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QUASI-FROBENIUS-LUSZTIG KERNELS FOR SIMPLE LIE ALGEBRAS

GONGXIANG LIU, FRED VAN OYSTAEYEN, AND YINHUO ZHANG

Abstract. In [19], the quasi-Frobenius-Lusztig kernel associated with sl2 was constructed.

In this paper we construct the quasi-Frobenius-Lusztig kernels associated with any simple

Lie algebra g.

1. Introduction

Considering a product on representations of an algebra, an idea useful in physics, leads to

the consideration of a coproduct on the algebra and hence to the study of a bialgebra, or

more in particular, a Hopf algebra structure. The theory of algebraic groups is dual to the

theory of commutative and cocommutative Hopf algebras. More general Hopf algebras then

fit in a theory of quantum groups as defined by Drinfeld [6, 7], Jimbo [17], Lusztig [20, 21]

and others. By allowing non-canonical isomorphisms for triple products of representations,

leading to so-called associators, one obtains a generalization of a Hopf algebra to a quasi-Hopf

algebra, termed quasi-algebra for short. This raises the natural question whether it is possible

to find essentially new quasi-quantum groups corresponding to such quasi-algebras? Now, for

a simple finite dimensional Lie algebra g over C, a result of Drinfeld [8, Prop 3.16] states that

a quasitriangular quantized quasi-Hopf enveloping algebra Ug[[h]] is twist equivalent to the

usual quantum group Uhg. This means that the quasi-quantum group associated to a simple

finite dimensional Lie algebra is essentially not new. But what happens in the restricted case?

In other words, does there exist a quasi-algebra analogue for Lusztig’s definition of a small

quantum group, that is, do we have quasi-Frobenius-Lusztig kernels?

A remarkable recent development in Hopf algebra theory is the Andruskiewitsch-Schneider’s

classification of finite dimensional pointed Hopf algebras, cf. [1]; here the Frobenius-Lusztig

kernels play a dominant role. So it is reasonable to expect that the theory of quasi-FL kernels

(short for Frobenius-Lusztig kernels) will provide insight in the structure of finite dimensional

quasi-Hopf algebras. Another direction relates to Conformal Field Theory (CFT). It has

been established by Majid, cf. [23], that there is a quasitriangular quasi-algebra associated

to a Topological Field Theory (TFT, for short). The relevance of quasi-Hopf algebras in

TFT has been studied by Dijkgraaf, Pasquier, and Roche [5]; in loc.cit. a new class of

semisimple quasitriangular quasi-Hopf algebras, denoted by Dω(G), has been constructed.

Further development in CFT, in particular Logorithmic Conformal Field Theory, are pressing
1
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for the systematic construction and deeper study of finite dimensional quasitriangular quasi-

algebras, in particular to look at nonsemisimple ones. We refer to [9] and references therein

for more detail. It is fair to say that in the present situation there is a lack of such examples.

However, the answer to the question about the existence of quasi-FL kernels is positive! The

simplest quasi-FL kernel has been constructed in [19]. It was denoted by Quq(sl2) and it

was associated to sl2. The aim of the present paper is to define Quq(g), the quasi-FL kernel

associated to an arbitrary simple finite dimensional Lie algebra g, extending the ideas found

in [19]. Inspired by the classical FL kernel theory, one may believe that the quasi-FL kernel

associated to a finite dimensional Lie algebra g should be the Drinfeld double of the half

small quasi-quantum group as defined in [12]. Our primary mission is to compute them and

to make a comparison with the Hopf algebra case. It turns out that the computation of

quasi-FL kernels is really much more difficult than in the Hopf case.

Half small quasi-quantum groups appeared in the work of Etingof and Gelaki [12] and the

notation used for them was Aq(g) where q is an n2-th primitive root of unity. In case n

is odd and prime to the determinant of the Cartan matrix, they established that D(Aq(g))

is twist equivalent to uq(g) [11] (in case g is not of type G2). We go on to show that

the conditions cannot be removed. More precisely, we establish that D(Aq(g)) is not twist

equivalent to any Hopf algebra in many cases. This leads to new examples of nonsemisimple

quasitriangular quasi-Hopf algebras and their corresponding braided tensor categories, which

have independent interest by themselves.

In Section 2, we include some preliminaries including the definition of Aq(g), some facts about

quiver Majid algebras and a useful criterion for a 3-cocycle to be a 3-coboundary. The Majid

algebra Mq(g) := (Aq(g))∗ is studied in detail in Section 3, and we pay particular attention to

the Serre relation in Proposition 3.4. Section 4 is devoted to the computation of the Drinfeld

double D(Aq(g)). The computations are explicit and some of them are rather tedious. This

makes for the technical heart of the paper.

In Section 5 we then go on to provide a presentation for D(Aq(g)) in terms of generators

and relations. We discover some similarities between D(Aq(g)) and uq(g). In particular in

Theorem 5.3, we obtain that D(Aq(g)) ∼= Quq(g). The final Section 6 is devoted to detecting

when Quq(g) is twist equivalent to a Hopf algebra and the cases where this does not happen

are identified.

Throughout, we work over an algebraically closed field k of characteristic 0 and [•• ] stands

for the floor function, that is, for any natural numbers a, b, [ab ] denotes the biggest integer

which is not bigger than a
b . For general background knowledge, the reader is referred to [8]

for quasi-Hopf algebras, to [3, 18] for general theory about tensor categories, and to [16] for

pointed Majid algebras.
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2. Preliminaries

In this section we will recall the Etingof-Gelaki’s constructions of half quasi-quantum groups

[12], quiver Majid algebras [14, 16], and the Drinfeld double of a quasi-Hopf algebra [13, 22, 24].

Then we formulate a criterion for a 3-cocycle of a finite abelian group to be a 3-coboundary.

2.1. Half small quasi-quantum group Aq(g). A quasi-bialgebra (H,M, µ,∆, ε, φ) is a k-

algebra (H,M, µ) with algebra morphisms ∆ : H → H ⊗ H (the comultiplication) and

ε : H → k (the counit), and an invertible element φ ∈ H ⊗H ⊗H (the reassociator), such

that:

(id⊗∆)∆(a)φ = φ(∆⊗ id)∆(a), a ∈ H,

(id⊗ id⊗∆)(φ)(∆⊗ id⊗ id)(φ) = (1⊗ φ)(id⊗∆⊗ id)(φ)(φ⊗ 1),

(ε⊗ id)∆ = id = (id⊗ ε)∆,

(id⊗ ε⊗ id)(φ) = 1⊗ 1.

Denote
∑
Xi ⊗ Y i ⊗ Zi by φ and

∑
X
i ⊗ Y i ⊗ Zi by φ−1. A quasi-bialgebra H is called

a quasi-Hopf algebra if there are a linear algebra antimorphism S : H → H (called the

antipode) and two elements α, β ∈ H satisfying for all a ∈ H:∑
S(a(1))αa(2) = αε(a),

∑
a(1)βS(a(2)) = βε(a),∑

XiβS(Y i)αZi = 1 =
∑

S(Xi)αY iβS(Zi).

Here and below we use the Sweedler sigma notation ∆(a) = a(1) ⊗ a(2) (or a′ ⊗ a′′) for the

comultiplication and a(1)⊗a(2)⊗· · ·⊗a(n+1) for the n-iterated coproduct ∆n(a) of a. We call an

invertible element J ∈ H⊗H a (Drinfeld) twist of H if it satisfies (ε⊗id)(J) = (id⊗ε)(J) = 1.

For a twist J =
∑
fi ⊗ gi with inverse J−1 =

∑
fi ⊗ gi, let:

(2.1) αJ :=
∑

S(fi)αgi, βJ :=
∑

fiβS(gi).

Given a twist J of H, if βJ is invertible, then one can construct a new quasi-Hopf algebra

structure HJ = (H,∆J , ε, φJ , SJ , βJαJ , 1) on the algebra H, where:

∆J(a) = J∆(a)J−1, a ∈ H,

φJ = (1⊗ J)(id⊗∆)(J)φ(∆⊗ id)(J−1)(J ⊗ 1)−1

and,

SJ(a) = βJS(a)β−1
J , a ∈ H.

Next we will define the quasi-Hopf algebra Aq(g). Given an m ×m Cartan matrix (aij) of

finite type, it is known that there is a vector (d1, . . . , dm) with integer entries di ∈ {1, 2, 3}
such that the matrix (diaij) is symmetric. Let n ≥ 2 be a natural number and q be an n2-th

primitive root of unity.
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Let N,M , d ≥ 0 be integers. Following Gauss, we define:

[N ]!d =

N∏
h=1

qdh − q−dh

qd − q−d
,

[
M +N

N

]
d

=
[M +N ]!d
[M ]!d[N ]!d

.

Let H be a finite dimensional Hopf algebra generated by grouplike elements gi and skew-

primitive elements ei, i = 1, . . . ,m, such that:

gn
2

i = 1, gigj = gjgi, giejg
−1
i = qδi,jej , elii = 0,

∑
r+s=1−aij

(−1)s

[
1− aij
s

]
di

eri eje
s
i = 0, if i 6= j,

and

∆(ei) = ei ⊗Ki + 1⊗ ei
where li = ord(qdiaii), the order of qdiaii , and Ki :=

∏
j g

diaij
j . From now on, we use

(2.2) cij := diaij

to denote the entries of the symmetrized Cartan matrix.

Consider the subalgebra A ⊂ H generated by gni , ei for i = 1, . . . ,m. It is clear that A is not

a Hopf subalgebra. However, we will see that it is a quasi-Hopf subalgebra of HJ for some

twist J of H.

Let {1a|a = (a1, . . . , am) ∈ (Zn2)m} be the set of primitive idempotents of k(Zn2)m. Define

1ik := 1
n2

∑n2−1
j=0 (qn

2−k)jgji , and denote by εi ∈ (Zn2)m the vector with 1 in the i-th place and

0 otherwise. Note that

(2.3) 1a = 11
a112

a2 · · · 1
m
am , 1agi = qai1a, 1aei = ei1a−εi .

Let

q := qn, hi := gni .

So the subgroup generated by hi is isomorphic to (Zn)m. Similarly, let {1a|a = (a1, . . . , am) ∈
(Zn)m} be the set of primitive idempotents of k(Zn)m, 1ik := 1

n

∑n−1
j=0 (qn−k)jhji and εi ∈

(Zn)m the vector with 1 in the i-th place and 0 otherwise. For later use, we let 10 stand for

the element
∏m
i=1 1i0. Then we have the following identities:

(2.4) 1ik =

n−1∑
s=0

1ik+sn, 1ahi = qai1a, 1aei = ei1a−εi .

For any natural number x, y, define c(x, y) := q−x(y−y′), where y′ denotes the remainder after

dividing y by n. Let

(2.5) J :=
∑

a,b∈(Zn2 )m

m∏
i,j=1

c(ai, bj)
cij1a ⊗ 1b.

Define d(J) := (1⊗J)(id⊗∆)(J)(∆⊗ id)(J−1)(J ⊗ 1)−1, the differential of J . The following

result is a combination of Lemma 4.2 and Theorem 4.3 in [12].
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Lemma 2.1. (1) d(J) =
∑
a,b,c∈(Zn)m(

∏m
i,j=1 q

−cijai[
bj+cj
n ])1a ⊗ 1b ⊗ 1c.

(2) The subalgebra A generated by hi = gni and ei, i = 1, · · · ,m, is a quasi-Hopf subalgebra of

HJ with coproduct ∆J and reassociator φ = d(J).

Definition 2.2. The quasi-Hopf algebra in Lemma 2.1 is called the half small quasi-quantum

group of g, denoted by Aq(g).

For simplicity, we introduce two more notations:

(2.6) [i :=
∑

a∈(Zn)m

m∏
j=1

q−cijaj1a, Hi =

m∏
j=1

h
cji
j =

m∏
j=1

h
cij
j .

In [11, 12], there are no explicit formulas for the coproduct, the elements α, β and the antipode

for Aq(g). In fact, they have the following expressions.

Lemma 2.3. For the quasi-Hopf algebra Aq(g), we have, for i = 1, . . . ,m,

∆J(ei) = ei ⊗ [−1
i + 1⊗

∑n−1
j=1 1ijei +H−1

i ⊗ 1i0ei, ∆J(hi) = hi ⊗ hi,
α =

∑
a∈(Zn)m

∏m
s,t=1 q

cstas[
n−1+at

n ]1a, β = 1,

S(ei) = −(α
∑n−1
j=1 1ijei +Hiα1i0ei)[iα

−1, S(hi) = h−1
i .

Proof. We have:

∆J(ei) = J∆(ei)J
−1

=
∑

a,b∈(Zn2 )m

m∏
s,t=1

c(as, bt)
cst1a ⊗ 1b(ei ⊗Ki + 1⊗ ei)

×
∑

c,d∈(Zn2 )m

m∏
s,t=1

c(cs, dt)
−cst1c ⊗ 1d

=
∑

c,b∈(Zn2 )m

m∏
s,t=1

c((c+ εi)s, bt)
cst

m∏
s,t=1

c(cs, bt)
−cstq

∑
j cijbj1c+εiei ⊗ 1b

+
∑

a,d∈(Zn2 )m

m∏
s,t=1

c(as, (d+ εi)t)
cst

m∏
s,t=1

c(as, dt)
−cst1a ⊗ 1d+εiei

=
∑

c,b∈(Zn2 )m

∏
s6=i,t

c(cs, bt)
cst−cst

m∏
t=1

c(ci + 1, bt)
citc(ci, bt)

−citq
∑
j cijbj1c+εiei ⊗ 1b

+
∑

a,d∈(Zn2 )m

∏
s,t6=i

c(as, dt)
cst−cst

m∏
s=1

c(as, di + 1)csic(as, di)
−csi1a ⊗ 1d+εiei
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=
∑

c,b∈(Zn2 )m

q
∑
j(−cijbj+cijb

′
j)q

∑
j cijbj1c+εiei ⊗ 1b

+
∑

a,d∈(Zn2 )m

m∏
s=1

c(as, di + 1)csic(as, di)
−csi1a ⊗ 1d+εiei

=
∑

a,b∈(Zn2 )m

m∏
t=1

qcitb
′
t1a+εiei ⊗ 1b +

∑
a,b∈(Zn2 )m

m∏
s=1

qcsias((bi+1)′−b′i−1)1a ⊗ 1b+εiei

= ei ⊗
∑

b∈(Zn)m

m∏
t=1

qcitbt1b +
∑

a,b∈(Zn)m

m∏
s=1

qcsias((bi+1)′−b′i−1)1a ⊗ 1ibi+1ei

= ei ⊗ [−1
i +

∑
a∈(Zn)m

1a ⊗
∑

bi 6=n−1

1ibi+1ei +
∑

a∈(Zn)m

m∏
s=1

q−csias1a ⊗ 1i0ei

= ei ⊗ [−1
i + 1⊗

n−1∑
j=1

1ijei +H−1
i ⊗ 1i0ei.

By definition:

αJ =
∑

S(f i)gi =
∑

a∈(Zn2 )m

m∏
s,t=1

c(−as, at)−cst1a =
∑

a∈(Zn2 )m

m∏
s,t=1

q−cstas(at−a
′
t)1a,

βJ =
∑

fiS(gi) =
∑

a∈(Zn2 )m

m∏
s,t=1

c(as,−at)cst1a =
∑

a∈(Zn2 )m

m∏
s,t=1

q−cstas(−at−(n2−at)′)1a,

and so:

α = αJβJ

=
∑

a∈(Zn2 )m

m∏
s,t=1

qcstas(a
′
t+(n2−at)′)1a

=
∑

a∈(Zn)m

m∏
s,t=1

qcstas(at+(n−at)′)1a

=
∑

a∈(Zn)m

m∏
s,t=1

qcstas[
n−1+at

n ]1a.

By the comultiplication formula for ei and the definition of the antipode, we obtain:

S(ei)α[
−1
i + α

n−1∑
j=1

1ijei +Hiα1i0ei = αε(ei) = 0.

It follows that S(ei) = −(α
∑n−1
j=1 1ijei + Hiα1i0ei)[iα

−1. The formulas for elements hi are

obvious. �

Remark 2.4. In [12] Etingof and Gelaki used the Cartan matrix (aij) to define the half

small quasi-quantum group Aq(g). In order to keep the consistency with Lusztig’s definition

[21], we use the symmetrized Cartan matrix (cij) instead of (aij) throughout this paper. To
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show the difference, we use A′q(g) to denote Etingof-Gelaki’s half small quasi-quantum group.

The two are equal in the simply laced case. But, in general, Aq(g) 6∼= A′q(g) and they are

not even twist equivalent (see Section 6 for the definition of twist equivalence). The reason is

that they have different reassociators. For example, take the Cartan matrix of type G2 and

assume that they are twist equivalent. Denote by φA (resp. φA′) the reassociator of Aq(g)

(resp. A′q(g)). If the representation categories of Aq(g) and A′q(g) are monoidal equivalent,

then their tensor subcategories generated by simple objects are also monoidal equivalent.

This implies that ((kG)∗, φA) is twist equivalent to ((kG)∗, φA′), where G ∼= (Zn)m is the set

of group-like elements of both Aq(g) and A′q(g). However, ((kG)∗, φA) and ((kG)∗, φA′) are

twist equivalent if and only if φA and φ′A are cohomologous cocycles up to automorphisms of

G. But clearly this is not always the case (e.g., Taking n = 3 and so G = Z3 × Z3, one can

find that φA is just corresponding to a 3-cocycle over Z3). So Aq(g) and A′q(g) are not twist

equivalent.

2.2. Quiver Majid algebras. A dual quasi-bialgebra, or Majid bialgebra for short, is a

coalgebra (H,∆, ε) equipped with a compatible quasi-algebra structure. Namely, there exist

two coalgebra homomorphisms:

M : H ⊗H → H, a⊗ b 7→ ab, µ : k→ H, λ 7→ λ1H

and a convolution-invertible map Φ : H⊗3 → k called a reassociator, such that for all

a, b, c, d ∈ H the following equalities hold:

a(1)(b(1)c(1))Φ(a(2), b(2), c(2)) = Φ(a(1), b(1), c(1))(a(2)b(2))c(2),

1Ha = a = a1H ,

Φ(a(1), b(1), c(1)d(1))Φ(a(2)b(2), c(2), d(2))

= Φ(b(1), c(1), d(1))Φ(a(1), b(2)c(2), d(2))Φ(a(3), b(1), c(3)),

Φ(a, 1H , b) = ε(a)ε(b).

H is called a Majid algebra if, in addition, there exist a coalgebra antimorphism S : H → H

and two functionals α, β : H → k such that for all a ∈ H,

S(a(1))α(a(2))a(3) = α(a)1H , a(1)β(a(2))S(a(3)) = β(a)1H ,

Φ(a(1), S(a(3)), a(5))β(a(2))α(a(4)) =

Φ−1(S(a(1)), a(3), S(a(5)))α(a(2))β(a(4)) = ε(a).

A Majid algebra H is said to be pointed, if the underlying coalgebra is pointed. Given a

pointed Majid algebra (H,∆, ε,M, µ,Φ, S, α, β), we let {Hn}n≥0 be its coradical filtration,

and grH = H0⊕H1/H0⊕H2/H1⊕· · · the associated graded coalgebra. Then grH possesses

an (induced) graded Majid algebra structure. The corresponding graded reassociator gr Φ

satisfies gr Φ(ā, b̄, c̄) = 0 for all ā, b̄, c̄ ∈ grH unless they all lie in H0. Similar condition holds

for grα and grβ. In particular, H0 is a Majid subalgebra and it coincides with the group

algebra kG of the group G = G(H), the set of group-like elements of H.
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Now assume that H is a Majid algebra with reassociator Φ. A linear space M is called an

H-Majid bimodule, if M is an H-bicomodule with structure maps (δ
L
, δ
R

), and there are two

H-bicomodule morphisms:

µL : H ⊗M −→M, h⊗m 7→ h ·m, µR : M ⊗H −→M, m⊗ h 7→ m · h

such that for all g, h ∈ H,m ∈M, the following equalities hold:

1H ·m = m = m · 1H ,(2.7)

g(1) · (h(1) ·m0)Φ(g(2), h(2),m1) = Φ(g(1), h(1),m
−1)(g(2)h(2)) ·m0,(2.8)

m0 · (g(1)h(1))Φ(m1, g(2), h(2)) = Φ(m−1, g(1), h(1))(m
0 · g(2)) · h(2),(2.9)

g(1) · (m0 · h(1))Φ(g(2),m1, h(2)) = Φ(g(1),m
−1, h(1))(g(2) ·m0) · h(2),(2.10)

where we use the Sweedler notation:

δ
L

(m) = m−1 ⊗m0, δ
R

(m) = m0 ⊗m1

for the comodule structure maps. Since we only consider Majid bimodules over (kG,Φ), it

is convenient to rewrite formulas (2.8)-(2.10). Assume M is a Majid bimodule over (kG,Φ)

and so M =
⊕

g,h∈G
gMh, where:

gMh = {m ∈M | δ
L

(m) = g ⊗m, δ
R

(m) = m⊗ h} .

Formulas (2.8)-(2.10) can be simplified as:

e · (f ·m) =
Φ(e, f, g)

Φ(e, f, h)
(ef) ·m,(2.11)

(m · e) · f =
Φ(h, e, f)

Φ(g, e, f)
m · (ef),(2.12)

(e ·m) · f =
Φ(e, h, f)

Φ(e, g, f)
e · (m · f),(2.13)

for all e, f, g, h ∈ G and m ∈ gMh.

Now let us recall some basic definitions about quivers. A quiver is a quadrupleQ = (Q0, Q1, s, t),

where Q0 is the set of vertices, Q1 is the set of arrows, and s, t : Q1 −→ Q0 are two maps

assigning respectively the source and the target for each arrow. A path of length l ≥ 1 in

the quiver Q is a finitely ordered sequence of l arrows al · · · a1 such that s(ai+1) = t(ai) for

1 ≤ i ≤ l − 1. By convention, a vertex is said to be a trivial path of length 0. For a quiver

Q, the associated path coalgebra kQ is the k-space spanned by the set of paths, with counit

and comultiplication maps defined by ε(g) = 1, ∆(g) = g ⊗ g for each g ∈ Q0, and for each

nontrivial path p = an · · · a1, ε(p) = 0,

∆(an · · · a1) = p⊗ s(a1) +

n−1∑
i=1

an · · · ai+1 ⊗ ai · · · a1 + t(an)⊗ p .

The lengths of paths give a natural gradation to the path coalgebra. Let Qn denote the set of

paths of length n in Q. Then kQ = ⊕n≥0kQn and ∆(kQn) ⊆ ⊕n=i+jkQi ⊗ kQj . It is clear
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that kQ is pointed with the set of group-likes G(kQ) = Q0, and has the following coradical

filtration

kQ0 ⊆ kQ0 ⊕ kQ1 ⊆ kQ0 ⊕ kQ1 ⊕ kQ2 ⊆ · · · .

Hence kQ is coradically graded.

In this paper, we consider a special kind of quiver, that is, a Hopf quiver [4] defined via a

group and its ramification datum. Let G be a group and denote by C its set of conjugacy

classes. A ramification datum R of G is a formal sum
∑
C∈C RCC of conjugacy classes with

coefficients RC in N = {0, 1, 2, · · · }. The corresponding Hopf quiver Q = Q(G,R) is defined

as follows: the set of vertices Q0 is G, and for each x ∈ G and c ∈ C, there are RC arrows

going from x to cx. For example, let G = Zn = 〈g〉 and R = g, the corresponding Hopf quiver

is:

1

g**gn−1

144

g· · · oo· · ·gn−1 oo

It is called a basic cycle of length n.

It is shown in [15] that the path coalgebra kQ admits a graded Majid algebra structure if

and only if the quiver Q is a Hopf quiver. Moreover, for a given Hopf quiver Q = Q(G,R),

if we fix a Majid algebra structure on kQ0 = (kG,Φ) with quasi-antipode (S, α, β), then the

set of graded Majid algebra structures on kQ with kQ0 = (kG,Φ, S, α, β) is in one-to-one

correspondence with the set of (kG,Φ)-Majid bimodule structures on kQ1. We need to recall

this correspondence here. One direction is clear. That is, given a graded Majid algebra

structure on the path coalgebra kQ, then kQ1 is a kQ0-Majid bimodule with module and

comodule structures respectively defined by the multiplication and the comultiplication of

kQ.

Conversely, assume that kQ1 is a kQ0-Majid bimodule. We need to define a multiplication

for any two paths in kQ, which can be obtained as follows. Let p ∈ kQ be a path. An

n-thin split of p is a sequence (p1, · · · , pn) of vertices and arrows such that the concatenation

pn · · · p1 is exactly p. These n-thin splits are in one-to-one correspondence with the n-sequences

of (n − l) 0’s and l 1’s. Denote by Dn
l the set of such sequences. Clearly |Dn

l | =
(
n
l

)
. For

d = (d1, · · · , dn) ∈ Dn
l , the corresponding n-thin split is written as dp = ((dp)1, · · · , (dp)n),

in which (dp)i is a vertex if di = 0 and an arrow if di = 1. Let α = am · · · a1 and β = bn · · · b1 be

paths of length m and n respectively. Given d ∈ Dm+n
m , we let d̄ ∈ Dm+n

n be the complement

sequence of d obtained by replacing each 0 by 1 and each 1 by 0. Define an element

(α · β)d = [(dα)m+n · (d̄β)m+n] · · · [(dα)1 · (d̄β)1]

in kQm+n, where [(dα)i · (d̄β)i] is understood as the action of the kQ0-Majid bimodule on

kQ1 and the terms in different brackets are put together by cotensor product, or equivalently

by concatenation. In terms of this notation, the formula of the product of α and β is given
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as follows:

(2.14) α · β =
∑

d∈Dm+n
m

(α · β)d .

Now let H = H0⊕H1⊕· · · be a coradically graded pointed Majid algebra. The Gabriel quiver

Q(H) is defined as follows. Its vertices are group-like elements of H, and the number of arrows

between two group-like elements, say g and h, is equal to the number of linear independent

non-trivial (h, g)-skew primitive elements. Recall that x is an (h, g)-skew primitive element if

∆(x) = g ⊗ x+ x⊗ h and is trivial if x = c(g − h) for some c ∈ k. The Gabriel quiver Q(H)

possesses the following properties:

• Q(H) is a Hopf quiver;

• The H0-Majid bimodule structure on H1 induces a kQ(H)0-Majid bimodule structure

on kQ(H)1, and kQ(H) is hence a Majid algebra;

• (Theorem of Gabriel’s Type) H is a large Majid subalgebra of kQ(H). By “a large

subalgebra” we mean that it contains the set of vertices and arrows of the Hopf quiver.

One may refer to [15] for more detail. The formula (2.14) can help us to determine the

multiplication of any two elements of H. We shall use this observation to study the structure

of Aq(g)∗ in the next section.

2.3. Drinfeld double of a quasi-Hopf algebra. The construction of the Drinfeld double

of a quasi-Hopf algebra is not a trivial generalization from Hopf to the quasi-Hopf case. The

double of a Hopf algebra H is defined on H ⊗H∗, with H and H∗ being subalgebras. If H

is a quasi-Hopf algebra, then H∗ is not an associative algebra. Thus, one is at a loss to look

for an associative algebra structure on H ⊗H∗, and might expect that the double should be

some kind of hybrid object. Majid solved this problem in [22]. He showed that there exists

a quantum double D(H) as a quasi-Hopf algebra defined on H ⊗H∗. Hausser and Nill [13]

gave a computable realization of D(H) on H ⊗ H∗. An explicit construction of D(H) was

obtained by Schauenburg [24]. Here we recall Schauenburg’s construction.

Let (H,M, µ,∆, ε, φ, S, α, β) be a finite dimensional quasi-Hopf algebra. Let φ = φ(1)⊗φ(2)⊗
φ(3) =

∑
Xi ⊗ Y i ⊗ Zi and φ−1 = φ(−1) ⊗ φ(−2) ⊗ φ(−3) =

∑
X
i ⊗ Y i ⊗ Zi. Define

γ :=
∑

(S(U i)⊗ S(T i))(α⊗ α)(V i ⊗W i),(2.15)

f :=
∑

(S ⊗ S)(∆op(X
i
)) · γ ·∆(Y

i
βS(Z

i
)),(2.16)

χ := (φ⊗ 1)(∆⊗ id⊗ id)(φ−1),(2.17)

ω := (1⊗ 1⊗ 1⊗ τ(f−1))(id⊗∆⊗ S ⊗ S)(χ)(φ⊗ 1⊗ 1),(2.18)

where (1 ⊗ φ−1)(id ⊗ id ⊗ ∆)(φ) =
∑
T i ⊗ U i ⊗ V i ⊗ W i and τ is the usual twist, i.e.,

τ(a⊗ b) = b⊗ a.
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As a linear space, D(H) = H ⊗ H∗ and we write h ./ ψ := h ⊗ ψ ∈ D(H). There are two

canonical actions, denoted by ⇀, ↼, of H on H∗. By definition, for any a, b ∈ H and ψ ∈ H∗

⇀: H ⊗H∗ −→ H∗, (a ⇀ ψ)(b) = ψ(ba),

↼: H∗ ⊗H −→ H∗, (ψ ↼ a)(b) = ψ(ab).

Define a map T : H∗ → D(H) by

(2.19) T(ψ) = φ
(1)
(2) ./ S(φ(2))α(φ(3) ⇀ ψ ↼ φ

(1)
(1)).

With the above preparations, we are now able to describe D(H).

Theorem 2.5. [24, Thm. 6.3, 9.3] Let H be a finite dimensional quasi-Hopf algebra. The

quasi-Hopf structure on D(H) = H ⊗ H∗, such that H is a quasi-Hopf subalgebra via the

embedding h ↪→ h ./ ε, is determined by the following:

(i) As an associative algebra, D(H) is generated by H and T(H∗), and its multiplication

is given by:

(g ./ ϕ)(h ./ ψ)

= gh(1)(2)ω
(3) ./ (ω(5) ⇀ ψ ↼ ω(1))(ω(4)S(h(2)) ⇀ ϕ ↼ h(1)(1)ω

(2)); (?)

as a quasi-coalgebra, the comultiplication of D(H) is given by:

∆D(T(ψ)) = φ̃(2)T(ψ(1) ↼ φ̃(1))φ(−1)φ(1)

⊗ φ̃(3)φ(−3)T(φ(3) ⇀ ψ(2) ↼ φ(−2))φ(2), (??)

for g, h ∈ H and ϕ,ψ ∈ H∗, where φ̃ is another copy of φ.

(ii) The reassociator φD, the counit εD, the elements αD, βD and the antipode SD are

given by:

φD = φ ./ ε, εD(T(ψ)) = ψ(φ(1)S(φ(2))αφ(3)),(2.20)

αD = α ./ ε, βD = β ./ ε,(2.21)

SD(T(ψ)) = f (2)T(f (−2) ⇀ S−1(ψ) ↼ f (1))f (−1),(2.22)

for ψ ∈ H∗.

Remark 2.6. (1) It is easy to see that 1 ./ ε is the unit element of D(H) by the formula (?).

Moreover, as a special case of the product, we have:

(2.23) (1 ./ ϕ)(h ./ ε) = h(1)(2) ./ S(h(2)) ⇀ ϕ ↼ h(1)(1),

for h ∈ H and ϕ ∈ H∗.

(2) In the process of our computations, we find that there are some errors or misprints in

[24] and [13]. Especially, there are misprints in the expression of the element f given both in

[24] and [13], in the expression of the element χ given in [24] and in the expression of the

comultiplication formula given in [24]. The correct versions are (2.16), (2.17) and (??).
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2.4. 3-cocycles. LetG be a group and (B•, ∂•) its bar resolution. By applying HomZG(−,k∗)
we get a complex (B∗• , ∂

∗
•), where k∗ = k \ {0} is a trivial G-module. Later on, we will

encounter the following problem: Given a 3-cocycle of the complex (B∗• , ∂
∗
•), we have to

determine whether it is a 3-coboundary or not. In this subsection, we solve this problem in

case G is a finite abelian group.

Now let G be a finitely generated abelian group. Thus G ∼= Zm1
× · · · ×Zmk . For every Zmi ,

we fix a generator gi throughout of this paper for 1 ≤ i ≤ k. It is known that the following

periodic sequence is a projective resolution for the trivial Zmi-module Z [25, Sec. 6.2]:

(2.24) · · · −→ ZZmi
Ti−→ ZZmi

Ni−→ ZZmi
Ti−→ ZZmi

Ni−→ Z −→ 0,

where Ti = gi − 1 and Ni =
∑mi−1
j=0 gji .

We construct the tensor product of the above periodic resolutions for G. Let K• be the

following complex of projective (in fact, free) ZG-modules. For each sequence a1, . . . , ak of

nonnegative integers, let Ψ(a1, . . . , ak) be a free generator in degree a1 + · · ·+ ak. Define:

Km :=
⊕

a1+···+ak=m

(ZG)Ψ(a1, . . . , ak),

and

di(Ψ(a1, . . . , ak)) =


0, ai = 0,

(−1)
∑
l<i alNiΨ(a1, . . . , ai − 1, . . . , ak), 0 6= ai even,

(−1)
∑
l<i alTiΨ(a1, . . . , ai − 1, . . . , ak), ai odd,

for 1 ≤ i ≤ k. The differential d is defined to be d1 + · · ·+ dk.

Lemma 2.7. (K•, d) is a free resolution of the trivial ZG-module Z.

Proof. Observer that (K•, d) is exactly the tensor product of the complexes (2.24). Thus the

lemma follows from the Künneth formula for complexes (see (3.6.3) in [25]). �

For convenience, we fix the following notations. For any 1 ≤ r ≤ k, define Ψr := Ψ(0, . . . , 1, . . . , 0)

where 1 lies in the r-th position. For any 1 ≤ r ≤ s ≤ k, define Ψr,s := Ψ(0, . . . , 1, . . . , 1, . . . , 0)

where 1 lies in both the r-th and the s-th position if r < s and Ψr,r := Ψ(0, . . . , 2, . . . , 0)

where 2 lies in the r-th position. Similarly, one can define Ψr,s,t,Ψr,s,s,Ψr,r,s and Ψr,r,r

for 1 ≤ r ≤ k, 1 ≤ r < s ≤ k and 1 ≤ r < s < r ≤ k. One could even define

Ψi,j,s,t,Ψi,i,j,s, Ψi,j,s,s, Ψi,j,j,s, Ψi,i,j,j , Ψi,i,i,j , Ψi,j,j,j , and Ψi,i,i,i for 1 ≤ i ≤ k, 1 ≤ i < j ≤ k,

1 ≤ i < j < s ≤ k and 1 ≤ i < j < s < t ≤ k respectively. Now it it clear that any cochain

f ∈ HomZG(K3,k
∗) is uniquely determined by its values on Ψr,s,t,Ψr,s,s,Ψr,r,s and Ψr,r,r

for 1 ≤ r ≤ k, 1 ≤ r < s ≤ k and 1 ≤ r < s < t ≤ k. For such numbers, we let

fr,s,t = f(Ψr,s,t), fr,s,s = f(Ψr,s,s), fr,r,s = f(Ψr,r,s) and fr,r,r = f(Ψr,r,r).

Lemma 2.8. The 3-cochain f ∈ HomZG(K3,k
∗) is a cocycle if and only if for all 1 ≤ r ≤ k,

1 ≤ r < s ≤ k and 1 ≤ r < s < t ≤ k,

(2.25) fmrr,r,r = 1, fmrr,s,sf
ms
r,r,s = 1, fmrr,s,t = fmsr,s,t = fmtr,s,t = 1.
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Proof. The proof follows direct computations. By definition, f is a 3-cocycle if and only if

1 = d∗(f)(Ψi,j,s,t) = f(d(Ψi,j,s,t)) for all 1 ≤ i ≤ j ≤ s ≤ t ≤ k. For any a ∈ k∗, it is clear

that Ti · a = 1 since k∗ is considered as a trivial G-module. This means that we only need

to consider the condition 1 = d∗(f)(Ψi,j,s,t) in the cases: i = j = s = t, i = j < s < t,

i < j = s < t, i < j < s = t and i = j < s = t respectively. In case i = j = s = t, we

have 1 = d∗(f)(Ψi,i,i,i) = f(NiΨi,i,i) = Ni · fi,i,i = fmii,i,i. Similarly, if i = j < s < t, we have

fmii,s,t = 1. If i < j = s < t, then we have f
−mj
i,j,t = 1. In case i < j < s = t, we then have

fmsi,j,s = 1. Finally, if i = j < s = t, we have fmii,s,sf
ms
i,i,s = 1. Now it is easy to see that these

relations are the same as in Equation (2.25). �

Lemma 2.9. The 3-cochain f ∈ HomZG(K3,k
∗) is a coboundary if and only if for all 1 ≤

i < j ≤ k, there are gi,j ∈ k∗ such that

(2.26) fi,i,j = gmii,j , fi,j,j = g
−mj
i,j , and fl,l,l = 1 fr,s,t = 1,

for 1 ≤ l ≤ k, and 1 ≤ r < s < t ≤ k.

Proof. By definition, f is a coboundary if and only if f = d∗(g) for some 2-cochain g ∈
HomZG(K2,k

∗). For any 1 ≤ i ≤ j ≤ k, let gi,j := g(Ψi,j). Since Tl · a = 1 for any a ∈ k∗,
we have d∗(g)(Ψr,s,t) = d∗(g)(Ψl,l,l) = 1 for 1 ≤ r < s < t ≤ k and 1 ≤ l ≤ k. Now for all

1 ≤ i < j ≤ k, fi,i,j = d∗(g)(Ψi,i,j) = g(NiΨi,j + TjΨi,i) = gmii,j and fi,j,j = d∗(g)(Ψi,j,j) =

g(TiΨj,j −NjΨi,j) = g
−mj
i,j . �

Lemma 2.9 provides us an easy way to determine when a 3-cocycle of the complex (K∗• , d
∗)

is a 3-coboundary. For the bar resolution, it is sufficient to give a chain map from (K•, d•) to

(B•, ∂•). We define the following three morphisms of ZG-modules:

F1 : K1 −→ B1, Ψr 7→ [gr];

F2 : K2 −→ B2,

Ψr,s 7→ [gr, gs]− [gs, gr],

Ψr,r 7→
mr−1∑
l=0

[glr, gr];

F3 : K3 −→ B3,

Ψr,s,t 7→ [gr, gs, gt]− [gs, gr, gt]− [gr, gt, gs],

[gt, gr, gs] + [gs, gt, gr]− [gt, gs, gr],

Ψr,r,s 7→
mr−1∑
l=0

([glr, gr, gs]− [glr, gs, gr] + [gs, g
l
r, gr]),

Ψr,s,s 7→
ms−1∑
l=0

([gr, g
l
s, gs]− [gls, gr, gs] + [gls, gs, gr]),

Ψr,r,r 7→
mr−1∑
l=0

[gr, g
l
r, gr],
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for 0 ≤ r ≤ k, 0 ≤ r < s ≤ k and 0 ≤ r < s < t ≤ k.

Lemma 2.10. The following diagram is commutative:

· · · - K3
- K2

- K1
- K0

- Z - 0

· · · - B3
- B2

- B1
- B0

- Z - 0

? ? ?

d d d

∂3 ∂2 ∂1

F3 F2 F1

Proof. The proof is routine and so we omit it. �

Corollary 2.11. Let φ ∈ B∗3 be a 3-cocycle. Then φ is a 3-coboundary if and only if F ∗3 (φ)

is a 3-coboundary.

Proof. Follows from the fact that F ∗3 induces an isomorphism between 3-cohomology groups.

�

3. The Majid algebra Mq(g)

In this section, we characterize the structure of the Majid algebra Mq(g) := Aq(g)∗, the dual

of Aq(g). It is clear that Mq(g) is a coradically graded pointed Majid algebra such that the

reassociator Φ is concentrated on Mq(g)0, that is, Φ(x, y, z) = 0 unless the homogeneous

elements x, y, z all lie in Mq(g)0.

Recall that we used ei, hi (1 ≤ i ≤ m) to denote the generators of Aq(g). It is not hard to

see that the elements in {1aenii |a ∈ (Zn)m, 0 ≤ ni < li, 1 ≤ i ≤ m} are linear independent

(in fact, Aq(g) is a subalgebra of uq(b), where b is the Borel subalgebra of g) and can be

extended to a basis {xj}j consisting of homogeneous elements. The dual basis is denoted by

{(xj)∗}j .

We first fix some notations. Let χi be the character of the group generated by elements

h1, . . . , hm, defined as follows:

χi(hj) := qδij .

Therefore, χi = (1εi)
∗. For a = (a1, . . . , am) ∈ (Zn)m, define χa :=

∏m
i=1 χ

ai
i . For 1 ≤ i ≤ m,

and let

Γi = (1εiei)
∗.

Lemma 3.1. In Mq(g), we have:

(3.1) ∆(Γj) = χj ⊗ Γj + Γj ⊗ 1, (χiΓ
j)χ−1

i = qcjiq−cjiΓj .

Proof. Note that (1εj )
∗ = χj , 1εjej = ej10 = 1εjej10 and (1εj )

2ej = 1εjej , so we have the

first identity. By the expression of the comultiplication of ej given in Lemma 2.3, we obtain

χiΓ
j = (1εi+εjej)

∗ and (1εi+εjej)
∗χ−1

i = qcji(n−1)(1εjej)
∗ = qcjiq−cjiΓj . �
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Next, we want to obtain the Gabriel quiver of Mq(g). We denote this quiver by Q(M). It

is not hard to determine the set of vertices of Q(M). Observe that the coradical of Mq(g)

equals (kG,Φ) where G = 〈χi|1 ≤ i ≤ m〉 ∼= (Zn)m and we have:

Φ(χa, χb, χc) =

m∏
s,t=1

q−cstas[
bt+ct
n ]

for a, b, c ∈ (Zn)m. Therefore, Q(M)0 = G. For 1 ≤ i ≤ m and a = (a1, . . . , am) ∈ (Zn)m,

define:

Γiχa := χa · Γi

where ‘·’ is the multiplication of Mq(g). By Lemma 3.1, Γiχa is a non-trivial (χa, χa+εi)- skew

primitive element. Clearly #{Γiχa |1 ≤ i ≤ m, a ∈ (Zn)m} = mnm, which equals dim J/J2

where J is the Jacobson radical of Aq(g). The dual relation between the coradical of Mq(g)

and the radical of Aq(g) guarantees that the set {Γiχa |1 ≤ i ≤ m, a ∈ (Zn)m} forms a basis

of Mq(g)1, leading to the following description of Q(M)1: there is an arrow from χa to χb if

and only if b = a + εi for some 1 ≤ i ≤ m. In this case, the only arrow is Γiχa . Therefore,

locally the quiver Q(M) looks like:

•χa

•χa+ε1

•χa+εm

χa−ε1•

χa−εm•

�
�
�>

Z
Z
Z~

·
·
·
·

Z
Z
Z~

�
�
�>

·
·
·
·

As stated in Subsection 2.2, there is a kQ(M)0-Majid bimodule structure on kQ(M)1 (from

the Mq(g)0-Majid bimodule structure on Mq(g)1), which can be described in the following

way. We will use the equations (2.11)-(2.13) freely.

Lemma 3.2. The kQ(M)0-Majid bimodule structure on kQ(M)1 is given by:

δ
L

: kQ(M)1 → kQ(M)0 ⊗ kQ(M)1, Γjχa 7→ χa+εj ⊗ Γjχa ,(3.2)

δ
R

: kQ(M)1 → kQ(M)1 ⊗ kQ(M)0, Γjχa 7→ Γjχa ⊗ χa,(3.3)

µL : kQ(M)0 ⊗ kQ(M)1 → kQ(M)1, χa ⊗ Γjχb 7→
m∏
i=1

q−cijai[
bj+1

n ]Γjχa+b ,(3.4)

µR : kQ(M)1 ⊗ kQ(M)0 → kQ(M)1, Γjχb ⊗ χa 7→
m∏
i=1

qcjiaiΓjχa+b ,(3.5)

for 1 ≤ j ≤ m, a, b ∈ (Zn)m, where a+ b is understood as the addition in (Zn)m.

Proof. The bicomodule structure is clear since it is obtained from the comultiplication of

Mq(g) and Lemma 3.1. Due to our choice, the proof of the left module structure is not
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complicated:

χa · Γjχb = χa · (χb · Γj)

=
Φ(χa, χb, χj)

Φ(χa, χb, 1)
(χaχb) · Γj

=

m∏
i=1

q−cijai[
bj+1

n ]Γjχa+b

where the second equality comes from the definition of Majid bimodule (see Equation (2.11)).

In the last equality, we made use of our choice, that is, χa+b ·Γj = Γjχa+b . We divide the proof

of the right module structure into four claims.

Claim 1: (χi · Γjχb) · χ
−1
i = q−cij [

bj+1

n ]qcjiq−cjiΓjχb .

Proof of Claim 1. We have

(χi · Γjχb) · χ
−1
i =

Φ(χi, χb, χj)

Φ(χi, χb, 1)
((χbχi) · Γj) · χ−1

i

=
Φ(χi, χb, χj)

Φ(χi, χb, 1)

Φ(χb, χi, 1)

Φ(χb, χi, χj)
(χb · (χi · Γj)) · χ−1

i

=
Φ(χi, χb, χj)

Φ(χb, χi, χj)

Φ(χb, χi, χ
−1
i )

Φ(χb, χiχj , χ
−1
i )

χb · ((χi · Γj) · χ−1
i )

= q−cij [
bj+1

n ]qcjiq−cjiχb · Γj

= q−cij [
bj+1

n ]qcjiq−cjiΓjχb ,

where the fourth equality follows from
Φ(χi,χb,χj)
Φ(χb,χi,χj)

Φ(χb,χi,χ
−1
i )

Φ(χb,χiχj ,χ
−1
i )

= q−cij [
bj+1

n ] and Lemma 3.1.

Claim 2: Γjχb · χi = qcjiΓjχb+εi
.

Proof of Claim 2. Since ∆ is an algebra morphism, Γjχb ·χi is a (χb+εi , χb+εi+εj )-skew primitive

element. So there is a scalar c ∈ k such that Γjχb · χi = cΓjχb+εi
since the space of non-trivial

(χb+εi , χb+εi+εj )-skew primitive elements in Mq(g) is 1-dimensional. We show that c = qcji .

In fact, we have

Γjχb = Γjχb · χ
n
i =

Φ(χb+εj , χi, χ
n−1
i )

Φ(χb, χi, χ
n−1
i )

(Γjχb · χi) · χ
n−1
i

= q−cjicΓjχb+εi
· χn−1

i

= q−cjicqcij [
bj+1

n ](χi · Γjχb) · χ
−1
i

= cq−cjiΓjχb ,

where the third equality follows from (3.4) and the last equality follows from Claim 1. There-

fore, c = qcji .

Claim 3: Γjχb · χ
l
i = qcjilΓjχb+lεi

for 0 ≤ l < n.
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Proof of Claim 3. Clearly, one can assume that l ≥ 1. Inductively, we assume that Γjχb ·χ
l−1
i =

qcji(l−1)Γjχb+(l−1)εi
for any b ∈ (Zn)m. Then

Γjχb · χ
l
i = Γjχb · (χiχ

l−1
i )

=
Φ(χb+εj , χi, χ

l−1
i )

Φ(χb, χi, χ
l−1
i )

(Γjχb · χi) · χ
l−1
i

= qcjiΓjχb+εi
· χl−1

i

= qcjilΓjχb+lεi
,

where in the last equality we used the induction hypothesis.

Claim 4: Γjχb · χa =
∏m
i=1 q

cjiaiΓjχa+b for a = (a1, . . . , am).

Proof of Claim 4. For 1 ≤ s 6= t ≤ m and 0 ≤ cs, ct ≤ n− 1, we have

Γjχb · (χ
cs
s χ

ct
t ) =

Φ(χb+εj , χ
cs
s , χ

ct
t )

Φ(χb, χ
cs
s , χ

ct
t )

(Γjχb · χ
cs
s ) · χctt

= (Γjχb · χ
cs
s ) · χctt .

That is, the right module structure is associative in case s 6= t. In general, one can repeat the

above proof to show that:

Γjχb · (χ
a1
1 χa22 · · ·χamm ) = (. . . ((Γjχb · χ

a1
1 ) · χa22 ) · · · · ) · χamm ).

Together with Claim 3, this gives the proof of Claim 4. �

The above lemma and the formula (2.14) provide us a helpful tool to determine the relations

of the generators of Mq(g). Since the multiplication of Mq(g) is not associative in general, we

need to put parentheses in products. We define:

X
⇀

l :=

l︷ ︸︸ ︷
(· · · (X ·X) ·X) · · · ·X), X

↼

l :=

l︷ ︸︸ ︷
(X · · · · (X · (X ·X)) · · · ),

for any X ∈Mq(g).

Proposition 3.3. For 1 ≤ i ≤ m, let li = ord(qcii). Then we have

(3.6) (Γi)
⇀

li = (Γi)
↼

li = 0

and (Γi)
⇀

l 6= 0 6= (Γi)
↼

l for l < li.

Proof. The proof of this result is parallel with the proof of [16, Lem. 3.6] and so we omit the

computation. We just explain why the proof of [16, Lem. 3.6] can apply to our case and what

results the computation will deliver. Let Qi be the subquiver of Q(M) defined as follows:

the set of vertices is Qi0 = 〈χi〉 ∼= Zn and the set of arrows is Qi1 = {χki · Γi|0 ≤ k ≤ n − 1}.
Clearly, Qi is a basic cycle of length n, which is the case considered in [16, Lem. 3.6]. By

the formula (2.14), we find that, to compute (Γi)
⇀

l and (Γi)
↼

l , we only need to consider the
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Majid subalgebra kQi. Therefore, [16, Lem. 3.6] applies. Moreover, if we let plti be the path

starting from χti with length l in Qi, then [16, Lem. 3.6] implies that

(3.7) (Γi)
⇀

l = l!qciip
l
0i , (Γi)

↼

l = q−ciil
′[ ln ]l!qciip

l
0i ,

where l!qcii =
∑l−1
j=0 q

jcii by definition, and l′ is the remainder after dividing l by n. As a

consequence, we obtain the desired equations. �

In the following conclusion, there is a delicate point at notation: We will use Γjχi ·Γ
i to denote

the multiplication in kQ(M) while ΓjχiΓ
i stands for the connection of arrows (that is, ΓjχiΓ

i

is the path 1→ χi → χiχj in Q(M)).

Proposition 3.4. Assume n ≥ 4. Then for 1 ≤ i 6= j ≤ m, we have the following Serre

relation: ∑
r+s=1−aij

(−1)s

[
1− aij
s

]
di

((Γi)
⇀
r · Γj) · (Γi)

↼
s = 0.

Proof. Since n ≥ 4, Formula (3.7) implies:

(Γi)
⇀
r = (Γi)

↼
r , (0 ≤ r ≤ 1− aij).

So there is no harm in writing (Γi)r for both (Γi)
⇀
r and (Γi)

↼
r . Moreover, by the definition

of a Majid algebra, we have

((Γi)r · Γj) · (Γi)s =
Φ(1, 1, 1)

Φ(χri , χj , χ
s
i )

(Γi)r · (Γj · (Γi)s) = (Γi)r · (Γj · (Γi)s).

Therefore, the above Serre relation can be written in a more familiar form:

∑
r+s=1−aij

(−1)s

[
1− aij
s

]
di

(Γi)r · Γj · (Γi)s = 0.

We will provide a detailed proof of the Serre relation only for Lie algebra g of type ADE,

where we find out how the product formula (2.14) can be used. For the other types of Lie

algebras, we just state the computating results. By (2.14), we have:

Γi · Γj = [Γi · χj ][1 · Γj ] + [χi · Γj ][Γi · 1]

= qcijΓiχjΓ
j + ΓjχiΓ

i

and

Γj · Γi = [Γj · χi][1 · Γi] + [χj · Γi][Γj · 1]

= qcjiΓjχiΓ
i + ΓiχjΓ

j .

Here ΓjχiΓ
i is the path 1 → χi → χiχj and ΓiχjΓ

j is the path 1 → χj → χiχj . Therefore, if

aij = 0 (which implies cij = 0) then we have Γi ·Γj = Γj ·Γi. Now consider the case aij = −1.
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We compute:

Γi · ΓiχjΓ
j = [Γi · χiχj ][1 · Γiχj ][1 · Γ

j ] + [χi · Γiχj ][Γ
i · χj ][1 · Γj ]

+[χi · Γiχj ][χi · Γ
j ][Γi · 1]

= qcii+cijΓiχiχjΓ
i
χjΓ

j + qcijΓiχiχjΓ
i
χjΓ

j + ΓiχiχjΓ
j
χiΓ

i

= qcij (1 + qcii)ΓiχiχjΓ
i
χjΓ

j + ΓiχiχjΓ
j
χiΓ

i;

ΓiχjΓ
j · Γi = [χiχj · Γi][Γiχj · 1][Γj · 1] + [Γiχj · χi][χj · Γ

i][Γj · 1]

+[Γiχj · χi][Γ
j · χi][1 · Γi]

= ΓiχiχjΓ
i
χjΓ

j + qciiΓiχiχjΓ
i
χjΓ

j + qcii+cjiΓiχiχjΓ
j
χiΓ

i

= (1 + qcii)ΓiχiχjΓ
i
χjΓ

j + qcii+cjiΓiχiχjΓ
j
χiΓ

i;

Γi · ΓjχiΓ
i = [Γi · χiχj ][1 · Γiχj ][1 · Γ

i] + [χi · Γjχi ][Γ
i · χi][1 · Γi]

+[χi · Γjχi ][χi · Γ
i][Γi · 1]

= qcii+cijΓiχiχjΓ
j
χiΓ

i + qciiΓj
χ2
i
ΓiχiΓ

i + Γj
χ2
i
ΓiχiΓ

i

= (1 + qcii)Γj
χ2
i
ΓiχiΓ

i + qcii+cijΓiχiχjΓ
j
χiΓ

i,

and:

ΓjχiΓ
i · Γi = [χiχj · Γi][Γjχi · 1][Γi · 1] + [Γjχi · χi][χi · Γ

i][Γi · 1]

+[Γjχi · χi][Γ
i · χi][1 · Γi]

= ΓiχiχjΓ
j
χiΓ

i + qcjiΓj
χ2
i
ΓiχiΓ

i + qcji+ciiΓj
χ2
i
ΓiχiΓ

i

= qcji(1 + qcii)Γj
χ2
i
ΓiχiΓ

i + ΓiχiχjΓ
j
χiΓ

i.

Here ΓiχiχjΓ
i
χjΓ

j is the path 1→ χj → χiχj → χ2
iχj . The other paths are similar. Thus,

Γi · (Γi · Γj) = Γi · (qcijΓiχjΓ
j + ΓjχiΓ

i)

= qcij (qcij (1 + qcii)ΓiχiχjΓ
i
χjΓ

j + ΓiχiχjΓ
j
χiΓ

i)

+((1 + qcii)Γj
χ2
i
ΓiχiΓ

i + qcii+cijΓiχiχjΓ
j
χiΓ

i)

= q2cij (1 + qcii)ΓiχiχjΓ
i
χjΓ

j + qcij (1 + qcii)ΓiχiχjΓ
j
χiΓ

i

+(1 + qcii)Γj
χ2
i
ΓiχiΓ

i,

Γi · (Γj · Γi) = Γi · (qcjiΓjχiΓ
i + ΓiχjΓ

j)

= qcji((1 + qcii)Γj
χ2
i
ΓiχiΓ

i + qcii+cijΓiχiχjΓ
j
χiΓ

i)

+(qcij (1 + qcii)ΓiχiχjΓ
i
χjΓ

j + ΓiχiχjΓ
j
χiΓ

i)

= qcij (1 + qcii)ΓiχiχjΓ
i
χjΓ

j + (qcii+cij+cji + 1)ΓiχiχjΓ
j
χiΓ

i

+qcji(1 + qcii)Γj
χ2
i
ΓiχiΓ

i,
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and:

(Γj · Γi) · Γi = (qcjiΓjχiΓ
i + ΓiχjΓ

j) · Γi

= qcji(qcji(1 + qcii)Γj
χ2
i
ΓiχiΓ

i + ΓiχiχjΓ
j
χiΓ

i)

+((1 + qcii)ΓiχiχjΓ
i
χjΓ

j + qcii+cjiΓiχiχjΓ
j
χiΓ

i)

= (1 + qcii)ΓiχiχjΓ
i
χjΓ

j + qcji(1 + qcii)ΓiχiχjΓ
j
χiΓ

i

+q2cji(1 + qcii)Γj
χ2
i
ΓiχiΓ

i.

If aij = −1, then di = 1, cij = −1 and so:

Γi · (Γi · Γj) = (1 + q−2)ΓiχiχjΓ
i
χjΓ

j + (q + q−1)ΓiχiχjΓ
j
χiΓ

i + (q2 + 1)Γj
χ2
i
ΓiχiΓ

i,

Γi · (Γj · Γi) = (q + q−1)ΓiχiχjΓ
i
χjΓ

j + 2ΓiχiχjΓ
j
χiΓ

i + (q + q−1)Γj
χ2
i
ΓiχiΓ

i,

and:

(Γj · Γi) · Γi = (q2 + 1)ΓiχiχjΓ
i
χjΓ

j + (q + q−1)ΓiχiχjΓ
j
χiΓ

i + (1 + q−2)Γj
χ2
i
ΓiχiΓ

i.

Therefore, we have the following Serre relation in case aij = −1:

Γi · (Γi · Γj)− (q + q−1)Γi · (Γj · Γi) + (Γj · Γi) · Γi = 0.

So, the proof for ADE types is done.

For the other types, we need to consider the case aij = −2 or aij = −3. Here we will omit the

detail from the computation since they are similar, and we only state the results. Let Γi
rjis

be the following path in Q(M):

1→ χi → · · · → χsi → χsiχj → χs+1
i χj → · · · → χs+ri χj .



QUASI-FROBENIUS-LUSZTIG KERNELS FOR SIMPLE LIE ALGEBRAS 21

Then we have:

(Γi)3 · Γj = q3cij (1 + qcii)(1 + qcii + q2cii)Γi
3j

+q2cij (1 + qcii)(1 + qcii + q2cii)Γi
2ji

+qcij (1 + qcii)(1 + qcii + q2cii)Γiji
2

+(1 + qcii)(1 + qcii + q2cii)Γji
3

;

(Γi)2 · Γj · Γi = q2cij (1 + qcii)(1 + qcii + q2cii)Γi
3j

+qcij (1 + qcii)(1 + qcii + q2cii+2cij )Γi
2ji

+(1 + qcii)(1 + qcii+2cij + q2cii+2cij )Γiji
2

+qcij (1 + qcii)(1 + qcii + q2cii)Γji
3

;

Γi · Γj · (Γi)2 = qcij (1 + qcii)(1 + qcii + q2cii)Γi
3j

+(1 + qcii)(1 + qcii+2cij + q2cii+2cij )Γi
2ji

+qcij (1 + qcii)(1 + qcii + q2cii+2cij )Γiji
2

+q2cij (1 + qcii)(1 + qcii + q2cii)Γji
3

;

Γj(Γi)3 = (1 + qcii)(1 + qcii + q2cii)Γi
3j

+qcij (1 + qcii)(1 + qcii + q2cii)Γi
2ji

+q2cij (1 + qcii)(1 + qcii + q2cii)Γiji
2

+q3cij (1 + qcii)(1 + qcii + q2cii)Γji
3

;

One can use the above results to build the Serre relation for the Lie algebras of BCF types.

We obtain:

(Γi)4 · Γj = q4cij (1 + qcii)(1 + qcii + q2cii)(1 + qcii + q2cii + q3cii)Γi
4j

+q3cij (1 + qcii)(1 + qcii + q2cii)(1 + qcii + q2cii + q3cii)Γi
3ji

+q2cij (1 + qcii)(1 + qcii + q2cii)(1 + qcii + q2cii + q3cii)Γi
2ji2

+qcij (1 + qcii)(1 + qcii + q2cii)(1 + qcii + q2cii + q3cii)Γiji
3

+(1 + qcii)(1 + qcii + q2cii)(1 + qcii + q2cii + q3cii)Γji
4

;

(Γi)3 · Γj · Γi = q3cij (1 + qcii)(1 + qcii + q2cii)(1 + qcii + q2cii + q3cii)Γi
4j

+q2cij (1 + qcii)(1 + qcii + q2cii)(1 + qcii + q2cii + q3cii+2cij )Γi
3ji

+qcij (1 + qcii)(1 + qcii + q2cii)(1 + qcii + q2cii+2cij + q3cii+2cij )Γi
2ji2

+(1 + qcii)(1 + qcii + q2cii)(1 + qcii+2cij + q2cii+2cij + q3cii+2cij )Γiji
3

+qcij (1 + qcii)(1 + qcii + q2cii)(1 + qcii + q2cii + q3cii)Γji
4

;
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(Γi)2 · Γj · (Γi)2 = q2cij (1 + qcii)(1 + qcii + q2cii)(1 + qcii + q2cii + q3cii)Γi
4j

+qcij (1 + qcii)(1 + qcii + q2cii)(1 + qcii + q2cii+2cij + q3cii+2cij )Γi
3ji

+(1 + qcii)2(1 + qcii+2cij + 2q2cii+2cij + q3cii+2cij + q4cii+4cij )Γi
2ji2

+qcij (1 + qcii)(1 + qcii + q2cii)(1 + qcii + q2cii+2cij + q3cii+2cij )Γiji
3

+q2cij (1 + qcii)(1 + qcii + q2cii)(1 + qcii + q2cii + q3cii)Γji
4

;

Γi · Γj · (Γi)3 = qcij (1 + qcii)(1 + qcii + q2cii)(1 + qcii + q2cii + q3cii)Γi
4j

+(1 + qcii)(1 + qcii + q2cii)(1 + qcii+2cij + q2cii+2cij + q3cii+2cij )Γi
3ji

+qcij (1 + qcii)(1 + qcii + q2cii)(1 + qcii + q2cii+2cij + q3cii+2cij )Γi
2ji2

+q2cij (1 + qcii)(1 + qcii + q2cii)(1 + qcii + q2cii + q3cii+2cij )Γiji
3

+q3cij (1 + qcii)(1 + qcii + q2cii)(1 + qcii + q2cii + q3cii)Γji
4

;

Γj · (Γi)4 = (1 + qcii)(1 + qcii + q2cii)(1 + qcii + q2cii + q3cii)Γi
4j

+qcij (1 + qcii)(1 + qcii + q2cii)(1 + qcii + q2cii + q3cii)Γi
3ji

+q2cij (1 + qcii)(1 + qcii + q2cii)(1 + qcii + q2cii + q3cii)Γi
2ji2

+q3cij (1 + qcii)(1 + qcii + q2cii)(1 + qcii + q2cii + q3cii)Γiji
3

+q4cij (1 + qcii)(1 + qcii + q2cii)(1 + qcii + q2cii + q3cii)Γji
4

.

Similarly, the Serre relation for type G2 can be obtained from the above equalities. �

4. The Drinfeld double of Aq(g)

In this section, we will determine the structure of D(Aq(g)). We shall first describe the

algebraic structure. To this end, we need to compute the elements γ, f , χ and ω according

to the formulas (2.15)-(2.18). The following easy observation [19, Lem. 3.2] will be used

frequently throughout the paper.

Lemma 4.1. For any two natural numbers i, j, we have following identity:

(4.1) [
i+ j′

n
] = [

i+ j

n
]− [

j

n
].

Lemma 4.2. For the quasi-Hopf algebra Aq(g), we have:

γ =
∑

b,c∈(Zn)m

m∏
i,j=1

qcij(−(bi+ci)[
bj+cj
n ]+ci−ci[

n−bj
n ]+bi[

n−1+bj
n ]+ci[

n−1+cj
n ])1b ⊗ 1c,

f =
∑

e,f∈(Zn)m

m∏
i,j=1

qcij(−ei+(ei+fi)([
n−(ej+fj)

′

n ]−[
ej+fj
n ])−fi[

n−ej
n ]+ei[

n−1+ej
n ]+fi[

n−1+fj
n ])

×1e ⊗ 1f ,

χ =
∑

a,b,c,d∈(Zn)m

m∏
i,j=1

qcij(−ai[
bj+cj
n ]+(ai+bi)[

ci+di
n ])1a ⊗ 1b ⊗ 1c ⊗ 1d,
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and:

ω =
∑

a,b,c,d,e∈(Zn)m

m∏
i,j=1

qcij(−ai[
bj+cj+dj

n ]+(ai+bi+ci+di+ei)[
dj+ej
n ]−ei+ei[

n−dj
n ])

×1a ⊗ 1b ⊗ 1c ⊗ S(1d)⊗ S(1e).

Proof. By definition, we have

T i ⊗ U i ⊗ V i ⊗W i

= (1⊗ φ−1)(id⊗ id⊗∆)(φ)

=
∑

a,b,c∈(Zn)m

m∏
i,j=1

qcijai[
bj+cj
n ]1⊗ 1a ⊗ 1b ⊗ 1c ×

∑
d,e,f1,f2∈(Zn)m

m∏
i,j=1

q−cijdi[
ej+(f1j +f2j )′

n ]1d ⊗ 1e ⊗ 1f1 ⊗ 1f2

=
∑

a,b,c,d∈(Zn)m

m∏
i,j=1

qcij(ai[
bj+cj
n ]−di[

aj+(bj+cj)
′

n ])1d ⊗ 1a ⊗ 1b ⊗ 1c

and so:

γ = (S(U i)⊗ S(T i))(α⊗ α)(V i ⊗W i)

=
∑

a,b,c,d∈(Zn)m

m∏
i,j=1

qcij(ai[
bj+cj
n ]−di[

aj+(bj+cj)
′

n ])S(1a)α1b ⊗ S(1d)α1c

=
∑

a,b,c,d∈(Zn)m

m∏
i,j=1

qcij(ai[
bj+cj
n ]−di[

aj+(bj+cj)
′

n ]+bi[
n−1+bj

n ]+ci[
n−1+cj

n ])

×S(1a)1b ⊗ S(1d)1c

=
∑

b,c∈(Zn)m

m∏
i,j=1

qcij((n−bi)
′[
bj+cj
n ]−(n−ci)′[

(n−bj)
′+(bj+cj)

′

n ]+bi[
n−1+bj

n ]+ci[
n−1+cj

n ])

×1b ⊗ 1c

=
∑

b,c∈(Zn)m

m∏
i,j=1

qcij(−bi[
bj+cj
n ]+ci([

n−bj+bj+cj
n ]−[

n−bj
n ]−[

bj+cj
n ])+bi[

n−1+bj
n ]+ci[

n−1+cj
n ])

×1b ⊗ 1c

=
∑

b,c∈(Zn)m

m∏
i,j=1

qcij(−bi[
bj+cj
n ]+ci(1−[

n−bj
n ]−[

bj+cj
n ])+bi[

n−1+bj
n ]+ci[

n−1+cj
n ])

×1b ⊗ 1c

=
∑

b,c∈(Zn)m

m∏
i,j=1

qcij(−(bi+ci)[
bj+cj
n ]+ci−ci[

n−bj
n ]+bi[

n−1+bj
n ]+ci[

n−1+cj
n ])

×1b ⊗ 1c,

where the fifth equality follows from Lemma 4.1.
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Therefore:

f =
∑

(S ⊗ S)(∆op(X
i
)) · γ ·∆(Y

i
βS(Z

i
))

=
∑

a1,a2,b,c∈(Zn)m

m∏
i,j=1

qcij(a
1
i+a

2
i )[

bj+cj
n ](S(1a1)⊗ S(1a2))γ∆(1bS(1c))

=
∑

e,f∈(Zn)m

m∏
i,j=1

qcij((n−ei)
′+(n−fi)′)[

(ej+fj)
′+(n−(ej+fj)

′)′

n ]γ1e ⊗ 1f

=
∑

e,f∈(Zn)m

m∏
i,j=1

q−cij(ei+fi)(1−[
n−(ej+fj)

′

n ])γ1e ⊗ 1f

=
∑

e,f∈(Zn)m

m∏
i,j=1

q−cij(ei+fi)(1−[
n−(ej+fj)

′

n ])

qcij(−(ei+fi)[
ej+fj
n ]+fi−fi[

n−ej
n ]+ei[

n−1+ej
n ]+fi[

n−1+fj
n ])1e ⊗ 1f

=
∑

e,f∈(Zn)m

m∏
i,j=1

qcij(−ei+(ei+fi)([
n−(ej+fj)

′

n ]−[
ej+fj
n ])−fi[

n−ej
n ]+ei[

n−1+ej
n ]+fi[

n−1+fj
n ])

×1e ⊗ 1f ,

where the fourth equality follows also from Lemma 4.1.

The computation for χ is easy. Indeed:

χ = (φ⊗ 1)(∆⊗ id⊗ id)(φ−1)

=
∑

a,b,c∈(Zn)m

m∏
i,j=1

q−cijai[
bj+cj
n ]1a ⊗ 1b ⊗ 1c ⊗ 1

∑
d1,d2,e,f∈(Zn)m

m∏
i,j=1

qcij(d
1
i+d

2
i )[

ej+fj
n ]1d1 ⊗ 1d2 ⊗ 1e ⊗ 1f

=
∑

a,b,c,d∈(Zn)m

m∏
i,j=1

qcij(−ai[
bj+cj
n ]+(ai+bi)[

cj+dj
n ])1a ⊗ 1b ⊗ 1c ⊗ 1d.
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Now we are able to compute the element ω.

ω = (1⊗ 1⊗ 1⊗ τ(f−1))(id⊗∆⊗ S ⊗ S)(χ)(φ⊗ 1⊗ 1)

=
∑

e,f∈(Zn)m

m∏
i,j=1

qcij(ei−(ei+fi)([
n−(ej+fj)

′

n ]−[
ej+fj
n ])+fi[

n−ej
n ]−ei[

n−1+ej
n ]−fi[

n−1+fj
n ])

1⊗ 1⊗ 1⊗ 1f ⊗ 1e∑
a,b1,b2,c,d∈(Zn)m

m∏
i,j=1

qcij(−ai[
(b1j+b

2
j )
′+cj

n ]+(ai+b
1
i+b

2
i )[

cj+dj
n ])1a ⊗ 1b1 ⊗ 1b2 ⊗ S(1c)⊗ S(1d)

∑
a,b1,b2∈(Zn)m

m∏
i,j=1

q−cijai[
b1j+b

2
j

n ]1a ⊗ 1b1 ⊗ 1b2 ⊗ 1⊗ 1

=
∑

a,b1,b2,c,d∈(Zn)m

m∏
i,j=1

qcij(−ai[
b1j+b

2
j+cj

n ]+(ai+b
1
i+b

2
i )[

cj+dj
n ]−di−ci[

n−(n−dj)
′

n ])

qcij((di+ci)([
n−((n−dj)

′+(n−cj)
′)′

n ]−[
(n−dj)

′+(n−cj)
′

n ])+di[
n−1+(n−dj)

′

n ]+ci[
n−1+(n−cj)

′

n ])

1a ⊗ 1b1 ⊗ 1b2 ⊗ S(1c)⊗ S(1d).

Note that we used Lemma 4.1 in the computation in order to obtain:

q−cijai[
b1j+b

2
j

n ]qcij(−ai[
(b1j+b

2
j )
′+cj

n ]) = q−cijai[
b1j+b

2
j+cj

n ].

The following equalities can be verified directly:

[
n−((n−dj)′+(n−cj)′)′

n ] = [
n−(dj+cj)

′

n ],

[
(n−dj)′+(n−cj)′

n ] = [
2n−dj−cj

n ]− [
n−dj
n ]− [

n−cj
n ]

= 1 + [
n−(dj+cj)

′

n ]− [
dj+cj
n ]− [

n−dj
n ]− [

n−cj
n ],

[
n−(n−dj)′

n ] = [
n−dj
n ],

[
n−1+(n−dj)′

n ] = [
n−1+dj

n ],

[
n−1+(n−cj)′

n ] = [
n−1+cj

n ].

Applying these equations to the expression of ω, we obtain:

ω =
∑

a,b1,b2,c,d∈(Zn)m

m∏
i,j=1

qcij(−ai[
b1j+b

2
j+cj

n ]+(ai+b
1
i+b

2
i )[

cj+dj
n ]−di−ci[

n−dj
n ])

qcij((di+ci)(−1+[
dj+cj
n ]+[

n−dj
n ]+[

n−cj
n ])+di[

n−1+dj
n ]+ci[

n−1+cj
n ])

1a ⊗ 1b1 ⊗ 1b2 ⊗ S(1c)⊗ S(1d)

=
∑

a,b1,b2,c,d∈(Zn)m

m∏
i,j=1

qcij(−ai[
b1j+b

2
j+cj

n ]+(ai+b
1
i+b

2
i+di+ci)[

cj+dj
n ])

qcij(di(−1−1+[
n−dj
n ]+[

n−cj
n ]+[

n−1+dj
n ])+ci(−1+[

n−dj
n ]+[

n−cj
n ]−[

n−dj
n ]+[

n−1+cj
n ]))

1a ⊗ 1b1 ⊗ 1b2 ⊗ S(1c)⊗ S(1d).
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Now we can apply the following identity to simplify the formula of ω:

[
n− 1 + z

n
] + [

n− z
n

] = 1, for 0 ≤ z < n.

It follows that

ω =
∑

a,b1,b2,c,d∈(Zn)m

m∏
i,j=1

qcij(−ai[
b1j+b

2
j+cj

n ]+(ai+b
1
i+b

2
i+di+ci)[

cj+dj
n ]−di+di[

n−cj
n ])

1a ⊗ 1b1 ⊗ 1b2 ⊗ S(1c)⊗ S(1d)

=
∑

a,b,c,d,e∈(Zn)m

m∏
i,j=1

qcij(−ai[
bj+cj+dj

n ]+(ai+bi+ci+di+ei)[
dj+ej
n ]−ei+ei[

n−dj
n ])

1a ⊗ 1b ⊗ 1c ⊗ S(1d)⊗ S(1e).

�

The algebraic structure of D(Aq(g)) can be described by the following three propositions,

which can be understood roughly as “the generating relations for Aq(g)”, “the generating

relations for Mq(g)” and “the generating relations between Aq(g) and Mq(g)” respectively.

Proposition 4.3. In D(Aq(g)), we have the following relations

(hi ./ ε)
n = 1 ./ ε, (hi ./ ε)(hj ./ ε) = (hj ./ ε)(hi ./ ε),(4.2)

(hi ./ ε)(ej ./ ε)(hi ./ ε)
−1 = qδi,j (ej ./ ε), (ei ./ ε)

li = 0,(4.3) ∑
r+s=1−aij

(−1)s

[
1− aij
s

]
di

(ei ./ ε)
r(ej ./ ε)(ei ./ ε)

s = 0, if i 6= j.(4.4)

for 1 ≤ i, j ≤ m.

Proof. Follows the fact that Aq(g) is a quasi-Hopf subalgebra of D(Aq(g)). �

As a subspace, we always have a natural embedding Mq(g) ↪→ D(Aq(g)) through ϕ 7→ 1 ./ ϕ

for ϕ ∈Mq(g).

Lemma 4.4. For h ∈ Aq(g) and ϕ ∈Mq(g), we have

(h ./ ε)(1 ./ ϕ) = h ./ ϕ.

Proof. This is a special case of Remark 6.2 in [24]. The reader also can prove it by using

Formula (?) in Theorem 2.5. �

Following Lemma 4.4, we have no worry to write hϕ for h ./ ϕ and just denote by h the

element h ./ ε for short. Recall that we have already defined the elements [i and Hi in (2.6).

These elements will be used in the following propositions.
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Proposition 4.5. Assume n ≥ 4. Then we have the following relations in D(Aq(g)):

(1 ./ χi)(1 ./ χj) = (1 ./ χj)(1 ./ χi), ([iΓ
i)li = 0,(4.5) ∑

r+s=1−aij

(−1)s

[
1− aij
s

]
di

([iΓ
i)r([jΓ

j)([iΓ
i)s = 0,(4.6)

for 1 ≤ i 6= j ≤ m and li = ord(qcii).

Proof. For the first part of (4.5), we have:

(1 ./ χi)(1 ./ χj) = ω(3) ./ (ω(5) ⇀ χj ↼ ω(1))(ω(4) ⇀ χi ↼ ω(2))

=
∑

a=εj ,b=εi,c∈(Zn)m,d=(n−1)εi,e=(n−1)εj

∏
s6=j,t

qcst0

∏
s=j,t 6=i

qcjt0qcji(−[
n+ci
n ]−(n−1))1c ./ (χi · χj)

= 1 ./ (χi · χj).

Similarly, one can show that (1 ./ χj)(1 ./ χi) = 1 ./ (χj ·χi) and so (1 ./ χi)(1 ./ χj) = (1 ./

χj)(1 ./ χi). Applying the proof of Formula (3.8) in [19, Prop. 3.4], we get (1 ./ Γi)li = 0.

By (4.8) of the next Proposition 4.6, we have:

[iΓ
i1a = 1a−εi[iΓ

i (and so, Γi1a = 1a−εiΓ
i).

Therefore, ([iΓ
i)li = 0.

Finally, we show the Serre relation.

([iΓ
i)([jΓ

j) = [i
∑

a∈(Zn)m

m∏
l=1

q−cjlal1a−εi(1 ./ Γi)(1 ./ Γj)

= [i
∑

a∈(Zn)m

∏
l 6=i

q−cjlalq−cji(1+ai)
′
1a

ω(3) ./ (ω(5) ⇀ Γj ↼ ω(1))(ω(4) ⇀ Γi ↼ ω(2))

= [i
∑

a∈(Zn)m

∏
l 6=i

q−cjlalq−cji(1+ai)
′
1a

∑
a=εj ,b=εi,c∈(Zn)m,d=e=0εi

q−cji[
1+ci
n ]1c ./ (Γj · Γi)

= [i
∑

a∈(Zn)m

∏
l 6=i

q−cjlalq−cji(1+ai)1a ./ (Γj · Γi)

= q−cji[i[j(Γ
j · Γi).
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Similarly, we have ([jΓ
j)([iΓ

i) = q−cij [i[j(Γ
i · Γj), and

([iΓ
i)2([jΓ

j) = [i
∑

a∈(Zn)m

∏
l 6=i

q−cilalq−cii(1+ai)
′
1a

∑
b∈(Zn)m

∏
l 6=i

q−cjlblq−cji(2+bi)
′
1b

(1 ./ Γi)2(1 ./ Γj)

= [i
∑

a∈(Zn)m

∏
l 6=i

q−cilalq−cii(1+ai)
′
1a

∑
b∈(Zn)m

∏
l 6=i

q−cjlblq−cji(2+bi)
′
1b

∑
c∈(Zn)m

q−cii[
1+ci
n ]−cji[

2+ci
n ]1c ./ Γj · (Γi · Γi)

= q−2cji−cii[2i [jΓ
j · (Γi · Γi).

In a similar way, we obtain the following identities:

([iΓ
i)([jΓ

j)([iΓ
i) = q−cii−cij−cji[2i [jΓ

i · Γj · Γi,

([iΓ
j)([iΓ

i)2 = q−cii−2cij [2i [jΓ
i · Γi · Γj .

In general, we have the following identity:

([iΓ
i)r([jΓ

j)([iΓ
i)s = q−(r+s)cji− (r+s)(r+s−1)

2 cii[r+si [j(Γ
i)s · Γj · (Γi)r

for any two natural numbers r, s satisfying r+ s = 1− aij . Therefore, by Proposition 3.4, we

have:

∑
r+s=1−aij

(−1)s

[
1− aij
s

]
di

(([iΓ
i)r([jΓ

j)([iΓ
i)s

= q−(r+s)cji− (r+s)(r+s−1)
2 cii[r+si [j

∑
r+s=1−aij

(−1)s

[
1− aij
s

]
di

(Γi)s · Γj · (Γi)r

= 0.

�

Proposition 4.6. In D(Aq(g)), we have the following relations:

(1 ./ χi)hj = hj(1 ./ χi), ([iχi)
n = H−2

i ,(4.7)

hi([jΓ
j)h−1

i = q−δij [jΓ
j ,(4.8)

([iχi)ej([iχi)
−1 = qcjiq−2cjiej ,(4.9)

([iχi)([jΓ
j)([iχi)

−1 = q−cjiq2cji([jΓ
j),(4.10)

([jΓ
j)ei − q−cjiei([jΓj) = δij(1 ./ ε−H−1

i [iχi).(4.11)
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Proof. By Formula (2.23), we have (1 ./ χi)hj = hj ./ (h−1
j ⇀ χi ↼ hj) = hj ./ χi = hj(1 ./

χi). To show the second equation in (4.7), we use the formula (?) in Theorem 2.5. We obtain:

(1 ./ χi)(1 ./ χi)

= ω(3) ./ (ω(5) ⇀ χi ↼ ω(1))(ω(4) ⇀ χi ↼ ω(2))

=
∑

a=b=εi,c∈(Zn)m,d=e=(n−1)εi

∏
k,j 6=i

qckj0
∏

k 6=i,j=i

qckick[
(n−1)′+(n−1)′

n ]

qcii(−1+ci[
(n−1)′+(n−1)′

n ]−(n−1))1c ./ χ
2
i

=
∑

c∈(Zn)m

m∏
k=1

qckick1c ./ χ
2
i

= Hiχ
2
i .

Here χ2
i is the product χi · χi in Mq(g). Inductively, we have (1 ./ χi)

k = Hk−1
i χki for

1 ≤ k ≤ n. In particular, (1 ./ χi)
n = H−1

i χni = H−1
i . By the first part of (4.7), we obtain:

([iχi)
n = [ni χ

n
i = H−1

i H−1
i = H−2

i .

For (4.8), it is enough to show that hiΓ
jh−1
i = q−δij (1 ./ Γj) because the elements hi and [j

are commutative. Indeed, using Formula (2.23) we obtain:

hiΓ
jh−1
i = hi(h

−1
i χj(h

−1
i )Γj) = q−δij (1 ./ Γj).

For (4.9), we have the following:

([iχi)ej([iχi)
−1

= [i(ej)(1)(2)ω
(3) ./ (ω(5) ⇀ ε ↼ ω(1))(ω(4)S((ej)(2)) ⇀ χi ↼ (ej)(1)(1)ω

(2))([iχi)
−1

= [i(

n−1∑
k=1

1jkej ./ q
cji(n−1)χi + 1j0ej ./ q

−cijqcji(n−1)χi)([iχi)
−1

= [qcji(n−1)
∑

a∈(Zn)m,aj 6=0

m∏
l=1

q−cilal1aej ./ χi +

q−cji
∑

a∈(Zn)m,aj=0

m∏
l=1

q−cilal1aej ./ χi]([iχi)
−1.

Now we need the following identities:

qcji(n−1)
∑

a∈(Zn)m,aj 6=0

m∏
l=1

q−cilal1aej

= qcji(n−1)
∑

a∈(Zn)m,aj 6=0

m∏
l=1

q−cilalej1a−εj

= qcji(n−1)q−cijej
∑

a∈(Zn)m,aj 6=n−1

m∏
l=1

q−cilal1a,
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and:

q−cji
∑

a∈(Zn)m,aj=0

m∏
l=1

q−cilal1aej

= q−cji
∑

a∈(Zn)m,aj=0

m∏
l=1

q−cilalej1a−εj

= q−cjiqcij(n−1)ej
∑

a∈(Zn)m,aj=n−1

m∏
l=1

q−cilal1a.

By applying the above identities to the expression of ([iχi)ej([iχi)
−1, we obtain:

([iχi)ej([iχi)
−1

= q−cjiqcij(n−1)ej([i ./ χi)([iχi)
−1

= qcjiq−2cjiej .

To show (4.10), we only need to verify that ([iχi)(1 ./ Γj)([iχi)
−1 = q−cjiq2cji(1 ./ Γj) since

the elements χi and [j are commutative. Note that ([iχi)
−1 = H−1

i [−1
i χn−1

i . Thus, we have:

([iχi)(1 ./ Γj)([iχi)
−1

= [i[ω
(3) ./ (ω(5) ⇀ Γj ↼ ω(1))(ω(4) ⇀ χi ↼ ω(2))]([iχi)

−1

= ([iq
−cji ./ (Γj · χi))H−1

i [−1
i χn−1

i

= q−cji[i[(1 ./ Γj · χi)H−1
i [−1

i χn−1
i ],

and:

(1 ./ Γj · χi)(H−1
i [−1

i ./ χn−1
i )

=
∑

a,b,c,d,e∈(Zn)m

ωa,b,c,d,e

m∏
l=1

qcil(bl+cl+dl)
′
H−1
i 1c ./ (S(1e) ⇀ χn−1

i ↼ 1a)

(S(H−1
i 1d) ⇀ Γj · χi ↼ H−1

i 1b)

=
∑

c∈(Zn)m,a=d=(n−1)εi,b=εi+εj ,e=εi

∏
s6=i 6=k

qcsk0
∏
s=i 6=k

qcik(−(n−1)[
bk+ck
n ])

∏
s6=i=k

qcsi(bs+cs)qcii(1+ci−1)
∏
l 6=j

qcilclqcij(1+cj)
′
q−cjiH−1

i 1c ./ χ
−1
i · (Γ

j · χi)

=
∑

c∈(Zn)m

qcij [
1+cj
n ]
∏
l 6=j

qcilclqcij(1+cj)
′
m∏
s=1

qasicsH−1
i 1c ./ χ

−1
i · (Γ

j · χi)

= qcij [−1
i ./ χ−1

i · (Γ
j · χi)

= qcij+cji[−1
i ./ Γj ,

where ωa,b,c,d,e denotes the coefficient of 1a⊗1b⊗1c⊗S(1d)⊗S(1e) in ω. For the third equal-

ity we used
∏m
s=1 q

asicsH−1
i 1c = 1c and Lemma 4.1. Therefore, ([iχi)(1 ./ Γj)([iχi)

−1 =

q−cjiq2cji(1 ./ Γj).
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We arrive now at the proof of the last equality, (4.11). Using the comultiplication formula for

ei given in Lemma 2.3, we have:

(∆⊗ id)∆(ei) = ei ⊗ [−1
i ⊗ [

−1
i + 1⊗

n−1∑
k=1

1ikei ⊗ [−1
i +H−1

i ⊗ 1i0ei ⊗ [−1
i

+1⊗ 1⊗
n−1∑
k=1

1ikei +H−1
i ⊗H

−1
i ⊗ 1i0ei.

Substituting the above comultiplication of ei in the following equation:

(1 ./ Γj)(ei ./ ε) = (ei)(1)(2) ./ S((ei)(2)) ⇀ Γj ↼ (ei)(1)(1),

we obtain:

(1 ./ Γj)(ei ./ ε) =

n−1∑
k=1

1ikei ./ Γj + q−cji1i0ei ./ Γj , for i 6= j.

Now multiplying both sides of the above identity with the element [j , we obtain:

([jΓ
j)ei = ei

∑
a∈(Z)mn ,ai 6=0

m∏
l=1

q−cjlal1a−εiΓ
j + q−cjiei

∑
a∈(Z)mn ,ai=0

m∏
l=1

q−cjlal1a−εiΓ
j

= q−cjiei
∑

a∈(Z)mn ,ai 6=n−1

m∏
l=1

q−cjlal1aΓj + q−cjiei
∑

a∈(Z)mn ,ai=n−1

m∏
l=1

q−cjlal1aΓj

= q−cjiei([jΓ
j).

If i = j, then we have:

(1 ./ Γi)(ei ./ ε) = [−1
i +

n−1∑
k=1

1ikei ./ Γi + q−cii1i0ei ./ Γi −H−1
i ./ χi.

Similarly, by multiplying both sides with the element [i, we obtain:

([iΓ
i)ei = 1 ./ ε+ q−ciiei([iΓ

i)−H−1
i ([iχi).

�

The next step is to determine the coalgebraic structure of D(Aq(g)). We divide it in the

following two propositions.

Proposition 4.7. In D(Aq(g)), we have:

∆(hi) = hi ⊗ hi, ∆(ei) = ei ⊗ [−1
i + 1⊗

n−1∑
j=1

1ijei +H−1
i ⊗ 1i0ei,(4.12)

ε(hi) = 1, ε(ei) = 0,(4.13)

for 1 ≤ i ≤ m.

Proof. Due to the fact that Aq(g) is a quasi-Hopf subalgebra of D(Aq(g)). �
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Proposition 4.8. In D(Aq(g)), we have:

∆([iχi) = [iχi ⊗ [iχi,(4.14)

∆([iΓ
i) = [iΓ

i ⊗ [i +H−1
i ([iχi)⊗ ([iΓ

i)

n−1∑
j=1

1ij + ([iχi)⊗ ([iΓ
i)1i0,(4.15)

ε([iχi) = 1, ε([iΓ
i) = 0,(4.16)

for 1 ≤ i ≤ m.

Proof. Recall that, for any ψ ∈ Mq(g), we defined T(ψ) = φ
(1)
(2) ./ S(φ(2))αφ(3) ⇀ ψ ↼ φ

(1)
(1)

(see Equation (2.19) before Theorem 2.5). Thus:

T(χi) = φ
(1)
(2) ./ S(φ(2))αφ(3) ⇀ χi ↼ φ

(1)
(1)

=
∑

a1,a2,b,c∈(Zn)m

m∏
s,t=1

q−cst(a
1
s+a

2
s)[

bt+ct
n ]1a2 ./ S(1b)α1c ⇀ χi ↼ 1a1

=
∑

a1,a2,b,c∈(Zn)m

m∏
s,t=1

q−cst(a
1
s+a

2
s)[

bt+ct
n ]qcstcs[

n−1+ct
n ]1a2 ./ S(1b)1c ⇀ χi ↼ 1a1

=
∑

a1=c=εi,b=(n−1)εi,a2∈(Zn)m

m∏
s=1

q−csia
2
sq−ciiqcii1a2 ./ χi

=
∑

a∈(Zn)m

m∏
s=1

q−csias1a ./ χi

= H−1
i χi.

Applying formula (??) in Theorem 2.5, we have:

∆(T(χi))

= φ̃(2)T(χi ↼ φ̃(1))φ(−1)φ(1) ⊗ φ̃(3)φ(−3)T(φ(3) ⇀ χi ↼ φ(−2))φ(2)

=
∑

a1,a2,a3,b1,b2,b3,c1,c2,c3∈(Zn)m

m∏
s,t=1

q−csta
1
s[
a2t+a

3
t

n ]+cstb
1
s[
b2t+b

3
t

n ]−cstc1s[
c2t+c

3
t

n ]

1a2T(χi ↼ 1a1)1b11c1 ⊗ 1a31b3T(1c3 ⇀ χi ↼ 1b2)1c2

=
∑

a1,a2,a3,b2,c3∈(Zn)m

m∏
s,t=1

q−csta
1
s[
a2t+a

3
t

n ]+csta
2
s[
b2t+a

3
t

n ]−csta2s[
a3t+c

3
t

n ]

T(χi ↼ 1a1)1a2 ⊗T(1c3 ⇀ χi ↼ 1b2)1a3

=
∑

a2,a3∈(Zn)m

m∏
t=1

q−cit[
a2t+a

3
t

n ]
m∏
s=1

qcsia
2
s[

1+a3i
n ]

m∏
s=1

q−csia
2
s[
a3i+1

n ]

T(χi)1a2 ⊗T(χi)1a3

=
∑

a2,a3∈(Zn)m

m∏
t=1

q−cit[
a2t+a

3
t

n ]T(χi)1a2 ⊗T(χi)1a3 .
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Therefore, we obtain:

∆([iT(χi)) = ∆([i)∆(T(χi))

= (
∑

b,c∈(Zn)m

m∏
t=1

q−cit(bt+ct)
′
1b ⊗ 1c)

(
∑

b,c∈(Zn)m

m∏
t=1

q−cit[
bt+ct
n ]T(χi)1b ⊗T(χi)1c)

=
∑

b,c∈(Zn)m

m∏
t=1

q−cit(bt+ct)1bT(χi)⊗ 1cT(χi)

= [iT(χi)⊗ [iT(χi).

This means that [iT(χi) is a group-like element. Since T(χi) = H−1
i χi and H−1

i is a group-

like element, [iχi is group-like too. Thus the proof of (4.14) is done.

Using the same method, one can show that:

T(Γi) = 1 ./ Γi

and:

∆(T(Γi)) =
∑

a2,a3∈(Zn)m

m∏
t=1

q−cit[
a2t+a

3
t

n ]1a2T(Γi)⊗ 1a3

+
∑

a2,a3∈(Zn)m

m∏
t=1

q−cit[
a2t+a

3
t

n ]
m∏
s=1

qcsia
2
s[

1+a3i
n ]1a2T(χi)⊗ 1a3T(Γi).

Thus:

∆([iT(Γi)) = ∆([i)∆(T(Γi))

=
∑

a2,a3∈(Zn)m

m∏
t=1

q−cit(a
2
t+a

3
t )1a2T(Γi)⊗ 1a3

+H−1
i

∑
a2∈(Zn)m

m∏
t=1

q−cita
2
t1a2χi ⊗

∑
a3;a3i 6=n−1

m∏
t=1

q−cita
3
t1a3T(Γi)

+
∑

a2∈(Zn)m

m∏
t=1

q−cita
2
t1a2χi ⊗

∑
a3;a3i=n−1

m∏
t=1

q−cita
3
t1a3T(Γi)

= [iΓ
i ⊗ [i +H−1

i ([iχi)⊗ ([iΓ
i)

n−1∑
j=1

1ij + ([iχi)⊗ ([iΓ
i)1i0.

Now (4.16) is clear. �

Finally, we determine the reassociator φ, the elements α, β and the antipode S for D(Aq(g)).
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Proposition 4.9. In D(Aq(g)), the reassociator is given by:

(4.17) φ =
∑

a,b,c∈(Zn)m

(

m∏
i,j=1

q−cijai[
bj+cj
n ])1a ⊗ 1b ⊗ 1c.

The elements α, β can be chosen as:

(4.18) α =
∑

a∈(Zn)m

m∏
s,t=1

qcstas[
n−1+at

n ]1a, β = 1.

The antipode S is determined by:

S(hi) = h−1
i , S([iχi) = ([iχi)

−1,(4.19)

S(ei) = −(α

n−1∑
j=1

1ijei +Hiα1i0ei)[iα
−1,(4.20)

S([iΓ
i) = −(Hi([iχi)

−1α([iΓ
i)

n−1∑
j=1

1ij + ([iχi)
−1α([iΓ

i)1i0)[−1
i α−1,(4.21)

for 1 ≤ i ≤ m.

Proof. By Theorem 2.5 (2) and Lemma 2.3, the reassociator φ is given by (4.17), and α, β can

be chosen as in (4.18). Since the elements hi and [iχi are group-like, (4.19) is obvious. Both

(4.20) and (4.21) follow directly from the definition of the antipode and the comultiplication

formulas for ei and [iΓ
i. �

5. Presentation of quasi-Frobenius-Lusztig kernels

In this section, we present D(Aq(g)) in terms of generators and relations. Let g be a simple

Lie algebra of finite type, A = (aij)m×m its Cartan matrix and C = (diaij) = (cij) the

symmetrized Cartan matrix. Let n be a natural number ≥ 4, and q an n2-th primitive root

of unity, q = qn and li = ord(qcii).

Definition 5.1. The quasi-Frobenius-Lusztig kernel Quq(g) is a quasi-Hopf algebra defined

as follows. As an associative algebra, it is generated by Ei, Fi,Ki, K̂i (1 ≤ i ≤ m) satisfying:

KiKj = KjKi, K̂iK̂j = K̂jK̂i, KiK̂j = K̂jKi,(5.1)

Kn
i = 1, K̂n

i =

m∏
l=1

K−2cil
l ,(5.2)

KiEj = qδijEjKi, KiFj = q−δijFjKi,(5.3)

K̂iEj = qcijq−2cijEjK̂i, K̂iFj = q−cijq2cijFjK̂i,(5.4)

FjEi − q−cijEiFj = δij(1−
m∏
l=1

K−cill K̂i),(5.5)

Elii = F lii = 0,(5.6)



QUASI-FROBENIUS-LUSZTIG KERNELS FOR SIMPLE LIE ALGEBRAS 35
∑
r+s=1−aij (−1)s

[
1− aij
s

]
di

EriEjE
s
i = 0 i 6= j

∑
r+s=1−aij (−1)s

[
1− aij
s

]
di

F ri FjF
s
i = 0 i 6= j.

(5.7)

for 1 ≤ i, j ≤ m.

Let {1a|a = (a1, . . . , am) ∈ (Zn)m} be the set of primitive idempotents of the group algebra of

〈Ki|1 ≤ i ≤ m〉 ∼= (Zn)m, 1ik := 1
n

∑n−1
j=0 (qn−k)jKj

i , [i :=
∑
a∈(Zn)m

∏m
j=1 q

−cijaj1a, Hi :=∏m
j=1K

cji
j .

The reassociator φ, the comultiplication ∆, the counit ε, the elements α, β and the antipode

S are given by

φ =
∑

a,b,c∈(Zn)m

(

m∏
i,j=1

q−cijai[
bj+cj
n ])1a ⊗ 1b ⊗ 1c,(5.8)

∆(Ki) = Ki ⊗Ki, ∆(K̂i) = K̂i ⊗ K̂i,(5.9)

∆(Ei) = Ei ⊗ [−1
i + 1⊗

n−1∑
j=1

1ijEi +H−1
i ⊗ 1i0Ei,(5.10)

∆(Fi) = Fi ⊗ [i +H−1
i K̂i ⊗ Fi

n−1∑
j=1

1ij + K̂i ⊗ Fi1i0,(5.11)

ε(Ki) = ε(K̂i) = 1, ε(Ei) = ε(Fi) = 0,(5.12)

α =
∑

a∈(Zn)m

m∏
s,t=1

qcstas[
n−1+at

n ]1a, β = 1(5.13)

S(Ki) = K−1
i , S(K̂i) = K̂−1

i ,(5.14)

S(Ei) = −(α

n−1∑
j=1

1ijEi +Hiα1i0Ei)[iα
−1,(5.15)

S(Fi) = −(HiK̂
−1
i αFi

n−1∑
j=1

1ij + K̂−1
i αFi1

i
0)[−1

i α−1.(5.16)

for 1 ≤ i ≤ m.

Lemma 5.2. Quq(g) is finite dimensional and dim(Quq(g)) = (dim(Aq(g)))2.

Proof. We give a rough proof of this statement. At first, by the relations (5.3)-(5.5), Quq(g)

has an triangle decomposition:

Quq(g) = u+u0u−

where u+ (resp. u−) is the subalgebra generated by Ei (resp. Fi) for 1 ≤ i ≤ m, and u0 is

the subalgebra generated by Ki, K̂i for 1 ≤ i ≤ m. It is not hard to see that dim(u0) = n2m
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and dim(u+)nm = dim(u−)nm = dim(Aq(g)). Therefore,

dim(Quq(g)) = (dim(Aq(g)))2.

�

The following theorem shows that Quq(g) is a quasi-Hopf algebra though one can also verify

that (5.1)-(5.16) define a quasi-Hopf algebra.

Theorem 5.3. As quasi-Hopf algebras, D(Aq(g)) ∼= Quq(g).

Proof. Define a map

Υ : Quq(g) −→ D(Aq(g)), Ki 7→ hi, K̂i 7→ [iχi,

Ei 7→ ei, Fi 7→ [iΓ
i.

By Propositions 4.3, 4.5 and 4.6, Υ is an algebra morphism. By Propositions 4.7 and 4.8,

Υ preserves the comultiplication. Thanks to Theorem 2.5 (1), Υ is surjective, and hence

bijective as the dimensions of the two algebras are equal (see Lemma 5.2). �

6. Twist equivalence

In this section, we determine when the quasi-Hopf algebra Quq(g) is not twisted equivalent

to a Hopf algebra.

Definition 6.1. (1) We call a quasi-Hopf algebra H twist equivalent to another quasi-Hopf

algebra K if there is a twist J of H such that K ∼= HJ as quasi-bialgebras.

(2) A quasi-Hopf algebra H is said to be genuine if H is not twist equivalent to any ordinary

Hopf algebra.

We give various sufficient conditions for Quq(g) to be genuine.

Theorem 6.2. Assume g is of type Am for m ≥ 2.

(1) If (m+ 1)|n, then Quq(g) is a genuine quasi-Hopf algebra.

(2) If m is odd and 4|n, then Quq(g) is a genuine quasi-Hopf algebra.

Proof. (1) Let d = n
m+1 and ζm+1 = qd. Let G := 〈Ki|1 ≤ i ≤ m〉 be the subgroup generated

by Ki’s in Quq(g). Consider the following 1-dimensional representation of G:

ρ : G −→ k, Ki 7→ ζim+1.

We show that ρ can be extended to a 1-dimensional representation of Quq(g), still denoted

by ρ. Indeed, we may define:

ρ : Quq(g) −→ k, Ki 7→ ζim+1, K̂i 7→ 1, Ei 7→ 0, Fi 7→ 0,
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for 1 ≤ i ≤ m. We need to show that ρ is a well-defined algebra morphism. By our choice,

we have ρ(Hi) = ρ(
∏m
j=1(Kj)

cji) = 1. Therefore, the relations (5.2) and (5.5) are preserved

by ρ. The other relations can be checked easily. Thus ρ is well-defined.

Now let X be this 1-dimensional Quq(g)-module and 〈X〉 be the tensor subcategory generated

by X. Define:

X
⇀

⊗l =:

l︷ ︸︸ ︷
(· · · (X ⊗X)⊗X) · · · ) .

Then the objects of 〈X〉 are direct sums of elements in {X
⇀

⊗l|0 ≤ l < m + 1}. Now assume

that Quq(g) is twist equivalent to a Hopf algebra. By the general principle of Tannaka-Krein

duality (see, e.g., [3]), there is a fiber functor from the category Rep-Quq(g) to the category of

k-spaces. Thus its restriction to 〈X〉 is still a fiber functor. This implies that the restriction

of φ to 〈X〉 should come from a 3-coboundary of (Zm+1)m. In fact, by the definition of ρ,

1aX 6= 0 if and only if kd|ak for 1 ≤ k ≤ m, and hence

φ|〈X〉 =
∑

a,b,c∈(Zm+1)m

m∏
s,t=1

ζ−cstsasm+1 [
tbt + tct
m+ 1

]1a ⊗ 1b ⊗ 1c.

Here 1x, x = a, b, c, denotes a primitive element in k((Zm+1)m). This corresponds to a 3-

cocycle Φ over ((Zm+1)m)∧, the character group of (Zm+1)m. By definition, Φ(χa, χb, χc) =∏m
s,t=1 ζ

−cstsas[ tbt+tctm+1 ]

m+1 where χx, x = a, b, c, is the dual element of 1x.

Now we show that Φ is not a coboundary and thus we get a contradiction. By Corollary 2.11,

it is enough to compute F ∗3 (Φ). We use the same notations as in Subsection 1.4. We have the

following:

f1,1,1 = F ∗3 (Φ)(Ψ1,1,1)

=

m∏
l=0

Φ(χε1 , χlε1 , χε1)

= ζ−c11m+1 6= 1.

By Corollary 2.11 and Lemma 2.9, Φ is not a coboundary.

(2) Consider the following 1-dimensional representation of G:

(6.1) ρ : G −→ k,

{
Ki 7→ 1, if i is even

Ki 7→ q
n
4 , if i is odd.

It is not hard to see that ρ(Hi) = ±1, and that ρ can be also extended to a Quq(g)-module

by setting:

(6.2) ρ(Ei) = ρ(Fi) = 0, ρ(K̂i) = ρ(Hi)

for 1 ≤ i ≤ m. Thus using the same argument developed in the proof of (1), we get the

desired result. �
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Theorem 6.3. The following hold.

(1) Assume g is of type Bm. If either 2|m and 4|n or 2 - m and 8|n, then Quq(g) is genuine;

(2) Assume g is of type Cm, or Dm, or E7. If 4|n, then Quq(g) is genuine;

(3) Assume g is of type E6. If 3|n, then Quq(g) is genuine.

Proof. The proof is almost the same as the proof of Theorem 6.2. Therefore, we only provide

the construction of the 1-dimensional modules.

The principle for the construction of such a 1-dimensional module is: For a 1-dimensional

Quq(g)-module, the actions of Ei and Fi must be trivial since they are nilpotent. Thus

Relation (5.5) implies that the action of H−1
i K̂i is trivial as well. Applying Relation (5.2),

the action of H−2
i is also trivial and hence the action of Hi must be ±1. So a necessary

condition for a 1-dimensional kG-module to be extended to a Quq(g)-module is: the action

of Hi is ±1. Conversely, given a 1-dimensional kG-module (V, ρ) satisfying ρ(Hi) = ±1, it

can be extended to a Quq(g)-module if we set ρ(Ei) = ρ(Fi) = 0 and ρ(K̂i) = ρ(Hi).

Type Bm: If m is even and 4|n, the 1-dim representation ρ in (6.1) extends to a Quq(g)-

module as in the proof of Theorem 6.2.

If m is odd and 8|n, define:

ρ : G −→ k,


Ki 7→ 1, if i is even

Ki 7→ q
n
4 , if i is odd and i 6= m,

Km 7→ q
n
8 .

Then ρ extends to a Quq(g)-module by adding (6.2).

Type Cm: If 4|n, define:

ρ : G −→ k,

{
Ki 7→ 1, for i < m,

Km 7→ q
n
4 .

Then ρ extends to a Quq(g)-module by adding (6.2).

Type Dm: If 4|n, define:

ρ : G −→ k,

{
Ki 7→ 1, if i < m− 1,

Ki 7→ q
n
4 , if i = m− 1,m.

Then ρ extends to a Quq(g)-module by adding (6.2).

Type E6: If 3|n, define:

ρ : G −→ k,


Ki 7→ 1, if i = 2, 4,

Ki 7→ q
n
3 , if i = 1, 5,

Ki 7→ q
2n
3 , if i = 3, 6.

Then ρ extends to a Quq(g)-module by adding (6.2).
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Type E7: If 4|n, define:

ρ : G −→ k,

{
Ki 7→ 1, if i = 1, 3, 4, 6,

Ki 7→ q
n
4 , if i = 2, 5, 7.

Then ρ extends to a Quq(g)-module by adding (6.2).

�

Remark 6.4. (1) Except type G2, Etingof and Gelaki proved that D(Aq(g)) is always twist

equivalent to a Hopf algebra provided n is odd and (n, |(aij)|) = 1 (for type G2, they need

one more condition, that is, 3 - n), where |(aij)| is the determinant of the Cartan matrix. It is

well-known that the determinant of the Cartan matrix of type Am (resp. E6) is m+ 1 (resp.

3). Therefore, our results imply that the condition “ n is odd and (n, |(aij)|) = 1” can not be

removed in general. One could even ask whether such a condition is a necessary condition.

But it is not. For example, let n = 2. One can use Corollary 2.11 and Lemma 2.9 to show

that φ is already a coboundary in Aq(g) and thus Aq(g) is twist equivalent to a Hopf algebra.

Therefore, D(Aq(g)) is twist equivalent to a Hopf algebra too.

(2) Our methods cannot be applied to Lie algebras of type E8, F4 and G2. We do not know

whether there is an n such that Quq(g) is genuine when g is one of these types.

Problem 6.5. (1) For type E8, is Quq(g) twist equivalent to a Hopf algebra? For type F4,

is Quq(g) genuine when 4|n? For type G2, is Quq(g) genuine when 6|n?

(2) Give a complete list of genuine quasi-Frobenius-Lusztig kernels.

(3) How can one determine whether a given finite dimensional quasi-Hopf algebra H over k

is twist equivalent to some Hopf algebra or not?
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