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Abstract 

This paper investigates the Heterogeneous Dial-A-Ride Problem (H-DARP) that consists of 

determining a vehicle route planning for heterogeneous users’ transportation with a heterogeneous 

fleet of vehicles. A hybrid Genetic Algorithm (GA) is proposed to solve the problem. Efficient 

construction heuristics, crossover operators and local search techniques, specifically tailored to the 

characteristics of the H-DARP, are provided. The proposed algorithm is tested on 92 benchmarks 

instances and 40 newly introduced larger instances. Computational experiments show the 

effectiveness of our approach compared to the current state-of-the-art algorithms for the DARP and 

H-DARP. When tested on the existing instances, we achieved average gaps of only 0.47% to the best-

known solutions for the DARP, and 0.05% to the optimal solutions for the H-DARP, compared to 

0.85% and 0.10%, respectively, obtained by the current state-of-the-art algorithms. For the 40 newly 

generated instances, average gaps of the hybrid GA are 0.35% smaller compared to the current state-

of-the-art method. Besides, our method provides best results for 31 of these instances and ties with 

the existing method on 8 other instances. 

Keywords: Heterogeneous Dial-A-Ride Problem (H-DARP), Genetic Algorithm (GA), Construction 

heuristics, Local Search (LS), Hybrid algorithm. 

1. Introduction 

The transportation of people with reduced mobility is an important branch of day-to-day 

transportation. The problem of establishing a transport planning to meet particular users’ demands 

with a limited fleet of vehicles is called the Dial-A-Ride Problem (DARP) in the literature. It is a 

variant of the Pickup and Delivery Problem with Time Windows (PDPTW), which is usually 

concerned with freight transportation. Common objectives of DARPs are to minimize the total routing 

costs and to maximize the service quality. The DARP is more complicated than the traditional Vehicle 

                                                 
1 Corresponding author: M.A. Masmoudi (E-mail: masmoudi_aminero@hotmail.fr, Tel. : +21654493673) 



2 

 

Routing Problem (VRP), which is already NP-hard (Cordeau and Laporte, 2007), due to its specific 

transportation conditions. 

The DARP has been widely studied since it was introduced by Wilson et al. in 1971. Most 

research concerns the management of door-to-door transportation services for the elderly, the 

handicapped and the disabled; e.g., the transportation of patients from their houses to hospitals or care 

centers (Schilde et al., 2011, Zhang et al., 2015). It is applied in many countries such as the USA 

(Karabuk, 2009), Belgium (Rekiek et al., 2006), Italy (Bologna) (Toth and Vigo, 1996, 1997) and 

Germany (Borndörfer et al., 1997). For more details on the DARP, interested readers are referred to 

the surveys of Cordeau and Laporte (2007), Parragh et al. (2008), and Doerner and Salazar-Gonzalez 

(2014). 

DARP variants can be classified based on several characteristics, e.g., single vehicle or multiple 

vehicles, static or dynamic users’ demands, and homogeneity or heterogeneity of the vehicle fleet and 

users’ demands. The single vehicle DARP, which is a special case of the multiple vehicles DARP and 

mainly studied in early contributions, has been proved to be NP-hard by Psaraftis (1980). For the static 

DARP, all transportation demands are known in advance, while for the dynamic DARP, some requests 

are expressed progressively during the day and the transportation planning has to be established in real 

time. As in most papers, we will consider the static multiple vehicles variant. For an overview of 

contributions on the dynamic DARP, we refer to Berbeglia et al. (2010). The homogeneous DARP 

considers a single kind of users and a homogeneous fleet of vehicles. It is widely treated in the 

literature (Cordeau, 2006; Parragh et al., 2010; Luo and Schonfeld, 2011; Parragh and Schmid, 2013; 

Kirchler and Wolfler Calvo, 2013; Chassaing et al., 2016). However, we will mainly focus on the 

heterogeneous variant of the problem, as this is more realistic for many applications. 

As indicated by Parragh (2011), in practice, service providers often use a variety of vehicles to 

transport users with different requirements. For example, in the context of patient transportation, a 

patient may demand to be transported seated, on a stretcher, or in a wheelchair. Additionally, the 

patient may need an accompanying person. Several authors, e.g., Wong and Bell (2006) and Xiang et 

al. (2006), have considered heterogeneity in DARPs for specific applications. A formal definition of 

the Heterogeneous DARP (H-DARP), integrating heterogeneous users and vehicles into the DARP, 

was introduced by Parragh (2011), where two types of vehicles and four different resources (staff 

seats, user seats, stretchers and wheelchair places) were considered. The author proposed 2-index and 

3-index mathematical formulations for the H-DARP and developed a Branch-and-Cut (B&C) and a 

Variable Neighboorhood Search (VNS) algorithm for it. The algorithms were tested on 36 instances 

with up to four vehicles and 48 requests, generated from those proposed by Cordeau (2006) for the 

homogeneous DARP. Parragh et al. (2012) extended this work by considering drivers’ work duration 

limits and lunch breaks, and provided an algorithm combining column generation with a VNS method. 

Qu and Bard (2013) developed an Adaptive Large Neighborhood Search (ALNS) algorithm to solve 

the Heterogeneous Pickup and Delivery Problem with configurable vehicle capacity (H-PDP). 

Braekers et al. (2014) introduced the Multi-Depot H-DARP (MD-H-DARP). They provided a 2-index 

mathematical formulation, and solved it exactly using a Branch-and-Cut algorithm, while heuristic 
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solutions are obtained by a Deterministic Annealing (DA) algorithm. The developed algorithms were 

evaluated on the DARP benchmark instances with up to 13 vehicles and 144 requests proposed by 

Cordeau and Laporte (2003) and the H-DARP instances of Parragh (2011). To the best of our 

knowledge, these algorithms currently provide the best results on the H-DARP instances, while best 

results on the DARP instances are provided on by the Evolutionary Local Search (ELS) algorithm of 

Chassaing et al. (2016). 

The contributions of our paper are as follows: i) a hybrid Genetic Algorithm (GA) for the H-

DARP is proposed, in which efficient heuristics are used to generate initial solutions, and adapted 

crossover operators based on the characteristics of H-DARP are applied. ii) A local search strategy is 

used to further enhance the best solution proposed by the GA. iii) Computational experiments indicate 

that our approach is more effective than current state-of-the-art algorithms for the DARP and H-

DARP. Average gaps with the optimal or best known solutions are 0.47% and 0.05%, respectively, 

compared to 0.85% and 0.10% for the current state-of-the-art algorithms. iv) 40 new, larger, instances 

with up to 13 vehicles and 144 requests for the H-DARP are generated, in a similar way as the 

instances of Cordeau and Laporte (2003) for the DARP. Average results of the hybrid GA on these 

instances are 0.35% (0.26% for the data set E and 0.44 for the data set I) better than when applying the 

DA algorithm proposed by Braekers et al. (2014). Besides, the hybrid GA provides best results for 31 

of these instances and ties on 8 other instances. v) Computational experiments show the positive 

contribution to solution quality of the proposed construction heuristics, crossover operators and local 

search techniques in the hybrid GA. 

The rest of the paper is organized as follows. Section 2 presents a brief description of the H-

DARP. Section 3 presents the developed Hybrid GA. Section 4 reports the numerical experiments.  

Section 5 concludes the paper and gives future research directions. 

2. Problem description 

In this section, we recall the H-DARP definition proposed by Parragh (2011). Consider a graph 

𝐺 = (𝑉, 𝐴) with a set of nodes 𝑉 = {0,1, … ,2𝑛} and a set of edges 𝐴 = {(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝑉: 𝑖 ≠ 𝑗}. The cost 

and travel time on arc (𝑖, 𝑗) are denoted by 𝑐𝑖𝑗  and 𝑡𝑖𝑗, respectively. The node pair (𝑖, 𝑖 + 𝑛) 

corresponds to the pickup and delivery points of user 𝑖 = 1, … , 𝑛. The depot, in which a heterogeneous 

fleet of 𝐾 vehicles is available, is denoted by node 0. Each vehicle 𝑘 = 1, … , 𝐾  has a capacity 𝑄𝑟,𝑘
 
for 

resource type 𝑟=0, 1, 2 and 3. The four resource types represent staff seats, patient seats, stretchers and 

wheelchairs, respectively. Let 𝑞𝑖
𝑟 denote the demand of user 𝑖 for resource 𝑟. Similarly, user 𝑖 liberates 

𝑞𝑖+𝑛
𝑟  = −𝑞𝑖

𝑟 at node 𝑖 + 𝑛. 

The H-DARP consists of determining a route planning for satisfying the users’ demands while 

minimizing the total routing cost. A route planning solution should satisfy the following constraints: 

(1) Each route begins and ends at the depot 0;  

(2) The vehicle capacity 𝑄𝑟,𝑘(0,1,2,3 and 𝑘=1,…,𝐾) must be respected at each node 𝑖=0,…2𝑛; 

(3) Each node 𝑖 must be visited within its time window [𝑒𝑖;  𝑙𝑖] where 𝑖 ∈ 𝑉 and 𝑖 ≠ 0. If a vehicle 

arrives early, it must wait until the beginning of the time window 𝑒𝑖 to begin the service; 
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(4) Let 𝑎𝑖
𝑘 denote the arrival time of vehicle 𝑘 at 𝑖, and 𝑠𝑖

 
the service time; the departure time 𝑏𝑖

𝑘 ≥

 max {𝑎𝑖
𝑘 , 𝑒𝑖} + 𝑠𝑖; 

(5) A pickup and delivery node pair (𝑖, 𝑖 + 𝑛) must be visited in the same route, and the pickup node 𝑖 

must be visited before the delivery node 𝑖 + 𝑛, i.e., 𝑏𝑖
𝑘 ≤ 𝑎𝑖+𝑛

𝑘  

(6) Let 𝑙𝑖
𝑘=(𝑏𝑖+𝑛

𝑘 − 𝑠𝑖+𝑛)-𝑏𝑖
𝑘 denote the ride duration of user 𝑖; 𝑙𝑖

𝑘 may not exceed the maximum ride 

time 𝐿𝑚𝑎𝑥, i.e., 𝑙𝑖
𝑘 ≤ 𝐿𝑚𝑎𝑥;  

(7) If a vehicle travel 𝑘 travels along a directed edge (𝑖, 𝑗), we have 𝑎𝑗
𝑘 = 𝑏𝑖

𝑘 + 𝑡𝑖𝑗;  

(8) The duration of each route is strictly limited by 𝑇𝑚𝑎𝑥. 

For a detailed description and mathematical formulation of H-DARP, interested readers are 

referred to Parragh (2011) and Braekers et al. (2014). Note that we only consider the situation of 

minimizing routing costs, while waiting is allowed at no cost. 

3. Developed approach 

The concept of Genetic Algorithms (GAs) was first introduced by Holland (1975). The 

metaheuristic has been successfully used to deal with a large variety of combinatorial optimization 

problems, including the DARP (e.g., Cubillos et al., 2007; Jorgensen et al., 2007; Wang and Chen, 

2012). 

The basic GA design performs well in global search but spends much time to converge to 

reasonable solutions (Minocha and Tripathi, 2011). In contrast, local search techniques are often able 

to find optimal solutions in small search spaces very quickly. Thus, we provide a hybrid GA by 

incorporating effective local search techniques into a Genetic Algorithm in order to improve the 

convergence and reduce the computation time. 

The proposed hybrid GA framework is presented in Algorithm 1, and detailed in the following 

subsections. Four effective heuristics are used to provide the initial population of size N (Subsection 

3.2). Next, the hybrid GA runs for a number of iterations. In each iteration, the following steps take 

place. First, each individual in the population is evaluated based on its fitness (Subsection 3.3). 

Second, 𝑆 individuals are selected by tournament selection (Subsection 3.4). Third, two parents are 

selected randomly from the 𝑆 individuals, and two crossover operators (sequencing and assigning) are 

applied to these parents to produce four new solutions, called children. The two parents are then 

deleted from 𝑆. This process is repeated until all parents in 𝑆 have been selected and then deleted 

(Subsection 3.5). Fourth, if an obtained solution (child) is not feasible, a reparation phase is applied 

until it becomes feasible (Subsection 3.6). Fifth, the new solutions (children) in the population are 

improved by local search techniques (Subsection 3.7). The feasible solutions are then inserted into the 

population. Sixth, an elitist approach is applied to guarantee an improvement from one generation to 

the next (Subsection 3.8). Seventh, at every generation, a mutation phase (Subsection 3.9) is applied to 

h individuals, with ℎ being a randomly chosen value between 1 and 0.4*N. These ℎ individuals are 

randomly selected from the worst 40% of the new population, excluding the best individuals obtained 

after crossover. This is done to add new properties and to diversify the population. On each of these ℎ 
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individuals, 𝑡𝑚𝑢𝑡 mutation iterations are applied, where each iteration consists of applying four 

mutation operators in a fixed sequence. If the solution obtained after mutation is better than the 

solution it started from, the latter is replaced by the former in the population; else, the solution after 

mutation replaces a randomly selected worst individual that was not selected for mutation. Next, we 

proceed to the next generation. Finally, the best solution is returned when the stopping criterion of the 

hybrid GA is met. 

The main contributions of our method are in adapting the hybrid GA operators to the particular 

requirements of the H-DARP and in proposing a design for the overall organization of the hybrid 

algorithm to face the challenges posed by the specific aspects of the problem under study. 

Algorithm 1: Pseudo-code of the proposed hybrid Genetic Algorithm 

Begin  
Initial population: Generate the initial population of N individuals/solutions, partly randomly and partly using 

a set of construction heuristics; 

Repeat 

 Evaluation: Evaluate the N individuals according to the fitness function; 

 Selection: Select by tournament selection (binary technique) S individuals from the current population; 

Repeat 

Select Parents: randomly select two parents from S; 

Sequencing Crossover: perform crossover operator by sequencing on the selected parents; 

Assigning Crossover: perform crossover operator by assigning on the selected parents; 

Delete Parents: Delete the parents from S; 

Until all parents are selected; 

Reparation: Repair infeasible solutions/children; 

Improvement: Improve the quality of all children using local search (intra- and inter-route); 

       Replacement: Apply the Elitist approach; 

       Mutation: Select randomly ℎ individuals from the worst individuals; 

            For each of the h individuals 

                         Repeat 

          Perform intra-route mutation; 

          Perform inter-route mutation; 

                         Until the number of iterations 𝑡𝑚𝑢𝑡 is reached; 

                         If  an improvement is realized on the current solution Then 

                                  The previous individual is replaced by the new one; 

                         Else  
      The new individual replaces a randomly selected  individual from the other   (non-

selected) worst individuals; 

                         End If 

          End For 

Until the maximum number of generations 𝑛𝐻𝐺𝐴 is reached; 

Output the best individual as a result; 

End. 

3.1. Chromosome encoding 

A chromosome encoding with a sequence of available vehicles 𝑣𝑘 starting from the depot is 

considered. A route is represented by an ordered list of pickup and delivery nodes. Let 𝑑𝑖
+ and 𝑑𝑖

− the 

pickup and the delivery node of each user 𝑖, respectively. The depot is denoted 0. Each vehicle starts 

from the depot 0 and returns back to the same depot 0, e.g.,  for a solution with two routes and five 

requests the chromosome coding is as follows : 0,4+,4-,3+,5+,3-,5-,0 for vehicle 𝑣1 and 0,2+,1+,2-,1-,0 for 

vehicle 𝑣2. 
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3.2. Initial population 

As recommended by Liu et al. (2009), Liu et al. (2013), Nguyen et al. (2014) and Koc et al. 

(2015), several different construction heuristics (between two and four) should be used to construct the 

initial population. Thus, we propose four different fast construction heuristics, each generating a single 

initial solution. They are slightly modified, in order to quickly generate a set of four initial solutions of 

good quality and high diversity. These heuristics are described in the following subsections: 

- Two modified versions of the Sequential Construction Heuristic (SCH) of Solomon (1987) are 

used. The first is based on the Euclidian distance between two users denoted by  “SCH 1”, while 

the second, denoted by “SCH 2”, is based on the earliest starting time (𝑒𝑖) of the pickup node of 

each user 𝑖. 

- Two modified versions of the Parallel Insertion Heuristic (PIH) reported by Fu (2002) are 

applied in order to find the best position of insertion for the pickup and delivery of each user in 

every route. According to Parragh et al. (2008), and Cordeau and Laporte (2003), this PIH is fast 

and efficient.  

To complete the initial population of size 𝑁, 𝑁-4 solutions are generated randomly. For each 

solution, users are selected in a random order and inserted in a route that already exists. A new route is 

created to accommodate a user whenever any constraint of the existing routes is violated. The 

procedure stops when all users are inserted. 

In the H-DARP, each user is defined by a pickup node and drop-off node. For each insertion 

method, inserting a user is equivalent to the insertion of its pickup node first, and then its drop-off 

node (not necessarily immediately after the pickup node), unless mentioned otherwise. 

3.2.1. Sequential Construction Heuristic 1 (SCH 1) 

This heuristic is a modified version of the one proposed by Solomon (1987). The closeness of two 

users is based on the Euclidian distance between their corresponding pickup nodes. A vehicle starts at 

the depot and visits the nearest user (the first in the list); then, the following in the list, etc. At the end 

of the route, the vehicle returns back to the depot. We consider as many vehicles as necessary, until all 

users are assigned, while respecting capacity, ride time, maximum route duration and time window 

constraints.  

The Sequential Construction Heuristic 1 (SCH 1) works as follows: We initialize the set of non-

assigned users sorted in increasing order of the Euclidean distance between their pickup location and 

the depot. We repeat the following until all users are assigned: We select the first non-assigned user in 

the list, and try to insert its pickup and drop-off nodes after the last inserted user in the first activated 

vehicle. If the insertion is not possible, we check with the next activated vehicle if this exists. If all 

activated vehicles are checked and the user is not inserted, we activate a new vehicle and insert the 

user in this new vehicle. We update the list of non-assigned users and the list of activated vehicles 

after the assignment of a user and the activation of a new vehicle, respectively.  
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3.2.2. Sequential Construction Heuristic 2 (SCH 2)  

The structure of the SCH 2 is similar to SCH 1; only step 1 differs. All the requests are listed in 

increasing order of their pickup times (the earliest starting time (𝑒𝑖) within the time window). 

3.2.3. Parallel Insertion Heuristic 1 (PIH 1) 

We have slightly modified the heuristic applied by Fu (2002) for the Dial-A-Ride problem with 

varying and stochastic travel times. The set of users are sorted in increasing order of the earliest 

starting time of their pickup node (𝑒𝑖). The 𝑚 routes (0<𝑚<𝐾 with 𝐾 being the number of vehicles 

and m selected randomly) are initialized and designed in parallel. Each of the 𝑚 first users is assigned 

to a different route. Next, we try to insert the rest of users, one by one, into the routes while respecting 

the vehicle capacity, ride time, time window and maximum duration constraints. The insertion is based 

on two steps. First, routes are sorted by the distance between the last assigned user to this route and the 

new user to insert. Second, route per route, it is tested whether the new user can be feasibly inserted in 

the route. If this is the case, the pickup and drop-off nodes of the user are inserted at their best 

positions in this route. If not, the next route is examined. If some users are still not assigned, a new 

route is opened and the same insertion technique is applied, until all users are assigned. 

3.2.4. Parallel Insertion Heuristic 2 (PIH 2)  

The structure of this heuristic is similar to PIH 1. The difference is that here the users are sorted by 

the Euclidean distance between their pickup locations and the depot. We consider all the 𝐾 routes. The 

routes are initialized and designed in parallel. Each of the 𝐾 first users is assigned to a different route. 

The rest of users are inserted into the routes while respecting the vehicle capacity, ride time, time 

window and maximum duration constraints (See Algorithm 2). 

Algorithm 2: Parallel Insertion Heuristic 2 (PIH 2)  
Begin 
Initialize the set of non-assigned users sorted in increasing order of the Euclidean distance between their pickup 

locations and the depot; 

Assign the first K users to the K available vehicles (one user per vehicle); 

Repeat 
Select the first non-assigned user from the list; 

Sort vehicles in the increasing order of distance between the last assigned user in the vehicle and the selected 

user; 

Select the first vehicle in the list; 

Repeat 

Check the insertion feasibility of the user’s pickup and drop-off nodes in the selected vehicle’s route, 

starting from the beginning of the vehicle’s route, until the end; 

If one or more feasible options are found Then 

      Insert the user in the best position;   

Else 
      Select the next vehicle in the list; 

Until the user is inserted 

Remove the user from the list of non-assigned users; 

Until all users are assigned; 

Output the solution as a result; 

End. 
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3.3. Evaluation: fitness function 

In evolutionary algorithms, the fitness function measures the quality of each individual. The 

traditional function used in the literature is to calculate the lengths of all routes (Choi et al., 2003; 

Wink et al., 2012), sometimes increased with a dynamically adapted penalty to penalize infeasible 

routes like in Cao and Lai (2007) and Li (2009). In addition to the measurement of the individual’s 

quality, the provided fitness function in this study allows for a better exploitation and a wider diversity 

of the search during the selection phase (Buro, 1997). 

To measure the quality of a solution  𝐼, the fitness function (1) is considered: 

𝐹𝑖𝑡 (𝐼)=
1

1+𝑒𝑥𝑝(𝑓𝑅𝐶(𝐼))                        (1) 

This fitness function contains an exponential argument in the denominator for reducing fitness 

differences between individuals. Hence, the genetic algorithm behaves like a random search algorithm 

for a better space exploration (Buro, 1997). Here, the objective function value 𝑓𝑅𝐶(𝐼) is the total 

routing cost over all vehicles. 

3.4. Selection: Tournament 

The selection by tournament provided by Miller and Goldberg (1995) is considered in our 

algorithm. It has demonstrated effectiveness for several transportation problems (Freitas, 2013). The 

principle is to choose a subset of (𝑠) individuals from the population (called the tournament size), and 

then select the individual in the group which has the highest fitness value. This process is repeated 

until the number of required individuals (𝑆) is reached.  

3.5. Crossover 

In the crossover operator, genes of two parent solutions are recombined to form new descendants, 

called children. In the literature, the majority of developed GAs uses a single type of crossover. This, 

to some extent, reduces the search space of the algorithm. To better explore the search space and to 

enhance the quality of solutions, we propose applying two different crossover operators (crossover by 

sequencing followed by crossover by assigning) on each pair of parents selected from the 𝑆 

individuals. The integration of these two crossover operators is one of the originalities of our GA and 

provides a better balance between exploitation and exploration. The first crossover operator is 

intended for creating and exploring a new search space, while the second is applied to exploit the 

characteristics of the selected parents.  

3.5.1. Crossover by sequencing 

The crossover by sequencing operator (See Figure 1) creates two children from two parents (P1 

and P2). The first child (E1) is generated by the simplified procedure OX proposed by Prins (2004). In 

this procedure we use a random one-point crossover 𝑝, with a slight modification, in order to respect 

the constraint that the corresponding pickup and delivery nodes must be visited in the same route 

(vehicle). The first child inherits all the genes located in the first parent P1 before the crossover point 
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𝑝. The remaining elements of the first child are inherited from the first parent in the same order of 

their appearance in the second parent beginning from the first route. 

The second child (E2) is generated symmetrically while exchanging the roles of the two parents. 

 

 

 

 

 

 

 

  

 

  

 

 

 

 

 

 

Figure 1: Crossover by sequencing 

3.5.2. Crossover by assigning  

The crossover by assigning operator is obtained by slightly modifying the Merge Crossover 

operator (MX1) suggested by Blanton and Wainwright (1993). The MX1 operator consists of 

generating one child from two parents by comparing genes one by one. The gene whose time window 

is earlier is inserted into the child, while the other gene is swapped in the corresponding parent as 

explained below. This crossover operator is modified so as to create two children (Hosny and 

Mumford, 2010); the first child is obtained by a comparison between the two genes according to their 

earliest time values (𝑒𝑖), and the second according to their latest time values (𝑙𝑖) (respecting the 

precedence constraints). The corresponding process is explained in Figure 2 for the first child. When 

comparing the first genes of both parents P1 and P2, suppose 𝑒2+ < 𝑒3+. Hence, gene 2+ of P1 is 

inserted into the child, while in parent P2 gene 3+ swaps location with gene 2+ to maintain validity. 

For the second gene, suppose 𝑒4+ < 𝑒5+, and so on. The third gene is the same for both parents (1+) 

and is inserted in the child. In the case of comparison with node 0 (depot), we keep this node (pickup 

or drop-off) and copy it in the child E1. If the related node (delivery or drop-off) is not present in child 

E1, then we add it just before or after the copied node. The resulting children may not be feasible with 

respect to time windows, capacity and ride time constraints, though. In that case, the infeasible 

solution is repaired as explained in Subsection 3.6. 
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Figure 2: Crossover by assigning: child E1 

3.6. Repairing infeasible solutions 

To obtain a feasible solution, many constraints have to be respected in the H-DARP: capacity, 

time windows, ride time, route duration and precedence constraints. After the process of crossover, 

some solutions may be of low quality and sometimes infeasible. In this case, in order to repair the 

solution, an amendment phase is applied to all infeasible routes. First, 𝑚 nodes are selected randomly 

from each infeasible route. The value of 𝑚 is randomly selected in the interval [𝑧𝑙 , 𝑧𝑢], where 𝑧𝑙  and 

𝑧𝑢 are respectively the lower and upper bounds that are calculated as a percentage of the total number 

of nodes in this route. Then, the “best position” procedure is applied to try to insert these 𝑚 nodes. 

This operator consists of finding for every node 𝑗 the most appropriate insertion position, in the same 

route from which it was removed. This insertion respects the ride time, precedence and time window 

constraints. The best option (least increase in costs) is then selected and performed. This process 

continues until all nodes have been inserted. 

If the insertion of a node is infeasible, we place it with its corresponding pickup/drop-off node in a 

list 𝐿. At the end, when all infeasible routes have been considered, the pairs of pickup and drop-off 

nodes in list 𝐿 are inserted one at a time in any route using the “best position” described before, while 

respecting the feasibility of the solution. All possible insertion positions are identified, and the one 

increasing the routing cost the least is selected. If, after these attempts, the solution is still infeasible, 

we randomly select one of the initial solutions provided by our construction heuristics, and improve it 

by randomly selecting a local search among those provided in Subsection 3.7. The infeasible solution 

is then replaced by this newly obtained solution. This replacement procedure is a modified version of 

Merz and Katayama (2004).    

3.7. Improvement: Local Search 

To improve the quality of each child that is generated by the crossover operators, several well-

known local search operators are applied to explore the search space by performing simple moves. 

0 3+ 3- 1+ 1- 0 

0 4+ 5+ 5- 2+ 2- 4- 0 

0 2+ 4+ 1+ 1- 4- 6- 0 

0 3+ 5+ 3- 5- 0 

0 2+ 4+ 1+ 1- 4- 2- 0 

0 3+ 5+ 3- 5- 0 

0 2+ 4+ 1+ 1- 4- 2- 0 

0 3+ 5+ 3- 5- 0 
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P1 
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Route2 
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Route2 

 

Route1 

Route2 
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Two are intra-route operators: the 2-opt operator of Lin (1965) and a relocate operator of Savelsbergh 

(1992). Three are inter-route operators: the 2-opt* operator of Potvin and Rousseau (1995), a relocate 

operator, and the remove two insert one operator of Xiang et al. (2006). 

The proposed local search starts by sorting routes in decreasing order of the distance. The idea is 

that long routes often contain remote users that cause high routing costs. Thus, these routes need to be 

primarily improved. 

The inter- and intra-route local search operators are discussed in Subsections 3.7.1 and 3.7.2, 

respectively. The applied search strategy is presented in Subsection 3.7.3. 

3.7.1. Inter-route local search 

In the inter-route phase, we use three local search operators in sequence to explore all movement 

of users/edges between routes: 

- First, the 2-opt* operator is applied on each combination of pairs of arcs in different routes.  

- Second, a relocation operator that relocates a user’s pickup and delivery nodes from one route to 

another is applied. The nodes are inserted in their best possible position, while respecting the 

feasibility of the solution. 

- Third, the "Remove two insert one" operator provided by Xiang et al. (2006) is applied for each pair 

of routes from the solution. It consists of removing two randomly selected users from a route and 

inserting them one by one (in a random order) in another route, while maintaining feasibility. 

3.7.2. Intra-route local search 

Another improvement phase is considered in our approach and consists of improving each route 

separately. For this purpose, we use two traditional local search operators. First, we apply the 2-opt 

operator on each pair of arcs; next, a relocate operator is applied on each user in the route by removing 

the user and reinserting it in the best possible position.  

3.7.3. Framework of the proposed local search strategy 

To obtain high quality solutions, the proposed local search procedure is repeated for a fixed 

number of iterations. The structure of our local search is explained in Algorithm 3, and computational 

experiments are provided in Table 6 to show the efficiency of the applied local search operators. 

Algorithm 3: The local search strategy 

Begin 

Repeat 

Sort routes  in descending order of distance; 

 For each route   

  For each route   

   Apply the 2-opt* operator on routes Ri and Rj; 

 For each route  

  For each route  

   Apply the inter-route relocate operator (try to remove a user from Ri  

                 and insert it in route Rj); 

 0 ,..., kR R

 1,...,i kR R R

 1,...,    j i kR R R

 1,...,i kR R R

 1,...,    j i kR R R
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For each route  

  For each route  

   Apply the remove two insert one operator; 

 For each route  

  Apply the 2-opt operator on route Ri; 

 For each route  

  Apply the intra-route relocate operator; 

Until maximum iterations is reached (100) or no improvement for ten consecutive iterations; 

Output the solution as a result; 

End. 

3.8. Replacement: Elitism strategy 

The "Elitism strategy" is considered to determine the individuals that will disappear from the 

population. To create the population of the new generation 𝜇∗, the tournament technique described in 

Subsection 3.4 is applied. We select 𝑠 individuals from the current population of children (𝜕) and the 

best one is put in 𝜇∗. A similar procedure is applied on the current population (𝜇). This process is 

repeated until 𝜇∗ is filled. This strategy ensures the diversity of solutions throughout the search. 

3.9. Mutation 

The use of several mutation operators is recommended in the literature (e.g., Vidal et al., 2012, 

2013; Tasan and Gen, 2012) in order to incorporate new characteristics in the population and enlarge 

the feasible search space (Wang and Chen, 2012). Thus, in our algorithm, four mutation operators are 

used; two inter-route mutation operators and two intra-route mutation operations. The four mutations 

are applied in a fixed sequence, from one to four, for each selected solution. We apply specific 

modifications to some traditional mutation operators as described in the following subsections. 

3.9.1. Inter-route mutation 

As the first inter-route mutation operator, the famous 2-opt exchange heuristic is adapted to deal 

with heterogeneous vehicles (See Figure 3). Two randomly selected users, assigned to different routes, 

are swapped, if possible. The application of this operator is repeated until we find a feasible option. 

  

 

 

 

        

0 2+ 5+ 5- 1+ 1- 2- 7+ 7- 0 

0 6+ 3+ 6- 4+ 3- 4- 0 

Figure 3: Inter-route mutation: Exchange between (1+, 1- ) and (6+, 6- ) 

A second inter-route mutation operator consists of removing a randomly chosen user from the 

vehicle with the largest number of users, and inserting it in the vehicle that contains the smallest 

number of users. The insertion position is chosen randomly out of those that respect the time and 

 1,...,i kR R R

 1,...,    j i kR R R

 1,...,i kR R R

 1,...,i kR R R

0 2+ 5+ 5- 6+ 6- 2- 7+ 7- 0 

0 1+ 3+ 1- 4+ 3- 4- 0 

Route 1 

Route 2 

 

E1 

E1’ 
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vehicle capacity constraints. If no feasible position exists, a new user is selected. This operator allows 

balancing the loads between the different vehicles. 

3.9.2. Intra-route mutation 

In the first intra-route mutation two nodes of a single route are selected randomly. Next, their 

respective positions are exchanged, under the condition that the resulting solution is feasible (See 

Figure 4). 

0 2+ 5+ 5- 1+ 1- 2- 3+ 4+ 3- 4- 0 

 

0 2+ 5+ 5- 1+ 3+ 2- 1- 4+ 3- 4- 0 

 Figure 4: Intra-route mutation: exchanging the positions of two nodes 1- and 3+ within the same 

route 

A second intra-route mutation operator (See Figure 5) is considered and consists of randomly 

choosing a delivery node, changing its position with a later delivery node (chosen randomly), while 

respecting the feasibility of the final solution. If no feasible option exists, we choose another node. 

This operation is repeated until we get a feasible solution or all delivery nodes have been considered. 

0 2+ 5+ 5- 1+ 3+ 3- 1- 4+ 2- 4- 0 

  

0 2+ 5+ 5- 1+ 3+ 2- 1- 4+ 3- 4- 0 

 

 Figure 5: Intra-route mutation: node reinsertion (the position of node 2- is exchanged with the 

position of node 3-) 

4. Computational experiments 

The hybrid Genetic Algorithm was implemented in C. The experiments were conducted on a 

Fujitsu Siemens laptop with Intel Celeron 4 GHz and 1.86 GB of RAM. Six artificial benchmark data 

sets are considered. Results are compared to those of the Deterministic Annealing (DA) algorithm of 

Braekers et al. (2014) and the Evolutionary Local Search (ELS) algorithm of Chassaing et al. (2016). 

In Subsection 4.1 the benchmark data sets are discussed. Parameter settings and design decisions 

for the algorithm are discussed and analyzed in Subsections 4.2 and 4.3, respectively. Finally, the 

results are presented in Subsection 4.4. 

4.1. Benchmark instances 

For small instances, we consider the benchmark data of Parragh (2011) for the H-DARP, 

containing three artificial data sets (U, E, I). These instances are based on modifying the instances 

provided by Cordeau (2006) for the standard DARP, in which the characteristics of heterogeneous 

vehicles and users are introduced. The instances contain 2–4 vehicles and 16–48 requests. Braekers et 

al. (2014) generated medium-sized instances for the H-DARP in a similar way. These contain 5-8 

Route i E1 

E1’ 

E1’ 

Route i 

Route i 

E1 Route i 
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vehicles and 40-96 requests. For both the small and medium instances, the user time window length is 

15 minutes, the maximum user ride time 𝐿𝑖= 30 minutes, and the service time 𝑠𝑖= 3 minutes. Two 

vehicle types are considered, with four types of resources: staff seats, patient seats, stretcher places 

and wheelchair places. To generate the instances (U, E, I), Parragh (2011) considered the probabilities 

shown in Table 1. 

Table 1: Probabilities used to generate instances by Parragh (2011) 

Instance Patient request probabilities Probability for 

companion (%) 

Vehicle fleet 

Set % Seat %  stretcher % wheelchair     

U 1.00 0.00 0.00 0.00 Homogeneous (T0) 

E 0.50 0.25 0.25 0.10 Homogeneous (T2) 

I 0.83 0.11 0.06 0.50 Heterogeneous (T1, T2) 

In data set U, homogeneous users and vehicles of types T0 are considered, while heterogeneous 

users are used in data set E with homogeneous vehicles of type T2. Vehicles of type T0 only have 3 

patient seats, while vehicles of type T1 have a capacity configuration of 2 staff seats, 1 patient seat, 1 

stretcher, and 1 place for wheelchair. In data set I, heterogeneous users and vehicles (T1, T2) are 

included, in which vehicles of type T2 provide 1 staff seat, 6 patient seats, 0 stretchers, and 1 place for 

a wheelchair. 

For larger instances, we considered the same instance generation idea of Parragh (2011) explained 

in Table 1 and applied it to the 20 benchmark instances provided by Cordeau and Laporte (2003) for 

the DARP.; i.e., the original homogeneous data set is denoted by set U, while two additional 

heterogeneous data sets (E and I) have been generated by modifying the instances as in Parragh 

(2011). The instances contain 3-13 vehicles and 24-144 requests, randomly generated in a [-10, 10]2 

sized Euclidean plane. Service time 𝑠𝑖=3 minutes for all users, the transportation time 𝑡𝑖𝑗 is equal to 

the Euclidean distance between 𝑖 and 𝑗 (denoted 𝑑𝑖𝑗), the route duration limit 𝑇𝑚𝑎𝑥= 480 minutes, and 

the maximum ride time 𝐿𝑚𝑎𝑥= 90 minutes. The time window range is between 15 and 45 minutes for 

instances R1a to R10a, and between 30 and 90 minutes for the instances R1b to R10b. For the 

heterogeneous instances, upgrading conditions are applied as discussed in Parragh (2011).  

4.2. Parameter setting 

The proposed hybrid GA has several parameters that need to be set. Inspired by the experimental 

testing of Koç et al. (2015) the number of local search iterations is set to 100, 𝑡𝑚𝑢𝑡= 10 and [𝑧𝑏 , 𝑧𝑢]= 

[0.2, 0.9]. A sensitivity analysis is performed to find good parameter settings for the other parameters: 

population size (𝑁), number of solutions chosen for crossover (𝑆), number of iterations ( 𝑛𝐻𝐺𝐴), and 

tournament size (s). Prins (2004) provided some guidance for setting these parameter values when 

solving the vehicle routing problem. We follow this guidance with respect to the small population size, 

and the large number of solutions chosen for crossover. 

The combined impact of the former three parameters is tested on 12 problem instances, which are 

selected such that the number of requests varies from small to large with different levels of 

heterogeneity.  For each instance from this data set, we ran the algorithm five times for each parameter 
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setting. For each parameter, three values are considered: number of iterations  𝑛𝐻𝐺𝐴= {20,000; 50,000; 

100,000}, population size 𝑁= {10, 20, 30} and the number of individuals selected for crossover 𝑆= 

{0.7*N, 0.8*N, 0.9*N}. Concerning the number of solutions chosen for crossover (𝑆), we considered a 

high crossover rate (between 0.6 and 1.0), as recommended by Holland (1975) and Prins (2004). In 

Table 2, the computational results of the sensitivity analysis are presented. The row “Best” (“Avg”) 

refers to the average over all instances of the best (average) solution value obtained by our hybrid GA 

algorithm for the corresponding parameter combination, while the row “CPU(s)” gives the average run 

time in seconds. We note that the detailed results of each instance are available on the website: 

http://hdarp-results.e-monsite.com. 

Table 2: Identification of the best parameter setting for the hybrid GA 

 𝑛𝐻𝐺𝐴 20,000 

(N,S) (10,0.7*N) (10,0.8*N) (10,0.9*N) (20,0.7*N) (20,0.8*N) (20,0.9*N) (30,0.7*N) (30,0.8*N) (30,0.9*N) 

Best  731.92 732.78 733.26 732.62 732.85 731.21 732.97 733.27 732.43 

Avg 729.08 730.47 730.48 729.14 730.57 728.99 730.49 728.80 730.22 

CPU (s) 92.87 98.62 101.79 101.69 98.56 98.70 101.23 98.80 101.80 

 𝑛𝐻𝐺𝐴 50,000 

(N,S) (10,0.7*N) (10,0.8*N) (10,0.9*N) (20,0.7*N) (20,0.8*N) (20,0.9*N) (30,0.7*N) (30,0.8*N) (30,0.9*N) 

Best  730.87 730.11 729.02 730.25 729.02 729.02 729.88 729.26 730.09 

Avg 730.62 729.20 727.95 729.66 729.45 728.49 729.17 728.37 728.45 

CPU (s) 106.86 106.85 106.70 107.07 106.95 107.94 107.92 108.23 109.44 

 𝑛𝐻𝐺𝐴 100,000 

(N,S) (10,0.7*N) (10,0.8*N) (10,0.9*N) (20,0.7*N) (20,0.8*N) (20,0.9*N) (30,0.7*N) (30,0.8*N) (30,0.9*N) 

Best  729.02 728.90 729.02 729.02 729.02 729.02 729.02 728.77 728.72 

Avg 727.89 727.89 727.98 727.80 727.84 727.62 727.40 727.55 726.86 

CPU (s) 178.50 195.66 208.24 243.89 252.24 367.88 329.17 400.44 444.49 

The number of iterations 𝑛𝐻𝐺𝐴 and the values of 𝑁 and 𝑆 remarkably affect the solution quality.  

Table 2 shows that the average solution quality is not greatly improved after 50,000 iterations, while 

the computation time obviously increases with increasing the number of iterations. Therefore, the 

parameters setting (indicated in bold) 𝑛𝐻𝐺𝐴=50,000 iterations, 𝑁= 10, and 𝑆=0.9*𝑁 appears to offer 

the best trade-off between average solution quality and CPU time. Hence, these values were used in all 

further experiments. 

Finally, experiments were conducted to set the tournament size (s). As Liu et al. (2015) indicated, 

the larger the tournament size is, the less the opportunity to choose weak individuals. In this study, 

tournament sizes of two, five, seven and nine are tested on some different instances types. In Table 3, 

12 instances of each data set (U, E, I) have been analyzed. These instances were chosen such that the 

number of requests varies from small to large with various degrees of heterogeneity.  Each instance 

was solved five times for each given parameter value 𝑠 = {2, 5, 7 and 9}. The columns “Best” (“Avg”) 

report the best (average) solution values and CPU(s) refers to the computational time in seconds.  

Table 3: Impact of tournament size on the quality of solution 

Instances 
 

𝑠=2     𝑠=5       𝑠=7       𝑠=9     

Avg Best CPU 
(s) 

  Avg Best CPU 
(s) 

  Avg Best CPU 
(s) 

  Avg Best CPU 
(s) 

a4-32 (U) 485.50 485.50 37.84  485.50 485.50 37.79  485.50 485.50 36.68  485.50 485.50 38.49 

a8-64 (U) 747.46 747.46 55.73  747.46 747.46 55.52  747.46 747.46 54.15  747.46 747.46 56.64 

a3-30 (E) 503.34 501.87 25.14  500.58 500.58 25.16  500.58 500.58 24.45  500.58 500.58 25.57 

http://hdarp-results.e-monsite.com/
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a8-96 (E) 1268.71 1266.36 93.14  1270.31 1266.38 92.50  1266.03 1265.36 90.61  1267.56 1266.23 94.34 

a6-60 (I) 835.09 832.18 59.67  834.42 832.61 59.38  830.49 830.29 57.80  830.84 830.56 60.60 

a6-72 (I) 940.17 937.45 84.68  938.38 937.69 84.17  936.51 936.32 82.13  936.51 936.48 85.60 

R9a (U) 662.02 660.24 95.16  660.24 659.00 91.34  660.24 660.24 92.20  661.89 661.63 96.79 

R5b (U) 582.62 581.42 204.80  583.95 582.46 204.66  582.06 579.03 198.19  583.56 581.98 208.41 

R2b (E) 314.53 314.12 63.96  314.32 314.12 63.76  314.12 314.12 62.06  314.12 314.12 64.91 

R3b (E) 554.33 553.25 84.04  554.13 554.08 83.83  553.15 551.95 81.32  554.33 552.03 85.09 

R6a (I) 845.20 844.62 193.73  844.06 841. 82 181.96  844.26 843.27 188.32  845.62 842.78 196.20 

R8b (I) 520.94 518.70 116.43   521.16 518.08 115.53   520.01 517.26 112.43   521.56 520.34 117.81 

Table 3 shows the influence of tournament size on the performance of the hybrid GA. We 

conclude that the tournament size value 𝑠 = 7 produces better solutions for most instances, in terms of 

both best and average results as well as computational time, compared to other tournament sizes. 

4.3. Analysis of design decisions 

In this section, the effect on performance of the main components of our algorithm is assessed. 

4.3.1 Impact of the GA design components on the hybrid GA 

In our hybrid GA, many components (sequencing/assigning crossover, intra/inter route mutation 

and local search operators) are applied. We consider the execution of the hybrid GA with and without 

the incorporation of the sequencing/assigning crossover and intra/inter route mutation. Thus, several 

combinations are selected and tested. We also evaluate the impact of the local search operators on the 

performance of each combination. These combinations can be classified into three categories, as 

shown in Table 4. The first category (the combinations from 1 to 8 in Table 4) consists of  choosing 

only one crossover operator (sequencing or assigning) and only one mutation (inter or intra- route). 

The second category (the combinations from 9 to 12 in Table 4) combines only one crossover operator 

(sequencing or assigning) with the two mutations (intra and inter- route). The third category (the 

combinations from 13 to 15 in Table 4) combines two crossover operators with only one mutation 

(intra or inter-route). We note that the final combination in Table 4 represents our hybrid GA 

following the general structure of Algorithm 1.  

In order to determine the best hybridization scheme and the impact of each component on the 

solution quality, we provide in Figure 6 a comparison between the configurations in terms of the best 

and the average value of five runs (Avg) on small-medium sized instances (a) and large sized instances 

(b), for all data sets U, E and I. For more details, the readers can find the detailed results of each data 

set (U, E, I) in the website. 

Table 4: Combination of different component of the GA 

Combination   Description 

1  GA (sequencing crossover and inter-route mutation operators) 

2  GA (sequencing crossover and inter-route mutation operators)+ local search procedure 

3  GA (sequencing crossover and intra-route mutation operators) 

4  GA (sequencing crossover and intra-route mutation operators)+ local search procedure 

5  GA (assigning crossover and intra-route mutation operators) 

6  GA (assigning crossover and intra-route mutation operators)+ local search procedure 

7  GA (assigning crossover and inter- route mutation operators) 

8  GA (assigning crossover and inter- route mutation operators)+ local search procedure 

http://hdarp-results.e-monsite.com/
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9  GA (assigning crossover and inter and intra- route mutation operators) 

10  GA (assigning crossover and inter and intra- route mutation operators)+ local search procedure 

11  GA (sequencing crossover and inter and intra- route mutation operators) 

12  GA (sequencing crossover and inter and intra- route mutation operators)+ local search procedure 

13  GA (two crossovers and inter-route mutation) 

14  GA (two crossovers and inter-route mutation)+ local search procedure 

15  GA (two crossovers and intra-route mutation)+ local search procedure 

16   GA (two crossovers and intra and inter-route mutation)+ local search procedure 

 

 

Figure 6: The impact of different components of the hybrid GA on different sized instances 

By using only one crossover operator and both intra and inter-route mutations, we observe a slight 

advantage compared to using only one crossover operator, and either inter or intra-route mutation. 

However, a big improvement is observed when applying two crossover operators. In addition, the 

results in Figure 6 show that the solution quality is similar for the two configurations that use two 

crossovers with inter or intra-route mutations (two crossovers and intra-route mutation, two crossovers 

and inter-route mutation), which indicates the effectiveness of using the two crossovers. 

Figure 6 shows that the incorporation of the different crossover and mutation operators 

significantly affects the performance of the algorithm. It is also observed that the hybridization with 

local search on each combination improves the performance of the GA. In fact, the best solution 

obtained by the configuration “assigning crossover and intra-route mutation” for the small-medium 

633,00

634,00

635,00

636,00

637,00

638,00

639,00

640,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

O
b

je
ct

iv
e 

F
u

n
ct

io
n

 V
a

lu
e

Combination

(a)

Avg

Best

540,00

542,00

544,00

546,00

548,00

550,00

552,00

554,00

556,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

O
b

je
ct

iv
e 

F
u

n
ct

io
n

 V
a

lu
e

Combination

(b)

Avg

Best



18 

 

instances was 638.89, compared to 637.72 achieved when the local search operators were added to this 

configuration. In addition, applying both assignment and sequencing crossovers and inter and intra-

route mutations (last configuration in Figure 6) is the most effective configuration for all instances. 

4.3.2. Impact of local search operators on the hybrid GA 

The local search operators were explained in Subsection 3.7. They are considered important to 

achieve good quality solutions. As shown in Figure 7, we compared the objective function values over 

five runs of different local search combinations (shown in Table 5) on small-medium sized instances 

(c) and large sized instances (d) of all data sets U, E and I.  

Table 5: Combination of local search operators 

Combination  Local search(s) 

1 2-opt 

2 Relocate (Intra-route) 

3 2-opt* 

4 Remove two insert one 

5 2-opt + Relocate (Intra-route) 

6 Relocate (Intra-route) +  Relocate (Inter-route) 

7 2-opt + Relocate (Intra-route) + 2-opt* 

8 2-opt + Relocate (Inter-route) + Remove two insert one 

9 2-opt+ Relocate (Intra-route) + 2-opt*+ Relocate (Inter-route) 

10 2-opt+ Relocate (Intra-route) + 2-opt*+ Relocate (Inter-route) +Remove two insert one 

 

 

Figure 7: Effect of local search operators  
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By using only one local search in the hybrid GA, we observe that there is no improvement 

obtained in the solution quality. However, after the application of four or five operators in the same 

move, the solution quality is highly affected. The combination of the five local search operators 

(combination 10) provides the best results. 

4.3.3 Effect of the mutation phase on the hybrid GA 

In traditional GA, the mutation is usually conducted after the crossover phase and before the 

replacement phase (Elitist approach) as mentioned in Liu et al. (2009), Liu et al. (2013) and Nguyen et 

al. (2014). But in our case the mutation is considered after the replacement phase with the intention of 

increasing diversity and enhancing the performance of the GA.  

To test the usefulness of our mutation procedure, we compared the best (average) results obtained 

by our hybrid GA using mutation after replacement and mutation before replacement, as shown in 

Table 6. The analysis was performed on 12 instances from each data set (U, E, I). Again, these 

instances were chosen such that the number of requests varies from small to large with various degrees 

of heterogeneity. We note that the columns “Best%” (“Avg%”) present the percentage of deviation 

from the best (Avg) solutions found by our hybrid GA with mutation procedure after replacement 

procedure. 

       Table 6: Importance of mutation procedure in our hybrid GA 

Instances 

hybrid GA with mutation 

procedure after 

replacement phase 

  
hybrid GA with mutation procedure before 

replacement phase 

  Avg Best 
CPU 

(s) 
  Avg Avg % Best Best % CPU (s) 

a4-40 (U) 557.69 557.69 37.82  560.88 0.57 557.69 0.00 40.61 

a8-96 (U) 1231.04 1229.66 95.13  1237.03 0.49 1231.68 0.16 101.81 

a5-60 (E) 828.90 828.90 58.10  833.48 0.55 830.03 0.14 65.58 

a7-84 (E) 1093.90 1092.90 82.27  1102.13 0.75 1096.07 0.29 87.64 

a4-32 (I) 487.14 486.93 35.49  489.96 0.58 487.80 0.18 40.15 

a6-48 (I) 604.12 604.12 49.01  609.56 0.90 606.00 0.31 52.26 

Avg 800.47 800.03 59.64   805.51 0.63 801.55 0.19 64.68 

R9a (U) 660.24 658.31 92.20  664.33 0.62 660.11 0.27 99.20 

R5b (U) 582.06 579.03 198.19  583.74 0.29 581.62 0.45 224.38 

R9a (E) 748.87 746.23 97.01  752.10 0.43 749.10 0.38 109.87 

R9b (E) 703.15 699.06 170.20  705.31 0.31 702.03 0.43 191.35 

R5a (I) 679.11 677.50 142.48  680.87 0.26 679.55 0.30 161.95 

R4b (I) 559.12 557.99 222.52  561.45 0.42 560.66 0.48 251.18 

Avg 655.43 653.02 153.77   657.97 0.39 655.51 0.39 172.99 

According to Table 6, in all instances (except a4-40 (U)), we notice the existence of positive 

percent values found by the hybrid GA with mutation before replacement. Thus, it is deduced that the 

use of mutation before replacement procedure is not effective in avoiding convergence during the 

evolutionary process. In fact, the performance of the hybrid GA using mutation procedure before 

replacement phase, in terms of both best solution found and CPU time, is worse than our proposed 

hybrid GA, as indicated in Table 6. 
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4.4. Results on the HDARP instances 

Our hybrid GA is compared to the ELS algorithm of Chassaing et al. (2016) and the DA algorithm 

of Braekers et al. (2014). Each instance is computed five times using each method. For each Table in 

this section, columns “Best” (“Avg”) report the best (average) solution values. The columns “Best %” 

(“Avg %”) present the percentage of deviation from the best solutions (BS). CPU(s) refers to the 

computation time in seconds. We note that with respect to computation times, we cannot fairly 

compare the performance of our algorithms against those reported in Braekers et al. (2014) and 

Chassaing et al. (2016). This is due to using a different machine for each of these algorithms. 

Moreover, the processing times reported in Table 8 cannot be accurately compared, since no relevant 

information has been reported in Dongarra (2014) and in Linpack (www.roylongbottom.org.uk) 

regarding the computational power of MFlops and the speed factor of the configuration used for the 

DA algorithm of Braekers et al. (2014). Similarly, no such information is available for our 

configuration. Nevertheless, for the ELS algorithm of Chassaing et al. (2016), the number of MFlops 

was reported as equal to 2,529. 

Table 7 shows the results of our hybrid GA and the DA of Braekers et al. (2014) on the small 

instances of Parragh (2011) and the medium instances of Braekers et al. (2014). We note that, the 

detailed results of this Table can be found in our website.  

Table 7: Comparison of DA and hybrid GA on small and medium instances 

Instances BSa   DA (Braekers et al., 2014)b   Our hybrid GA  

  Avg Avg 

% 

Best Best 

% 

CPU (s) Avg Avg 

% 

Best Best 

% 

CPU 

(s) 

Avg U 627.73a   627.84 0.01 627.73 0.00  31.00   627.80 0.01 627.73 0.00  44.35 

Avg E 645.97a   646.09 0.01 645.98 0.00 30.10   646.15 0.02 645.97 0.00  43.34 

Avg I 633.36a   636.20 0.29 635.92 0.25 27.50   634.68 0.14 634.21 0.09 46.46 

Avg UEI 635.72   636.71 0.10 636.55 0.08 29.60   636.23 0.05 635.99 0.03 44.69 

              a Best solutions provided by Braekers et al. (2014) with Branch and Cut algorithm 

              b Results of Braekers et al. (2014), programmed in C++ and executed on 2.6 GHz Intel Core laptop with 4 GB RAM. 

Table 7 shows that our hybrid GA is more effective than the Deterministic Annealing algorithm 

(DA) of Braekers et al. (2014), albeit using slightly higher computation times. The average deviation 

from the best solution over five runs is 0.05% for our hybrid GA and 0.10% for the DA. The average 

deviation for the best run is 0.03% for the hybrid GA and 0.08% for DA. As shown in Table 7 in the 

website, our algorithm performs especially well for instances with heterogeneous users and vehicles 

(data set I), e.g., for instances a6-72, a7-70, a7-84, a8-80 and a8-96, the best solution of our hybrid GA 

is better than the one provided by the DA of Braekers et al. (2014). 

Table 8 shows the results of our hybrid GA on the large instances of Cordeau and Laporte (2003) 

for the DARP with a comparison to the state-of-the-art methods in literature: the DA algorithm of 

Braekers et al. (2014) and the ELS algorithm of Chassaing et al. (2016). 

Table 8: Comparison of hybrid GA, DA and ELS algorithms on data set U for the DARP 

Inst, BKSa,b   DA (Braekers et al., 2014) c   ELS (Chassaing  et al., 2016) d   Our hybrid GA 

   Avg Avg% Best Best% CPU  Avg Avg% Best Best% CPU  Avg Avg% Best Best% CPU 

(s) (s) (s) 

R1a 190.02a  190.02 0.00 190.02 0.00 16.60  190.02 0.00 190.02 0.00 15.00  190.02 0.00 190.02 0.00 21.20 

R2a 301.34a  301.34 0.00 301.34 0.00 42.00  301.34 0.00 301.34 0.00 75.00  301.34 0.00 301.34 0.00 53.63 

http://www.roylongbottom.org.uk/
http://hdarp-results.e-monsite.com/
http://hdarp-results.e-monsite.com/
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R3a 532.00a  533.54 0.29 532.10 0.02 48.80  533.86 0.35 532.42 0.08 138.00  534.08 0.39 532.00 0.00 62.32 

R4a 570.25a  580.52 1.80 577.16 1.21 74.60  574.47 0.74 570.55 0.05 442.20  571.45 0.21 570.25 0.00 95.26 

R5a 626.93b  632.06 0.82 629.80 0.46 89.20  637.59 1.70 630.81 0.62 724.20  631.39 0.71 628.48 0.25 113.91 

R6a 785.26a   800.68 1.96 797.78 1.59 107.00  796.10 1.38 792.81 0.96 1315.20  788.52 0.42 787.41 0.27 136.64 

R7a 291.71a  292.23 0.18 292.23 0.18 22.60  292.96 0.43 291.71 0.00 28.20  291.79 0.03 291.71 0.00 28.86 

R8a 487.84a  491.00 0.65 490.94 0.64 48.60  493.16 1.09 491.58 0.77 160.80  491.53 0.76 488.89 0.22 62.06 

R9a 658.31a  666.65 1.27 662.64 0.66 72.20  681.35 3.50 672.88 2.21 675.00  660.24 0.29 658.31 0.00 92.20 

R10a 851.82b  860.83 1.06 853.98 0.25 114.40  860.68 1.04 857.34 0.65 1279.80  859.91 0.95 853.16 0.16 146.09 

R1b 164.46a  164.46 0.00 164.46 0.00 23.80  164.46 0.00 164.46 0.00 16.80  164.46 0.00 164.46 0.00 30.39 

R2b 295.66a  296.06 0.14 295.69 0.01 51.40  295.72 0.02 295.66 0.00 82.20  295.66 0.00 295.66 0.00 65.64 

R3b 484.83a  490.03 1.07 488.61 0.78 76.20  490.70 1.21 489.02 0.86 222.00  487.23 0.50 484.83 0.00 97.31 

R4b 529.33a  540.99 2.20 534.99 1.07 117.00  531.98 0.50 531.06 0.33 612.00  532.19 0.54 531.86 0.48 149.41 

R5b 577.29b  584.33 1.22 581.46 0.72 155.20  580.23 0.51 578.45 0.20 1195.80  582.06 0.83 579.03 0.30 198.19 

R6b 730.69b  747.19 2.26 743.56 1.76 180.60  736.61 0.81 731.27 0.08 1939.20  741.06 1.42 737.03 0.87 230.62 

R7b 248.21a  249.33 0.45 249.33 0.45 34.00  248.21 0.00 248.21 0.00 34.80  248.29 0.03 248.21 0.00 43.42 

R8b 458.73b  462.38 0.80 461.77 0.66 81.00  462.38 0.80 461.22 0.54 259.20  463.32 1.00 461.11 0.52 103.44 

R9b 593.49a  600.63 1.20 598.23 0.80 146.40  597.53 0.68 595.39 0.32 745.80  595.37 0.32 593.49 0.00 186.95 

R10b 785.68b  801.89 2.06 795.08 1.20 162.80  803.99 2.33 796.57 1.39 1887.00  793.64 1.01 791.01 0.68 207.89 

Avg 508.19   514.31 0.97 512.06 0.62 83.22   513.67 0.85 511.14 0.45 592.41   511.18 0.47 509.41 0.19 106.27 

a Best known solutions provided by Parragh and Schmid (2013) 
b Best known solutions provided by Braekers et al.(2014)  
c Results of  Braekers et al.(2014), programmed in C++ and executed on 2.6 GHz Intel Core laptop with 4 GB RAM. 
d Results of Chassaing et al. (2016), programmed in C++ and executed on Intel Core i7-3770 CPU  with 3.40 GHz (average objective values 

(Avg) are calculated based on the provided average gaps (Avg%) on their website)   

Table 8 shows that our hybrid GA is more effective than the DA and the ELS algorithms in terms 

of best and average solution values. In fact, the average deviation of the average results from the best 

knows solutions are 0.47% for our algorithm, 0.97% for the DA algorithm and 0.85% for the ELS 

algorithm. The average deviation for the best result over five runs is 0.19% for our hybrid GA, 0.62% 

for the DA algorithm and 0.45% for the ELS algorithm. In addition, our hybrid GA can find 17 best 

solutions (Column “Best”) compared to 3 found by the DA algorithm and 9 found by the ELS 

algorithm. Moreover, our hybrid GA can find 13 best solutions, on average over five runs (Column 

“Avg”), compared to 6 found by the DA algorithm and 8 by the ELS algorithm. 

To evaluate the performance of our method on large instances with heterogeneous users and 

vehicles, we make a comparison to the DA of Braekers et al. (2014) on our newly generated instances. 

Tables 9 and 10 show the results obtained for data sets E and I, respectively. These data sets were 

generated by adapting the instances of Cordeau and Laporte (2003) as discussed in Subsection 4.1. 

  Table 9: Comparison of DA and hybrid GA on large H-DARP instances (data set E) 

Instance BSa    DA (Braekers et al., 2014)   hybrid GA 

  Avg Avg % Best CPU   Avg Avg % Best Best % CPU 

R1a 195.97  195.97 0.00 195.97 24.80  195.97 0.00 195.97 0.00 26.64 

R2a 336.34  336.34 0.00 336.34 48.20  336.34 0.00 336.34 0.00 51.06 

R3a 587.43  588.40 0.17 587.43 52.00  589.86 0.41 586.18 -0.21 56.61 

R4a 642.44  644.02 0.25 642.44 82.80  642.56 0.02 640.03 -0.38 88.80 

R5a 717.69  718.51 0.11 717.69 102.00  718.51 0.11 714.83 -0.40 109.00 

R6a 885.24  888.08 0.32 885.24 133.20  887.65 0.27 883.02 -0.25 143.88 

R7a 312.49  312.87 0.12 312.49 27.00  312.96 0.15 312.05 -0.14 28.34 

R8a 556.01  557.45 0.26 556.01 46.80  556.23 0.04 553.82 -0.39 48.84 

R9a 748.53  754.44 0.79 748.53 88.80  748.87 0.05 746.23 -0.31 97.01 

R10a 966.20  971.54 0.55 966.20 108.20  969.22 0.31 963.08 -0.32 137.34 

R1b 190.39  190.39 0.00 190.39 33.00  190.39 0.00 190.39 0.00 34.24 

file:///E:/Amine%20-%20Results%20HDARP%20version%20a%20et%20b%20FINAaaaLE.xlsx%23RANGE!Braekers
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R2b 312.92  312.92 0.00 312.92 59.00  314.12 0.38 312.92 0.00 62.06 

R3b 554.57  556.04 0.27 554.57 78.40  553.15 -0.26 551.95 -0.47 81.32 

R4b 607.97  613.15 0.85 607.97 119.00  610.48 0.41 606.08 -0.31 119.84 

R5b 643.68  648.98 0.82 643.68 161.40  642.15 -0.24 641.84 -0.29 175.84 

R6b 838.12  840.91 0.33 838.12 200.80  836.32 -0.21 832.53 -0.67 219.52 

R7b 277.32  277.32 0.00 277.32 41.80  276.52 -0.29 276.52 -0.29 47.15 

R8b 529.81  533.97 0.79 529.81 84.00  532.28 0.47 530.56 0.14 92.00 

R9b 700.95  704.43 0.50 700.95 131.40  703.15 0.31 699.06 -0.27 170.20 

R10b 907.62  916.85 1.02 907.62 148.20  906.91 -0.08 902.17 -0.60 186.30 

Avg 575.58   578.13 0.36 575.58 88.54   576.18 0.09 573.78 -0.26 98.80 

               a  New best solutions provided by Braekers et al.(2014) with Deterministic Annealing algorithm programmed in C++ and  

     executed on 2.6 GHz Intel Core laptop with 4 GB RAM. 

Table 10: Comparison of DA and hybrid GA on large H-DARP instances (data set I) 

Instance BSa   DA (Braekers et al., 2014)   hybrid GA 

  Avg Avg % Best CPU   Avg Avg % Best Best % CPU 

R1a 193.27  193.27 0.00 193.27 24.80  193.27 0.00 193.27 0.00 29.61 

R2a 319.87  320.42 0.17 319.87 53.20  319.87 0.00 319.43 -0.14 63.78 

R3a 587.11  587.83 0.12 587.11 57.00  586.11 -0.17 584.84 -0.39 64.92 

R4a 594.11  598.79 0.79 594.11 100.40  593.56 -0.09 591.24 -0.48 117.70 

R5a 679.51  689.26 1.43 679.51 118.80  679.11 -0.06 677.50 -0.30 142.48 

R6a 844.29  849.10 0.57 844.29 152.20  843.27 -0.12 838.26 -0.71 188.32 

R7a 328.27  328.95 0.21 328.27 27.00  329.12 0.26 328.10 -0.05 31.68 

R8a 554.71  556.41 0.31 554.71 54.40  556.46 0.32 552.35 -0.43 61.96 

R9a 715.42  721.33 0.83 715.42 120.60  718.55 0.44 713.55 -0.26 136.67 

R10a 936.79  942.10 0.57 936.79 200.40  937.23 0.05 932.83 -0.42 227.79 

R1b 177.57  177.57 0.00 177.57 32.40  177.57 0.00 177.57 0.00 35.31 

R2b 304.86  305.70 0.28 304.86 63.60  304.02 -0.28 304.02 -0.28 75.17 

R3b 552.92  554.88 0.35 552.92 90.60  555.19 0.41 551.13 -0.32 105.46 

R4b 560.23  564.99 0.85 560.23 162.80  559.12 -0.20 557.99 -0.40 222.52 

R5b 631.07  634.54 0.55 631.07 201.80  630.59 -0.08 628.62 -0.39 238.74 

R6b 799.32  802.68 0.42 799.32 224.20  797.57 -0.22 794.03 -0.66 272.35 

R7b 297.41  297.41 0.00 297.41 34.20  297.51 0.03 297.41 0.00 37.59 

R8b 518.67  520.22 0.30 518.67 89.60  520.01 0.26 517.26 -0.27 112.43 

R9b 663.93  668.17 0.64 663.93 169.60  666.44 0.38 662.75 -0.18 208.43 

R10b 870.10  884.30 1.63 870.10 244.80  873.18 0.35 865.07 -0.58 279.10 

Avg 556.47   559.90 0.50 556.47 111.12   556.89 0.06 554.36 -0.31 132.60 

                      a  New best solutions provided by Braekers et al.(2014) with Deterministic Annealing algorithm programmed in C++ and  

    executed on 2.6 GHz Intel Core laptop with 4 GB RAM. 

Tables 9 and 10 clearly show that our hybrid GA obtains better results compared to the DA 

method in terms of solution quality. For data set E, with heterogeneous users and homogeneous 

vehicles, our algorithm improves the results of Braekers et al. (2014) by 0.26% on average, for both 

the average and best result over five runs. For data set I, with heterogeneous users and vehicles, our 

hybrid GA is more efficient than the DA algorithm, with an average improvement of 0.44% for the 

average and 0.31% for the best result. Combining both data sets, the average improvement is 0.35% 

and 0.29% for the average and best results, respectively. Besides, our method provides best known 

results for 31 of these instances and ties with the DA algorithm on 8 other instances. Nevertheless, this 

comes at the expense of a slight increase in computation time of the hybrid GA compared to the DA, 

as indicated in Tables 9 and 10. 
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5. Conclusion  

Dial-A-Ride Problems (DARPs) are vehicle routing problems that arise in the management of 

door-to-door transportation services; for example, for the elderly and the disabled. The Heterogeneous 

Dial-A-Ride Problem (H-DARP) is a more realistic variant of the standard DARP, in which both 

heterogeneous vehicles and users with different requirements are considered. In practice, some users 

may for example need to be transported in a wheelchair or on a stretcher. 

In this paper, a new hybrid Genetic Algorithm was proposed to solve the DARP and H-DARP. 

This algorithm is guided by efficient construction heuristics and efficient crossovers, mutations and 

local search techniques. Extensive numerical experiments demonstrate that our hybrid Genetic 

Algorithm is more effective, in terms of both best and average solution quality, compared to the 

current state of-the-art methods for the DARP and H-DARP, both on existing benchmark instances 

and on newly generated larger instances for the heterogeneous version of the problem. Also the 

effectiveness of the crossover operators and local search techniques is validated in this paper. 

For future work, we plan to focus on a more complex variant, a Multi-depot H-DARP with 

synchronization constraints. Other possible directions for future research include the introduction of 

even more sophisticated local search techniques in the genetic algorithm, and the adaptation and 

application of our solution method to related problems, such as the Pickup and Delivery Problem with 

Time Windows. 
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