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Abstract 

 

Objective To evaluate the feasibility of non-invasive assessment of maternal cardiac and 

arterial characteristics throughout uncomplicated pregnancy and postpartum. 

 

Design A longitudinal evaluation throughout gestation, at seven weeks postpartum and at one 

year postpartum. 

 

Setting Antenatal outpatient clinic of Ziekenhuis Oost-Limburg (Genk, Belgium). 

 

Sample 16 women with uncomplicated pregnancy. 

 

Methods Impedance cardiography measurements were performed in supine, standing, and 

sitting position using a standard protocol with known reproducibility. SAS procedure MIXED 

for linear mixed models was used, and fitted to the data for each parameter separately: Data 

were binned in four-weekly intervals. Differences between gestational and postpartum 

measurements were evaluated by One-Sample Wilcoxon Signed Rank Tests. Data are 

presented as mean (standard error of mean). 

 

Main outcome measures Gestational and postnatal evolution of blood pressure, stroke 

volume, cardiac output, cardiac cycle time intervals, aortic flow characteristics, total 

peripheral vascular resistance, and thoracic fluid content. 

 

Results In all positions, stroke volume and cardiac output changed significantly throughout 

gestation (n=16; p≤0.0001), and supine values differed from standing (p≤0.008) and sitting 

positions (p≤0.048). As compared to early postpartum, all cardiovascular parameters 

remained unchanged after one year postpartum (n=12; p≥0.074), except for standing diastolic 

blood pressure which decreased with 5±2 mmHg (p=0.037). 

 

Conclusions Gestational evolutions of left ventricular output were similar to reported changes 

in literature, and were influenced by maternal position. Our study illustrates that impedance 

cardiography has the potential to become a useful tool in perinatal medicine to assess 

maternal hemodynamics. 
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BMI = body mass index 

SEM = standard error of mean 

 

Key message 

 

Impedance cardiography allows for the non-invasive assessment of maternal cardiac and 

arterial characteristics. These parameters change significantly throughout gestation and 

postpartum, in which left ventricular output parameters are influenced by maternal position. 

 



Introduction 

 

Normal pregnancy is characterized by a decrease in total peripheral resistance and increased 

plasma volume (1). The use of non-invasive alternatives for the conventional methods to 

study these hemodynamics is becoming increasingly important (2, 3) to understand the 

cardiovascular maladaptation in pregnancy disorders such as preeclampsia (4, 5). One of these 

popular non-invasive techniques, i.e. impedance cardiography, correlates well with the 

standard thermodilution technique for cardiac output determination (3). Moreover, we have 

recently shown that impedance cardiography is safe and reproducible in pregnancy (6). 

 

In this prospective study, we aim to describe the hemodynamic changes observed using 

impedance cardiography throughout normal pregnancy to illustrate its usefulness in the study 

of maternal hemodynamics. 

 



Methods 

 

Approval of the local ethical committee was obtained before study onset (MEC ZOL 

reference: 09/050). We established a longitudinal observational study in pregnant women 

presenting at the antenatal outpatient clinic of Ziekenhuis Oost-Limburg (Genk, Belgium) in 

early gestation (November 2009 - March 2010). Singleton pregnancies of women without 

history or symptoms of medical or cardiovascular diseases were included. All women were 

included at six to eight weeks of gestation based on ultrasound dates and were evaluated 

monthly until term. The normal course and outcome of pregnancy was verified postpartum. 

Measurements were repeated at six to eight weeks postpartum and one year postpartum. 

Postpartum exclusion criteria were new-onset of pregnancy or symptoms of medical or 

cardiovascular diseases. 

 

For all women, maternal age at inclusion (years), pregestational and postpartum body mass 

index (BMI), nulliparity (yes or no), gestational age at delivery (weeks), and birthweight (g 

and percentiles) were registered. 

 

After informed consent, all women underwent an impedance cardiography examination 

according to the protocol detailed previously (6, 7) using the Non-Invasive Continuous 

Cardiac Output Monitor™ (Software version 2.0, SonoSite, Medis Medizinische Messtechnik 

GmbH, Ilmenau, Germany). The impedance cardiogram (dZ/dt) is the first mathematical 

derivative of the thoracic impedance (Z) change over time for an alternating current with high 

frequency (60-100 kHz) and low amplitude (1 mA) transmitted through the thorax by a four 

electrode arrangement which eliminates skin resistance. After ten minutes of adaptation to the 

supine position, all measurements were registered in three positions: supine, sitting, and 

standing. Hence, the effect of aortacaval compression can be visualized. 

 

Based on both impedance cardiogram and electrocardiogram signals (Figure 1), all 

cardiovascular characteristics were assessed by applying third generation algorithms 

incorporating known electrophysiological and clinical principles (3), and were classified into 

six groups as follows. 

 

  



Pressures: Systolic and diastolic blood pressure (mmHg) are measured by the automated 

oscillometric module of the Non-Invasive Continuous Cardiac Output Monitor™-device, 

enabling the calculation of pulse pressure and mean arterial pressure. 

 

Left ventricular output: Heart rate (beats/min) was calculated from the heart period duration 

(ms), measured as the RR-interval of the electrocardiogram-signal. Stroke volume (mL) was 

calculated using the Sramek-Bernstein formula, which incorporates the electrically 

participating chest tissue estimated from patient’s characteristics (8). Cardiac output (L/min) 

represents the amount of blood pumped by the heart per minute, calculated as heart rate × 

stroke volume. 

 

Cardiac cycle time intervals: Pre-ejection period (ms) is the period of isovolumetric 

ventricular contraction defined as the time interval between the electrocardiogram’s Q-wave 

(start of ventricular depolarization) and the impedance cardiogram’s B-point (opening of the 

aortic valve), i.e. the time needed for the ventricle to exceed the aortic pressure and start 

ejection (electrical systole, Figure 1). Left ventricular ejection time (ms) represents the 

duration of ejection (mechanical systole) (9) and is the time interval between the B- and X-

point (opening and closing of the aortic valve, respectively) of the impedance cardiogram 

(Figure 1). Together, pre-ejection period and left ventricular ejection time represent the 

electromechanical systole. Diastolic time (ms) (10) is calculated as heart period duration − 

electromechanical systole. Both left ventricular ejection time and diastolic time are expressed 

as a percentage of heart period duration, i.e. left ventricular ejection time index and diastolic 

time index (11). Systolic time ratio is calculated as the ratio of the electrical and the 

mechanical systole (pre-ejection time/left ventricular ejection time). 

 

Aortic flow: Characteristics of aortic flow were derived from the normalized Z waveform, i.e. 

impedance cardiogram (dZ/dt) corrected for an individual’s base impedance (Z0).  

 

The velocity index is the equivalent of the amplitude or maximum velocity of the systolic 

wave (C-point), which is calculated as 1000×((dZ/ dtmax)/Z0) in 1/1 000/s. The acceleration 

index is calculated as 100×((d2Z/dt2
max)/Z0) in 1/100/s2, which represents the equivalent of the 

maximum acceleration of blood flow in the aorta (d2Z/dt2, second mathematical derivative of 

the change in Z over time). The Heather index represents the amplitude of the systolic 

impedance cardiogram wave which is corrected for the time needed by the ventricle to reach 



maximum ejection (electrocardiogram’s R-wave to impedance cardiogram’s C-wave; TRC). 

This is calculated as (dZ/dtmax)/TRC in Ohm/s2. The distensibility of the aorta is estimated by 

total arterial compliance (mL/mmHg) (12). This is calculated as stroke volume × pulse 

pressure.  

 

Total peripheral vascular resistance: Total peripheral vascular resistance in mmHg/mL/min 

was estimated by dividing the mean arterial pressure by cardiac output.  

 

Thoracic fluid: The base impedance (Z0 in Ohm) represents the overall impedance (Z) 

measured across the thorax, which is influenced by the amount of conducting fluid in the 

thorax. This fluid level is expressed as thoracic fluid content (1/kOhm). 

 

An orthostatic index (13, 14) was calculated as a percentage of change when moving from 

supine to standing position: (valuestanding/valuesupine) × 100 – 100. 

 

In order to establish reference curves, a linear mixed model was fitted to the data for each 

parameter separately (15). As such, a random subject effect was included. To avoid imposing 

parametric structures on the curve, an unstructured profile was considered. To this end, the 

data were binned in four-weekly intervals between eight weeks of gestation and term. For 

each gestational age interval, the median value was calculated and plotted graphically. For 

this, SAS procedure MIXED (SAS Inc., software version 9.2, Chicago, IL, USA) was used. 

 

Differences between gestational and postpartum measurements were evaluated by One-

Sample Wilcoxon Signed Rank Tests. All data are represented as means±standard error of 

mean (SEM) or numerical values (%). 

 

 



Results 

 

In 16 women with uncomplicated pregnancy, nine consecutive impedance cardiography 

examinations were performed at 8±0, 12±0, 16±0, 20±0, 24±0, 28±0, 32±0, 36±0, and 38±0 

weeks of gestation. Four women missed the last impedance cardiography examination 

because they delivered between 37 and 38 weeks of gestation. Postpartum measurements 

were performed at 7±0 weeks and at 53±0 weeks postpartum. Four women were excluded at 

one year postpartum for new-onset medical disease (n=1), pregnancy (n=2), and drop-out 

(n=1). Demographic characteristics at inclusion and pregnancy outcome are listed in Table 1. 

Women’s BMI was 1±0 kg/m2 lower one year postpartum (n=12) compared with their early 

postpartum value (p=0.040). 

 

Gestational evolution and postpartum values of impedance cardiography measurements are 

shown in Figure 2 and Table 2. All parameters changed significantly throughout pregnancy in 

all three positions (p≤0.0001). 

 

In third trimester uncomplicated pregnancy, stroke volume and cardiac output (Figure 2) 

tended to fall in supine position compared with standing (p≤0.008) or sitting positions 

(p≤0.048). Gestational evolution of heart rate differed between supine and standing positions 

(p=0.023) as heart rate in supine position tended to rise towards term. Next to this, pre-

ejection period, left ventricular ejection time index, systolic time ratio and total peripheral 

vascular resistance also showed a different gestational evolution between the supine and 

standing positions (p≤0.0499). Throughout uncomplicated pregnancy, no differences in left 

ventricular output characteristics were observed between standing and sitting positions 

(p≥0.398). 

 

When comparing one-year postpartum values (53±0 weeks) to early postpartum, no 

significant differences were observed (p≥0.074), except for standing diastolic blood pressure 

which decreased with 5±2 mmHg one year postpartum (p=0.037). 

 

When comparing early gestational measurements with postpartum values, cardiac output was 

higher (p=0.016) in supine position due to an increase in heart rate (p=0.011), but not in 

stroke volume (p=0.753) (Table 2). Next to this, early gestational systolic time ratio and pre-

ejection period were significantly lower (p≤0.006), whereas left ventricular ejection time 



index was significantly higher (p=0.041). Moreover, velocity index, acceleration index, and 

Heather index were higher (p≤0.004) at early gestation when compared with postpartum 

values. Orthostatic indices of all parameters were comparable between early gestation and 

early postpartum (p≥0.090). 

 

As compared to term pregnancy, standing systolic blood pressure and pulse pressure both 

decreased at early postpartum (p≤0.049). During standing position, early postpartum values 

for stroke volume and cardiac output were decreased compared with term gestational values 

(p≤0.008). Systolic time ratio was increased together with an increase in pre-ejection period 

(p≤0.028); left ventricular ejection time index was significantly lower during the postpartum 

period as compared with term pregnancy (p=0.012). Thoracic fluid content was decreased at 

early postpartum compared with term pregnancy (p=0.013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Discussion 
 

In the non-critically ill pregnant woman, the use of invasive techniques such as pulmonary 

artery catheterization are rarely justified as they are associated with significant intrinsic 

morbidity. Impedance cardiography may offer a good alternative to these conventional 

invasive methods, allowing for a safe assessment of the cardiac and arterial system in 

pregnancy (6). 

 

Specialists in hemodynamics often criticize impedance cardiography measurements because 

they are obtained from mathematical calculations. On top of this, their correct physiologic 

nature is not always easily understood. Despite these limitations, a recent meta-analysis 

reported good correlation between impedance cardiography measurements and those obtained 

by invasive methods, specifically in non-critically ill patients (3). Moreover, it has been 

reported that impedance cardiography measurements are reproducible under standardized 

conditions in non-pregnant individuals (7), in uncomplicated pregnancy, and preeclampsia 

(6). 

 

Our study illustrates that gestational and postpartum evolution of impedance cardiography 

measurements of cardiovascular function is similar to reported observations using other 

methods (1, 16, 17). Our study shows the relevance of maternal position during this 

examination: stroke volume, cardiac output, pre-ejection period, left ventricular ejection time 

index, systolic time ratio, and total peripheral vascular resistance were significantly different 

between supine and standing positions. These left ventricular characteristics are derived from 

the preload-dependent parameter “left ventricular ejection time” (9, 18). Consequently, 

changes in these characteristics are likely to be related to the growing pregnant uterus which 

interferes with venous return (19-21) in the supine position. This phenomenon possibly 

troubles the interpretation of cardiac output evolution near term, as is indicated by the 

reported presence of conflicting results of cardiac output evolution from third trimester 

pregnancy to term (22). On top of this, different filling states amongst the female population 

could also explain those inconsistent results: High variability in cardiac output and plasma 

volume is observed in pregnancy disorders such as preeclampsia (23, 24). This variability 

helped to explain the reoccurrence of preeclampsia in women with a low plasma volume (25), 

which is suggested to be linked to venous capacitance (26, 27). 

 



Most hemodynamic parameters are suggested to return to preconception values within 8 to 12 

weeks postpartum (28), which is also true in our study. Next to this, we found that early 

postpartum measurements around seven weeks postpartum did not differ from one-year 

postpartum, except for a subclinical difference in diastolic blood pressure (Table 2). As 

compared to early postpartum values, we reported a higher heart rate in early pregnancy 

resulting in an increase in cardiac output, together with an increase in the aortic parameters 

velocity index, acceleration index, and Heather index, and lower systolic time ratio and pre-

ejection period values. This is in line with other observations, reporting an early augmentation 

of sympathetic activity (29) in reaction to the primary fall in systemic vascular tone (30). 

 

Despite the small number of women included in this study, we conclude that our observations 

illustrate the feasibility of impedance cardiography in the observation and registration of 

cardiac and arterial adaptation mechanisms throughout human pregnancy, hereby 

emphasizing the importance of the position of the maternal body. This opens perspectives for 

impedance cardiography as a potentially useful method in the cardiovascular assessment of 

women with gestational complications, such as hypertension, preeclampsia, or fetal growth 

restriction. 
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Figure legends 

 

Figure 1. The corresponding signals of the electrocardiogram and the impedance cardiogram. 

The impedance cardiogram (dZ/dt) is the first mathematical derivative of the change in 

impedance over time (Z) for an alternating current with high frequency (60-100 kHz) and 

very low amplitude (1 mA) transmitted through the maternal thorax by a four electrode 

arrangement eliminating skin resistance. Q: start of ventricular depolarization, R: peak 

ventricular depolarization, B: opening of aortic valve, C: peak systolic flow (dZ/dtmax), X: 

closure of aortic valve, O: opening of mitral valve, and TRC: time from R to C. 

 

Figure 2. For each gestational age, medians of cardiac output were calculated per position and 

presented graphically. Full, dotted and dashed lines are used for differentiation between 

supine, standing, and sitting positions, respectively. Significant differences between supine 

and standing, between supine and sitting, and between standing and sitting positions are 

indicated with asterisks, circles and triangles, respectively.  



Tables 

 

Table 1. Demographic characteristics and pregnancy outcome of normal pregnant women. 

Data are represented as means (SEM) or numerical values (%). 

 

 Uncomplicated pregnancies (n=16) 

Demographic characteristics at inclusion 

Maternal age (years) 29±1 

BMI (kg/m²) 23±1 

Nulliparity (%) n=9 (56) 

Pregnancy outcome characteristics 

Birthweight (g) 3387±121 

Birthweight (percentile) 54±6 

Gestational age at delivery (weeks) 39±0 

 



Table 2. Impedance cardiography measurements at early gestation (supine: n=16; standing: 

n=14), term (supine and standing: n=12), early postpartum (supine and standing: n=16), and 

late postpartum (supine and standing: n=12). Data are presented as means (SEM). 

 
  Pregnancy Postpartum 

  8±0 weeks 38±0 weeks 7±0 weeks 53±0 weeks 

Pressures 

systolic blood pressure  

(mmHg) 

supine 114±2 119±4 114±2 111±3 

standing 117±2 123±4 117±3 112±3 

diastolic blood pressure  

(mmHg) 

supine 72±2 78±2 73±1 71±2 

standing 78±2 82±3 81±2 78±2 

mean arterial blood pressure  

(mmHg) 

supine 82±2 87±3 82±2 81±2 

standing 88±2 93±3 91±2 88±2 

pulse pressure  

(mmHg) 

supine 42±1 41±3 41±2 39±2 

standing 39±2 40±2 36±2 34±1 

Left ventricular output 

cardiac output  

(L/min) 

supine 7.0±0.4 6.5±0.4 6.4±0.4 6.5±0.4 

standing 6.8±0.3 7.9±0.4 6.3±0.3 6.0±0.3 

heart rate  

(beats/min) 

supine 77±2 80±2 70±2 70±2 

standing 93±3 92±3 88±3 84±3 

stroke volume  

(mL) 

supine 92±5 82±5 92±5 93±6 

standing 73±3 87±4 72±3 72±3 

Cardiac cycle time intervals 

pre-ejection period  

(ms) 

supine 91±3 124±5 107±3 103±4 

standing 102±4 113±5 127±3 122±4 

left ventricular ejection time index  

(%) 

supine 37±1 33±1 35±1 36±1 

standing 38±1 38±1 36±1 35±1 

diastolic time index  

(%) 

supine 52±1 51±2 53±1 52±2 

standing 47±1 45±1 46±1 48±1 

systolic time ratio supine 0.32±0.02 0.50±0.03 0.36±0.02 0.34±0.01 

standing 0.42±0.02 0.46±0.02 0.52±0.02 0.49±0.01 

Aortic flow 

velocity index  

(1/1000/s) 

supine 75±3 58±4 66±4 67±4 

standing 65±3 67±5 62±3 62±4 

acceleration index  

(1/100/s²) 

supine 128±7 93±6 110±7 111±8 

standing 124±8 123±11 119±6 116±8 

Heather index  

(Ohm/s²) 

supine 20.7±1.4 12.7±1.5 16.1±1.3 16.3±1.4 

standing 18.1±1.2 16.3±1.6 14.7±0.8 14.7±1.0 

total arterial compliance  

(mL/mmHg) 

supine 2.2±0.1 2.1±0.1 2.3±0.1 2.4±0.1 

standing 1.9±0.1 2.2±0.1 2.1±0.1 2.2±0.1 

Total peripheral vascular resistance 

total peripheral vascular resistance  

(mmHg/mL/min) 

supine 12.2±0.6 14.1±1.0 13.6±0.8 13.0±0.7 

standing 13.4±0.8 12.2±0.9 14.8±0.6 14.9±0.8 

Fluid 

thoracic fluid content  

(1/kOhm) 

supine 31.6±1.4 35.7±2.4 31.3±0.9 31.7±1.0 

standing 28.7±0.8 31.3±1.8 27.6±0.7 27.5±0.7 

 


