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NONCOMMUTATIVE VERSIONS OF SOME CLASSICAL
BIRATIONAL TRANSFORMATIONS.

DENNIS PRESOTTO AND MICHEL VAN DEN BERGH

ABSTRACT. In this paper we generalize some classical birational transforma-
tions to the non-commutative case. In particular we show that 3-dimensional
quadratic Sklyanin algebras (non-commutative projective planes) and 3-dimensional
cubic Sklyanin algebras (non-commutative quadrics) have the same function
field. In the same vein we construct an analogue of the Cremona transform

for non-commutative projective planes.
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1. INTRODUCTION

Below k is an algebraically closed field. Artin-Schelter regular algebras were in-
troduced in [1] and subsequently classified in dimension three [1, 3, 8]. Throughout
we will only consider three-dimensional AS-regular algebras generated in degree
one. For such algebras A there are two possibilities:

(1) A is generated by three elements satisfying three quadratic relations (the
“quadratic case”). In this case A has Hilbert series 1/(1—1t)3, i.e. the same
Hilbert series as a polynomial ring in three variables.

(2) A is generated by two elements satisfying two cubic relations (the “cubic
case”). In this case A has Hilbert series 1/(1 —t)%(1 —¢2).

For use below we define (r, s) to be respectively the number of generators of A and

the degrees of the relations. Thus (r,s) = (3,2) or (2, 3) depending on whether A
is quadratic or cubic.

The first author was supported by a Ph.D. fellowship of the Research Foundation Flanders
(FWO), the second author is a senior researcher of the FWO.
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2 DENNIS PRESOTTO AND MICHEL VAN DEN BERGH

If B=k+ B+ By +... is an N-graded ring satisfying suitable conditions then

we can associate a non-commutative scheme Proj B to it whose category of quasi-

coherent sheaves is defined to be QGr(B) ef Gr(B)/ Tors(B) where Gr(B) is the

category of graded right B-modules and Tors(B) is the category of graded right
B-modules that have locally right bounded grading [5]. When A is a quadratic
three-dimensional AS-regular algebra then Proj A may be thought off as a non-
commutative plane. Similarly if A is cubic then Proj A may be viewed as a non-
commutative quadric. The rationale for this is explained in [23].

The classification of three-dimensional AS-regular algebras A is in terms of suit-
able geometric data (Y, o, L) where Y is a k-scheme, o is an automorphism of ¥
and L is a line bundle on Y.

More precisely: in the quadratic case Y is either P? (the “linear case”) or Y is
embedded as a divisor of degree 3 in P? (the “elliptic case”) and L is the restriction
of Op2(1). In the cubic case Y is either P* x P! (the “linear case”) or Y is embedded
as a divisor of bidegree (2,2) in P! x P! (the “elliptic case”) and L is the restriction
of Opiyp1(1,0). The geometric data must also satisfy an additional numerical
condition which we will not discuss here.

Starting from the geometric data (Y, o, L) we construct a so-called “twisted ho-
mogeneous coordinate ring” B = B(Y, 0, L). It is an N-graded ring such that

(1.1) B, =T(V,LRL ®..QL" )

with product a-b = a ® b°" for |a| = n. The corresponding AS-regular algebra
A = A(Y,0,L) is obtained from B by dropping all relations in degree > s. By
virtue of the construction there is a graded surjective k-algebra homomorphism
A — B and this is an isomorphism in the linear case and it has a kernel generated
by a normal element g in degree s + 1 in the elliptic case.

According to [4] there is an equivalence of categories QGr(B) = Qch(Y"). In our
current language this can be written as

ProjBzx=Y

So the non-commutative scheme X = Proj A contains the commutative scheme Y
(via the surjection A — B). In the linear case X =Y, and in the quadratic case Y’
is a so-called “divisor” in X [22, Section 3.6].

If Y is a smooth elliptic curve, ¢ is a translation such that ¢°™! # id and £
is a line bundle of degree r then we call the corresponding AS-regular algebra a
Sklyanin algebra. In that case the normal element ¢ is actually central. Since
any two line bundles of the same degree on a smooth elliptic curve are related by a
translation, which necessarily commutates with o, it is easy to see that the resulting
Sklyanin algebra depends up to isomorphism only on (E, o). So we sometimes drop
L from the notation. Furthermore Proj A does not change if we compose o with
a translation by a point of order s + 1 (See for example [2, §8]). In other words
Proj A depends only on o5+,

A three-dimensional AS-regular algebra A is a noetherian domain and in par-
ticular it has a graded field of fractions Frac(A4) in which we invert all non-zero
homogeneous elements of A. The part of degree zero Fracy(A) of Frac(A) will be
called the function field of Proj A.

In this note we prove the following result announced in [20]. A similar result by
Rogalski-Sierra-Stafford was announced in [18].
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Theorem 1.1. If A, A’ are a cubic and a quadratic Sklyanin algebra respectively
with geometric data (Y,o) and (Y,) such that 0® = ¢*. Then Proj A and Proj A’
have the same function field.

The proof of this result is geometric. In the commutative case the passage from
P! xP! to P? goes by blowing up a point p and then contracting the strict transforms
of the two rulings through this point. One may short circuit this construction by
considering a suitable linear system on P! x P! with base point in p. It is this
construction that we generalize first. To do this we have to step outside the category
of graded algebras and work in the slightly larger category of Z-algebras (additive
categories whose objects are indexed by Z, see §2 below).

So what we will actually do is the following: let A be a cubic Sklyanin algebra and
let A® be its 2-Veronese with the corresponding Z-algebra being denoted by A(2).
Associated to a point p € Y we will construct a sub-Z-algebra D of A which is 3-
dimensional quadratic Artin-Schelter Z-algebra in the sense of [23]. Again invoking
[23] this Z-algebra must correspond to a 3-dimensional quadratic Artin-Schelter
graded algebra A’. Tt will turn out that the geometric data of A and A’ are related
as in Theorem 1.1. Note that the use of Z-algebras is essential here as there is no
direct embedding A’ — A®) of graded rings.

Another classical birational transformation is the so-called “Cremona trans-
form”. It is obtained by blowing up the tree vertices of a triangle and then con-
tracting the sides. In this note we will also show that the Cremona transform
has a non-commutative version and that it is yields an automorphism of the func-
tion field of a three-dimensional quadratic Sklyanin algebra. The properties of this
automorphism will be discussed elsewhere.

In §8 we explain how in the non-commutative case the approach via linear sys-
tems is related to the blowup construction introduced in [22].

Remark 1.2. A more ring-theoretic approach to blowups of noncommutative sur-
faces was taken by Rogalski-Sierra-Stafford in [15]. They also used this technique
in their companion paper [14] to classify certain orders in a generic 3-dimensional
Sklyanin algebra.

Remark 1.3. Cubic 3-dimensional Artin-Schelter regular algebras are a special case
of the non-commutative quadrics introduced in [23]. Theorem 1.1 generalizes to
such quadrics but the proof becomes slightly more technical. For this reason we
have chosen to write down the proof of Theorem 1.1 separately.

2. REMINDER ON AS-REGULAR Z-ALGEBRAS

For background material on Z-algebras see [17] and also sections 3 and 4 of
[23]. Recall that a (k-)Z-algebra is defined as a k-algebra A (without unit) with a
decomposition A = (—D Ay such that the multiplication satisfies Ay, Ay ; C

m,n)EZ?
A, and Ay, n A (= O)if n # i. Moreover we require the existence of local units
en € Ay, satisfying e,,x = x = xe, whenever x € A, ,. The category of Z-algebras
is denoted by Alg(Z). Every graded k-algebra A gives rise to a Z-algebra A via
/vlm,n = A,_m. Most graded notions have a natural Z-algebra counterpart. For
example we say that A € Alg(Z) is positively graded if A,, , = 0 whenever m > n.
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A Z-algebra over k is said to be connected, if it is positively graded, each A, , is
finite dimensional over k and A,, ,, = k for all m.

If A€ Alg(Z) then we say M is a graded right-A-module if it is a module in the
usual sense together with a decomposition M = @,,M,, satisfying M, A, ,, = M,
and M,, A; , = 0if i # m. We denote the category of graded A-modules by Gr(A).
(Obviously Gr(A) = Gr(A) if A is a graded ring.) If A is a connected Z-algebra
over k we denote the graded A-modules P, 4 = e, A and S, 4 = k is the unique

simple quotient of P, 4.

Definition 2.1. A Z-algebra A over k is said to be AS-regular if the following
conditions are satified:

(1) A is connected
(2) dimg (A, ) is bounded by a polynomial in n —m
(3) The projective dimension of S, 4 is finite and bounded by a number inde-
pendent of n
(4) VneN: Y dimy (Extgr(A)(sj, 4, P, A)) =1
i,

It is immediate that if a graded algebra A is AS-regular in the sense of [3], then
A is AS-regular in the above sense.

Z-algebra analogues of three dimensional quadratic and cubic Artin-Schelter
regular algebras were classified in [23] (following [6] in the quadratic case). We
will describe the quadratic case as this is the only case we will need. In this case
the classification is in terms of triples (Y, Lo, £1) where Y is either a (possibly
singular, non-reduced) curve of arithmetic genus 1 (the “elliptic case”) or Y = P?
(the “linear case”) and Lo, £ are line bundles of degree 3 on Y such that Lo % £4
in the elliptic case and Lo = £; = Op2(1) in the linear case. The triple must satisfy
some other technical conditions which are however vacuous in the case that Y is a
smooth elliptic curve.

To construct a Z-algebra from this data we first introduce the “elliptic helix”
(L;)iez associated to (Lo, L£1). This is a collection of line bundles satisfying

L;®oy Li} ®oy Lits = Oy
We put V; = H°(Y, £;) and
R; =ker (H(Y,L£;) @ H'(Y, Li1) = H*(Y, L; ®oy Lit1))
By definition the quadratic AS-regular Z-algebra A = A(Y, Ly, L1) associated to

(Y, Lo, L1) is generated by V(= A;,+1) subject to the relations R; ¢ V; ® Viy;.
The “Hilbert function” of A is

2

(atl)(at2) ¢ 5
2.1 dim A = g
(21) A {0 ifa<0
Using the line bundles (£;); be may define a Z-algebra analogue B = B(Y, (£;);)

of a twisted homogeneous coordinate ring (see the introduction) where
Bm,n = F(Y:,Cm@@,cn,l)

If A is the 3-dimensional AS-regular Z-algebra constructed above then there is a
surjective map

¢:A— B
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where A is obtained from B by dropping all relations in degree (m,n) for n >
m+s+1.

If A is 3-dimensional quadratic AS-regular algebra with geometric data (Y, o, L)
then the elliptic helix corresponding to A is (£7");. This follows immediately from
the construction of A from (Y, 0,L) as given in [3] (see the introduction for an
outline).

3. NON-COMMUTATIVE GEOMETRY

It will be convenient to use the formalism of non-commutative geometry used in
[22] which we summarize here. For more details we refer to loc. cit.. See also [19].
We will change the terminology and notations slightly to be more compatible with
current conventions.

For us a non-commutative scheme will be a Grothendieck category (i.e. an abelian
category with a generator and exact filtered colimits). To emphasize that we think
of non-commutative schemes as geometric objects, we denote them by roman cap-
itals X, Y, .... When we refer to the category represented by a non-commutative
scheme X then we write Qch(X).

A morphism « : X — Y between non-commutative schemes will be a right
exact functor a* : Qch(Y) — Qch(X) possessing a right adjoint (denoted by a).
In this way the non-commutative schemes form a category (more accurately: a
two-category).

In this paper we often view commutative schemes as non-commutative schemes.
More precisely if X is a commutative scheme, then Qch(X) will be the category of
quasi-coherent sheaves on X. It is proved in [9] that this is a Grothendieck category.
Furthermore X can be recovered from Qch(X) [7, 10, 16].

If X is a non-commutative scheme then we think of objects in Qch(X) as sheaves
of right modules on X. To define the analogue of a sheaf of algebras on X however
we need a category of bimodules on X (see [21] for the case where X is commuta-
tive). The most obvious way to proceed is to define the category Bimod(X —Y") of
X — Y-bimodules as the right exact functors Qch(X) — Qch(Y") commuting with
direct limits. The action of a bimodule A on an object M € Qch(X) is written as
MEx N.

If we define the “tensor product” of bimodules as composition then we can define
algebra objects on X as algebra objects in the category of X — X-bimodules and
in this we may extend much of the ordinary commutative formalism. For example
the identity functor Qch(X) — Qch(X) is a natural analogue of the structure
sheaf, and as such it will be denoted by ox. If A is an algebra object on X then
it is routine to define an abelian category Mod(A) of right-A-modules. We have
Mod(ox) = Qch(X). Unraveling all the definitions it turns out that — ®x —
(the “tensor product” (composition) in the monoidal category Bimod(X — X)) and
—®oy — (the tensor product over the algebra ox) have the same meaning. We will
use both notations, depending on the context.

Unfortunately Bimod (X —Y") appears not to be an abelian category and this rep-
resents a technical inconvenience which is solved in [22] by embedding Bimod(X —Y")
into a larger category BIMOD(X —Y") consisting of “weak bimodules”. The category
BIMOD(X —Y) is opposite to the category of left exact functors Qch(Y) — Qch(X).
Since left exact functors are determined by their values on injectives, they trivially
form an abelian category. The category Bimod(X — Y) is the full category of
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BIMOD(X —Y) consisting of functors having a left adjoint. Or equivalently: func-
tors commuting with direct products.

This being said, these technical complication will be invisible in this paper as all
bimodules we encounter will be in Bimod(X —Y).

If A be a graded algebra then the associated non-commutative scheme X =
Proj A is defined by Qch(X) = QGr(A4) = Gr(A)/ Tors(A), as discussed above.
Note that Proj A is only reasonably behaved when A satisfies suitable homological
conditions. See [5, 13]. We denote the quotient functor Gr(4) — QGr(A) by =.
The object wA is denoted by Ox. The “shift by n” functor Qch(X) is written as
M — M(n) and the corresponding bimodule is written as ox(n). In particular
ox = 0x(0) and Ox(n) = O ®,, ox(n) = 7(A(n)).

4. CONSTRUCTION OF THE SUBALGEBRA D oOF A2

We devote the rest of the paper to the proof of Theorem 1.1 as well as the
construction of the non-commutative Cremona transform. The treatment of both
constructions will be almost entirely parallel. So let A be a 3-dimensional Sklyanin
algebra, which may be either quadratic or cubic, and put X = Proj A.

As explained in the introduction (see also [3]) A corresponds to a triple (Y, o, £),
where Y is smooth elliptic curve, ¢ is a translation and £ is a line bundle of
degree r on Y. The relation is given by the fact there is a regular central element
g € Asy1 such that A/(g) = B(Y, 0, L) where B = B(Y, 0, L) is a so-called “twisted
homogeneous coordinate ring” (see (1.1)).

Using the resulting equivalence of categories (see the introduction and [4])

ProjBz=Y

we will write oy (n) € Bimod(Y —Y) for the shift by n-functor on Proj B. Then we
have

oy (1) = o4(— Qo £)
(the tensor product takes place in the category of sheaves of Y-modules).

The inclusion functor Qch(Y) < Qch(X) (i.e. the functor dual to the graded
algebra morphism A — B) has a left adjoint which we denote by —®,, oy (on the
level of graded modules it corresponds to tensoring by A/gA). Note that in this
way oy is viewed as a X — Y-bimodule.

Below we will routinely regard a sheaf of Oy-modules N as an object in Bimod (Y —
Y') by identifying it with the functor — ®p, N. It is easy to see that the resulting
functor

(4.1) Qch(Y) — Bimod(Y —Y) ¢ BIMOD(Y —Y)

is fully faithful and exact.
Similarly we regard an Y — Y-bimodule M as an X — X-bimodule by defining
the corresponding functor to be

—®o 5 O —oy M
Qeh(X) —22%%, Qeb(Y) —2 Qeh(Y) > Qeh(X)
In this way oy becomes an X — X-bimodule and one checks that it is in fact an
algebra quotient of ox. Note that oy now denotes both an algebra on X and an
algebra on Y (the identity functor) but for both interpretations we have Mod(oy) =

Qch(Y).
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For use in the sequel we write
ox(=Y) = ker(ox — oy)
ox(=Y) is the ideal in ox corresponding to the graded ideal gA = A. Note that

since g is central we have in fact ox(=Y) = ox(—3).
If M € Qch(X) then we define the “global sections” of M as
(X, M) = Homx (Ox, M)
Similarly we define the global sections of an X — X —bimodule A as in [22, Section
3.5]:
I'(X,N) := Hom(Ox,Ox ®ox N)
Use of the functor I'(X, —) on bimodules requires some care since it is apriori not
left exact. However in our applications it will be.

Note that A is an algebra object in the category of bimodules then I'(X, N) is in
fact an algebra for purely formal reasons. The same holds true for graded algebras
and Z-algebras.

It is easy to see that A, is equal to the global sections of ox(n):

I'(X,0x(n)) = Homx(Ox,Ox(n))
= Homgqara)(m(A), 7(A(n)))
= Homg,(4)(4, A(n)) [5, Theorem 8.1(5)]
- A,
where the third equality follows from the AS-regularity of A. Thus for the Z-algebra

associated to the two-Veronese of A we have:
AR~ T(X, 0x(2(n —m))) = T(X, 0x(—2m) ®s, 0x(2n))

m,n
Below (p;); is a collection of points on Y: three distinct points in case (r,s) =
(3,2) and one point in case (r,s) = (2,3). Let d = >, p; be the corresponding
divisor on Y. As above we consider Qg4 as a Y —Y-bimodule but to avoid confusion
we write it as o4. Following our convention above we also consider o4y as an X-
bimodule. Put

(4.2) may = ker(oy — o0g)
(4.3) mq = ker(ox — 04)
Clearly mgqy € Bimod(Y —Y') as mgqy corresponds to an ordinary ideal sheaf in
Oy (see (4.1) above). The fact that mg € Bimod(X — X) follows by applying (22,

Corollary 5.5.6] repeatedly for the different p;.
Finally consider the following bimodules over X, respectively Y:

0y (=2m) Qoy Mr-mqy ... Mr-ntigy Qoy 0y(2n) ifn=m
0 ifn<m

(44) (Dy)mn = {

(4.5)  Dypn =

s

0x(=2m) ®oy My—myg...Mr—n+1gRoy 0x(2n) fn=m
0 ifn<m

where 7 = 0°t!. Here m,—«y...m,—iy4 is the image of

Mg ®x - ®x Mr—1g —> 0x x -+ Qx 0x = 0x

A priori this image lies only in BIMOD(X — X) but with the same method as the
proof of [22, Proposition 6.1.1] one verifies that it lies in fact in Bimod(X — X).
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The collections of bimodules D %' ®.,,... Dm.n, Dy def (‘Dm,n(DY)myn represent

Z-algebra objects respectively in Bunod(X X) and Bimod(Y —Y"). For example
the product

Dm,n ®0X Dn,p
is given by

0x (—2M)®px Mr—mg -« . Mr—n+13® 05 0x (21) R 0x (—21)Rox Mr—ng - - . Mr—p+14Q0 5 0x (2p) —

OX(_Zm) ®ox Mr—mg .. . Mr—nt1g oy Mr—ng...Mr—p+1g Doy OX (2p) -
0x(—2m) ®py Myp—mg ... My—nt1gMy—ng ... Mr—p+1q Qo 0x(2p)

Denote the global sections of D and Dy by D, Dy respectively. Thus D and Dy
are both Z-algebras.

The inclusion D,,,, — ox(2(n — m)) gives rise to an inclusion of Z-algebras
D — A® by using [22, Lemma 8.2.1] with & = Ox. This is the sought sub-Z-
algebra of A

5. ANALYSIS OF Dy

Our aim is to show that D is a quadratic AS-regular Z-algebra. The first step
in understanding D is showing that the quotient Z-algebra Dy is a Z-analogue of
a twisted homogeneous coordinate ring (see §2). We do this next.

We have to find an elliptic helix {£;}; as defined in §2 such that

(DY)m,n = B(K {‘Cz}z)m,n = F(Y; £m ®...® Ln—l)

The functor —®,, mq,y is given by —®o, Mgy where M,y is the ideal sheaf of d
onY (see (4.1) above). Moreover as we have already mentioned oy (1) = 04 (—®y L)
(using the notations of [21] we could write this as: mgy = 1(Mgy)1 and oy (1) =
1L,). Using the fact that — ® oy (2n) is an autoequivalence we compute for n = m

(5.1)
(Dy)m,n = Hom (Oy, Oy (=2m) @ Mr=mqy ... Mr—n+14y @ 0y(2n))
= Hom (Oy (—2n), Oy (=2m) @ Mr-mqy - .. Mr—n+14y)
2n—1 2m—1 -1
— Hom c® QL ) : (L‘@...@E" ) ®My-mgy .. ../\/lT_n+1d7Y>
— Hom (oy, Moy o Mgy ®L7" ®...® /:f’”‘l)
=T (Y Mgy o Mgy ®LT " ®...® EUQH)
=T (K £7n ®... ®£n—1)
with
(5.2) ,Cl _ MT—id7Y ®£o,21' ®£Uzz‘+1

A routine but somewhat tedious verification shows that the isomorphism con-
structed in (5.1) sends the product on the left to the obvious product on the right
corresponding to the tensorproduct.

We now have to check that the (£;); constitute an elliptic helix as introduced in
§2. Using our standing hypothesis that Y is smooth (since A was assumed to be a
Sklyanin algebra) we must verify the following facts
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(1) degL; =3
(2) Lo % La.
(3) Li®L; Y ®Livo=Oy.
We use the following lemma.
Lemma 5.1. If A is quadratic, one has
U*(ﬁl) = £i+1
and if A is cubic
¢*(£z‘) =Lit1

where 1) is an arbitrary translation satisfying 3 = o*.
Proof. We compute in the quadratic case
- 2042 _
(L)@ L = Mgy ®LT T ®LT @M1, ®(L
2041 3 _ 2i4+3  _
=My ®LT T @MIiyy) @@L )T

Since o is a translation there is an invertible sheaf A of degree zero on Y such
that for each invertible sheaf M on Y we have the following identities in Pic(Y):

[0* M] = [M] + deg(M) - [V]
(This statement is true in even higher generality, see [23, Theorem 4.2.3]) Thus
[*(£)@LL] = (deg(M,iay) + deg(L7") = Bdeg(M,-iqy) — 3deg(£7")) [N] = 0
taking into account that in the quadratic case
deg(M;-iqy) = —degd = —3
deg(0*2i£) =3

Now we consider the cubic case. It will be convenient to introduce a translation
o3 which is a cube root of o

2041 2042

'® (L

6i+7 6i+6

0’§* (L) ® £‘7+11 — M:iid,Y ® £U§i+4 ®L T ® (Mjiidyy)_l ® (L3

K2

6i+9,

)L™ )
Let N3 be a line bundle of degree zero such that for any line bundle M
[05 M] = [M] + deg(M) - [N5s]
We obtain
[o4" (L)LY = (4deg(Mo—ray) + 4 deg(£75) +Tdeg(£7) — 12deg(M,—1a,y)

—6deg(£75") — 9 deg(L% )) N3] =0
taking into account that this time
deg(M-igy) = —degd = —1
deg(L78') = 2 O

We now verify that (£;); is an elliptic helix. Condition (1) is immediate and
condition (3) follows from Lemma 5.1. Assume that (2) is false in the quadratic
case. Then o*(Ly) = Lo. In other words o is translation by a point of order three.
But this contradicts our assumption that A is a Sklyanin algebra. Now assume that
(2) is false in the cubic case. The ® is a translation by a point of order three and
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from the definition of 1 it follows that o is translation by a point of order four,
again contradicting the fact that A is Sklyanin algebra.

6. SHOWING THAT D 1S AS-REGULAR

For use below recall some some commutation formulas. First note that since
oy (1) = 04 (— ®o, L) we have

0d ®oy 0y (1) = 0y (1) Qoy 00d

(we may see this by applying both sides to an object in Qch(Y")). Using the defini-
tions of mg, mqy (see (4.2), (4.3)) we deduce from this

ma,y Qoy 0y (1) = 0y (1) ®oy Mod,y
mgq ®ox OX(I) = OX(I) ®ox Mod
Similar formulas also hold for longer products of m’s such as for example appear
in the definition of (Dy )., and Dy, p.
If M is a bimodule then we will write (a)M for Ox(a) ®,, M. Thus the “right

structure” of M is (0)M. For the sequel we need a resolution of (a)Dy, mt1. In
the quadratic case we use the following lemma.

Lemma 6.1. Let A be a quadratic AS-regular algebra of dimension 3. Let q1,q2,q3
be distinct non-collinear points in'Y and let Q1,Q2, Qs be the corresponding point
modules.*. Pick an m in (Q1 ® Q2 ® Q3)o whose three components are non-zero
and let M = mA. Then the minimal resolution of M has the following form

0— A(=3)P2 5 A(-2)P 545 M -0
Proof. Let g be the normalizing element of degree three in A and let B = A/gA. By
using the explicit category equivalence Qch(B) = QGr(Y") [4] one easily proves that
the map B>, — Ms is surjective. Whence the corresponding map u : As1 — Mxy
is also surjective.

Look at the exact sequence
0—>keru— As1 > M1 — 0
Tensoring this exact sequence with k yields an exact sequence
Tor{'(Ms1,k) > keru@a k — As; ®@a k> Moy ®k — 0

Now both A>; and M, are generated in degree one and furthermore dim A; =
dim M;. Hence it follows that @ is an isomorphism. Therefore keru ®4 k is a
quotient of Tor{' (M1, k). From the fact that Ms is a sum of shifted point modules
we compute that Tor{(Ms1, k) = k(—2)3. Thus ker u is a quotient of A(—2)3. Now
using the fact that M has no torsion and hence has projective dimension two we
may now complete the full resolution of M using a Hilbert series argument. O

Note that

Dm,m+1 = OX(_2m) ®0X My—mgq ®0X OX(Z(m + 1))
and thus
OX(U/) ®ox Dm,m+1 = (OX ®ox mUQ’”*aT*md)(a + 2)

1A point module over A is a graded right A-module generated in degree zero with Hilbert
function 1,1,1,1,1,.... There is a 1-1 correspondence between points in Y and point modules
over A. See [2].
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where

OX ®0x Mg2m—ar—mg = ker(OX i 00-27n7a7-7md)
Thus Ox ®oy My2m—ar-mg is of the form w(ker(A — M)) with M as in Lemma 6.1.
We conclude that we have a resolution of (a)Dy, m41 of the form

(6.1) 0— Ox(a—1)% - Ox(a)® - (&)Dmms1 — 0
This resolution is actually of the form
(62) 0— OX (a — 1)®2 - OX (a) ®k Dm,m+1 i (a)Dm,’m-‘rl -0

In the cubic case the resolution will follow from the next lemmas:

Lemma 6.2. Let A be a cubic AS-regular algebra of dimension 3. Let p be a point
'Y and let P be the corresponding point module. Then there is a complex of the
following form:

6.3) 0 A(=5) 9 A(—4)®2 @ A(=3) > A(—2)® 5 A4 P 0
where ¢ is part of the minimal resolution of k as given in [1, Theorem 1.5.]
0— A(—4) S A(=3)2 5 A-1)2 2% AL k>0

Moreover the complexr (6.3) is exact everywhere except at A where it has one-
dimensional cohomology, concentrated in degree one.

Proof. From [2, Proposition 6.7.] we know P has the following (minimal) resolution:
0— A(=3) > A(-2)®A(-1) > A—-P -0

Combining this with the minimal resolution for k£ we get the following diagram

A(-2)%2 @ A(-2)

A(-4)®2
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Put § = §p @id. The existence of the map 7 such that § on = a follows from the
projectivity of A(—3) and the fact that o« is zero by degree reasons. By diagram
chasing one easily finds that ker(5 o d) = im(e) @ im(n) and hence we end up with
the following complex:

0> A(=5) 225 A(—0)®2 @ A(—3) 225 4(—2)®3 22 4 £, p 0

Using diagram chasing again one easily checks that this complex is exact everywhere
except at A. We then conclude with a Hilbert series argument. O

In a similar way as in the quadratic case we conclude that (@)D, 41 has a
resolution of the form

(6.4)
0— Ox(a—3) % 0x(a - 2P @Ox(a—1) > Ox(a)® > (a)Dmms1 — 0

which is actually of the form

(65  0—J(a)®Ox(a—1) = Ox(a) ® Dms1 = (@)Drmss — 0
where
(6.6) T coker(Ox (—3) 5 Ox(—2)9?)

We will now prove some vanishing results. An object in Qch(X) will be said to have
finite length if it is a finite extension of objects of the form O,, p € Y. Likewise an
object in Bimod(X — X)) will be said to have finite length if it is a finite extension
of o, for p € Y. The objects of finite length are fully understood, see [22, Chapter
5]. Note that by [22, Proposition 5.5.2] o, is a simple object in Bimod(X — X) so
the Jordan-Holder theorem applies to finite length bimodules.

Lemma 6.3. A finite length object in Qch(X) has no higher cohomology.

Proof. For an object of the form o, this follows from [22, Proposition 5.1.2] with
F = Ox. The general case follows from the long exact sequence for Ext. O

Lemma 6.4. H*(X,(—)Dyn) =0 forl < 2n —2m + s.

Proof. We only need to consider the case n = m. This follows from the fact that
(=)D € Ox(2n — 2m — 1) with finite length cokernel and from the standard
vanishing properties on QGr(A) (see for example [5, Theorem 8.1]). |

Lemma 6.5. H'(X, (a)Dy,.n) =0 fora > —s + 1.

Proof. We only need to consider the case n = m. The proof for a = —1 is similar
in the cases (r,s) = (2,3) and (r,s) = (3,2) so we will give the proof for the first
case as it is slightly longer. Afterwards we will consider the case (r,s) = (2,3) and
a=—2.

Suppose (r,s) = (2,3) and a > —1. We prove H*(X, (a)D,,») = 0 by induction
on n—m. As (a)Dpm = Ox(a) the base case follows from the standard vanishing
on X.

For the induction step we proceed as follows: From [22, Theorem 5.5.10] and the
fact that Dy, , C ox(2n — 2m) with finite length cokernel we may deduce that the
kernel of the obvious surjective map

Dm,m+1 ®X Dm+1,n i Dm,n
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has finite length. Using [22, Lemma 8.2.1] we see that this remains the case if we
left tensor with Ox(a). Thus we obtain a short exact sequence in Qch(X)

0—fl — (a)Dm}m+1 ®x Dmt1,n — (a)Dm;n -0

from which we find H'(X, (a)Dm.n) = HY(X, (a)(Dmm+1 ®x Dim+1.n)) by Lemma
6.3. From (6.5) we obtain an exact sequence

(67) TOI“{X ((a)Dm,m+17 Dm+1,n) - j((l) (9% Dm+1,n @® (a - 1)Dm+1,n -
Dm.m+1 ®k (a)Dm+1,n - (a)Dm,m+1 ®X Dm+1,n -0

One deduces again, for example using [22, Theorem 5.5.10], that Tor7* ((@)Dp.m+1, Dm+1.n)
has finite length. It is clear that (¢ — 1)Dp,41,, has no finite length subobjects.
We claim this is the same for J(a) ®x Dym41,n. Indeed tensoring the short exact
sequence

0— J(a) » Ox(a)¥ - Ox(a+1) -0

on the right with D,,, 1., and using Tor-vanishing [22, Theorem 8.2.1] we obtain a
short exact sequence

(6.8) 0 — J(a) ®x D10 — (@)D 1, = (@ + 1) D10 — 0

Hence in particular 7 (a)®x Dimy1.n © (a)DE2 . is torsion free. We conclude that

m+1,n
(6.7) becomes in fact a short exact sequence

(6.9)

0— j(a)®XDM+l,n®(a_1)Dm+l,n g Dm7m+l®k(a)Dm+l,n - (a)Dm,m+1®XDm+l,n -0
We find that H'(X, (a)(Dm.m+1 ®x Dm+1.n)) is sandwiched between a direct sum

of copies of H'(X, (a)Dym1.n) (= 0 by the induction hypothesis) and a direct sum

of copies of H*(X,J(a) ®x Dm+1.n). Now H*(X,J(a) ®x Dmi1,n) is trivial as

well because it is sandwiched between a direct sum of copies of H?((a —2)Dp,41,n)
(= 0 by Lemma 6.4) and H3*(X, (@ — 3)Dy11,,) (=0 as H3(X,—) = 0).

We now prove H(X, (—2)D,,.n) = 0 when (r,s) = (2,3). This can also be done
by induction on n —m. The case n = m again follows from the standard vanishing
on X. For the induction step recall that for any point ¢ there is an exact sequence:

0— Ox(-3) = Ox(-2)®O0x(~1) = Ox ®x mgqg — 0
Applying — ®x Dp+1, yields an exact sequence
0— (_3)Dm+1,n g (_2)Dm+1,n @ (_1)Dm+1,n i OX ®X my ®X Dm+1,n -0

where the injectivity of (—3)Du41,n = (—2)Dimt1,0@(—1)Dpyi1,y s a torsion/torsion

free argument as above in the derivation of (6.9). In particular we can consider a

long exact sequence of cohomology groups. As in this sequence H' (X, (—=2)Dy,.) =
HY(X,my=m-1,@x Dpy1,n) is sandwiched between H (X, (—2) Dy 11,0)BH (X, (—=1)Dins1,0)
and H?(X,(—3)Dy+1.n) We can conclude by the induction hypothesis, the case

a = —1 which was already done and Lemma 6.4. (]

We may now draw some conclusions.

Lemma 6.6. D is generated in degree one.
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Proof. We need to show for n > m that
F(X, Dm,erl) ®k F(Xv Derl,n) - F(X, Dm,n)

is surjective.

The kernel of Dy, i1 ®@x Dimt1,n — D, has finite length whence by Lemma
6.3: T(X, Dimym+1 ®x Dg1,n) = T'(X, Diy ) 1s surjective. Hence it is sufficient to
show that

F(X, Dm,m+1) ®k F(X, Dm+1,n) - F(X, Dm,erl ®X Derl,n)

is surjective. In case (r,s) = (3,2) we tensor (6.2) for @ = 0 on the right with
Dpyt1,n- This give

Tor(fx((o)pm,m+lvpm+l,n) g (_1)Dm+l,n g Dm,m+1®k(0)Dm+1,n g (O)Dm,m+1®XDm+1,n -0

Since Tor{* ((0)Dym,m+1, Dm+1,n) has finite length and (—1)D,,41,, has no finite
length submodules the leftmost arrow is zero.
Hence we must show that H'(X, (—1)D,,41.,) = 0. This follows from Lemma 6.5.
In case (1, 8) = (2, 3) by (6.5) by a similar argument this amounts to showing that
HY(X,(=1)Dpy1.0) = 0and HY(X, J(0)®x Din+1.n) = 0. The first of these claims
follows from Lemma 6.5. For the second of these claim we invoke the definition
of J (see (6.6)). It follows that we have to show H!(X,(—2)Dm+1.n) = 0 and
H?(X,(=3)Dy+1.,) = 0 and these are known to hold by Lemma 6.5 and Lemma
6.4. (]

Our next result is that D has the “correct” Hilbert function. That is

(a+1)(a+2) ifa>=0

6.10 dimD,, e = 2
(6.10) H Hm,met {0 ifa <0

The case a < 0 is trivial so we consider a > 0. For this we have to check the cases
(r,s) = (3,2) and (r,s) = (2,3) separately. For the quadratic case a computation
similar to [22, Corollary 5.2.4] tells us that the colength of Dy, 44 inside ox(2a)
is
a(a+1)
g2t/
2

Using the fact that H'(X,D,,,) = 0 by Lemma 6.5 we obtain (for a > 0)

1
dim Doy s = (2a + )2(2(1 +2) 3a(a2+ 1) _ (a + 1)2((1 +2)

Similarly in the cubic case the colength of Dy, 44 inside ox(2a) is

ala +1)
2
and again using the fact that H'(X,D,, ) = 0 we obtain (for a > 0)

dim Dy, s = (2a 1— 2)2 3 a(a2+ 1) _ (a + 1)2(a +2)

Hence in both cases (6.10) holds.
Finally we prove the following.

Lemma 6.7. The canonical map D — Dy is surjective.
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Proof. As D and Dy are both generated in degree 1 (for Dy this is proved in the
same way as for B(Y, o, L), see [3]), it suffices to check that Dy, i1 = (Dy)m,m+1
is surjective. For this consider the following commuting diagram (with Ox (=Y) =
Ox ®oy 0x(—Y) the subobject of Ox corresonding to the ideal gA c A)

Ox(-Y) —— Ox ®x mqg —— Ox ®x mqy

0—— Ox(—Y) Ox Oy 0
0 0 Oy Oq 0
0 0 0

The bottom two rows and the first column are obviously exact. The third column
is equal to

0->Myy =0y -04—-0

and hence is exact. The exactness of the middle column follows as usual from [22,
Lemma 8.2.1]. Hence we can apply the Snake lemma to the above diagram and
find the following exact sequence:

0—-Ox(=Y) > Ox®x mqg = Ox ®x mgy — 0

As the above obviously remains true when we replace d by 0~™d and as ox(2) is
an invertible bimodule we get an exact sequence

0—- O0x(-Y)®x 0x(2) » Ox ®x Dmm+1 — Ox ®x (Dy)mm+1 — 0

The surjectivity of Dy, m41 = (Dy)m,m+1 then follows from H'(X,Ox(-Y) ®@x
0x(2)) = HY(X,0x(—1)) = 0 using that ox(—Y) = ox(—3) (see §4) as well as the
standard vanishing results for X (see [5, Theorem 8.1]). O

Since now the map D — Dy is surjective, one checks using (6.10) that D, , —
Dy 1, is an isomorphism for n < m +2. Thus D and Dy have the same quadratic
relations. Let D’ be the quadratic AS-regular Z-algebra associated to (Y, Lo, £1)
(see §2). Then since D’ is quadratic, and has the same quadratic relations as Dy we
obtain a surjective map D’ — D. Since D’ and D have the same Hilbert series by
(6.10) we obtain D’ = D. Hence D is the quadratic AS-regular Z-algebra associated
to (Y, ,Co, El)
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7. NON-COMMUTATIVE FUNCTION FIELDS

As above let A be a 3-dimensional Sklyanin algebra, which may be either qua-
dratic or cubic, with geometric data (Y,o,L) and let D be the AS-regular Z-
subalgebra of A?) constructed in §4.

Let A’ be the 3-dimensional quadratic Sklyanin algebra with geometric data
(Y, 0, Lo) if A is quadratic and (Y, ¢, L) if A is cubic where (£;); is as in (5.2).

By the discussion at the end of §2 together with Lemma 5.1 we conclude that
D~ A

We will now show that there is an isomorphism between the function fields of
Proj A and Proj A’. In the case that A is cubic this will be the final step in the
proof of Theorem 1.1. If A is quadratic then the relation between A and A’ is a
generalization of the classical Cremona transform.

By the graded version of Goldie’s Theorem [11, Corollary 8.4.6.] the non-zero
homogeneous elements of A form an Ore set S and hence the graded field of fractions
A[S™1] of A exists. By the structure theorem for graded fields [12] it is of the form

Frac(A) = Fraco(A)[t, 71, a]

where Fracg(A) is a division algebra concentrated in degree zero, |[t| = 1 and « is
an automorphism « : Fraco(A4) — Fracg(A) : a — tat~!. Fraco(A) was introduced
in the introduction as “the function field” of ProjA. Our aim is to show that
Fraco(A) = Fraco(A”).

It is straightforward to generalize the concept of an Ore set and its corresponding
localization to Z-algebras. In fact this is the classical concept of an Ore set in a
category (and its corresponding localization).

If S ¢ A is a multiplicative closed Ore set consisting of homogeneous elements
then one defines a corresponding multiplicati\ve/closed Ore set S © A by putting
Sij = S;j_i. A straightforward check yields A[S—1] = A[S~1].

Now let S and S’ be the set of nonzero homogeneous elements in A respectively
A’. Then the inclusion A’ < A — A restricts to S’ < S and hence for arbitrary
1 € Z there is an induced map (;:

Fraco(4') = (A'[(S) ')y = (A[1) = (AL 1)y, = (A[S]), = Fraco(4)

i 2i,2i =
Although this map depends on i we will show that it is always an isomorphism.

As Fraco(A’) and Fracy(A) are division rings and ¢; # 0, it follows that (; is
always injective, so the only nontrivial thing to do, is proving its surjectivity. So
given any a,s € Ag; 2;,\{0} we need to find a jo € Z and h € Ayj, 2, such that
ah, sh € A’i7j2. We claim we can find such an h only depending on n := j; — 4 and
not on a or s. For this consider the following map:

I'(X,0x(2n)) @T(X,0x(2N)®x Z) —» I'(X,0x(2(n + N) Qx I))

where 7 is the ideal in ox such that ox(2(n + N)) ®x Z = D;, i, +n+N (see (4.5)).
If we can choose an N such that

(7.1) dim; I'(X, 0x (2N) @x Z) # {0}
then there is an element 0 # h € 1212”2“)2”2”%1\; and an embedding

Azi2ivon = AliignenN 1 a— ah
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which yields the surjectivity of Fraco(A’) — Fraco(A) (as we may take jo = j1+N =
i +n + N in the above). So it suffices to prove (7.1). As the cases (r,s) = (3,2)
and (r,s) = (2,3) are completely similar, we only treat the first case.

Note that the codimension of F(X, ox(2N) ®x I) inside A2i1+2n72i+2n+2N is at

most SM which grows like % On the other hand dimy, (A2i1+2n’2i1+2n+2]\[) =

w which grows like 2N?, so for N sufficiently large (7.1) will be fulfilled.

8. RELATION WITH NON-COMMUTATIVE BLOWING UP

For the interested reader we now sketch how the Z-algebra D which was intro-
duced in a somewhat adhoc manner in §4 may be obtained in a natural way from
the formalism of non-commutative blowing up as introduced in [22].

First let us remind the reader how the commutative Cremona transform works.
Let p1, p2, p3 € P? be three distinct non-collinear points on P2 and consider the linear
system of quadrics passing through those points. This is a 5 — 3 = 2 dimensional
linear system and hence it defines a birational transformation ¢ : P2 >~P? with
{p1,p2, ps} being the points of indeterminacy.

The indeterminacy of ¢ may be resolved by blowing up the points {p1,p2,p3}.
Let  : X — P2 be the resulting surface and let L1, Lo, L3 be the exceptional curves.
Then the Cremona transform factors as

X
PN
P2 ; >IP>2

where the right most map is obtained from the sections of the line bundle O (1) =
Oé*(O]pz (2)) ®)~( OX(_Ll — Lg — LQ) on X.

Now we replace P2 by the non-commutative X given by Proj A where A is a
3-dimensional quadratic Sklyanin algebra. We will use again the standard notation
Y,L,0,p1,p2,p3,d,.... According to [22] we may blow up? X in d to obtain a
map of non-commutative schemes o : X — X. Then we need a substitute for the
line bundle O ¢ (1) on X. Actually in the non-commutative case it is more natural
to look for a substitute for the family of objects (O (n)), since then there is an

associated Z-algebra
@ Dm,n = @ HomX(OX(_n)v OX(_m))

This idea has been used mainly in the case that the sequence is ample in a suitable
sense (e.g. [13]), but the associated Z-algebra may be defined in general. Of course
in the non-ample case the relation between the sequence and the underlying non-
commutative scheme will be weaker.

Let us now carry out this program in somewhat more detail. According to [22]
we have X = ProjD where D is a graded algebra in Bimod(X — X) given by

ox ®@mg(Y)®mgm,—142Y)® - @mg -+ Mr—nt14nY)®---
The inclusion ox — D yields the map « : X - X.

21n [22] we discuss the case of a blowup of a single point. Blowing up a set of points is similar.
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Suitable noncommutative analogue of the objects O ¢ (—mLy —mLy —mLo) turn
out to be the objects in Bimod(X — X) associated to the ox — D-bimodules given
by

Mymg -+ de@med - md(Y)@med - mT*Id(QY)@' . .@med e m‘l'f'"+1d(ny)®- .

Up to right bounded ox — D-bimodules (which are invisible in Proj) these are the
same as

(0x(=mY) ®x D)[m]
where [1] is the shift functor on D-modules (or bimodules, or variants thereof). So
the non-commutative analogues of the objects O ¢ (n) turn out to be associated to

(Ox(2n —nY)®x D)[n]

where we have written Ox (a + bY’) for Ox(a) ®x ox (bY).
Or ultimately
Ox(n) = a*(Ox(2n —nY))[n]
We now compute (the fourth equality requires an argument similar to [22, Propo-
sition 8.3.1(2)])

Ox(—2n 4+ nY), as(a®(Ox(—2m + mY))[n — m]))
x(=2n+nY),0x(=2m + mY) ®oy Dn-m)

= Homx (Ox(—2n), Ox(—2m)m —mq - Mo—nt14))
=T(X,Ox(—2m)m —mg- - Mr—n+14 ® 0x(2n))

Hence we find indeed the same result as in §4.
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