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Abstract 
The elucidation of molecular interaction networks is one of the pivotal challenges in the study of 
biology. Affinity purification - mass spectrometry and other co-complex methods have become 
widely employed experimental techniques to identify protein complexes. These techniques 
typically suffer from a high number of false negatives and false positive contaminants due to 
technical shortcomings and purification biases. To support a diverse range of experimental 
designs and approaches, a large number of computational methods have been proposed to 
filter, infer and validate protein interaction networks from experimental pull-down MS data. 
Nevertheless, this expansion of available methods complicates the selection of the most optimal 
ones to support systems biology-driven knowledge extraction. In this review, we give an 
overview of the most commonly used computational methods to process and interpret co-
complex results, and we discuss the issues and unsolved problems that still exist within the 
field. 
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I. Introduction  
The study of protein interactions remains highly challenging due to the diversity in the way 
proteins interact, the subcellular context of the interactions and the possible involvement of 
post-translational modifications. Current methods to detect protein-protein interactions (PPIs) 
can be roughly divided in binary and co-complex approaches. The yeast-two hybrid system 
(Rolland et al., 2014), MAmmalian Protein-Protein Interaction Trap (MAPPIT) (Eyckerman et al., 
2001) and protein complementation assays (Tarassov et al., 2008; Morell et al., 2009) are 
examples of methods that perform a binary test between an expressed candidate bait and prey 
pair, typically coupled to a reporter activity read-out (Suter et al., 2008; Lievens et al., 2009). 
Positive data from these assays suggest that the tested proteins interact in a direct way, 
although endogenous proteins within the test system (e.g. MAPPIT is performed in human cells) 
often confound this interpretation. Affinity purification-mass spectrometry (AP-MS), 
immunoprecipitation-mass spectrometry (IP-MS) and tandem affinity purification-mass 
spectrometry (TAP-MS) are the best known examples of co-complex methods, wherein a bait of 
interest is typically expressed in the cells of interest, followed by purification and subsequent 
MS-based identification of the complex constituents (Gingras et al., 2007). Several recent 
reviews are available that detail the technical operation and differences of the co-complex MS 
methods (Collins & Choudhary, 2008; Gavin et al., 2011; Dunham et al., 2012; Oeffinger, 2012; 
Walzthoeni et al., 2013). 

It is clear that the interactome changes with the cellular context and is critically dependent on 
the activation state of the cells. Current global binary approaches do not readily capture these 
aspects but rather give a rough estimate of the total number of interactions that a protein could 
be involved in (Rolland et al., 2014; Grossmann et al., 2015). However, the resulting 
interactome maps are limited by technical aspects of the underlying technology, both in terms of 
false positives (false interactors detected with the method) and in particular false negatives (true 
interactors not detected by the method) (Braun et al., 2009). Binary technologies need forced 
expression of both bait and prey, and this often in a limited set of possible cell types, while co-
complex technologies generally do not force prey expression and are more flexible in the cell 
types that can be examined. Nevertheless, most systematic screens were mainly performed in 
typical cellular model systems, largely driven by practical considerations (Couzens et al., 2013; 
Huttlin et al., 2015). 

No single technology currently addresses all the different aspects of PPIs, raising not only the 
need for complementary binary assays to define the total interactome (Braun et al., 2009), but 
also the need for different co-complex methods to identify the cell-specific complexes in a 
comprehensive way (Couzens et al., 2013). Note that many proteins are a member of different 
complexes, often depending on external conditions such as extracellular stimuli to activate 
pathways. 

The proper framework to pre-process and filter the data originating from these experiments is 
therefore a critical aspect of the analysis. However, even if the interactions found by these 
technologies would perfectly represent the ground truth, simply constructing a network of protein 
interactions would not be the end point of the study. Indeed, the true potential of collecting these 



interactions is to actually use them to learn more about the signalling and interaction pathways 
in living organisms and to gain new biological insights. This requires methods beyond those that 
merely pre-process the data. To this end, techniques must be used that find interesting answers 
to relevant research questions about these interaction networks and represent them in a way 
that is readily interpreted. 

In this review, we give an outline of how to go from the raw data collected from a co-complex 
MS experiment to new biological knowledge (Figure 1). The goal is to explore the most 
commonly used procedures and highlight some key emergent concepts that are expected to 
have a large impact on the field, without aiming to exhaustively cover all available options.  

 

II. Reliability of interactions from co-complex experiments 

The interpretation of the output of co-complex technologies is generally hampered by both false 
negatives and false positives. One of the causes of the high number of false negatives (which 
are often weak or transient interactions) is the homogenization or lysis, and the use of (harsh) 
washing steps required in many of the co-complex protocols. Therefore, novel techniques are 
getting developed that are ‘lysis-free’ or stabilize complexes, like BioID (Roux et al., 2012) and 
Virotrap (Eyckerman et al., submitted). Some recent techniques focus on co-elution, instead of 
specific purification (Havugimana et al., 2012; Kristensen et al., 2012). The undersampling by 
mass spectrometry instruments is another cause of the high number of false negatives. New 
data independent approaches (DIA) aim to reduce this problem, like Affinity Purification 
combined with Sequential Window Acquisition of all THeoretical spectra (AP-SWATH) (Gillet et 
al., 2012; Collins et al., 2013), but part of the solution can also come from spectral matching 
between runs (e.g. as implemented in MaxQuant/Perseus) (Cox & Mann, 2008). On the other 
hand, many of the false positives in the output of co-complex technologies are due to highly 
abundant proteins. These proteins are for example contaminants that are introduced by the 
technical handling of the samples (e.g. keratins), that stick to the purification matrix or the (often 
overexpressed and hence sometimes misfolded) bait (e.g. chaperones), or that are generally 
very highly expressed (e.g. ribosomes and cytoskeletal proteins).  

Some of the causes of these false positives can be partly tackled by using “lysis-free” methods 
(Roux et al., 2012), by limiting overexpression (Couzens et al., 2013), or by purifying 
endogenous complexes (Malovannaya et al., 2011; Gibson et al., 2013). Nevertheless, there is 
a constantly increasing need for filter techniques to differentiate true from false positives, and 
this need will grow even more with the continuous increase in sensitivity of mass spectrometry 
instruments that can currently generate protein lists containing hundreds of proteins per co-
complex MS experiment (Selbach & Mann, 2006; Mellacheruvu et al., 2013). 

An important consideration is the inclusion of background or unrelated experiments in the 
design of the experiment. It is clear that the choice and extent of background experiments affect 
the filtering profoundly with varying sensitivities coupled to the different filter approaches. The 
actual sample composition (only purification matrix, matrix with unspecific antibody, unrelated 
baits) is an important factor in successful filtering and should be carefully considered before 
starting a purification experiment. 



 

III. The source data of a co-complex experiment 
After pull-down with a tagged bait or equivalent, the samples are subjected to mass 
spectrometry analysis to identify proteins that have remained in a complex with the bait. The 
primary data source for further analysis will arise from identification software such as 
SEQUEST, Mascot or MaxQuant (Eng et al., 1994; Perkins et al., 1999; Cox & Mann, 2008). 
The different layers in the identification process result in a range of features for further analysis, 
such as protein identities, identification scores, peptide counts (and scores), spectral counts and 
intensities. The most basic feature, ‘protein presence’ (the presence of a certain protein 
identifier), is simply a binary variable corresponding to whether a protein was detected as a prey 
or not in a given sample, and is a commonly used feature in a large number of processing 
methods. More recent methods make use of features related to the abundance and confidence 
of each protein, typically the spectral count or intensity of the prey protein (or a derived feature). 
The ‘spectral count’ of a protein is defined as the total number of peptide-to-spectrum matches 
assigned to a specific protein in the project of interest. The ‘protein intensity’ corresponds to the 
measured intensity of the spectra assigned to the protein at the MS1 stage. Both have been 
shown to be relatively good proxies for the abundance of the protein in the sample (Old et al., 
2005; Gingras et al., 2007; Asara et al., 2008) and are therefore often used. Other commonly 
used features that also reflect the confidence of the protein observed in the sample include the 
‘peptide count’ of a protein (the unique peptide-to-spectrum matches), and the identification 
scores.  

 

IV. Strategies for filtering false positive interactions 

Several steps can be undertaken to remove the false positive interactions found in a co-complex 
MS experiment. Table 1 gives an overview of several pipelines and the corresponding features. 
The available options often depend on the type and scale of the performed experiment. For 
example, simple approaches include retaining only the preys that occur in all biological repeats 
with the same bait (Glatter et al., 2009), or the interactions where a reciprocal match is found 
with each interaction partner in turn as bait and prey (Butland et al., 2005). However, both 
approaches are often avoided because they require significant investment to repeat or perform 
new experiments and are not always feasible due to technical limitations. Furthermore, they still 
retain a large fraction of false positives at the expense of losing many true positive interactions 
due to their intrinsic simplicity.  
 
The most common approach to eliminate the false positives in a co-complex MS experiment 
involves quantifying the confidence for each measured interaction and comparing this to a 
specific cut-off to remove preys that are likely contaminants or indirect binders, i.e. a filter for 
false positives. In general, when determining this cut-off, there is a trade-off between the false 
positive and false negative rate. Stricter cut-offs will result in less contaminant proteins, but will 
return less reported interactions. Mild cut-offs will give plenty of results, but may have a high 
fraction of false interactions. The choice where to end up in this spectrum is highly dependent 
on the goal of the constructed interaction network, which is addressed further below. Typically 



the confidence value assigned to an interaction is based on a combination of the promiscuity of 
the proteins, i.e. how often do the involved proteins occur in other purifications; the 
reproducibility of the interaction, i.e. does this interaction consistently occur in repeats; and/or 
the protein concentration of the interacting partners, usually determined by their spectral counts 
or protein intensity measurement.  
 
The choice of the filtering approach is dependent on several factors, such as the size of the 
experiment and the connectivity of bait proteins, but each filtering approach makes several 
assumptions about the true interaction network composition. As the topology of the protein 
complex methods is unknown, a critical assumption that these filtering approaches must make 
fits in two possible models: the ‘spoke’ model or the ‘matrix’ model. In the ‘spoke’ model, 
interactions are assumed between the bait and each identified prey, but not between the preys, 
while in the ‘matrix’ model, the identified preys are assumed to also interact with each other. 
Comprehensive reviews about the inner workings of these filtering approaches are available 
(Armean et al., 2012; Nesvizhskii, 2012). Here we will provide a brief overview by dividing the 
methods in three categories based on their intended use and required input parameters. The 
first category includes filtering approaches based on straightforward calculations that are mostly 
independent from the application setting. They typically involve count data or intensity values. 
The second category corresponds to parametric approaches where one or more parameters 
must be tuned to fit the data set. The confidence values for each potential interaction can then 
be modelled. The third category consists of methods that attempt to identify clusters of co-
occurring proteins instead of quantifying each individual interaction. In the next sections we will 
further describe each of these categories.  

A. Non-parametric filtering 

Non-parametric filtering approaches are defined as those that do not require any parameter 
tuning for the given data set and often consist of only a few straightforward calculations. These 
approaches are often expert-driven, with the most basic versions typically more based on what 
the expected experimental outcome should be like, rather than fitting a statistical model. As 
such, these methods are sometimes called ‘empirical methods’. The cut-offs that are used in the 
filters of the more basic versions are often estimated from synthetic data or golden standard 
data sets, although some variants estimate the cut-offs directly from the underlying data. 
Furthermore, several of the basic approaches are embedded in more complex methods, e.g. 
SAI (Gavin et al., 2006), often as a first step to remove the most obvious of false positives. 

Some of the most straightforward non-parametric filters remove potential interactors that are 
found at frequencies above those observed in the negative control samples (Arifuzzaman et al., 
2006; Ewing et al., 2007). Alternative straightforward approaches eliminate proteins that co-
elute with a large fraction of the tested baits, or directly remove all ribosomal proteins, a pool of 
common contaminants (Ho et al., 2002). These are all basic filtering operations that already 
have a large effect on the false positive ratio of the final network as they will remove most 
clearly promiscuous preys. Nevertheless, these approaches are far from stringent and may 
often also arbitrarily remove many true interactors.  



Because of the clear shortcomings of the most basic non-parametric filtering approaches, 
several filters scale the input data to correct for biases e.g. introduced by bait or prey 
abundance differences. These scaled data are thereafter used to estimate confidences and are 
compared to expert-based cut-offs or basic statistical distributions that are inherent to the 
underlying data and hence do not need parameter input. Methods of this type include the 
CompPASS Z- and D-scores (Sowa et al., 2009) and SFINX (Titeca et al., submitted). Many of 
the non-parametric approaches are embedded in extensive pipelines that make use of several 
filters. One such ‘hybrid’ example is the typical usage of the Socio-affinity index, which 
logarithmically converts the basic spectral count data, while trying to correct bait and prey 
biases in order to yield a mutual co-occurrence matrix that is then used as input for a cluster-
based filter (Gavin et al., 2006; Kühner et al., 2009). Another example is the PP-NSAF method 
(Posterior Probabilities based on Normalized Spectral Abundance Factors), which requires a 
complex series of many different filtering techniques (Sardiu et al., 2008).  

While the principle of Occam’s razor - to select the solution with the least assumptions - 
underlies all filter techniques, it is absolutely critical for the non-parametric methods. These 
techniques have to get their power from their user-friendliness and algorithmic 
straightforwardness, from their tight link with the experimental experts, and from avoiding 
external data integration and parameter optimization.  

B. Parametric filtering 

The parametric filtering approaches are defined as those that require the explicit setting or 
estimation of (several) parameters for each new data set. These parameters are often 
calculated based on the negative control samples. Typically a background distribution is 
calculated against which each interaction is tested. In this case the confidence value tested 
against the cut-off will have an explicit meaning, such as the probability of a given interaction 
being a true positive based on the trained null model. The cut-off of these approaches is 
therefore based on statistical significance rather than tuned towards an expected result. The 
used models for which the parameters must be tuned, range from simple statistical tests to 
complex probabilistic models. 

Basic statistical filters are often built upon the assumption that the false positive interactions 
follow a well-characterized distribution, such as the normal distribution (Hubner & Mann, 2011; 
Malovannaya et al., 2011) or the hypergeometric distribution (Hart et al., 2007). However, such 
approaches often require the imputation of missing values in the data matrix. In addition, 
probabilistic approaches built on a Bayesian principle are frequently used to estimate the 
probability of each interaction given the prior distribution of the evidence (Collins et al., 2007; 
Choi et al., 2010, 2012; Lavallée-Adam et al., 2011; Skarra et al., 2011). The advantage of a 
Bayesian approach is its versatility and its possibilities for the integration of evidence sources, 
even those from external data sources as discussed later. Furthermore, the Bayesian approach 
should also be inherently more stable under shortage of underlying data, as it allows 
approximations of the true values. The most prominent disadvantage is that they require explicit 
modelling or assumptions regarding the distributions of many of these features, and the need for 
the incorporation of external data and sometimes extensive parameter optimization might also 
introduce significant complications, as will be discussed in later paragraphs. 



C. Cluster-based filtering 

A final broad category of often-used filtering approaches clusters proteins together that share 
many potential interactors. This conceptual difference is what distinguishes them from the 
previous two categories. Instead of regarding the problem as a data matrix that needs to be 
filtered in a pairwise fashion and assigning each interaction pair a confidence value, they 
attempt to identify those sets of proteins that co-elute as a group and are therefore likely part of 
the same complex. Derived confidence values or cut-offs are then evaluated at the group level 
and not at the level of individual interactions. Two subcategories are defined, those that find 
groupings in the data matrix and those that find groupings in a graph representation where each 
node is a protein and each edge is a possible interaction. The former are often based on 
unsupervised classification methods, such as hierarchical clustering or biclustering (Gavin et al., 
2006; Sardiu et al., 2008; Choi et al., 2010; Xie et al., 2011). The latter of these approaches 
consists of the identification of ‘locally dense regions’ in the interaction network (Enright et al., 
2002; Bader & Hogue, 2003; Newman & Girvan, 2004). In the most extreme case these will be 
cliques, i.e. sets of proteins that all share reciprocal interactions (Zhang et al., 2008). The 
networks to be clustered can include weighted edges, where each potential interaction is given 
a confidence score based on a previous filtering step or based on orthogonal evidence, which 
can be used in probabilistic approaches (Asthana et al., 2004). 

The data output of the co-complex techniques AP-MS, tandem affinity purification coupled to 
mass spectrometry (TAP-MS), immunoprecipitation coupled to mass spectrometry (IP-MS), 
Virotrap and BioID show many similarities. Hence, several of the described algorithms from 
section IV will be able to analyse data from multiple of these sources. Nevertheless, both the co-
elution approaches and AP-SWATH generate fundamentally different forms of data output. The 
co-elution approaches are only focussed on very large interaction networks and often employ 
customized data analysis pipelines that first search for correlations between chromatographic 
elution profiles before performing other steps. Some (Havugimana et al., 2012) heavily use 
external data for the filtering, while others do not (Kristensen et al., 2012). For AP-SWATH data, 
the filtering originally happened by a customized non-parametric pipeline (Lambert et al., 2013) 
and later by one of the existing Bayesian parametric approaches (Tsou et al., 2015). Whether 
the other described filter approaches can also handle this type of data is still unknown. 

 

V. Use of external protein interaction data for contaminant removal 
Nowadays, the available data are not limited to the data generated by your own experiment. 
Various online databases include a myriad of protein interaction networks, interaction 
predictions and functional annotation of proteins. Such data are not only valuable for prioritizing 
the most promising interaction candidates, but are also useful for the primary removal of 
potential false positives.  

A. Reference interaction data sets 

Different collections of characterized protein interactions exist for a variety of species. These 
include a small number of high quality protein complexes  to entire interaction networks 
collected from different sources. However, a good golden standard data set must be of high 



quality, as any false positive interaction might skew the results. Nowadays, several large 
databases have been constructed containing a large number of protein interactions, of which 
table 2 lists the most frequently used. We distinguish three types of databases: databases with 
only curated interactions from experimental data, databases which include predictions, and 
meta-databases that integrate the others.  The databases that contain only curated interactions 
from experimental data, such as IntAct and MIPS (Pagel et al., 2005; Kerrien et al., 2012), are 
expected to contain the lowest number of false positives and are therefore commonly used for 
validation of co-complex MS experimental data. The databases that include interaction 
predictions, e.g. STRING, contain interaction networks for a large number of organisms based 
on text mining, curated knowledge and predictions based on functional features (Franceschini et 
al., 2013). Such databases are expected to contain a larger fraction of false positives but are 
useful for lesser-studied organisms and very valuable as an additional filter. While in the 
databases that integrate several other databases, such as iRefIndex and DroID (Razick et al., 
2008; Yu et al., 2008), the number of possible false positive interactions depends mostly on the 
databases that they include and the manner in which they are integrated. 

It is common to not only compare with known true interactions, but also with known negative 
interactions, such as those collected in the Negatome database or the CRAPome. The 
Negatome includes confirmed negative interactions manually curated from studies in the 
literature and indirect binders from protein complexes as stored in PDB (Kouranov et al., 2006; 
Smialowski et al., 2009). This collection thus contains a set of several thousands of protein pairs 
that are known not to be direct binders. The CRAPome on the other hand is a collection of 
negative control samples from different co-complex MS experiments (Mellacheruvu et al., 2013). 
As the eluted proteins in a negative control should be bait-independent, this data set can be 
used as an additional control for any similar co-purification experiment. 

B. Integration of reference data into the filtering step 

We distinguish two possible approaches to use the interaction data from public databases in the 
filtering framework. In the first approach, the data are directly integrated into the filtering 
approach, in order to boost true positive interaction prediction accuracy from co-complex MS 
data. For example, the parametric filter SAINTexpress incorporates the protein interaction data 
from the iRefIndex database among other features in a probabilistic model (Razick et al., 2008; 
Teo et al., 2014), so that preys that are known interaction partners have a boosted probability of 
eluting with the same bait. Using similar approaches, other methods have also integrated 
prediction data from prediction databases, such as STRING (Franceschini et al., 2013), so that 
protein pairs that have been predicted to interact will be assigned a higher confidence value.  

In the second approach, the known protein interaction data are indirectly used to train 
supervised filtering models that predict the confidence of an interaction. These supervised 
methods are trained using a wide spectrum of features. The possible features include those 
generated or derived from the co-complex MS experiment itself, such as protein concentration 
measures, identification scores, or final network topologies, but also additional external features, 
such as protein functional data, orthology information or co-expression information, as 
discussed in the section on prioritization. These features are then integrated into a supervised 
framework, such as a random forest or a logistic regression model, to predict the confidence for 



all potential interaction partners (Cloutier et al., 2009; Havugimana et al., 2012; Huttlin et al., 
2015). The advantage of such an approach is that the contribution of each feature to the final 
model is trained on the dataset and requires little to no expert oversight. However, it does 
require a good training data set that is not only representative for the co-complex MS 
experiment that it will be applied on but is also free from any experimental or curation biases. 
Good training sets are nevertheless hard to find. 

 

VI. Annotation and prioritization of candidate partners 

A common task after the interactions have been filtered for false positives is to annotate and 
prioritize the remaining interactions for further (experimental) validation. In general, orthogonal 
evidence from a variety of sources is used to select the most interesting and the most relevant 
interactions. To this end, the confidence scores from the filtering methods can be used to 
identify the interactions with the highest quality. However, these scores might be biased towards 
certain interactions as many filtering approaches nowadays explicitly use external data sources 
or are trained on a validated data set. Furthermore, many filtering methods do not have 
sufficient resolution to distinguish between a good and an excellent interactor, resulting in a pool 
of hundreds or thousands of partners that need further testing. 

A. Based on functional data 

Most co-complex experimental techniques do not reveal anything about the functional 
characteristics of the interaction, such as where in the cell it takes place or its consequence for 
the cellular processes. Integration of external functional information about the involved proteins 
can be used to prioritize interactions based on a specific localization or pathway of interest. 
Several sources of protein functional annotation are available which are used in this context, 
such as Pfam protein domains, Gene Ontology terms or KEGG pathways (Ashburner et al., 
2000; Kanehisa et al., 2012; Punta et al., 2012). Interacting proteins are known to share similar 
annotation with regards to their composition, their biological function and their cellular location. 
Therefore, statistics of assigning protein complexes to a specific function are often based on 
identifying an overrepresentation of overlapping terms, using methods such as a Jaccard index 
or a Hypergeometric test. However, there are several caveats with such an approach. First, any 
annotation of proteins is likely to be incomplete and sometimes incorrect as our knowledge of 
protein function is still greatly lacking. Secondly, any statistical test must take great care to 
account for the proper background set as not all proteins are identified during a co-complex 
experiment, nor do they all have annotation. Finally, many annotations have a strict hierarchy, 
which must be accounted for in any test as each term is not independent from another. 

Several other functional characteristics are also typically used for prioritization. Interacting 
proteins also have a higher chance to be co-regulated and thus to be co-transcribed under 
similar conditions (Ge et al., 2001; Deane et al., 2002; Jansen et al., 2002). Hence, a common 
procedure is to check if a putative interaction pair is also co-expressed in a gene expression 
compendium under the experimental conditions of interest. Many online expression databases 
that collect gene expression information now allow such targeted queries, such as in Colombos, 
GEO or ArrayExpress (Barrett et al., 2013; Rustici et al., 2013; Meysman et al., 2014). The 
actual check for co-expression can involve straightforward correlation analysis to more 



advanced biclustering approaches (Eren et al., 2012; Naulaerts et al., 2015). In addition, co-
regulation can be ascertained using transcription factor target annotation from databases such 
as TRANSFAC (Wingender et al., 1996), with similar overrepresentation tests as those 
described in the previous paragraph. 

B. Based on orthology information 

In the past, co-complex MS experiments were only performed on well-studied model organisms, 
such as yeast or human. However, in recent years, many studies have been performed on other 
organisms (Fernández et al., 2009; Van Leene et al., 2010; Jäger et al., 2011; Płociński et al., 
2014). As only limited functional data might be available for such a species, researchers 
commonly map the proteins from the studied species to a model organism to identify so-called 
‘orthologs’ and use its functional data. Orthology mapping is typically done based on protein 
sequence similarity using one of the many methods that are available, such as OrthoMCL or 
Inparanoid (Li et al., 2003; Ostlund et al., 2010). However, nowadays many databases exists 
that contain this information; such as KEGG orthology, Ensembl-compara, EggNOG, OMA 
orthology and COG databases (Kanehisa et al., 2012; Flicek et al., 2014; Powell et al., 2014; 
Altenhoff et al., 2015; Galperin et al., 2015). Detailed reviews are available that describe the 
advantages and uses of the commonly used orthology mapping methods and databases 
(Kristensen et al., 2011; Altenhoff & Dessimoz, 2012; Gabaldón & Koonin, 2013). 

The same is possible with the interactions themselves by identifying the ‘interologs’ in another 
species. This can be useful to involve golden standard datasets or functional information at the 
interaction level, such as phosphorylation targets. The actual mapping of the interaction can be 
done using the straightforward reasoning that any orthologs with sufficient sequence homology 
of two interaction partners are likely to also interact (Matthews et al., 2001; Butland et al., 2005). 
However, more sophisticated approaches that correct for the conservation of protein interaction 
domains and function also exist (Michaut et al., 2008). The main caveat with these approaches 
for mapping information across species is that this only works for proteins for which homologs 
are available. 

 

VII. Strategies for prediction of false negative interactions 
In parallel with the annotation and prioritization of interaction partners, researchers are often 
interested in the prediction of possible false negatives to compensate for technical and 
biological limitations. The combination of any PPI technique with complementary experimental 
techniques, like other PPI techniques or even genetic interaction techniques, helps to identify 
false negatives, and the analysis of expression profiles can point to cell specificities or stimulus 
dependencies. Nevertheless, in silico techniques have become an increasingly powerful and 
useful alternative to the often labour intensive and costly orthogonal experimental techniques. 
Broadly accessible databases, like those described in table 2, are rich in relevant information 
and enable the researcher to compare the obtained results. Furthermore, other databases 
contain extensive protein expression profiles, like the Human Protein Atlas (Uhlen et al., 2010) 
or RNA-Seq and gene expression microarray profiles (Su et al., 2004; Hruz et al., 2008; Wang 
et al., 2008; Krupp et al., 2012), which for example help to find cell or tissue specificities.  



Furthermore, many algorithms exist for the prediction of PPIs, but all inherently pose the risk of 
overinterpreting the experimental data. Hence, this type of predictions is omitted from many co-
complex MS analyses. These algorithms typically belong to one of four categories, based on the 
information that is used in the prediction: genetic location, protein structure, network topology or 
a heterogeneous combination. The algorithms using genetic location features take into account 
close localisation of genes in the genome (Tamames et al., 1997; Overbeek et al., 1999), 
evolutionary gene-fusion events (Enright et al., 1999; Marcotte et al., 1999), or phylogenic 
conservation of gene order and location (Dandekar, 1998; Gaasterland & Ragan, 1998; 
Pellegrini et al., 1999; Goh et al., 2000; Huynen, 2000; Pazos & Valencia, 2001; Juan et al., 
2008), but most of these are only useful for prokaryotes. The algorithms using the protein 
structure take into account the primary protein structure with the detection of short relevant 
sequences for protein interaction (Bock & Gough, 2001; Sprinzak & Margalit, 2001; Gomez et 
al., 2003; Martin et al., 2005; Pitre et al., 2006; Najafabadi & Salavati, 2008; Guo et al., 2010; 
Yu et al., 2010), or the secondary or tertiary structure (Edwards et al., 2002; Smith & Sternberg, 
2002; Aloy & Russell, 2003; Hue et al., 2010; Singh et al., 2011; Wass et al., 2011). These are 
generally more functionally relevant but limited by our knowledge about the structure of the 
involved proteins, although the Protein Data Bank (PDB) (Kouranov et al., 2006) has been 
growing steadily and homologous structures can also serve well in these predictions (Zhang et 
al., 2012). The algorithms based on network topology take into account features that separate 
PPI-networks from random ones, like preferential attachment (Barabási, 1999), and can prove 
powerful for larger networks (Goldberg & Roth, 2003; Wuchty, 2006; Yu et al., 2006; Chen et al., 
2008). The last group of algorithms combine many different features within classifier machine 
learning  techniques, like support vector machines or random forests, trained on large high-
quality positive and negative training sets (Jansen et al., 2003; Ben-Hur & Noble, 2005; Chen & 
Liu, 2005; Rhodes et al., 2005; Guo et al., 2008; Xia et al., 2010; Lin & Chen, 2013; Kotlyar et 
al., 2015).  

 

VIII. From processed interactions to biological insight  
Once a high quality protein interaction network has been constructed, the final step is to extract 
relevant biological knowledge from the identified protein interactions. This can occur at different 
scales, namely from studies concerning only a single protein complex to those that encompass 
the entire network. 

A. Analysis of specific protein complexes or interactions 

Targeted functional analysis of a single or a small set of proteins often implies tedious literature 
surveys. Some solutions exist to support such searches. Various public repositories, such as 
NCBI and UniProt, allow look-up of single proteins and offer a variety of curated information. 
Such databases are often used as the first step into a more in-depth survey. Further functional 
information, such as the annotated protein domains, gives insight into the nature of the 
interaction. For example, interaction with proteins containing kinase domains might suggest 
phosphorylation, which could be further validated using phosphorylation prediction tools (Dang 
et al., 2008; Xue et al., 2008; Fermin et al., 2015). In addition, pathway analysis software tools, 
like KEGG Atlas, Ingenuity Pathway Analysis, MetaCore or BioCyc Omics Viewer, are often 



used to aid in the further functional characterization of found interactions and protein complexes 
(Caspi et al., 2012; Kanehisa et al., 2012). Such tools allow users to place their protein 
complexes of interest within the greater scope of a specific pathway or functional category. An 
extensive review of approaches for the functional interpretation of proteome data is described in 
(Laukens et al., 2014).  

B. Analysis of protein complex stoichiometry 

The composition of a protein complex plays a large role in its function and its inner workings. As 
source data such as protein intensities are considered a proxy for protein abundance, a 
commonly used tactic is to infer the stoichiometry underlying the protein complexes based on 
this information (Smits et al., 2013; van Nuland et al., 2013). In such a case these values must 
be corrected for the size and observability of the protein, upon which the ratio between 
interacting proteins represents the stoichiometry. It has been shown that such a relatively 
straightforward procedure is sufficiently suitable to study the protein content in a complex (Fabre 
et al., 2014).  

C. Analysis of protein complex structures 

Once a potential interaction between proteins has been identified, the three-dimensional 
molecular structure of the complex can be revealed through a more detailed analysis (Janin & 
Séraphin, 2003). Both experimental and computational procedures exist to characterize the 
protein complex structure (Russell et al., 2004; Melquiond et al., 2012). Experimentally, one can 
express the postulated complex subunits together and perform cryo-electron-microscopy, 
nuclear magnetic resonance (NMR) or X-ray crystallography of the subsequent complex 
(Nogales et al., 1998; Fieulaine et al., 2002; Terrak et al., 2004). The difficulty of experimentally 
characterizing a protein structure has lead to the development of computational protein-protein 
docking methods to model the complex structure of interacting proteins, such as HADDOCK, 
SwarmDock, ClusPro and ZDOCK (Comeau et al., 2003; van Dijk et al., 2006; Torchala et al., 
2013; Pierce et al., 2014). Protein-protein docking is substantially more complex than the type of 
prediction introduced in section VII, as it not only involves predicting whether proteins interact 
but also how. A wide range of docking methods are available and several reviews have 
provided an overview of the field (Moreira et al., 2010; Kozakov et al., 2013; Huang, 2014). In 
brief, the starting point for protein-protein docking typically requires known crystallography 
structures for the individual subunits of the complex. These methods will attempt to identify the 
interface alignment for the involved proteins and any conformational changes that may occur 
during complex formation. Some tools are able to also start from reliable structural models 
based on close homologs. However, the quality of the starting structures has a great impact on 
the reliability of the eventual docking prediction. An independent evaluation of the performance 
of various docking prediction methods is frequently assessed during the CAPRI (Critical 
Assessment of PRedicted Interactions) challenges organized by EMBL-EBI. There are several 
prediction rounds organised per year, where various research groups are tasked with using their 
methods to predict a set of protein complex structures that have been recently solved but are 
still unpublished. The performance of the methods are then evaluated based on the similarity of 
their prediction to the solved molecular structure (Fernández-Recio & Sternberg, 2010; Lensink 
& Wodak, 2013). 



D. Analysis of the entire network  

As mentioned previously, the collection of a large number of protein interactions can be 
conceptualized as an undirected graph where each node is a protein and each edge represents 
a potential physical interaction. These interaction networks have certain typical topological 
features. For example, they are often considered scale-free, i.e. the degree distribution obeys a 
power-law, so that there is a small number of hub proteins with many interactions and a large 
number of proteins with few interactions (Barabási, 1999). Various topological features, such as 
centrality, average shortest path and network diameter, can be investigated for any protein 
interaction network to give an idea of the density or connectedness of the proteins. Different 
data mining methods can be applied at the network level to extract novel and potentially 
interesting patterns (Naulaerts et al., 2015). For example, a typical problem at the topological 
level is to identify the subgraphs within the network. These subgraphs are collections of nodes 
and edges in a pattern or motif that appears several times within the network, and may thus 
have a functional purpose. Different approaches exist to find such frequent subgraphs 
(Ghazizadeh & Chawathe, 2002; Przulj et al., 2004; Jiang et al., 2012). A distinction is made 
between induced subgraphs and partial subgraphs. Induced subgraphs, or ‘graphlets’, require 
any matches to nodes in the network to also feature the same interconnecting edges without 
any additional ones. The distribution of the graphlets in the protein interaction network gives 
valuable information into the overall topology and the type of protein interactions that are 
present, which can then be coupled to the biological functions of the protein (Milenković & 
Przulj, 2008; Davis et al., 2015). Partial subgraphs or ‘network motifs’ allow additional edges to 
be present between the matching nodes. The enrichment of network motifs in the network is 
typically determined by comparing to random background networks, generated with an 
appropriate degree model (Yeger-Lotem et al., 2004; Ciriello & Guerra, 2008). However, in most 
cases, the final protein interaction network is not fully connected, and any analysis tool must be 
able to deal with this fact or the network must be split into smaller connected subnetworks. 

E. Visualisation of protein interaction networks 

The most commonly used visual representation of a protein interaction network is a graph as 
introduced in the previous paragraph. However, this visualization becomes unreadable for 
dense networks involving many baits and preys. Therefore, other variants such as bait-bait 
connectivity maps, which only visualize the shared interactors between baits, are also frequently 
used (Ewing et al., 2007). The shape, colour and size of the nodes and edges can be linked to 
specific characteristics of the proteins and interactions, such as their function or their certainty. 
The represented networks can be large, i.e. spanning an entire characterized interactome, or 
small, focusing on only one or a few protein complexes. The layout of the network, i.e. the 
positioning of the nodes, is typically based on grouping dense interactions clusters or on 
grouping proteins with similar biological functions. Many standalone tools are available for 
network visualisation (Goldovsky et al., 2005; Brown et al., 2009; Hu et al., 2009; Smoot et al., 
2011); table 3 gives an overview of the most commonly used ones. Each tool has its 
advantages and the choice of the tool will typically depend on two factors. The first factor is the 
size and density of the network. Many tools do not support full protein network representation or 
have difficulties to generate clear overviews with the available layouts. The second factor is the 
goal of the network visualisation. Many tools offer a great range of options and extensions to 



allow users to tune the look of their graph or perform topological analyses such as those 
discussed in the previous section. Several comprehensive comparative reviews into the 
technicalities of these visualisation tools are available (Suderman & Hallett, 2007; Pavlopoulos 
et al., 2008; Gehlenborg et al., 2010). 

An upcoming trend is to share protein interaction networks from co-complex MS experiments 
online, i.e. in ‘the cloud’, in conjunction with the publication so that readers can explore these for 
themselves (Havugimana et al., 2012). Different libraries are now available that allow 
construction of such a web-based network to be placed on a webserver, such as the 
Cytoscape.js (http://cytoscape.github.io/cytoscape.js/) or D3.js (http://d3js.org) JavaScript 
libraries. These allow design of dynamic and interactive networks of relatively large size that will 
run on the commonly used browsers. Furthermore, several standalone visualisation tools 
support the export of network visualization to web-compatible formats.  

 

IX. Conclusions and future prospects 

In this review, we discussed the major computational challenges and solutions to process and 
interpret co-complex experimental results. Essential steps include identification of the proteins, 
filtering of the false positives (using both internal and external data), validating the found 
interactions, making new biological-relevant discoveries and visualising these results.  

A. Different analytical methods for different experimental setups 

The choice of the filtering strategy for primary false positive removal is an essential but 
challenging one, which is not facilitated by the myriad of available options. One of the main 
elements that determines the choice of the technology is the size of the dataset. Cluster-based 
filters and some specific non-parametric filters are typically most relevant for the analysis of 
complete interactomes and dense networks, but often underperform on smaller subnetworks. At 
the other side of the spectrum, the parametric filters, especially those based on Bayesian 
frameworks, have a strong performance on the smaller networks with incomplete data (Pu et al., 
2015).  

However, one main disadvantage of many of these methods is that they are specifically tuned 
towards one type of experimental setup, or even one specific experiment, resulting in poor 
performance on other data (Choi et al., 2012; Nesvizhskii, 2012; Pu et al., 2015). This means 
that it remains hard to know which method will perform best on your data, as each method has 
been optimized for their own test case. There is no guarantee that you will achieve similar 
results as those that have been reported, even if the experimental setup seems similar. There is 
a great need for unbiased comparisons of different approaches on a variety of good golden 
standard datasets, but the quality of golden standard datasets also urgently needs improvement 
(Pu et al., 2015). These golden standard datasets are good for the raw comparative estimation 
of accuracies, but detailed close-call comparisons should be handled prudently.  Furthermore, 
the tendency towards dedicated approaches tuned to specific data sets means that every new 
technological platform for co-complex studies would need to be accompanied by the creation of 
new optimized filtering strategies for removing false positives, which is far from efficient. As we 
can expect more variations on the traditional co-complex MS experiment to occur with mass 



spectrometry becoming cheaper and more accurate, there will be a need for generic 
preprocessing frameworks that either combine various methods or are sufficiently robust by 
introducing the least amount of biases and assumptions. In this case, the non-parametric filters 
have the potential for the broadest applicability, as long as they focus on algorithmic simplicity 
and experimental expertise, and stay away from extensive parameter optimisation and 
integration of external data sources. Approaches that combine several known filters with 
downstream analysis and visualisation functions could also be an intermediary filtering solution 
(Krumsiek et al., 2008), and may yield an even more accurate approach upon correct 
combination, just like the algorithms in the peptide identification field have been advanced in a 
similar way (Vaudel et al., 2015). 

B. Rise of standard workflows and quality control 

A recent evolution in the field of co-complex MS and MS in general is a focus on the quality 
control and reproducibility of experiments. There is a growing need to address the reliability of 
the protein interactions, both for clinical and fundamental research purposes. A recent study 
revealed that using a standardized workflow a reproducibility of 81% is possible for a single AP-
MS experiment performed in different labs (Varjosalo et al., 2013). Hence, any co-complex MS 
technique must be robust at all levels, from sample preparation to network inference, and each 
step has an essential impact on the final experimental result. First, the choice of sample 
preparation and purification technologies is expected to result in different outcomes due to the 
intrinsic biases of each method. Even when the same standard protocol is followed, 
experimental variation is a factor that needs to be characterised and must be accounted for. 
Second, the analytical instruments show variation in performance, both at the level of 
chromatography, ionization, MS1 and MS2 and ion selection for MS2. Several papers have 
discussed the need for quality control. Rudnick and coworkers have proposed 46 performance 
metrics to monitor the consistency of instrument performance (Rudnick et al., 2010). Recently 
qcML was introduced, a standard format for the exchange of quality control data (Walzer et al., 
2014). In addition, several software tools and frameworks have been released to handle QC and 
instrument performance metrics (Sturm et al., 2008; Pichler et al., 2012; Bittremieux et al., 2014, 
2015). It is anticipated that these developments will drive the adoption of stringent quality control 
in MS in general, and more specifically also lead to further improved consistency across multiple 
co-complex MS experiments once the community picks them up. Finally, the method used to 
infer networks from experimental co-complex MS data impacts the outcome to a substantial 
extent. A recent comparative analysis of six scoring methods showed not only poor overlap, but 
also a highly variable performance dependent on the dataset, which was both attributed to 
sensitivity to noise in the experimental data and biases arising from the Golden Standard 
datasets used for tuning and training network inference methods (Pu et al., 2015). This leaves 
important challenges on the road to reproducible and robust co-complex MS based 
interactomics.  
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Figure legend 
 
Figure 1. Overview of the steps in co-complex mass spectrometry data analysis. MS: 
mass spectrometry, AP: affinity purification, IP: immunoprecipitation, TAP: tandem affinity 
purification, SWATH: sequential window acquisition of all theoretical spectra. 
 
 
 



Tables 
 
Table 1: Overview of commonly used methods for filtering false positive from AP-MS 
 
Name	 Type	 Model	 Input	data	 Reference	

PE	score	 Parametric	 Bayesian	model	 Presence	 (Collins	et	al.,	2007)	
SAINT	 Parametric	 Bayesian	model	 Spectral	counts	 (Skarra	et	al.,	2011)	

SAINT-MS1	 Parametric	 Bayesian	model	 Intensities	 (Choi	et	al.,	2012)	

SAINT	express	 Parametric	 Bayesian	model	 Spectral	counts	 (Teo	et	al.,	2014)	
Co-complex	score	 Parametric	 Bayesian	model	 Presence	 (Xie	et	al.,	2011)	

HGScore	 Parametric	 Hypergeometric	 Spectral	counts	 (Guruharsha	et	al.,	2011)	
Decontaminator	 Parametric	 Log	ratio	 Mascot	scores	 (Lavallée-Adam	et	al.,	2011)	

PP-NSAF	 Non-parametric	 Bayesian	probability	 Spectral	counts	 (Sardiu	et	al.,	2008)	
Socio-affinity	index		 Non-parametric	 Log-odds	 Presence	 (Gavin	et	al.,	2006)	

CompPASS	Z-Score	 Non-parametric	 Normal	distribution	 Spectral	counts	 (Sowa	et	al.,	2009)	

CompPASS	D-Score	 Non-parametric	 Normal	distribution	 Spectral	counts	 (Sowa	et	al.,	2009)	
E-filter	 Non-parametric	 Box	plots	 Spectral	counts	 (Malovannaya	et	al.,	2011)	

SFINX	 Non-parametric	 Binomial	distribution	 Peptide	counts	 (Titeca	et	al.	submitted)	
Dice	Coefficient	 Cluster-based	 Dice	index	 Presence	 (Zhang	et	al.,	2010)	

MCL	 Cluster-based	 Clique	finding	 Presence	 (Enright	et	al.,	2002)	

Nested	clustering	 Cluster-based	 Mixed	model	 Spectral	counts	 (Choi	et	al.,	2010)	
 
 



 
Table 2: Overview of some of the major public protein-protein interaction databases with 
number of interactions (as of 23 February, 2015). 
 
Name	 Organism(s)	 Source	 #	Interactions		 Website	

IntAct	 Many	 Experimental	 477	526	 http://www.ebi.ac.uk/intact/	
BioGRID	 Many	 Experimental	 364	964	 http://thebiogrid.org	

MINT	 Many	 Experimental	 241	458	 http://mint.bio.uniroma2.it	
DIP	 10		 Experimental	 78	744	 http://dip.doe-mbi.ucla.edu	

HPRD	 Human	 Experimental	 41	327	 http://www.hprd.org	

MIPS	 Mammals	 Experimental	 1	814	
http://mips.helmholtz-
muenchen.de/proj/ppi/	

STRING	 Many	
Predictions	&	
experimental	 >200	000	000	 http://string-db.org	

I2D	 6	 Predictions	 900	529	 http://ophid.utoronto.ca/ophidv2.204/	

iRefIndex	 Many	 Combined	 492	588	 http://irefindex.org/	
DroID	 Drosophila	 Combined	 235	333	 http://www.droidb.org	

APID	 Many	 Combined	 322	579	 http://bioinfow.dep.usal.es/apid	
 
 



 
Table 3: Overview of network visualization tools 
 
Name		 Platform	 Analysis	tools	 Export	options	 Website	

Cytoscape	
Windows,	Mac,	
Linux	 Plugins	

JPG,	PDF,	PNG,	
SVG	and	HTML	 http://cytoscape.org	

Biolayout	3D	
Windows,	Mac,	
Linux	 MCL	clustering	

PNG,	JPG	and	
3D.js	 http://biolayout.org	

Gephi	
Windows,	Mac,	
Linux	 MCODE	clustering	 PDF,	PNG,	SVG	 http://gephi.github.io	

VisANT	
Java	standalone	
and	online	

Topology	and	
annotation	analysis	 JPG,	PNG,	SVG	 http://visant.bu.edu	

Pajek	 Windows,	Wine	 Topology	analysis	
EPS,	SVG,	JPG,	
BMP	 http://pajek.imfm.si	

GraphViz	
Windows,	Linux,	
Solaris,	Mac	 External	tools	 Many	 http://www.graphviz.org	

NAViGaTOR	
Windows,	Mac,	
Linux	

Topology	and	
annotation	analysis	

BMP,	JPEG,	PDF,	
SVG,	TIFF,	PNG	

http://ophid.utoronto.ca/navi
gator/	

	 	 	 	 	
 


