isomorphism M [IAS(G)] → M [IAS(H)]
contains only φH elements. The images of the two elements of γ1∪γ2−S must correspond
to columns of IAS(H) with diagonal entries equal to 0, as the images of γ1 and γ2 are
dependent. It follows that the images of γ1 and γ2 are neighborhood circuits of vertices v1
and v2 of degrees |γ1|−1 and |γ2|−1, respectively. The second independent subtransversal
of size |S| must exclude both φH(v1) and φH(v2), for if it were to contain either of them
it would contain ζH(v1) or ζH(v2), and consequently it would be dependent. This second
subtransversal would not be independent if v1 and v2 were not adjacent.

7 An example

Corollaries 6 and 7 can be used to provide particularly simple descriptions of some local
equivalence classes. For instance, a search using the matroid module for Sage [27, 28]
indicates that if a graph G of order 6 6 has no transverse circuit of size < 4, then
G is locally equivalent to the wheel graph W5. The local equivalence class of W5 is also
characterized by the relatively small nullities of its transverse matroids (the largest nullity
is 2). These observations yield several characterizations of this local equivalence class:

Proposition 50. Let G be a looped simple graph with n 6 6 vertices. Then any one of
the following properties implies the others.

1. G is locally equivalent to the wheel graph W5.

2. G is not locally equivalent to any graph with a vertex of degree 6 2.

3. G is not locally equivalent to any graph with a stable set of size > n− 3.

4. G has no transverse circuit of size 6 3.

5. G has no transverse matroid of rank 6 3.

The local equivalence class of W5 is important in Bouchet’s famous characterization
of circle graphs by obstructions [7]. In sequels to the present paper [18, 19] we extend
Proposition 50 and provide several new characterizations of circle graphs.
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Figure 3: The wheel graph W5.

8 Matroid minors and vertex-minors

Isotropic matroids of graphs constitute a very limited class of binary matroids. The
limitation is clear even if we note only that they are 3n-element matroids, as this implies
that when a single element is contracted or deleted from an isotropic matroid, the result
cannot be an isotropic matroid.

There is a special minor operation that is appropriate for isotropic matroids, which
involves removing entire vertex triples.

Definition 51. Let G be a looped simple graph, let S be a subtransversal of W (G), and
let S ′ contain the other 2 |S| elements of W (G) that correspond to the same vertices of
G as elements of S. Then

(M [IAS(G)]/S)− S ′

is the isotropic minor of G obtained by contracting S and deleting S ′.

Notice that if S is specified then it is not necessary to explicitly mention S ′, as S ′

is determined by S. Consequently we may sometimes refer simply to the isotropic mi-
nor obtained by contracting S. By the way, the definition is consistent with Bouchet’s
definitions of minors of isotropic systems [3] and multimatroids [9].

Definition 52. A vertex-minor of a looped simple graph G is a graph obtained from
G through some sequence of local complementations, loop complementations and vertex
deletions.

Theorem 53. ([29, Section 7.1]) The isotropic minors of G are precisely the isotropic
matroids of vertex-minors of G.

In particular, if v ∈ V (G) is unlooped and w ∈ NG(v) then the isotropic minor of G
obtained by contracting χG(v) is isomorphic to M [IAS(((Gv

s)
w
s )vs−v)], the isotropic minor

of G obtained by contracting ψG(v) is M [IAS(Gv
ns − v)], and the isotropic minor of G

obtained by contracting φG(v) is M [IAS(G− v)]. Notice that we only say “is isomorphic
to” in the first case, because in that case the matroid isomorphism requires a permutation
of the φ, χ, ψ labels in the vertex triple τG(w). No such label change is needed in the other
two cases. We refer to [29] for details.

In contrast, it turns out that all minors of transverse matroids are transverse minors,
in an appropriate sense.
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Proposition 54. Let G be a looped simple graph with a transverse matroid M . Then
every matroid minor of M is a transverse matroid of some vertex-minor of G.

Proof. It suffices to verify this for the minors obtained by contracting and deleting a
single element m of M . For M/m, the result is obvious: M/m is a transverse matroid of
the isotropic minor of M [IAS(G)] obtained by contracting m and deleting the other two
elements of the corresponding vertex triple.

To realize M − m as a transverse matroid of an isotropic minor of G, we recall the
triangle property of isotropic matroids: if m′ and m′′ are the other two elements of the
vertex triple that containsm, then one of the three transverse matroidsM , (M−m)∪{m′},
(M−m)∪{m′′} has the same rank as M−m, and the other two are of rank r(M−m)+1.
In any case we may presume that r((M−m)∪{m′}) = r(M−m)+1. Then m′ is a coloop
of (M−m)∪{m′}, so M−m = ((M−m)∪{m′})−m′ is isomorphic to ((M−m)∪{m′})/m′.
As observed in the preceding paragraph, the latter matroid is a transverse matroid of an
isotropic minor of G.

Corollary 55. Let M be a class of binary matroids that is closed under matroid minors,
and let GM be the family of looped simple graphs whose transverse matroids are all from
M. Then GM is closed under vertex-minors.

It is regrettable that the most important vertex-minor-closed family of looped simple
graphs, the looped circle graphs, cannot be described in this easy way. (Looped circle
graphs constitute a proper subfamily of Gcographic.) We discuss this important family in
sequels to the present paper [18, 19].

9 Parallel reductions and distance hereditary graphs

Recall some elementary definitions of matroid theory. A loop of a matroid is an element
that is excluded from every basis. Two non-loop elements x and y are parallel if {x, y}
is a circuit; equivalently, no basis includes them both. We also consider all loops to be
parallel to each other. Dually, a coloop is an element that is included in every basis, and
we consider all coloops to be in series with each other. Two non-coloop elements are in
series if no basis excludes them both.

It is a simple matter to recognize loops and parallels in matroids represented by binary
matrices: a column represents a loop if all of its entries are 0, and two columns represent
parallels if all of their entries are the same. In general it is not quite so easy to recognize
coloops and elements in series, but this will not concern us because isotropic matroids
have no coloops, and contain no series pairs that are not also parallel:

Proposition 56. Let G be a looped simple graph.

• No element of M [IAS(G)] is a coloop.

• Two elements of M [IAS(G)] are in series if and only if they are the parallel, non-
loop elements of the vertex triple of an isolated vertex of G.
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Proof. Suppose first that ρ is a coloop of M [IAS(G)]. As Φ(G) = {φG(v) | v ∈ V (G)} is
a basis of M [IAS(G)], ρ = φG(v) for some v ∈ V (G). Let ρ′ be the one of χG(v), ψG(v)
which corresponds to a column of IAS(G) with a nonzero v entry. Then the symmetric
difference Φ(G)∆{ρ, ρ′} is a basis of M [IAS(G)], and it does not contain ρ. We conclude
by contradiction that ρ is not a coloop.

If v is an isolated vertex of G then the columns of IAS(G) representing the two non-
loop elements of the vertex triple τG(v) are the same, and they are the only columns of
IAS(G) with nonzero entries in the v row. Consequently the corresponding elements of
M [IAS(G)] are parallel, and they are in series.

Now, suppose ρ and σ are in series in M [IAS(G)]. The basis Φ(G) must include at
least one of ρ, σ; say ρ = φG(v). We claim that σ /∈ Φ(G). Suppose the claim is incorrect,
and σ = φG(w). If w is a neighbor of v, choose ρ′ 6= ρ ∈ τG(v) and σ′ 6= σ ∈ τG(w) so that
the corresponding columns of IAS(G) have 0 entries in the v and w rows (respectively).
Then B = Φ(G)∆{ρ, ρ′, σ, σ′} is a basis of M [IAS(G)], because the columns of IAS(G)
corresponding to ρ′ and σ′ have nonzero entries in the w and v rows (respectively). But
B contains neither ρ nor σ, an impossibility. If w is not a neighbor of v, instead, then
choose ρ′ 6= ρ ∈ τG(v) and σ′ 6= σ ∈ τG(w) so that the corresponding columns of IAS(G)
have nonzero entries in the v and w rows (respectively). Then again, Φ(G)∆{ρ, ρ′, σ, σ′}
is a basis of M [IAS(G)] which contains neither ρ nor σ; and again, this is impossible. We
conclude by contradiction that the claim σ /∈ Φ(G) must be correct.

If v is not isolated in G, let x be a neighbor of v. Then the columns of IAS(G)
corresponding to χG(x) and ψG(x) both have nonzero entries in the v row. Choose one
of χG(x), ψG(x) that is not equal to σ, and denote it ρ′. Then Φ(G)∆{ρ, ρ′} is a basis of
M [IAS(G)] which contains neither ρ nor σ, an impossibility. We conclude that v must
be isolated.

Suppose σ is an element of a vertex triple τG(w), where w 6= v. Let ρ′ be the non-loop
element of τG(v), other than ρ. As σ 6= φG(w), Φ(G)∆{ρ, ρ′} is a basis of M [IAS(G)]
which excludes both ρ and σ, an impossibility.

The only remaining possibility is that σ is the non-loop element of τG(v) other than ρ.
As noted in the second paragraph of the proof, it follows that ρ and σ are both parallel
and in series.

In contrast, there are several kinds of parallels in isotropic matroids.

Proposition 57. Let G be a looped simple graph. An element of M [IAS(G)] is a loop
if it is the χG element of an isolated unlooped vertex, or the ψG element of an isolated
looped vertex.

Proof. An element of M [IAS(G)] is a loop if and only if every entry of the corresponding
column of IAS(G) is 0.

Proposition 58. Let G be a looped simple graph. Two non-loop elements of M [IAS(G)]
are parallel if and only if they fall into one of these four categories:

1. If v ∈ V (G) is isolated then the two non-loop elements of the vertex triple τG(v) are
parallel.
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2. If v 6= w ∈ V (G) and NG(v) = NG(w) 6= ∅ then the vertex triples τG(v) and
τG(w) contain a parallel pair, which includes the two elements whose corresponding
columns have 0 in both the v row and the w row.

3. If v 6= w ∈ V (G) and NG(v) ∪ {v} = NG(w) ∪ {w} then τG(v) and τG(w) contain a
parallel pair, which includes the two elements whose corresponding columns have 1
in both the v row and the w row.

4. If v 6= w ∈ V (G) and NG(v) = {w} then τG(v) and τG(w) contain a parallel pair,
which includes φG(w) and the element of τG(v) whose corresponding column has 0
in the v row.

Proof. Two non-loop elements of M [IAS(G)] are parallel if and only if the corresponding
columns of IAS(G) have the same entries, at least one of which is not 0.

Notice that in case 1, the two non-loop elements of τG(v) correspond to the only two
columns of IAS(G) with nonzero entries in the v row. Consequently these two elements
constitute a component of M [IAS(G)].

Vertex pairs of the types mentioned in cases 2 and 3 are nonadjacent twins and adjacent
twins, respectively. In case 4, v is pendant on w. Notice that if v and w fall under case 2
or case 3 in G, then they fall under under case 4 in a graph locally equivalent to G. For if
v and w are adjacent twins in G, then v is pendant on w in Gw

s and Gw
ns; and if v and w

are nonadjacent twins with a common neighbor x in G, then v and w are adjacent twins
in Gx

s and Gx
ns. Also, if NG(v) ∪ {v} = NG(w) ∪ {w} = {v, w} then cases 3 and 4 both

apply.

Corollary 59. If ρ and σ are parallel non-loop elements of M [IAS(G)] then one of these
cases holds.

1. A single vertex triple contains both ρ and σ. Moreover, the submatroid M [IAS(G)] |
{ρ, σ} is a component of M [IAS(G)].

2. Two distinct vertex triples {ρ, ρ′, ρ′′} and {σ, σ′, σ′′} contain ρ and σ. Moreover,
(a) there is a compatible automorphism of M [IAS(G)] that interchanges ρ and σ,
interchanges {ρ, ρ′, ρ′′} and {σ, σ′, σ′′}, and preserves all other vertex triples and (b)
there is a compatible automorphism of M [IAS(G)] that preserves all vertex triples,
fixes ρ and σ, interchanges ρ′ and ρ′′, and interchanges σ′ and σ′′.

Proof. If case 1 of Proposition 58 holds, then case 1 of this statement holds.
Suppose case 4 of Proposition 58 holds, i.e., v is pendant on w in G. For notational

convenience, suppose that neither v nor w is looped; then {ρ, σ} = {χG(v), φG(w)}. As
the columns of IAS(G) corresponding to these elements are identical, the transposition
(χG(v)φG(w)) defines an automorphism of M [IAS(G)].

Note that the only four columns of M [IAS(G)] with nonzero entries in the v row are
the columns corresponding to elements of the set S = {φG(v), ψG(v), χG(w), ψG(w)}.
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Consequently, every element of the cycle space of M [IAS(G)] includes an even number
of elements of S. Note also that S is an element of the cycle space, i.e., the sum of these
four columns is 0. Consequently, if an element of the cycle space of M [IAS(G)] contains
precisely two elements of S, then we obtain a new element of the cycle space by replacing
these two elements with the other two elements of S. It follows that if a permutation π
of S is the composition of two disjoint transpositions, then π defines an automorphism of
M [IAS(G)].

Consequently the permutation (φG(v)ψG(v))(χG(w)ψG(w)) is an example of a com-
patible automorphism of M [IAS(G)] that satisfies part 2(b) of the statement, and

(χG(v)φG(w))(φG(v)χG(w))(ψG(v)ψG(w))

is an example of an automorphism that satisfies part 2(a).
If case 2 or case 3 of Proposition 58 holds then as noted before the statement of this

corollary, G is locally equivalent to a graph H in which case 4 of Proposition 58 holds.
Let β : M [IAS(G)] → M [IAS(H)] be a compatible isomorphism induced by a local
equivalence between G and H. We have just seen that there are automorphisms βa and
βb of M [IAS(H)], which satisfy parts 2(a) and 2(b) of the statement for H (respectively).
It follows that the compositions β−1βaβ and β−1βbβ satisfy the statement for G.

The familiar idea of parallel reduction in matroid theory is simply to delete one of a
pair of parallels. It makes little difference which of the two parallels is deleted, because the
identity map of the ground set defines an isomorphism between the two resulting matroids.
We would like to define an analogous notion of “parallel reduction” for isotropic matroids,
but regrettably it cannot be quite so simple. There are two complications here that do
not affect ordinary matroidal parallel reduction:

1. To obtain an isotropic minor of an isotropic matroid we cannot simply delete an
element. We must remove a whole vertex triple, by deleting two elements and contracting
the third.

2. Corollary 59 tells us that choosing which parallel to delete from M [IAS(G)], and
which element of that vertex triple to contract, will not affect the resulting isotropic
matroid up to isomorphism. However, such an isomorphism need not be defined by the
identity map of W (G). For instance, if v is unlooped and w ∈ N(v) then as noted in
connection with Theorem 53, when we contract χG(v) the resulting isotropic minor is
isomorphic to M [IAS(((Gv

s)
w
s )vs − v)], and an isomorphism involves changing the φ, χ, ψ

designations of some matroid elements. On the other hand, if we contract φG(v) then the
resulting isotropic minor is identical to M [IAS(G− v)].

Considering these complications, we always prefer to contract a φ element; conse-
quently we always prefer to delete a parallel that is not a φ element. (Note that it is
impossible for two parallels to both be φ elements, because no two columns of an identity
matrix are the same.) The following definition reflects these preferences.

Definition 60. Let G be a looped simple graph, and suppose ρ and σ are distinct, parallel
elements of M [IAS(G)] such that ρ is not a φG element. An isotropic parallel reduction of
M [IAS(G)] corresponding to the pair ρ, σ is an isotropic minor obtained by contracting
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the φG element of the vertex triple that contains ρ, and deleting both ρ and the third
element of that vertex triple.

Definition 61. Let G be a looped simple graph. A pendant-twin reduction of G is a
graph obtained from G in one of the following ways:

1. Delete an isolated vertex.

2. Delete a twin vertex (adjacent or nonadjacent).

3. Delete a vertex of degree 1.

Proposition 58 immediately implies the following.

Corollary 62. The isotropic parallel reductions of M [IAS(G)] are the isotropic matroids
of pendant-twin reductions of G.

Applying Corollary 62 repeatedly, we deduce the following.

Corollary 63. Let G be a looped simple graph, with its vertices listed in order v1, . . . , vn.
Then the following statements are equivalent:

1. There is a sequence of n − 1 pendant-twin reductions that begins with G, in which
the ith reduction involves removing the vertex vi.

2. There is a sequence of n−1 isotropic parallel reductions that begins with M [IAS(G)],
in which the ith reduction involves removing the vertex vi.

If G satisfies Corollary 63 then we refer to the two sequences of reductions as res-
olutions, the first a pendant-twin resolution of G and the second an isotropic parallel
resolution of M [IAS(G)]. A connected graph that admits such resolutions is called dis-
tance hereditary [2]. Corollary 63 gives us a matroidal characterization of arbitrary dis-
tance hereditary graphs: M [IAS(G)] has an isotropic parallel resolution if and only if the
connected components of G are all distance hereditary.

Results connected with Corollary 63 have appeared in the literature before, in different
contexts. Bouchet proved an equivalent version of Corollary 63 involving isotropic systems
that are “totally decomposable” [6, Corollary 3.3]. A special case was discussed by Ellis-
Monaghan and Sarmiento [21], who proved that if a distance hereditary graph has a
pendant-twin resolution without any adjacent twin reduction, then it is the interlacement
graph of a medial graph of a series-parallel graph.

We should emphasize that Corollary 63 does not assert that M [IAS(G)] is a series-
parallel matroid in the usual sense. Indeed, if G has a connected component with three
or more vertices then M [IAS(G)] is not regular [29], so it is certainly not series-parallel.
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10 Forests

Theorem 8 follows directly from two results that are already known. One is the equiva-
lence between parts 1 and 2 of Theorem 29, and the other is a theorem of Bouchet [6], who
verified a conjecture of Mulder by proving that locally equivalent trees are isomorphic.
Bouchet’s proof of Mulder’s conjecture involves Cunningham’s theory of split decomposi-
tions [20]; we provide an alternative argument that involves isotropic parallel reductions
instead.

The first step in this alternative argument is a special case of Proposition 58.

Proposition 64. Let G be a forest. Two non-loop elements of M [IAS(G)] are parallel if
and only if they fall into one of these two categories:

1. The two non-loop elements of the vertex triple of an isolated vertex are parallel.

2. If v 6= w ∈ V (G) and NG(v) = {w} then χG(v) and φG(w) are parallel.

Proof. This follows from Proposition 58 because a forest has no looped vertex, and no
twins of degree > 1.

Suppose now that G and H are forests, and M [IAS(G)] ∼= M [IAS(H)]. Then
|V (G)| = |V (H)| and as stated in Theorem 29, there is a compatible isomorphism
β : M [IAS(G)] → M [IAS(H)]. As β is a compatible isomorphism, there is an asso-
ciated bijection β : V (G)→ V (H) such that for each v ∈ V (G), β maps the vertex triple
τG(v) to τH(β(v)).

Notice that Theorem 8 does not require any particular connection between a matroid
isomorphism β : M [IAS(G)] → M [IAS(H)] and a graph isomorphism G ∼= H. It
is convenient to prove a slightly stronger statement, which does require a connection:
namely, if β : M [IAS(G)] → M [IAS(H)] is a compatible isomorphism then there is a
bijection between V (G) and V (H) which defines a graph isomorphism G ∼= H and also
agrees with the bijection β : V (G)→ V (H) at every vertex where β(φG(v)) = φH(β(v)).
During the argument we refer to this statement as the strong form of Theorem 8.

If |V (G)| = |V (H)| = 0 the theorem is satisfied vacuously. The argument proceeds
using induction.

If G has an isolated vertex v then every entry of the χG(v) column of IAS(G) is 0,
so χG(v) is a loop of M [IAS(G)]. Then β(χG(v)) is a loop of M [IAS(H)], so necessarily
β(v) is isolated in H and β(χG(v)) = χH(β(v)). As β respects vertex triples, β(τG(v)) =
τH(β(v)). Of course the submatroids M [IAS(G)]− τG(v) and M [IAS(H)]− τH(β(v)) are
isomorphic, as we may simply restrict β. As v and β(v) are isolated, one need only look
at the matrices IAS(G) and IAS(H) to see that M [IAS(G)]− τG(v) and M [IAS(H)]−
τH(β(v)) are M [IAS(G − v)] and M [IAS(H − β(v))], respectively. Consequently the
inductive hypothesis tells us that G − v ∼= H − β(v). As v and β(v) are both isolated,
it follows that G ∼= H. Moreover, this graph isomorphism is given by a bijection that
agrees with the isomorphism G− v ∼= H − β(v) given by the induction hypothesis, and it
matches v to β(v), so it satisfies the strong form of the theorem.
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If G has no isolated vertex it has a vertex v with precisely one neighbor, w. Then χG(v)
is parallel to φG(w) in M [IAS(G)], so β(χG(v)) is parallel to β(φG(w)) in M [IAS(H)]. As
β respects vertex triples, β(χG(v)) and β(φG(w)) cannot fall under case 1 of Proposition
64; they must fall under case 2. Consequently, β({χG(v), φG(w)}) is either {χH(β(v)),
φH(β(w))} or {φH(β(v)), χH(β(w))}.

Composing β with the automorphism of M [IAS(G)] from case 2(a) of Corollary 59 if
necessary, we may presume that β(χG(v)) = χH(β(v)) and β(φG(w)) = φH(β(w)). Then
χH(β(v)) and φH(β(w)) are parallel in M [IAS(H)], so it must be that β(v) is pendant
on β(w) in H. Composing with the automorphism of M [IAS(G)] mentioned in case 2(b)
of Corollary 59 if necessary, we may also presume that β(φG(v)) = φH(β(v)).

Then β induces an isomorphism between the isotropic minors

M [IAS(G− v)] = (M [IAS(G)]/φG(v))− χG(v)− ψG(v) and

M [IAS(H − β(v))] = (M [IAS(H)]/φH(β(v)))− χH(β(v))− ψH(β(v)).

The inductive hypothesis tells us that there is a bijection between V (G− v) and V (H −
β(v)), which defines a graph isomorphism and agrees with the bijection defined by β at
every vertex x ∈ V (G − v) where β(φG(x)) = φH(β(x)). In particular, the isomorphism
matches w to β(w). As v and β(v) are pendant on w and β(w) respectively, it follows
that we can extend that isomorphism to an isomorphism G ∼= H, which matches v to
β(v). Clearly this isomorphism also satisfies the strong form of the theorem.
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