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a b s t r a c t

Although physicochemical fractionation techniques play a crucial role in the analysis of

complex mixtures, they are not necessarily the best solution to separate specific molecular

classes, such as lipids and peptides. Any physical fractionation step such as, for example,

those based on liquid chromatography, will introduce its own variation and noise. In this

paper we investigate to what extent the high sensitivity and resolution of contemporary

mass spectrometers offers viable opportunities for computational separation of signals in

full scan spectra. We introduce an automatic method that can discriminate peptide from

lipid peaks in full scan mass spectra, based on their isotopic properties. We systematically

evaluate which features maximally contribute to a peptide versus lipid classification. The

selected features are subsequently used to build a random forest classifier that enables

almost perfect separation between lipid and peptide signals without requiring ion fragmen-

tation and classical tandem MS-based identification approaches. The classifier is trained

on in silico data, but is also capable of discriminating signals in real world experiments. We

evaluate the influence of typical data inaccuracies of common classes of mass spectrometry

instruments on the optimal set of discriminant features. Finally, the method is successfully
extended towards the cla

features, based on input d
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1. Introduction

In analytical chemistry, and specifically in mass spectrometry,
instrumental developments continuously push the bound-
aries of sensitivity and resolution. This boost in the level of
spectral detail makes it increasingly feasible to learn aspects
of the identity of a compound directly from the spectrum,
which is particularly valuable when complex mixtures are
analyzed. Although fractionation techniques such as liquid
chromatography are widely used to reduce the complexity of
mass spectral data, they rarely attain a perfect separation in
which molecular classes of interest are isolated from other
molecular components in the sample (e.g. separation of pep-
tides from lipids in a peptidomics study) [1]. Additionally, in
certain studies the use of hyphenated techniques is incompat-
ible or impractical (e.g. mass spectral imaging [2–4] of bioactive
peptides).

In this work we use some of the additional information
provided by contemporary mass spectrometers in terms of
mass resolution to provide a computational answer to the
separation challenge. Specifically, we have developed an auto-
mated method to discriminate between peptide and lipid
peaks observed in full scan mass spectra. After investigating,
in a generic sense, the isotopic behavior and corresponding
masses of different molecular classes, we propose a computa-
tional approach that offers a preliminary interpretation of the
molecular content of a full scan mass spectrum, without the
need for ion fragmentation and classical tandem MS-based
identification. This manuscript demonstrates discrimination
between polypeptide peaks and lipid peaks in a mass range
where both classes co-occur, by using features extracted from
the isotope distribution and masses associated with each
observed isotope variant. It exceeds the performance of typi-
cal rules-of-thumb, such as examining the mass defect of ions,
and it does so in an automated way. Although such rules-
of-thumb are common in the mass spectrometry community,
they typically have not been thoroughly investigated by means
of a high-throughput computational analysis. Our aim is to
present a rigorous validation of such rules in an in silico anal-
ysis and to extend them with more powerful heuristics where
possible.

The presented work is similar in spirit to the methods of
Kirchner et al. [5] and Bruce et al. [6] to discern the degree of
phosphorylation of a peptide. Both papers exploit a predefined
mass defect caused by the phosphate group. In this paper
however, we propose a generic approach that searches for the
optimal set of isotope features extracted from representative
peptide and lipid databases to enable the discrimination
between peptide and lipid classes. The approach also delivers
a classification model on the basis of those features. More
specifically, we employ a random forest classifier [7,8], a
fast and effective multi-classification tool that is based on
decisions made by a large set of randomly generated classi-
fication and regression trees (CARTs). This approach allows
us to investigate the importance of different mass spectro-
metric features as input variables for the peptide-vs.-lipid

classifier. Additionally, we bring these theoretical findings
in relation to empirical mass spectrometry measurements
by modeling how the expected data inaccuracy of real
s 4 ( 2 0 1 4 ) 87–100

instruments affects the optimal features for
interpretation.

The proposed methodology is further evaluated by an
extensive simulation study and a controlled MS experiment
on peptides and lipids. Finally, we introduce an extension
of the method, which is capable of assigning to the input
data, the lipid class probabilities in line with the classes
defined by the Lipid Maps Consortium [9]. With regards to
isotope-derived information, the BRAIN method proposed by
Claesen et al. [10] is key to enabling a theoretical study of
isotopic features to discriminate molecular classes. Although
many algorithms are available to calculate the isotope distri-
bution of a molecule [11–14], BRAIN provides center-masses
(i.e. average masses of isotope variants with the same num-
ber of neutrons) in addition to the isotopic peak intensities
(see also [15,16]). We use the BRAIN algorithm to produce the
theoretical (aggregated) isotopic distribution for a chemical
formula. As we will show, access to exact masses of the iso-
topic variants is an important component for the classification
between lipids and peptides when only full scan information is
available.

A method that is able to recognize lipids from peptides
in full scan mass spectra is particularly useful in specific
applications. For example, it can be applied to deconvolve
bio-molecular images obtained via MALDI-based imaging
mass spectrometry experiments. Such a spatial measure-
ment could potentially be automatically separated into a set
of ion images presumed to be lipids, and a set of probable
peptide ion images. An automated interpretation would sig-
nificantly reduce the complexity of analyzing the massive
information content accumulated in these types of experi-
ments and it would also enhance the ability of researchers
to interpret the biology, which is sometimes obscured by the
sheer amount of data collected. Another application would
be to start driving the process of annotating a compound
at the full scan level, which is nowadays usually dependent
on the availability of fragmentation spectra. The probable
molecular class annotation delivered by our method can be
used to provide a more directed post-acquisition workflow.
For example, a presumed peptide ion could be automat-
ically passed on to a database search strategy, whilst a
probable lipid could be sent directly to ChemSpider [17],
Lipid Maps [9], Metlin [18] or MassBank [19] for annota-
tion. A third application could be a classification workflow
embedded in the instrument to help guide data-dependent
MS/MS experiments, enabling real-time and on-the-fly selec-
tion of the optimal fragmentation strategy per molecule
class while the full (parent) mass spectrum is still being
collected.

2. Materials and methods

This section introduces the lipid and peptide databases that
were used to generate the virtual mass spectra to train the
classification model. It also describes the real mass spectral
a wet-lab lipid–peptide mix. This is followed by a detailed
description of the classification methods employed and the
details pertaining to building the model.

dx.doi.org/10.1016/j.euprot.2014.05.002
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.1. In silico data (training set)

wo biological databases were used to explore discriminatory
eatures between peptides and lipids in general. Lipid infor-

ation was obtained from the Lipid Maps gateway database
9] (downloaded September 2011). To avoid a bias in the clas-
ification, all eight lipid classes defined by the Lipid Maps
onsortium were part of the lipid-representative set. These
lasses are fatty acyls (#913; FA), glycerolipids (#400; GL),
lycerophospholipids (#1415; GP), sphingolipids (#1167; SP),
terol lipids (#604; ST), prenol lipids (#442; PR), saccharolipids
#76; SL), and polyketides (#1296; PK), with the number of
pecies in each class and their abbreviated class label indi-
ated in parentheses. Thus, all eight lipid classes were taken
ogether to represent one general class of lipids. In the later
xtension, lipid classes are considered separate so that lipid
ubclass-specific annotation becomes possible. The classifiers
re conceived to discriminate lipids and peptides with a mono-
sotopic mass below 2.8 kDa. This constraint on the molecular

ass is necessary to ensure that the classification focuses
n the mass range where peptide–lipid discrimination is rel-
vant, avoiding obvious classification rules such as, e.g. all
olecules above 2.8 kDa are peptides. In total 6313 lipids were

ncluded in the study. Only lipids and peptides with a molec-
lar mass below 2.8 kDa were considered, which in the case of

ipid molecules amounts to 99.1% of the entries found in Lipid
aps.

The peptide information was retrieved from the Human
niprot protein database [20]. The extracted protein
equences were tryptically digested in silico, using the
igest function from the OrgMassSpecR package available in
he CRAN repository (allowing for no missed cleavages). The
esulting database contained 263,897 tryptic peptides with a

ono-isotopic mass below 2.8 kDa. To keep the computation
fficient and to avoid biased classifiers due to unbalanced
raining sets, only a random sub-sample of 6313 peptides is
sed for training so that the number of entries is comparable
o the lipid database. To ensure that this selection procedure
oes not cause bias, we have repeated the classification
raining five times with five different peptide selections. The
erformance statistics over the five peptide-representative
atabases are shown in Section 3.

For each lipid or peptide entry in the collected training set,
e calculated the aggregated isotope distribution and the cor-

esponding center-masses using the BRAIN method [10]. For
his purpose, the BRAIN software package [21] was extended
ith additional chemical elements that occur in lipids, namely
uorine, bromine, phosphorus, chlorine, sodium, and iodine.
he theoretical isotope distribution was restricted to the first

hree consecutive aggregated isotope peaks, because for light
olecules such as those used in this application, these isotope

ariants are typically the most prominent. It should be noted
hat in the theoretical data set only the protonized variants
f the molecular species were considered whilst disregarding
ossible modifications and other adduct formations.
.2. Real MS data (test set)

he in silico data in the training set, consisting of thousands
f curated peptide and lipid examples, can be used to build a
4 ( 2 0 1 4 ) 87–100 89

theoretical lipid-vs.-peptide classifier. By itself such a classi-
fier has value by revealing, on a theoretical level, the features
that allow discrimination between lipid and peptide peaks.
However, in this study we also want to gauge the perfor-
mance of such a classifier on mass spectral measurements.
The goal is to assess how well the features and classifier that
are built on clean curated data holds up in the presence of real
measurement conditions and the various noise sources that
accompany them. To this end, we created a wet-lab mixture of
known peptide and lipid species, which is then measured via
MALDI-TOF MS to produce a mass spectrum. Since we know
the mixture and the species involved, we have a gold standard
for the identity of several peaks in the spectrum. Therefore, if
we apply the classifier to this mass spectral measurement, it
can be used as a test set to verify classification performance.

As indicated in Table 1, the mixture consists of five pep-
tide species and seven lipid species. The peptides include
Kemptide (mono-isotopic mass: 771.472 Da), PKC substrate
(828.541 Da), ACTH 4-11 (1089.518 Da), Glu1 Fibrinopeptide B
(1569.67 Da), and ACTH 18-39 (2464.191 Da). The lipids contain
seven distinct species, but in order to mimic experimen-
tal conditions further, some were chosen to be isobaric.
This essentially reduces the number of distinct lipid masses
in the mixture to three. The lipid mono-isotopic masses
are 759.578 Da for PC 18:1(9z)/16:0 and PC 16:0/18:1(9z),
785.593 Da for PC 18:1(9z)/18:1(9z), PC 18:1 (9trans), and PC
18:1(6z)/18:1(6z), and finally 761.593 Da for PC 16:0/18:0 and
PC 18:0/16:0. The lipid–peptide mixture was hand-spotted
on a target plate and coated with sinapinic acid as the
matrix. The spot was then measured in a Waters Synapt G2
mass spectrometer (Waters Corporation, Milford, MA) that has
been fitted with a MALDI source. The instrument was run
under standard supplied manufacturer settings in “Resolution
Mode” of the time-of-flight mass analyzer. The resulting spec-
trum ranges from m/z 400 to 3000 spanning 158,701 bins, which
amounts to an average bin size of m/z 0.016. Due to the rela-
tively high mass resolution of this instrument, the ion peaks
in the spectrum are generally isotopically resolved across its
mass range. Besides the protonated versions of the species
mentioned above and their isotopic variants, there are several
other peaks present in the spectrum as can be seen in Supple-
mentary Figure S1. These additional peaks for which we have
no gold standard annotation to compare against, are for exam-
ple reporting adducts (other than M+H) of the analyte species
or matrix molecule species.

The extraction of the isotope distributions from the spec-
trum starts with the detection of mono-isotopic peaks and
their charge states using the YADA software [22]. All param-
eters in YADA are set to default except for the minimum
intensity of the mono-isotopic peaks, which was set to 5000.
The list of mono-isotopic peaks of the spectrum was used as
input for the detection of other peaks in their isotope dis-
tributions. In order to reduce spectral complexity, only local
maxima were retained to characterize peaks. Local maxima
below an intensity of 400 were discarded. The local maxima
were centroided by using the mid-point of the peak enve-

lope instead of the m/z-value of the apex of the peak. The
mono-isotopic peak list was used as a target list to find the
consecutive isotope peaks that were separated by 0.95–1.05 Da.
Since data prepossessing and peak extraction is not part of

dx.doi.org/10.1016/j.euprot.2014.05.002
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Table 1 – Five peptide species and seven lipid species contained within the test set mixture.

Name Concentration
in pmol/�L

Formula Avg. MW Mono mass Mono mass
with H+

Mono mass
with Na+

Peptides
Kemptide 2.15 C32H61N13O9 771.918 771.472 772.479 794.461
PKC substrate 2.1 C34H68N16O8 829.016 828.541 829.548 851.53
ACTH 4-11 1.55 C50H71N15O11S 1090.268 1089.518 1090.526 1112.508
Glu1 Fibrinopeptide B 1.05 C66H95N19O26 1570.592 1569.67 1570.677 1592.659
ACTH 18-39 0.7 C112H165N27O36 2465.701 2464.191 2465.199 2487.181

Lipids
PC 18:1(9z)/16:0 0.95 C42H82NO8P 760.076 759.578 760.586 782.568
PC 18:1(9z)/18:1(9z) 0.95 C44H84NO8P 786.113 785.593 786.601 808.583
PC 16:0/18:0 0.95 C42H84NO8P 762.092 761.593 762.601 784.583
PC 18:1 (9trans) 0.95 C44H84NO8P 786.113 785.593 786.601 808.583
PC 18:0/16:0 0.95 C42H84NO8P 762.092 761.593 762.601 784.583

7
7

PC 16:0/18:1(9z) 0.95 C42H82NO8P
PC 18:1(6z)/18:1(6z) 0.95 C44H84NO8P

the proposed concept, other peak picking algorithms could be
employed instead.

2.3. Algorithmic approach

The general concept is illustrated in Fig. 1. The optimal classifi-
cation model to theoretically discriminate lipids from peptides
is selected based on an in silico study (left panel). This study
evaluates typical errors on mass and spectral accuracy that
correspond to different mass spectrometry types and assesses
the impact of these errors on the feature sets that drive the
classification. The workflow on the right-hand side of Fig. 1
illustrates how a classifier can be used as an automated pro-
cedure to discern lipids from peptides in measurements that
were not part of the training set. Note that the feature selec-
tion and classifier training is only based on in silico generated
mass spectra, ensuring that the training and testing phase of
the classifier are completely independent from each other.

2.3.1. Feature set selection
To design a robust and efficient classifier, we create a list of fea-
tures based on information derived from theoretical isotope
distributions and their exact center-masses. More precisely,
not only the isotope masses and intensities are used as fea-
tures, but also the fractional part of these masses, and mass
differences between consecutive isotope peaks, etc. The con-
sidered features are as follows:

• mass.1: exact mass of first isotope peak;
• mass.2: exact mass of second isotope peak;
• mass.3: exact mass of third isotope peak;
• mass.frac.1: fractional part of mass of first isotope peak;
• mass.frac.2: fractional part of mass of second isotope peak;
• mass.frac.3: fractional part of mass of third isotope peak;
• mass.diff.21: difference between second and first isotope

masses;

• mass.diff.32: difference between third and second isotope

masses;
• iso.ratio.21: ratio of intensities of second and first isotope

peaks;
60.076 759.578 760.586 782.568
86.113 785.593 786.601 808.583

• iso.ratio.31: ratio of intensities of third and first isotope
peaks.

For the last two items, the intensities of the isotope distri-
bution were normalized to the intensity of the mono-isotopic
peak. This normalization accounts for systematic multiplica-
tive noise and avoids scaling when experimental data with
absolute peak intensities is provided.

As we stated earlier, the objective of this research is a clas-
sification model that can discern lipids and peptides in mass
spectrometry experiments. Since classification rules learned
from theoretical data are not necessarily transferable to a
real experimental example, direct use of the theoretical infor-
mation without taking into account mass uncertainty and
peak intensity noise is ill-advised. The performance and opti-
mal feature set of the classifier will change as a function of
resolving power and spectral accuracy of a particular instru-
ment. Therefore, we conduct a sensitivity analysis to reveal
which features are best to discriminate between lipids and
peptides in a realistic setting. To accomplish this, the the-
oretical peaks provided by the BRAIN method are used to
produce virtual spectra that resemble spectra from commer-
cially available mass spectrometry instruments. For example,
the center-masses of the theoretical isotope distribution are
rounded to the nearest value of 5, 4, 3, 2, and 1 decimal
digits. Considering the mass range of lipids, these induced
errors roughly correspond to the mass accuracy of commer-
cial mass spectrometers consistent with FTICR, Orbitrap, TOF,
ion trap and quadrupole analyzers, respectively. In order to
explore the sensitivity of the classifier with respect to the error
on the isotopic peak intensities, normally distributed noise
with mean one and different standard deviations � are multi-
plied by the occurrence probabilities of the theoretical isotope
distribution. The standard deviation � takes values of 0.01,
0.1, 0.2, and 0.3, reflecting commonly observed intensity
errors. Since the probability of drawing non-positive values
from those distributions is small (e.g. approximately 0.00043

for � = 0.3), negative values need not be explicitly removed
to give a good approximation. In this simulation scheme a
homoscedastic error structure is assumed that perturbs all the
peak intensities of the theoretical isotope distribution with an

dx.doi.org/10.1016/j.euprot.2014.05.002
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Fig. 1 – Overview of the discrimination algorithm: clas

rror of the same variance. In total 6 × 5 different virtual spec-
ra data sets are generated from the lipid and peptide training
et. Each of these 30 data sets has its own combination of mass
nd intensity noise to find an optimal feature set and classifier
or. For each generated spectra set, we assess the importance
f a feature in the classification decision by examining its Gini

ndex and misclassification rate. These performance metrics
ill be further explained later on, but a detailed overview is

lso available in [8].

.3.2. Random forest classifier
or the purpose of discrimination between different molecu-
ar classes, we make use of a random forest (RF) classifier [7].
his classifier type uses the idea of aggregating the responses
f many classifiers (built from perturbed versions of the train-

ng set) into a single classification answer. Specifically, the RF
lassifier constructs an ensemble of classification trees and
akes a final decision based on a majority vote. Each of the

onstructed trees returns a single classification decision. The
nal RF decision is then chosen as the most popular among
hese single decisions. The majority of the votes also shows
he strength of the final classification and can be seen as a

robability of belonging to a certain class, i.e. the number of
rees pointing to this class divided by the total number of built
rees. The RF classifier is constructed in such a way that a
alue close to one indicates that the observed molecule is of
r training scheme (left) and classifier use case (right).

peptide nature, while a value close to zero means that it is
of lipid nature. Values between zero and one thus represent
cases with varying degrees of uncertainty about the molecu-
lar class. We use out-of-bag (OOB) error estimates as an error
measure [23]. In addition, error rates obtained through cross-
validation are presented in Supplementary Table S1. It should
be noted that the RF classifier entails a stochastic component.
As a result, a training phase repeated on the same data set will
produce small fluctuations in the misclassification rates. For
this reason it is sensible to investigate the global trend of the
misclassification rate, rather than to scrutinize some arbitrary
rates.

Whereas the previous paragraph describes the RF classi-
fier to discern peptides from a global lipid class, a second
RF classifier can be trained to perform sub-categorization
once a decision has been made about the molecular species.
The RF training phase for this multi-class classifier uses the
same virtual spectra sets from the in silico lipid database, but
presents them as separate classes rather than as a single
lipid class. The mass and intensity error models are anal-
ogous to what was used in the two-class peptide-vs.-lipid
classifier.
After the training phase of the lipid-vs.-peptide and multi-
class classifiers on the virtual spectra sets, an optimal model
based on the selected feature set is available for each of the
mass and intensity error combinations.

dx.doi.org/10.1016/j.euprot.2014.05.002
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3. Results

The results are divided into four parts. In the first part, we
appraise the mass defect rule-of-thumb [24], which is equiv-
alent to looking only at the fractional part of an ion mass to
determine the molecular class of an ion peak (cfr. Kendrick
maps). The second part provides a theoretical basis for this
single-feature rule-of-thumb by means of a sensitivity anal-
ysis on the 6 × 5 virtual spectrum sets. Besides the fractional
part of the mass, we also investigate the importance of other
isotopic features in terms of the instrument capabilities. For
this purpose, we evaluate the an optimal classifier and cor-
responding feature set for each level of mass resolution and
spectral accuracy. The third part elaborates on the training of
the multi-class classifier to determine subclasses within the
lipid category and it visually illustrates the distribution of iso-
topic characteristics for each of the lipid classes defined by the
Lipid Maps Consortium. Section 3.4 applies the trained classi-
fiers on a real mass spectrum and assesses the performance
against a gold standard. Keep in mind that the training and
testing phases are completely independent from each other.
Training and model selection occurs on in silico generated data
derived from online databases, while testing takes place on
the experimentally acquired MS data for which we know the
content.

3.1. Mass defect as a rule-of-thumb to detect lipids

It has been previously observed that signals belonging to a
specific biomolecular class are more likely to be found in a par-
ticular fractional mass interval [25–27]. This phenomenon is
often used to discriminate between peptides and other molec-
ular species, for example by examining the mass defect of an
ion peak, which for discrimination purposes is computation-
ally equivalent to examining the fractional part of an exact
mass value as is the case in Kendrick maps. Similarly, lipid
molecules also have well-determined ranges comprising their
masses and the fractional parts of these masses. An example
of solely using the mass for discrimination is demonstrated
in Fig. 2, which looks at the lipid and peptide content from
our in silico data set within a mass range of 740–750 Da. The
three histograms A–C show the number of lipids and pep-
tides (or rather their protonated mono-isotopic ions), grouped
into bins of respectively 1, 0.1, and 0.01 Da wide. It is clear
from these histograms that if the mass resolution is relatively
coarse (Panel A), all bins will report the presence of both lipid
and peptide species. This observation illustrates that with a
resolution of one Dalton in this mass range, it is impossible
to separate the two molecule classes purely on the basis of
mass. However, as the mass resolution grows finer, we start to
see that many bins start reporting primarily (Panel B) or even
exclusively (Panel C) a single class of molecules. This observa-
tion means that, if mass resolution allows, lipid and peptide
species start occupying specific sub-areas of the mass domain
and discrimination on the basis of mass alone becomes pos-

sible. The three different bin widths can be considered to
represent mass spectrometers with different resolutions. The
figure also shows the overall (monoisotopic) mass distribu-
tions of both molecule classes across the entire mass range
s 4 ( 2 0 1 4 ) 87–100

considered in this study (Panel D). Although Fig. 2(A)–(C) looks
at mass rather than the fractional part of mass, the general
observation regarding mass resolution is in line with the use of
mass defect rules-of-thumb in high-resolution measurements
for quick and early interpretation (e.g. in FTICR measure-
ments) [24]. Using only one of the possible types of information
that can be extracted from the spectrum, namely ion mass,
Fig. 2(A)–(C) demonstrates that the ability to discriminate
between molecular classes is a function of both theoretically
differentiating aspects and the practical ability of the instru-
ment to capture that differentiating aspect. Encouraged by this
observation, the following section extends the search for dis-
criminating features beyond molecular mass alone and starts
considering multiple features simultaneously, all of which can
be extracted from an experimental mass spectrum.

3.2. Training of the peptide-vs.-lipid classifier and
assessment of feature sensitivity

The previous section illustrates that the best discriminating
features between lipids and peptides depend on the capa-
bilities of the instrument in question. Important instrument
parameters include mass accuracy, mass resolution, and the
ability of the instrument to accurately measure isotope inten-
sities. To evaluate the performance of the lipid-vs.-peptide
classifier with respect to noisy data, 30 (6 × 5) in silico spectra
sets were generated that introduce an error to the intensity
and mass values of the theoretical isotope distribution. For
each set, a lipid-vs.-peptide classifier is trained separately. The
RF classifiers are evaluated by means of out-of-bag error esti-
mates, which are a machine learning technique to retrieve
unbiased estimates of the misclassification rate of a classi-
fier. This misclassification rate can be regarded as the chance
that a lipid or peptide will be classified incorrectly. As such,
a misclassification rate of 0% is optimal. Table 2 presents the
misclassification rates of the 30 classifiers in function of noise
on the mass values (columns) and peak intensities (rows).
Each cell in the table is the mean misclassification rate over
five randomly selected subsets of peptides, with the standard
deviation shown in parentheses.

When no error is added to the theoretical isotope distri-
bution, a misclassification rate of 0.15% is achieved. As the
resolution is reduced and noise is added, misclassification
rates increase. For example, with a normally distributed error
on the isotope peak intensities of � = 0.3 and rounding the
masses to the first decimal digit, a misclassification rate of
10.9% is obtained. The results show that in terms of mis-
classification rates, the influence of intensity noise is limited
when mass values are accurate up to the 4th decimal digit.
However, when the mass resolution deteriorates further, the
misclassification rate grows fast as intensity noise increases.
Table 2 indicates that lipid versus peptide classification is cer-
tainly feasible albeit with differing success rates depending
on the instrumental capabilities. In order to gain more insight
into the isotopic features responsible for successful differen-
tiation, an assessment of the feature sensitivity is required,

certainly since the importance of the isotope features depends
on instrument capabilities. It is particularly useful to exam-
ine which features are crucial in the classification procedure
and which are less so, such that this information can be

dx.doi.org/10.1016/j.euprot.2014.05.002
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Fig. 2 – (A–C) Lipid and peptide counts between 740 and 750 Da. These histograms show the number of lipids (blue) and
peptides (red) found (and normalized to 1) within a certain segment of mass range. From left to right, the mass resolution
increases and the bin width narrows, corresponding to 1, 0.1, and 0.01 Da for panels A, B, and C, respectively. At coarse
resolution (A), bins contain both lipids and peptides and mass-based discrimination is not feasible. At finer resolutions (B,
C), bins start containing lipids or peptides exclusively, indicating that discrimination becomes possible. (D) Monoisotopic
masses of all lipids (blue) and all in silico digested peptides (red) that were included in this study. The histogram shows the
distribution of peptides on top of the distribution of lipids. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Table 2 – Misclassification (out-of-bag) errors (in %) for two feature sets (complete and reduced) for different intensity
noise levels and at different mass resolutions. These results cover RF classifiers that aggregate votes from 1000 trees. The
mass resolution goes from theoretically perfect (left-most column) to 0.1 Da (right-most column). Intensity noise
increases from top to bottom. Lower values are better and zero is optimal. The results show the average (and sd in
parentheses) over 5 repetitions for sampling the training subset of peptides. The approximate relative mass resolution
(in ppm) tied to the decimal digit rounding is included as top row. This approximation is based on the mass range of the
molecules included in the study, where the lightest mass equals 47.01 Da, and the heaviest mass equals 2799.8 Da.

Approx. relative error
for each column:

0 ppm 0.002–0.1 ppm 0.02–1.1 ppm 0.2–10.6 ppm 1.8–106.4 ppm 17.9–1063.5 ppm

Sd of intensity noise No mass
rounding

Mass
rounding to
5th decimal

digit

Mass
rounding to
4th decimal

digit

Mass
rounding to
3rd decimal

digit

Mass
rounding to
2nd decimal

digit

Mass
rounding to
1st decimal

digit

Complete feature set
0 0.15 (0.02) 0.14 (0.03) 0.18 (0.02) 2.81 (0.08) 4.34 (0.18) 5.18 (0.23)
0.01 0.15 (0.03) 0.15 (0.02) 0.18 (0.03) 3.34 (0.14) 5.45 (0.15) 6.24 (0.28)
0.1 0.19 (0.03) 0.17 (0.01) 0.20 (0.03) 5.44 (0.09) 9.25 (0.36) 10.20 (0.34)
0.2 0.18 (0.03) 0.19 (0.01) 0.19 (0.03) 5.68 (0.11) 9.74 (0.31) 10.69 (0.33)
0.3 0.19 (0.03) 0.17 (0.01) 0.19 (0.02) 5.66 (0.14) 9.78 (0.29) 10.90 (0.31)

Reduced feature set
0.16 (0.027) 0.14 (0.015) 0.19 (0.012) 5.57 (0.136) 10.27 (0.361) 10..78 (0.129)
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Fig. 3 – Predictive power of the isotopic features based on relative mean decrease in Gini index (abbreviations defined in
Section 2). The red to white color scale corresponds to increasing feature importance (the same value might be represented
by different colors in different panels). (A) Feature importance in function of mass resolution. For very accurate data (exact
up to 3rd–4th decimal place), the features based on the mass difference between consecutive isotope peaks, mass.diff21 and
mass.diff.32, are important. When mass accuracy decreases, the importance of these features tends to decrease as well. In
this plot the intensity features are without noise. (B) Feature importance as a function of noise on the intensity features
(� = 0, . . ., 0.3) for masses rounded to the 2nd decimal digit. The addition of noise obscures the information content of the
intensity features resulting into a decreasing importance. (C) Feature importance in function of the mass resolution
(classifiers trained only on the reduced set of features). We observe trends similar to those in Panel A. (For interpretation of

erred
the references to color in this figure legend, the reader is ref

incorporated into the design of future experiments. The
importance of a feature in the classification process can be
assessed through its Gini index. This metric captures the dis-
persion, or equivalently, the inequality caused by a split in the
regression tree of a RF classifier. A Gini index equal to one
represents a perfect separation and thus a value close to one
corresponds to a feature with high predictive power. In order
to obtain insight into the predictive power, and thus impor-
tance, of each feature within a particular resolution and noise

context, we calculated the mean decrease in the Gini indices
across the different spectra sets. The results are shown in
Fig. 3. Panel A highlights the predictive power of each feature
in function of decreasing mass resolution, with no noise added
to the web version of this article.)

to the peak intensities (corresponding to values indicated in
bold in Table 2). The lighter colors indicate higher predictive
power and a higher importance connected to the feature in
question. The darker the color, the lower its contribution to
distinguishing between lipids and peptides. Note that the val-
ues in Fig. 3 are not the Gini index itself, but rather the relative
(i.e. scaled by column) mean decrease in the Gini index.

Each column of Panel A corresponds to the best lipid-
vs.-peptide classifier in that particular mass resolution case

ranging from infinite mass resolution to 0.1 Da. Each column
shows the relative importance of one particular feature versus
the other features as the mass resolution changes. Panel A
clearly shows that as long as the third decimal digit of the

dx.doi.org/10.1016/j.euprot.2014.05.002
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Fig. 4 – Distribution of the lipid (blue) and peptide (red) species along the mass.diff.21 (difference between second and first
isotope masses), mass.diff.32 (difference between third and second isotope masses), and mass.frac.1 (fractional part of mass
of first isotope peak) dimensions in the case of infinite mass resolution. Note a clear separation between the two classes
using these three features. As indicated in Fig. 3A, features mass.diff.21 and mass.diff.32 show the highest mean decrease in
the Gini index for the infinite mass resolution case, further confirming these observations. (For interpretation of the
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ass values is accurate, the same features hold importance
s in the theoretical infinite-resolution case. In other words,
ne could say that beyond 3 decimal digits in the mass val-
es, the same features (and similar classifiers) can be used
o distinguish between lipids and peptides. The most impor-
ant features in this case are the mass differences between the
rst and second isotope peaks and the second and third iso-
ope peaks. Note that although they contribute in this setting,
on intensity features (iso.ratio.21 and iso.ratio.31) are much
ess telling than accurate mass determination features, which

eans that instrument sensitivity matters little in making a
eptide/lipid distinction once a certain limit of detection is
eached and three decimal digits are available for the masses.
lso note that at these mass resolutions, the fractional mass

eatures (e.g. the mass defect rule) are less informative than
he mass differences between the first three isotopic peaks.
his result seems to indicate that there might be other rules-
f-thumb more informative than the mass defect if 3 or more
ecimal digits are available. There seems to be a tipping point

n feature importance between masses rounded to 3 or more
ecimal digits and masses rounded to 2 or less decimal digits.
t these lower mass resolutions, importance of mass.diff.21
nd mass.diff.32 plummets as the isotope distribution becomes
ess and less well-described. As a result, the other features
ecome more important for distinguishing between lipids and
eptides. A logical explanation for this observation is that the
iscriminatory power of features mass.diff.32 and mass.diff.21

s driven by the carbon composition of the molecular species

nd, more specifically, the mass difference of 1.003 Da between
he carbon isotopes 12C and 13C. At mass resolutions that are
ower than three decimal digits this difference can be lost and
ther features will have to take over.
the web version of this article.)

A different perspective on the change in importance rank-
ing when rounding the mass is provided in Fig. 4. This figure
shows the distribution of the lipid and peptide species in the
training set along the mass.diff.21, mass.diff.32, and mass.frac.1
dimensions (assuming infinite mass resolution). The entries
from the Lipid Maps database are denoted by blue dots, while
the in silico tryptic peptides are indicated by red dots. Note
that in a theoretically infinite mass resolution setting a quasi-
perfect separation between lipids and peptides is possible
using just these three features. It is also clear that rounding
masses to the second or first decimal digits would collapse the
lipid and peptide data clouds and would obscure the differen-
tiating information of the features based on mass differences
between the isotopes.

Panel B of Fig. 3 highlights the predictive power of each fea-
ture in function of intensity noise, with the masses rounded to
two decimal digits (corresponding to values indicated in italic
in Table 2). Where Panel A suggests that the importance of the
intensity features becomes substantial when masses with two
or less decimal digits are available, Panel B evaluates the inten-
sity features with respect to their sensitivity to increasing
amounts of noise on the peak intensities (standard deviations
ranging from � = 0 to 0.3). It is clear that the importance of
these intensity features diminishes as the noise increases. A
similar observation was made for the data set rounded to the
first decimal digit (data not shown). Mass spectral measure-
ments are commonly corrupted by a substantial amount of
error in the peak intensities. This noise usually originates from

numerous latent variables and instrument artifacts that are
hard to characterize. Another nuisance that affects the peak
intensities in an isotope distribution is that saturated lipid
species can overlap with their unsaturated variants. These

dx.doi.org/10.1016/j.euprot.2014.05.002


m i c s 4 ( 2 0 1 4 ) 87–100

Fig. 5 – Distribution of lipid subclasses from the training
set, along the mass.1 (exact mass of first isotope peak) and
mass.frac.1 (fractional part of mass of first isotope peak)
dimensions for infinite mass resolution. Black labels 1 and
2 (fractional mass: 0.58 and 0.6/mass: 760.58 Da and
786.60 Da) indicate two glycerophospholipids correctly
classified via a random forest classifier (cf. Table 4). Note
that a random forest classifier operates on a
multidimensional feature space, which contains more
information than this two-dimensional visual map can
represent. The features used in this figure were chosen for
96 e u p a o p e n p r o t e o

saturated isomers cause a significant bias in the observed iso-
tope pattern. In light of these issues with ion intensity-derived
features, we constructed a reduced feature set without the
iso.ratio.31 and iso.ratio.21 features.

Another argument for restricting a classifier to features
based on mass information alone is that mass resolution and
accuracy can generally be better controlled via calibration and
internal reference standards than ionization, analyzer and ion
detector response.

In Panel C of Fig. 3 we highlight the predictive power of
each feature in function of decreasing mass resolution, but
this time only using the mass-derived features present in the
reduced feature set (see the bottom row in Table 2). It is essen-
tial to understand that Panel C is not simply Panel A with the
first two rows removed, but that the values in Panel C are the
result of classifiers being trained only on the reduced set of
features. The importance of the features in function of the
different mass resolutions seems unaffected.

Given the independence from ion intensity that the
reduced feature set brings and the relatively minor contribu-
tion of ion intensity-derived features, we will use one of these
reduced set classifiers to test classification performance on
a MS measurement (see Section 3.4). As we are dealing with
a MALDI-TOF acquisition we feel confident that the masses
are accurate up to the second decimal digit, which is why we
will specifically apply the classifier trained on theoretical data
rounded to the second decimal digit. As indicated in Table 2
this classifier demonstrates a misclassification rate of 10.27%
on the theoretical training data. Section 3.4 will discuss its
performance on the real MS data test set.

Overall, the misclassification rates of Table 2 seem to indi-
cate that on the basis of our training set, a classifier can
discriminate well between lipids and peptides. However, the
question remains whether the training set is representative
for undigested or bioactive peptides. It should be noted that
bioactive peptides may have different characteristics than
tryptic peptides, which always have an arginine or lysine at
their C-terminus. To test the performance of the classifier on
bioactive peptides, we perform a classification on virtual spec-
tra generated from the undigested Uniprot entries lighter than
2.8 kDa. Analogous trends as observed in Table 2 are obtained
for the undigested peptides (cf. Supplementary Table S2). Pre-
sumably, the structure of the amino acid chains conserves the
characteristics for differentiation for undigested peptides as
well.

3.3. Multi-class classifier training

This section elaborates on the sub-categorization of an iso-
tope pattern after it has been annotated as a lipid. Fig. 5
displays the projection of the theoretical isotope features
from the Lipid Maps database onto a coordinate system with
the mono-isotopic mass as abscissa and its fractional part
on the ordinate (in the case of infinite mass accuracy). The
plot reveals a visible separation between some of the lipid
classes as defined by the Lipid Maps Consortium. Unfortu-

nately, for some classes a large overlap between the different
lipid species is apparent, which makes it difficult to accurately
pinpoint the subclass via a classification strategy. However,
information from the plot could still be used to enrich the
illustrative purposes.

probability of correct annotation for at least some of the
lipid subclasses. For example, a lipid molecule with a mono-
isotopic mass of ≈800 Da and a fractional mass of ≈0.2 Da has
a high likelihood of being a polyketide (PK) and not a glycolipid
(GL). On the other hand, a lipid molecule with a mono-isotopic
mass of ≈800 Da and a fractional mass of ≈0.8 Da is likely to be
a glycolipid and much less likely to be a polyketide. This plot
further extends the idea of visual maps by Hughey et al. [28] for
within-lipids classification. Also note that the RF classifier can
employ many more features than the two employed in Fig. 5.
For the lipid sub-categorization task we use the reduced fea-
ture set and train a multi-class random forest classifier for the
8 lipid classes. In order to be compatible with the testing phase
on a real MALDI-TOF spectrum, the RF model was trained on
a data set that reflects a mass resolution of TOF class instru-
ments, with mass values rounded to the second decimal digit.
The misclassification rate for the multi-class classifier is pre-
sented in the confusion matrix of Table 3. Although the overall
misclassification error is large (over 30%), some lipid classes
are better discernible than others. A case in point are the
classes GP, PK, and SP, which have a misclassification rate less

than 17%. From the visual map in Fig. 5 it can be seen that
the classes PK and SP are well separable from the other lipid
classes. The class GP is harder to distinguish, but it contains

dx.doi.org/10.1016/j.euprot.2014.05.002
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Table 3 – Misclassification rates per lipid subclass by the model trained on the reduced feature set and in silico data that is
rounded to the second decimal digit. The row label indicates the correct identity, the column label indicates the identity
suggested by the multi-class classifier. For three large subclasses – GP, PK, SP – with more than 1150 lipids in each of
them, the misclassification (out-of-bag) error is smaller than 17%. The RF classifier was built using 1000 trees.

FA GL GP PK PR SL SP ST
∑

row Class. error (%)

FA 531 16 24 60 102 0 31 149 913 41.8
GL 14 255 57 6 8 1 30 29 400 36.2
GP 11 48 1178 36 24 2 47 69 1415 16.8
PK 38 1 51 1133 29 0 4 40 1296 12.6
PR 151 10 69 67 44 2 13 86 442 90
SL 0 7 3 3 1 49 12 1 76 35.5
SP 54 26 82 3 7 3 974 18 1167 16.5
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ST 150 31 101 49 67∑
column 949 394 1565 1357 282

egions that are well discernible. Note that these three classes
over more than 60% of the lipids in the Lipid Map database,
aising issues of balance but at the same time suggesting that
or the majority of lipids the sub-categorization is theoretically
easible based on mass properties.

.4. Classifier test on real MS data

hile building the lipid-vs.-peptide and multi-class classi-
ers, several decisions are made that influence the operation
f these classifiers. Some of these decisions may have a nega-
ive impact on the performance of the classifier. For example,
ne can question whether the mass accuracy of two decimal
igits to represent TOF class instruments is too loose or rather
oo conservative. In fact, this parameter mainly depends on
he particularities of the instrument and how it has been
alibrated, so it is not entirely correct to assume a general
arameter for TOF class instruments. Further, based on our
revious experiences with small molecules, we choose to work
ith isotope distributions which contain at least three isotopic
eaks. This restriction can either be considered too stringent
r too lenient. Another constraint is that the training phase
oes not consider modifications or adduct formations, which

ipids and peptides can undergo in real experiments. In this
aper we have only considered the protonation of an ion. In
rder to assess whether our assumptions hold up in a genuine
easurement, we test the classifiers on real MS data. For this

urpose, a controlled experiment is conducted in which a mix-
ure of five peptide and seven lipid species is assayed through
ALDI-TOF MS. This experiment delivers a mass spectrum

rom which we retain only the ions for which the first three iso-
ope peaks can be found within an interval of ±0.01 Da around
heir theoretical (protonated) mass. Six isotope families are
ound that meet this criterion and they are summarized in
able 4 with their presumed identity as provided by the key
n Table 1. It should be mentioned that a relaxed search to an
nterval of ±0.1 Da did not result in additional findings. After
xtracting from the mass spectrum the values of the reduced
et of features for each of these isotope families, the lipid-vs.-
eptide and multi-class classifiers use the measured features
o predict the identity of the compound.
The classifier returns a probability close to one for peptides
nd probabilities close to zero to indicate lipids. For the six
onsidered molecules the average probabilities for lipids no. 1
nd 2 were 0.0126, 0.0004, respectively, and peptide no. 3, 4, 5, 6
0 5 201 604 66.7
57 1116 593 6313 Total class. err: 30.9

received a probability of 0.1576, 0.9738, 0.9996, 0.8476, respec-
tively (� for molecule 3: 0.189; other � < 0.017). Thus it seems
that molecules no. 1 and 2 are correctly classified as lipids.
Also molecules no. 4, 5 and 6 are correctly annotated as pep-
tides. Overall, this is a strong result that seems to indicate our
assumptions are valid and that automated annotation of mass
spectra without supervision is feasible. However, note that
peptide no. 3 has been misclassified, which points to uncer-
tainty regarding the molecular class that has generated the
observed signal. In order to gain more insight into the origin of
this confusion, we visualize the experimental and in silico data
with respect to the mono-isotopic peak mass and its fractional
part. The result is displayed in Fig. 6 and extends the concept of
the visual maps described in the section about multi-class pre-
diction. In this figure, peptides are represented by purple dots
and lipids are indicated by blue dots. Note that lipids exhibit
more heterogeneity in their distribution than peptides. It can
be ascertained that peptide no. 3 is indeed positioned near
the border of the subspace that is occupied by lipids. Its bor-
der position may explain the weak probability returned by the
lipid-vs.-peptide classifier. The other molecules are more at a
center position in the data cloud of their respective molecu-
lar classes, which is also reflected by the strong probabilities
close to zero and one. However, the figure only presents a
projection of the data in a reduced space and should not be
over-interpreted, since the RF classifier involves more param-
eters to support its decision. For weak probabilities, i.e. near
50%, we could consider introducing an additional category
that collects uncertain assignments by applying an upper and
lower limit on the RF probabilities. As a whole these test set
results seem to indicate that training a classification model on
in silico data is justified for an application on mass spectrome-
try measurements. The independence between the theoretical
training data set and the real MS test data set ensures that
the machine learning classifier does not overfit the model on
measurement-specific features in the data, which has hap-
pened in former classification studies [29,30] as pointed out
by Baggerly et al. [31].

The two observed isotope patterns that were correctly
classified as lipids were successfully assessed via the multi-
class RF classifier as well. The signals corresponding to

lipid PC(16:0/18:1(9z)) and PC 18:1(9z)/18:1(9z) were correctly
annotated as glycerophospholipids (GP), with a classifier
certainty of 98% and 82.7%, respectively. This result is not sur-
prising given that the GP class can be quite well discriminated

dx.doi.org/10.1016/j.euprot.2014.05.002


98 e u p a o p e n p r o t e o m i c s 4 ( 2 0 1 4 ) 87–100

Ta
bl

e
4

–
M

ol
ec

u
le

s
an

n
ot

at
ed

in
th

e
m

as
s

sp
ec

tr
al

m
ea

su
re

m
en

t.
m

o
=

ob
se

rv
ed

va
lu

es
of

th
re

e
fi

rs
t

ce
n

te
r-

m
as

se
s

st
ar

ti
n

g
fr

om
th

e
m

on
o-

is
ot

op
ic

p
ea

k
;

is
o o

=
ob

se
rv

ed
is

ot
op

ic
ab

u
n

d
an

ce
s

fo
r

fi
rs

t
th

re
e

ag
gr

eg
at

ed
p

ea
k

s;
10

6
×

((m
t
−

m
o
)/

m
o
)=

d
if

fe
re

n
ce

s
be

tw
ee

n
th

eo
re

ti
ca

lc
en

te
r-

m
as

se
s

ob
ta

in
ed

by
B

R
A

IN
an

d
ob

se
rv

ed
M

S
d

at
a

(i
n

p
p

m
);

is
o t

−
is

o o
=

d
if

fe
re

n
ce

s
be

tw
ee

n
th

eo
re

ti
ca

li
so

to
p

ic
ab

u
n

d
an

ce
s

of
fi

rs
t

th
re

e
is

ot
op

ic
p

ea
k

s
ob

ta
in

ed
by

B
R

A
IN

an
d

ob
se

rv
ed

M
S

d
at

a.

N
o.

N
am

e
Ty

p
e

Fo
rm

u
la

m
o

10
6

×
m

t−
m

o
m

o
is

o o
is

o t
−

is
o o

m
as

s.
1

m
as

s.
2

m
as

s.
3

is
o.

ra
ti

o.
21

is
o.

ra
ti

o.
31

1
PC

18
:1

(9
z)

/1
6:

0
Li

p
id

C
42

H
83

N
1
O

8
P 1

76
0.

58
64

76
1.

58
99

76
2.

60
12

−1
.0

17
6

−1
.2

19
8

−1
2.

07
18

0.
43

83
0.

54
06

0.
03

23
−0

.4
15

89
2

PC
18

:1
(9

z)
/1

8:
1(

9z
)

Li
p

id
C

44
H

85
N

1
O

8
P 1

78
6.

60
29

78
7.

60
59

78
8.

60
91

−2
.0

54
4

−1
.6

21
4

−1
.7

38
5

0.
42

34
0.

09
58

0.
06

90
0.

03
93

0
3

PK
C

su
bs

tr
at

e
Pe

p
ti

d
e

C
34

H
69

N
16

O
8

82
9.

55
01

83
0.

55
21

83
1.

55
36

−2
.0

74
62

−1
.2

96
73

−0
.2

38
11

0.
46

37
0.

13
79

−0
.0

25
9

−0
.0

27
67

4
A

C
T

H
4-

11
Pe

p
ti

d
e

C
50

H
72

N
15

O
11

S 1
10

90
.5

27
9

10
91

.5
30

8
10

92
.5

33
9

−2
.0

88
0

−2
.1

63
9

−4
.1

22
5

0.
57

95
0.

26
15

0.
03

72
−0

.0
06

58
5

G
lu

1
Fi

br
in

op
ep

ti
d

e
B

Pe
p

ti
d

e
C

66
H

96
N

19
O

26
15

70
.6

81
0

15
71

.6
83

8
15

72
.6

85
2

−2
.3

04
7

−2
.2

85
4

−1
.4

75
2

0.
82

84
0.

37
94

−0
.0

23
5

−0
.0

05
99

6
A

C
T

H
18

-3
9

Pe
p

ti
d

e
C

11
2
H

16
6
N

27
O

36
24

65
.2

06
5

24
66

.2
10

2
24

67
.2

11
4

−3
.1

08
1

−3
.3

87
8

−2
.7

32
2

1.
30

70
0.

97
37

0.
03

69
−0

.0
03

42

A
dd

it
io

na
lly

an
no

ta
te

d
m

ol
ec

u
le

s
7

PC
18

:1
(9

z)
/1

8:
1(

9z
)o

r
PC

18
:1

(6
z)

/1
8:

1(
6z

)o
r

PC
18

:1
(9

tr
an

s)
w

it
h

N
a+

[L
ip

id
]

C
44

H
84

N
1
O

8
P 1

N
a 1

80
8.

58
49

80
9.

58
80

81
0.

59
08

−2
.0

77
7

−1
.7

16
9

−1
.4

06
4

0.
46

76
0.

12
53

0.
02

47
0.

00
97

7

8
G

lu
1

Fi
br

in
op

ep
ti

d
e

B
w

/o
w

at
er

[P
ep

ti
d

e]
C

66
H

94
N

19
O

25
15

52
.6

70
5

15
53

.6
70

2
15

54
.6

74
4

−2
.3

70
11

−0
.3

47
56

−1
.3

31
47

0.
75

64
0.

42
00

0.
04

80
−0

.0
49

08

Fig. 6 – Distribution of lipids (blue) and a random subset of
in silico digested peptides (red) along the mass.1 (exact
mass of first isotope peak) and mass.frac.1 (fractional part
of mass of first isotope peak) dimensions for infinite mass
resolution. In addition the annotations of molecules
measured in the MS experiment were marked with black
numeric labels (cf. Table 4). The features used in this figure
were chosen for illustrative purposes. (For interpretation of
the references to color in this figure legend, the reader is
referred to the web version of this article.)
in theory, as revealed by the relatively low misclassification
rate of 16.8% in Table 3. The visual map of Fig. 5 projects
the two lipids into the mass.1 and mass.frac.1 dimensions.
Although some overlapping lipid classes occur for the GP
class, the two considered lipid molecules are clearly pos-
itioned within the GP data cluster and are differentiated from
the other possible lipid classes.

Since the spectrum contains more than just the proton-
ated ions expected from the mixture, an automated peak
extraction and subsequent classification is performed on all
the found isotope patterns. A post-hoc analysis of the results
reveals that two of the annotated isotope distributions can be
traced back to modified forms of the standards in the mix-
ture. For example, one of the patterns corresponding to either
PC 18:1(9z)/18:1(9z), PC 18:1(6z)/18:1(6z) or PC 18:1(9trans) with
a sodium adduct was classified as a lipid (probability of being a
peptide 0.0074; � < 0.012). Another isotope pattern is annotated
as a peptide with an average probability of 0.999 (� < 0.0015)
and can be speculated to be a protonated Glu1 Fibrinopeptide
B which has lost a water molecule. The isotope patterns for
the two molecules correspond to the theoretical distribution
within an interval of 2.4 ppm for the mass and a margin of 0.05
on the normalized intensities as indicated in the second part
of Table 4. These findings suggest that the lipid-vs.-peptide

classifier that is trained only on protonated ions might gener-
alize to other modifications and adducts as well.

dx.doi.org/10.1016/j.euprot.2014.05.002
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Although the method is evaluated on a MALDI spectrum, it
hould work equally well on data obtained via other ionization
ources (e.g. ESI) since the isotope information is a character-
stic of the molecule and not a characteristic of the ionization
rocess. In the case of ESI, the added complexity of multiple
harging might require a spectrum to undergo charge-state
econvolution first though.

. Discussion and concluding remarks

n this manuscript we present a proof-of-concept study
hat evaluates whether machine learning methods can be
mployed to aid in the automated interpretation of full scan
ass spectra. The first objective in this study was to find which

sotope features, on a theoretical basis at infinite mass resolu-
ion, can function as differentiating criteria between peptides
nd a generic lipid class. We found that the fractional mass
nd the mass differences between isotopic variants are impor-
ant to drive that classification. The high discriminatory power
f these features can be explained by the different propor-
ion of carbon present in lipids and peptides [24,32]. An in
ilico analysis confirmed some of the empirical rules that are
ommon practice in lipidomic filtering (e.g. mass defect). The
econd objective of the study was to see whether these theo-
etical findings are practical in mass spectral measurements.
n other words, what happens if mass resolution and spec-
ral sensitivity is finite? We conducted an in silico sensitivity
nalysis to assess the robustness of isotopic features at dif-
erent resolutions and noise levels in accordance with the
ifferent instruments on the market today. It is interesting
o see that mass-difference-between-isotopic-peaks features
rop from highly important to a low importance when the
ass resolution of the instrument deteriorates. At the same

ime, the isotope intensities gain importance for instruments
ith a lower mass resolution. This transition is sensible since a

oss of information in the masses is compensated by informa-
ion from isotopic peak intensities. However, peak intensities
re usually affected by a severe amount of noise, which
ften is difficult to characterize since it depends on multiple
nobserved instrument factors. To make the random forest
lassifier robust to a misspecification in the noise structure, we
otivate to exclude information about peak intensities from

he model because there are ample noise sources that can
everely disturb the measured isotope profile. Nevertheless,
s instrumentation evolves and spectral accuracy improves,
sotopic peak intensities could again be incorporated into the
ecision making process of the random forest classifier.

The third objective was to determine whether the isotope
eatures can be used to sub-categorize the lipid classes once a

olecular ion is classified as lipid. Here, similar conclusions as
ith the lipid-vs.-peptide classifier can be drawn. Perfect clas-

ification of the eight lipid classes is not achieved during this
ensitivity study, however, enrichment of the probability that a
articular lipid belongs to certain classes is attainable. Further,

t should be noted that it is very unlikely that the eight lipid

lasses are simultaneously present in the data. It is also impor-
ant to note that instrumental constraints such as ionization
fficiency and limit of detection are not part of the clas-
ification study. The advantage of molecule-driven features
4 ( 2 0 1 4 ) 87–100 99

rather than instrumentation ones is that instrumental argu-
mentation does not contaminate the classification rules
learned here. This approach ensures that the conclusions hold
true regardless of how instrumentation develops in the future.

The fourth objective was to test on a concise MALDI-TOF
MS experiment selected lipid-vs.-peptide and multi-class clas-
sifiers, trained solely on computer-generated data. This test is
essential in our investigation as it provides proof that assump-
tions regarding the model are justified. For this purpose, we
select the classifier that was trained for the classifiers that
were trained for a mass resolution up to two decimal digits. Six
isotopic profiles of known molecules were fed into the RF clas-
sifier of which five were correctly annotated. The probability
returned by the RF classifier can be used to score the deci-
sion strength, with a score near zero or one indicating a clear
separation between the two classes. One molecule received
a class probability close to 16% indicating misclassification
on behalf of the classifier regarding this isotope pattern. This
result is probably caused by the peptide exhibiting features
that put it close to the plane of separation between the two
classes. Currently, two class labels are included in the model,
but one option is to include a third no-lipid/no-peptide class
that collects data of unknown molecular class. The two isotope
patterns that were annotated as a lipid were further catego-
rized by the multi-class classifier and correctly recognized as
glycerophospholipids.

Although this study is not exhaustive, it does demon-
strate one type of framework within which one can enable
automatic interpretation of empirically acquired mass spec-
tra. The approach is limited only by the quality of the
databases that we provide for the species of interest and
the practical feasibility of parameters in the machine learn-
ing process. We thus demonstrate one implementation but
we recognize that this is not an exhaustive treatment and
further improvements are possible with more advanced com-
putational resources and more elaborate techniques (e.g.
support vector machines). However, the proof-of-concept
we provide for automated annotation of mass spectra
delivers encouraging and useful results with relative little
resources.

Overall, this paper demonstrates through a theoretical
assessment and an empirical test, a theoretical basis for
automated interpretation of lipids versus peptides and lipid
class sub-categorization. Because of this ability, we propose
to name the method Lipid Centrifuge for further references.
This approach can also be potentially extended towards other
molecule classes or towards further subdivision, for exam-
ple, the detection of glycosylated peptides or adducts, such
as acetate, ammonium, and formiate. On the other hand, this
might not be absolutely necessary since our model, which is
built without taking adducts into account, is shown to cor-
rectly classify some adduct species already. This indicates
that some of these rules could be sufficiently general to cover
adducts as well.

Given the extent of applications for automated interpre-
tation of full scan spectra (e.g. imaging mass spectrometry,
on-the-fly determination of the optimal MS/MS fragmenta-
tion strategy, selection of a downstream identification analysis
path, etc.), we are convinced that this line of research merits
further development.

dx.doi.org/10.1016/j.euprot.2014.05.002
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