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Bacteria that have developed a reduced susceptibility against antimicro-
bials pose a major threat to public health. Hence, monitoring their distribu-
tion in the general population is of major importance. This monitoring is per-
formed based on minimum inhibitory concentration (MIC) values, which are
collected through dilution experiments. We present a semiparametric mixture
model to estimate the MIC density on the full continuous scale. The wild-type
first component is assumed to be of a parametric form, while the nonwild-type
second component is modelled nonparametrically using Bayesian P-splines
combined with the composite link model. A Metropolis within Gibbs strat-
egy was used to draw a sample from the joint posterior. The newly developed
method was applied to a specific bacterium–antibiotic combination, that is,
Escherichia coli tested against ampicillin. After obtaining an estimate for the
entire density, model-based classification can be performed to check whether
or not an isolate belongs to the wild-type subpopulation. The performance of
the new method, compared to two existing competitors, is assessed through a
small simulation study.

1. Introduction. Antimicrobials are substances used to kill microorganisms
or to inhibit their growth. The accidental discovery and isolation of penicillin by
Sir Alexander Fleming marks the start of modern day antibiotics. Nevertheless,
it soon became clear that bacteria could develop antibiotic resistance whenever
too little penicillin was used or when it was used for a too short period. New
antimicrobial agents have been developed ever since, but, unfortunately, so has
antimicrobial resistance (AMR) [Palumbi (2001)]. An excessive and sometimes
inappropriate usage of antimicrobials has led to an increasing amount of bacterial
isolates that are able to withstand antimicrobial treatments. Since isolates with a
reduced susceptibility to antimicrobials pose a major threat to public health, it is
important to study and monitor their distribution.

Across Europe, several institutions are concerned with collecting data on an-
timicrobial resistance and identifying possible threats to human health. On a yearly
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basis, the European Centre for Disease Prevention and Control (ECDC) and the
European Food Safety Authority (EFSA) jointly prepare an annual European
Union Summary Report on antimicrobial resistance in zoonotic and indicator bac-
teria from humans, animals and food. Since 2010, data are collected from EU
member states on an isolate-based level. EFSA coordinates the annual reporting of
antimicrobial resistance data from the member states, analyses the data collected
and issues the results of this analysis. AMR data typically constitute minimum
inhibitory concentration (MIC) values, which are collected through broth agar di-
lution methods. In these experiments, a standardized amount of the isolate is ex-
posed to successive twofold concentrations of an antimicrobial (i.e., 0.5, 1, 2 mg/l,
. . .). The MIC is defined as the lowest concentration of the antimicrobial with no
visible growth after a prescribed incubation period. Consider, for example, a bac-
terial isolate that is subjected to an antimicrobial at concentrations 0.5, 1, 2 and
4 mg/l. In case the isolate shows inhibition of growth at values of 2 and 4 mg/l, but
growth at lower values, the reported MIC value is equal to 2 mg/l. However, the
true inhibition occurs between the concentrations of 1 and 2 mg/l, so the obtained
MIC value is interval censored. See, for example, Andrews (2001) and Wiegand,
Hilpert and Hancock (2008) for a detailed description of the collection of MIC
values.

When analysing the obtained AMR data, two data complexities need to be taken
into account. First of all, due to the setup of the dilution experiments, MIC data
are typically censored. Indeed, The MIC value is only known to be either below
the minimum concentration tested, between two concentrations or above the max-
imum concentration tested in the array for that antimicrobial agent. Second, it is
unknown a priori whether an isolate belongs to the wild-type or nonwild-type sub-
population. Therefore, the analysis needs to account for unobserved population
heterogeneity.

Let the univariate random variable X represent the MIC value with probability
density function f (x). In our context, a two-component mixture

f (x) = γf1(x; θ1) + (1 − γ )f2(x; θ2)(1)

is assumed, in which f1 and f2 represent the wild-type and nonwild-type compo-
nent, respectively, of the MIC distribution and the prevalence of wild-type isolates
is denoted by γ . The wild-type susceptible population, typically located on the left
of the MIC distribution, is assumed to have no acquired or mutational resistance. It
commonly shows a unimodal distribution reflecting a slight biological variability
around a mode which is not altered by changing circumstances over time [Finch
et al. (2010)]. Therefore, the first component in (1) can be assumed to be of a fixed
parametric form, such as the log-normal or gamma distribution [Lee and Whit-
more (1999), Turnidge, Kahlmeter and Kronvall (2006)]. The second component,
representing the nonwild-type isolates, is often multi-modal, suggesting that it is
itself a mixture of different nonwild-type subpopulations which are characterised
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by different degrees of reduced susceptibility conferred by different mechanisms.
To allow proper modelling of the different possible characteristics of the nonwild
type distribution, a nonparametric approach will be considered.

Despite the importance of analysing AMR data, the statistical literature regard-
ing this topic is rather limited. It is current practice to classify an isolate into
the wild-type or nonwild-type subpopulation based on an epidemiological cutoff
value (ECOFF), defined as the upper limit of the wild-type distribution. Accord-
ing to the guidelines of the European Committee on Antimicrobial Susceptibility
Testing (EUCAST), the ECOFF can be determined based on visual inspection of
the histogram resulting from the dilution experiment [Kahlmeter et al. (2003)]
or, alternatively, it can be statistically calculated using the approach of Turnidge,
Kahlmeter and Kronvall (2006). The latter approach aims at providing an esti-
mate for the wild-type density function (f1), from which the ECOFF is derived
as the 99.9th percentile. In a similar fashion, Jaspers et al. (2014a) also adopt a
local view, focussing on the wild-type first component only. They proposed an im-
proved likelihood-based procedure, called the multinomial-based method (MBM)
to identify the most suitable distribution of the first component and to estimate its
parameters.

Model-based classification is a valuable alternative for determining the sub-
population of a specific isolate. With this technique, isolates are classified to the
wild-type subpopulation when the posterior probability

γf1(x; θ1)

γf1(x; θ1) + (1 − γ )f2(x; θ2)
(2)

is larger than 0.5. It is clear that this option requires an estimate for the entire
mixture density f . Craig (2000) suggested that one may approximate the entire
density f in (1) by a mixture of Gaussian density functions. This approach was
followed by Annis and Craig (2005), who assumed two fixed components, rep-
resenting the wild-type and nonwild-type subpopulations. However, no a priori
information is available on the number of components for the nonwild-type den-
sity, nor on the shape of these component density functions. Therefore, a nonpara-
metric second component seems more appealing. Jaspers et al. (2014b) provide
a two-stage semiparametric mixture model to estimate the mixture density of in-
terest. The first stage determines the estimates of the first component using the
MBM. Fixing the so-obtained estimates as being the true parameters of the wild-
type component, that is, θ1, the density of the second component is determined
using an extended version of the penalized mixture (PM) approach by Schellhase
and Kauermann (2012). Nevertheless, a drawback of this two-stage procedure is
that the parameters of the first component are not updated, but kept fixed at the
initial estimates provided by the MBM. This provides inadequate estimates of the
standard errors. In addition, there seemed to be some kind of discontinuity in the
region of overlap between the first and second component, resulting from the used
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two-stage approach. These drawbacks were circumvented by the back-fitting al-
gorithm presented in Jaspers et al. (2016). In their paper, the authors proposed a
likelihood based method for the estimation of both the wild-type and nonwild-type
component. The second, nonwild-type component was modelled using a generous
number of normal densities for which the weights were determined using the Ver-
tex Exchange Method [Böhning (1986)]. Although the estimator provides good
estimates for the MIC density of interest, it was found to be less trivial to extend
it to include covariates. The inclusion of a time component especially seems very
appealing when interest is in developing a monitoring tool that is able to detect
trends over distinct years in the MIC distribution. In this paper, an alternative to
the back-fitting algorithm is presented. The approach will follow Lambert and Eil-
ers (2009) and adopt a Bayesian viewpoint for the estimation of the MIC density
of interest. More specifically, a combination of the composite link model (CLM)
with roughness penalties is considered.

In Section 2, we will discuss the Bayesian composite link model approach by
Lambert and Eilers (2009) and explain how it can be modified to fit within the
antimicrobial resistance context. An application of the new method to two data
examples can be found in Section 3 and a simulation study shows its performance
in Section 4. Finally, a discussion ends the paper in Section 5.

2. Mathematical framework. As argued above, AMR data typically consti-
tute MIC values obtained from dilution experiments. Since these experiments de-
liver only censored readings, we are dealing with grouped continuous data, mean-
ing that the frequencies of observations in fixed intervals are reported. The concept
of estimating a density from grouped continuous data was addressed by Lambert
and Eilers (2009) from a Bayesian viewpoint. In this section, we will first elaborate
on this original method and, in a second stage, expand it to our data setting.

2.1. Bayesian composite link model. Lambert and Eilers (2009) present a
Bayesian approach to density estimation from grouped continuous data. The au-
thors propose a combination of the composite link model with roughness penal-
ties to estimate smooth continuous densities from such data. In this regard, as-
sume that one is interested in estimating a discrete representation of a continuous
density function fX(·) of a random variable X on a fine grid on (a0, aJ ). This
fine grid consists of many grid points (say, 100 or more) that partition (a0, aJ )

into I consecutive intervals li = (χi−1, χi) of equal width � with midpoints ui

(i = 1, . . . , I ), χ0 = a0 and χI = aJ . With this notation, the quantities of interest
are πi = ∫

li
fX(t) dt ≈ fX(ui)�.

Let mj (j = 1, . . . , J ) denote the number of observations belonging to each
of the given nonoverlapping wide bins Jj = (aj−1, aj ) partitioning (a0, aJ ). For
simplicity, it is assumed that the limits of these wide bins constitute a subset of
{χ0, . . . , χI }. The relationship between the wide bins and the initial grid is coded
by the J × I matrix C = [cji], where cji = 1 if li ⊂ Jj and 0 otherwise.
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The probability that an observation belongs to the j th wide bin, Jj , can now
be modelled as κj = ∑I

i=1 cjiπi , or, in vector notation, κ = Cπ . In case the only
available data are the frequencies associated with the wide bins, the estimation
of the πi’s is an ill-conditioned problem. Therefore, π is requested to be smooth,
following the P-spline approach presented by Eilers and Marx (1996) and Eilers
(2007).

More specifically, consider a basis {bk(·) : k = 1, . . . ,K} of B-splines associated
to equidistant knots on (a0, aJ ). Denote by (B)ik = bik = bk(ui) the I ×K matrix
giving the basis functions evaluated at the midpoints ui (i = 1, . . . , I ). We now
model πi by

πi = πi(φ) = eηi

eη1 + · · · + eηI
,

with η = Bφ and the identifiability constraint
∑K

k=1 φk = 0. The P-spline penalty
is based on r th order differences, �rφ, of the spline coefficients φ. In a Bayesian
setting, this translates into a prior distribution on the spline coefficients [Lang and
Brezger (2004)]:

�rφk ∼N
(
0, τ−1)

.

Therefore, the (improper) prior for the B-spline coefficients is assumed to be

p(φ|τ) ∝ τR(p)/2 exp
{
−τ

2
φ′Pφ

}
.

In the formula above, R(P ) denotes the rank of P (in general, K − r) and P =
D′D is the penalty matrix such that

∑
k(�

rφk)
2 = φ′Pφ. A gamma prior G(a, b)

is usually advocated to express prior ignorance about suitable values for τ .
Hence, the model for π , apart from the penalty, is an ordinary generalised linear

model (GLM), whereas the model for κ is a composite link model [Thompson and
Baker (1981)].

Using Bayes’ theorem, the joint posterior distribution is found to be

p(φ, τ |D) = p(D|φ, τ )p(φ, τ )

p(D)

∝ p(D|φ, τ )p(φ, τ )

∝
{

J∏
j=1

κ
mj

j

}
τa+0.5R(P )−1 exp

{−τ
(
b + 0.5φ′Pφ

)}
,

where D denotes the observed frequencies associated with the wide bins, that is,
{(mj ,Jj ), j = 1, . . . , J }. The conditional posterior distributions for τ and φ are,
respectively,

(τ |φ,D) ∼ G
(
a + 0.5R(P ), b + 0.5φ′Pφ

)
,(3)

p(φ|τ,D) ∝
{

J∏
j=1

κ
mj

j

}
exp

{
−τ

2
φ′Pφ

}
.(4)
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Markov chain Monte Carlo methods can be used to draw a sample from the
posterior. The authors propose a Metropolis-within-Gibbs sampling strategy with
a Gibbs step for τ [see equation (3)] and a Metropolis step through the modi-
fied Langevin–Hastings algorithm for φ with equation (4). In the latter algorithm,
proposals for the B-spline coefficients are generated from a multivariate normal
density. With p(φ|D) the posterior distribution used as shorthand notation for
p(φ|D, τ (m−1)) and φ(m−1) the state of the chain at iteration (m − 1), the pro-
posal for φ at iteration m is obtained by taking a random sample from

N
(
φ(m−1) + 0.5δ�∇ logp

(
φ(m−1)|D)

, δ�
)
,

where δ > 0 and � is ideally an approximation to the second order dependence
structure of the conditional posterior. The acceptance probability is defined as

α
(
φ(m−1),φ

) = min
{

1,
p(φ|D)

p(φ(m−1)|D)

q(φ,φ(m−1))

q(φ(m−1),φ)

}
,

where

q(φ,φ(m−1))

q(φ(m−1),φ)
= exp

{
−1

2

(
G + G(m−1))′((

φ − φ(m−1)) + δ�

4

(
G − G(m−1)))}

,

with

G = ∇ logp(φ|D) and G(m−1) = ∇ logp
(
φ(m−1)|D)

.

The value of δ can be tuned to reach the optimal acceptance rate of 0.57. For more
details, the reader is referred to Haario, Saksman and Tamminen (2001), Atchadé
and Rosenthal (2005) and Lambert and Eilers (2009).

2.2. Adaptation to cope with parametric first component. Although the
methodology presented by Lambert and Eilers (2009) provides a very nice, non-
parametric estimate of a continuous density from grouped data, it still needs up-
dates to fit within the purpose of this paper. Indeed, a separate estimate for the
parametric first component is required in order to perform model-based classifi-
cation. Additional interest is also in the prevalence of nonwild-type isolates and
in the characteristics of the wild-type component density. Therefore, we will now
present the extension to the existing methodology.

Let

πi = P(X ∈ li) = γ
[
f1(ui; θ1)�

]︸ ︷︷ ︸
π

(1)
i

+(1 − γ )
[
f2(ui)�

]︸ ︷︷ ︸
π

(2)
i

and κj be as defined before.
The wild-type component is commonly accepted to be unimodally distributed.

Hence, the first part of the mixture can be assumed to be of a parametric form.
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The focus in this paper will be on the log-normal assumption, although other as-
sumptions can be implemented as well. More specifically, after log-transforming
the data, we will model π

(1)
i using the cumulative normal distribution function, �,

as follows:

π
(1)
i = �(χi;μ1, σ1) − �(χi−1;μ1, σ1),

where χi and χi−1 are the upper and lower bound of the small bin li and μ1
and σ1 denote the mean and standard deviation of the log-normal first component,
respectively.

Regarding the small-bin probabilities related to the second component, we will
follow the B-spline approach presented in Lambert and Eilers (2009):

π
(2)
i (φ) = exp(ηi)

exp(η1) + · · · + exp(ηI )
,

with η = Bφ and
∑

φk = 0.
In addition to the B-spline coefficients φ and the penalty parameter τ , we need

to estimate three parameters, that is, the mixing weight γ and the mean (μ1) and
standard deviation (σ1) related to the log-normal first component. Assuming a nor-
mal prior for the mean μ1 of the first component (with hyperparameters μ11 and
μ12 denoting the mean and standard deviation, respectively), an inverse gamma
prior for σ1(with hyperparameters denoted by σ11 and σ12) and a beta prior for the
mixing weight γ (with hyperparameters α and β), one gets as joint posterior

p(γ,μ1, σ1,φ, τ |D)

∝
{

J∏
j=1

κ
mj

j

}
p(γ )p(μ1)p(σ1)p(φ|τ)p(τ)

∝
{

J∏
j=1

κ
mj

j

}
γ α−1(1 − γ )β−1 exp

(
−(μ1 − μ11)

2

2μ2
12

)
σ

−σ11−1
1 exp

(
−σ12

σ1

)

× τa+0.5R(p)−1 exp
(−τ

[
b + 0.5φ′Pφ

])
.

As will become clear in Section 3.1, priors were taken to be relatively informative,
with their means corresponding to the estimates of the multinomial-based method
[Jaspers et al. (2014a)].

From the joint posterior, we obtain the following conditional posterior distribu-
tions:

(τ |γ, θ1,φ,D) ∼ G
(
a + 0.5R(p) − 1;b + 0.5φ′Pφ

)
,

p(φ|γ, θ1, τ,D) ∝
J∏

j=1

κ
mj

j exp
(−0.5τφ′Pφ

)
,
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p(γ |θ1,φ, τ,D) ∝
J∏

j=1

κ
mj

j γ α−1(1 − γ )β−1,

p(μ1|σ1, γ,φ, τ,D) ∝
J∏

j=1

κ
mj

j exp
(
−(μ1 − μ11)

2

2μ2
12

)
,

p(σ1|μ1, γ,φ, τ,D) ∝
J∏

j=1

κ
mj

j σ
−σ11−1
1 exp

(
−σ12

σ1

)
.

Inference is performed in full similarity to the original method (see Section 2.1).
Hence, MCMC methods are used to draw a sample {(φ(m), τ (m),μ

(m)
1 , σ

(m)
1 , γ (m)),

m = 1, . . . ,M} from the posterior. In this respect, a Gibbs step is used for sam-
pling τ , while the Langevin–Hastings algorithm is employed to sample from the
remaining posteriors.

3. Data analysis: Escherichia coli vs. ampicillin. Escherichia coli is a
Gram-negative bacterium that is commonly present in the digestive tracts of hu-
mans and animals. Although it is a commensal, pathogenic variants can cause
intestinal and extra-intestinal infections, including urinary tract infections and
meningitis. The preferred treatment depends on the nature of the infection and
antimicrobial treatment is not recommended for every type of infection [Igarashi
et al. (1999)]. Several studies have shown that resistance in E. coli isolates is rel-
atively high and has been emerging over the last decades. For example, a 30-year
follow up study performed in Sweden showed an increasing resistance trend for
ampicillin, sulfonamide, trimethoprim and gentamicin [Kronvall (2010)]. Simi-
larly, a retrospective study during 1950–2002 performed in different US states re-
vealed a significant upward trend in resistance for ampicillin, sulfonamide and
tetracycline [Tadesse et al. (2012)]. In this report, we will focus on the susceptibil-
ity of E. coli against ampicillin, with the major aim of estimating the MIC value
density. For the purpose of this modelling study, data were obtained from two ma-
jor European institutions concerned with the collection and analysis of AMR data,
that is, EFSA and EUCAST.

3.1. Data from EFSA. Since 2010, data concerning antimicrobial resistance
are collected from European Union member states on an isolate-based level. EFSA
coordinates the annual reporting of AMR data from the member states, analyses
the data collected and issues the results of this analysis. An exemplary MIC dis-
tribution summarising the results of ampicillin susceptibility testing of indicator
E. coli isolates in 2010 has been provided by EFSA. Four member states provided
information regarding this antibiotic–bacterium combination, resulting in a subset
of 1890 isolates. A graphical representation of the MIC value distribution can be
found in Figure 1. The mode of the wild-type component is located between the
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FIG. 1. Barplot of E. coli isolates tested for susceptibility against ampicillin—source: EFSA. Over-
laid are the estimated density using the updated Bayesian CLM (solid) with its 95% credible interval
(dashed), the estimate resulting from the PM approach (dotted) and the VEM estimate (dash-dotted).

values of 2 and 4 mg/l and there is presumably a unique nonwild-type population,
for which the modal MIC is located at 32 mg/l.

Initial estimates for the parameters of the first component were obtained using
the MBM. On the log2 scale, the mean was estimated to be 1.05 (0.02), while
the standard deviation of the Gaussian first component was estimated at 0.69
(0.02). The estimated mixing weight corresponding to this first component was
0.86 (0.02). These initial values were used to construct the priors that are required
for the updated Bayesian CLM. More specifically, the employed hyperparameters
are constructed such that the mean of the prior distribution corresponds to the point
estimates from the MBM, with variances equal to

√
0.05 for μ1, 0.05 for σ1 and

0.0005 for the mixing weight γ . As a result, the prior distributions of the first com-
ponent parameters are relatively informative, but still allow some variability in the
vicinity of the initial estimates. This information is essential for identifiability rea-
sons. In addition, 40 equally spaced cubic B-splines were considered as the basis
for the nonparametric second component and a third order penalty was employed.

Figure 1 shows the estimated density (black solid line), computed from a
MCMC chain of length 200,000, accompanied with the 95% pointwise credible
interval (black dashed line). Two major modes can be identified. The first mode,
representing the wild-type population, corresponds to the mean of the parametric
first component. The mean value for this parameter is 1.01 (0.03), while the stan-
dard deviation of the Gaussian first component is estimated at a mean value of
0.57 (0.03). The prevalence of wild-type isolates is estimated to be 0.80 (0.01). In
addition to this first component, we also obtain an estimate for the entire MIC dis-
tribution. This is especially convenient when interest is in performing model-based
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FIG. 2. Probability to belong to the wild-type class for EFSA (left) and EUCAST data (right).

classification. Figure 2 shows the probability to belong to the wild-type subpop-
ulation. It is observed that the breakpoint is located between 8 and 16 mg/l. This
value corresponds to the harmonised ECOFF proposed by EUCAST. For compar-
ison purposes, the estimates obtained with the back-fitting algorithm and the PM
approach are overlaid on Figure 1.

3.2. Data from EUCAST. Another important organization within the field of
AMR is the European Committee on Antimicrobial Susceptibility Testing (EU-
CAST). This organization is mainly concerned with breakpoints and technical as-
pects of phenotypic in vitro antimicrobial susceptibility testing. Most antimicro-
bial MIC breakpoints (e.g., epidemiological cutoff values) in Europe have been
harmonized by EUCAST. An interesting collection of MIC distributions can be
found on their website. These distributions are based on collated data from a to-
tal of almost 20,000 MIC distributions from worldwide sources. For comparison
purposes, the same antibiotic–bacterium combination has been selected for our
analysis: ampicillin–E. coli. The resulting MIC distribution consists of 39,220 iso-
lates that were obtained from 48 distinct sources. The observed MIC values ranged
from 0.125 mg/l to 512 mg/l, with the first mode being located around the value of
2 mg/l. A graphical representation of the data is given by the barplot in Figure 3.
Two large peaks are clearly visible at the values of 2 and 4 mg/l, probably repre-
senting the center of the wild-type component. Towards the larger MIC values, two
smaller peaks are located at the values of 64 and 256 mg/l, which could represent
distinct strains of the nonwild-type isolates.

Again, here Figure 3 shows the estimated MIC density for the three methods.
A similar conclusion can be made from the different approaches, but focus is again
on the newly introduced Bayesian CLM. The mean of the first component is es-
timated at 1.06 (0.01), while the estimated standard deviation is 0.68 (0.01). The
prevalence of wild-type isolates corresponding to the mixing weight of the first
component is estimated at 0.63 (0.01). It is, however, noteworthy that these data
from EUCAST are collected over different time periods and geographical regions,
such that these latter estimates are only exemplary. Finally, Figure 2 shows the
classification probability. Also, for this dataset, the MIC value of 8 mg/l can be
termed as the cutoff between wild-type and nonwild-type isolates.
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FIG. 3. Barplot of E. coli isolates tested for susceptibility against ampicillin—source: EUCAST
(website: mic.eucast.org/Eucast2/regShow.jsp?Id=1529). Overlaid are the estimated density using
the updated Bayesian CLM (solid) with its 95% credible interval (dashed), the estimate resulting
from the PM approach (dotted) and the VEM estimate (dash-dotted).

4. Simulation study. A small simulation study is performed to assess the per-
formance of the presented method. In general, we considered a mixture distribution
with two main components reflecting the two major subpopulations of the isolates
of interest. Two different scenarios were investigated. In the first one, the wild-type
component is assumed to be log-normally distributed with mean 2 and standard de-
viation 0.8. Note that this means that the correct distributional assumption for the
first component will be made in the Bayesian CLM approach. The nonwild-type
component is a 50:50 mixture of two log-normal densities with (on the log2-scale)
means equal to 4.5 and 7.5, respectively, and standard deviations equal to 0.7 and
0.6, respectively. On the other hand, the second scenario considers a gamma first
component with shape and scale equal to 3 and 1.6, respectively. The nonwild-type
component is a 50:50 mixture of two slightly skewed t-distributions. Hence, this
second scenario shows what will happen if we make an incorrect assumption about
the first component. For both scenarios, the prevalence of wild-type isolates is set
to 0.6, resulting in the following mixture densities:

X1 ∼ 0.6 logN (2,0.8) + 0.2 logN (4.5,0.7) + 0.2 logN (7.5,0.6),(5)

X2 ∼ 0.6G(3,1.6) + 0.2 st(4,1,1,10) + 0.2 st(7.5,0.8,−1,10),(6)

where st denotes the skewed t-distribution as described in Azzalini and Capitanio
(2003). The considered sample sizes are 500, 1000 and 5000. In each case, the
1000 obtained samples were censored in order to resemble real-life datasets as
closely as possible. In the absence of a golden standard, we decided to compare
between three existing methods. The adjusted CLM approach is compared to the

http://mic.eucast.org/Eucast2/regShow.jsp?Id=1529
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back-fitting algorithm and to the two-stage penalized mixture (PM) approach pre-
sented in Jaspers et al. (2014b, 2016), respectively.

The plots in Figure 4 relate to the first scenario. The results from the PM ap-
proach are located in the left column, those from the back-fitting algorithm in the
middle and the estimates from the Bayesian CLM can be found in the right column.
It is immediately clear that the back-fitting algorithm and the Bayesian CLM out-
perform the PM approach, especially in the region of overlap between the first and
second components. This could be expected since these methods allow an update
of the parameters of the first component, while the PM approach considers them
fixed. On the other hand, the results of the back-fitting algorithm and those from
the Bayesian CLM are comparable. It seems that the newly introduced method
has a somewhat higher variability related to the estimate of the second component
and slightly overestimates the valley between the last two modes in the case of
the largest sample size. However, recall that this first scenario consists of three
log-normal densities and that the basis employed for the back-fitting algorithm
consists of the same type of densities. As such, this first scenario is a special, sim-
plified case of the model considered in the back-fitting algorithm and it is therefore
not a surprise that method slightly outperforms the fully nonparametric Bayesian
CLM.

Figure 6 shows the evolution of the mean squared error (MSE) values for the
estimated density resulting from mixture (5). More specifically, for all grid values
xi, i = 1, . . . , I , the MSE is calculated as follows:

MSE
f̂ (xi )

= Bias2
f̂ (xi )

+ Var
f̂ (xi )

,

with

Bias
f̂ (xi )

= E
[
f̂ (xi)

] − f (xi),

Var
f̂ (xi )

= E
[(

f̂ (xi) − f (xi)
)2]

.

The conclusions made from Figure 4 are confirmed in this plot. Apart from
some deviations for the smaller sample sizes, the dotted line (Bayesian CLM)
is almost everywhere located between the solid (PM approach) and dashed lines
(back-fitting algorithm). Hence, in terms of MIC, we could state that the newly
introduced CLM approach performs similarly to the back-fitting algorithm, with a
slight advantage for the latter method in this scenario.

A numerical comparison can be made based on the integrated MSE:

IMSE
f̂

= 1

I

I∑
i=1

MSE
f̂ (xi )

.

The same conclusions can be made from the numerical counterparts, which can be
found in Table 1. For all sample sizes, the PM approach is outperformed by both
the back-fitting algorithm and the Bayesian CLM. In addition, the IMSE values for
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FIG. 4. Graphical representation of the simulation results for mixture (5). The left column corre-
sponds to the PM approach, the middle column to the back-fitting algorithm and the right column
shows results for the new CLM approach. The individual estimates are represented in grey scale,
with the true density (full) and averaged estimate (dashed) overlaid. Sample sizes: 500 (top), 1000
(middle), 5000 (bottom).
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TABLE 1
Integrated mean squared error (IMSE) values and Misclassification percentages (MP) for the two

simulation scenarios

IMSE (×10−5) MP (×10−2)

Sample size PM VEM CLM PM VEM CLM

Scenario 1: Mixture (5)
500 34.086 21.027 29.729 7.011 6.709 6.074

1000 19.218 11.578 17.274 6.682 7.029 6.413
5000 5.675 3.064 4.453 6.648 6.648 6.648

Scenario 2: Mixture (6)
500 25.771 23.543 23.865 7.890 5.958 5.830

1000 16.279 15.085 14.522 8.863 5.848 5.620
5000 7.295 3.802 4.641 10.475 7.598 6.449

the newly introduced method are intermediate between its two competitors. For all
three methods, IMSE values decrease when sample size increases.

Similarly, the plots in Figure 5 show the individual and mean estimates for the
second scenario under investigation. Recall that, in this scenario, the underlying
first component is not Gaussian, so an incorrect distributional assumption is made
for both the back-fitting algorithm and the Bayesian CLM. Nevertheless, they both
still outperform the PM approach. Even for the smaller sample sizes, the newly
introduced method successfully identifies the three modes and therein performs
better than the back-fitting algorithm.

From Figure 6, one can also claim that both the back-fitting algorithm and the
Bayesian CLM perform better than the PM approach and that the Bayesian CLM is
a valuable alternative to the back-fitting algorithm. The IMSE values for the latter
two methods tend to be more similar than in scenario 1, again with a larger IMSE
for the PM. The back-fitting algorithm resulted in the smallest IMSE values for
the largest sample size (5000), but was comparable to the Bayesian CLM for sizes
500 and 1000.

Finally, Table 1 also presents the misclassification errors made when applying
the model-based classification described in equation (2) to the sampled datasets.
It is observed that, for both scenarios of interest, the Bayesian CLM outperforms
the two older methods, which is an additional advantage for the newly developed
method.

5. Discussion. In this paper, we introduced a new method for the estimation
of a minimum inhibitory concentration (MIC) value distribution. Since we need
to deal with unobserved population heterogeneity, a mixture model approach was
considered. The mixture consists of two main components, termed as the wild-type
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FIG. 5. Graphical representation of the simulation results for mixture (6).The left column corre-
sponds to the PM approach, the middle column to the back-fitting algorithm and the right column
shows results for the new CLM approach. The individual estimates are represented in grey scale,
with the true density (full) and averaged estimate (dashed) overlaid. Sample sizes: 500 (top), 1000
(middle), 5000 (bottom).
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FIG. 6. Evolution of the MSE values of the estimated densities for sample sizes 500 (black), 1000
(red) and 5000 (green) regarding mixtures (5) and (6). The solid lines refer to the penalized mixture
approach, the dashed lines refer to the back-fitting algorithm and the dotted lines represent the CLM
approach.

first component and the nonwild-type second component. The wild-type subpop-
ulation is assumed to have no acquired or mutational resistance and commonly
shows a unimodal distribution reflecting a slight biological variability around a
mode which is not altered by changing circumstances over time. Therefore, a sim-
ple parametric specification seems appropriate. Focus in this paper was on the log-
normal assumption, although other distributions can be implemented as well. On
the other hand, we have no detailed information on the distribution of the nonwild-
type isolates. This subpopulation is probably further subdivided into different types
of nonsusceptible isolates, each with their respective distribution around a differ-
ent mode. Since we do not want to pose any restrictions on this second component
density, we employed a nonparametric approach, following Lambert and Eilers
(2009). Therefore, the new method is an updated version of the Bayesian com-
posite link model. The new approach was applied on two datasets concerning an-
timicrobial susceptibility of E. coli against ampicillin. In addition to obtaining the
MIC density estimate, the procedure provides separate estimates for the first com-
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ponent, which can be used for model-based classification. All computations were
done with R and the employed code can be obtained from the first author.

The developed method is able to deal with the tree types of censoring that are
related to dilution experiments (i.e., left-, right- and interval-censoring). Neverthe-
less, a drawback in real-life applications is that data can be collected from dif-
ferent laboratories across different countries, yielding different dilution ranges.
The method is not able to deal with these nonuniform ranges. Fortunately, formal
rules for the collection of AMR data, including the selection of ranges, have been
postulated on the European Union level, which will reduce the amount of nonuni-
form data ranges in the future [2013/652/EU (2013)]. For this reason, we made
the assumption of constant ranges in our data examples, with interval-censored
observations throughout, except for the largest assumed to be right-censored.

From the IMSE values obtained in the simulation study in Section 4, we could
observe that the newly introduced method outperformed the PM approach in both
scenarios under investigation. In scenario 1, the CLM was slightly outperformed
by the back-fitting algorithm, but scenario 2 suggests that the Bayesian CLM is
a better option when simulated data do not strictly conform to the back-fitting
algorithm hypothesis. This second scenario is more likely to occur in practice
since continuing shifts in the unknown underlying distribution can easily result
into skewness. In addition, the misclassification rates resulting from the Bayesian
CLM were smallest. It should be noted that, in both scenarios, there was a lim-
ited amount of overlap between wild-type and nonwild-type isolates. This was
based on the two data examples where the two subpopulations were relatively well
segregated. However, increasing the amount of overlap reduces the performance
properties of the new method (as well as that of its competitors) since the identi-
fiability of both components will diminish. Nevertheless, based on both the sim-
ulation study and the data analysis, we believe the new Bayesian CLM can have
wide applicability in the field of antimicrobial resistance (AMR). Moreover, the
method can be adjusted to incorporate covariates (e.g., time, country, . . .). Indeed,
specific attention in the field of AMR is the detection of possible shifts over time
in the distribution. While we know that the wild-type component is stable over
time, it is possible that the prevalence of wild-type isolates increases or decreases.
Therefore, a time-dependent mixing weight γ (t) could be introduced in the model.
In addition, it is also possible that the nonwild-type component distribution shifts
over time. The B-spline coefficients can therefore be made time-dependent to see
how this distribution evolves. The identification of time shifts could be an impor-
tant trigger for public health organisations to take appropriate measures. These
extensions with covariates are part of our ongoing research. This is an additional
advantage over the back-fitting approach, where the inclusion of covariates was
found to be less trivial. In this way, the developed model can be a nice alternative
to the current practice of using standard regression models for AMR monitoring.
These models rely heavily on the ECOFF and, in the case of binary data, trends
above the ECOFF cannot be detected.
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In summary, we can conclude by stating that the field of antimicrobial resistance
testing is an important and quickly evolving area of interest. Developing tools for
monitoring the MIC distributions of certain high-risk bacteria is extremely impor-
tant and we believe this new method is a first promising step in that direction.
Besides the inclusion of a time trend, it can also be of interest to consider multi-
variate models that are able to jointly estimate the MIC distribution of two or more
antimicrobials to model their co-resistance patterns.
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