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Abstract

In this paper, we investigate estimation methods to deal with situations where random
intercepts are associated to time-varying covariates in the context of linear mixed models.
First, a review of previous ways to deal with this so-called endogeneity issue is present,
then a new method based on shared random effects is proposed. Simulation studies and
an empirical example are utilized to assess the performance of our proposed method. It
is shown that our new approach is more efficient than most competitors and is robust to
the misspecification of the random-effects distributions.

Keywords: Endogenous covariates, Fixed-effect approach, Longitudinal data, Mixture
inference, Random-effect approach.

1. Introduction

In the analysis of longitudinal data using mixed-effects models, the main objective of
inference is the estimation of longitudinal effects. These effects refer to changes over time
within subjects, versus cross-sectional effects which indicate changes between subjects.
The foundation of various estimation methods are usually based on making different as-
sumptions for both cross-sectional and longitudinal effects. Using näive assumptions on
the cross-sectional effects, specially on random intercepts, leads to the model misspecifi-
cation and can highly influence the longitudinal inference.

The usual assumptions for the random intercepts are mainly on the distributional
forms and on the independence of these effects with the covariates. Violation of the first
assumption in fitting mixed models does not have large impact on the estimation of fixed
effects (e.g., Neuhaus et al., 1992; Verbeke and Lesaffre, 1997) though it has sensible
effects on the inferences of random effects (e.g., Verbeke and Lesaffre, 1996; McCulloch
and Neuhaus, 2011). Violation of the second assumption is critical as illustrated by Palta
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and Yao (1991). Verbeke et al. (2001) show that the violation of this assumption can
produce biases for the estimates of longitudinal effects. In the case of having some time-
varying covariates, violation of this assumption is more likely to happen. This is because
these covariates may be specifically stochastic and their impact time dependent. Thus,
they may cause non-zero correlation with both random-effects and the error terms. In
these cases, the covariates are so called endogenous in contrast with exogenous covariates
that are uncorrelated with both effects and errors. According to Wooldridge (2010), there
are several reasons for the generation of these correlations. Some examples include the
effect of unmeasured confounding, measurement errors and the reverse causality. Details
of the last two reasons are given, for example, by Diggle et al. (2002) and Wooldridge
(2010).

In this paper, we focus on addressing the misspecification issue related to the indepen-
dence between random intercepts and time-varying covariates that can happen because
of unmeasured or omitted time-invariant covariates. The effect of omitted time-varying
covariates is not our concern. To see the effect of omitted time-varying covariates one
can see, for example, Palta and Yao (1991) and Wooldridge (2010).

There have been lots of efforts to handle this kind of endogeneity issue in both econo-
metrics and biostatistics contexts for random-intercept modeling. There are two associ-
ated approaches for solving the endogeneity problem, each with advantages and short-
comings. The first one is called the fixed-effect approach and utilizes two strategies to
solve the problem by treating the intercepts as fixed effects and by applying some trans-
formations to the model for eliminating the cross-sectional effects. The second one is the
random-effect approach which deals with the issue by explicitly modeling the underlying
correlation.

In this paper, we combine some estimation methods suggested in the literature on
modeling random intercepts with mixture concepts in fitting general linear mixed mod-
els. The motivation is originated a work done by Verbeke et al. (2001) who combine
the conditional inference with mixture inference to avoid the influence of misspecifying
cross-sectional effects in linear mixed models. First, a review of possible solutions for
the endogeneity issue in random intercept models is provided. Then, an extension is pre-
sented to the case of general linear mixed models. Further, a new shared random-effect
method will be proposed to model the correlation between random intercepts and covari-
ates. Four simulation studies are conducted to assess the performance of the proposed
method. Also, the results are confirmed by an empirical study.

The remainder of the paper is organized as follows. In Section 2, we specify the
general longitudinal data model and address the endogeneity issue. Mixture inference
is concisely introduced in this section. In Section 3, a brief introduction to the fixed-
effect approach to deal with the endogeneity is present. Section 4 includes some possible
random-effect methods proposed so far to handle the endogeneity with the introduction of
a new method. Section 5 presents four simulation studies to investigate the performance
of our proposed method. In Section 6, by the analysis of a real data set, we show the
usefulness of the proposed method. The last section includes concluding remarks.
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2. Model specification

Let yit denotes the response of the t-th measurement (t = 1, · · · , Ti) taken on the i-th
individual (i = 1, · · · , n). Consider the general linear mixed model

yi = Xiθ + Ziζi + εi, (1)

where yi = (yi1, · · · , yiTi)
′
, Xi and Zi are Ti× p and Ti× q known design matrices which

include both time-varying and time-invariant covariates, θ is a vector of regression coef-
ficients, the ζi are random effects and εi = (εi1, · · · , εiTi)

′
is a vector of error terms. The

usual assumptions are that the parametric shape of underlying distributions for εi and ζi
are known, having zero means and constant variances, and being mutually independent

and uncorrelated with the covariates. We assume εi
ind∼N

(
0, σ2

εITi

)
, V ar (ζi) = D and

ζi’s are mutually independent and uncorrelated with the error terms. Thus, the marginal
covariance matrix of yi is of the form Vi = V ar (yi) = σ2

εITi+ZiDZ′
i. It is shown by

Verbeke and Lesaffre (1997) that the assumptions related to the distribution of the ran-
dom effects do not have severe effects on the estimation of fixed effects. In contrast,
violation of the independence assumption between the random effects and the covariates
is serious (Palta and Yao, 1991). In this paper, we assume only that the random slopes
of ζi are independent of time-varying covariates.

While the time-invariant covariates can be endogenous as well, we focus on a more
general case of endogenous time-varying covariates. Time-invariant covariates are special
cases of the time-varying covariates.

In order to separate the impact of cross-sectional from the longitudinal effects, we rewrite
Equation (1) as

yi = X
(1)
i θ(1) +X

(2)
i θ(2) + Z

(1)
i ζ

(1)
i + Z

(2)
i ζ

(2)
i + εi, (2)

where X
(1)
i is the Ti×p1 matrix of time-invariant covariates, X

(2)
i is the Ti×p2 matrix of

time-varying covariates, ζ
(1)
i and ζ

(2)
i denote the random intercepts and random slopes,

respectively, Z
(1)
i = 1Ti and Z

(2)
i is equal to the Ti × (q − 1) matrix of time-varying

covariates corresponding to random slopes. We assume that the ζ
(2)
i are independent of

the design matrices while the random intercepts ζ
(1)
i are correlated with some columns

in those design matrices. In this case, we assume that there are some unmeasured or
omitted time-invariant covariates, expressed by the columns of Wi, which are correlated

with the outcome and some of the covariates. Since the random intercepts ζ
(1)
i represent

the effect of all additive unobserved subject-level covariates associated with the outcome,

we assume ζ
(1)
i = γ′Wi+ ζ̃

(1)
i , where the ζ̃

(1)
i denote the rest of unobserved subject-level

covariates that are uncorrelated with the design matrices. Substituting this relation in
Equation (2) leads to the following model

yi = X
(1)
i θ(1) +X

(2)
i θ(2) + γ′Wi + Z

(1)
i ζ̃

(1)
i + Z

(2)
i ζ

(2)
i + εi. (3)

For simplicity, from now on we assume a linear mixed model with a single time-varying
covariate xit of the form

yit = β0 + β1xit + bixit + αi + εit, i = 1, · · · , n, t = 1, · · · , T, (4)
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where the intercepts αi and the covariates xit are dependent and the slopes bi are inde-
pendent of xit. It is assumed that there is an omitted covariate wi which is dependent
with xit. Rewriting αi = γwi + α̃i, where α̃i and xit are independent, the model can be
expressed as

yit = β0 + β1xit + bixit + γwi + α̃i + εit. (5)

Following Palta and Yao (1991) it can be shown for normally distributed random variables
that, if the variable wi is omitted from the model then both the mean and variance of
the marginal model will change. In fact, we have

E (yi|xi) = β01T + β1xi+Bxi1T , i = 1, · · · , n, (6)

where B=ψγrσw/τB , σw denotes the standard deviation of wi, ψ = Tτ2B/
(
Tτ2B + τ2W

)
,

where τ2B = E (µxi − µx)
2
and τ2W = E (xit − µxi)

2
are, respectively, variances related

to between and within variations of xit, where µxi and µx are subject and total means
of the covariate, respectively, and r = corr (wi, µxi). We also have

V ar (yi|xi) = CJ+Vi, (7)

where C=σ2
wγ

2
(
1− ψr2

)
and J = 1T1

′
T . Therefore, the omission of covariate wi from

the model affects both mean and variance of the marginal model introduced by Equa-
tions (6) and (7). Equivalently, it makes dependence of the random intercept with some
covariates in Equation (4). Ignoring these facts leads to biased estimation of the coeffi-
cients of the endogenous covariates. We illustrate this fact in Section 5 using simulation
studies.

It should be noted that although the endogeneity problem, due to the non-zero cor-
relation between time-varying covariates and random-slopes, is an important case, the
nature of the problem and suggested solutions are different. Most solutions in this case
are based on the introduction of instrumental variables (see, e.g. ??). In this type of

endogeneity, one may assume that bi = α0 + α1wi + b̃i, where xit is independent of b̃i
but is dependent with wi. Indeed, the endogeneity occurs when the important interac-
tion wi ∗ xit is omitted from the model. However, there are many situations where just
an important time-invariant covariate is omitted and not its interaction term with x.
Therefore, in this paper, we assume that the random slopes bi’s are independent of x.

2.1. The mixture inference

The mixture inference is commonly applied in the context of linear mixed models to
obtain the estimates of longitudinal effects. In the mixture approach, a mixing distribu-
tion is utilized for the random effects αi and bi. The marginal density of observation yi

is achieved by integrating out the random effects yielding the mixture density

Li =

∫
f (xi,yi|αi, bi) dG (αi, bi) . (8)

Then, the likelihood function of model parameters using all observations is maximized
to estimate the parameters β0, β1 and σ2

ε . It is mentioned in the literature that the role
of the mixing distribution G is not important for inferences about the fixed-effect pa-
rameters (Verbeke and Lesaffre, 1997) as long as the underlying model assumptions are
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correctly specified. We illustrate later that the violation of these assumptions changes
the effect of the mixing distribution when estimating the fixed effects. In addition, the
role of the mixing distribution in inference on the random effects appears meaningful in
practical applications (e.g. Austin et al., 2003; Austin et al., 2004). In fact, incorporat-
ing misspecified mixing distribution can invalidate inferences about the random-effects
(Verbeke and Lesaffre, 1996).

In the next two sections, we introduce briefly two general approaches to deal with the
endogeneity issue and then combine the ideas with mixture inference.

3. The fixed-effect approach

Classical techniques to handle the endogeneity issue in random intercept models treat
the effects αi’s as fixed and then use a likelihood conditional on these effects, or apply
certain transformations of the model to eliminate the effect of the αi’s. Then, frequently
used estimation methods, such as ordinary least square, usually yield consistent estimates
of the longitudinal effects under mild assumptions. One can also apply these techniques
to remove the influence of random intercepts in general linear mixed models and apply
the mixture approach to estimate the longitudinal effects consistently. The main advan-
tage of this in comparison to the random-effect approach, introduced later, is to obtain
estimates which are more robust with respect to misspecifications of the cross-sectional
components in the model. This is important since no extra assumption is imposed on
the random-intercepts distribution nor the association between random intercepts and
covariates. A shortcoming is that working with likelihood conditional on αi’s or applying
transformations to remove the random intercepts, eliminates the between-cluster variabil-
ity which because of the endogeneity issue, contains information about the longitudinal
effects. Therefore, this approach produces larger variances of estimates in comparison
to those in the random-effect approach. Another shortcoming of using this approach
relates to its disability to estimate cross-sectional effects. Similarly, for the time-varying
covariates with having slow changes over time, the corresponding within-cluster variation
becomes low and thus by applying a transformation to remove the cross-sectional effects,
the between-cluster variation of these variables would also be eliminated. Therefore,
the effect of variables vanishes in the model fitting process which results in imprecise
estimates with large standard errors (Plumper and Troeger, 2007). Results of several
published papers (e.g., Hausman-Taylor, 1981; Plumper and Troeger, 2007; Breusch et
al., 2011) suggest combining the information of cross-sectional and longitudinal effects
to deal with these drawbacks.

Moreover, the estimation of the correlation between cross-sectional effects and time-
varying covariates is important in some applications (Ashenfelter and Rouse, 1998). This
aim cannot be achieved in using the fixed-effect approach. In the next subsections, we
mention some proposed solutions to deal with the endogeneity issue in the framework of
fixed-effects.

3.1. Least-squares dummy-variable method

A commonly used estimation method is based on the introduction of a dummy variable
for each subject in mixed models to allow for the cross-sectional effects. In this method,
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these effects are treated as model parameters. The model is written as

y = Xθ +Aα+ ε, (9)

where y denotes the stacked vector including of all response vectors yi, X is the matrix of
all design matrices xi, and ε and α are vectors of all error terms and random intercepts,
respectively. The matrix A includes dummy variables to specify subjects and vector θ
includes fixed regression parameters by noting that the intercept in Equation (9) may
be removed for handling identifiability. An equivalent way to control the identifiability
is to assume an intercept term in θ by imposing the restriction

∑n
i=1 αi = 0.

An advantage of this method is the ability of estimating both cross-sectional and longi-
tudinal effects. A drawback comes in practice when the number of subject levels becomes
large, leading to the incidental-parameter problem (Lancaster, 2000) and inconsistency
of model parameters. It can easily be shown that the least-squares dummy-variable esti-
mates of the longitudinal effects are the same as those obtained from the within-subject
approach to be introduced later. Extension of this method to the general linear mixed
models is straightforward by adding the term Z(2)A∗b to Equation (9), where the matrix
A∗ includes dummy variables for specific slopes, Z(2) is the matrix of all covariates and
b is the vector of all slopes.

3.2. Time-difference method

A simple way to eliminate the cross-sectional effects in the analysis of longitudinal
data is to use a transformation based on time differences. Applying this to Equation (4)
leads to

∆k (yit) = ∆k (xit)β1 +∆k (xit) bi +∆k (εit) , (10)

where for a fixed k, the time-difference operator ∆k (uit) = uit−uit−k. One may use any
order of time-differences in specific applications. By removing the random intercepts,
we can obtain consistent estimates of the longitudinal effects while these estimates are
less efficient than the other methods of fixed-effect approach introduced here. This is
because much information is lost by applying the operator for T > 2. In fact, we are
only able to use information of N(T − 1) observations for making inference. Moreover,
the differences ∆k (εit)’s are serially correlated which requires using suitable estimation
methods (Cameron and Trivedi, 2005, ch. 21).

3.3. Within-subject method

Another way to eliminate the subject-specific effects is to use the within transforma-
tion method which leads to the following model

yit − yi = β1 (xit − xi) + bi (xit − xi) + (εit − εi) . (11)

By removing the random intercepts and by applying the mixture approach, we achieve
consistent estimates of longitudinal effects with more efficiency than with the time-
difference method. The specification of this model is closed to the conditional inference
method described below.
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3.4. Conditional inference

A pragmatic technique for making inference on the longitudinal effects, regardless of
making any assumption on the cross-sectional effects, is the application of conditional
inference (Verbeke et al., 2001). In this technique, the cross-sectional effects are removed
from the likelihood by conditioning on their corresponding sufficient statistics. In linear
models, this can be shown to be identical to choosing a transformation of the model
such that cross-sectional effects vanish from the likelihood. To do this, a full rank T ×
(T − 1) matrix A with restrictions A′1T = 0 and A′A = IT−1 is used. Applying this
transformation to Equation (4) leads to a new linear mixed model with transformed
observations y∗

i = A′yi and x∗
i = A′xi. The new model includes the original fixed and

random longitudinal effects while the cross-sectional fixed and random effects are removed
from the model and the residual variance remains unchanged. Verbeke et al. (2001)
show that inference does not change when using different transformations as long as
they satisfy the above restrictions. Furthermore, in a Bayesian framework they illustrate
that no information is lost about the longitudinal effects if nothing is known about the
random intercepts. In other words, if random intercepts are assumed to be independent
of other parameters and also a flat distribution is considered as prior, then working with
transformed observations is sufficient for making inference about longitudinal effects.
But the same as other fixed-effects methods, in the case of having endogenous covariates,
this transformation removes the between-cluster variability which includes information
about the longitudinal effects. Therefore, the estimates have larger variances.

4. The random-effect approach

The correlations between covariates and random effects may be expressed by incor-
porating these measures in the distribution of random effects (Neuhaus and McCulloch,
2006). Ignoring these correlations is equivalent to the misspecification of random-effects
distributions. The likelihood of parameters for subject i is given by the mixture density

Li =

∫
f (xi,yi|αi, bi) dG (αi, bi) (12)

=

∫
f (yi|xi, αi, bi) f (xi|αi, bi) dG (αi, bi) (13)

∝
∫
f (yi|xi, αi, bi) dG

∗ (αi, bi|xi) , (14)

whereG (.) andG∗ (.) denote mixing distributions. The last proportion is made due to the
deletion of parameters in distribution of xi from the likelihood, since these parameters
are not of direct interest. We now address several solutions derived in terms of the
random-effect approach using the above likelihood specifications. Some of these methods
are constructed based on Equation (13) and using f (xi|αi, bi) along with G (αi, bi) to
deal with the endogeneity issue. We call these the Total-Corrected (TC) methods. Other
methods are based on Equation (14) and are called Mean-Corrected (MC) methods. In
these methods, the relationship between αi and xi is modeled through E (αi|xi) = R (xi),
with R (.) a function such that it projects xi = (xi1, ..., xiT )

′
from a T -dimensional space

into a 1-dimensional space. In other words, the relationship between αi and xi is specified
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based on only the expectation of αi through a function of all covariate observations for
subject i. For these methods we may consider

αi = R (xi) + ai, (15)

where the ai’s have mean zero, constant variances and are independent of xit, for all
i,t. Thus, by assuming Equation (15), the joint distribution G∗ (αi, bi|xi) reduces to the
distribution H (ai, bi) which does not depend on xi.

As is shown by Palta and Yao (1991) and illustrated by Equations (6) and (7), methods
not taking into account the covariance structure to deal with the endogeneity problem,
are less efficient than others. This means that the fixed-effect and MC approaches are
less efficient than proper TC methods.

It is noted that the validity of inferences in a random-effect approach depends on the
correct specification of the correlation between αi and xit’s through their joint distribu-
tion. Therefore, a misspecified relation which leads to a misspecified distribution, can
cause invalid results. This fact is the main drawback of this approach. In contrast, this
approach enables inferences on both longitudinal and cross-sectional effects.

4.1. Chamberlain approach

Chamberlain (1982, 1984) introduced an MC method by assuming a function R (xi) =∑T
j=1 δjxij in Equation (15). This yields

yit = β0 + β1xit +
∑T

j=1
δjxij + ai + bixit + εit (16)

= β0 +
∑T

j=1
πtjxij + ai + bixit + εit, (17)

where the coefficients πtj are elements of the matrix Π = β1IT + δj1T1
′
T . We can

then use the above equation together with the mixing distribution H (ai, bi), instead of
G∗ (αi, bi|xi), which does not depend on xi. A major advantage of this method is that
it allows a different relation between different subject levels and time-varying covariates.
A serious problem however occurs in some specific applications where the number of
parameters becomes large as long as the number of longitudinal observations increases.
Special methods based on minimum-distance methodology (Malinvaud, 1970) have been
developed to overcome the estimation problems due to the restriction Π = β1IT +δj1T1

′
T

in the context of econometrics (e.g., Hsiao, 2003).

4.2. Between- and within-cluster covariate model

In using the MC methods, Mundlak (1978) assumed R (xi) = λxi which leads to the
random intercept model

yit = β0 + βxit + λxi + ai + εit, (18)

where the ai and the covariates are assumed to be independent. This method can be
seen as a special case of the previous approach when δj = 1/T for all j. Neuhaus and
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Kalbfleisch (1998) proposed the following decomposition to avoid inconsistency due to
model misspecification

yit = β0 + βW (xit − xi) + βBxi + ai + εit, (19)

where βW and βB measure the effects of within- and between-cluster covariates on the
response expectations. They show that incorrectly assuming these effects to be equal is
an endogenous issue. Then, they rewrite Equation (19) as

yit = β0 + βWxit + (βB − βW )xi + ai + εit, (20)

where the term R (xi) = (βB − βW )xi is involved to handle the problem of omitted
covariates. This method can be applied to the general linear mixed model as

yit = β0 + xitβW + (βB − βW )xi + ai + bixit + εit. (21)

Similar to the other random-effects methods, a mild shortcoming of this is that it requires
full specification of the mixing distribution H (ai, bi). Like the other MC methods, the
main disadvantage relates to the assumed expression showing the relation between αi

and the time-varying covariate xit, which is formed only based on the expectation of αi

through the mean of the covariate over time. Therefore, the estimates are not as precise as
proper TC methods. Another important point is that the within-cluster covariate effect,
βW , is estimated. Therefore, in situations where the endogenous time-varying covariate
xit shows little variability over time, we may simply lose the efficiency by working with
within-cluster covariate instead of the original covariate.

4.3. A shared random-effect model

Neuhaus and McCulloch (2006) use a TC method by assuming the time-varying
covariates being related to the random intercept αi through a function h. This relation
is expressed as xit = h (αi, bi) + ηit, where ηit is assumed independent of both αi and bi.
They show that Equation (4) can be rewritten as

yit = β0 + β1 (xit − xi) + bi (xit − xi) + di + εit, (22)

where di = αi + (β1 + bi)xi = αi + (β1 + bi) (h (αi, bi) + ηi) is now uncorrelated with
xit−xi. This fact is achieved because αi, bi and ηi are uncorrelated with ηit−ηi = xit−xi.
Using this approach, however, causes some difficulties when working with f (xi|αi, bi),
since it depends on the function h. Although they proposed some choices for h and
discussed their effects on the distribution of di, finding the true h remains still a statistical
issue. The same as the between- and within-cluster covariate method, the within-cluster
covariate effect is estimated with this method. Therefore, the results would be imprecise
for the covariate with the slow changes over time.

4.4. An improved shared random-effect model

We now propose a shared random-effect model by specifying two groups of correlated
latent subject effects. It means that if ζi represents the effect of all unobserved subject-
level covariates associated with the outcome and ζ∗i represents the effect of those unob-
served subject-level covariates associated with the time-varying covariates, then some of
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these unobserved covariates have effects on both response and covariates. Therefore, we
can consider the following model

yi = Xiθ + Ziζi + εi, (23)

X̃i = λ+ ζ∗i + ηi, (24)

where the X̃i include some columns of the design matrices that are endogenous. It is
assumed that ζ∗i and ηi are independent with zero means, Cov (ζi, ζ

∗
i ) = Λ and V ar (ηi) =

Σ is a diagonal matrix. Then, for subject i, the likelihood is specified as

Li =

∫
f (xi,yi|ζi, ζ∗i ) dG (ζi, ζ

∗
i ) (25)

=

∫
f (yi|xi, ζi) f (xi|ζ∗i ) dG (ζi, ζ

∗
i ) . (26)

For the simple linear mixed model (4) we can write

yit = β0 + β1xit + bixit + αi + εit, (27)

xit = λ0 + ci + ηit, (28)

where var (ηit) = σ2
η and σαc = cov (αi, ci) is nonzero among covariance components of

matrix Λ. An important feature of this model is that the variability of xit is taken into
account by introducing the error term ηit. Therefore, the estimates are expected to be
more precise than those obtained from the other mentioned methods, since no information
related to the longitudinal effects are removed from the model. Moreover, with this
method, the total effect of the covariate, not only the within-cluster covariate effect, is
estimable. A drawback of this random-effect model is that the distribution of the random
effects needs to be specified. But the interesting point is that results are somehow robust
to the misspecification of this distribution. This is shown with two simulation studies in
Section 5. An unappealing feature is that we deal with the estimation of parameters in
the endogenous covariates model which is not of direct interest.

The proposed method extends the Palta and Yao (1991) approach to the general lin-
ear mixed model. They express the endogeneity problem in the structure of compound-
symmetry models with misspecified mean and variance structures due to omitted covari-
ates. They derive a formula for the optimal compound-symmetry structure by minimizing
the mean squared error (MSE) of a generalized estimating equations type estimator for
the coefficient of the endogenous covariate. We here propose using latent variables and
applying the mixture approach to solve the endogeneity problem. This method is inves-
tigated and compared with some of the discussed methods by means of four simulation
studies in Section 5.

4.5. Instrumental-variable based methods

The instrumental variable (IV) based estimators or more generally generalized method
of moments estimators, introduced by Hansen (1982), are commonly used in the econo-
metric contexts. These methods take into account the endogeneity by introducing IVs
into the estimation process. These IVs must be highly correlated with the endogenous
covariates and not be correlated with error terms, subject-level effects and other covari-
ates. Selection of proper IVs is a crucial issue in these methods. Estimation results can
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be unstable in practice and the validity of the corresponding inference highly depends on
the proper choice of IVs. There is a wide literature on using these methods in various
models. A comprehensive literature review is given by Verbeek (2004).

5. Evaluating the proposed method

As was previously mentioned the omitted variables that are dependent on covariates
affect both the mean and the variance of yi given xi. Therefore, TC methods which take
into consideration these impacts can be more efficient than the MC and the fixed-effect
methods. In the following, we conduct four simulation studies to investigate the proper-
ties of the proposed method in comparison to some other solutions for the endogeneity
problem. We use the conditional inference because it covers most of the fixed-effect
methods. We also consider the between- and within-cluster covariate method as an MC
method, because of it can be implemented easily. Furthermore, the shared-random effect
is considered as a TC method. Since the performance of IV-based methods depends on
the proper selection of IVs and these IVs can be different in each application, we do not
include these methods in our simulations. We compare all mentioned methods with the
method proposed in Section 4.4. The performance of the various methods is measured
by means of biases, standard errors, and MSE values.

5.1. Simulation studies

In order to investigate the performance of the described methods, four simulation
studies are conducted. The first three simulations are derived for the random-intercept
model and in the fourth simulation, a general model with random slope is considered.

The random-intercept model
For each simulation, a number of 1000 data sets were simulated from the model

yit = β0 + β1xit + β2wi + ai + εit, (29)

for i = 1, ..., 100 and t = 1, ..., 6, where εit
iid∼N

(
0, σ2

ε

)
and ai

iid∼N
(
0, σ2

a

)
. To impose a

correlation between xit and wi, we assume xit = κ0 + κ1wi + ηit where ηit
iid∼N

(
0, σ2

η

)
and wi

iid∼N
(
0, σ2

w

)
for the first simulation. We set β0 = −1, β1 = 1, β2 = 10, κ0 = 0 and

κ1 = 5. The variance components will be set later. Let Equation (29) be the true model
and the variable wi being omitted when fitting this model. In fact we fit the working
model

yit = β0 + β1xit + αi + εit, (30)

where the random intercept αi, which includes the variable wi, is assumed not to be
correlated with xit. Therefore, the effect of the endogenous covariate xit is confounded
and the estimate of β1 expected to be biased.

According to our simulation strategy, the correlation between the time-varying covari-
ate xit and the random intercept αi in the fitted model, depends on the ratios σ2

η/κ
2
1σ

2
w

and σ2
a/β

2
2σ

2
w, which decrease as the correlation increases. In the first simulation, we set

σ2
ε = 1, σ2

a = 1 and σ2
w = 2 for various σ2

η. The aim is to investigate the ability of the
methods to deal with the endogeneity issue in the presence of variation among observa-
tions of the endogenous time-varying covariate. To do this, we use different values for
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Table 1: Estimation results of the longitudinal effect β1 in the random-intercept model for various σ2
η .

Method σ2
η 0.01 0.05 0.1 0.5 1 1.5 3 10 30

Model (30) with Bias 199.697 198.863 198.022 193.743 181.945 114.042 4.8891 0.9432 0.3012
Corr(αi, xit) = 0 StD 1.550 1.568 1.593 1.822 2.200 2.786 2.5613 1.4113 0.8159

MSE 398.837 395.514 392.177 375.449 343.954 208.178 3.2785 0.0481 0.0139

Conditional Bias -1.5534 -0.6947 -0.4912 -0.2197 -0.1553 -0.1268 -0.0897 -0.0491 -0.0284
StD 44.7239 20.0011 14.1429 6.3249 4.4724 3.6517 2.5821 1.4143 0.8165
MSE 38.9269 7.7854 3.8927 0.7785 0.3893 0.2595 0.1298 0.0389 0.0130

Proposed Bias -1.4240 -0.6885 -0.4858 -0.2164 -0.1534 -0.1253 -0.0889 -0.0490 -0.0283
StD 1.5963 1.5632 1.5795 1.6854 1.7687 1.8107 1.7934 1.3252 0.8087
MSE 16.8185 3.8018 1.9138 0.4064 0.2204 0.1589 0.0952 0.0365 0.0129

Between& Bias -1.5522 -0.6939 -0.4907 -0.2207 -0.1559 -0.1270 -0.0881 -0.0455 -0.0258
Within cluster StD 44.7255 20.0044 14.1476 6.3368 4.4912 3.6766 2.6189 1.4523 0.8408

MSE 38.9290 7.7873 3.8946 0.7805 0.3914 0.2617 0.1319 0.0401 0.0134

Shared random- Bias -1.5534 -0.6947 -0.4912 -0.2197 -0.1553 -0.1268 -0.0897 -0.0491 -0.0284
effects StD 44.7239 20.0011 14.1429 6.3249 4.4724 3.6517 2.5821 1.4143 0.8165

MSE 38.9269 7.7854 3.8927 0.7785 0.3893 0.2595 0.1298 0.0389 0.0130

Results are reported in percentages.

σ2
η ranging from 0.01 to 30, resulting in variations changing from 99.7% to 78.9% for the

correlations between αi and xit.
Table 1 shows absolute values of biases, standard deviations and MSE’s for the es-

timate β1, reported in percentages. The first method considers the misspecified model
(30) by assuming zero correlation between the random intercept and covariate. Other
methods include conditional inference, the proposed method in Section 4.4, the between-
and within-cluster covariate method and the shared random-effect method, respectively.
It should be mentioned that normal distributions are assumed for both random-effects
and error terms in fitting all models. Clearly, the maximum likelihood estimate of β1
in Equation (30) is biased. These biases increase as σ2

η decreases which highlights the
seriousness of the endogeneity problem. The same happens for the MSE values. The
considerable point is that the fitting result of the conditional inference, the between- and
within-cluster covariate method and the shared random-effect method are approximately
similar. The reason is that as these three methods use centered covariates, xit − xi, for
solving the endogeneity problem and as the model being balanced, the estimates and
their standard deviations are exactly the same. This fact is illustrated also in Verbeke
and Fieuws (2007). Therefore, the between- and within-cluster covariate method and the
shared random-effect method, by ignoring the cross-sectional part of the model, perform
the same as conditional inference. Certainly the results of these three methods differ in
the case of unbalanced models.

It is also seen that competitive methods used in the simulation study, by ignoring
the between-cluster variability, lead to larger variances for the estimate of β1 while the
proposed method by taking this variability into consideration, results to more precise
estimates. In general, the proposed random-effect method seems to perform better than
other discussed methods.

In the second and the third simulation studies, we assess the performance of the
proposed method in the case when the mixing distribution is misspecified. More specifi-
cally, we simulate data sets when the true distribution of wi, in the second simulation, is
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Figure 1: Curves of the Gamma distribution and the mixture of normal distributions with the
specifications used for the second and the third simulation studies are depicted, respectively, in
the left and the right panels. Values of 0.01, 0.5 and 3 are set for σ2

w and the related graphs are
respectively shown by solid, bold-solid and dashed lines.

Gamma with the probability density w
σ2
w−1

i e−wi/Γ
(
σ2
w

)
, where σ2

w equals to both mean
and variance and corresponds also to the skewness measure. In the third simulation,
the true distribution of wi is assumed to be mixture of two normal distributions, i.e.

0.4N
(
6,

σ2
w

0.62+0.42

)
+ 0.6N

(
−4,

σ2
w

0.62+0.42

)
. Other stochastic components are assumed

normal in both simulations. We allow parameter σ2
w to vary between 0.01 to 3, imply-

ing the correlations between αi and xit will range between 31.6% and 99.2%. Other
variance-component parameters are set to 1, as before. Figure 1, depicts curves related
to Gamma and the mixture distributions for three values of σ2

w=0.01, 0.5 and 3. Results
including absolute values of biases, standard deviations and MSEs for the estimate of β1
are shown, in percentages, in Tables 2 and 3, respectively, for the second and the third
simulation studies. Normal distributions are assumed for both random effects and error
terms in fitting all models.

Table 2: Estimation results of the longitudinal effect β1 in the random-intercept model for various σ2
w,

where the omitted variable wi is generated by the Gamma distribution.

Method σ2
w 0.01 0.05 0.1 0.5 1 1.5 3

Model(30) with Bias 2.4808 7.1176 8.6381 11.4373 34.4149 113.3130 193.3380
Corr(αi, xit) = 0 StD 4.4071 4.3913 4.3879 4.3707 4.1200 3.1820 1.6780

MSE 0.5181 0.9425 1.1719 3.8484 48.3303 204.2370 374.2200

Conditional Bias -0.1049 -0.1049 -0.1049 -0.1049 -0.1049 -0.1049 -0.1049
StD 4.4813 4.4813 4.4813 4.4813 4.4813 4.4813 4.4813
MSE 0.4010 0.4010 0.4010 0.4010 0.4010 0.4010 0.4010

Proposed Bias -0.1044 -0.1046 -0.1043 -0.1037 -0.1033 -0.1030 -0.1027
StD 4.3685 4.1645 3.9643 2.9343 2.3410 2.0088 1.4917
MSE 0.3913 0.3740 0.3579 0.2870 0.2552 0.2406 0.2223

Between& Bias -0.0934 -0.0934 -0.1127 -0.1055 -0.0997 -0.1030 -0.1015
Within cluster StD 4.7485 4.7701 4.6838 4.5178 4.4992 4.4910 4.4857

MSE 0.4303 0.4308 0.4229 0.4043 0.4026 0.4019 0.4016

Shared random- Bias -0.1049 -0.10493 -0.1049 -0.1049 -0.1049 -0.1049 -0.1049
effects StD 4.4813 4.4813 4.4813 4.4813 4.4813 4.4813 4.4813

MSE 0.4010 0.4010 0.4010 0.4010 0.4010 0.4010 0.4010

Results are reported in percentages.
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Table 3: Estimation results of the longitudinal effect β1 in the random-intercept model for various σ2
w,

where the omitted variable wi is generated by mixture of normal distributions.

Method σ2
w 0.01 0.05 0.1 0.5 1 1.5 3

Model(30) with Bias 199.339 199.318 199.309 199.332 199.375 199.389 199.463
Corr(αi, xit) = 0 StD 0.557 0.558 0.556 0.545 0.536 0.527 0.501

MSE 397.367 397.285 397.249 397.337 397.509 397.568 397.860

Conditional Bias -0.1366 0.0604 0.2266 -0.0520 -0.1191 0.0661 0.0481
StD 4.4826 4.4864 4.4761 4.4846 4.4732 4.4654 4.4691
MSE 0.4067 0.4008 0.4163 0.3930 0.4023 0.4021 0.3918

Proposed Bias 1.5437 1.9057 2.2339 1.2696 0.7870 2.8325 2.6102
StD 0.6133 0.6133 0.6121 0.6115 0.6124 0.6114 0.6013
MSE 0.1814 0.2126 0.2740 0.2142 0.2069 0.3148 0.2199

Between& Bias -0.1359 0.0574 0.2260 -0.0514 -0.1198 0.0698 0.0493
Within cluster StD 4.4872 4.4910 4.4804 4.4883 4.4765 4.4682 4.4714

MSE 0.4073 0.4011 0.4169 0.3933 0.4026 0.4025 0.3919

Shared random- Bias -0.1366 0.0604 0.2266 -0.0520 -0.1191 0.0661 0.0481
effects StD 4.4826 4.4864 4.4761 4.4846 4.4732 4.4654 4.4691

MSE 0.4067 0.4008 0.4163 0.3930 0.4023 0.4021 0.3918

Results are reported in percentages.

It is seen that, in the second simulation study which random intercepts are generated
from a unimodal skewed distribution, the proposed method performs nicely even if the
misspecified mixing distribution and estimates are approximately as accurate as other
competitors. More precise estimates are available for the proposed method rather than
the other discussed methods. The good performance of the proposed method is high-
lighted when σ2

w tends to large values which means that the endogeneity problem is more
serious.

However, in the third simulation study when random intercepts are generated by
a mixture distribution with two distinct modes, the proposed method produces larger
biases but still smaller standard errors, and in general smaller MSE’s in comparison to
other discussed methods.

The random-slope model
In this simulation, we apply our proposed method in the more general case of random-

slope model. We follow the same scenario as the first simulation but we now assume

Equations (29) and (30) include the term bixit. We also assume bi
iid∼N

(
0, σ2

b

)
which are

independent with the random intercepts, αi’s. We set the true parameters as follows:
β0 = −1, β1 = 1, β2 = 5, κ0 = 0 and κ1 = 2, and for the variance components we set
σ2
ε = 1, σ2

a = 1, σ2
b = 1 and σ2

w = 5 for σ2
η ranging from 0.01 to 30 which causes the

correlation between αi and xit to vary from 99.6% to 63.0%. Results, not reported here,
are in the same direction as in the random-intercept model. By decreasing σ2

η which
yields to small within-cluster variations, it is seen that the precision of other methods
decreases in comparison with the proposed method.

6. An illustrative example

We reanalyze the Georgia birth weight data, used by Vittinghoff et al. (2012), in-
cluding 200 women, each of whom had 5 children. Data are collected from a study on the
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birth weight by Centers for Disease Control in Georgia. This data set, in a larger scale,
was previously studied to assess the edogeneity problem by Neuhaus and Kalbfleisch
(1998) and Neuhaus and McCulloch (2006). The response of interest is birth weight in
10 kilogram and the time-varying and time-invariant covariates are the mother’s age at
each birth and at the first birth, respectively. We fit the mixed-effects linear model

yit = β0 + β1xit + β2xi0 + ξi + εit, i = 1, · · · , 200, (31)

where εit’s and ξi’s are independent and normally distributed with means zero and vari-
ances σ2

ε and σ2
ξ , respectively. Results of parameter estimates are reported at the top

part of Tables 4 and 5. It is obvious that mother’s age at each birth depends on her age
at the first birth (the sample covariance between x and x0 is 0.58). We show that when
x0 is omitted from the model then the proposed method, introduced in Section 4.4, can
more accurately retrieve the estimate of the coefficient of the time-varying covariate x
in Model (31) rather than other discussed methods. It is seen from the first top part of
Table 5 that all methods similarly estimate the effect of time-varying covariate x while
in the proposed method the estimate of standard error is smaller.

As already mentioned in Section 4.3, the between- and within-cluster covariate method
and the shared random-effects method estimate the within-cluster covariate effect. Con-
sequently, the results would be imprecise when the time-varying covariate has slow
changes over time. To show this, for the i-th individual, i = 1, · · · , n, we have omit-
ted observations with covariate values outside the interval (x̄i − Rxi , x̄i + Rxi), where
x̄i and Rxi are respectively the sample mean and the range of covariate observations for
the i-th individual. Therefore, the covariate x would have slower changes over time. By
doing this omission, 17.9% of observations are discarded in the reduced data set. Figure
2 shows box-plots of covariate x for 10 randomly selected individuals, before and after
the mentioned omission, respectively in the left and the right panels.

Results of parameters’ estimates for the reduced data set are reported in the bottom
parts of Tables 4 and 5. It is seen that the between- and within-cluster covariate method
and the shared random-effects method produce large biases for the estimation of β1. The
conditional and the proposed methods produce smaller biases for the estimation of β1
and the proposed method is more accurate.

We conclude that the proposed method can estimate the total effect of the time-
varying covariate x and the estimate is more accurate than the comparable methods
mentioned in this paper. However, this statement is more clear by the simulation studies
than the empirical study, since as is clear from the reported p-values of parameter β2
in the original models, the omitted time-invariant covariate x2 is not significant in the
presence of x.

7. Concluding remarks

A review of suggested methods for solving the endogeneity problem in the random-
intercept models based on two strategies, the fixed-effect and the random-effect is pre-
sented and extended to the case of the general linear mixed model. For the random-effect
approach, the methods are categorized as MC and TC methods in which the former ex-
presses the relation between random intercepts and covariates through E (αi|xi) and the
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Figure 2: Box-plots of covariate x for 10 randomly selected individuals, in the original and the
reduced data sets are shown in the left and the right panels, respectively.

latter assumes a more general structure by working with f (xi|αi, bi) which also takes
into consideration the covariance structure of the model.

In the context of TC methods, a new method is proposed. With simulation studies
we have shown that the proposed method leads to more precise estimates by taking the
variability of xit into consideration while the method is still good enough in terms of MSE
values. This method can be applied even in situations where there are covariates with
slow changes over time, a case where those methods that are based on centered covariates
to solve the endogeneity problem are not capable in producing precise estimates.

It is also shown by two simulation studies that the proposed method is roughly ro-
bust against the misspecification of mixing distribution. Indeed, we show that when the
random-intercepts follow a skew unimodal distribution, the assumption of mixing nor-
mality does not have much impact on the performance of our proposed method. While
when random-intercepts are generated from a mixture of two normal distributions with
two distinct modes, the proposed method has larger biases but still smaller standard
deviations than the MC method. The proposed method can also be extended to the
application of other models but performance needs to be investigated further.
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Table 4: Results of parameter estimates for the birth weight data set.

Model(31) Conditional B&W cluster- Shared Proposed
Covariate random-effects

For the original data set
β0 Estimate 26.1977 31.8692 26.9480 31.3546 28.1908

StD (1.6061) (2.7516) (1.5124) (0.2954) (0.7302)
p-value <.0001 <.0001 <.0001 <.0001 <.0001

β1 Estimate 0.1434 0.1463 0.1463 0.1463 0.1463
StD (0.0332) (0.0348) (0.0348) (0.0348) (0.0310)

p-value <.0001 <.0001 <.0001 <.0001 <.0001

β2 Estimate 0.1171 - - - -
StD (0.0964)

p-value 0.2246

λ∗ Estimate - - 0.05745 - -
StD (0.0769)

p-value 0.4553

σ2
ε Estimate 19.9051 19.9070 19.9070 19.9070 19.9019

StD (0.9958) (0.9960) (0.9960) (0.9960) (0.9955)
p-value <.0001 <.0001 <.0001 <.0001 <.0001

σ2
ξ1

Estimate 12.7383 - 12.8089 13.4681 12.8018
StD (1.6921) (1.6992) (1.7606) (1.6958)

p-value <.0001 <.0001 <.0001 <.0001

For the reduced data set
β0 Estimate 23.5341 29.7730 21.9909 31.4204 26.6281

StD (6.0979) (2.8915) (1.5592) (0.3098) (1.1373)
p-value <.0001 <.0001 <.0001 <.0001 <.0001

β1 Estimate 0.2353 0.2236 0.1276 0.0343 0.2230
StD (0.0610) (0.0679) (0.0595) (0.0589) (0.0511)

p-value <.0001 0.0011 0.0323 0.5600 <.0001

β2 Estimate 0.0402 - - - -
StD (0.1116)

p-value 0.7187

λ∗ Estimate - - 0.3099 - -
StD (0.0801)

p-value <.0001

σ2
ε Estimate 18.4513 18.4579 17.8849 18.7687 18.4431

StD (1.0476) (1.0483) (1.0222) (1.0655) (1.0468)
p-value <.0001 <.0001 <.0001 <.0001 <.0001

σ2
ξ1

Estimate 13.6243 - 14.2163 14.5969 13.5928
StD (1.8402) (1.9256) (1.9381) (1.8359)

p-value <.0001 <.0001 <.0001 <.0001

∗Coefficient of x̄i.
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