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DERIVED EQUIVALENCES FOR HEREDITARY ARTIN ALGEBRAS

DONALD STANLEY AND ADAM-CHRISTIAAN VAN ROOSMALEN

Abstract. We study the role of the Serre functor in the theory of derived equivalences. Let
A be an abelian category and let (U ,V) be a t-structure on the bounded derived category DbA

with heart H. We investigate when the natural embedding H → DbA can be extended to a
triangle equivalence DbH → DbA. Our focus of study is the case where A is the category of
finite-dimensional modules over a finite-dimensional hereditary algebra. In this case, we prove
that such an extension exists if and only if the t-structure is bounded and the aisle U of the

t-structure is closed under the Serre functor.
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1. Introduction

Let A be an abelian category. In the bounded derived category DbA, we consider the full
subcategory D≤0

A of all objects X such that HnX = 0 for all n > 0, and the full subcategory

D≥0
A of all objects X such that HnX = 0 for all n < 0. We can recover A (up to equivalence) as

D≤0
A ∩D≥0

A .
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A pair (U ,V) of full subcategories of DbA with properties similar to the pair (D≤0
A , D≥0

A ) given
above is called a t-structure (see [8] or §3.3). The definitions are chosen so that U ∩V is an abelian
category, called the heart of (U ,V).

We will say that the abelian categories A and B are derived equivalent if there is a triangle
equivalence F : DbA → DbB. Using F , one can transfer the standard t-structure (D≤0

B , D≥0
B ) on

DbB across to a t-structure (U ,V) on DbA, whose heart U ∩ V is equivalent to B.
However, this situation is not representative for the general situation. Indeed, even though it

is possible, for any t-structure (U ,V) on DbA, to extend the natural embedding H → DbA of the
heart to a triangle functor F : DbH → DbA, there might no choice of F which is an equivalence.
If there is such a choice F : DbH → DbA, we will say that the t-structure (U ,V) induces a derived
equivalence (see Definition 4.1). We will discuss this in §4.1 (based on necessary and sufficient
conditions given in [8]).

One necessary condition for a t-structure (U ,V) to induce a derived equivalence is that the
t-structure must be bounded, meaning that ∪n∈ZU [n] = DbA = ∪n∈ZV[n]. Here, we write X[n]
for the n-fold suspension of X.

To formulate a second necessary condition, we turn our attention to Serre functors (in the
sense of [13]). Thus, let C be a k-linear (k is a field) Hom-finite category; a Serre functor is an
autoequivalence S : C → C together with automorphisms

ηA,B : Hom(A,B) ∼= Hom(B, SA)∗,

for any A,B ∈ C, which are natural in A,B and where (−)∗ is the k-dual. Examples of categories
which admit a Serre functor are the bounded derived category Db cohX of coherent sheaves on X

(where X is a smooth projective variety), and the bounded derived category Db modΛ of finite-
dimensional right Λ-modules (where Λ is a finite-dimensional algebra of finite global dimension).

Let C be a triangulated category with a Serre functor S and a t-structure (U ,V) with heart
H = U ∩ V. We show in Corollary 4.13 that if there is a triangle equivalence F : DbH → C which
extends the natural embedding H → C, then SU ⊆ U . Thus for a t-structure to induces a derived
equivalence, it is necessary to satisfy some compatibility condition with the Serre functor.

One can now wonder in which cases the converse holds:

Question 1.1. Let C be a triangulated category which admits a Serre functor S : C → C, and let
(U ,V) be a t-structure on C with heart H = U ∩V. For which categories C (and possibly for which
restricted class of t-structures (U ,V) on C) are the following statements equivalent:

(1) the embedding H → C extends to a triangle equivalence DbH → C,
(2) the t-structure (U ,V) is bounded and SU ⊆ U?

A first observation is that the existence of a triangle equivalence DbH → C implies that C is
algebraic, in the sense of [29]. Thus, to have any hope of a positive answer to Question 1.1, one
needs to restrict oneself to algebraic triangulated categories. In §10, we will give three examples
of t-structures on (algebraic) triangulated categories where the answer to Question 1.1 is negative.
We note that the triangulated category in Example 10.4 is the bounded derived category of a
hereditary category.

Before mentioning a case where one knows that the answer to Question 1.1 is positive, we will
introduce some notation. Let Λ be a finite-dimensional algebra (over a field k) with finite global
dimension. We will write modΛ for the category of finite-dimensional right Λ-modules. In this
case, it is well-known that Db modΛ has Serre duality; we will denote the Serre functor by S, and
we will denote n-fold suspension by [n]. An object E ∈ Db modΛ is called a partial silting object
if HomDb modΛ(E,E[i]) = 0 for i > 0. We will say that a t-structure (U ,V) is finitely generated
if there is a partial silting object E ∈ Db modΛ such that U is the smallest full subcategory
of Db modΛ closed under extensions and suspensions which contains E. (Note that we do not
require U to be closed under desuspensions, thus the suspension Db modΛ → Db modΛ restricts
to a functor U → U which is not necessarily an autoequivalence. Put differently, U is a suspended
subcategory ([32]) of Db modΛ and not necessarily a triangulated subcategory.)

It follows from [38, Lemma 4.6] that one has a positive answer to Question 1.1 for finitely
generated t-structures on Db modΛ. We give a complete proof in §5.1.
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Consequently, if all t-structures on Db modΛ were finitely generated, the answer to Question
1.1 would be positive. It was shown in [15] that the class of derived discrete algebras (introduced
in [53]) satisfies this property. We will give a short account in §5.2.

The main result of this paper (Theorem 10.1 in the text) is that Question 1.1 has a positive
answer when Λ is hereditary without any further restrictions on the t-structures one considers:

Theorem 1.2. Let Λ be a finite-dimensional hereditary algebra over a field k, and let S be the
Serre functor in Db modΛ. Let (U ,V) be a t-structure on Db modΛ with heart H = U ∩ V. The

embedding H → Db modΛ can be extended to a triangle equivalence DbH
∼
→ Db modΛ if and only

if (U ,V) is bounded and SU ⊆ U .

The proof of the theorem is given in §10, but the main steps of the proof are given in §7, §8,
and §9.

Sketch of proof of Theorem 1.2. Let U ⊆ Db modΛ be a full subcategory. We will say that an
object E ∈ U is Ext-projective in U if Hom(E,U [1]) = 0 for all U ∈ U . If (U ,V) is a t-structure,
then any E ∈ U which is Ext-projective is also a partial silting object in Db modΛ.

In the proof of Theorem 1.2, we consider two extremal cases: in the first case, (U ,V) is finitely
generated (§5.1), while in the second case, U has no nonzero Ext-projectives (§8).

The proof of the former case is relatively straightforward; the latter case is more involved. In
Proposition 8.3, we construct a finitely generated t-structure (X ,Y) on Db modΛ which is “close
enough” to the given t-structure (U ,V); more specifically:

(1) SY ⊆ U ⊆ Y, and
(2) Y[1] ⊆ U .

It is then shown in Corollary 7.4 that the existence of such a t-structure (X ,Y) implies that (U ,V)
induces a derived equivalence. The construction of the t-structure (X ,Y) is heavily based on the
description of t-structures on Db modΛ given in [49]; we will recall the relevant results in §3.5.

In the more general case where U has nonzero Ext-projectives but where (U ,V) is not finitely
generated, one cannot hope to construct a finitely generated t-structure (X ,Y) as above (a coun-
terexample is given in Example 7.6). To handle this case, we will use perpendicular categories to
reduce the problem. One attractive possibility is to take the right perpendicular category E⊥ on
an Ext-projective object E ∈ U . It is shown in [4] that the subcategory U ∩ E⊥ is again an aisle
in E⊥, but in general it will not be closed under the Serre functor in E⊥.

We will therefore take a slightly more subtle approach in §9. We show in Proposition 6.4 that
each indecomposable Ext-projective object E in U corresponds to an indecomposable projective
in the heart of the t-structure, and that E has a simple top SE in the heart H = U ∩ V. We show
in Proposition 9.2 that U ∩⊥SE is an aisle in ⊥SE which is closed under the Serre functor in ⊥SE .

Furthermore, one can show (see Proposition 2.10) that the category ⊥SE is triangle equivalent
to Db modΛ′ for a finite-dimensional hereditary algebra Λ′. Proposition 9.6 then shows that the
t-structure (U ,V) on Db modΛ induces a derived equivalence if and only if the induced t-structure
(U∩⊥SE ,V∩

⊥SE) on
⊥SE

∼= Db modΛ′ induces a derived equivalence. By applying this reduction
finitely often, we reduce the problem to a known case.
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2. Preliminaries and notation

Throughout, we will fix a field k. We will assume that all categories, functors, algebras, and
vector spaces are k-linear. Furthermore, we will assume that all categories are essentially small,
i.e. equivalent to a category whose objects form a set.

When A is an abelian category, we will write DbA for the bounded derived category. The
suspension functor is written by [1], thus the nth suspension of X ∈ DbA is written as X[n].
There is a fully faithful functor A → DbA, mapping every object in A to a complex concentrated
in degree zero. When we interpret A as a full subcategory in this way, we will write A[0].

We write ExtnDbA(A,B) for HomDbA(A,B[n]). Since ExtnDbA(A,B) ∼= ExtnA(A,B), naturally
in A,B ∈ A, we often drop the subscript and thus write Extn(A,B).

A category is called Hom-finite if dimk Hom(X,Y ) < ∞, for all objects X,Y . An abelian
category is Ext-finite if dimk Ext

i(X,Y ) < ∞, for all objects X,Y and all i. We note that an
abelian Ext-finite category is also Hom-finite.

For an algebra Λ, we will write ModΛ for the category of right Λ-modules. The full subcategory
of finite-dimensional right Λ-modules is denoted by modΛ.

A full subcategory C ⊆ D is called replete if C is closed under isomorphisms. If C is a replete
subcategory of D and the embedding has a left (right) adjoint, then we will say that C is a reflective
(coreflective) subcategory of D. We will denote the left adjoint of the embedding C → D by (−)C

and the right adjoint by (−)C .
A full subcategory U of a triangulated category C is called a preaisle if U is closed under

extensions and suspensions. A coreflective preaisle is called an aisle.
For an additive category C with split idempotents, we will write addC E for the smallest full

subcategory of C which contains E and which is closed under direct summands and finite direct
sums. When there is no confusion about the ambient category, we will write addE for addC E.

2.1. Hereditary categories. Let A be an abelian category. We will say that A is hereditary
if Ext2A(−,−) = 0. We will say that a finite-dimensional algebra Λ is hereditary if ModΛ is a
hereditary category. In this case, modΛ is a hereditary category as well.

When A is a hereditary category, there is the following description of the objects in DbA (see
for example [19, 5.2 Lemma], [37, Theorem 3.1]): every object X ∈ DbA is isomorphic to a direct
sum of its cohomologies, thus

X ∼= ⊕n∈Z(H
nX)[−n].

2.2. Serre duality. Let C be a Hom-finite category. A Serre functor on C (in the sense of [13])
is an autoequivalence S : C → C together with automorphisms

ηA,B : Hom(A,B) ∼= Hom(B, SA)∗,

for any A,B ∈ C, which are natural in A,B and where (−)∗ is the vector space dual. If C
is a triangulated category, then S can be given the structure of a triangle equivalence ([13, 3.3
Proposition]).

Let A be an Ext-finite abelian category. As both A and DbA are Hom-finite additive categories
with split idempotents (idempotents split in A because A is abelian; that they split in DbA has
been shown in [6, 2.10. Corollary]), they are Krull-Schmidt categories.

We say that A has Serre duality if DbA admits a Serre functor. It has been shown in [13] that
the following categories have Serre duality:

• the category modΛ of finite-dimensional modules over a finite-dimensional algebra Λ with

finite global dimension (in this case S ∼= −
L
⊗k (Λ∗)), and

• the category cohX of coherent sheaves on a smooth projective variety X (in this case

S ∼= ωX

L
⊗OX

−[n] where ωX is the dualizing sheaf and n is the dimension of X).

It has been shown in [16, Proposition 2.8] that DbA has a Serre functor if and only if DbA has
Auslander-Reiten triangles (see [45, Proposition I.2.3] for the case where k is algebraically closed).
Writing τ̃ for S[−1], every indecomposable object A ∈ DbA admits an Auslander-Reiten triangle
τ̃A→M → A→ SA.
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If A is hereditary and has Serre duality, then it follows from [45, Theorem I.3.3] that A has
Auslander-Reiten sequences. We will denote the Auslander-Reiten translation in A by τ , thus
for every nonprojective indecomposable object A ∈ A there is an Auslander-Reiten sequence
0→ τA→M → A→ 0.

The Auslander-Reiten translation in A and the functor τ̃ : DbA → DbA coincide on nonprojec-
tive indecomposable objects of A, meaning that for every indecomposable nonprojective A ∈ A,
we have (τA)[0] ∼= τ̃(A[0]). We will therefore write τ for τ̃ . Furthermore, we will write τ− for τ−1.

We will use the following result (see [28, Lemma 1]).

Proposition 2.1. Let C and D be Hom-finite categories, and assume that C has a Serre functor
SC. Let F : D → C be a fully faithful functor. If F admits a right and a left adjoint R,L : C → D,
then D has a Serre functor SD ∼= R ◦ SC ◦ F . A quasi-inverse to SD is S−1

D
∼= L ◦ S−1

C ◦ F .

2.3. Wide and thick subcategories. Let A be an abelian category. Following [24], we say that
a full subcategory W of A is wide if W is closed under kernels, cokernels, and extensions in A.
For any subset of objects or any subcategory B of A, we will write wideA B (or just wideB if there
is no confusion) for the wide closure of B in A.

Note that a wide subcategory is abelian and closed under retracts. If A is hereditary, then any
wide subcategory W ⊆ A is also hereditary. Indeed, since W is closed under extensions, we know
that Ext1A(W,−)|W ∼= Ext1W(W,−), for all W ∈ W. This shows that Ext1W(W,−) is right exact,
and thus that W is hereditary.

Let C be a triangulated category. A full triangulated subcategory D of C which is closed under
retracts is called thick in C. For any subset of objects or any subcategory D of C, we write thickC D
(or just thickD if there is no confusion) for the thick closure of D in C.

We will be interested in the case where A is the category modΛ of finite-dimensional modules
over a finite-dimensional hereditary algebra Λ. In this case, we have the following well-known
property.

Proposition 2.2. Let Λ be a finite-dimensional hereditary algebra. Let W ⊆ modΛ be a wide
subcategory, and let Db

W modΛ be the full subcategory of Db modΛ consisting of all objects X ∈
Db modΛ such that Hi(X) ∈ W for all i ∈ Z. The following are equivalent.

(1) W is a reflective subcategory of modΛ,
(2) W is a coreflective subcategory of modΛ,
(3) W ∼= modΓ for a finite-dimensional hereditary algebra Γ,
(4) Db

W modΛ is a reflective subcategory of Db modΛ,
(5) Db

W modΛ is a coreflective subcategory of Db modΛ.

Proof. See [36, Proposition 6.6 and Remark 6.7]. �

2.4. Perpendicular subcategories and twist functors. Let C be a triangulated category, and
let S ⊆ Ob C. We define the following full subcategories via their objects:

ObS⊥ = {C ∈ C | ∀n ∈ Z : Hom(S, C[n]) = 0},

Ob⊥S = {C ∈ C | ∀n ∈ Z : Hom(C,S[n]) = 0},

and for any n ∈ Z:

ObS⊥n = {C ∈ C | Hom(S, C[n]) = 0},

Ob⊥nS = {C ∈ C | Hom(C,S[n]) = 0}.

Note that, for any S ⊆ Ob C, both S⊥ and ⊥S are thick subcategories. When S ∈ ObDbA, we
write S⊥ for {S}⊥. We will use similar definitions for ⊥S, S⊥n , and ⊥nS. For any set S, we have
⊥S ∼= ⊥ thickS.

Let A be an Ext-finite abelian category of finite global dimension, thus for any X,Y ∈ DbA, we
have

∑

i∈Z
dimk Hom(X,Y [i]) < ∞. Let S ∈ DbA such that Hom(S, S[i]) = 0 for all i 6= 0, and

such that A = Hom(S, S) is semi-simple, then the thick subcategory thickDbA S generated by S is
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equivalent to Db modA (see [27], see also [51, Theorem 5.1]), and the embedding thickS → DbA
has a left and a right adjoint, given on objects by

CthickS
∼= RHom(S,C)

L
⊗A S,

CthickS ∼= RHom(C, S)∗
L
⊗A S.

Remark 2.3. The functor −
L
⊗A S : Db modA → DbA is left adjoint to RHom(S,−) : DbA →

Db modA and thus, for every C ∈ DbA, the co-unit of the adjunction yields a natural map

RHom(S,C)
L
⊗A S → C, called the evaluation map. Since we have assumed that A is semi-simple,

we have RHom(S,C)
L
⊗A S ∼=

⊕

i∈Z
Hom(S,C[i])⊗A S[−i]. When there can be no confusion, we

will just write −
L
⊗ − for −

L
⊗A −.

The embedding thickDbA S → DbA is part of a semi-orthogonal decomposition of DbA, and it
follows from [12, Lemma 3.1] (see also [50, Lemma 3.1]) that the embedding ⊥S → DbA has a
right adjoint T ∗

S : DbA → ⊥S and a left adjoint TS : DbA → ⊥S. For every C ∈ DbA, there are
triangles

T ∗
S(C)→ C → RHom(C, S)∗

L
⊗A S → T ∗

S(C)[1],

TS(C)[−1]→ RHom(S,C)
L
⊗A S → C → TS(C).

Remark 2.4. The functors TS and T ∗
S are the twist functors considered in [52, §3.1] (based on

[48]); this explains the notation of the functors.

Remark 2.5. Note that TS(X) = 0 if and only if T ∗
S(X) = 0 if and only if X ∈ thickS.

Remark 2.6. We will be interested in the case where A is the category modΛ of finite-dimensional
modules over a finite-dimensional hereditary algebra Λ, and where S ∈ Db modΛ is an exceptional
object. In this setting, it has been shown in [21, Proposition 3] that ⊥S is equivalent to Db modΛ′

where Λ′ is a finite-dimensional hereditary algebra with one fewer distinct simple (thus if modΛ
has n isomorphism classes of simple objects, then modΛ′ has n− 1 isomorphism classes of simple
objects).

We will also use perpendicular subcategories in the setting of abelian categories. Thus, let A
be any abelian category, and consider a subset S ⊆ A. We define the following full subcategories
via their objects:

ObS⊥ = {A ∈ A | ∀n ∈ Z : Extn(S, A) = 0},

Ob⊥S = {A ∈ A | ∀n ∈ Z : Extn(A,S) = 0}.

In general, the categories S⊥ and ⊥S are not wide subcategories of A and will not be abelian.
It follows from [17, Proposition 1.1] that S⊥ and ⊥S will be wide subcategories of A if A is
hereditary. Note that in this case, both S⊥ and ⊥S are abelian and hereditary.

We recall the following lemma from [44, Lemma 3.6].

Lemma 2.7. Let A be a hereditary category. For any wide subcategory W ⊆ A, we have
Db

W⊥(A) = (W[0])⊥ = (Db
W(A))⊥.

Remark 2.8. In the statement of Lemma 2.7, the perpendicular W⊥ is taken in A, while the
perpendicular (W[0])⊥ is taken in DbA.

Proposition 2.9. Let Λ be a finite-dimensional hereditary algebra and write A for modΛ. IfW ⊆
A is a wide subcategory satisfying the equivalent conditions of Proposition 2.2, then ⊥W,W⊥ ⊆ A
also satisfy the equivalent conditions of Proposition 2.2.

Proof. By assumption, the embedding Db
WA → DbA has a left adjoint and hence is part of a

semi-orthogonal decomposition of DbA. It follows from [12, Lemma 3.1] that the embedding
(Db

WA)
⊥ → DbA has a right adjoint. Lemma 2.7 shows that W⊥ ⊆ A satisfies the equivalent

conditions of Proposition 2.2.
The proof for ⊥W is similar. �
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Proposition 2.10. Let Λ be a finite-dimensional hereditary algebra, and let E ∈ Db modΛ be an
indecomposable object. If Ext1(E,E) = 0, then ⊥E ∼= Db modΛ′ where Λ′ is a finite-dimensional
hereditary algebra with one fewer distinct simple module than Λ (thus if modΛ has n isomorphism
classes of simple objects, then modΛ′ has n− 1 isomorphism classes of simple objects).

Proof. Up to suspension, we may assume that E ∈ Db modΛ is isomorphic to a stalk complex
concentrated in degree zero, thus E ∼= A[0] for some A ∈ modΛ. It follows from [21, Proposition
3] that ⊥A ⊆ modΛ is equivalent to modΛ′ for some finite-dimensional hereditary algebra Λ′ with
one fewer distinct simple module than Λ, and it follows from Lemma 2.7 that ⊥E ⊆ Db modΛ
is equivalent to Db

⊥A modΛ. Finally, we have Db
⊥A modΛ ∼= Db(⊥A) ∼= DbΛ′ since modΛ is

hereditary and thus every object in Db modΛ is isomorphic to a direct sum of its homologies. �

2.5. Ext-projectives and silting subcategories. In this subsection, we will consider a common
generalization of projective objects.

Definition 2.11. Let A be an abelian category and let C be a full additive subcategory of A or
DbA. An object E ∈ C is called Ext-projective in C or C-projective if Exti(E,C) = 0 for all i > 0
and all C ∈ C. The category of C-projective objects is the smallest full subcategory of C containing
all C-projective objects.

Remark 2.12. The category E of C-projective objects is an additive category.

Remark 2.13. If U ⊆ DbA is closed under suspensions (thus U [1] ⊆ U , for example when U is a
preaisle), then the category of U -projective objects is U ∩ ⊥1U .

Definition 2.14. Let E ⊆ DbA be a full additive subcategory. We will say that E is a partial
silting subcategory if Hom(E,F [n]) = 0 for all E,F ∈ E and all n > 0. The partial silting
subcategory E is called a silting subcategory if thick(E) = DbA.

An object E ∈ DbA is called a (partial) silting object if the category add(E) is a (partial) silting
subcategory.

Similarly, we will say that the subcategory E is a partial tilting subcategory if Hom(E,F [n]) = 0
for all E,F ∈ E and all n 6= 0. The partial tilting subcategory E is called a tilting subcategory if
thick(E) = DbA.

An object E ∈ DbA is called a (partial) tilting object if the category add(E) is a (partial) tilting
subcategory.

Example 2.15. For any full additive subcategory C ⊆ DbA, the category of C-projectives is a
partial silting subcategory, but not necessarily a partial tilting subcategory.

Example 2.16. Let Λ be a finite-dimensional algebra. Then Λ[0] ∈ ObDb modΛ is a partial
tilting object. It will be a tilting object if and only if Λ has finite global dimension. However, Λ[0]
will always be a tilting object in Kb(Proj Λ) ⊆ Db modΛ.

We will use the following property.

Proposition 2.17. Let A be an Ext-finite hereditary abelian category, and let A ∈ DbA be an
indecomposable object. If Ext1(A,A) = 0, then EndA is a skew field.

Proof. Since A is hereditary, we know that A ∼= ⊕n∈Z(H
nA)[−n], and since A is indecomposable,

there is an n ∈ Z such that A ∼= (HnA)[−n]. Hence, there is an n ∈ Z such that A ∈ A[−n]. The
statement then follows from [22, Lemma 4.1] (see also [37, Proposition 5.2]). �

3. Torsion pairs, weight structures, and t-structures

In this section, we recall the definitions and some properties of torsion pairs, weight structures,
and t-structures that we will use in this article.
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3.1. Torsion pairs. Let C be any category and let X ⊆ C be a full subcategory. We will say that a
map f : X → C is a right X -approximation of C ∈ C ifX ∈ X and any mapX ′ → C (withX ′ ∈ X )
factors through f . Put differently, the map Hom(X ′, f) : Hom(X ′, X)→ Hom(X ′, C) is surjective.
If every object C ∈ C has a right X -approximation, then we say that X is a contravariantly finite
subcategory.

Let Y be a full subcategory of C. Dually, we say that a map g : C → Y is a left Y-approximation
of C ∈ C if Y ∈ Y and any map C → Y ′ (with Y ′ ∈ Y) factors through g. This is equivalent to
saying that map Hom(g, Y ′) : Hom(Y, Y ′) → Hom(C, Y ′) induced by g : C → Y is surjective for
all Y ′ ∈ Y. If every object C ∈ C has a left Y-approximation, then we say that Y is a covariantly
finite subcategory.

A subcategory X ⊆ C which is both covariantly and contravariantly finite is called functorially
finite.

Example 3.1. If the embedding X → C has a right (left) adjoint, then X is contravariantly
(covariantly) finite.

Let C be any triangulated category, and let (X ,Y) be a pair of full subcategories which are
closed under retracts, finite direct sums, and isomorphisms. Following [25], we will say that (X ,Y)
is a torsion pair in C if Hom(X ,Y) = 0 and if for any C ∈ C there is a triangle X → C → Y → X[1]
where X ∈ X and Y ∈ Y. It is easy to check that the map X → C is a right X -approximation of
C and that the map C → Y is a left Y-approximation of C. In particular, X is contravariantly
finite and Y is covariantly finite.

Remark 3.2. A torsion pair is completely determined by a contravariantly finite subcategory X ⊆ C
which is closed under retracts and extensions. We can then recover Y as X⊥0 .

Remark 3.3. Both X and Y are closed under extensions.

3.2. Weight structures. Weight structures were introduced by Bondarko ([14]) and Pauksztello
(called co-t-structures, see [43]). A pair (X ,Y) of subcategories of C is said to be a weight structure
on C if (X ,Y[1]) is a torsion pair and X ⊆ X [1]. Note that this implies that Y[1] ⊆ Y and so,
since Y is also closed under extension, Y is a preaisle.

Let (X ,Y) be a weight structure on C. For any object C ∈ C, there is a triangle

X → C → Y → X[1]

where Y ∈ Y and X ∈ X [−1].
A weight structure (X ,Y) is bounded [14] if

⋃

n∈Z

X [n] = C =
⋃

n∈Z

Y[n].

3.3. t-Structures. A pair (U ,V) is called a t-structure if (U ,V[−1]) is a torsion pair in C and
U [1] ⊆ U .

We know ([9, Proposition 2.4], see also [49] based on [41, Proposition 1.4]) that the embedding
U → C admits a right adjoint and that the embedding V → C admits a left adjoint.

Recall that the torsion pair (U ,V[−1]) is completely determined by U ⊆ C. Thus, the t-structure
(U ,V) is determined by the aisle U (this is the point of view taken in [33]).

Alternatively, a t-structure ([8]) on C can be defined as a pair (U ,V) of full subcategories of C
satisfying the following conditions:

(1) U [1] ⊆ U and V ⊆ V[1],
(2) Hom(U [1],V) = 0,
(3) ∀C ∈ C, there is a triangle U → C → V → U [1] with U ∈ U and V ∈ V[−1].

Furthermore, we will say the t-structure is bounded if
⋃

n∈Z

U [n] = C =
⋃

n∈Z

V[n].

We will say that U is bounded if the associated t-structure (U ,V) is bounded.
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The heart of a t-structure (U ,V) is defined to be U ∩ V. We will denote the heart of the
t-structure (U ,V) by H(U), thus explicitly:

H(U) = U ∩ (U⊥−1) = U ∩ V.

It has been shown in [8, Théorème 1.3.6] (see also [18, Theorem IV.4.4]) that the heart is an
abelian category.

Let A be an abelian category. The standard t-structure (D≤0, D≥0) on DbA is defined as:

ObD≤0 = {X ∈ DbA | HnX = 0 for n > 0},

ObD≥0 = {X ∈ DbA | HnX = 0 for n < 0}.

The heart H of the standard t-structure is the full subcategory consisting of X ∈ DbA such that
HnX = 0 for n 6= 0. Note that A ∼= H.

Remark 3.4. A bounded t-structure (U ,V) on C is completely determined by its heart H. Indeed,
we can recover U and V as the smallest full extension-closed subcategories, closed under suspension
and desuspension, respectively.

For an abelian category A, the t-structure induced by the full embedding A → DbA, mapping
an object to the stalk complex concentrated in degree zero, is the standard t-structure.

Associated to a t-structure (U ,V), there are the following cohomological functors:

H0
U (−) = ((−)U )

V
=

(

(−)V
)

U
,

Hn
U (−) = H0

U (−[n]).

We refer to [8, 18, 30] for more information.

Remark 3.5. When (U ,V) is the standard t-structure on DbA, the cohomological functors Hn
U (−)

correspond to the usual functors Hn(−).

We will use the following lemma.

Lemma 3.6. Let (U ,V) and (U ′,V ′) be t-structures on a triangulated category C. If (U ′,V ′) is
bounded and H(U ′) ⊆ H(U) as subcategories of C, then (U ,V) = (U ′,V ′).

Proof. Since (U ′,V ′) is bounded and H(U ′) ⊆ H(U), we have U ′ ⊆ U and V ′ ⊆ V (see Remark
3.4). However, since U = ⊥−1V and U ′ = ⊥−1(V ′), we can use V ′ ⊆ V to obtain that U ′ ⊇ U . We
find that U ′ = U and thus also that V ′ = V, as required. �

We will now restrict ourselves to the case C = Db modΛ for a finite-dimensional algebra Λ.
A preaisle U ⊆ Db modΛ is said to be finitely generated if there is a partial silting object E ∈
Db modΛ such that U is the smallest preaisle containing E. We will say that the preaisle U is
generated by E. Note that we can recover addE as U ∩ ⊥1U .

Remark 3.7. Let E be a silting object inDb modΛ, and let U ⊆ Db modΛ be the preaisle generated
by E. Following [1, §2] and [35, §5.4], we have the following description: an object A ∈ DbA lies
in U if and only if Hom(E,A[n]) = 0, for all n > 0. See also [1, Proposition 2.23].

We will use the following connection between weight structures and t-structures ([1, Proposition
2.22] or [14, Theorem 4.3.2]).

Proposition 3.8. Let Λ be a finite-dimensional algebra of finite global dimension. Let (U ,V) be
a bounded t-structure on Db modΛ. If U is a finitely generated aisle, then (S−1V,U) is a bounded
weight structure on Db modΛ.

3.4. Torsion theories. Let A be an abelian category. A full additive coreflective subcategory
T ⊆ A is called a torsion class if T is closed under extensions and quotient objects. We will say
that a torsion class T ⊆ A is a tilting torsion class if every object A ∈ A is a subobject of an
object in T .

Dually, a full additive reflective subcategory F ⊆ A is called a torsionfree class if F is closed
under extensions and subobjects. A torsionfree class F ⊆ A is a cotilting torsionfree class if every
object A ∈ A is a quotient object of an object in F .
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Remark 3.9. If A has enough injectives, then a torsion class T ⊆ A is tilting if and only if T
contains the injective objects.

A pair (T ,F) of full subcategories of A is called a torsion theory if HomA(T ,F) = 0 and for
every object A ∈ A there is a short exact sequence

0→ T → X → F → 0

where T ∈ T and F ∈ F . This implies that T is a torsion class in A and that F is a torsionfree
class in A. We will say that the torsion theory is tilting if T is tilting, and that the torsion theory
is cotilting if F is cotilting.

Following [20, Proposition 2.1] we can use a torsion theory (T ,F) on A to specify a t-structure
(U ,V) on DbA:

ObU = {A ∈ DbA | H0A ∈ T and ∀n > 0 : HnA = 0},

ObV = {A ∈ DbA | H−1A ∈ F , and ∀n < −1 : HnA = 0}.

We will call the heart H(U) of this t-structure the tilting of A by (T ,F). It follows from
[20, Theorem I.3.3] that (U ,V) induces an equivalence DbH(U)→ DbA when (T ,F) is tilting or
cotilting.

Let Λ be a finite-dimensional algebra. We will say that a torsion class T ⊆ modΛ is finitely
generated when there is an object G ∈ modΛ such that every object of T is a quotient object
of G⊕d, for some d > 0. It follows from [3, Corollaries VI.6.2] that we can choose G to be a
T -projective.

3.5. t-Structures for hereditary algebras. In this subsection, we will recall some results from
[49]. Let Λ be a finite-dimensional hereditary algebra and let A be the category modΛ of finite-
dimensional right Λ-modules. Let U ⊆ DbA be any aisle.

By taking cohomologies, we can associate to U a sequence (H−nU)n∈Z of full subcategories of
A (here, the homologies are taken with respect to the standard aisle, not the aisle U).

We write N (n) for H−nU ⊆ A and we write W(n) for the wide closure of H−nU in A. Since
U is closed under suspensions, we know that N (n) ⊆ N (n+ 1) and thus also W(n) ⊆ W(n+ 1),
for all n ∈ Z. Furthermore, it is shown in [49] that N (n) is a tilting torsion class in W(n), and in
[49, Proposition 7.3] that the embedding W(n) → A has a right adjoint (thus W(n) satisfies the
equivalent conditions of Proposition 2.2).

It is shown in [49, Corollary 4.4] that W(n − 1) ⊆ N (n) and in [49, Proposition 8.4] that
N (n) ∩ ⊥W(n − 1) is a tilting torsion class in W(n) ∩ ⊥W(n − 1). This leads to the following
definition.

Definition 3.10. A refined t-sequence is a pair (W(−), tW(−)) where

• W(−) is a poset map from Z to the poset of wide coreflective subcategories in A, and
• tW(−) is a map from Z to the set of full replete subcategories of A such that tW(n) is a
tilting torsion class in W(n) ∩ ⊥W(n− 1).

We denote by ∆(A) the set of all refined t-sequences of A.

Remark 3.11. It follows from Propositions 2.2 and 2.9 that W(n) ∩ ⊥W(n − 1) is equivalent to
modΓ for a finite-dimensional hereditary algebra Γ.

Thus, given an aisle U ⊆ DbA, we can associate a refined t-sequence by choosing W(n) to be
the wide closure of H−n(U) and by tW(n) = H−n(U) ∩ ⊥W(n − 1). The main theorem of [49]
asserts that this map is a bijection.

Theorem 3.12. Let A be as above. The above correspondence defines a bijection

{t-structures on DbA}
∼
←→ ∆(A).

Remark 3.13. There is a straightforward way to recover the aisle from the associated refined
t-sequence: the aisle U is the smallest preaisle in DbA containing the subcategories

• tW(n)[n] for all n ∈ Z, and
• W(n)[n+ 1] for all n ∈ Z.
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If ∩n∈ZW(n) = 0, then one can describe U as the smallest preaisle in DbA containing the
subcategories tW(n)[n] for all n ∈ Z.

The following proposition provides a convenient way to recover H−n(U) = N (n) from the
associated refined t-sequence.

Proposition 3.14. Let U ⊆ DbA be an aisle, and let (W(−), tW(−)) be the associated refined
t-sequence. An object X ∈ A lies in N (n) ⊆ A if and only if there is a triangle

A[0]→ X → B → A[1]

where A ∈ tW(n) ⊆ A and B ∈ DbW(n− 1) ⊆ DbA.

Proof. This follows directly from [49, Proposition 8.8(1)]. �

We will use the following proposition.

Proposition 3.15. Let U ,U ′ ⊆ DbA be aisles and let (W(−), tW(−)) and (W ′(−), tW′(−)) be
the associated refined t-sequences. If W(n) =W ′(n) for all n ∈ Z, then

• U [1] ⊆ U ′, and
• U ⊆ U ′ if and only if tW(n) ⊆ tW′(n), for all n ∈ Z.

Proof. This follows directly from Remark 3.13. �

Given a refined t-sequence, one can use the following proposition to find the Ext-projectives in
the corresponding aisle.

Proposition 3.16. Let U ⊆ DbA be a bounded aisle and let (W(−), tW(−)) ∈ ∆(A) be the
associated refined t-sequence. We write En for the category of tW(n)-projective objects. The
category of U-projective objects is ⊕n∈ZEn[n].

Proof. Recall that A is the category modΛ of finite-dimensional modules over a finite-dimensional
hereditary algebra Λ. Since the aisle U is bounded, one can recover U from the associated refined
t-sequence (W(−), tW(−)) as the smallest preaisle in DbA containing the subcategories tW(n)[n]
(see Remark 3.13).

We will first show that every object in En[n] is U -projective. We know that En[n] ⊂ U , thus we
need only to show that Hom(En[n], Xl[l + i]) = 0, for all i ≥ 1 and Xl ∈ tW(l) for all l ∈ Z.

If l < n, then it follows from En ⊆ tW(n) ⊆ W(n) ∩ ⊥W(n− 1) and tW(l) ⊆ W(l) ⊆ W(n− 1)
that Hom(En[n], Xl[l + i]) = 0.

When l = n, this follows from the assumption that En is the category of tW(n)-projective
objects.

When l > n, we have l + i− n ≥ 2 so that

HomDbA(En[n], Xl[l + i]) ∼= Extl+i−n
A (En, Xl) = 0

since A is hereditary.
Next, let E ∈ U be U -projective; we want to show that ⊕n∈ZEn[n]. Without loss of generality,

we may assume that E is indecomposable. Assume that E is concentrated in degree −n, thus
HiE = 0 when i 6= −n. In particular, E ∈ N (n)[n]. Recall that N (n) = H−n(U).

Since E is U -projective, we know that Hom(E,N (n− 1)[n+ i]) = 0 for all i ≥ 0 (this uses that
N (n− 1)[n− 1] ⊆ U). Moreover, since N (n− 1) is a tilting torsion theory in W(n− 1), we know
that Hom(E,W(n− 1)[n]) = 0.

Furthermore, since E is a stalk complex in degree −n, we know that Hom(E,W(n−1)[n+i]) = 0
for all i < 0. Since A is hereditary, we also have Hom(E,W(n−1)[n+i]) = 0 for all i ≥ 2. Since E
is U -projective and W(n− 1)[n] ⊆ N (n)[n] ⊆ U , we also have that Hom(E,W(n− 1)[n+ 1]) = 0.

This implies that E ∈ ⊥W(n− 1). We conclude that E ∈ N (n) ∩ ⊥W(n− 1) = tW(n).
Finally, since E is U -projective and tW(n)[n] ⊂ U , we see that E must be tW(n)[n]-projective.

�

Corollary 3.17. Let U ⊆ DbA be an aisle and let (W(−), tW(−)) ∈ ∆(A) be the associated
refined t-sequence. The aisle U ⊆ DbA is finitely generated and bounded if and only if
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• W(n) = 0 for n≪ 0,
• W(n) = A for n≫ 0, and
• tW(n) ⊆ W(n) ∩ ⊥W(n− 1) is finitely generated, for every n ∈ Z.

Proof. Recall that A is the category modΛ of finite-dimensional modules over a finite-dimensional
hereditary algebra Λ. The first two conditions are equivalent to saying that U is bounded. Accord-
ing to Proposition 3.16, the last condition is equivalent to saying that U is finitely generated. �

4. t-Structures and derived equivalences

In this section, we recall some results from [8] about derived equivalences.

4.1. t-Structures inducing derived equivalences. Let A and B be abelian categories. We
say that A and B are derived equivalent if there is a triangle equivalence DbB → DbA. In this
case, the standard t-structure (D≤0, D≥0) on DbB induces a t-structure (U ,V) on DbA with heart
H(U) ∼= B. We capture this situation in the following definition.

Definition 4.1. Let A be an abelian category, and let (U ,V) be a t-structure on DbA with heart
H(U). We will say that the t-structure (U ,V) (or just the aisle U) induces the derived equivalence
DbH(U) ∼= DbA if there exists a triangle equivalence DbH(U)→ DbA which extends the natural
embedding H(U)→ DbA.

Remark 4.2. The statement that a t-structure (U ,V) on DbA induces a derived equivalence is
stronger than the statement that the heart H(U) is derived equivalent to A. Indeed, the former
case requires the existence of a triangle equivalence G : DbH(U)→ DbA, while in the latter case
we additionally require this functor to extend the natural embedding H(U)→ DbA, meaning that
the following diagram commutes up to natural equivalence:

H(U) //

��

DbA

DbH(U)

G

::✉
✉

✉
✉

✉

Example 4.10 below illustrates this difference.

A triangle equivalence DbH(U) → DbA which extends the natural embedding H(U) → DbA,
relates the standard t-structure on DbH(U) with the t-structure (U ,V) on DbA, as in the following
proposition.

Proposition 4.3. Let A and B be abelian categories and let G : DbB → DbA be any triangle
equivalence. Consider a t-structure (U ,V) on DbA, and write (U ′,V ′) for the t-structure on DbA

induced from the standard t-structure (D≤0
B , D≥0

B ) on DbB by G, thus U ′ and V ′ are the essential

images of D≤0
B and D≥0

B under G, respectively.
If G(B[0]) ⊆ H(U), then U = U ′ and V = V ′.

Proof. Directly from Lemma 3.6. �

Given an abelian category A and a bounded t-structure (U ,V) on DbA with heart H(U), we
may extend the natural embedding H(U)→ DbA to a triangle functor F : DbH(U)→ DbA, called
the realization functor (see [8, §3.1], [32, 3.2 Théorème], or [7, Appendix]).

Remark 4.4. In general, the realization functor F is neither full nor faithful. However, by [8,
Remarque 3.1.17(ii)], we do have, for all A,B ∈ H(U) ⊂ DbA:

HomH(U)(A,B) ∼= HomDbA(A,B),

Ext1H(U)(A,B) ∼= Ext1DbA(A,B).

In particular, a short exact sequence 0 → B → M → A → 0 in H(U) corresponds to a triangle
B →M → A→ B[1] in DbA (see [8, Théorème 1.3.6]).
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How far the realization functor F : DbH(U)→ DbA is from being an equivalence, is determined
by the relations between ExtnH(U)(A,B) and ExtnDbA(A,B), for all A,B ∈ H(U) and n ≥ 2. We
will use the following equivalent properties.

Proposition 4.5. Let A be an abelian category, and let (U ,V) be a t-structure in DbA. The
following conditions are equivalent:

(1) for all A,B ∈ H(U), all n ≥ 2 and every morphism f : A → B[n], there is a morphism
C → A in H(U) which is epic in H(U), such that C → A→ B[n] is zero,

(2) for all A,B ∈ H(U), all n ≥ 2 and every morphism f : A → B[n], there is a morphism
B → C in H(U) which is monic in H(U), such that A→ B[n]→ C[n] is zero,

(3) for all A,B ∈ H(U), all n ≥ 2 and every morphism f : A→ B[n], there is a sequence

A = A0 → A1[1]→ A2[2]→ · · · → An[n] = B[n]

of morphisms (with Ai ∈ H(U)) which composes to f : A→ B[n].

The proof of Proposition 4.5 follows from the following lemma. For future reference, it will be
convenient to state this lemma separately.

Lemma 4.6. Let A be an abelian category, and let (U ,V) be a t-structure in DbA. Let f : A →
B[n] be a morphism in DbA where A,B ∈ H(U) and n ≥ 2. The following two conditions are
equivalent:

(1) there is an morphism C → A in H(U) which is epic in H(U), such that C → A→ B[n] is
zero,

(2) there is a sequence A = A0 → A1[1] → B[n] of morphisms (with A1 ∈ H(U)) which
composes to f : A→ B[n],

and the following two conditions are equivalent:

(1) there is a morphism B → C in H(U) which is monic in H(U), such that A→ B[n]→ C[n]
is zero,

(2) there is a sequence A = A0 → An−1[n − 1] → B[n] of morphisms (with An−1 ∈ H(U))
which composes to f : A→ B[n].

Proof. We only show the equivalence of the first two conditions; the other equivalence is dual.
Thus assume that the first statement is true, and let A1

∼= kerH(U)(C → A). There is a triangle

A1 → C → A → A1[1] in DbA (see Remark 4.4). Since the composition C → A → B[n] is zero,
we know that the map f factors as A→ A1[1]→ B[n].

For the other direction, the triangle A1 → C → A → A1[1] in DbA built on the morphism
A → A[1] corresponds to a short exact sequence 0 → A1 → C → A → 0 in H(U) (see Remark
4.4). The epimorphism C → A is the morphism from the first statement. �

For the benefit of the reader, we present a proof of Proposition 4.5.

Proof of Proposition 4.5. Assume that (1) holds, we want to show that (3) holds. When n = 2,
this follows directly from Lemma 4.6.

We will proceed by induction. Consider a morphism f : A → B[n] where A,B ∈ H(U) and
n ≥ 3. By Lemma 4.6, we know that f factors as

A = A0
f1
→ A1[1]

f2
→ B[n]

(with A1 ∈ H(U)). By applying the induction hypothesis on morphism f2 : A1[1] → B[n] (or,
more accurately, on f2[−1] : A1 → B[n− 1]), we find a sequence

A = A0
f1
→ A1[1]→ A2[2]→ · · · → An[n] = B[n]

of morphisms (with Ai ∈ H(U)), composing to f : A→ B[n], as required.
For the other direction, assume that (3) holds. To prove (1), consider a morphism f : A→ B[n]

in DbA where A,B ∈ H(U). By (3), we know there exists a sequence

A = A0 → A1[1]→ A2[2]→ · · · → An[n] = B[n]
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of morphisms (with Ai ∈ H(U)), composing to f : A → B[n]. In particular, we have a sequence
A = A0 → A1[1] → B[n] of morphisms (with A1 ∈ H(U)) which composes to f : A → B[n]. By
Lemma 4.6, we know that there is a morphism C → A in H(U), that is epic in H(U), such that
the composition C → A→ B[n] is zero. This establishes (1).

Similarly, one proves that (2) and (3) are equivalent. �

The following theorem is standard (see [8, Proposition 3.1.16], [32, 3.2 Théorème], or [18,
Exercise IV.4.1]).

Theorem 4.7. Let A be an abelian category, and let (U ,V) be a t-structure in DbA. The t-
structure (U ,V) induces a derived equivalence DbH(U) ∼= DbA if and only if (U ,V) is a bounded
t-structure and the equivalent conditions in Proposition 4.5 hold.

Proof. If the t-structure is bounded and the equivalent conditions in Proposition 4.5 hold, then
[8, Proposition 3.1.16] implies that the realization functor F : DbH(U)→ DbA is an equivalence.
This proves one implication.

The other implication follows directly from Proposition 4.3. �

Proposition 4.8. Let A be an abelian category, and let (U ,V) be a t-structure in DbA with heart
H(U) = H. The following are equivalent:

(1) the t-structure (U ,V) induces a derived equivalence,
(2) the realization functor F : DbH → DbA is an equivalence,
(3) there is an equivalence Φ : DbH → DbA such that U and V are the essential images of

D≤0
H and D≥0

H , respectively (here, (D≤0
H , D≥0

H ) is the standard t-structure on DbH).

Proof. We start by showing that (1) ⇔ (3). The implication (1) ⇒ (3) follows directly from

Proposition 4.3. We now consider the direction (3) ⇐ (1). Since the composition H → DbH
Φ
→

DbA is fully faithful and the essential image coincides with the heart of (U ,V) on DbA, there is
an autoequivalence Ψ : H → H such that the following diagram essentially commutes:

H
Ψ //

��

H

��
DbH

Φ
// DbA

Let Ψ−1 : H → H be a quasi-inverse to Ψ. This then induces an equivalence Ψ−1 : DbH → DbH
such that

H
Ψ−1

//

��

H

��
DbH

Ψ−1

// DbH

essentially commutes. Combining these two diagrams, we obtain the diagram

H
Ψ−1

//

��

H

��

Ψ // H

��
DbH

Ψ−1

// DbH
Φ

// DbA

where the squares essentially commute. This establishes (1).
We will now show that (1) ⇒ (2). We can use a triangle equivalence G : DbH → DbA given by

(1) to show that the equivalence conditions of Proposition 4.5 hold (since they hold for the standard
t-structure on DbH and G extends the embedding H → DbA). Theorem 4.7 then establishes (2).

Finally, since the realization functor extends the embedding H → DbA, the implication (2) ⇒
(1) is direct. �
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Remark 4.9. As in [46, §7], we do not make any claims about the uniqueness of a triangle equiva-
lence G : DbH → DbA which extends H → DbA. The question is addressed in [40, §5.3] (with an
adjusted definition of triangle functors) and in [39, Theorem 1.8] for hereditary algebras.

Example 4.10. Let grmod k be the category of finite-dimensional N-graded vector spaces. We
will write grmod>0 k and grmod0 k for the full subcategories given by all graded vector spaces V
such that V0 = 0 and Vi = 0 for all i > 0, respectively. On Db grmod k, we consider the t-structure
(U ,V) given by:

ObU = {X ∈ Db grmod k | HiX = 0 for i > 0 and HiX ∈ grmod>0 k for i ≤ 0},

ObV = {X ∈ Db grmod k | HiX ∈ grmod0 k for i < 0}.

We can describe the heart H = U ∩ V as

ObH = {X ∈ Db grmod k | HiX = 0 for i 6= 0, and H0X ∈ grmod>0 k}.

In particular, H ∼= grmod>0 k
∼= grmod k. Hence, grmod k and H are equivalent categories, and

thus derived equivalent.
However, we find that the realization functor F : DbH → Db grmod k is not essentially surjec-

tive. Indeed, an object X ∈ DbA lies in the essential image of F if and only if HiX ∈ grmod>0

for all i ∈ Z; thus the essential image of F is Db
grmod>0

grmod k ( Db grmod k.

This means that the t-structure (U ,V) on grmod k does not induce a derived equivalence, even
though the categories grmod k and H are derived equivalent.

4.2. Compatibility with the Serre functor. Let A be an abelian category and let (U ,V) be
a t-structure on DbA. Our next goal is to show that, if A has Serre duality, it is necessary that
SU ⊆ U holds for (U ,V) to induce a triangle equivalence (see Corollary 4.13 below).

Lemma 4.11. Let A be an abelian category, and write (U ,V) for the standard t-structure in DbA.
Let A ∈ A and U ∈ U . For any morphism A→ U [1], there is an epimorphism B → A in A such
that the composition B[0]→ A[0]→ U [1] is zero.

Proof. Since (U ,V) is bounded, we can consider the maximal integer n ∈ Z such that U ∈ U [n] and
the minimal integer m ∈ Z such that U ∈ V[m]. Note that U can only be nonzero if m ≥ n ≥ 0.
We will assume that U is nonzero, and proceed by induction on m− n.

When m − n = 0, we know that U ∈ A[m] and thus the morphism A → U [1] corresponds to
an element in Extm+1(A,U [−m]). The existence of the required epimorphism B → A in A is
standard.

Assume now that m− n > 0. Consider the triangle

(U [1])U [n+2] → U [1]→ H−n−1(U [1])[n+ 1]→ (U [1])U [n+2][1].

Note that H−n−1(U [1])[n+1] ∈ A[n+1] and thus there exists an epimorphism A1 → A in A such
that the composition A1 → A → H−n−1(U [1])[n + 1] is zero. The composition A1 → A → U [1]
thus factors through (U [1])U [n+2]. Note that

(U [1])U [n+2][−1] ∈ U [n+ 1] ∩ V[m]

so that the induction hypothesis implies the existence of an epimorphism B → A1 in A such that
B → A1 → (U [1])U [n+2][1] is zero. The composition B → A1 → A is the required epimorphism.

�

Proposition 4.12. Let A be an Ext-finite abelian category with Serre duality, and write (U ,V)
for the standard t-structure in DbA. Then the t-structure (U ,V) is bounded and SU ⊆ U .

Proof. It is clear that the standard t-structure (U ,V) is bounded. We will show that SU ⊆ U .
Seeking a contradiction, let X ∈ U such that SX 6∈ U . Since U is closed under suspensions and
extensions, we may restrict ourselves to X ∈ A[0]. Let n ∈ Z be the largest integer such that
Hn+1(SX) 6= 0. Since SX 6∈ U , we know that n ≥ 0. To ease notation, let Y = X[n] ∈ A[n].
There is the triangle

(SY )U → SY → (SY )V[−1] → (SY )U [1].
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We have chosen Y in such a way that (SY )V[−1] ∼= Hn+1(SX)[−1] ∈ A[−1] is nonzero. It
follows from Lemma 4.11 that there is an epimorphism B → (SY )V[−1] in A[−1] such that the
composition B → (SY )V[−1] → (SY )U [1] is zero. Hence, Hom(B, SY ) 6= 0 and by Serre duality,
Hom(Y,B) 6= 0. However, the latter is impossible since Y ∈ A[n] (with n ≥ 0) and B ∈ A[−1].
This finishes the proof. �

Corollary 4.13. Let C be a Hom-finite triangulated category with Serre duality and let (U ,V)
be a t-structure in C. If the embedding H(U) → C can be extended to a triangle equivalence
G : DbH(U)→ C, then (U ,V) is bounded and SU ⊆ U .

Proof. Choose a quasi-inverse G− to G and let SC : C → C be a Serre functor on C. Note that
DbH(U) has a Serre functor S : DbH(U)→ DbH(U) given by S = G− ◦ SC ◦G.

Using G−, we may transfer the t-structure (U ,V) on C to DbH(U); this gives a t-structure
(U ′,V ′) on DbH(U) where U ′ and V ′ are the essential images of U and V under G−, respectively.

Since G : DbH(U) → C extends the embedding H(U) → C, we know that G− maps the heart
H(U) of the t-structure (U ,V) to H(U)[0]. Hence, the essential image of H(U) under G− coincides
with H(U)[0] ⊂ DbH(U). Since the former is the heart of the t-structure (U ′,V ′) and the latter is
the heart of the standard t-structure, we may apply Lemma 3.6 to see that (U ′,V ′) is the standard
t-structure on DbH(U).

It now follows from Proposition 4.12 that (U ′,V ′) is bounded and that SU ′ ⊆ U ′. Since Serre
functors commute with equivalences, we may conclude that (U ,V) is bounded and that SCU ⊆
U . �

The main goal of this paper is to show that in some cases, the converse of Corollary 4.13 also
holds (see Theorem 1.2).

5. Finitely generated aisles

Let Λ be a finite-dimensional algebra of finite global dimension, so that Db modΛ has Serre
duality. The main result is Proposition 5.5 where we show that the answer to Question 1.1
is positive when one restricts oneself to finitely generated t-structures; thus, if U is a finitely
generated aisle in Db modΛ, then U induces a triangle equivalence DbH(U) → Db modΛ if and
only if (U ,V) is bounded and SU ⊆ U .

In §5.2 we then consider the case where Λ is derived discrete. Here, one knows that all aisles
are finitely generated, and hence Proposition 5.5 implies that Question 1.1 is answered positively
for this class of algebras (see Corollary 5.8).

5.1. Finitely generated aisles closed under the Serre functor. Recall that an aisle U ⊆
Db modΛ is called finitely generated if there is a partial silting object E such that U is the
smallest preaisle containing E. Let (U ,V) be a t-structure on Db modΛ and assume that U is
finitely generated. We will work toward Proposition 5.5 where we show that (U ,V) induces a
triangle equivalence DbH(U)→ Db modΛ if and only if (U ,V) is bounded and SU ⊆ U .

Proposition 5.1. Let Λ be a finite-dimensional algebra of finite global dimension. Let (U ,V) be
a t-structure in Db modΛ and assume that U is finitely generated by a partial silting object E.

(1) The object E is a silting object if and only if (U ,V) is a bounded t-structure.
(2) The object E is a tilting object if and only if (U ,V) is a bounded t-structure and SU ⊆ U .

Proof. (1) If (U ,V) is a bounded t-structure, then thick(E) = thick(U) = Db modΛ and hence
E is a silting object. The other direction is [1, Proposition 2.17].

(2) This is essentially [38, Lemma 4.6]. First, assume that (U ,V) is bounded and that SU ⊆ U .
From the first part of the proof, we know that E is a silting object. Furthermore, we have
Hom(E, SE[n]) = 0 for n > 0 (here we use that SU ⊆ U and that E ∈ U is U -projective).
By Serre duality, we have Hom(E,E[−n]) = 0 for n > 0. This shows that E is a partial
tilting object. Since (U ,V) is bounded, the first part of the proof shows that E is a tilting
object.
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For the other direction, assume that E is a tilting object. The first part of the proof
shows that (U ,V) is a bounded t-structure. Since E is a tilting object, we know that
Hom(E,E[−n]) = 0 for n > 0 and thus by Serre duality that Hom(E, SE[n]) = 0. Remark
3.7 shows that SE ∈ U . Since SU is the smallest preaisle in Db modΛ containing SE, we
conclude that SU ⊆ U .

�

Proposition 5.2. Let Λ be a finite-dimensional algebra of finite global dimension. If E ∈
Db modΛ is a tilting object, then EndE has finite global dimension.

Proof. It follows from [27] that there is an equivalence perf(EndE) → Db modΛ, and then [47,
Proposition 7.25] implies that EndE has finite global dimension. �

Remark 5.3. If one replaced the finite-dimensional algebra Λ in Proposition 5.2 by a small category
and consequently relaxed the “tilting object” to “tilting subcategory,” the statement would be
false. Indeed, in [10, Example 4.11] there is an example of a small category a (such that mod a
is Ext-finite, hereditary, and has Serre duality) and a tilting subcategory b ⊆ Db mod a (thus
Db mod a ∼= Db mod b) such that nonetheless, mod b has infinite global dimension.

The following example shows that Proposition 5.2 does not hold when we only require E to be
a partial tilting module.

Example 5.4. Let Q be the quiver a
α

99b

β
xx and let Λ = kQ/(αβ). Note that Λ is a finite-

dimensional algebra of global dimension two. Let Pa be the projective associated to the vertex a.
The object Pa[0] ∈ Db modΛ is a partial tilting object, but the endomorphism algebra EndPa

∼=
k[t]/(t2) has infinite global dimension.

Proposition 5.5. Let Λ be a finite-dimensional algebra of finite global dimension. Let (U ,V) be
a t-structure in Db modΛ. If U is finitely generated, then (U ,V) induces a triangle equivalence
DbH(U) → Db modΛ if and only if (U ,V) is bounded and SU ⊆ U . In this case, H(U) ∼= modΓ,
for a finite-dimensional algebra Γ of finite global dimension.

Proof. Assume first that (U ,V) induces a triangle equivalence DbH(U) → Db modΛ. Corollary
4.13 shows that (U ,V) is a bounded t-structure and SU ⊆ U .

For the other direction, assume that (U ,V) is bounded and SU ⊆ U . By Proposition 5.1 we
know that U is generated by a tilting object E, and by Proposition 5.2 that the global dimension

of Γ = EndE is finite. Following [46], the embedding E → Db modΛ lifts to an equivalence −
L
⊗Γ

E : Db modΓ → Db modΛ, which maps the standard t-structure on Db modΓ to the t-structure
(U ,V) on Db modΛ. This shows that (U ,V) induces a triangle equivalence DbH(U)→ Db modΛ,
where H(U) ∼= modΓ. �

5.2. Application: derived equivalences for derived discrete algebras. In this subsection,
let k be an algebraically closed field and let Λ be a finite-dimensional algebra (in this subsection,
we do not require Λ to be hereditary). Let K0(modΛ) be the Grothendieck group of modΛ.
For an object M ∈ modΛ, we will write [M ] ∈ K0(modΛ) for the corresponding element in the
Grothendieck group. Let Hi : Db(modΛ) → modΛ be the usual homology functors, thus the
homology functors associated with the standard t-structure on Db(modΛ).

The following definition is based on [53] (see [15]).

Definition 5.6. The categoryDb(modΛ) is called discrete if for every function v : Z→ K0(modΛ),
there are only finitely many isomorphism classes X ∈ Db(modΛ) such that [Hi(X)] = v(i) ∈
K0(modΛ) for all i ∈ Z. We will call such an algebra Λ derived discrete.

Remark 5.7. If Λ and Γ are finite-dimensional algebras such that Db(modΛ) ∼= Db(modΓ), then
Λ is derived discrete if and only if Γ is derived discrete.



18 DONALD STANLEY AND ADAM-CHRISTIAAN VAN ROOSMALEN

Figure 1. The quiver Q(r, n,m). Here, the tail has m vertices, the oriented cycle
has n vertices. The ideal I(r, n,m) is given by r consecutive quadratic relations
in the cycle, the last one over the vertex to which the tail is attached.

In [53, 2.1 Theorem], the derived discrete algebras have been classified. It is shown in [11,
Theorem A] that every such algebra Λ is either derived equivalent to the category of representations
of a Dynkin quiver, or derived equivalent to Λ(r, n,m) = kQ(r, n,m)/I(r, n,m) where kQ(r, n,m)
is the path algebra over the quiver Q(r, n,m) and I(r, n,m) is a suitably chosen ideal of kQ(r, n,m)
(see Figure 1). Here, m ≥ 0 and n ≥ r ≥ 1. The algebra Λ(r, n,m) has finite global dimension if
and only if n > r.

The following result is a corollary of the description of the bounded t-structures on Db(modΛ)
given in [15] and Proposition 5.5.

Corollary 5.8. Let Λ be a finite-dimensional algebra of finite global dimension over an alge-
braically closed field. Assume that Λ is derived discrete. A t-structure (U ,V) on Db(modΛ)
induces a triangle equivalence DbH(U)→ Db modΛ if and only if (U ,V) is bounded and SU ⊆ U .

Proof. Since Λ has finite global dimension, we know that Db(modΛ) has a Serre functor. It is
shown in [15] that all t-structures on Db(modΛ) are finitely generated; Proposition 5.5 then yields
the required result. �

6. Projective objects in the heart

Let A be an abelian hereditary category with Serre duality, and let (U ,V) be a bounded t-
structure on DbA. In general, a U -projective object does not lie in the heart H(U). The aim of
this section is proving Proposition 6.4, where it is shown, under the additional condition U ⊆ SU ,
that U -projective objects are projective objects in the heart H(U) and that any indecomposable
U -projective object has a simple top. These simple tops will play a further role in §9 where we
will consider their perpendicular subcategories.

We start by recalling some definitions. Let B be any abelian category and let f : A → C and
g : B → C be any two morphisms in B. We write f ∼C g if there are morphisms h1 : A → B
and h2 : B → A such that f = g ◦ h1 and g = f ◦ h2. This defines an equivalence relation on
morphisms ending in C. A morphism f : A → C is called right minimal if, for every h ∈ EndA,
f = f ◦ h implies that h is an automorphism.

The following proposition is a straightforward adaptation of [5, Proposition I.2.1].

Proposition 6.1. Let B be an abelian category and let f : A → C be any morphism. If
dimk EndA <∞, then here is a right minimal morphism g : B → C such that f ∼C g.

Proof. Let g : B → C be a morphism such that f ∼C g and assume that g has been chosen so
that dimk EndB < ∞ is minimal with this property. This can be done since dimk EndA < ∞.
We will show that g : B → C is right minimal.

For any h ∈ EndB such that g = g ◦ h, we get a commutative diagram:

B
π // //

g

��

imh �

� i //

g|imh

��

B

g

��
C C C
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This gives a linear transformation End(imh) → EndB : ϕ 7→ i ◦ ϕ ◦ π. Since i and π are a
monomorphism and an epimorphism, respectively, the map End(imh) → EndB is an injection.
Using the minimality of dimk EndB, we find that End(imh) → EndB is an isomorphism, and
thus there is a ϕ ∈ End(imh) such that i ◦ϕ ◦ π = 1B . This shows that π and i are isomorphisms
and hence so is i ◦ π = h. We conclude that g : B → C is right minimal. �

We will use the following characterization of right minimal morphisms.

Proposition 6.2. Let B be an abelian category. The following are equivalent for a morphism
f : A→ C where dimk EndA <∞:

(1) the morphism f : A→ C is right minimal, and
(2) for any nonzero direct summand A′ of A, the restriction f |A′ : A′ → C of f to A′ is

nonzero.

Proof. This is exactly [5, Corollary I.2.3] where [5, Proposition I.2.1] is replaced by Proposition
6.1. �

Remark 6.3. Proposition 6.2 holds under the weaker assumption that dimk EndB/C(f) < ∞ in-
stead of dimk EndB A < ∞; the proof is identical. Here, B/C is the slice category of B over
C.

A morphism f : A → C is called right almost split if f is not a split epimorphism and any
morphism B → C either factors through f : A→ C or is a split epimorphism. A morphism which
is both right minimal and right almost split is called minimal right almost split.

We now come to the main result of this section.

Proposition 6.4. Let A be an abelian category with Serre duality, and let (U ,V) be a bounded
t-structure in DbA. Assume furthermore that SU ⊆ U . Let E ∈ U be an indecomposable U-
projective, and let τE →M → E → SE be the Auslander-Reiten triangle built on E. We have the
following:

(1) E, SE ∈ H(U),
(2) for all n 6= 0, we have ExtnDbA(E,H(U)) = 0 and ExtnH(U)(E,H(U)) = 0,

(3) for all n 6= 0, we have ExtnDbA(H(U), SE) = 0 and ExtnH(U)(H(U), SE) = 0,

(4) the composition MU →M → E is minimal right almost split in H(U),
(5) the object SE

∼= E/MU is simple in H(U),
(6) for any X ∈ H(U), we have that Hom(E,X) = 0 implies Hom(X,SE) = 0,
(7) for any X ∈ H(U), we have that Hom(X, SE) = 0 implies Hom(SE , X) = 0,
(8) if A is hereditary, then HomDbA(SE , SE [n]) = 0 for all n 6= 0.

Proof. (1) We first show that E ∈ H(U). We know that E ∈ U so that we only need to show
that E ∈ U⊥−1 . We have

Hom(U , E[−1]) ∼= Hom(E, SU [1])∗ = 0,

where the first isomorphism is by Serre duality, and the last equality follows from SU ⊆ U
and Hom(E,U [1]) = 0.

Next, we will show that SE ∈ H(U). Since SU ⊆ U , we know that SE ∈ U . To show
that SE ∈ H(U), we need to show that Hom(X[1], SE) = 0, for all X ∈ U . This follows
from Serre duality and Hom(E,X[1]) = 0.

(2) Since E is U -projective and H(U) ⊂ U , we have ExtnDbA(E,H(U)) = 0, for all n > 0. It
follows from the definition of H(U) that ExtnDbA(E,H(U)) = 0 for n < 0.

Furthermore, by Remark 4.4 we have Ext1DbA(E,H(U)) ∼= Ext1H(U)(E,H(U)). Since the
left-hand side is zero, and we may conclude that E ∈ H(U) is projective in H(U). Hence
ExtnH(U)(E,H(U)) = 0 for all n 6= 0.
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(3) Using Serre duality, we find

ExtnDbA(H(U), SE) = HomDbA(H(U), SE[n])
∼= HomDbA(E,H(U)[−n])∗

∼= Ext−n
DbA

(E,H(U))∗

so that ExtnDbA(H(U), SE) = 0 for n 6= 0 by (2). Following Remark 4.4, we have

Ext1DbA(H(U), SE) ∼= Ext1H(U)(H(U), SE), so that SE ∈ H(U) is injective in H(U) and

consequently ExtnH(U)(H(U), SE) = 0 for all n 6= 0.

(4) First, we show that MU ∈ H(U). We only need to check that Hom(X[1],MU ) = 0, for
all X ∈ U . Since X[1] ∈ U , we find that Hom(X[1],MU ) ∼= Hom(X[1],M). Applying
Hom(X[1],−) to the triangle defining M shows it suffices to prove that Hom(X[1], E) =
0 = Hom(X[1], τE). The first equality follows from E ∈ H(U), and the second equality
follows from Hom(X[1], τE) ∼= Hom(X[2], SE) = 0 together with SE ∈ H(U).

We will use Proposition 6.2 to show that MU → E is right minimal. Let X ∈ H(U) be a
direct summand ofMU such that the compositionX →MU → E is zero. Using the triangle
defining M , we find that the composition X → MU → M factors as X → τE → M .
It now follows from Hom(X, τE) ∼= Hom(X[1], SE) = 0 (recall that SE ∈ H(U)) that
X → MU → M is zero, and hence the embedding X → MU is zero. We conclude that
X ∼= 0, which shows that MU → E is indeed right minimal.

To show that MU → E is right almost split, we first show it is nonsplit. If the map
MU → E were a split epimorphism, then the map M → E would be split as well, contra-
dicting that τE → M → E → SE is an Auslander-Reiten triangle. Next, let X → E be
any nonsplit morphism in H(U). Using the properties of Auslander-Reiten triangles, we
find that this morphism factors as

X →MU →M → E,

and hence MU → E is right almost split.
(5) The proof that SE is simple is standard. We give the proof for the convenience of the

reader. Let T be a quotient object of SE . We find a commutative diagram

0 // MU

��
✤

✤

✤
// E // SE

//

��

0

0 // K // E // T // 0

It was shown in (4) that the map MU → E is right almost split, thus either K → E
is a split epimorphism or K → E factors as K → MU → E. In the former case we
find that K → E is an isomorphism (and hence T ∼= 0), and in the latter case we can
use that MU → E is right minimal to find that the composition MU → K → MU is an
automorphism of MU , implying that T ∼= SE . This shows that SE is simple.

(6) This property follows from the lifting property for projectives.
(7) This property follows from the lifting property for injectives.
(8) Assume now that A is hereditary. Since SE is simple in H(U) we know that it is indecom-

posable, and since A is hereditary there is an i ∈ Z such that SE ∈ A[i]. Again, using that
A is hereditary, we know that HomDbA(SE , SE [n]) = 0, for all n 6∈ {0, 1}. We thus only
need to show that HomDbA(SE , SE [1]) = 0. By Remark 4.4, this is equivalent to showing
that Ext1H(U)(SE , SE) = 0.

Consider the short exact sequence 0 → MU → E → SE → 0 in H(U). Applying the
functor HomH(U)(−, SE) and using (2) to see that Ext1H(U)(E,SE) = 0, we find the exact
sequence

0→ Hom(SE , SE)→ Hom(E,SE)→ Hom(MU , SE)→ Ext1(SE , SE)→ 0.
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Seeking a contradiction, assume that Ext1H(U)(SE , SE) 6= 0. This implies that Hom(MU , SE) 6=
0 and by (6) above thus also that Hom(E,MU ) 6= 0.

However, recall that E is U -projective and thus Ext1(E,E) = 0, so that Proposition
2.17 shows that every nonzero element in Hom(E,E) is invertible. If the composition
E →MU → E were nonzero, then it would be invertible. In particular, the map MU → E
would be a split epimorphism, contradicting (4) above. We conclude that the composition
E → MU → E is zero. However, this contradicts that MU → E is a monomorphism
together with Hom(E,MU ) 6= 0.

�

7. A criterion for derived equivalence

In this section, let Λ be a finite-dimensional algebra of finite global dimension, and write A for
the category modΛ of finite-dimensional right Λ-modules. We will consider an aisle U ⊆ DbA and
“approximate” it by a finitely generated aisle Y (this is made precise in Proposition 7.1 below).
The positive integer i measures how far Y lies from U .

Following Proposition 3.8, the aisle Y fits into a weight structure (X ,Y) on DbA, and we can
use this weight structure to factor morphisms of the form A→ B[n] where A,B ∈ H(U).

When A is hereditary, we can use the description of t-structures from [49] (see §3.5) to find
such a finitely generated aisle Y (this will be done in Proposition 7.7 below). This leads to Lemma
7.8 where we show that whether U ⊆ DbA induces a derived equivalence is only “controlled” by
morphisms of the form A→ B[2] where A,B ∈ H(U).

Proposition 7.1. Let Λ be a finite-dimensional algebra of finite global dimension, and write A for
modΛ. Let (U ,V) be a bounded t-structure on DbA. If there is a finitely generated and bounded
aisle Y ⊆ DbA and an i ≥ 0 such that

(1) SY[i] ⊆ U ⊆ Y, and
(2) Y[1] ⊆ U ,

then every morphism in HomDbA(A,B[n]) (with A,B ∈ H(U) and n ≥ i + 2) factors through an
object X ∈ U [n− i− 1] ∩ V[n− 1].

Proof. Let A,B ∈ H(U) and assume that HomDbA(A,B[n]) 6= 0 for some n ≥ i + 2. Since
Y is finitely generated, so is SY[n]. By Proposition 3.8, there is a bounded weight structure
(SX [n], SY[n]) on DbA, and thus there is a triangle

X → B[n]→ Y → X[1]

where B[n]→ Y is a left SY[n]-approximation (here, X ∈ SX [n− 1]). Using this triangle, we will
show that X ∈ SX [n− 1] is the object in the statement of the lemma.

We start by showing that the morphism A→ B[n] factors throughX. Since A ∈ H(U), we know
that Hom(A, SU [1]) ∼= Hom(U [1], A)∗ = 0. Moreover, we have assumed that Y[1] ⊆ U and n ≥ 2,
so that Hom(A, SY[n]) = 0. Since Y ∈ SY[n], this shows that the composition A→ B[n] → Y is
zero and thus, by using the triangle above, the map A→ B[n] factors as A→ X → B[n].

Next, we need to show that X ∈ U [n− i− 1] ∩ V[n− 1]. Note that

Y [−1] ∈ SY[n− 1] ⊆ U [n− i− 1],

B[n] ∈ U [n] ⊆ U [n− i− 1].

This implies that X ∈ U [n − i − 1]. Since Hom(SX [n − 1], SY[n]) = 0 and X ∈ SX [n − 1], we
know that Hom(X, SY[n]) = 0 and thus also Hom(Y[n], X) = 0. Since U [n] ⊆ Y[n], this implies
that Hom(U [n], X) = 0 and we conclude that X ∈ V[n− 1]. �

Remark 7.2. The aisle Y from Proposition 7.1 is bounded since U ⊆ Y and Y[1] ⊆ U .

Remark 7.3. If one can choose Y as in Proposition 7.1 such that SY ⊆ U ⊆ Y (thus i = 0), then
SU ⊆ U and SY ⊆ Y.

Corollary 7.4. If the conditions of Proposition 7.1 are met for i = 0, then:

(1) the aisle U ⊆ DbA induces a triangle equivalence DbH(U)→ DbA,
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(2) the aisle Y ⊆ DbA induces a triangle equivalence DbH(Y)→ DbA, and
(3) H0

Y(U) ⊆ H(Y) is a tilting torsion class.

Proof. (1) It follows from Proposition 7.1 that every morphism A→ B[n] (with A,B ∈ H(U),
and n ≥ 2) factors through some Z ∈ H(U)[n− 1]. The first statement then easily follows
from Theorem 4.7.

(2) As in Remarks 7.2 and 7.3, we see that Y is bounded and that SY ⊆ Y and thus the aisle
Y ⊆ DbA induces an equivalence DbH(Y)→ DbA by the first part of the proof.

(3) We will first check that H0
Y(U) ⊆ H(Y) is a torsion class (see also [34, Lemma 3.5]).

Since H(Y) ∼= modΓ for a finite-dimensional algebra Γ (by Proposition 5.5), we know that
H(Y) is noetherian, and hence it suffices to show that H0

Y(U) is closed under extensions

and quotient objects. Since U is closed under extensions, so is H0
Y(U) (see Remark 4.4).

Thus, let Z ∈ H0
Y(U) and consider the short exact sequence

0→ K → Z → Q→ 0

in H(Y). Since K ∈ H(Y) ⊂ Y, we know that K[1] ∈ Y[1] ⊆ U . We conclude that
Q[0] ∈ U and thus Q ∈ H0

Y(U). This shows that H0
Y(U) ⊆ H(Y) is closed under quotient

objects. This establishes that H0
Y(U) ⊆ H(Y) is a torsion class.

We will now show that H0
Y(U) ⊆ H(Y) is a tilting torsion class. Recall that there is a

finite-dimensional algebra Γ such that H(Y) ∼= modΓ. Therefore, H(Y) has a projective
generator E so that SE is then an injective cogenerator for H(Y). Since SY ⊆ U , we know
that SE ∈ U . We conclude that SE ∈ H0

Y(U).
�

Remark 7.5. If the aisle U ⊆ DbA is bounded and finitely generated, then Corollary 7.4 implies
that U ⊆ DbA induces a derived equivalence. In this case, one can choose Y = U . This provides
another proof of Proposition 5.5.

The following example shows that, even when Λ is hereditary, one cannot expect to find an
aisle Y ∈ Db modΛ as in Corollary 7.4.

Example 7.6. We will assume that the reader is familiar with the representation theory of tame
hereditary algebras. Let Λ be the path algebra CQ where Q is the quiver

b
''PP

PP
PP

a

77♥♥♥♥♥♥ // c

The algebra Λ is of tame representation type. We will use the classification from [49] (see §3.5) to
describe an aisle U ⊆ Db modCQ.

Let Si be the simple corresponding to the vertex i, where i is a, b, or c, and let Pi be the
projective cover of Si. Note that τ2Sb

∼= Sb.
We will give an aisle U in Db modCQ by given the associated refined t-sequence (see §3.5). We

will also write N (n) for H−n(U).
We start by considering the following wide subcategories of modCQ :

W(n) =











0 for n < 0

wide(Pa ⊕ Pc) for n = 0,

modCQ for n > 0.

Note that W(0) is equivalent to repC( · //// ·) .

For each n ∈ Z, we choose a tilting torsion class tW(n) in W(n) ∩ ⊥W(n − 1). Note that
W(n) ∩ ⊥W(n− 1) is nonzero only for n = 0 and n = 1.

The torsion classes in W(0) ∩ ⊥W(−1) = W(0) are given in [2, Theorem 2]. Let tW(0) be the
tilting torsion class given by all preinjectives in W(0) ∩ ⊥W(−1).

Since W(1) ∩ ⊥W(0) = wide(τSb) ∼= modC, there is only one tilting torsion class: we choose
tW(1) =W(1) ∩ ⊥W(0).
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Proposition 3.16 yields that τSb isN (1)-projective, and thus Sb 6∈ N (1). Indeed, Ext1(τSb, Sb) ∼=
Hom(Sb, Sb) 6= 0.

Assume now the existence of an aisle Y as in Corollary 7.4. In particular, U ⊆ Y and thus
N (0) ⊆ H0(Y). There are two possibilities for wide(H0(Y)).

The first possibility is wide(H0(Y)) = modCQ. In this case, it follows from [2, Theorem 2] that
the finitely generated tilting torsion theories containing N (0) must contain Sb or τSb. However,
since Y[1] ⊆ U and SY ⊆ U , this shows that Sb ∈ N (1). Contradiction.

The second possibility is wide(H0(Y)) = W(0). Here, we can use [2, Theorem 2] to see that
a finitely generated torsion class containing all preinjective objects contains all regular objects in
W(0) as well. Hence, H0(Y) contains the middle term M of the Auslander-Reiten sequence

0→ τSb →M → Sb → 0.

Using that Y[1] ⊆ U , we see that M ∈ N (1) and since N (1) ⊆ W(1) is a torsion class, we have
Sb ∈ N (1). Contradiction.

We conclude that there can be no finitely generated aisle Y satisfying the conditions of Corollary
7.4.

Proposition 7.7. Let Λ be a finite-dimensional hereditary algebra and let U ⊆ Db modΛ be a
bounded aisle. If SU ⊆ U , then there is a finitely generated aisle Y ⊆ Db modΛ satisfying the
conditions from Proposition 7.1 for i = 1.

Proof. By the description of aisles in Db modΛ (see §3.5), we know that U is given by a refined
t-sequence (W(−), tW(−)). Let sW(n) = W(n) ∩ ⊥W(n − 1), thus whereas tW(n) is any tilting
torsion class in W(n)∩ ⊥W(n− 1), we have chosen sW(n) to be the maximal one. Moreover, due
to Remark 3.11, we know that sW(n) is finitely generated.

Let Y ⊆ Db modΛ be the aisle associated to (W(−), sW(−)). We know that Y is finitely
generated and bounded by Corollary 3.17.

Recall from Remark 3.13 that Y is the smallest preaisle in Db modΛ which contains sW(n)[n]
for all n ∈ Z. In particular, U ⊆ Y. Furthermore, it follows from Proposition 3.15 that Y[1] ⊆ U ,
and since SU ⊆ U , we have SY[1] ⊆ U . �

Following Theorem 4.7, we can study derived equivalences of modΛ by studying morphisms in
Db modΛ of type A → B[n] (for A,B ∈ H(U)) for all n ≥ 2. The next lemma explains why we
may, in our case, reduce to only considering the case n = 2.

Lemma 7.8. Let Λ be a finite-dimensional hereditary algebra and let U ⊆ Db modΛ be a bounded
aisle satisfying SU ⊆ U . If every morphism A → B[2] in Db modΛ (for A,B ∈ H(U)) factors
as A → Z[1] → B[2] (for some Z ∈ H(U)), then the aisle U ⊆ Db modΛ induces a derived
equivalence.

Proof. We will show that, for all objects A,B ∈ H(U) and all integers n ≥ 2, there is a monomor-
phism B → C in H(U) such that A → B[n] → C[n] is zero. The required property then follows
from Theorem 4.7.

Seeking a contradiction, assume that we have chosen A,B ∈ H(U) and n ≥ 2 such that there
exists no such monomorphism B → C. Furthermore, assume that (over all A,B ∈ H(U)), we have
chosen n to be minimal with this property. The conditions in the statement of the lemma imply
that n ≥ 3 (see Lemma 4.6).

It follows from Propositions 7.1 and 7.7 that there is an object X ∈ U [n− 2] ∩ V[n− 1] and a
factorization A→ X → B[n]. We have a triangle

(H1−n
U X)[n− 1]→ X → (H2−n

U X)[n− 2]→ (H1−n
U X)[n].

The composition (H1−n
U X)[n− 1]→ X → B[n] induces a morphism of triangles:

(H1−n
U X)[n− 1] // X //

��

(H2−n
U X)[n− 2] //

��
✤

✤

✤
(H1−n

U X)[n]

(H1−n
U X)[n− 1] // B[n] // M [n] // (H1−n

U X)[n]
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We note that M ∈ H(U). By Remark 4.4, the bottom triangle gives a short exact sequence

0→ B →M → H1−n
U X → 0

inH(U). We see that the compositionX → B[n]→M [n] factors asX → (H2−n
U X)[n−2]→M [n].

By the assumptions of the lemma, we know that there is a Z ∈ H(U) such that H2−n
U X → M [2]

factors through Z[1]. There is thus a short exact sequence

0→M → C → Z → 0

in H(U). We claim that the composition B →M → C is the required monomorphism in H(U).
To verify this claim, it suffices to check that the composition X → B[n]→M [n]→ C[n] is zero

or, since X → B[n] → M [n] factors as X → (H2−n
U X)[n − 2] → M [n], that (H2−n

U X)[n − 2] →
M [n] → C[n] is zero. The last statement follows easily since (H2−n

U X)[n − 2] → M [n] factors
through Z[n− 1]→M [n]. �

We will use the following equivalent formulation for Ext2DbA(A,B) to be the Yoneda composition
of two short exact sequences in H(U).

Lemma 7.9. Let A be an abelian category, and let U ⊆ DbA be an aisle. For all A,B ∈ H(U)
and all morphisms f : A→ B[2] in DbA, the following are equivalent:

(1) there is a Z ∈ H(U) such that f factors as A→ Z[1]→ B[2],
(2) there is an epimorphism C → A in H(U) such that the composition C → A → B[2] is

zero, and
(3) there is an monomorphism B → D in H(U) such that the composition C → B[2] → D[2]

is zero.

Proof. Directly from Lemma 4.6. �

8. Aisles with no nonzero Ext-projectives

Let Λ be a finite-dimensional hereditary algebra and let A be the category modΛ of finite-
dimensional right Λ-modules. In this section, we will use the results of §7 to show that our
main theorem holds under the additional assumption that the aisle U ⊆ DbA has no nonzero
U -projectives.

We will use the description of the aisles in DbA, given in §3.5. Thus let U ⊆ DbA be an aisle
with no nonzero U -projectives, and let (W(−), tW(−)) be the associated refined t-sequence. We
will write N (n) for H−n(U). Recall thatW(n) is wideN (n) and that tW(n) = N (n)∩⊥W(n−1).

Since we assume that there are no nonzero U -projective objects, we know from Proposition
3.16 that tW(n) has no nonzero tW(n)-projective objects, for all n ∈ Z. However, N (n) may have
nonzero N (n)-projective objects. The following lemma describes the possible N (n)-projective
objects.

Lemma 8.1. If tW(n) has no nonzero tW(n)-projective objects, then every N (n)-projective object
lies in W(n− 1) and is W(n− 1)-projective.

Proof. Let E be an N (n)-projective object. It follows from Proposition 3.14 that there is a triangle

A[0]→ E[0]→ B → A[1]

where B ∼= EDbW(n−1) and A ∈ tW(n).
We claim that B is concentrated in degree zero and that H0B is W(n − 1)-projective. To

verify this, we will show that Hom(B,B′[i]) = 0 for all B′ ∈ W(n − 1) and all i 6= 0. Thus, let
B′ ∈ W(n− 1) and apply the functor HomDbA(−, B

′[i]) to the above triangle to obtain the exact
sequence

Hom(A[1], B′[i])→ Hom(B,B′[i])→ Hom(E[0], B′[i]).

If i < 0, we see that Hom(B,B′[i]) = 0. For i ≥ 1, we see that Hom(E[0], B′[i]) = 0 (since E is
N (n)-projective and B′ ∈ W(n − 1) ⊆ N (n)) and that Hom(A[1], B′[i]) = 0 (since A ∈ tW(n) ⊆
⊥W(n−1)). Again, we may conclude that Hom(B,B′[i]) = 0. This implies that B is concentrated
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in degree zero and that H0B is W(n− 1)-projective. In particular, the triangle corresponds to a
short exact sequence

0→ A→ E → H0B → 0

in A.
Consider an object A′ ∈ tW(n) ⊆ N (n). Since Ext1A(−, A

′) is right exact (because A is
hereditary) and Ext1(E,A′) = 0, we find that Ext1(A,A′) = 0. This shows that A is a tW(n)-
projective, and hence we find that A is zero.

We conclude that E ∼= H0B, and we already established that H0B is W(n− 1)-projective. �

Lemma 8.2. Let U ⊆ DbA be an aisle such that SU ⊆ U . Let (W(−), tW(−)) be the associated
refined t-sequence. If tW(n) has no nonzero tW(n)-projective objects, then for any nonprojective
indecomposable B ∈ W(n− 1) we have τB ∈ N (n).

Proof. We first establish that τB ∈ W(n). Let 0 → B → I → J → 0 be a minimal injective
resolution of B in W(n− 1). Recall from §3.5 that N (n− 1) is a tilting torsion class in W(n− 1)
so that we know that I, J ∈ N (n− 1).

Next, we claim that I, J have no nonzero direct summands which are A-projective. Since the
injective resolution is minimal, we know that J has no W(n− 1)-projective direct summands, and
thus in particular, J has no A-projective direct summands. Since W(n− 1) is hereditary and B is
an indecomposable nonprojective object, it follows from the minimality of the injective resolution
know that I does not contain (nonzero) projective direct summands in W(n− 1) and hence I has
no nonzero projective direct summands in A.

We may now apply τ to obtain a short exact sequence 0→ τB → τI → τJ → 0 in A. It follows
from SU ⊆ U that τN (n− 1) ⊆ N (n), so that τI, τJ ∈ N (n) ⊆ A and thus τB ∈ W(n).

Using that N (n) is a tilting torsion class in W(n), we obtain the short exact sequence

0→ T → τB → F → 0

where T ∈ N (n) is torsion and F ∼= τB/T is torsionfree. Since N (n) is tilting in W(n), we know
that allW(n)-injective objects lie in N (n) and hence F does not contain (nonzero) injective direct
summands in W(n). We want to show that τB ∈ N (n) by showing that F = 0.

We know from Proposition 2.2 that W(n) ∼= modΓ, for a finite-dimensional hereditary algebra
Γ, and hence W(n) has an Auslander-Reiten translation τn. Note that B, τB ∈ W(n) so that
τnB ∼= τB and thus τ−n τB ∼= B.

Since τ−n is right exact and τ−n τB ∼= B, there is an epimorphism B → τ−n F . It follows from
B ∈ W(n− 1) ⊆ N (n) (this last inclusion was shown in [49, Corollary 4.4]) that B is torsion and
we infer that τ−F is torsion. Using that F has no injective direct summands in W(n) and hence
τnτ

−
n F ∼= F , we see that τ−n F is zero if and only if F is zero. Thus to show that τB ∈ N (n), it

suffices to show that τ−n F is zero.
It follows from the Auslander-Reiten formula that Ext1W(n)(τ

−
n F,N) = 0 for all N ∈ N (n),

hence τ−F is N (n)-projective. Lemma 8.1 implies that τ−n F is a projective object in W(n − 1).
Since B has no W(n− 1)-projective direct summands, we can use that W(n− 1) is hereditary to
infer that Hom(B, τ−n F ) = 0. Since τ−n F is a quotient object of B, we have established that τ−F
is zero. This finishes the proof. �

Proposition 8.3. Let U ⊆ DbA be a bounded aisle without nonzero U-projective objects and such
that SU ⊆ U . There is a finitely generated aisle Y ⊆ DbA satisfying the conditions in Proposition
7.1 for i = 0.

Proof. Let (W(−), tW(−)) be the refined t-sequence associated with U . We let mW(n) be the full
subcategory of W(n) ∩ ⊥W(n − 1) given by all objects without nonzero (W(n) ∩ ⊥W(n − 1))-
projective direct summands, for all n ∈ Z. Note that mW(n) is closed under quotient objects
in W(n) ∩ ⊥W(n − 1), and that mW(n) is closed under extensions since W(n) ∩ ⊥W(n − 1) is
hereditary (see Remark 3.11). Hence, mW(n) is a torsion class inW(n)∩⊥W(n−1). Since tW(n)
does not contain any W(n)-projective objects, we know that tW(n) ⊆ mW(n), and since tW(n) is
tilting in W(n)∩⊥W(n− 1), we know that mW(n) is a tilting torsion class in W(n)∩⊥W(n− 1).
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We will define Y ⊆ DbA to be the aisle associated to the refined t-sequence (W(−),mW(−)).
We want to use Corollary 3.17 to show that Y is indeed finitely generated and bounded. Since
U is bounded, Corollary 3.17 implies that W(n) = 0 for n ≪ 0 and that W(n) = A for n ≫
0. To see that mW(n) is finitely generated in W(n) ∩ ⊥W(n − 1), recall from Remark 3.11
that W(n) ∩ ⊥W(n − 1) ∼= modΓn, for a finite-dimensional hereditary algebra Γn; let τn be the
Auslander-Reiten translate in W(n) ∩ ⊥W(n− 1) ∼= modΓn. In W(n) ∩ ⊥W(n− 1), there are no
indecomposable projective-injective objects. Indeed, such an object would need to be contained
in tW(n) and would hence be tW(n)-projective. The subcategory mW(n) of W(n)∩⊥W(n− 1) is
generated by τ−n Γn. We can now apply Corollary 3.17 to see that Y is indeed finitely generated
and bounded.

The inclusions Y[1] ⊆ U ⊆ Y follows directly from Proposition 3.15. We need to show that
SY ⊆ U . For this, we first to note that mW(n) does not contain nonzero A-projective objects.
Indeed, such nonzero A-projective objects would the be projective objects in W(n) ∩ ⊥W(n− 1),
and thus not contained in mW(n). Hence, τ is defined on every object in mW(n).

It is straightforward to see that SY ⊆ U if and only if τmW(n− 1) ⊆ N (n), for all n ∈ Z. We
can conclude the proof by invoking Lemma 8.2. �

Corollary 8.4. Let Λ be a finite-dimensional hereditary algebra and let (U ,V) be a bounded t-
structure on Db modΛ such that SU ⊆ U . If U has no nonzero U-projectives, then (U ,V) induces

a triangle equivalence DbH(U)
∼
→ Db modΛ.

Proof. This follows from Corollary 7.4 and Proposition 8.3. �

9. Reduction by a simple top

Let A be a hereditary category with Serre duality. Let U ⊆ DbA be a bounded aisle, satisfying
SU ⊆ U , and let E ∈ U be an indecomposable U -projective. It has been shown in Proposition 6.4
that E is a projective object in the heart H(U) and that E has a simple top S = SE ∈ H(U). By
Schur’s Lemma, EndS is a skew field and the embedding thickS → DbA has a left and a right
adjoint as described in §2.4.

Recall from §2.4 that the embedding ⊥S → DbA admits a left and a right adjoint, so that
Proposition 2.1 yields that ⊥S has a Serre functor S′ ∼= T ∗

S ◦ S. To reduce notation, we write U ′

for U ∩ ⊥S.
The main result of this section is Proposition 9.6 below, where we reduce the problem of whether

an aisle U ⊆ DbA induces a derived equivalence, to the (smaller and supposedly easier case) case
of whether the corresponding aisle U ′ ⊆ ⊥S induces a derived equivalence.

Our first step will be checking whether U ′ is an aisle in ⊥S which is closed under the Serre
functor S′ of ⊥S. This will be done in Proposition 9.2.

Lemma 9.1. If X ∈ U , then T ∗
S(X) ∈ U ′.

Proof. We will show that T ∗
S(X) ∈ U by showing that Hi

U (T
∗
S(X)) = 0 for all i > 0.

Consider the triangle

T ∗
S(X)→ X → RHom(X,S)∗

L
⊗EndS S → T ∗

S(X)[1]

and recall that RHom(X,S)∗
L
⊗ S ∼= ⊕i Hom(X,S[i])∗ ⊗ S[i]. Since X ∈ U and S ∈ H(U), we

have Hom(X,S[i]) = 0 for i < 0. In particular, Hi
U (RHom(X,S)∗

L
⊗ S) = 0 for i > 0.

The long exact sequence obtained from the above triangle by applyingHU , shows thatH
i
U (T

∗
S(X)) =

0 for all i > 1. To show that T ∗
S(X) ∈ U , we need to show that H1

U (T
∗
S(X)) = 0. This follows

from the exactness of

H0
U (X)→ H0

U (RHom(X,S)∗
L
⊗ S)→ H1

U (T
∗
S(X))→ H1

U (X),

together with H1
U (X) = 0 (since X ∈ U) and that S is simple in H(U) (so that the map H0

U (X)→
H0

U (RHom(X,S)∗ ⊗ S) is an epimorphism). �

Proposition 9.2. With notation as above, U ′ is an aisle in ⊥S and S′U ′ ⊆ U ′.
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Proof. Note that U ′ is indeed a preaisle in ⊥S. It follows from Lemma 9.1 that the functor
T ∗
S ◦ (−)U takes images in U ′. It is straightforward to check that T ∗

S ◦ (−)U is right adjoint to the
embedding U ′ → ⊥S, and hence U ′ is an aisle in ⊥S.

It follows from S′ ∼= T ∗
S ◦ S and Lemma 9.1, together with SU ⊆ U , that S′U ′ ⊆ U ′. �

We will write V ′ = (U ′)⊥−1 for the coaisle associated to the aisle U ′ in ⊥S. Note that V ′ is not
V ∩ ⊥S. The following lemma gives us control over the difference between V ′ and V ∩ ⊥S.

Lemma 9.3. For any X ∈ ⊥S, we have that X ∈ V ′ if and only if (X[−1])U ∈ thick(S).

Proof. First, assume that (X[−1])U ∈ thick(S). Let Y ∈ U ′ ⊆ U . We know that

Hom(Y,X[−1]) ∼= Hom(Y, (X[−1])U ) = 0,

which shows that X ∈ V ′.
For the other direction, assume thatX ∈ V ′, or equivalently that (X[−1])U ′ = 0. By Proposition

9.2, we know that (−)U ′
∼= T ∗

S ◦ (−)U , so that (X[−1])U lies in the kernel of T ∗
S . This shows that

(X[−1])U ∈ thickS (see Remark 2.5). �

Since V ′ is not a subcategory of V, we cannot expect H(U ′) to be a subcategory of H(U). The
following lemma relates the hearts H(U) and H(U ′).

Lemma 9.4. (1) Let A′ ∈ H(U ′). There is a triangle
⊕

i≥1

Hom(S[i], A′)⊗ S[i]→ A′ → H0
U (A

′)→
⊕

i≥2

Hom(S[i− 1], A′)⊗ S[i].

(2) Let A ∈ H(U). We have T ∗
S(A) ∈ H(U

′).

Proof. (1) First note that U ′ ⊆ U , so that A′ ∈ U and there is a triangle

A′
U [1] → A′ → H0

U (A
′)→ A′

U [1][1].

We will proof the result by writing down a more explicit form of A′
U [1]. Note that A′

U [1]
∼=

(A′[−1])U [1]. Since A′ ∈ V ′, Lemma 9.3 implies that (A′[−1])U ∈ thickS, thus (A′[−1])U
has the following form:

(A′[−1])U ∼=
⊕

i∈Z

Vi ⊗EndS S[i],

where Vi ∈ mod(EndS). Moreover, since S ∈ H(U), we know that S[i] ∈ U if and only if
i ≥ 0. We may thus conclude that Vi = 0 when i < 0. We determine Vn (for n ≥ 0) by
considering

Hom(S[n], A′[−1]) ∼= Hom(S[n], (A′[−1])U )

∼= Hom(S[n],
⊕

i∈Z

Vi ⊗ S[i])

∼=
⊕

i∈Z

Vi ⊗Hom(S[n], S[i])

∼= Vn,

where we have used that Hom(S, S[i]) = 0, for all i 6= 0. We thus find

A′
U [1]
∼= (A′[−1])U [1]

∼=
⊕

i≥0

Hom(S[i], A′[−1])⊗ S[i+ 1]

∼=
⊕

i≥0

Hom(S[i+ 1], A′)⊗ S[i+ 1]

∼=
⊕

i≥1

Hom(S[i], A′)⊗ S[i],

which shows the required property.
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(2) By Lemma 9.1, we know that T ∗
S(A) ∈ U

′. To show that T ∗
S(A) ∈ H(U

′), consider an
object X ′ ∈ U ′ ⊆ U . The functor T ∗

S : DbA → ⊥S is right adjoint to the embedding
⊥S → DbA, and thus Hom(X ′[1], T ∗

S(A))
∼= Hom(X ′[1], A). We know that the latter is

zero, and hence also the former. This shows that T ∗
S(A) ∈ H(U

′).
�

Lemma 9.5. Let A be a hereditary category with Serre duality, and let U ⊆ DbA be a bounded
aisle satisfying SU ⊆ U . The following are equivalent:

(1) for all A,B ∈ H(U) and all morphisms f : A → B[2] there is a Z ∈ H(U) such that f
factors as A→ Z[1]→ B[2],

(2) for all A,B ∈ H(U) (satisfying additionally that Hom(A,S) = 0 = Hom(S,B)) and all
morphisms f : A→ B[2] there is a Z ∈ H(U) such that f factors as A→ Z[1]→ B[2],

Proof. We only need to show that the last statement implies the first. Thus let A,B ∈ H(U) and
let f : A→ B[2] be a morphism. We will proceed in two steps. In the first step, we will “enlarge”
A and reduce to where Hom(S,B) = 0; in the second step, we will “enlarge” B and reduce to
where Hom(A,S) = 0.

To ease notation, we will write PS and IS for the projective cover and injective envelope of S
in H(U), respectively (see Proposition 6.4, thus PS

∼= E and IS ∼= SE).
For the first step, we follow Lemma 7.9 which states that the required factoring of f would

follow from the existence of an epimorphism C → A such that C → A → B[2] is zero. Consider
the triangle

B → Hom(B, IS)
∗ ⊗ IS → CB → B[1]

in DbA built on the co-evaluation morphism B → Hom(B, IS)
∗⊗ IS . Applying the cohomological

functor H0
U (−) gives the following exact sequence in H(U):

0→ KB → B → Hom(B, IS)
∗ ⊗ IS → QB → 0.

We will also consider the triangle

KB [1]→ CB → QB → KB [2]

in DbA. We will show that Hom(KB , IS) = 0. Using the lifting property of the injective IS , any
morphism KB → IS factors through the embedding KB → B. Since the map B → Hom(B, IS)

∗⊗
IS is universal, the morphism B → IS factors through B → Hom(B, IS)

∗ ⊗ IS . Thus the map
KB → IS factors as

KB → B → Hom(B, IS)
∗ ⊗ IS → IS ,

which is zero. By Proposition 6.4(7), we also know that Hom(S,KB) = 0.
Since HomDbA(A, IS [2]) = 0 (by Proposition 6.4(3)), we know that f factors as A→ CB [1]→

B[2]. Consider the following morphism of triangles:

QB
// M //

��

A //

��

QB [1]

QB
// KB [2] // CB [1] // QB [1]

The topmost triangle corresponds to the short exact sequence 0 → QB → M → A → 0 in H(U)
(see Remark 4.4), so that the map M → A is an epimorphism in H(U).

To find of an epimorphism C → A in H(U) such that the composition C → A → B[2] is zero,
it thus suffices to find an epimorphism C →M in H(U) such that C →M → KB [2] is zero. The
situation is now similar to the original setting (where the map A → B[2] has been replaced by a
map M → KB [2]). Recall, however, that Hom(S,KB) = 0.

Following Lemma 7.9, finding an epimorphism C → M in H(U) such that C → M → KB [2]
is zero, is equivalent to finding a monomorphism KB → L in H(U) such that the composition
M → KB [2]→ L[2] is zero.

The second step of the proof is similar to the first step. Consider the triangle

Hom(PS ,M)⊗ PS →M → CM → Hom(PS ,M)⊗ PS [1],
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built on the evaluation morphism Hom(PS ,M)⊗ PS →M , and the triangle

KM [1]→ CM → QM → KM [2]

where KM
∼= H−1

U (CM ) and QM
∼= H0

U (CM ). Applying H0
U (−) to the first triangle yields the

exact sequence

0→ KM → Hom(PS ,M)⊗ PS →M → QM → 0

inH(U). As before, we have Hom(PS , QM ) = 0 so that Proposition 6.4(6) implies that Hom(QM , S) =
0.

Using that HomDbA(PS ,KB [2]) = 0 (see Proposition 6.4(2)), we see that the morphism M →
KB [2] factors through a morphism CM → KB [2]. Consider the following morphism of triangles:

KM [1] // CM
//

��

QM
//

��

KM [2]

KM [1] // KB [2] // N [2] // KM [2]

Here, the lower triangle corresponds to the short exact sequence 0 → KB → N → KM → 0 in
H(U) (see Remark 4.4), so that the map KB → N is a monomorphism in H(U). We are looking
for a monomorphism KB → L in H(U) such that the composition M → KB [2]→ L[2] is zero, and
for this it suffices that we find a monomorphism N → L such that QM → N [2] → L[2] is zero.
Using Lemma 7.9 again, this is equivalent to showing that there is an object X ∈ H(U) such that
the map QM → N [2] factors as QM → X[1]→ N [2].

Recall that Hom(QM , S) = 0. We claim that Hom(S,N) = 0. In this case, the required
factorization is then given by the assumptions in the statement of the lemma.

Applying Hom(S,−) to the short exact sequence 0 → KB → N → KM → 0 in H(U),
shows that it is sufficient to prove that Hom(S,KB) = 0 = Hom(S,KM ). We have already
established that Hom(S,KB) = 0. For the other equality, recall that there is a monomor-
phism KM → Hom(PS ,M) ⊗ PS . Seeking a contradiction, assume that Hom(S,KM ) 6= 0,
implying that Hom(S, PS) 6= 0. There is then a nonzero composition PS → S → PS which
is invertible by Proposition 2.17, yielding that S ∼= PS . This implies that the composition
PS → KM → Hom(PS ,M) ⊗ PS is a split monomorphism such that the composition PS →
Hom(PS ,M) ⊗ PS → M is zero, contradicting the universal property of the evaluation map (see
Remark 2.3). This shows that Hom(S,KM ) = 0 and finishes the proof. �

Proposition 9.6. Let Λ be a finite-dimensional hereditary algebra, and let (U ,V) be a bounded
t-structure in Db modΛ. Assume furthermore that SU ⊆ U . Let E ∈ U be an indecomposable
U-projective object and let S ∈ H(U) be the corresponding simple top (see Proposition 6.4). We
write U ′ for U ∩ ⊥S.

If the aisle U ′ ⊆ ⊥S induces a triangle equivalence DbH(U ′)
∼
→ ⊥S, then the aisle U ⊆ DbA

induces a triangle equivalence DbH(U)
∼
→ DbA.

Proof. By Lemma 7.8, we only need to check that every morphism A → B[2] (for A,B ∈ H(U))
factors as A→ Z[1]→ B[2] (for some Z ∈ H(U)), and by Lemma 7.9, this is equivalent to finding
an epimorphism C → A in H(U) such that C → A → B[2] is zero. By Lemma 9.5, we may
furthermore assume that Hom(A,S) = 0 = Hom(S,B).

By Lemma 9.4, we know that T ∗
S(A), T

∗
S(B) ∈ H(U ′), and thus we may assume (using Theorem

4.7) that there is an epimorphism C ′ → T ∗
S(A) in H(U

′) such that the composition C ′ → T ∗
S(A)→
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T ∗
S(B)[2] is zero. We get the following commutative diagram where the rows are triangles:

C ′ //

��

H0
U (C

′) //

��

⊕

i≥2 Hom(S[i− 1], C ′)⊗ S[i] //

��

C ′[1]

��
T ∗
S(A)

//

T∗

Sf

��

A //

f

��

RHom(A,S)∗
L
⊗ S //

��

T ∗
S(A)[1]

��
T ∗
S(B)[2] // B[2] // RHom(B[2], S)∗

L
⊗ S // T ∗

S(B)[3]

where we have used Lemma 9.4 to determine the topmost triangle. We claim that H0
U (C

′) → A
is the required epimorphism C → A mentioned in the beginning of the proof. We will write C for
H0

U (C
′).

First, we will show that C → A→ B[2] is zero. The commutative diagram given above, yields
the diagram

C ′ //

0

��

C //

��

⊕

i≥2 Hom(S[i− 1], C ′)⊗ S[i] //

��

C ′[1]

��
T ∗
S(B)[2] // B[2] // RHom(B[2], S)∗

L
⊗ S // T ∗

S(B)[3]

This implies that C ′ → C → B[2] is zero, and hence the morphism C → B[2] factors as

C →
⊕

i≥2

Hom(S[i− 1], C ′)⊗ S[i]
g
→ B[2].

Since B ∈ H(U) and S ∈ U , we know that Hom(S[i], B[2]) = 0 for i ≥ 3. Since we have assumed
that Hom(S,B) = 0, we know that g is zero and thus so is the morphism C → B[2].

Next, we show that C → A is an epimorphism in H(U). For this, let h : A → H be a nonzero
map in H(U). There is the following morphism of triangles:

C ′ //

��

C //

��

⊕

i≥2 Hom(S[i− 1], C ′)⊗ S[i] //

��

C ′[1]

��
T ∗
S(A)

//

T∗

Sh

��

A //

h

��

RHom(A,S)∗
L
⊗ S //

��

T ∗
S(A)[1]

��
T ∗
S(H) // H // RHom(H,S)∗

L
⊗ S // T ∗

S(H)[1]

Seeking a contradiction, we will assume that the composition T ∗
S(A)→ A→ H is zero. In this

case, h : A→ H would factor as

A→ RHom(A,S)∗
L
⊗ S → H.

Recall that RHom(A,S)∗
L
⊗ S ∼= ⊕i Hom(A,S[i])∗ ⊗ S[i]. Since A ∈ H(U) ⊆ U and S ∈ H(U),

we know that Hom(A,S[i]) = 0 for i < 0. Furthermore, we have assumed that Hom(A,S) = 0.
Combined, this shows that

RHom(A,S)∗
L
⊗ S ∼= ⊕i>0 Hom(A,S[i])∗ ⊗ S[i].

However, since S ∈ U and H ∈ H(U), we know that Hom(S[i], H) = 0 for i > 0, and thus we infer
that the map h : A→ H is zero. This is a contradiction, hence we may assume that the composition
T ∗
S(A) → A → H is nonzero. We may also infer that the composition T ∗

S(A) → T ∗
S(H) → H

is nonzero, and since C ′ → T ∗
S(A) is an epimorphism in H(U ′), we find that the composition

C ′ → T ∗
S(A)→ T ∗

S(H) is nonzero (here we have used Lemma 9.4 to see that T ∗
S(H) ∈ H(U ′)).
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Using that C ′ ∈ ⊥S, we find that the composition C ′ → T ∗
S(A) → T ∗

S(H) → H is nonzero.
Hence the composition C ′ → C → A → H is nonzero, and thus so is C → A → H. We conclude
that C → A is indeed an epimorphism.

This finishes the proof. �

10. Proof of the main theorem

We are now ready to prove the main theorem (Theorem 10.1 below). Let (U ,V) be a t-structure
on a triangulated category C with Serre duality. We showed in Corollary 4.13 that if (U ,V) induces
a triangle equivalence DbH(U)→ C, then (U ,V) is bounded and SU ⊆ U . In this section, we show
the converse to this statement when C is Db modΛ for a finite-dimensional hereditary algebra Λ.

Theorem 10.1. Let Λ be a finite-dimensional hereditary algebra, and let S be the Serre functor in
Db modΛ. A t-structure (U ,V) on Db modΛ induces a triangle equivalence DbH(U)

∼
→ Db modΛ

if and only if (U ,V) is bounded and SU ⊆ U .

Proof. That the condition SU ⊆ U is required, has been shown in Corollary 4.13. For the other
direction, let (U ,V) be a bounded t-structure on Db modΛ. If U has no nonzero U -projective
objects, then the statement follows from Corollary 8.4.

If U does have nonzero U -projectives, then we will follow the strategy of §9. Let P0 ∈ U be
an indecomposable U -projective and let S0 ∈ H(U) be the associated simple top. By Proposition
2.10, we know that ⊥S0 is equivalent to Db modΛ′, for some finite-dimensional hereditary algebra
Λ′ with 1 fewer distinct simple module (thus modΛ′ has one fewer isomorphism class of simple
objects than modΛ has).

We can thus iterate this procedure, finding a sequence S0, S1, . . . , Sn of exceptional objects such
that

Un+1 = U ∩ ⊥{S0, S1, . . . , Sn}

has no nonzero Un+1-projective objects. Applying Proposition 9.6 n + 1 times then yields the
required result. �

Example 10.2. Let Λ be a finite-dimensional hereditary algebra, and let (T ,F) be a torsion
theory on modΛ. Let B be the tilting of modΛ with respect to this torsion pair. The natural
embedding B → Db modΛ induces a derived equivalence if and only if for every projective object
P ∈ T , the corresponding injective P ⊗Λ Λ∗ is also contained in T .

In particular, if T has no nonzero projective objects (and thus the torsion theory is cotilting) or
if T has all injective objects (and thus the torsion theory is tilting), then B is derived equivalent
to modΛ.

Example 10.3. Let X be a weighted projective line of domestic type (thus the category cohX is
derived equivalent to modΛ for a finite-dimensional hereditary algebra Λ). Tilting with respect
to any torsion pair (T ,F) on cohX induces a derived equivalence.

For a general (algebraic) triangulated category C, a bounded t-structure (U ,V) satisfying the
condition SU ⊆ U does not necessarily induce a triangle equivalence DbH(U)→ C, as the following
examples illustrate.

Example 10.4. Let A be the category grmod k[x] of finitely generated Z-graded k[x]-modules. It
is well-known that A is hereditary and that the Serre functor on DbA is given by SX ∼= X(−1)[1].

For any i ∈ Z, We consider the full subcategories A≤i and A≥i of A given by

ObA≤i = {X ∈ A | Xj = 0, for all j > i},

ObA≥i = {X ∈ A | Xj = 0, for all j < i}.

Note that the embedding A≤i → A has a right adjoint and that the embedding A≥i → A has a
left adjoint; both adjoints are given by truncations.

We consider the following t-structure on DbA:

ObD≤0 = {X ∈ DbA | H−iX ∈ A≥i},

ObD≥0 = {X ∈ DbA | H−iX ∈ A≤i}.
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It is easily checked that D≤0 is a preaisle, and it follows from [49, Theorems 1.1 and 1.2] that
(D≤0, D≥0) is a t-structure.

Furthermore, the heart H = D≤0 ∩D≥0 can be described as follows: an object X ∈ DbA lies
in H if and only if H−i(X) ∈ A≥i ∩ A≤i, thus if H−iX is concentrated in degree i. This means
that the heart is the additive closure of

⋃

i{k(i)[i]} in DbA, or thus equivalent to grmod k; in
particular, the heart is a semi-simple category and is thus not derived equivalent to A.

Example 10.5. Let Q be the quiver A∞ with zig-zag orientation, thus Q is the quiver:

· → · ← · → · ← · → · · ·

It is well-known that the category repQ of finite-dimensional representations ofQ has Serre duality.
It follows from [28] that the orbit category D ∼= Db repQ/(S[−2]) is a triangulated category which
admits a Serre functor SD ∼= [2]. This orbit category D has been discussed in [23]. Note since
SD ∼= [2], we have SDU ⊆ U for every aisle U ⊆ D.

The t-structures in D have been classified in [42, Theorem 4.1], and it follows from that classi-
fication that for every bounded aisle U ⊆ D, the heart H(U) ∼= mod k, and hence D 6∼= DbH(U).

Example 10.6. Let A be the dg-algebra k[t] with zero differential and deg t = −n for some n ∈ Z.
We will write Ae = A⊗k Aop, thus Ae ∼= k[s, t] with zero differential and deg t = deg s = −n.

The dg-algebra A is homologically smooth, meaning that, as an Ae-module, it has a finite
resolution by finitely generated projective objects. Here, such a resolution is given by:

· · · //0 //k[s, t](n)
s−t

//k[s, t] //0 // · · ·

where k[s, t](n) is the dg-algebra k[s, t] shifted by degree n so that multiplication by s − t is a
degree zero morphism.

We will write ΘA for a cofibrant replacement (as dg Ae-modules) of RHomAe(A,Ae), thus the
associated complex is

· · · //0 //k[s, t]
s−t

//k[s, t](−n) //0 // · · ·

and we obtain the dg Ae-module ΘA by taking the total complex of the associated bicomplex.
It follows from [31, Lemma 3.4] that the derived category Dfd(A) of finite-dimensional right dg-
modules is (n+ 1)-Calabi-Yau, thus the Serre functor S : Dfd(A)→ Dfd(A) is given by [n+ 1].

From now on, assume that n > 0, thus A is a nonpositively graded dg-algebra with finite-
dimensional cohomologies. Since S ∼= [n + 1], every aisle in Dfd(A) is closed under the Serre
functor.

Let (U ,V) be the standard t-structure on Dfd(A), thus M ∈ U if and only if Hi(M) = 0 for
all i > 0. We remarked before that every aisle in Dfd(A) is closed under the Serre functor, thus
SU ⊆ U . Following [35, §4.1], we have H(U) ∼= mod k, which shows that DbH(U) 6∼= Dfd(A).

Remark 10.7. The category Dfd(A) from Example 10.6 has been described in more detail in [26,
Section 8].
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Zürich, 2006, pp. 151–190.

30. , Derived categories and tilting, Handbook of Tilting Theory (Lidia Angeleri Hügel, Dieter Happel, and
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(1987), no. 6, 225–228.
33. , Aisles in derived categories, Bull. Soc. Math. Belg. Sér. A 40 (1988), no. 2, 239–253, Deuxième Contact
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