
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Learning and Convergence of Fuzzy Cognitive Maps Used in Pattern Recognition

Peer-reviewed author version

NAPOLES RUIZ, Gonzalo; PAPAGEORGIOU, Elpiniki; Bello, Rafael & VANHOOF,

Koen (2016) Learning and Convergence of Fuzzy Cognitive Maps Used in Pattern

Recognition. In: NEURAL PROCESSING LETTERS, 45 (2), pag. 431-444.

DOI: 10.1007/s11063-016-9534-x

Handle: http://hdl.handle.net/1942/22971



 

 

Learning and convergence of Fuzzy Cognitive      

Maps used in pattern recognition 

 

Gonzalo Nápoles1,2,*, Elpiniki Papageorgiou3,1, Rafael Bello2 Koen Vanhoof 1 

 

1Faculty of Business Economics, Hasselt University, Belgium 

2Department of Computer Sciences, Central University of Las Villas, Cuba 

3Department of Computer Engineering, Technological Education Institute of Central Greece, Greece 

 

Abstract. In recent years Fuzzy Cognitive Maps (FCM) have become an active research field due to their 

capability for modeling complex systems. These recurrent neural models propagate an activation vector 

over the causal network until the map converges to a fixed-point or a maximal number of cycles is reached. 

The first scenario suggests that the FCM converged, whereas the second one implies that cyclic or chaotic 

patterns may be produced. The non-stable configurations are mostly related with the weight matrix that 

defines the causal relations among concepts. Such weights could be provided by experts or automatically 

computed from historical data by using a learning algorithm. Nevertheless, from the best of our knowledge, 

population-based algorithms for FCM-based systems do not include the map convergence into their learning 

scheme and thus, non-stable configurations could be produced. In this research we introduce a population-

based learning algorithm with convergence features for FCM-based systems used in pattern classification. 

This proposal is based on a heuristic procedure, called Stability based on Sigmoid Functions, which allows 

improving the convergence of sigmoid FCM used in pattern classification. Numerical simulations using six 

FCM-based classifiers have shown that the proposed learning algorithm is capable of computing accurate 

parameters with improved convergence features. 

Keywords. Fuzzy Cognitive Maps, learning algorithm, convergence. 

                                                           
* Corresponding author: gonzalo.napoles@uhasselt.be 

mailto:gonzalo.napoles@uhasselt.be


I. Introduction 

Fuzzy Cognitive Maps (FCM) are Recurrent Neural Networks for modeling dynamical systems 

using causal relations [1]. Essentially, a FCM involves an information network where graph nodes 

represent objects, states, concepts or entities of the investigated system and they comprise a precise 

meaning for the problem domain. These concepts are equivalent to neurons in neural models, and 

they are connected by causal relationships that take values in the range [−1,1]. These elements 

interact during the inference stage to update the activation value of each neuron by using a rule 

similar to the standard McCulloch-Pitts schema [2]. This updating procedure is iteratively repeated 

until (i) the FCM-based system converges to a fixed-point attractor or (ii) a maximal number of 

iterations is reached. The former implies that a hidden pattern was discovered [3] whereas the latter 

suggests that the system responses are cyclic or completely chaotic. 

 

The non-stable configurations are mostly related with the causal weight matrix that describes the 

whole system. More explicitly, a perfectly symmetric weight matrix implies the existence of large 

number of positive cycles in the modeled system. These cycles provide the system with positive 

feedback loops that amplify any initial change and thus lead to exponential growth or decline [4]. 

On the other hand, antisymmetric causal weight matrixes imply the existence of negative cycles 

with odd number of connections, providing the FCM with negative feedback loops that counteract 

any stimulus. Thus, after time period equal to the length of the cycle the neuron to which the initial 

change was introduced will receive an influence that has an opposite sign from the initial change. 

This leads the system to periodic behavior and the creation of limit cycles. 

 

 



Such weights can be provided by domain experts or automatically computed from historical data 

by using a learning algorithm. Existing learning methods can be grouped into two large groups: 

Hebbian-based and population-based algorithms [5]. The first ones only require a single instance 

to adjust the model, however, numerical experiments reported by Papakostas et al. [6] have shown 

that population-based learning algorithms are preferred when developing FCM-based classifiers. 

Unfortunately, these algorithms do not include any convergence feature into their learning scheme 

and therefore, estimated parameters could induce non-stable behaviors. 

 

Another challenging research field is related to the development of accurate FCM-based classifiers 

since they often show lower prediction rates regarding to traditional classifiers (e.g., decision trees, 

neural networks, support vector machines). However, in contrast to FCM-based models, traditional 

classifiers perform like black-boxes and therefore they are difficult to interpret. Roughly speaking, 

a FCM-based classifier can work in two types of architectures [6]: 

 Class-per-output architecture. Each decision class is mapped as an output neuron. During 

the exploitation of the FCM-based classifier, the predicted decision class corresponds to 

the output neuron with the highest activation value. 

 Single-output architecture. Each decision class is enclosed into the activation space of the 

decision neuron. By doing so, two possibilities have been identified: 

a) Using a clustering approach. During the training phase, the center of each cluster 

is determined and labeled. In the testing phase, the center having the closest 

distance to the projected activation value is assigned to the input pattern. 

b) Using a thresholding approach. During the training phase, a pair of thresholds for 

each decision class are determined. In the testing phase, the interval comprising the 

projected activation value is assigned to the input pattern. 



From the best of our knowledge, only a few studies addressing the convergence on FCM-based 

classifiers have been proposed. For example, Boutalis et al. [7] and Kottas et al. [8] investigated 

the existence and uniqueness of equilibrium values of neurons in FCM equipped with sigmoid 

transfer functions, using the contraction mapping theorem. Knight et al. [9] proposed a slightly 

different theoretical result related with the inclination of the sigmoid function. However, Nápoles 

et al. [10] numerically verified that these theoretical results cannot be directly used in solving 

pattern classification problems since a FCM-based classifier with a single fixed point-attractor will 

produce the same decision class for all input patterns. 

 

In this paper we introduce a population-based learning algorithm that attempts to compute accurate 

parameters (i.e., the causal weights that define the interaction among map neurons, and the sigmoid 

inclination of each transfer function) having convergence features. It implies that the FCM-based 

classifier must be capable of effectively recognizing the input patterns in a stable fashion, that is, 

reducing the variability on the responses for consecutive iterations. To accomplish that, we extend 

the basic principle of a heuristic algorithm called Stability based on Sigmoid Functions (SSF) that 

allows improving the convergence of FCM-based classifiers [10] [11]. It should be mentioned that 

the proposed learning algorithm provides high flexibility and allows computing the parameters of 

FCM-based classifiers having different decision architectures.    

 

The rest of the paper is organized as follows: in Section II the background about the FCM theory 

is provided, whereas in Section III we describe the SSF algorithm. In Section IV we introduce the 

proposed algorithm to compute the causal weights and the sigmoid parameters in a stable fashion, 

including some important definitions and theorems. Section V provides numerical simulations that 

allow evaluating our learning methodology across six FCM-based classifiers, whereas in the last 

section we discuss relevant remarks and further research aspects. 



II. Fuzzy Cognitive Maps 

Essentially a FCM is a fuzzy digraph that describes the behavior of an intelligent system in terms 

of concepts. Each concept represents an object, a state, a variable or a characteristic of the system 

under investigation [12]. These concepts (or neurons) define a set 𝒞 = {𝐶1, 𝐶2, … , 𝐶𝑀} where 𝑀 is 

the number of neurons in the weighted graph. On the other hand, the relation between two neurons 

𝐶𝑖 and 𝐶𝑗 is defined by a function 𝒲: (𝐶𝑖, 𝐶𝑗) → 𝑤𝑖𝑗 where 𝑤𝑖𝑗 ∈ [−1,1]. It allows characterizing 

the interaction between two map neurons by using causal relations.  

 

The reasoning rule of a FCM computes the activation value of a map neuron 𝐶𝑖 at each iteration 

step by using a function 𝒜: (𝐶𝑖) → 𝐴𝑖
(𝑡)

. The activation degree of a neuron plays a relevant role 

during the FCM interpretation: the higher the activation value of a neuron, the stronger its influence 

over the system [13]. Moreover, a transfer function 𝑓: ℝ → 𝐼 is used to keep the activation value 

of neurons in the interval 𝐼 = [0,1] or 𝐼 = [−1,1]. The three most widely used transfer functions 

include: the bivalent, the trivalent and the sigmoid variants [14]. Equation (1) displays how these 

elements interact to iteratively compute the activation vector 𝐴(𝑡) = (𝐴1
(𝑡)

, 𝐴2
(𝑡)

, … , 𝐴𝑀
(𝑡)

) using the 

state vector 𝐴(0) = (𝐴1
(0)

, 𝐴2
(0)

, … , 𝐴𝑀
(0)

) as the initial stimulus. 

 

𝐴𝑖
(𝑡+1)

=  𝑓 (∑ 𝑤𝑗𝑖

𝑀

𝑗=1

𝐴𝑗
(𝑡)

+ 𝑤𝑖𝑖𝐴𝑖
(𝑡)

) , 𝑖 ≠ 𝑗 (1) 

 

In the same way to other recurrent models - such as the Hopfield model - at each discrete time a 

new state vector is produced [15]. After a large enough number of cycles 𝑇 and depending on the 

transfer function adopted, the map will arrive in one of the following states: 



 Fixed-point (∃𝑡𝛼 ∈ {1,2, … , (𝑇 − 1)} ∶ 𝐴(𝑡+1) = 𝐴(𝑡), ∀𝑡 ≥ 𝑡𝛼): the system will produce 

the same output after the cycle 𝑡𝛼, so 𝐴(𝑡𝛼) = 𝐴(𝑡𝛼+1) = 𝐴(𝑡𝛼+2) = ⋯ = 𝐴(𝑇). 

 Limit cycle (∃𝑡𝛼, 𝑃 ∈ {1,2, … , (𝑇 − 1)} ∶ 𝐴(𝑡+𝑃) = 𝐴(𝑡), ∀𝑡 ≥ 𝑡𝛼): the map will produce 

the same output periodically after the cycle 𝑡𝛼, so 𝐴(𝑡𝛼) = 𝐴(𝑡𝛼+𝑃) = 𝐴(𝑡𝛼+2𝑃) = ⋯ =

𝐴(𝑡𝛼+𝑗𝑃) where obviously 𝑡𝛼 + 𝑗𝑃 ≤ 𝑇, such that 𝑗 ∈ {1,2, … , (𝑇 − 1)}. 

 Chaos: the system continues to produce different state vectors for successive cycles. In 

such cases the FCM is unable to converge, leading to confusing system responses. 

 

It should be commented that the transfer function plays a pivotal role in the convergence of FCM-

based systems. Discrete (bivalent or trivalent) FCM always converge to a fixed-point attractor or 

limit cycle since FCM are deterministic models, and so, the number of distinct states is finite [16]. 

In contrast, FCM equipped with continuous transfer functions (e.g., sigmoid FCM) can exhibit 

chaotic behaviors since the FCM could produce infinite different states freely distributed in the 

space defined by the [−1,1]𝑀 hypercube. In spite of this fact, Bueno and Salmeron [14] concluded 

that the sigmoid transfer function has a superior predictive capability. 

III. Stability based on Sigmoid Functions 

In this section we describe a heuristic procedure called Stability based on Sigmoid Functions (SSF) 

for non-discrete FCM-based systems [10] that allows improving the system convergence without 

altering the weights configuration. The original SSF algorithm is focused on FCM-based classifiers 

using a class-per-output architecture, but it could be extended to other models as will be illustrated 

in Section IV. The foundations of this algorithm emerged from empirical simulations, where the 

authors observed that using a different sigmoid function for each neuron (instead of using the same 

transfer function for all map neurons) the convergence of the FCM-based classifier suffered some 



changes. Being more explicit, we noted a significant reduction of the system entropy in some cases, 

while in others, the convergence was seriously affected. From such experiments we concluded that 

variations on the parameter 𝜆𝑖 in Equation (2) lead to significant changes (positive or negative) on 

the FCM behavior. This suggests that a learning procedure could improve the stability properties 

of the FCM-based classifier, without altering its capability for predicting new patterns (i.e., without 

changing the weight configuration that has been previously estimated). 

 

𝑓𝑖(𝐴𝑖 , 𝜆𝑖) = 1 (1 + 𝑒−𝜆𝑖(𝐴𝑖−0.5))⁄  (2) 

 

Based on the above assumption, Nápoles et al. [10] developed a heuristic method that reduces the 

variability on the system responses, without affecting the system ability to recognize new patterns. 

To accomplish that, this algorithm estimates a family of sigmoid functions {𝑓1(𝐴1), , … , 𝑓𝑀(𝐴𝑀)} 

where the 𝑖th sigmoid function will be used for transforming the activation value of the 𝑖th neuron. 

This is equivalent to compute the sigmoid inclination 𝜆𝑖 > 0 for each transfer function 𝑓𝑖(𝐴𝑖 , 𝜆𝑖). 

Equation (3) shows the modified neural inference rule used in this learning methodology where 

the activation value of the 𝑖th neural processing entity is influenced by the free interaction of the 

connected neurons and also by its steepness parameter 𝜆𝑖 > 0. 

 

𝐴𝑖
(𝑡+1)

= 𝑓𝑖 (∑ 𝑤𝑗𝑖

𝑀

𝑗=1

𝐴𝑗
(𝑡)

+ 𝑤𝑖𝑖𝐴𝑖
(𝑡)

, 𝜆𝑖) , 𝑖 ≠ 𝑗 (3) 

 

From the learning point of view, we must estimate a parameter 𝜆𝑖 > 0 for each neuron 𝐶𝑖 that 

minimizes the difference between two consecutive responses. If this value exists, then the system 

will produce similar (even identical) output vectors for each initial pattern 𝐴(0). Equation (4) shows 

the objective function to be minimized in order to improve the stability of the 𝑖th neuron, where 𝐾 

is the number of training patterns, whereas 𝑇 is the maximal number of iterations used during the 



inference. In this equation 𝐴𝑖𝑘
(𝑡)

 is the activation degree of the neuron 𝐶𝑖 at each cycle for an initial 

condition, which is codified from the 𝑘th training pattern. 

 

𝑚𝑖𝑛 → 𝜙𝑖(𝑓𝑖) = ∑ ∑|𝐴𝑖𝑘
(𝑡)

− 𝐴𝑖𝑘
(𝑡−1)

|

𝑇

𝑡=2

𝐾

𝑘=1

 (4) 

 

Equation (5) generalizes the above reasoning for all neurons. Notice that the learning procedure 

minimizes the absolute difference between the numerical responses for two consecutive discrete-

time steps, for all patterns stored in the training dataset. 

 

𝑚𝑖𝑛 → 𝜙(𝑓1, 𝑓2, 𝑓3, … , 𝑓𝑀) = ∑ ∑ ∑|𝐴𝑖𝑘
(𝑡)

− 𝐴𝑖𝑘
(𝑡−1)

|

𝑇

𝑡=2

𝑀

𝑖=1

𝐾

𝑘=1

 

 

(5) 

 

The search space of the optimization problem is defined by 𝐼𝑀 where 𝐼 = [0.1,25] is the domain 

of the steepness factors 𝜆𝑖. It means that a solution 𝑋 can be codified as a 𝑀-dimensional vector 

𝑋 = (𝜆1, 𝜆2, 𝜆3, … , 𝜆𝑀) which produces a family {𝑓𝑖}𝑖=1
𝑀  of sigmoid functions. It should be noticed 

that we could use any continuous optimizer (e.g., Evolutionary Algorithms) for solving the related 

optimization problem. In our study we adopt an heuristic search approach since population-based 

metaheuristics are capable of finding near-optimal solutions in a reasonable execution time, thus 

ignoring analytical properties of the target function (e.g., convexity, continuity, differentiability or 

gradient information). In the next section we present the learning method for computing the causal 

weights and the sigmoid parameters in FCM-based classifiers. 

IV. The proposed learning algorithm 

In this section we formulate a new learning algorithm with convergence features for FCM-based 

classifiers having a single decision neurons. This methodology is based on the theoretical study 



conducted by Nápoles et al. [11] that corrects several drawbacks on the foundations of the original 

SSF procedure. After introducing the proposed learning methodology, we first formalize general 

concepts and definitions regarding to pattern recognition problems that will be adopted in the rest 

of the proposal (i.e., pattern classification problem, FCM-based classifiers, and decision classes in 

FCM-based classifiers using a thresholding decisions scheme). 

 

Definition  1. Let us assume a pattern recognition problem ℘ described by 𝑁 numerical variables 

and a discrete decision variable. The solution for ℘ is equivalent to compute a model Ω: ℝ𝑁 → 𝒟, 

where 𝒟 is the set of all decision classes, from a set of training examples that comprises instances 

of the problem ℘ previously associated to the decision class. 

 

Definition  2. Let us suppose a FCM-based system ℳ comprising a set of 𝑀 neural processing 

entities 𝒞 = {𝐶1, … , 𝐶𝑁 , 𝐶𝑁+1, … , 𝐶𝑀} that can be organized in two subsets ℐ ⊂ 𝒞 and 𝒪 ⊂ 𝒞, such 

that ℐ ∩ 𝒪 = ∅. The subset ℐ = {𝐶1, 𝐶2, … , 𝐶𝑁} includes the input neurons, whereas the subset 𝒪 =

{𝐶𝑁+1, 𝐶𝑁+2, … , 𝐶𝑀} involves the output neurons. We say that ℳ is a FCM-based classifier if we 

can reconstruct the model Ω: ℝ𝑁 → 𝒟 from a mapping ℳ: [0,1]𝑁 → [0,1]𝑀−𝑁 that encloses the 

activation value of input and output neurons, respectively. 

 

The above definition provides a general framework for FCM-based classifiers. For example, let us 

suppose a class-per-output architecture with 𝑁 input neurons, and 𝑁 − 𝑀 output decision classes. 

Assuming that all features are numerical, the set of neurons 𝒞 = {𝐶1, … , 𝐶𝑁 , 𝐶𝑁+1, … , 𝐶𝑀} can be 

activated by using a min-max normalization where the excitation of the 𝑖th neuron according to 

the 𝑘th instance 𝑌𝑘 is given by 𝐴𝑖𝑘
(0)

= (𝑌𝑘𝑖 − 𝑚𝑖𝑛(𝐹𝑖)) (𝑚𝑎𝑥(𝐹𝑖) − 𝑚𝑖𝑛(𝐹𝑖))⁄  where 𝑚𝑖𝑛(𝐹𝑖) and 

𝑚𝑎𝑥(𝐹𝑖) denote the minimum and maximum value for the problem feature 𝐹𝑖, respectively. In the 

second step, the mapping ℳ: [0,1]𝑁 → [0,1]𝑀−𝑁 corresponds to the updating rule that computes 



the activation value of output neurons. Finally, the mapping 𝜓(ℳ): [0,1]𝑀−𝑁 → 𝒟 decides the class 

label as 𝜓(ℳ)(𝒜𝑇(𝒪)) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑁+𝑖{𝐴𝑁+𝑖
(𝑇)

}, 𝑖 ∈ {1, … , 𝑀 − 𝑁}, where 𝐴𝑁+𝑖
(𝑇)

 is the activation 

value of the (𝑁 + 𝑖)th output neuron at the last iteration step. 

 

In this research, we conducted our experimentation to FCM-based classifiers using a thresholding 

single-output architecture since Papakostas et al. [6] empirically concluded that this approach has 

a superior predictive capability. Definition 3 mathematically formalizes the concept of decision 

classes in FCM-based classifiers using a single-output architecture. 

 

Definition  3. Let us assume that ℳ is a FCM-based classifier using a thresholding single-output 

architecture (i.e., FCM-based classifier with a single decision neuron). A decision class 𝑑𝑗 ∈ 𝒟 is 

a closed partition of the activation space of the decision neuron 𝐶𝑀 bounded by a lower threshold 

𝐿𝑗 and an upper threshold 𝑈𝑗, such that the class rank 𝑈𝑗 − 𝐿𝑗 > 0 and [𝐿𝑗 , 𝑈𝑗] ∩ [𝐿ℎ, 𝑈ℎ] = ∅, 

∀ℎ ∈ {1, … , |𝒟|}/{𝑗}. In this model, the mapping 𝜓(ℳ): [0,1] → 𝒟 determines the predicted class 

label by allocating the activation value into the corresponding interval. 

 

The learning goal of our model is to estimate the parameters that define the performance of FCM-

based classifier, that is, the weights and the sigmoid parameters. It means that a candidate solution 

for the optimization problem must involve a weight matrix and a family of sigmoid functions that 

ensure high prediction rates and acceptable convergence features. Therefore, a candidate solution 

comprises a (𝑀2 + 𝑀)-dimensional vector, assuming a fully connected network with 𝑀 neurons. 

This suggests that the population-based optimizer (e.g., Evolutionary Algorithm or Particle Swarm 

Optimization) must compute solutions with the following structure: 

 

𝑋 = [𝑤11, … , 𝑤1𝑀, 𝑤21, … , 𝑤2𝑀, … , 𝑤𝑀1, … , 𝑤𝑀𝑀, 𝜆1, 𝜆2, … , 𝜆𝑀] 



In this paper we adopted the Particle Swarm Optimization (PSO) search method [17] for generating 

the solutions since PSO-based algorithms have proven to be competent for solving real-parameter 

optimization tasks, however, other optimizers could be used as well. 

 

Equation (6) shows the error function to be optimized, where 𝑋 is the candidate solution generated 

by the selected optimizer, 𝐾 denotes the number of training patterns, 0 ≤ 𝐹(. ) ≤ 1 is a function 

that computes the prediction error achieved by the classifier, whereas 0 ≤ 𝐻(. ) ≤ 1 represents the 

accumulated convergence error during updating the activation value of neurons. On the other hand, 

the parameters 𝛼1, 𝛼2 ∈ [0,1] establish the importance of the classifier’s accuracy regarding to the 

FCM stability. In this learning scheme, 𝛼1 + 𝛼2 = 1 guarantees that the error function is always 

confined into the interval [0,1]. We strongly suggest that 𝛼1 ≫ 𝛼2 since the key goal of the 

proposed methodology is the prediction accuracy, even if the system is unable to produce the same 

decision class for successive discrete-time steps. We may confidently assume that 𝛼2 = 1 − 𝛼1 

due to the fact that 𝛼1 + 𝛼2 = 1, which leads to a simpler parametrized model. 

 

𝑚𝑖𝑛 → 𝐸(𝑋) = 𝛼1𝐺(𝑋) + 𝛼2𝐻(𝑋) (6) 

 

Equation (7) shows a basic strategy for estimating the prediction error by computing the number 

of misclassified patterns regarding to the cardinality of the sample. In practice, the function 𝐹(. ) 

quantifies the differences between the expected decision class 𝑆𝑘 associated with the 𝑘th training 

pattern, and the decision class predicted by the decision model 𝜓(𝑋)(𝐴𝑀𝑘
(𝑇)

). The decision model is 

defined from the candidate weights configuration and the activation value of the decision neuron 

at the last iteration step 𝐴𝑀𝑘
(𝑇)

. Observe that the responses at the previous discrete-time steps are not 

considered since they are not used when computed the predicted class, instead, such responses are 

evaluated when analyzing the convergence of the FCM-based classifier. 



𝐺(𝑋) =
1

𝐾
∑ {

0, 𝜓(𝑋)(𝐴𝑀𝑘
(𝑇)

) = 𝑆𝑘

1, 𝜓(𝑋)(𝐴𝑀𝑘
(𝑇)

) ≠ 𝑆𝑘

𝐾

𝑘=1

 (7) 

 

Equation (8) formalizes the function 𝐻(𝑋) used for computing the accumulated convergence error 

during updating the activation value of neurons. This function quantify the dissimilarity between 

the activation vector at each discrete-time step and the activation vector produced at the last cycle, 

where 𝑀 is the number of neurons and 𝑇 is the number of discrete-time cycles. This is equivalent 

to calculate the differential |𝐴𝑖𝑘
(𝑡)

− 𝐴𝑖𝑘
(𝑇)

| for each sigmoid neuron, using the 𝑘th training pattern as 

the initial stimulus. Moreover, our learning algorithm assumes that each iteration step has different 

significance for the convergence and prediction of the FCM-based classifier. In this research, the 

weighting parameter 𝜔𝑡 is linearly increased with time (i.e., iteration steps). 

 

𝐻(𝑋) = ∑ ∑ ∑
2𝜔𝑡(𝐴𝑖𝑘

(𝑡)
− 𝐴𝑖𝑘

(𝑇)
)

2

𝐾𝑀(𝑇 + 1)

𝑇

𝑡=1

𝑀

𝑖=1

𝐾

𝑘=1

 (8) 

 

More explicitly, in the FCM-based classifiers defined above, a decision class is a closed partition 

of the activation space of this neuron, and so numerical responses could embrace the same decision 

class. It should be noticed that this learning algorithm can be used for adjusting the parameters in 

FCM-based classifiers with several architectures (e.g., class-per-output or single-output using 

either a thresholding or clustering approach). In such cases, the proposed heuristic learning scheme 

will be likely to compute a slightly non-stable FCM as the worst scenario. 

 

 

 



Definition  4. Let us assume that ℳ is a FCM-based classifier where 𝜓(ℳ): [0,1]𝑀−𝑁 → 𝒟 is the 

decision model, whereas 𝒜(𝑡)(𝒪) = (𝐴𝑁+1
(𝑡)

, … , 𝐴𝑁+𝑖
(𝑡)

, … , 𝐴𝑀
(𝑡)

), 𝑖 ∈ {1, … , 𝑀 − 𝑁}, is the activation 

vector for output-type neurons at each discrete-time step 𝑡 ∈ {1,2, … , 𝑇}. We say that the FCM-

based classifier ℳ is slightly non-stable if ∄𝑡𝛼 ∈ {1,2, . . . , (𝑇 − 1)} ∶ 𝐴𝑁+𝑖
(𝑡𝛼)

= 𝐴𝑁+𝑖
(𝑡𝛼+1)

, however, 

∃𝑡𝛼 ∈ {1,2, . . . , (𝑇 − 1)} ∶ 𝜓(ℳ) (𝒜(𝑡𝛼)(𝒪)) = 𝜓(ℳ) (𝒜(𝑡𝛼+1)(𝒪)) , ∀𝑡 ≥ 𝑡𝛼. 

 

Another issue to be discussed is the definition of the search space. In the case of dimensions related 

to causal weights, the search space is defined as 𝐼1 = [−1,1] since in FCM-based classifiers the 

causality could be either negative or positive. In the cases of dimensions related with the sigmoid 

parameters the search space must be carefully defined in order to avoid situations on which the 

system only produces a single decision class. Knight et al. [9] proved that if λ > 0 is small enough 

then there is a unique fixed-point attractor. On the contrary, if λ > 0 is large enough, then there 

can be multiple fixed-points, where many of such equilibrium points may be linearly stable (see 

next Theorem 1). However, Nápoles et al. [10] numerically verified that a FCM-based classifier 

having a single fixed-point attractor will produce the same decision class for all input patterns. It 

suggests that the theorem cannot be used in pattern recognition scenarios, but in control scenarios 

where the system requires to be consistent to external perturbations. 

 

Theorem 1. The number of solutions of Equation (1) depends on the size of λ: 

 If λ > 0 is small enough then there is a unique solution. This fixed point of the sigmoidal 

FCM is linearly stable. 

 If λ > 0 is large enough then there can be multiple solutions, where many of these fixed 

points may be linearly stable. 



On the other hand, Knight et al. [9] introduced a theorem where the upper bound �̅�(𝑀) for “small 

enough” values of 𝜆 is estimated (see Theorem 2). Therefore, if 0 ≤ 𝜆 < �̅�(𝑀) then the system will 

produce the same decision class regardless the input pattern. It suggests that the selected optimizer 

must produce candidate solutions with sigmoid parameters 𝜆𝑖 ≥ �̅�(𝑀). This result implies that the 

FCM-based classifier could have several linearly stable fixed-points attractors. 

 

Theorem 2. For 𝐴 ∈ ℝ𝑀 × ℝ𝑀, the sigmoid FCM, has a unique fixed-point for all λ such that            

0 ≤ λ < λ̅(𝑀), this fixed point is stable. �̅�(𝑀) satisfies (9) where 𝐵𝑖
𝑀 are the binomial coefficients, 

and 𝑏𝑖 given by the recursion relation 𝑏𝑖 = 𝑖𝑏𝑖−1 + (−1)𝑖, 𝑏0 = 1. 

 

(1 −
�̅�(𝑀)

4
)

𝑀

− ∑ 𝑏𝑖

𝑀

𝑖=1

𝐵𝑖
𝑀 (

�̅�(𝑀)

4
)

𝑖

= 0 (9) 

 

Based on the above analysis, we can conclude that the solution space for dimensions associated to 

sigmoid parameters must be defined by the space 𝐼2 = [�̅�(𝑀) + 0.01, �̅�(𝑀) + 𝜎], where 𝑀 is the 

number of map neurons, while 𝜎 > 0 is the rank of the search space. In this research 𝜎 = 10 since 

sigmoid functions with larger inclinations tend to reach the behavior of discrete functions, which 

produce qualitative results. It could affect the prediction rate of the FCM-based classifier since the 

system could produce very similar responses for quite dissimilar inputs. 

V.  Numerical simulations 

In this section we study the behavior of the proposed learning methodology using a real problem 

concerning the resistance mechanism of HIV-1 proteins to existing inhibitors. These FCM-based 

classifiers showed good classification rates by using historical data, however, the system stability 

cannot be ensured and therefore new mutations could be misclassified. 



A. Description of the FCM-based models used for evaluation 

Recently, Nápoles et al. [18] introduced a FCM-based model for predicting the resistance of new 

HIV-1 protease mutations to existing inhibitors. The protease sequence is defined by a chain of 

99 amino acids, however, with the goal of reducing the model complexity only positions related 

with drug resistance were used [19]. Such sites were biologically determined from clinic assays in 

infected patients and they allowed an averaged reduction rate of 80% regarding the total number 

of sequence positions. In the proposed topology sequence positions related with drug resistance 

were taken as input neurons, whereas a decision neuron for the resistance feature was also defined 

with the goal of computing the resistance class for each input pattern. This FCM-based classifier 

embraces two kinds of causal relations, which are in correspondence with the biological system. 

Direct relationships connect input neurons with the resistance feature, while indirect relationships 

establish connections between all sequence positions. 

 

Based on the above topology, Nápoles et al. [18] obtained six FCM-based classifiers where each 

map represents the protein behavior for the following drugs: Amprenavir (APV), Indinavir (IDV), 

Saquinavir (SQV), Nelfinavir (NFV), Ritonavir (RTV) and Atazanavir (ATV). Each inhibitor has 

associated a high-quality filtered dataset [20] comprising reported mutations and their resistance 

value, where the amino acids are encoded according to their contact energy [21]. Therefore, each 

training pattern comprises the activation value of the 𝑁 input neurons, and the expected resistance 

class for the inhibitor (i.e., 0-susceptible and 1-resistant). 

 

In this single-output architecture, the predicted decision class for each input pattern is computed 

from the activation value of the decision neuron at the last iteration step, and a biologically defined 

threshold. More explicitly, input sequences having resistance degree below the resistance threshold  



will be labeled as susceptible, otherwise the mutation will be labeled as resistant. Equation (10) 

formalizes the decision model used in the single-output classifier, where 𝜉 denotes the biologically 

determined threshold. Note that we need to change this decision model if the architecture changes, 

however, the learning algorithm discussed in this paper holds.    

 

𝜓(ℳ)(𝐴𝑀𝑘
(𝑇)

) = {
0, 𝐴𝑀𝑘

(𝑇)
≤ 𝜉

1, 𝐴𝑀𝑘
(𝑇)

> 𝜉
 (10) 

 

In order to compute the causal weights, Nápoles et al. [18] used a standard learning algorithm that 

allows reducing number of misclassified patterns. This is equivalent to minimize the function 𝐺(. ) 

for all patterns stored in the training set. Simulations reported by Grau et al. [22] have shown that 

the adjusted FCM-based classifiers have high prediction rates, notably outperforming other well-

known classifiers. However, in most cases the stability is comprised.  

 

B. Evaluation of the proposed learning algorithm 

In this section we evaluate the proposed learning algorithm by using the six FCM-based systems 

described above. As mentioned, to minimize the error function (6) we adopt the constricted PSO 

Type-1 introduced by Clerk and Kennedy [23] as numerical optimizer, where the number of swarm 

particles is set to 80, the inertia weight 𝜔 = 0.7298 and 𝑐1 = 𝑐2 = 1.496. The learning algorithm 

will stop when a maximal number of cycles 𝑁𝐶 = 200 is reached, or alternatively when a fixed-

point attractor is discovered. As a final point, the parameter 𝛼1 = 0.8 and 𝛼2 = 1 − 𝛼1, while the 

maximal number of iterations steps in the inference rule is set to 100. To perform this experiment, 

we have used the FCM WIZARD software [24] since it provides several experimentation facilities. 

Actually, we included the proposed learning algorithm into this software.   

 



Aiming at highlighting the difficulty of the six problems used for validation, Table 1 summarizes 

the features of each learning system. In this table, features correspond to the number of sequence 

positions associated with drug resistance for each drug, thus the number of relations in the network 

is equivalent to the number of weights to be estimated. Notice that the number of parameters to be 

estimated by the learning algorithm (i.e., dimensionality of the optimization problem) is equal to 

(𝑁2 + 𝑁 + 1) where 𝑁 denotes the number of input neurons. 

 
Table 1.  Features of each learning problem adopted for evaluation. 

Inhibitor Patterns Features Relations Parameters Threshold Accuracy 

APV 96 19 361 381 0.007 0.95 

IDV 137 17 289 307 0.006 0.99 

SQV 139 17 289 307 0.003 0.95 

NFV 204 12 144 157 0.005 0.95 

RTV 151 14 196 211 0.004 0.97 

ATV 69 15 225 241 0.004 0.96 

 

Figures 1, 2, 3 show the behavior of the proposed learning algorithm, regarding to the approach 

adopted by Nápoles et al. [18]. Being more explicit, in these figures we show the activation value 

of the decision neuron (i.e., the system response) for each iteration step. The dashed line represents 

the numerical response after optimizing the FCM parameters using the standard approach, whereas 

the solid line denotes the numerical response after optimizing the FCM parameters using the model 

presented in this paper. From these simulations we can conclude that our learning model is capable 

of computing FCM-based classifiers having superior convergence features regarding the standard 

approach. It implies that the proposed learning method allows reducing the overall variability on 

the activation values of the decision neuron. Furthermore, we observed that the model shows better 

convergence rate for those problems that converge to a fixed-point attractor regardless the learning 

scheme, so lower number of discrete-time steps are required. 

 



  

Figure 1. Activation value of the decision neuron each iteration step for two stable configurations. The dashed line 

denotes the numerical response after applying the standard learning approach, whereas the solid line           

represents the numerical response after applying the proposed learning algorithm. 

 

 

 

Figure 2. Activation value of the decision neuron each iteration step for two cyclic configurations. The dashed line 

denotes the numerical response after applying the standard learning approach, whereas the solid line           

represents the numerical response after applying the proposed learning algorithm. 

 

 

 

Figure 3. Activation value of the decision neuron each iteration step for two chaotic configurations. The dashed line 

denotes the numerical response after applying the standard learning approach, whereas the solid line           

represents the numerical response after applying the proposed learning algorithm. 
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The following experiment is oriented to determine whether the improvements in the convergence 

of the FCM-based classifier are statistically significant. By doing so, we compute Equation (11) 

for each pattern 𝜑𝑘 belonging to training set according to (i) the map ℳ1 obtained after applying 

the standard learning algorithm that only considers the prediction rates, and for (ii) the map ℳ2 

obtained after applying the learning algorithm discussed in this study. Therefore, we achieve two 

ordered sets Γ1 = {Γ1
1(ℳ1, 𝜑1), … , Γ𝐾

1(ℳ1, 𝜑𝐾)} and Γ2 = {Γ1
2(ℳ2, 𝜑1), … , Γ𝐾

2(ℳ2, 𝜑𝐾)} for each 

dataset. It should be mentioned that, due to the stochastic nature of our learning method, each entry 

Γ𝑘(ℳ, 𝜑𝑘) is calculated from the average of 10 independent trails. 

 

Γ𝑘(ℳ, 𝜑𝑘) = ∑ ∑
𝜔𝑡(𝐴𝑖𝑘

(𝑡)
− 𝐴𝑖𝑘

(𝑇)
)

2

𝑀(𝑇 + 1)

𝑇

𝑡=1

𝑀

𝑖=1

 (10) 

 

(11) 

 

Table 2 summarizes the 𝑝-values achieved by Wilcoxon signed rank test [25], using a significance 

degree 𝛼 = 0.05, which corresponds with the 95% confidence interval. The Wilcoxon signed rank 

test is a nonparametric method employed in hypothesis testing situations, involving a design with 

two samples. This pairwise test allows spotting significant differences between two sample means, 

that is, the behavior of two algorithms [26]. According to the results, the test suggests rejecting the 

null hypothesis (𝑝-value < 0.05) for drugs RTV, IDV, NFV and SQV. In the case of APV and 

ATV, the conservative hypothesis is accepted (𝑝-value > 0.05) although in such problems the sum 

of negative ranks (𝑅−) is lower than the sum of positive ranks (𝑅+). Moreover, Table 2 reports the 

mean and standard deviation achieved for the convergence measure after running 10 independent 

trials of the proposed algorithm. The reader may observe that the learning methodology is capable 

of estimating high-quality solutions with small standard deviation.    

 



Table 2.  Results achieved by the Wilcoxon test. 

 Patterns Mean 𝑹− 𝑹+ 𝒑-value Hypothesis 

APV 96 0.06094 (± 1.6𝐸 − 3) 61 35 0.069 Accepted 

IDV 137 0.01521 (± 2.2𝐸 − 4) 111 26 0.000 Rejected 

SQV 139 0.04470 (± 8.8𝐸 − 4) 117 22 0.000 Rejected 

NFV 204 0.04954 (± 1.0𝐸 − 3) 159 45 0.000 Rejected 

RTV 151 0.05203 (± 2.0𝐸 − 3) 123 28 0.000 Rejected 

ATV 69 0.07755 (± 1.9𝐸 − 3) 39 30 0.081 Accepted 

 

The above results confirm that our model is capable of producing configurations that lead to FCM-

based classifiers having superior convergence features. This is actually expected since as far as we 

know there is no population-based learning procedure including the system convergence into the 

learning scheme. More importantly, during simulations we observed that our learning method was 

capable of producing the same classification accuracy (see Table 1) for APV, IDV, RTV and ATV, 

while for the remaining inhibitors it achieved better results. The prediction rates for SQV and NFV 

are 0.96 and 0.97, respectively. These positive outcomes are unexpected but totally consistent with 

our learning scheme since it is well-known that the convergence is closely related with the ability 

of the FCM-based classifier for recognizing new patterns. 

 

It should be mentioned that we could use another information theoretic coefficient to measure the 

divergence or disparity between two probability densities. A widely accepted divergence measure 

is the Kullback–Leibler divergence [27] between the true model and the approximating candidate 

model. This measure and its variants [28] have been used in developing learning rules for artificial 

neural networks [29][30] and could be adapted to the semantic of fuzzy cognitive mappers used in 

pattern classification environments. For example, we could use a learning rule minimizing a) the 

Kullback–Leibler divergence between the expected responses and the approximate outputs, and b) 

the Kullback–Leibler divergence between the response at each discrete-time step and the produced 



output. Of course, the recurrent nature of FCM-based classifiers makes this integration challenging 

and leads to new research avenues to be explored as a future work. 

VI. Conclusions 

This paper presents a population-based learning algorithm for FCM-based classifiers. It attempts 

computing the required parameters (i.e., the causal weights that define the interaction between map 

neurons, and the sigmoid inclination of each transfer function) leading to high prediction rates and 

improved convergence features. Numerical simulations have shown that our learning methodology 

is able of computing high-quality FCM-based classifiers, that is, systems that effectively recognize 

new input patterns in a stable fashion. On the other hand, we observed several scenarios on which 

our proposal achieved better prediction rates, with regard to the standard learning scheme that only 

considers the classification accuracy into its learning goal. From the best of our knowledge, there 

is no learning algorithm allowing the convergence of the FCM-based classifier, without affecting 

the classification rates. As a future work, the authors will be focused on hybridizing the proposed 

learning algorithm with existing learning rules for neural networks. 
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