
Made available by Hasselt University Library in https://documentserver.uhasselt.be

A hybrid genetic algorithm for the heterogeneous dial-a-ride problem

Peer-reviewed author version

Masmoudi, Mohamed Amine; BRAEKERS, Kris; Masmoudi, Malek & Dammak,

Abdelaziz (2017) A hybrid genetic algorithm for the heterogeneous dial-a-ride

problem. In: Computers & operations research, 81, p. 1-13.

DOI: 10.1016/j.cor.2016.12.008

Handle: http://hdl.handle.net/1942/22929

1

A Hybrid Genetic Algorithm for the Heterogeneous Dial-A-Ride Problem

Mohamed Amine Masmoudia,1, Kris Braekersb, c, Malek Masmoudid, Abdelaziz Dammaka

a Laboratory of Modeling and Optimization for Decisional, Industrial and Logistic Systems (MODILS),Faculty

of Economics and Management Sciences, University of Sfax, Airport Street, km 4, Post Office Box 1088,

3018 Sfax, Tunisia

b Research Group Logistics, Hasselt University, Campus Diepenbeek, Agoralaan Gebouw D, 3590 Diepenbeek,

Belgium

c Research Foundation Flanders (FWO), Egmontstraat 5, 1000 Brussels, Belgium

d Université de Lyon, F-42023, Saint Etienne, France; Université de Saint Etienne, Jean Monnet, F-42000, Saint-

Etienne, France; LASPI, F-42334, IUT de Roanne

Abstract

This paper investigates the Heterogeneous Dial-A-Ride Problem (H-DARP) that consists of

determining a vehicle route planning for heterogeneous users’ transportation with a heterogeneous

fleet of vehicles. A hybrid Genetic Algorithm (GA) is proposed to solve the problem. Efficient

construction heuristics, crossover operators and local search techniques, specifically tailored to the

characteristics of the H-DARP, are provided. The proposed algorithm is tested on 92 benchmarks

instances and 40 newly introduced larger instances. Computational experiments show the

effectiveness of our approach compared to the current state-of-the-art algorithms for the DARP and

H-DARP. When tested on the existing instances, we achieved average gaps of only 0.47% to the best-

known solutions for the DARP, and 0.05% to the optimal solutions for the H-DARP, compared to

0.85% and 0.10%, respectively, obtained by the current state-of-the-art algorithms. For the 40 newly

generated instances, average gaps of the hybrid GA are 0.35% smaller compared to the current state-

of-the-art method. Besides, our method provides best results for 31 of these instances and ties with

the existing method on 8 other instances.

Keywords: Heterogeneous Dial-A-Ride Problem (H-DARP), Genetic Algorithm (GA), Construction

heuristics, Local Search (LS), Hybrid algorithm.

1. Introduction

The transportation of people with reduced mobility is an important branch of day-to-day

transportation. The problem of establishing a transport planning to meet particular users’ demands

with a limited fleet of vehicles is called the Dial-A-Ride Problem (DARP) in the literature. It is a

variant of the Pickup and Delivery Problem with Time Windows (PDPTW), which is usually

concerned with freight transportation. Common objectives of DARPs are to minimize the total routing

costs and to maximize the service quality. The DARP is more complicated than the traditional Vehicle

1 Corresponding author: M.A. Masmoudi (E-mail: masmoudi_aminero@hotmail.fr, Tel. : +21654493673)

2

Routing Problem (VRP), which is already NP-hard (Cordeau and Laporte, 2007), due to its specific

transportation conditions.

The DARP has been widely studied since it was introduced by Wilson et al. in 1971. Most

research concerns the management of door-to-door transportation services for the elderly, the

handicapped and the disabled; e.g., the transportation of patients from their houses to hospitals or care

centers (Schilde et al., 2011, Zhang et al., 2015). It is applied in many countries such as the USA

(Karabuk, 2009), Belgium (Rekiek et al., 2006), Italy (Bologna) (Toth and Vigo, 1996, 1997) and

Germany (Borndörfer et al., 1997). For more details on the DARP, interested readers are referred to

the surveys of Cordeau and Laporte (2007), Parragh et al. (2008), and Doerner and Salazar-Gonzalez

(2014).

DARP variants can be classified based on several characteristics, e.g., single vehicle or multiple

vehicles, static or dynamic users’ demands, and homogeneity or heterogeneity of the vehicle fleet and

users’ demands. The single vehicle DARP, which is a special case of the multiple vehicles DARP and

mainly studied in early contributions, has been proved to be NP-hard by Psaraftis (1980). For the static

DARP, all transportation demands are known in advance, while for the dynamic DARP, some requests

are expressed progressively during the day and the transportation planning has to be established in real

time. As in most papers, we will consider the static multiple vehicles variant. For an overview of

contributions on the dynamic DARP, we refer to Berbeglia et al. (2010). The homogeneous DARP

considers a single kind of users and a homogeneous fleet of vehicles. It is widely treated in the

literature (Cordeau, 2006; Parragh et al., 2010; Luo and Schonfeld, 2011; Parragh and Schmid, 2013;

Kirchler and Wolfler Calvo, 2013; Chassaing et al., 2016). However, we will mainly focus on the

heterogeneous variant of the problem, as this is more realistic for many applications.

As indicated by Parragh (2011), in practice, service providers often use a variety of vehicles to

transport users with different requirements. For example, in the context of patient transportation, a

patient may demand to be transported seated, on a stretcher, or in a wheelchair. Additionally, the

patient may need an accompanying person. Several authors, e.g., Wong and Bell (2006) and Xiang et

al. (2006), have considered heterogeneity in DARPs for specific applications. A formal definition of

the Heterogeneous DARP (H-DARP), integrating heterogeneous users and vehicles into the DARP,

was introduced by Parragh (2011), where two types of vehicles and four different resources (staff

seats, user seats, stretchers and wheelchair places) were considered. The author proposed 2-index and

3-index mathematical formulations for the H-DARP and developed a Branch-and-Cut (B&C) and a

Variable Neighboorhood Search (VNS) algorithm for it. The algorithms were tested on 36 instances

with up to four vehicles and 48 requests, generated from those proposed by Cordeau (2006) for the

homogeneous DARP. Parragh et al. (2012) extended this work by considering drivers’ work duration

limits and lunch breaks, and provided an algorithm combining column generation with a VNS method.

Qu and Bard (2013) developed an Adaptive Large Neighborhood Search (ALNS) algorithm to solve

the Heterogeneous Pickup and Delivery Problem with configurable vehicle capacity (H-PDP).

Braekers et al. (2014) introduced the Multi-Depot H-DARP (MD-H-DARP). They provided a 2-index

mathematical formulation, and solved it exactly using a Branch-and-Cut algorithm, while heuristic

3

solutions are obtained by a Deterministic Annealing (DA) algorithm. The developed algorithms were

evaluated on the DARP benchmark instances with up to 13 vehicles and 144 requests proposed by

Cordeau and Laporte (2003) and the H-DARP instances of Parragh (2011). To the best of our

knowledge, these algorithms currently provide the best results on the H-DARP instances, while best

results on the DARP instances are provided on by the Evolutionary Local Search (ELS) algorithm of

Chassaing et al. (2016).

The contributions of our paper are as follows: i) a hybrid Genetic Algorithm (GA) for the H-

DARP is proposed, in which efficient heuristics are used to generate initial solutions, and adapted

crossover operators based on the characteristics of H-DARP are applied. ii) A local search strategy is

used to further enhance the best solution proposed by the GA. iii) Computational experiments indicate

that our approach is more effective than current state-of-the-art algorithms for the DARP and H-

DARP. Average gaps with the optimal or best known solutions are 0.47% and 0.05%, respectively,

compared to 0.85% and 0.10% for the current state-of-the-art algorithms. iv) 40 new, larger, instances

with up to 13 vehicles and 144 requests for the H-DARP are generated, in a similar way as the

instances of Cordeau and Laporte (2003) for the DARP. Average results of the hybrid GA on these

instances are 0.35% (0.26% for the data set E and 0.44 for the data set I) better than when applying the

DA algorithm proposed by Braekers et al. (2014). Besides, the hybrid GA provides best results for 31

of these instances and ties on 8 other instances. v) Computational experiments show the positive

contribution to solution quality of the proposed construction heuristics, crossover operators and local

search techniques in the hybrid GA.

The rest of the paper is organized as follows. Section 2 presents a brief description of the H-

DARP. Section 3 presents the developed Hybrid GA. Section 4 reports the numerical experiments.

Section 5 concludes the paper and gives future research directions.

2. Problem description

In this section, we recall the H-DARP definition proposed by Parragh (2011). Consider a graph

𝐺 = (𝑉, 𝐴) with a set of nodes 𝑉 = {0,1, … ,2𝑛} and a set of edges 𝐴 = {(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝑉: 𝑖 ≠ 𝑗}. The cost

and travel time on arc (𝑖, 𝑗) are denoted by 𝑐𝑖𝑗 and 𝑡𝑖𝑗, respectively. The node pair (𝑖, 𝑖 + 𝑛)

corresponds to the pickup and delivery points of user 𝑖 = 1, … , 𝑛. The depot, in which a heterogeneous

fleet of 𝐾 vehicles is available, is denoted by node 0. Each vehicle 𝑘 = 1, … , 𝐾 has a capacity 𝑄𝑟,𝑘

for

resource type 𝑟=0, 1, 2 and 3. The four resource types represent staff seats, patient seats, stretchers and

wheelchairs, respectively. Let 𝑞𝑖
𝑟 denote the demand of user 𝑖 for resource 𝑟. Similarly, user 𝑖 liberates

𝑞𝑖+𝑛
𝑟 = −𝑞𝑖

𝑟 at node 𝑖 + 𝑛.

The H-DARP consists of determining a route planning for satisfying the users’ demands while

minimizing the total routing cost. A route planning solution should satisfy the following constraints:

(1) Each route begins and ends at the depot 0;

(2) The vehicle capacity 𝑄𝑟,𝑘(0,1,2,3 and 𝑘=1,…,𝐾) must be respected at each node 𝑖=0,…2𝑛;

(3) Each node 𝑖 must be visited within its time window [𝑒𝑖; 𝑙𝑖] where 𝑖 ∈ 𝑉 and 𝑖 ≠ 0. If a vehicle

arrives early, it must wait until the beginning of the time window 𝑒𝑖 to begin the service;

4

(4) Let 𝑎𝑖
𝑘 denote the arrival time of vehicle 𝑘 at 𝑖, and 𝑠𝑖

the service time; the departure time 𝑏𝑖

𝑘 ≥

 max {𝑎𝑖
𝑘 , 𝑒𝑖} + 𝑠𝑖;

(5) A pickup and delivery node pair (𝑖, 𝑖 + 𝑛) must be visited in the same route, and the pickup node 𝑖

must be visited before the delivery node 𝑖 + 𝑛, i.e., 𝑏𝑖
𝑘 ≤ 𝑎𝑖+𝑛

𝑘

(6) Let 𝑙𝑖
𝑘=(𝑏𝑖+𝑛

𝑘 − 𝑠𝑖+𝑛)-𝑏𝑖
𝑘 denote the ride duration of user 𝑖; 𝑙𝑖

𝑘 may not exceed the maximum ride

time 𝐿𝑚𝑎𝑥, i.e., 𝑙𝑖
𝑘 ≤ 𝐿𝑚𝑎𝑥;

(7) If a vehicle travel 𝑘 travels along a directed edge (𝑖, 𝑗), we have 𝑎𝑗
𝑘 = 𝑏𝑖

𝑘 + 𝑡𝑖𝑗;

(8) The duration of each route is strictly limited by 𝑇𝑚𝑎𝑥.

For a detailed description and mathematical formulation of H-DARP, interested readers are

referred to Parragh (2011) and Braekers et al. (2014). Note that we only consider the situation of

minimizing routing costs, while waiting is allowed at no cost.

3. Developed approach

The concept of Genetic Algorithms (GAs) was first introduced by Holland (1975). The

metaheuristic has been successfully used to deal with a large variety of combinatorial optimization

problems, including the DARP (e.g., Cubillos et al., 2007; Jorgensen et al., 2007; Wang and Chen,

2012).

The basic GA design performs well in global search but spends much time to converge to

reasonable solutions (Minocha and Tripathi, 2011). In contrast, local search techniques are often able

to find optimal solutions in small search spaces very quickly. Thus, we provide a hybrid GA by

incorporating effective local search techniques into a Genetic Algorithm in order to improve the

convergence and reduce the computation time.

The proposed hybrid GA framework is presented in Algorithm 1, and detailed in the following

subsections. Four effective heuristics are used to provide the initial population of size N (Subsection

3.2). Next, the hybrid GA runs for a number of iterations. In each iteration, the following steps take

place. First, each individual in the population is evaluated based on its fitness (Subsection 3.3).

Second, 𝑆 individuals are selected by tournament selection (Subsection 3.4). Third, two parents are

selected randomly from the 𝑆 individuals, and two crossover operators (sequencing and assigning) are

applied to these parents to produce four new solutions, called children. The two parents are then

deleted from 𝑆. This process is repeated until all parents in 𝑆 have been selected and then deleted

(Subsection 3.5). Fourth, if an obtained solution (child) is not feasible, a reparation phase is applied

until it becomes feasible (Subsection 3.6). Fifth, the new solutions (children) in the population are

improved by local search techniques (Subsection 3.7). The feasible solutions are then inserted into the

population. Sixth, an elitist approach is applied to guarantee an improvement from one generation to

the next (Subsection 3.8). Seventh, at every generation, a mutation phase (Subsection 3.9) is applied to

h individuals, with ℎ being a randomly chosen value between 1 and 0.4*N. These ℎ individuals are

randomly selected from the worst 40% of the new population, excluding the best individuals obtained

after crossover. This is done to add new properties and to diversify the population. On each of these ℎ

5

individuals, 𝑡𝑚𝑢𝑡 mutation iterations are applied, where each iteration consists of applying four

mutation operators in a fixed sequence. If the solution obtained after mutation is better than the

solution it started from, the latter is replaced by the former in the population; else, the solution after

mutation replaces a randomly selected worst individual that was not selected for mutation. Next, we

proceed to the next generation. Finally, the best solution is returned when the stopping criterion of the

hybrid GA is met.

The main contributions of our method are in adapting the hybrid GA operators to the particular

requirements of the H-DARP and in proposing a design for the overall organization of the hybrid

algorithm to face the challenges posed by the specific aspects of the problem under study.

Algorithm 1: Pseudo-code of the proposed hybrid Genetic Algorithm

Begin
Initial population: Generate the initial population of N individuals/solutions, partly randomly and partly using

a set of construction heuristics;

Repeat

 Evaluation: Evaluate the N individuals according to the fitness function;

 Selection: Select by tournament selection (binary technique) S individuals from the current population;

Repeat

Select Parents: randomly select two parents from S;

Sequencing Crossover: perform crossover operator by sequencing on the selected parents;

Assigning Crossover: perform crossover operator by assigning on the selected parents;

Delete Parents: Delete the parents from S;

Until all parents are selected;

Reparation: Repair infeasible solutions/children;

Improvement: Improve the quality of all children using local search (intra- and inter-route);

 Replacement: Apply the Elitist approach;

 Mutation: Select randomly ℎ individuals from the worst individuals;

 For each of the h individuals

 Repeat

 Perform intra-route mutation;

 Perform inter-route mutation;

 Until the number of iterations 𝑡𝑚𝑢𝑡 is reached;

 If an improvement is realized on the current solution Then

 The previous individual is replaced by the new one;

 Else
 The new individual replaces a randomly selected individual from the other (non-

selected) worst individuals;

 End If

 End For

Until the maximum number of generations 𝑛𝐻𝐺𝐴 is reached;

Output the best individual as a result;

End.

3.1. Chromosome encoding

A chromosome encoding with a sequence of available vehicles 𝑣𝑘 starting from the depot is

considered. A route is represented by an ordered list of pickup and delivery nodes. Let 𝑑𝑖
+ and 𝑑𝑖

− the

pickup and the delivery node of each user 𝑖, respectively. The depot is denoted 0. Each vehicle starts

from the depot 0 and returns back to the same depot 0, e.g., for a solution with two routes and five

requests the chromosome coding is as follows : 0,4+,4-,3+,5+,3-,5-,0 for vehicle 𝑣1 and 0,2+,1+,2-,1-,0 for

vehicle 𝑣2.

6

3.2. Initial population

As recommended by Liu et al. (2009), Liu et al. (2013), Nguyen et al. (2014) and Koc et al.

(2015), several different construction heuristics (between two and four) should be used to construct the

initial population. Thus, we propose four different fast construction heuristics, each generating a single

initial solution. They are slightly modified, in order to quickly generate a set of four initial solutions of

good quality and high diversity. These heuristics are described in the following subsections:

- Two modified versions of the Sequential Construction Heuristic (SCH) of Solomon (1987) are

used. The first is based on the Euclidian distance between two users denoted by “SCH 1”, while

the second, denoted by “SCH 2”, is based on the earliest starting time (𝑒𝑖) of the pickup node of

each user 𝑖.

- Two modified versions of the Parallel Insertion Heuristic (PIH) reported by Fu (2002) are

applied in order to find the best position of insertion for the pickup and delivery of each user in

every route. According to Parragh et al. (2008), and Cordeau and Laporte (2003), this PIH is fast

and efficient.

To complete the initial population of size 𝑁, 𝑁-4 solutions are generated randomly. For each

solution, users are selected in a random order and inserted in a route that already exists. A new route is

created to accommodate a user whenever any constraint of the existing routes is violated. The

procedure stops when all users are inserted.

In the H-DARP, each user is defined by a pickup node and drop-off node. For each insertion

method, inserting a user is equivalent to the insertion of its pickup node first, and then its drop-off

node (not necessarily immediately after the pickup node), unless mentioned otherwise.

3.2.1. Sequential Construction Heuristic 1 (SCH 1)

This heuristic is a modified version of the one proposed by Solomon (1987). The closeness of two

users is based on the Euclidian distance between their corresponding pickup nodes. A vehicle starts at

the depot and visits the nearest user (the first in the list); then, the following in the list, etc. At the end

of the route, the vehicle returns back to the depot. We consider as many vehicles as necessary, until all

users are assigned, while respecting capacity, ride time, maximum route duration and time window

constraints.

The Sequential Construction Heuristic 1 (SCH 1) works as follows: We initialize the set of non-

assigned users sorted in increasing order of the Euclidean distance between their pickup location and

the depot. We repeat the following until all users are assigned: We select the first non-assigned user in

the list, and try to insert its pickup and drop-off nodes after the last inserted user in the first activated

vehicle. If the insertion is not possible, we check with the next activated vehicle if this exists. If all

activated vehicles are checked and the user is not inserted, we activate a new vehicle and insert the

user in this new vehicle. We update the list of non-assigned users and the list of activated vehicles

after the assignment of a user and the activation of a new vehicle, respectively.

7

3.2.2. Sequential Construction Heuristic 2 (SCH 2)

The structure of the SCH 2 is similar to SCH 1; only step 1 differs. All the requests are listed in

increasing order of their pickup times (the earliest starting time (𝑒𝑖) within the time window).

3.2.3. Parallel Insertion Heuristic 1 (PIH 1)

We have slightly modified the heuristic applied by Fu (2002) for the Dial-A-Ride problem with

varying and stochastic travel times. The set of users are sorted in increasing order of the earliest

starting time of their pickup node (𝑒𝑖). The 𝑚 routes (0<𝑚<𝐾 with 𝐾 being the number of vehicles

and m selected randomly) are initialized and designed in parallel. Each of the 𝑚 first users is assigned

to a different route. Next, we try to insert the rest of users, one by one, into the routes while respecting

the vehicle capacity, ride time, time window and maximum duration constraints. The insertion is based

on two steps. First, routes are sorted by the distance between the last assigned user to this route and the

new user to insert. Second, route per route, it is tested whether the new user can be feasibly inserted in

the route. If this is the case, the pickup and drop-off nodes of the user are inserted at their best

positions in this route. If not, the next route is examined. If some users are still not assigned, a new

route is opened and the same insertion technique is applied, until all users are assigned.

3.2.4. Parallel Insertion Heuristic 2 (PIH 2)

The structure of this heuristic is similar to PIH 1. The difference is that here the users are sorted by

the Euclidean distance between their pickup locations and the depot. We consider all the 𝐾 routes. The

routes are initialized and designed in parallel. Each of the 𝐾 first users is assigned to a different route.

The rest of users are inserted into the routes while respecting the vehicle capacity, ride time, time

window and maximum duration constraints (See Algorithm 2).

Algorithm 2: Parallel Insertion Heuristic 2 (PIH 2)
Begin
Initialize the set of non-assigned users sorted in increasing order of the Euclidean distance between their pickup

locations and the depot;

Assign the first K users to the K available vehicles (one user per vehicle);

Repeat
Select the first non-assigned user from the list;

Sort vehicles in the increasing order of distance between the last assigned user in the vehicle and the selected

user;

Select the first vehicle in the list;

Repeat

Check the insertion feasibility of the user’s pickup and drop-off nodes in the selected vehicle’s route,

starting from the beginning of the vehicle’s route, until the end;

If one or more feasible options are found Then

 Insert the user in the best position;

Else
 Select the next vehicle in the list;

Until the user is inserted

Remove the user from the list of non-assigned users;

Until all users are assigned;

Output the solution as a result;

End.

8

3.3. Evaluation: fitness function

In evolutionary algorithms, the fitness function measures the quality of each individual. The

traditional function used in the literature is to calculate the lengths of all routes (Choi et al., 2003;

Wink et al., 2012), sometimes increased with a dynamically adapted penalty to penalize infeasible

routes like in Cao and Lai (2007) and Li (2009). In addition to the measurement of the individual’s

quality, the provided fitness function in this study allows for a better exploitation and a wider diversity

of the search during the selection phase (Buro, 1997).

To measure the quality of a solution 𝐼, the fitness function (1) is considered:

𝐹𝑖𝑡 (𝐼)=
1

1+𝑒𝑥𝑝(𝑓𝑅𝐶(𝐼)) (1)

This fitness function contains an exponential argument in the denominator for reducing fitness

differences between individuals. Hence, the genetic algorithm behaves like a random search algorithm

for a better space exploration (Buro, 1997). Here, the objective function value 𝑓𝑅𝐶(𝐼) is the total

routing cost over all vehicles.

3.4. Selection: Tournament

The selection by tournament provided by Miller and Goldberg (1995) is considered in our

algorithm. It has demonstrated effectiveness for several transportation problems (Freitas, 2013). The

principle is to choose a subset of (𝑠) individuals from the population (called the tournament size), and

then select the individual in the group which has the highest fitness value. This process is repeated

until the number of required individuals (𝑆) is reached.

3.5. Crossover

In the crossover operator, genes of two parent solutions are recombined to form new descendants,

called children. In the literature, the majority of developed GAs uses a single type of crossover. This,

to some extent, reduces the search space of the algorithm. To better explore the search space and to

enhance the quality of solutions, we propose applying two different crossover operators (crossover by

sequencing followed by crossover by assigning) on each pair of parents selected from the 𝑆

individuals. The integration of these two crossover operators is one of the originalities of our GA and

provides a better balance between exploitation and exploration. The first crossover operator is

intended for creating and exploring a new search space, while the second is applied to exploit the

characteristics of the selected parents.

3.5.1. Crossover by sequencing

The crossover by sequencing operator (See Figure 1) creates two children from two parents (P1

and P2). The first child (E1) is generated by the simplified procedure OX proposed by Prins (2004). In

this procedure we use a random one-point crossover 𝑝, with a slight modification, in order to respect

the constraint that the corresponding pickup and delivery nodes must be visited in the same route

(vehicle). The first child inherits all the genes located in the first parent P1 before the crossover point

9

𝑝. The remaining elements of the first child are inherited from the first parent in the same order of

their appearance in the second parent beginning from the first route.

The second child (E2) is generated symmetrically while exchanging the roles of the two parents.

Figure 1: Crossover by sequencing

3.5.2. Crossover by assigning

The crossover by assigning operator is obtained by slightly modifying the Merge Crossover

operator (MX1) suggested by Blanton and Wainwright (1993). The MX1 operator consists of

generating one child from two parents by comparing genes one by one. The gene whose time window

is earlier is inserted into the child, while the other gene is swapped in the corresponding parent as

explained below. This crossover operator is modified so as to create two children (Hosny and

Mumford, 2010); the first child is obtained by a comparison between the two genes according to their

earliest time values (𝑒𝑖), and the second according to their latest time values (𝑙𝑖) (respecting the

precedence constraints). The corresponding process is explained in Figure 2 for the first child. When

comparing the first genes of both parents P1 and P2, suppose 𝑒2+ < 𝑒3+. Hence, gene 2+ of P1 is

inserted into the child, while in parent P2 gene 3+ swaps location with gene 2+ to maintain validity.

For the second gene, suppose 𝑒4+ < 𝑒5+, and so on. The third gene is the same for both parents (1+)

and is inserted in the child. In the case of comparison with node 0 (depot), we keep this node (pickup

or drop-off) and copy it in the child E1. If the related node (delivery or drop-off) is not present in child

E1, then we add it just before or after the copied node. The resulting children may not be feasible with

respect to time windows, capacity and ride time constraints, though. In that case, the infeasible

solution is repaired as explained in Subsection 3.6.

0 2+ 4+ 1+ 2- 4- 1- 0

0 3+ 5+ 3- 5- 0

0 3+ 3- 1+ 1- 0

0 4+ 5+ 5- 2+ 2- 4- 0

0 2+ 4+ 1+ 1- 2- 4- 0

0 3+ 5+ 3- 5- 0

0 3+ 3- 1+ 1- 0

0 4+ 5+ 2+ 2- 4- 5- 0

0 2+ 4+ 1+ 2- 4- 1- 0

0 3+ 5+ 3- 5- 0

P1

E1

E2

p

P1

P2

Route1

Route2

Route1

Route2

Route1

Route2

Route1

Route2

Route1

Route2

10

Figure 2: Crossover by assigning: child E1

3.6. Repairing infeasible solutions

To obtain a feasible solution, many constraints have to be respected in the H-DARP: capacity,

time windows, ride time, route duration and precedence constraints. After the process of crossover,

some solutions may be of low quality and sometimes infeasible. In this case, in order to repair the

solution, an amendment phase is applied to all infeasible routes. First, 𝑚 nodes are selected randomly

from each infeasible route. The value of 𝑚 is randomly selected in the interval [𝑧𝑙 , 𝑧𝑢], where 𝑧𝑙 and

𝑧𝑢 are respectively the lower and upper bounds that are calculated as a percentage of the total number

of nodes in this route. Then, the “best position” procedure is applied to try to insert these 𝑚 nodes.

This operator consists of finding for every node 𝑗 the most appropriate insertion position, in the same

route from which it was removed. This insertion respects the ride time, precedence and time window

constraints. The best option (least increase in costs) is then selected and performed. This process

continues until all nodes have been inserted.

If the insertion of a node is infeasible, we place it with its corresponding pickup/drop-off node in a

list 𝐿. At the end, when all infeasible routes have been considered, the pairs of pickup and drop-off

nodes in list 𝐿 are inserted one at a time in any route using the “best position” described before, while

respecting the feasibility of the solution. All possible insertion positions are identified, and the one

increasing the routing cost the least is selected. If, after these attempts, the solution is still infeasible,

we randomly select one of the initial solutions provided by our construction heuristics, and improve it

by randomly selecting a local search among those provided in Subsection 3.7. The infeasible solution

is then replaced by this newly obtained solution. This replacement procedure is a modified version of

Merz and Katayama (2004).

3.7. Improvement: Local Search

To improve the quality of each child that is generated by the crossover operators, several well-

known local search operators are applied to explore the search space by performing simple moves.

0 3+ 3- 1+ 1- 0

0 4+ 5+ 5- 2+ 2- 4- 0

0 2+ 4+ 1+ 1- 4- 6- 0

0 3+ 5+ 3- 5- 0

0 2+ 4+ 1+ 1- 4- 2- 0

0 3+ 5+ 3- 5- 0

0 2+ 4+ 1+ 1- 4- 2- 0

0 3+ 5+ 3- 5- 0

P2

P1

P2

E1

Route1

Route2

Route1

Route2

Route1

Route2

Route1

Route2

11

Two are intra-route operators: the 2-opt operator of Lin (1965) and a relocate operator of Savelsbergh

(1992). Three are inter-route operators: the 2-opt* operator of Potvin and Rousseau (1995), a relocate

operator, and the remove two insert one operator of Xiang et al. (2006).

The proposed local search starts by sorting routes in decreasing order of the distance. The idea is

that long routes often contain remote users that cause high routing costs. Thus, these routes need to be

primarily improved.

The inter- and intra-route local search operators are discussed in Subsections 3.7.1 and 3.7.2,

respectively. The applied search strategy is presented in Subsection 3.7.3.

3.7.1. Inter-route local search

In the inter-route phase, we use three local search operators in sequence to explore all movement

of users/edges between routes:

- First, the 2-opt* operator is applied on each combination of pairs of arcs in different routes.

- Second, a relocation operator that relocates a user’s pickup and delivery nodes from one route to

another is applied. The nodes are inserted in their best possible position, while respecting the

feasibility of the solution.

- Third, the "Remove two insert one" operator provided by Xiang et al. (2006) is applied for each pair

of routes from the solution. It consists of removing two randomly selected users from a route and

inserting them one by one (in a random order) in another route, while maintaining feasibility.

3.7.2. Intra-route local search

Another improvement phase is considered in our approach and consists of improving each route

separately. For this purpose, we use two traditional local search operators. First, we apply the 2-opt

operator on each pair of arcs; next, a relocate operator is applied on each user in the route by removing

the user and reinserting it in the best possible position.

3.7.3. Framework of the proposed local search strategy

To obtain high quality solutions, the proposed local search procedure is repeated for a fixed

number of iterations. The structure of our local search is explained in Algorithm 3, and computational

experiments are provided in Table 6 to show the efficiency of the applied local search operators.

Algorithm 3: The local search strategy

Begin

Repeat

Sort routes in descending order of distance;

 For each route

 For each route

 Apply the 2-opt* operator on routes Ri and Rj;

 For each route

 For each route

 Apply the inter-route relocate operator (try to remove a user from Ri

 and insert it in route Rj);

 0 ,..., kR R

 1,...,i kR R R

 1,..., j i kR R R

 1,...,i kR R R

 1,..., j i kR R R

12

For each route

 For each route

 Apply the remove two insert one operator;

 For each route

 Apply the 2-opt operator on route Ri;

 For each route

 Apply the intra-route relocate operator;

Until maximum iterations is reached (100) or no improvement for ten consecutive iterations;

Output the solution as a result;

End.

3.8. Replacement: Elitism strategy

The "Elitism strategy" is considered to determine the individuals that will disappear from the

population. To create the population of the new generation 𝜇∗, the tournament technique described in

Subsection 3.4 is applied. We select 𝑠 individuals from the current population of children (𝜕) and the

best one is put in 𝜇∗. A similar procedure is applied on the current population (𝜇). This process is

repeated until 𝜇∗ is filled. This strategy ensures the diversity of solutions throughout the search.

3.9. Mutation

The use of several mutation operators is recommended in the literature (e.g., Vidal et al., 2012,

2013; Tasan and Gen, 2012) in order to incorporate new characteristics in the population and enlarge

the feasible search space (Wang and Chen, 2012). Thus, in our algorithm, four mutation operators are

used; two inter-route mutation operators and two intra-route mutation operations. The four mutations

are applied in a fixed sequence, from one to four, for each selected solution. We apply specific

modifications to some traditional mutation operators as described in the following subsections.

3.9.1. Inter-route mutation

As the first inter-route mutation operator, the famous 2-opt exchange heuristic is adapted to deal

with heterogeneous vehicles (See Figure 3). Two randomly selected users, assigned to different routes,

are swapped, if possible. The application of this operator is repeated until we find a feasible option.

0 2+ 5+ 5- 1+ 1- 2- 7+ 7- 0

0 6+ 3+ 6- 4+ 3- 4- 0

Figure 3: Inter-route mutation: Exchange between (1+, 1-) and (6+, 6-)

A second inter-route mutation operator consists of removing a randomly chosen user from the

vehicle with the largest number of users, and inserting it in the vehicle that contains the smallest

number of users. The insertion position is chosen randomly out of those that respect the time and

 1,...,i kR R R

 1,..., j i kR R R

 1,...,i kR R R

 1,...,i kR R R

0 2+ 5+ 5- 6+ 6- 2- 7+ 7- 0

0 1+ 3+ 1- 4+ 3- 4- 0

Route 1

Route 2

E1

E1’
Route 1

 Route 2

13

vehicle capacity constraints. If no feasible position exists, a new user is selected. This operator allows

balancing the loads between the different vehicles.

3.9.2. Intra-route mutation

In the first intra-route mutation two nodes of a single route are selected randomly. Next, their

respective positions are exchanged, under the condition that the resulting solution is feasible (See

Figure 4).

0 2+ 5+ 5- 1+ 1- 2- 3+ 4+ 3- 4- 0

0 2+ 5+ 5- 1+ 3+ 2- 1- 4+ 3- 4- 0

 Figure 4: Intra-route mutation: exchanging the positions of two nodes 1- and 3+ within the same

route

A second intra-route mutation operator (See Figure 5) is considered and consists of randomly

choosing a delivery node, changing its position with a later delivery node (chosen randomly), while

respecting the feasibility of the final solution. If no feasible option exists, we choose another node.

This operation is repeated until we get a feasible solution or all delivery nodes have been considered.

0 2+ 5+ 5- 1+ 3+ 3- 1- 4+ 2- 4- 0

0 2+ 5+ 5- 1+ 3+ 2- 1- 4+ 3- 4- 0

 Figure 5: Intra-route mutation: node reinsertion (the position of node 2- is exchanged with the

position of node 3-)

4. Computational experiments

The hybrid Genetic Algorithm was implemented in C. The experiments were conducted on a

Fujitsu Siemens laptop with Intel Celeron 4 GHz and 1.86 GB of RAM. Six artificial benchmark data

sets are considered. Results are compared to those of the Deterministic Annealing (DA) algorithm of

Braekers et al. (2014) and the Evolutionary Local Search (ELS) algorithm of Chassaing et al. (2016).

In Subsection 4.1 the benchmark data sets are discussed. Parameter settings and design decisions

for the algorithm are discussed and analyzed in Subsections 4.2 and 4.3, respectively. Finally, the

results are presented in Subsection 4.4.

4.1. Benchmark instances

For small instances, we consider the benchmark data of Parragh (2011) for the H-DARP,

containing three artificial data sets (U, E, I). These instances are based on modifying the instances

provided by Cordeau (2006) for the standard DARP, in which the characteristics of heterogeneous

vehicles and users are introduced. The instances contain 2–4 vehicles and 16–48 requests. Braekers et

al. (2014) generated medium-sized instances for the H-DARP in a similar way. These contain 5-8

Route i E1

E1’

E1’

Route i

Route i

E1 Route i

14

vehicles and 40-96 requests. For both the small and medium instances, the user time window length is

15 minutes, the maximum user ride time 𝐿𝑖= 30 minutes, and the service time 𝑠𝑖= 3 minutes. Two

vehicle types are considered, with four types of resources: staff seats, patient seats, stretcher places

and wheelchair places. To generate the instances (U, E, I), Parragh (2011) considered the probabilities

shown in Table 1.

Table 1: Probabilities used to generate instances by Parragh (2011)

Instance Patient request probabilities Probability for

companion (%)

Vehicle fleet

Set % Seat % stretcher % wheelchair

U 1.00 0.00 0.00 0.00 Homogeneous (T0)

E 0.50 0.25 0.25 0.10 Homogeneous (T2)

I 0.83 0.11 0.06 0.50 Heterogeneous (T1, T2)

In data set U, homogeneous users and vehicles of types T0 are considered, while heterogeneous

users are used in data set E with homogeneous vehicles of type T2. Vehicles of type T0 only have 3

patient seats, while vehicles of type T1 have a capacity configuration of 2 staff seats, 1 patient seat, 1

stretcher, and 1 place for wheelchair. In data set I, heterogeneous users and vehicles (T1, T2) are

included, in which vehicles of type T2 provide 1 staff seat, 6 patient seats, 0 stretchers, and 1 place for

a wheelchair.

For larger instances, we considered the same instance generation idea of Parragh (2011) explained

in Table 1 and applied it to the 20 benchmark instances provided by Cordeau and Laporte (2003) for

the DARP.; i.e., the original homogeneous data set is denoted by set U, while two additional

heterogeneous data sets (E and I) have been generated by modifying the instances as in Parragh

(2011). The instances contain 3-13 vehicles and 24-144 requests, randomly generated in a [-10, 10]2

sized Euclidean plane. Service time 𝑠𝑖=3 minutes for all users, the transportation time 𝑡𝑖𝑗 is equal to

the Euclidean distance between 𝑖 and 𝑗 (denoted 𝑑𝑖𝑗), the route duration limit 𝑇𝑚𝑎𝑥= 480 minutes, and

the maximum ride time 𝐿𝑚𝑎𝑥= 90 minutes. The time window range is between 15 and 45 minutes for

instances R1a to R10a, and between 30 and 90 minutes for the instances R1b to R10b. For the

heterogeneous instances, upgrading conditions are applied as discussed in Parragh (2011).

4.2. Parameter setting

The proposed hybrid GA has several parameters that need to be set. Inspired by the experimental

testing of Koç et al. (2015) the number of local search iterations is set to 100, 𝑡𝑚𝑢𝑡= 10 and [𝑧𝑏 , 𝑧𝑢]=

[0.2, 0.9]. A sensitivity analysis is performed to find good parameter settings for the other parameters:

population size (𝑁), number of solutions chosen for crossover (𝑆), number of iterations (𝑛𝐻𝐺𝐴), and

tournament size (s). Prins (2004) provided some guidance for setting these parameter values when

solving the vehicle routing problem. We follow this guidance with respect to the small population size,

and the large number of solutions chosen for crossover.

The combined impact of the former three parameters is tested on 12 problem instances, which are

selected such that the number of requests varies from small to large with different levels of

heterogeneity. For each instance from this data set, we ran the algorithm five times for each parameter

15

setting. For each parameter, three values are considered: number of iterations 𝑛𝐻𝐺𝐴= {20,000; 50,000;

100,000}, population size 𝑁= {10, 20, 30} and the number of individuals selected for crossover 𝑆=

{0.7*N, 0.8*N, 0.9*N}. Concerning the number of solutions chosen for crossover (𝑆), we considered a

high crossover rate (between 0.6 and 1.0), as recommended by Holland (1975) and Prins (2004). In

Table 2, the computational results of the sensitivity analysis are presented. The row “Best” (“Avg”)

refers to the average over all instances of the best (average) solution value obtained by our hybrid GA

algorithm for the corresponding parameter combination, while the row “CPU(s)” gives the average run

time in seconds. We note that the detailed results of each instance are available on the website:

http://hdarp-results.e-monsite.com.

Table 2: Identification of the best parameter setting for the hybrid GA

 𝑛𝐻𝐺𝐴 20,000

(N,S) (10,0.7*N) (10,0.8*N) (10,0.9*N) (20,0.7*N) (20,0.8*N) (20,0.9*N) (30,0.7*N) (30,0.8*N) (30,0.9*N)

Best 731.92 732.78 733.26 732.62 732.85 731.21 732.97 733.27 732.43

Avg 729.08 730.47 730.48 729.14 730.57 728.99 730.49 728.80 730.22

CPU (s) 92.87 98.62 101.79 101.69 98.56 98.70 101.23 98.80 101.80

 𝑛𝐻𝐺𝐴 50,000

(N,S) (10,0.7*N) (10,0.8*N) (10,0.9*N) (20,0.7*N) (20,0.8*N) (20,0.9*N) (30,0.7*N) (30,0.8*N) (30,0.9*N)

Best 730.87 730.11 729.02 730.25 729.02 729.02 729.88 729.26 730.09

Avg 730.62 729.20 727.95 729.66 729.45 728.49 729.17 728.37 728.45

CPU (s) 106.86 106.85 106.70 107.07 106.95 107.94 107.92 108.23 109.44

 𝑛𝐻𝐺𝐴 100,000

(N,S) (10,0.7*N) (10,0.8*N) (10,0.9*N) (20,0.7*N) (20,0.8*N) (20,0.9*N) (30,0.7*N) (30,0.8*N) (30,0.9*N)

Best 729.02 728.90 729.02 729.02 729.02 729.02 729.02 728.77 728.72

Avg 727.89 727.89 727.98 727.80 727.84 727.62 727.40 727.55 726.86

CPU (s) 178.50 195.66 208.24 243.89 252.24 367.88 329.17 400.44 444.49

The number of iterations 𝑛𝐻𝐺𝐴 and the values of 𝑁 and 𝑆 remarkably affect the solution quality.

Table 2 shows that the average solution quality is not greatly improved after 50,000 iterations, while

the computation time obviously increases with increasing the number of iterations. Therefore, the

parameters setting (indicated in bold) 𝑛𝐻𝐺𝐴=50,000 iterations, 𝑁= 10, and 𝑆=0.9*𝑁 appears to offer

the best trade-off between average solution quality and CPU time. Hence, these values were used in all

further experiments.

Finally, experiments were conducted to set the tournament size (s). As Liu et al. (2015) indicated,

the larger the tournament size is, the less the opportunity to choose weak individuals. In this study,

tournament sizes of two, five, seven and nine are tested on some different instances types. In Table 3,

12 instances of each data set (U, E, I) have been analyzed. These instances were chosen such that the

number of requests varies from small to large with various degrees of heterogeneity. Each instance

was solved five times for each given parameter value 𝑠 = {2, 5, 7 and 9}. The columns “Best” (“Avg”)

report the best (average) solution values and CPU(s) refers to the computational time in seconds.

Table 3: Impact of tournament size on the quality of solution

Instances

𝑠=2 𝑠=5 𝑠=7 𝑠=9

Avg Best CPU
(s)

 Avg Best CPU
(s)

 Avg Best CPU
(s)

 Avg Best CPU
(s)

a4-32 (U) 485.50 485.50 37.84 485.50 485.50 37.79 485.50 485.50 36.68 485.50 485.50 38.49

a8-64 (U) 747.46 747.46 55.73 747.46 747.46 55.52 747.46 747.46 54.15 747.46 747.46 56.64

a3-30 (E) 503.34 501.87 25.14 500.58 500.58 25.16 500.58 500.58 24.45 500.58 500.58 25.57

http://hdarp-results.e-monsite.com/

16

a8-96 (E) 1268.71 1266.36 93.14 1270.31 1266.38 92.50 1266.03 1265.36 90.61 1267.56 1266.23 94.34

a6-60 (I) 835.09 832.18 59.67 834.42 832.61 59.38 830.49 830.29 57.80 830.84 830.56 60.60

a6-72 (I) 940.17 937.45 84.68 938.38 937.69 84.17 936.51 936.32 82.13 936.51 936.48 85.60

R9a (U) 662.02 660.24 95.16 660.24 659.00 91.34 660.24 660.24 92.20 661.89 661.63 96.79

R5b (U) 582.62 581.42 204.80 583.95 582.46 204.66 582.06 579.03 198.19 583.56 581.98 208.41

R2b (E) 314.53 314.12 63.96 314.32 314.12 63.76 314.12 314.12 62.06 314.12 314.12 64.91

R3b (E) 554.33 553.25 84.04 554.13 554.08 83.83 553.15 551.95 81.32 554.33 552.03 85.09

R6a (I) 845.20 844.62 193.73 844.06 841. 82 181.96 844.26 843.27 188.32 845.62 842.78 196.20

R8b (I) 520.94 518.70 116.43 521.16 518.08 115.53 520.01 517.26 112.43 521.56 520.34 117.81

Table 3 shows the influence of tournament size on the performance of the hybrid GA. We

conclude that the tournament size value 𝑠 = 7 produces better solutions for most instances, in terms of

both best and average results as well as computational time, compared to other tournament sizes.

4.3. Analysis of design decisions

In this section, the effect on performance of the main components of our algorithm is assessed.

4.3.1 Impact of the GA design components on the hybrid GA

In our hybrid GA, many components (sequencing/assigning crossover, intra/inter route mutation

and local search operators) are applied. We consider the execution of the hybrid GA with and without

the incorporation of the sequencing/assigning crossover and intra/inter route mutation. Thus, several

combinations are selected and tested. We also evaluate the impact of the local search operators on the

performance of each combination. These combinations can be classified into three categories, as

shown in Table 4. The first category (the combinations from 1 to 8 in Table 4) consists of choosing

only one crossover operator (sequencing or assigning) and only one mutation (inter or intra- route).

The second category (the combinations from 9 to 12 in Table 4) combines only one crossover operator

(sequencing or assigning) with the two mutations (intra and inter- route). The third category (the

combinations from 13 to 15 in Table 4) combines two crossover operators with only one mutation

(intra or inter-route). We note that the final combination in Table 4 represents our hybrid GA

following the general structure of Algorithm 1.

In order to determine the best hybridization scheme and the impact of each component on the

solution quality, we provide in Figure 6 a comparison between the configurations in terms of the best

and the average value of five runs (Avg) on small-medium sized instances (a) and large sized instances

(b), for all data sets U, E and I. For more details, the readers can find the detailed results of each data

set (U, E, I) in the website.

Table 4: Combination of different component of the GA

Combination Description

1 GA (sequencing crossover and inter-route mutation operators)

2 GA (sequencing crossover and inter-route mutation operators)+ local search procedure

3 GA (sequencing crossover and intra-route mutation operators)

4 GA (sequencing crossover and intra-route mutation operators)+ local search procedure

5 GA (assigning crossover and intra-route mutation operators)

6 GA (assigning crossover and intra-route mutation operators)+ local search procedure

7 GA (assigning crossover and inter- route mutation operators)

8 GA (assigning crossover and inter- route mutation operators)+ local search procedure

http://hdarp-results.e-monsite.com/

17

9 GA (assigning crossover and inter and intra- route mutation operators)

10 GA (assigning crossover and inter and intra- route mutation operators)+ local search procedure

11 GA (sequencing crossover and inter and intra- route mutation operators)

12 GA (sequencing crossover and inter and intra- route mutation operators)+ local search procedure

13 GA (two crossovers and inter-route mutation)

14 GA (two crossovers and inter-route mutation)+ local search procedure

15 GA (two crossovers and intra-route mutation)+ local search procedure

16 GA (two crossovers and intra and inter-route mutation)+ local search procedure

Figure 6: The impact of different components of the hybrid GA on different sized instances

By using only one crossover operator and both intra and inter-route mutations, we observe a slight

advantage compared to using only one crossover operator, and either inter or intra-route mutation.

However, a big improvement is observed when applying two crossover operators. In addition, the

results in Figure 6 show that the solution quality is similar for the two configurations that use two

crossovers with inter or intra-route mutations (two crossovers and intra-route mutation, two crossovers

and inter-route mutation), which indicates the effectiveness of using the two crossovers.

Figure 6 shows that the incorporation of the different crossover and mutation operators

significantly affects the performance of the algorithm. It is also observed that the hybridization with

local search on each combination improves the performance of the GA. In fact, the best solution

obtained by the configuration “assigning crossover and intra-route mutation” for the small-medium

633,00

634,00

635,00

636,00

637,00

638,00

639,00

640,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

O
b

je
ct

iv
e

F
u

n
ct

io
n

 V
a

lu
e

Combination

(a)

Avg

Best

540,00

542,00

544,00

546,00

548,00

550,00

552,00

554,00

556,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

O
b

je
ct

iv
e

F
u

n
ct

io
n

 V
a

lu
e

Combination

(b)

Avg

Best

18

instances was 638.89, compared to 637.72 achieved when the local search operators were added to this

configuration. In addition, applying both assignment and sequencing crossovers and inter and intra-

route mutations (last configuration in Figure 6) is the most effective configuration for all instances.

4.3.2. Impact of local search operators on the hybrid GA

The local search operators were explained in Subsection 3.7. They are considered important to

achieve good quality solutions. As shown in Figure 7, we compared the objective function values over

five runs of different local search combinations (shown in Table 5) on small-medium sized instances

(c) and large sized instances (d) of all data sets U, E and I.

Table 5: Combination of local search operators

Combination Local search(s)

1 2-opt

2 Relocate (Intra-route)

3 2-opt*

4 Remove two insert one

5 2-opt + Relocate (Intra-route)

6 Relocate (Intra-route) + Relocate (Inter-route)

7 2-opt + Relocate (Intra-route) + 2-opt*

8 2-opt + Relocate (Inter-route) + Remove two insert one

9 2-opt+ Relocate (Intra-route) + 2-opt*+ Relocate (Inter-route)

10 2-opt+ Relocate (Intra-route) + 2-opt*+ Relocate (Inter-route) +Remove two insert one

Figure 7: Effect of local search operators

630,00
632,00
634,00
636,00
638,00
640,00
642,00
644,00
646,00
648,00

1 2 3 4 5 6 7 8 9 10

O
b

je
ct

iv
e

F
u

n
ct

io
n

 V
a

lu
e

Combination

(c)

Avg

Best

545,00

547,00

549,00

551,00

553,00

555,00

557,00

559,00

1 2 3 4 5 6 7 8 9 10O
b

je
ct

iv
e

F
u

n
ct

io
n

 V
a

lu
e

Combination

(d)

Avg

Best

19

By using only one local search in the hybrid GA, we observe that there is no improvement

obtained in the solution quality. However, after the application of four or five operators in the same

move, the solution quality is highly affected. The combination of the five local search operators

(combination 10) provides the best results.

4.3.3 Effect of the mutation phase on the hybrid GA

In traditional GA, the mutation is usually conducted after the crossover phase and before the

replacement phase (Elitist approach) as mentioned in Liu et al. (2009), Liu et al. (2013) and Nguyen et

al. (2014). But in our case the mutation is considered after the replacement phase with the intention of

increasing diversity and enhancing the performance of the GA.

To test the usefulness of our mutation procedure, we compared the best (average) results obtained

by our hybrid GA using mutation after replacement and mutation before replacement, as shown in

Table 6. The analysis was performed on 12 instances from each data set (U, E, I). Again, these

instances were chosen such that the number of requests varies from small to large with various degrees

of heterogeneity. We note that the columns “Best%” (“Avg%”) present the percentage of deviation

from the best (Avg) solutions found by our hybrid GA with mutation procedure after replacement

procedure.

 Table 6: Importance of mutation procedure in our hybrid GA

Instances

hybrid GA with mutation

procedure after

replacement phase

hybrid GA with mutation procedure before

replacement phase

 Avg Best
CPU

(s)
 Avg Avg % Best Best % CPU (s)

a4-40 (U) 557.69 557.69 37.82 560.88 0.57 557.69 0.00 40.61

a8-96 (U) 1231.04 1229.66 95.13 1237.03 0.49 1231.68 0.16 101.81

a5-60 (E) 828.90 828.90 58.10 833.48 0.55 830.03 0.14 65.58

a7-84 (E) 1093.90 1092.90 82.27 1102.13 0.75 1096.07 0.29 87.64

a4-32 (I) 487.14 486.93 35.49 489.96 0.58 487.80 0.18 40.15

a6-48 (I) 604.12 604.12 49.01 609.56 0.90 606.00 0.31 52.26

Avg 800.47 800.03 59.64 805.51 0.63 801.55 0.19 64.68

R9a (U) 660.24 658.31 92.20 664.33 0.62 660.11 0.27 99.20

R5b (U) 582.06 579.03 198.19 583.74 0.29 581.62 0.45 224.38

R9a (E) 748.87 746.23 97.01 752.10 0.43 749.10 0.38 109.87

R9b (E) 703.15 699.06 170.20 705.31 0.31 702.03 0.43 191.35

R5a (I) 679.11 677.50 142.48 680.87 0.26 679.55 0.30 161.95

R4b (I) 559.12 557.99 222.52 561.45 0.42 560.66 0.48 251.18

Avg 655.43 653.02 153.77 657.97 0.39 655.51 0.39 172.99

According to Table 6, in all instances (except a4-40 (U)), we notice the existence of positive

percent values found by the hybrid GA with mutation before replacement. Thus, it is deduced that the

use of mutation before replacement procedure is not effective in avoiding convergence during the

evolutionary process. In fact, the performance of the hybrid GA using mutation procedure before

replacement phase, in terms of both best solution found and CPU time, is worse than our proposed

hybrid GA, as indicated in Table 6.

20

4.4. Results on the HDARP instances

Our hybrid GA is compared to the ELS algorithm of Chassaing et al. (2016) and the DA algorithm

of Braekers et al. (2014). Each instance is computed five times using each method. For each Table in

this section, columns “Best” (“Avg”) report the best (average) solution values. The columns “Best %”

(“Avg %”) present the percentage of deviation from the best solutions (BS). CPU(s) refers to the

computation time in seconds. We note that with respect to computation times, we cannot fairly

compare the performance of our algorithms against those reported in Braekers et al. (2014) and

Chassaing et al. (2016). This is due to using a different machine for each of these algorithms.

Moreover, the processing times reported in Table 8 cannot be accurately compared, since no relevant

information has been reported in Dongarra (2014) and in Linpack (www.roylongbottom.org.uk)

regarding the computational power of MFlops and the speed factor of the configuration used for the

DA algorithm of Braekers et al. (2014). Similarly, no such information is available for our

configuration. Nevertheless, for the ELS algorithm of Chassaing et al. (2016), the number of MFlops

was reported as equal to 2,529.

Table 7 shows the results of our hybrid GA and the DA of Braekers et al. (2014) on the small

instances of Parragh (2011) and the medium instances of Braekers et al. (2014). We note that, the

detailed results of this Table can be found in our website.

Table 7: Comparison of DA and hybrid GA on small and medium instances

Instances BSa DA (Braekers et al., 2014)b Our hybrid GA

 Avg Avg

%

Best Best

%

CPU (s) Avg Avg

%

Best Best

%

CPU

(s)

Avg U 627.73a 627.84 0.01 627.73 0.00 31.00 627.80 0.01 627.73 0.00 44.35

Avg E 645.97a 646.09 0.01 645.98 0.00 30.10 646.15 0.02 645.97 0.00 43.34

Avg I 633.36a 636.20 0.29 635.92 0.25 27.50 634.68 0.14 634.21 0.09 46.46

Avg UEI 635.72 636.71 0.10 636.55 0.08 29.60 636.23 0.05 635.99 0.03 44.69

 a Best solutions provided by Braekers et al. (2014) with Branch and Cut algorithm

 b Results of Braekers et al. (2014), programmed in C++ and executed on 2.6 GHz Intel Core laptop with 4 GB RAM.

Table 7 shows that our hybrid GA is more effective than the Deterministic Annealing algorithm

(DA) of Braekers et al. (2014), albeit using slightly higher computation times. The average deviation

from the best solution over five runs is 0.05% for our hybrid GA and 0.10% for the DA. The average

deviation for the best run is 0.03% for the hybrid GA and 0.08% for DA. As shown in Table 7 in the

website, our algorithm performs especially well for instances with heterogeneous users and vehicles

(data set I), e.g., for instances a6-72, a7-70, a7-84, a8-80 and a8-96, the best solution of our hybrid GA

is better than the one provided by the DA of Braekers et al. (2014).

Table 8 shows the results of our hybrid GA on the large instances of Cordeau and Laporte (2003)

for the DARP with a comparison to the state-of-the-art methods in literature: the DA algorithm of

Braekers et al. (2014) and the ELS algorithm of Chassaing et al. (2016).

Table 8: Comparison of hybrid GA, DA and ELS algorithms on data set U for the DARP

Inst, BKSa,b DA (Braekers et al., 2014) c ELS (Chassaing et al., 2016) d Our hybrid GA

 Avg Avg% Best Best% CPU Avg Avg% Best Best% CPU Avg Avg% Best Best% CPU

(s) (s) (s)

R1a 190.02a 190.02 0.00 190.02 0.00 16.60 190.02 0.00 190.02 0.00 15.00 190.02 0.00 190.02 0.00 21.20

R2a 301.34a 301.34 0.00 301.34 0.00 42.00 301.34 0.00 301.34 0.00 75.00 301.34 0.00 301.34 0.00 53.63

http://www.roylongbottom.org.uk/
http://hdarp-results.e-monsite.com/
http://hdarp-results.e-monsite.com/

21

R3a 532.00a 533.54 0.29 532.10 0.02 48.80 533.86 0.35 532.42 0.08 138.00 534.08 0.39 532.00 0.00 62.32

R4a 570.25a 580.52 1.80 577.16 1.21 74.60 574.47 0.74 570.55 0.05 442.20 571.45 0.21 570.25 0.00 95.26

R5a 626.93b 632.06 0.82 629.80 0.46 89.20 637.59 1.70 630.81 0.62 724.20 631.39 0.71 628.48 0.25 113.91

R6a 785.26a 800.68 1.96 797.78 1.59 107.00 796.10 1.38 792.81 0.96 1315.20 788.52 0.42 787.41 0.27 136.64

R7a 291.71a 292.23 0.18 292.23 0.18 22.60 292.96 0.43 291.71 0.00 28.20 291.79 0.03 291.71 0.00 28.86

R8a 487.84a 491.00 0.65 490.94 0.64 48.60 493.16 1.09 491.58 0.77 160.80 491.53 0.76 488.89 0.22 62.06

R9a 658.31a 666.65 1.27 662.64 0.66 72.20 681.35 3.50 672.88 2.21 675.00 660.24 0.29 658.31 0.00 92.20

R10a 851.82b 860.83 1.06 853.98 0.25 114.40 860.68 1.04 857.34 0.65 1279.80 859.91 0.95 853.16 0.16 146.09

R1b 164.46a 164.46 0.00 164.46 0.00 23.80 164.46 0.00 164.46 0.00 16.80 164.46 0.00 164.46 0.00 30.39

R2b 295.66a 296.06 0.14 295.69 0.01 51.40 295.72 0.02 295.66 0.00 82.20 295.66 0.00 295.66 0.00 65.64

R3b 484.83a 490.03 1.07 488.61 0.78 76.20 490.70 1.21 489.02 0.86 222.00 487.23 0.50 484.83 0.00 97.31

R4b 529.33a 540.99 2.20 534.99 1.07 117.00 531.98 0.50 531.06 0.33 612.00 532.19 0.54 531.86 0.48 149.41

R5b 577.29b 584.33 1.22 581.46 0.72 155.20 580.23 0.51 578.45 0.20 1195.80 582.06 0.83 579.03 0.30 198.19

R6b 730.69b 747.19 2.26 743.56 1.76 180.60 736.61 0.81 731.27 0.08 1939.20 741.06 1.42 737.03 0.87 230.62

R7b 248.21a 249.33 0.45 249.33 0.45 34.00 248.21 0.00 248.21 0.00 34.80 248.29 0.03 248.21 0.00 43.42

R8b 458.73b 462.38 0.80 461.77 0.66 81.00 462.38 0.80 461.22 0.54 259.20 463.32 1.00 461.11 0.52 103.44

R9b 593.49a 600.63 1.20 598.23 0.80 146.40 597.53 0.68 595.39 0.32 745.80 595.37 0.32 593.49 0.00 186.95

R10b 785.68b 801.89 2.06 795.08 1.20 162.80 803.99 2.33 796.57 1.39 1887.00 793.64 1.01 791.01 0.68 207.89

Avg 508.19 514.31 0.97 512.06 0.62 83.22 513.67 0.85 511.14 0.45 592.41 511.18 0.47 509.41 0.19 106.27

a Best known solutions provided by Parragh and Schmid (2013)
b Best known solutions provided by Braekers et al.(2014)
c Results of Braekers et al.(2014), programmed in C++ and executed on 2.6 GHz Intel Core laptop with 4 GB RAM.
d Results of Chassaing et al. (2016), programmed in C++ and executed on Intel Core i7-3770 CPU with 3.40 GHz (average objective values

(Avg) are calculated based on the provided average gaps (Avg%) on their website)

Table 8 shows that our hybrid GA is more effective than the DA and the ELS algorithms in terms

of best and average solution values. In fact, the average deviation of the average results from the best

knows solutions are 0.47% for our algorithm, 0.97% for the DA algorithm and 0.85% for the ELS

algorithm. The average deviation for the best result over five runs is 0.19% for our hybrid GA, 0.62%

for the DA algorithm and 0.45% for the ELS algorithm. In addition, our hybrid GA can find 17 best

solutions (Column “Best”) compared to 3 found by the DA algorithm and 9 found by the ELS

algorithm. Moreover, our hybrid GA can find 13 best solutions, on average over five runs (Column

“Avg”), compared to 6 found by the DA algorithm and 8 by the ELS algorithm.

To evaluate the performance of our method on large instances with heterogeneous users and

vehicles, we make a comparison to the DA of Braekers et al. (2014) on our newly generated instances.

Tables 9 and 10 show the results obtained for data sets E and I, respectively. These data sets were

generated by adapting the instances of Cordeau and Laporte (2003) as discussed in Subsection 4.1.

 Table 9: Comparison of DA and hybrid GA on large H-DARP instances (data set E)

Instance BSa DA (Braekers et al., 2014) hybrid GA

 Avg Avg % Best CPU Avg Avg % Best Best % CPU

R1a 195.97 195.97 0.00 195.97 24.80 195.97 0.00 195.97 0.00 26.64

R2a 336.34 336.34 0.00 336.34 48.20 336.34 0.00 336.34 0.00 51.06

R3a 587.43 588.40 0.17 587.43 52.00 589.86 0.41 586.18 -0.21 56.61

R4a 642.44 644.02 0.25 642.44 82.80 642.56 0.02 640.03 -0.38 88.80

R5a 717.69 718.51 0.11 717.69 102.00 718.51 0.11 714.83 -0.40 109.00

R6a 885.24 888.08 0.32 885.24 133.20 887.65 0.27 883.02 -0.25 143.88

R7a 312.49 312.87 0.12 312.49 27.00 312.96 0.15 312.05 -0.14 28.34

R8a 556.01 557.45 0.26 556.01 46.80 556.23 0.04 553.82 -0.39 48.84

R9a 748.53 754.44 0.79 748.53 88.80 748.87 0.05 746.23 -0.31 97.01

R10a 966.20 971.54 0.55 966.20 108.20 969.22 0.31 963.08 -0.32 137.34

R1b 190.39 190.39 0.00 190.39 33.00 190.39 0.00 190.39 0.00 34.24

file:///E:/Amine%20-%20Results%20HDARP%20version%20a%20et%20b%20FINAaaaLE.xlsx%23RANGE!Braekers

22

R2b 312.92 312.92 0.00 312.92 59.00 314.12 0.38 312.92 0.00 62.06

R3b 554.57 556.04 0.27 554.57 78.40 553.15 -0.26 551.95 -0.47 81.32

R4b 607.97 613.15 0.85 607.97 119.00 610.48 0.41 606.08 -0.31 119.84

R5b 643.68 648.98 0.82 643.68 161.40 642.15 -0.24 641.84 -0.29 175.84

R6b 838.12 840.91 0.33 838.12 200.80 836.32 -0.21 832.53 -0.67 219.52

R7b 277.32 277.32 0.00 277.32 41.80 276.52 -0.29 276.52 -0.29 47.15

R8b 529.81 533.97 0.79 529.81 84.00 532.28 0.47 530.56 0.14 92.00

R9b 700.95 704.43 0.50 700.95 131.40 703.15 0.31 699.06 -0.27 170.20

R10b 907.62 916.85 1.02 907.62 148.20 906.91 -0.08 902.17 -0.60 186.30

Avg 575.58 578.13 0.36 575.58 88.54 576.18 0.09 573.78 -0.26 98.80

 a New best solutions provided by Braekers et al.(2014) with Deterministic Annealing algorithm programmed in C++ and

 executed on 2.6 GHz Intel Core laptop with 4 GB RAM.

Table 10: Comparison of DA and hybrid GA on large H-DARP instances (data set I)

Instance BSa DA (Braekers et al., 2014) hybrid GA

 Avg Avg % Best CPU Avg Avg % Best Best % CPU

R1a 193.27 193.27 0.00 193.27 24.80 193.27 0.00 193.27 0.00 29.61

R2a 319.87 320.42 0.17 319.87 53.20 319.87 0.00 319.43 -0.14 63.78

R3a 587.11 587.83 0.12 587.11 57.00 586.11 -0.17 584.84 -0.39 64.92

R4a 594.11 598.79 0.79 594.11 100.40 593.56 -0.09 591.24 -0.48 117.70

R5a 679.51 689.26 1.43 679.51 118.80 679.11 -0.06 677.50 -0.30 142.48

R6a 844.29 849.10 0.57 844.29 152.20 843.27 -0.12 838.26 -0.71 188.32

R7a 328.27 328.95 0.21 328.27 27.00 329.12 0.26 328.10 -0.05 31.68

R8a 554.71 556.41 0.31 554.71 54.40 556.46 0.32 552.35 -0.43 61.96

R9a 715.42 721.33 0.83 715.42 120.60 718.55 0.44 713.55 -0.26 136.67

R10a 936.79 942.10 0.57 936.79 200.40 937.23 0.05 932.83 -0.42 227.79

R1b 177.57 177.57 0.00 177.57 32.40 177.57 0.00 177.57 0.00 35.31

R2b 304.86 305.70 0.28 304.86 63.60 304.02 -0.28 304.02 -0.28 75.17

R3b 552.92 554.88 0.35 552.92 90.60 555.19 0.41 551.13 -0.32 105.46

R4b 560.23 564.99 0.85 560.23 162.80 559.12 -0.20 557.99 -0.40 222.52

R5b 631.07 634.54 0.55 631.07 201.80 630.59 -0.08 628.62 -0.39 238.74

R6b 799.32 802.68 0.42 799.32 224.20 797.57 -0.22 794.03 -0.66 272.35

R7b 297.41 297.41 0.00 297.41 34.20 297.51 0.03 297.41 0.00 37.59

R8b 518.67 520.22 0.30 518.67 89.60 520.01 0.26 517.26 -0.27 112.43

R9b 663.93 668.17 0.64 663.93 169.60 666.44 0.38 662.75 -0.18 208.43

R10b 870.10 884.30 1.63 870.10 244.80 873.18 0.35 865.07 -0.58 279.10

Avg 556.47 559.90 0.50 556.47 111.12 556.89 0.06 554.36 -0.31 132.60

 a New best solutions provided by Braekers et al.(2014) with Deterministic Annealing algorithm programmed in C++ and

 executed on 2.6 GHz Intel Core laptop with 4 GB RAM.

Tables 9 and 10 clearly show that our hybrid GA obtains better results compared to the DA

method in terms of solution quality. For data set E, with heterogeneous users and homogeneous

vehicles, our algorithm improves the results of Braekers et al. (2014) by 0.26% on average, for both

the average and best result over five runs. For data set I, with heterogeneous users and vehicles, our

hybrid GA is more efficient than the DA algorithm, with an average improvement of 0.44% for the

average and 0.31% for the best result. Combining both data sets, the average improvement is 0.35%

and 0.29% for the average and best results, respectively. Besides, our method provides best known

results for 31 of these instances and ties with the DA algorithm on 8 other instances. Nevertheless, this

comes at the expense of a slight increase in computation time of the hybrid GA compared to the DA,

as indicated in Tables 9 and 10.

23

5. Conclusion

Dial-A-Ride Problems (DARPs) are vehicle routing problems that arise in the management of

door-to-door transportation services; for example, for the elderly and the disabled. The Heterogeneous

Dial-A-Ride Problem (H-DARP) is a more realistic variant of the standard DARP, in which both

heterogeneous vehicles and users with different requirements are considered. In practice, some users

may for example need to be transported in a wheelchair or on a stretcher.

In this paper, a new hybrid Genetic Algorithm was proposed to solve the DARP and H-DARP.

This algorithm is guided by efficient construction heuristics and efficient crossovers, mutations and

local search techniques. Extensive numerical experiments demonstrate that our hybrid Genetic

Algorithm is more effective, in terms of both best and average solution quality, compared to the

current state of-the-art methods for the DARP and H-DARP, both on existing benchmark instances

and on newly generated larger instances for the heterogeneous version of the problem. Also the

effectiveness of the crossover operators and local search techniques is validated in this paper.

For future work, we plan to focus on a more complex variant, a Multi-depot H-DARP with

synchronization constraints. Other possible directions for future research include the introduction of

even more sophisticated local search techniques in the genetic algorithm, and the adaptation and

application of our solution method to related problems, such as the Pickup and Delivery Problem with

Time Windows.

Acknowledgements

This work is partly supported by the Interuniversity Attraction Poles Programme initiated by the

Belgian Science Policy Office (research project COMEX, Combinatorial Optimization: Metaheuristics

& Exact Methods). The authors thank the reviewers for their input, comments and suggestions. Also,

the authors would like to thank Dr. Manar Hosny, Assistant Professor at King Saud University, for her

valuable revision and English writing of the paper.

References

Berbeglia, G., Cordeau, J. F., Laporte, G., 2010. Dynamic pickup and delivery problems. European

Journal of Operational Research, 202(1), 8-15.

Blanton Jr, J. L., Wainwright, R. L., 1993. Multiple vehicle routing with time and capacity constraints

using genetic algorithms. In Proceedings of the 5th International Conference on Genetic

Algorithms (pp. 452-459). Morgan Kaufmann Publishers Inc.

Borndorfer, R., Grotschel, M., Klostermeiner, F., Kuttner, C., 1997. Telebus Berlin: Vehicle routing

scheduling in a dial a ride system. Konrad Zuse Zentrum für Information Technik Berlin.

Braekers, K., Caris, A., Janssens, G. K., 2014. Exact and meta-heuristic approach for a general

heterogeneous dial-a-ride problem with multiple depots. Transportation Research Part B:

Methodological, 67, 166-186.

Buro, M., 1997. Experiments with Multi-ProbCut and a new high-quality evaluation function for

Othello. Games in AI Research, 77-96.

24

Chassaing, M., Duhamel, C., Lacomme, P., 2016. An ELS-based approach with dynamic probabilities

management in local search for the Dial-A-Ride Problem. Engineering Applications of Artificial

Intelligence, 48, 119-133.

Cao, E., Lai, M., 2007. An improved differential evolution algorithm for the vehicle routing problem

with simultaneous delivery and pick-up service. In Third International Conference on Natural

Computation (ICNC 2007) (Vol. 3, pp. 436-440). IEEE.

Choi, I. C., Kim, S. I., Kim, H. S., 2003. A genetic algorithm with a mixed region search for the

asymmetric traveling salesman problem. Computers & Operations Research, 30(5), 773-786.

Cordeau, J. F., 2006. A branch-and-cut algorithm for the dial-a-ride problem. Operations

Research, 54(3), 573-586.

Cordeau, J. F., Laporte, G., 2003. A tabu search heuristic for the static multi-vehicle dial-a-ride

problem. Transportation Research Part B: Methodological, 37(6), 579-594.

Cordeau, J. F., Laporte, G., 2007. The dial-a-ride problem: models and algorithms. Annals of

Operations Research, 153(1), 29-46.

Cubillos, C., Rodriguez, N., Crawford, B., 2007. A study on Genetic Algorithms for the DARP

Problem. In International Work-Conference on the Interplay Between Natural and Artificial

Computation (pp. 498-507). Springer Berlin Heidelberg.

Doerner, K., Salazar-Gonzalez, J., 2014. In: Toth, P. and Vigo, D. (Eds). Vehicle Routing: Problems,

Methods, and Applications, Second Edition. MOSSIAM Series on Optimasation, Society for

Industrial and Applied Mathematics.

Dongarra, J., 2014. Performance of Various Computers Using Standard Linear Equations Software,

(Linpack Benchmark Technical Report, CS-89-85). University of Tennessee, Computer Science

Department.

Freitas, A. A., 2013. Data mining and knowledge discovery with evolutionary algorithms. Springer

Science & Business Media.

Fu, L., 2002. Scheduling dial-a-ride paratransit under time-varying, stochastic congestion.

Transportation Research Part B: Methodological, 36(6), 485-506.

Holland, J.H., 1975. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann

Arbor.

Hosny, M. I., Mumford, C. L., 2010. The single vehicle pickup and delivery problem with time

windows: intelligent operators for heuristic and metaheuristic algorithms. Journal of

Heuristics, 16(3), 417-439.

Jorgensen, R. M., Larsen, J., Bergvinsdottir, K. B., 2007. Solving the dial-a-ride problem using genetic

algorithms. Journal of the Operational Research Society, 58(10), 1321-1331.

Karabuk, S., 2009. A nested decomposition approach for solving the paratransit vehicle scheduling

problem. Transportation Research Part B: Methodological, 43(4), 448-465.

Kirchler, D., Calvo, R. W., 2013. A granular tabu search algorithm for the dial-a-ride

problem. Transportation Research Part B: Methodological, 56, 120-135.

Koç, Ç., Bektaş, T., Jabali, O., Laporte, G., 2015. A hybrid evolutionary algorithm for heterogeneous

fleet vehicle routing problems with time windows. Computers & Operations Research, 64, 11-

27.

Li, G., 2009. Research on open vehicle routing problem with time windows based on improved

genetic algorithm. In Computational Intelligence and Software Engineering, 2009. CiSE 2009.

International Conference on (pp. 1-5). IEEE.

25

Liu, S., Huang, W., Ma, H., 2009. An effective genetic algorithm for the fleet size and mix vehicle

routing problems. Transportation Research Part E: Logistics and Transportation Review, 45(3),

434-445.

Liu, R., Xie, X., Augusto, V., Rodriguez, C., 2013. Heuristic algorithms for a vehicle routing problem

with simultaneous delivery and pickup and time windows in home health care. European

Journal of Operational Research, 230(3), 475-486.

Lin, S., 1965. Computer solutions of the traveling salesman problem. The Bell System Technical

Journal, 44(10), 2245-2269.

Lü, Z., Glover, F., Hao, J. K., 2010. A hybrid metaheuristic approach to solving the UBQP

problem. European Journal of Operational Research, 207(3), 1254-1262.

Luo, Y., Schonfeld, P., 2011. Online rejected-reinsertion heuristics for dynamic multivehicle dial-a-

ride problem. Transportation Research Record: Journal of the Transportation Research Board,

(2218), 59-67.

Merz, P., Katayama, K., 2004. Memetic algorithms for the unconstrained binary quadratic

programming problem. BioSystems, 78(1), 99-118.

Miller, B. L., Goldberg, D. E., 1995. Genetic algorithms, tournament selection, and the effects of

noise. Complex Systems, 9(3), 193-212.

Minocha, B., Tripathi, S., 2011. Solution of time constrained vehicle routing problems using multi-

objective hybrid genetic algorithm. International Journal of Computer Science and Information

Technologies, 2(6), 2671-76.

Muelas, S., LaTorre, A., Peña, J. M., 2013. A variable neighborhood search algorithm for the

optimization of a dial-a-ride problem in a large city. Expert Systems with Applications, 40(14),

5516-5531.

Nguyen, P. K., Crainic, T. G., Toulouse, M., 2014. A hybrid generational genetic algorithm for the

periodic vehicle routing problem with time windows. Journal of Heuristics, 20(4), 383-416.

Parragh, S. N., 2011. Introducing heterogeneous users and vehicles into models and algorithms for the

dial-a-ride problem. Transportation Research Part C: Emerging Technologies, 19(5), 912-930.

Parragh, S. N., Cordeau, J. F., Doerner, K. F., Hartl, R. F., 2012. Models and algorithms for the

heterogeneous dial-a-ride problem with driver-related constraints. OR Spectrum, 34(3), 593-633.

Parragh, S. N., Doerner, K. F., Hartl, R. F., 2008. A survey on pickup and delivery problems. Journal

für Betriebswirtschaft, 58(1), 21-51.

Parragh, S. N., Doerner, K. F., Hartl, R. F., 2010. Variable neighborhood search for the dial-a-ride

problem. Computers & Operations Research, 37(6), 1129-1138.

Parragh, S. N., Schmid, V., 2013. Hybrid column generation and large neighborhood search for the

dial-a-ride problem. Computers & Operations Research, 40(1), 490-497.

Potvin, J. Y., Rousseau, J. M., 1995. An exchange heuristic for routeing problems with time

windows. Journal of the Operational Research Society, 46(12), 1433-1446.

Prins, C., 2004. A simple and effective evolutionary algorithm for the vehicle routing

problem. Computers & Operations Research, 31(12), 1985-2002.

Psaraftis, H. N., 1980. A dynamic programming solution to the single vehicle many-to-many

immediate request dial-a-ride problem. Transportation Science, 14(2), 130-154.

Qu, Y., Bard, J. F., 2013. The heterogeneous pickup and delivery problem with configurable vehicle

capacity. Transportation Research Part C: Emerging Technologies, 32, 1-20.

26

Rekiek, B., Delchambre, A., Saleh, H. A., 2006. Handicapped person transportation: An application of

the grouping genetic algorithm. Engineering Applications of Artificial Intelligence, 19(5), 511-

520.

Savelsbergh, M. W., 1992. The vehicle routing problem with time windows: Minimizing route

duration. ORSA Journal on Computing, 4(2), 146-154.

Schilde, M., Doerner, K. F., Hartl, R. F., 2011. Metaheuristics for the dynamic stochastic dial-a-ride

problem with expected return transports. Computers & Operations Research, 38(12), 1719-

1730.

Solomon, M. M., 1987. Algorithms for the vehicle routing and scheduling problems with time window

constraints. Operations Research, 35(2), 254-265.

Tasan, A. S., Gen, M., 2012. A genetic algorithm based approach to vehicle routing problem with

simultaneous pick-up and deliveries. Computers & Industrial Engineering, 62(3), 755-761.

Toth, P., Vigo, D., 1996. Fast local search algorithms for the handicapped persons transportation

problem. In Meta-Heuristics (pp. 677-690). Springer US.

Toth, P., Vigo, D., 1997. Heuristic algorithms for the handicapped persons transportation

problem. Transportation Science, 31(1), 60-71.

Vidal, T., Crainic, T. G., Gendreau, M., Lahrichi, N., Rei, W., 2012. A hybrid genetic algorithm for

multidepot and periodic vehicle routing problems. Operations Research, 60(3), 611-624.

Vidal, T., Crainic, T. G., Gendreau, M., Prins, C., 2013. A hybrid genetic algorithm with adaptive

diversity management for a large class of vehicle routing problems with time-

windows. Computers & Operations Research, 40(1), 475-489.

Wang, H. F., Chen, Y. Y., 2012. A genetic algorithm for the simultaneous delivery and pickup

problems with time window. Computers & Industrial Engineering, 62(1), 84-95.

Wilson, N. H., Sussman, J. M., Wong, H. K., Higonnet, T., 1971. Scheduling algorithms for a dial-a-

ride system. Massachusetts Institute of Technology. Urban Systems Laboratory.

Wink, S., Bäck, T., Emmerich, M., 2012. A meta-genetic algorithm for solving the capacitated vehicle

routing problem. In 2012 IEEE Congress on Evolutionary Computation (pp. 1-8). IEEE.

Wong, K. I., Bell, M. G., 2006. Solution of the Dial‐a‐Ride Problem with multi‐dimensional capacity

constraints. International Transactions in Operational Research, 13(3), 195-208.

Xiang, Z., Chu, C., Chen, H., 2006. A fast heuristic for solving a large-scale static dial-a-ride problem

under complex constraints. European Journal of Operational Research, 174(2), 1117-1139.

Zhang, Z., Liu, M., Lim, A., 2015. A memetic algorithm for the patient transportation

problem. Omega, 54, 60-71.

