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ABSTRACT
Using the power of gravitational lensing magnification by massive galaxy clusters, the
Hubble Frontier Fields provide deep views of six patches of the high redshift Universe.
The combination of deep Hubble imaging and exceptional lensing strength has revealed the
greatest numbers of multiply-imaged galaxies available to constrain models of cluster mass
distributions. However, even with O(100) images per cluster, the uncertainties associated with
the reconstructions are not negligible. The goal of this paper is to show the diversity of model
magnification predictions. We examine 7 and 9 mass models of Abell 2744 and MACS J0416,
respectively, submitted to the Mikulski Archive for Space Telescopes for public distribution in
September 2015. The dispersion between model predictions increases from 30% at common
low magnifications (µ∼2) to 70% at rare high magnifications (µ∼40). MACS J0416 exhibits
smaller dispersions than Abell 2744 for 2<µ<10. We show that magnification maps based on
different lens inversion techniques typically differ from each other by more than their quoted
statistical errors. This suggests that some models underestimate the true uncertainties, which
are primarily due to various lensing degeneracies. Though the exact mass sheet degeneracy
is broken, its generalized counterpart is not broken at least in Abell 2744. Other, local
degeneracies are also present in both clusters. Our comparison of models is complementary
to the comparison of reconstructions of known synthetic mass distributions. By focusing on
observed clusters, we can identify those that are best constrained, and therefore provide the
clearest view of the distant Universe.

Key words: gravitational lensing: strong – galaxies: clusters: individual: Abell 2744, MACS
J0416

1 INTRODUCTION

The idea of using galaxy clusters as nature’s telescopes goes at
least as far back as the 1990’s (Hammer 1990; Blandford 1990).
Since then, numerous works have utilized the magnifying power
of clusters to better resolve high redshift galaxies (e.g. Hainline
et al. 2009; Swinbank et al. 2007; Pettini et al. 2000). Following
in the footsteps of CLASH (Cluster Lensing And Supernova sur-
vey with Hubble; PI: M. Postman), Hubble Frontier Fields Survey
(HFF; PI: J. Lotz) is an ambitious effort to use massive merging
clusters at intermediate redshifts as nature’s most powerful tele-
scopes. Launched in 2013, it is a three year project that devotes 840
orbits of Director’s discretionary time to do deep imaging of six
galaxy clusters plus the accompanying parallel fields. Each field is
observed in three HST optical bands and four IR bands. It is the
largest commitment to date of HST resources to the exploration of
the distant Universe through the power of gravitational lensing.

The HFF project has been remarkably prolific, with contribu-
tions in the structure of galaxy clusters (Jauzac et al. 2014; Richard
et al. 2014; Ogrean et al. 2015; Jauzac et al. 2015), individual high
redshift galaxies (McLeod et al. 2015; Kawamata et al. 2015; La-
porte et al. 2016), and high redshift galaxy luminosity function and
its evolution (Finkelstein et al. 2015; Coe et al. 2015; Atek et al.
2015)1.

To utilize clusters as telescopes one needs to first characterize
their uneven optics, i.e. obtain cluster magnification maps. These
are derived from the mass distribution maps, which are, there-
fore, of prime importance to the success of the project. Even with
HST’s deep imaging of the Frontier Fields, the number of detected
strongly lensed sources is not sufficient to map out a cluster’s mass

1 See http://www.stsci.edu/hst/campaigns/frontier-fields/Publications
for a more comprehensive list of references.
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distribution with arbitrarily high precision and resolution. A finite
observational data set leaves information gaps. How to fill these
gaps has been the subject of many papers, based on several lens
mass inversion methods. The assumptions going into the different
methods are varied (see Section 2); for example, some methods
rely on the observed light distribution of cluster galaxies to model
the mass of the galaxies and estimate the mass distribution of the
cluster, while others do not use cluster galaxies at all.

Each method generates statistical uncertainties on the recov-
ered mass maps. A practical estimate of the systematic uncertainties
is provided by the dispersion between different models. This is the
strategy implicitly adopted by HFF. Originally, STScI sponsored
five modeling groups with a diverse range of models. These groups
have since been joined by others, leading to an even wider range of
available models.

In addition to the HFF data products and the published work
based on these by various groups, added value of the HFF project
comes from two new features that are being adopted for the first
time in the cluster lensing community.

(1) Consistency and uniformity. In the past, comparison of
various science results from cluster lensing was hindered by the
use of different data sets, and differences between model versions
from the same groups. Most of that has been eliminated in the HFF
project, because teams collectively agree on the most trustworthy
set of data to use, namely multiple images, redshifts and weak
lensing measurements.

(2) Testing against known mass distributions. Testing of the
modeling techniques against synthetic clusters is very important to
understand the strengths and weaknesses of the various methods.
The synthetic cluster comparison project from Meneghetti et al.
(2016) is the largest coordinated effort to date to compare cluster
lensing inversion methods based on known mass distributions.

In this paper we add a third item to the list: analyses to assess
the similarities and differences of the lens inversion methods, with-
out the use of synthetic mass distributions. We hope it will help
provide a unified and transparent view of the lens inversion results.

(3) Comparison of models for unknown mass distributions. An
exercise parallel to (2) is to compare reconstructions of an unknown
mass distribution, i.e. those of observed galaxy clusters, among
themselves. This will show which methods are similar to each
other, and which are outliers, and assess which methods are better
at estimating systematic uncertainties in the reconstructions, assum-
ing the true uncertainties are given by the scatter among models.
This assumption is reasonable because factors other than modeling
methods are approximately the same among all the reconstructions.
The positions and redshifts of images are the same in all recon-
structions, as these were agreed upon by all participating groups.
Though the set of sources/images used by various groups are not
the same, the number of sources/images used are comparable, see
Table 1. The quality of the mass reconstructions, as summarized by
the lens plane rms (the rms of the differences between the observed
and reconstructed image positions) is also similar in all models,
and is < 1” for most models (see Table 1).

This type of comparison can also provide an indirect test of
the state of the art of synthetic models themselves. If the synthetic
clusters are well matched to observed HFF clusters in important
respects, then a comparison of reconstructions of observed clus-
ters and that of synthetic clusters should yield statistically similar
results.

Our current work was inspired by a limited comparison of
models presented in Rodney et al. (2015), which was based on a

supernova Type Ia, HFF14Tom (SN Tomas), that went off in 2014
behind Abell 2744, one of the HFF clusters. As standard candles,
Type Ia supernovae are important because they are the only sources
whose actual magnification can be accurately measured, and used
to constrain lens inversions (Riehm et al. 2011). Based on its red-
shift and light curve properties, Rodney et al. (2015) deduced that
the source was magnified by µ = 2.03 ± 0.29 relative to its ex-
pected unmagnified brightness. The uncertainty in the measured
magnification includes both the photometric uncertainty and the
known scatter in the luminosity of Type Ia SNe at that redshift (after
correcting for light curve shape and color). Fig. 1, taken from that
paper, shows the magnification predictions of various lens models
for the location and redshift of HFF14Tom, with 68% uncertain-
ties. The figure also shows that the median of the lensing model
magnification predictions is 25% higher than what is deduced from
the observed brightness of the supernova. HFF14Tom is not the
first supernova to be detected behind galaxy clusters (Amanullah et
al. 2011; Nordin et al. 2014; Patel et al. 2014), but it is the first to
be used systematically as a precise benchmark to compare several
models.

Later in 2014, the Universe provided another opportunity for
directly testing lens models with the appearance of the first multiply
imaged SN behind the HFF cluster MACS J1149: SN Refsdal (Kelly
et al. 2015). This SN was strongly lensed both by the cluster and
also by a single cluster member galaxy, resulting in four distinct
images in an "Einstein Cross" configuration. Measurement of the
time delays and relative magnifications between these first four
images allowed a similar test of lens model accuracy (Rodney
et al. 2016; Treu et al. 2016). The reappearance of SN Refsdal
with a fifth image more widely spaced from the initial four is now
offering another opportunity to confront lens model predictions
with a pencil-beam test (Kelly et al. 2016). Although these SN
tests have been exciting and informative for the lens modeling
community, we still have only a handful of examples, scattered
across several clusters. HST remains the only observatory that has
demonstrated the capability to discover and study these distant SNe
in sufficient detail to enable such tests. For the foreseeable future
such spot checks will remain few and far between.

In this paper we extend the model comparison analysis of
Rodney et al. (2015) to the whole area of clusters, and especially
to regions of high magnification. We also augment the analysis
with a range of different statistics. Because the true magnification
(the equivalent of the vertical solid line and blue band in Fig. 1)
as a function of sky location is unknown, we use the median of
all models as the comparison benchmark (the equivalent of the
vertical dashed line.) We examine all the reconstruction models that
used HFF data and were submitted to STScI in September 2015 in
response to that call for models.2 Models v3 and v3.1 of clusters
Abell 2744 (z = 0.308) and MACS J0416 (z = 0.396) fall into that
category.

2 BRIEF DESCRIPTION OF LENSING MASS
INVERSION METHODS

In this section we briefly describe each method, highlighting the
different model assumptions. These descriptions come primarily
from the published source papers, and the readme files provided

2 Other v3 models were submitted in the months following the deadline,
but we do not include these in the current work.

c© 2016 RAS, MNRAS 000, 1–17
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Table 1. Summary of input strong lensing data: number of images used by
each model, the assumed positional error of the images, and the lens plane
rms of the reconstructed maps. The values on either side of the vertical bar
are for Abell 2744 and MACS J0416, respectively. All models are v3 unless
otherwise noted. (Note that in some models, like GLAFIC, the value of the
assumed positional error affects the reconstructions, but in many others, like
Sharon/Johnson and Diego, it does not, because the same positional error
is assumed for all the images. The assumed positional error may affect the
quoted errors in mass reconstructions.)

Model # images assumed lens plane
used pos. error (′′) rms (′′)

CATS 52|80 0.5|0.5 0.50|0.71

CATS v3.1 112|139 0.5|0.5 0.70|0.54

Sharon/Johnson 81|81 0.3|0.3 0.42|0.36

Zitrin-NFW 83|93 0.5|0.5 2.00|2.001

Zitrin-LTM-Gauss 83|93 0.5|0.5 1.92|1.991

GLAFIC 111|182 0.4|0.4 0.37|0.44

Williams 55|88 not appl. 0.29|0.36

Williams v3.1 — |147 not appl. — |0.27

Diego 16|52 0.1|0.1 3|32

1The value is somewhat artificially boosted by a lower grid resolution.
2Not available, but is typically 3′′.

Figure 1. The observed magnification, µ, of the supernova HFF14Tom (blue
highlight) compared to the estimates of various models. Reproduced from
Rodney et al. (2015), by permission of the AAS. The vertical dashed line
marks the unweighted mean for all 17 models, at µ = 2.6. The horizontal
line segments mark median magnification and 68% confidence limits of the
17 models.

by the modelers and available through the HST Frontier Fields
Lensing Models Web-page3.

Most lens inversion methods can be classified as parametric,
free-form, or hybrid. In a parametric model, the mass distribution is
usually tied to the observed light distribution of the cluster galaxy
members. Each galaxy’s mass distribution is represented by a sim-
ply parametrized form, like a pseudo isothermal elliptical mass
distribution, PIEMD (Kassiola & Kovner 1993). The dark matter
component is represented by one or two such forms. The total num-
ber of model parameters in the methods is usually comparable to
the number of lensing constraints. Free-form methods, sometimes
called non-parametric to distinguish them from parametric methods,
can employ a similar number of parameters, or a vastly greater num-
ber. In the latter case, lensing data do not uniquely constrain a lens;
instead many realizations are produced, and an average is taken as
the solution. The name ‘free-form’ signifies that these methods do
not tie the mass distribution of the lens to that of the observed light.
Hybrid methods combine features of both approaches.

The HFF v3 series of reconstructions use lensed images that
were evaluated by all the lens model teams, and collectively as-
signed a quality, or reliability measure, as GOLD, SILVER or
BRONZE. GOLD systems have spectroscopic redshifts and secure
multiple image identifications according to most modelers. SILVER
systems have no spectroscopic redshifts, but were unanimously clas-
sified as secure. BRONZE were considered to be secure systems by
most modelers. All models used the bulk of the GOLD and SILVER
images, and some included BRONZE images. (See Table 1 for the
number of sources and images used in each model.) The available
astrometric and spectroscopic data for the two clusters is the result
of cumulative work by several groups, and is presented in Zitrin
et al. (2013); Jauzac et al. (2014); Richard et al. (2014); Johnson
et al. (2014); Diego et al. (2015); Wang et a. (2015); Rodney et al.
(2016). All modelers used the concordance cosmological model
with H0 = 70 km s−1 Mpc−1, ΩΛ = 0.7 and Ωm = 0.3.

CATS
The CATS collaboration uses Lenstool, a code that com-

bines strong- and weak-lensing data; reconstructions used here
are based on strong lensing only, which uses parametric modeling.
The method assumes that the total mass distribution of clusters
consists of several smooth, large scale potentials that are modeled
by a parametric form, along with contributions from many, typi-
cally N > 50, individual cluster galaxies, modeled using physically
motivated parametric forms (Jullo & Kneib 2009). Scaling relations
are used to tie galaxies’ properties to those of L? (Schechter 1976)
galaxies. The models are adjusted in a Bayesian way, probing the
posterior probability density with a Markov Chain Monte Carlo
(MCMC) sampler (Jullo et al. 2007). This process yields error es-
timates on derived quantities such as the amplification maps and
the mass maps (Richard et al. 2014). The difference between the
two versions of CATS models is that v3 uses the multiple images
ranked as GOLD and SILVER by all the lensing teams, while v3.1
uses GOLD, SILVER and BRONZE. See Jauzac et al. (2014, 2015)
for further details of the reconstructions.

Sharon/Johnson
This team uses a parametric modeling technique,

Lenstool v6.5 and v6.8 (Jullo et al. 2007), which relies
on an MCMC to find the best-fit model parameters weighted by
Bayesian evidence. The modeling is iterative; it starts by placing

3 https://archive.stsci.edu/prepds/frontier/lensmodels/

c© 2016 RAS, MNRAS 000, 1–17



4 J. Priewe et al.

cluster-scale masses near the centre of the light distribution, and
then builds up the model in complexity by adding more image
constraints and more mass components. The cluster and galaxies
are modeled as a combination of PIEMD halos. Cluster galaxies
are selected by their colors in a color-magnitude diagram, and
their parameters are scaled to their luminosity. Galaxies in close
proximity to lensed features were modeled separately. The process
continues until all the image constraints have been included, and
the model root-mean-square residuals (rms) can no longer improve
significantly by adding another halo. The early iterations are
optimized in the source plane, while the final model is optimized in
the image plane, where the rms scatter is computed for each image
by tracing through the lens back to the source plane and back out
to the image plane (see Johnson et al. 2014, for details).

Zitrin
The light-traces-mass (LTM) method was first introduced by

Broadhurst et al. (2005) and later revised and simplified by Zitrin
et al. (2009), where full details can be found. The LTM assumption
is adopted for both the galaxies and cluster halo, which are the
two main components of the mass model. To start, cluster mem-
bers are identified from the red-sequence. Each cluster member is
then assigned a PIEMD scaled by the galaxy luminosity, so that
the superposition of all galaxy contributions constitutes the first
component for the model (Jullo et al. 2007). This mass map is then
smoothed with a Gaussian kernel to obtain a smooth component
representing the dark matter density distribution. The two mass com-
ponents are then added with a relative weight, and supplemented by
a two-component external shear to allow for additional flexibility
and higher ellipticity of the critical curves. This is the LTM-Gauss
model. In the NFW model, instead of smoothing the galaxy distribu-
tion to obtain the cluster-wide component, the latter is represented
with elliptical NFW density profiles, following Navarro, Frenk &
White (1997). The best fit solution and accompanying errors are
estimated via a long MCMC; see Zitrin et al. (2013) for further
details.

GLAFIC
This analysis uses GLAFIC (Oguri 2010), a parametric mod-

eling technique. The cluster wide components are represented by
elliptical NFW density profiles, while the member galaxies are
modeled by pseudo-Jaffe ellipsoids(Keeton 2001). To reduce the
number of parameters, scaling relations are used to tie galaxies’
properties to those of L? galaxies. This is common to many meth-
ods that use cluster galaxies, for example, Lenstool. The properties
of some cluster galaxies that are located close to lensed images
are not scaled to L?, but are modeled independently, also using
pseudo-Jaffe profiles. The number of these galaxies is a few, at
most. In addition to these two components, GLAFIC also uses ex-
ternal and internal perturbations of the lensing potential, both of
which are represented by a multipole Taylor expansion of the form,
φ = (C/m)rn cos[m(θ−θ?)], at the position of the BCG. A downhill
simplex method is used to simultaneously optimize all model pa-
rameters in the source plane, and find the best fit models. MCMC is
then used to estimate uncertainties. The detailed modeling method
and results are described in Kawamata et al. (2016).

WSLAP+
The WSLAP+ reconstruction method of Diego et al. (2015) is

mostly free-form, but does include mass contribution from individ-
ual cluster member galaxies, whose parametrized mass distribution
is tied to their light. The non-parametric part of the model repre-
sents the large scale mass distribution of the lens, and makes use of

the fact that the strong lensing equations are linear in the unknowns,
namely, the weight of the mass components, and the positions of the
sources. The modeling field of view is divided into a ∼ 32×32 grid,
each containing a two-dimensional Gaussian. The weights of these
Gaussians, as well as the parameters describing the galaxies and
the source positions are found using quadratic programming. The
reconstructions used the GOLD and SILVER data sets of images.

Williams/Grale
Grale, described in Liesenborgs et al. (2006) and Liesenborgs

et al. (2007), is a free-form lens reconstruction method that uses an
adaptive grid and, in contrast to all other methods described here,
uses no information about the cluster galaxies. It uses a genetic
algorithm to iteratively refine the mass map solution. An initial
coarse grid is populated with a basis set, such as projected Plummer
density profiles, combined with a uniform mass sheet covering
the whole modeling region. The code is started with an initial set
of trial solutions. As the code runs the more dense regions are
resolved with a finer grid, where each cell is given a Plummer
profile with a proportionate width. These solutions, as well as all
the later evolved ones, are evaluated for genetic fitness and the fit
ones are cloned, combined and mutated. The final map consists
of a superposition of a mass sheet and many Plummers, typically
several hundred, each with its own size and weight. The dispersion
between different Grale runs quantifies mass uncertainties, which
are due to mass degeneracies present when all image information
is held fixed. Grale can be used in two modes: treating lensed
images as extended (v3), or point-like (v3.1). The reconstructions
used most of the GOLD and SILVER lensed images, as well as a
few BRONZE.

3 COMPARISON OF MODELS

The goal of the paper is to give the reader a quantitative and quali-
tative impression of the diversity in magnification predictions ob-
tained by various reconstruction methods. We examine all mass
models that were submitted to STScI in the latest round, i.e. v3 and
v3.1. Two clusters were part of that call, Abell 2744 and MACS
J0416. Each reconstruction team generated many realizations, for
example, from the MCMC chain, for a given cluster, using the same
model. For a given model, the Frontier Fields magnification web
tool4 allows the user to obtain the best5 and the median magnifica-
tion estimates for any sky location and source redshift, as well as
the uncertainty for any user-specified percentage range.

As a visual reference, Figs 2 and 3 present magnification
maps of the best reconstructions for all the models of both the
clusters. Though we do not use ‘best’ maps in the rest of analysis,
they provide a convenient at-a-glance comparison of magnification
patterns.

To compare models for a given cluster we select a set of sky
locations and record each model’s median magnification and the
accompanying 68% uncertainty range, for each of these locations.
We denote median magnifications for each model and sky location
by µm(θ), where subscript m stands for ‘model’. Note that most
teams presented one model, but some submitted two, v3 and v3.1, so

4 The web tool can be found here:
https://archive.stsci.edu/prepds/frontier/lensmodels/webtool/
5 Each modeling team was asked to provide a range of individual recon-
structions, as well as the best reconstruction. How best reconstructions were
obtained differs between teams.

c© 2016 RAS, MNRAS 000, 1–17



Lens Models Under the Microscope 5

Figure 2. Magnification distributions of the ‘best’ maps for each of the models of Abell 2744. The color scale is the same in all panels, and goes from
magnification of 1 (darkest color) to 20 (white). Each panel is a square 100′′ on the side, centred on RA= 3.58966◦, Dec= −30.39994◦.

Figure 3. Same as Fig. 2, but for MACS J0416. Each panel is a square 125′′ on the side, centred on RA= 64.03680◦, Dec= −24.07390◦.

c© 2016 RAS, MNRAS 000, 1–17



6 J. Priewe et al.

Figure 4. The locations of 214 grid points (shown in blue) where magnifications were extracted. These were used for most of the analysis in this paper.
Lensed images of the GOLD and SILVER quality are shown as red squares. The shade of the blue points encodes the fractional Normalized Median Absolute
Deviation (fNMAD) at each point, in steps of 25%: the darkest (lightest) blue has fNMAD<25% (>100%). The median (over all locations) of these values is
31% and 41% for Abell 2744 and MACS J0416, respectively; see Section 3. The sizes of the two fields are comparable to those of Figs 2 and 3, respectively.

‘model’ and ‘team’ are not always synonymous. (‘Model’ denotes a
set of 100 or so individual reconstructions for a given cluster, by
a given team, using the same inputs and assumptions.) The 68%
uncertainties for a given model are denoted by δ+

m(θ) and δ−m(θ), or
just δm(θ). All magnifications are for sources at z = 9.

At each location we find the magnification which represents
the median of all models’ medians. Because the number of sub-
mitted models for Abell 2744 and MACS J0416 are both odd—7
and 9 respectively—the median of all the models is the middle of
the ordered list of magnifications, one from each reconstruction
model. This median at a given θ location is called µ̃(θ). Because
the true magnification at each location is unknown, we use µ̃ as
the comparison benchmark, whereas SN tests (e.g. Rodney et al.
2015, 2016) used the actual magnification of the supernova at one
location. While µ̃ need not be the true magnification, it is, arguably,
the best guess. Below, we present a few different types of statistical
measures to quantify how the models compare to each other.

We concentrate on the central regions of clusters because these
are best constrained by the multiple images. Magnifications in these
regions are generally >

∼ 2, and can be as high as several hundred.
For Abell 2744 our sky locations are chosen from within a circle
centred on the cluster centre (RA= 3.59025◦, Dec= −30.40224◦)
with a radius of 40 arcseconds. For MACS J0416, the radius of the
circle is 30 arcseconds, and the cluster center is at RA= 64.03698◦,
Dec= −24.07371◦ (J2000).

Within this circle, the points are spaced on a regular square
grid; we use a total of 214 sky locations per cluster. Fig. 4 shows
these points in blue, for the two clusters. The shade of blue points
encodes the fractional Normalized Median Absolute Deviation
(fNMAD) at each point, or NMAD/µ̃(θ), where

NMAD = 1.4826 ×median|µm(θ) − µ̃(θ)|. (1)

The factor 1.4826 is appropriate if one assumes that the model

magnification estimates are normally distributed – which is not
necessarily true here. The five shades of blue are in steps of 25%:
the darkest (lightest) blue has fNMAD<25% (>100%). The median
(over all locations) of these values is 31% and 41% for Abell 2744
and MACS J0416, respectively. The GOLD and SILVER lensed
images are shown in red.

Figs 5 and 6 show the same type of plot as fig. 6 in Rodney
et al. (2015), but for a handful of randomly selected sky locations
within Abell 2744 and MACS J0416. The median of all models
at that location, µ̃ is shown in the upper left of each panel, and
the vertical axis shows µm − µ̃. These figures show that there is
a considerable amount of scatter in predicted magnifications, but
the degree of scatter, and how well it is captured by the error-bars
varies between locations.

An immediate generalization of these plots is to group the data
presented in the panels of Figs 5 and 6 by µ̃. One can ask: What is
the systematic error in estimated magnification for sky locations
where magnification is around some fixed value? Figs 7 and 8, for
Abell 2744 and MACS J0416 respectively, pick out sky locations
where the median of all models, µ̃ is 2.5 ± 1, 5 ± 2, 10 ± 2 and
15 ± 2, and plot the distribution of all models’ magnifications in
the four panels. Some histograms have very large |µm − µ̃| values.
To account for these without extending the horizontal axes to un-
reasonable lengths, we pile up all the |µm − µ̃| > 15 values at the
corresponding positive or negative edges of the panel boxes. This
hides the information about the actual value of µm − µ̃ (above 15
or below −15), but does represent the total number of these points.
There is considerable dispersion in these magnifications, with some
distributions extending to magnifications as low as 1, and as high
as 2µ̃.

Each panel displays the rms width of the distribution, the Nor-
malized Median Absolute Deviation, eq. (1), where the median is
over the sky locations that make up the histogram, and the fractional

c© 2016 RAS, MNRAS 000, 1–17



Lens Models Under the Microscope 7

Figure 5. Examples of each model’s median magnification predictions, µm, plotted as deviations from the median of all models, µ̃, at four sky locations in
Abell 2744. (See the beginning of Section 3 for the definition of a ‘model’.) The error-bars represent 68% confidence limits. The top left panel is for the
location of SN HFF14Tom (Rodney et al. 2015), but not for its redshift; zs = 9 is used instead, the same as for all the analyses in this paper. The other three
locations were chosen randomly from those marked by the blue points in the left panel of Fig. 4.

Figure 6. As Fig. 5, but for MACS J0416. Here, all four sky locations were chosen randomly from those marked by the blue points in the right panel of Fig. 4.

c© 2016 RAS, MNRAS 000, 1–17



8 J. Priewe et al.

Figure 7. Each of the four panels show µm − µ̃ for all 7 models (see the beginning of Section 3 for the definition of a ‘model’), at sky locations within Abell
2744, where µ̃ is 2.5 ± 1, 5 ± 2, 10 ± 2 and 15 ± 2, respectively. The sky locations were selected from those marked by the blue points in the left panel of Fig. 4.
The lowest µ̃ value is similar to that where HFF14Tom appeared. The histograms are clipped at ±15, and the values that happen to lie outside of this range are
piled up at the edges of the plot boxes (see Section 3). Each panel displays three values quantifying the width of the distribution: the rms, the Normalized
Median Absolute Deviation, NMAD, eq. (1), where the median is over the sky locations that make up the histogram, and the fractional NMAD, fNMAD =

NMAD/µ̃.

Figure 8. Same as Fig. 7, but for all 9 models of MACS J0416.

NMAD, fNMAD=NMAD/µ̃. NMAD is less sensitive to outliers
than rms, and is therefore a more robust measure of the width.
These figures illustrate that when all models are considered, the
bulk of their magnification predictions agree reasonably well, as
judged by NMAD. However, the widths of the distributions get
larger for higher magnifications: for µ̃ around 2.5, 5, 10 and 15,
NMAD values are, roughly, 0.7, 1.5, 4, and 8.5, respectively.

The fNMAD values also show an increasing trend with µ̃,
and are plotted in Fig. 9, as function of the log of the median
magnification, log µ̃, and using logarithmic bins of width ±10%. At
µ̃<15, MACS J0416 is better constrained than Abell 2744.

This overall representation makes one wonder how the indi-
vidual models behave: is it just one model that gives rise to the

widths of the distributions and the outliers or is there much vari-
ation between all models? Each panel in Figs 10 and 11 shows a
histogram of µm − µ̃ for each model, for all sky locations. A nar-
row distribution around µm − µ̃ = 0 implies the model tracks the
median of all models very well. A wide distribution implies large
differences in this model compared to others. As in the previous
two figures, models that have |µm − µ̃| values beyond the box limits
are piled up at the edges.

One of the conclusions that comes from Figs 10 and 11 is
that some models in some clusters tend to consistently over-predict
magnifications compared to the median µ̃ (e.g. CATS v3 and v3.1
in Abell 2744), while others under-predict (e.g. Sharon/Johnson
and Zitrin-Gauss in Abell 2744). On the other hand, in MACS
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Figure 9. Fractional Normalized Median Absolute Deviation, fNMAD,
for sets of sky locations whose median magnification, µ̃, is within ±10% of
that value. Because of the logarithmic bin widths, the values plotted here
are somewhat different from the ones presented in the four panels of Figs 7
and 8.

J0416 all models track µ̃ well. We remind the reader that because
our comparison benchmark is µ̃, and not the true magnification, an
over- or under-predicting model is not necessarily wrong! This is
also one of the messages of Fig. 1, where most of the models over-
predict the magnification at the location of HFF14Tom. However,
in Nordin et al. (2014) no tension between cluster mass models and
three SN Ia magnification was found.

Figs 10 and 11 ignore the models’ magnification uncertainties.
Figs 12 and 13 are similar to the former, but now the horizontal
axis shows (µm − µ̃)/δm, so the deviations from the median are
scaled by each model’s uncertainties. If the magnification fell below
(above) µ̃, the positive (negative) error was used for δm. A narrow
peaked histogram means a combination of two reasons: (i) the
model’s uncertainties are large, (ii) the model tracks the median of
all models well.

The widths of the distributions in Figs 10 and 11, σ̂1, for
model m are calculated as the Normalized Median Absolute De-
viation between different sky locations θ, given by eq.(1), where
the median is taken over N = 214 sky locations. These values
are presented in columns 2 and 4 of Table 2 for Abell 2744 and
MACS J0416, respectively. We chose to present these instead of
standard deviations because NMAD are less sensitive to outliers.
The widths of the distributions in Figs 12 and 13 are calculated
using an equation similar to the above, σ̂2 = NMAD/δm(θ), and
are shown in columns 3 and 5 of the same table. The table also
shows that even if, on average, a given model follows the median
of all models well (as most models do in Fig. 13), magnifications
at some sky locations are still very discrepant.

Figs 12 and 13 reveal that the histograms for Abell 2744
(Fig. 12) are noticeably less symmetric than those for MACS J0416
(Fig. 13), implying that the models for Abell 2744 tend to disagree
with each other more than those for MACS J0416. Because the lens
inversion methods are the same for the two clusters (at least the 7

models in common) the difference must arise from something else,
for example (i) the number of images is smaller in Abell 2744 (∼ 60
vs. ∼ 90), (ii) the quality of lensing constraints is weaker (e.g., a
lower fraction have spectroscopic redshifts), (iii) the morphology
of Abell 2744 is more prone to lensing degeneracies. We return to
this in Section 4.

Finally, in Figs 14 and 15 we take a closer look at the range
of magnification uncertainties of the two clusters, with the aim
of estimating the systematic uncertainties in the reconstruction,
which we assume to be reasonably represented by the full range
of statistical uncertainties quoted for each model. As stated in the
introduction, this assumption is justified because the source/image
inputs are of the same quality and similar quantity in all models,
and the resulting lens plane rms are also similar in all models (see
Table 1). The horizontal axis in all the panels of these two figures
shows the median magnification of all models, µ̃. We place these
in order of increasing µ̃, for clarity. The two thin blue lines in each
panel represent a given model’s 68% confidence range. The two
thick gray lines (same in all panels) show the maximum and mini-
mum of all models’ 68% range, except for Williams/Grale. The
latter model was singled out because it has the largest uncertainties
at most sky locations, as was already illustrated in Figs 1, 5 and 6.
Including Williams/Grale results would incorrectly suggest that
their uncertainties match the systematic errors.

The bands spanned by the thick gray lines can be interpreted
as the systematic uncertainties. As was already indicated by earlier
figures, some models tend to be systematically below µ̃, while some
are above. It is clear that most models’ error-bars are smaller than
the extent of all the models’ predictions taken as a whole. There
are sets of models whose predictions lie completely outside of each
other’s error-bars, like CATS and Zitrin-LTM-Gauss in Abell 2744.
The model which comes closest to estimating systematic errors
is Williams/Grale v3, for both Abell 2744 and MACS J04616.
However, it does not do so perfectly, as Figs 5 and 6 illustrate.

The information in Figs 14 and 15 can be reframed quantita-
tively as follows. For any two models, 1 and 2, we calculate how
far their predictions are from each other, in terms of their 68% con-
fidence range: median

[
(µ1 − µ2)/[0.5(δ1 + δ2)]

]
, where the median

is taken over N = 214 sky locations, and the ordering of 1 and
2, and the use of upper vs. lower error-bars depends on which of
the two magnifications is larger at a given sky location. These are
tabulated in Table 3: the two values on either side of the vertical
bar (in each cell in the table) are for Abell 2744 and MACS J0416,
respectively. In most cases, the smaller values mean that the quoted
uncertainties in either model 1 or 2 are large, making the difference
between models small.

4 WHY MODELS’ MAGNIFICATIONS DIFFER:
LENSING DEGENERACIES

The previous sections have shown that magnification predictions
from any given sky location differ between models, often by more
than the stated uncertainties. Since all models reproduce observed
images positions well—lens plane rms is typically <1′′—the dif-
ferences between magnification maps are largely due to lensing
degeneracies, i.e. a given distribution of observed images can be
reproduced by many different mass distributions.

The most recognized degeneracy is mass sheet degeneracy,
MSD (Gorenstein et al. 1988; Saha 2000). It rescales the mass sur-
face density by s: κ(θ)→ sκ(θ), and adds a constant thickness mass
sheet of surface mass density (1 − s), in units of critical density
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Figure 10. The deviations, µm − µ̃, of each model’s magnification predictions, µm, from the median of all models at the corresponding sky locations, µ̃, for
Abell 2744. Magnification deviations that fall beyond ±25 are piled up at either end of each panel. Column 2 of Table 2 shows the widths of these distributions
(also displayed in each panel), quantified by the Normalized Median Absolute Deviation (see Section 3).

Figure 11. Same as Fig. 10, but for MACS J0416. Column 4 of Table 2 shows the widths of these distributions (also displayed in each panel), quantified by the
Normalized Median Absolute Deviation (see Section 3).
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Figure 12. Similar to Fig. 10 for Abell 2744, but using (µm − µ̃)/δm as the horizontal axis, i.e. the deviations from the median of all models is scaled by the
quoted statistical uncertainties (68% confidence limits) of each model at each sky location. Column 3 of Table 2 shows the widths of these distributions (also
displayed in each panel), quantified by the Normalized Median Absolute Deviation (see Section 3). Large (absolute) values indicate that the model’s reported
uncertainties are significantly less than the scatter among models.

Figure 13. Same as Fig. 12, but for MACS J0416. Column 4 of Table 2 shows the widths of these distributions (also displayed in each panel), quantified by the
Normalized Median Absolute Deviation (see Section 3).
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Figure 14. Comparison of magnification uncertainties from each model against the full uncertainty range from all models, for a subset of sky locations. Each
panel shows the comparison for a single model, as labeled. In all panels, each column (x coordinate) corresponds to 1 out of 65 sky locations, drawn from
the 214 points marked with blue points in Figure 4. For convenience, these points are sorted in order of increasing median magnification value, µ̃. Along
any given column, the vertical space between the two blue lines corresponds to the error bar (68% confidence range) of the given model, for a single point
on the sky. The vertical space between the gray lines at each x position represents the full confidence range from the union of all models (excluding the
Williams/Grale model). That is, the gray lines (identical in all panels) trace out the maximum (minimum) value from the set of upper (lower) confidence
range values of all models (such as shown in Figures 5 and 6), except the Williams/Grale model.

Figure 15. Same as Figure 14, but for MACS J0416.
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Abell 2744 MACS J0416

Models σ̂1 σ̂2 σ̂1 σ̂2
(Fig. 10) (Fig. 12) (Fig. 11) (Fig. 13)

CATS v3 7.81 9.28 0.67 3.60

CATS v3.1 7.19 23.96 0.74 6.90

Sharon v3 1.50 3.99 1.08 3.93

Zitrin-NFW v3 1.22 0.96 1.10 1.94

Zitrin-Gauss 4.28 23.87 2.95 25.57

GLAFIC v3 0.39 0.60 1.76 4.36

Williams v3 3.74 1.13 3.10 0.78

Williams v3.1 – – 3.93 1.29

Diego v3 – – 2.96 2.01

Table 2. The Normalized Median Absolute Deviation (NMAD), σ̂1, and
NMAD divided by reported uncertainties, σ̂2 (see Section 3) of the his-
tograms plotted in Figs 10 and 11 (columns 2 and 4) and Figs 12 and 13
(columns 3 and 5), for Abell 2744 and MACS J0416. The large values
indicate that some individual magnifications are very different from µ̃, and
would likely lie outside of the boundaries of the corresponding figures. The
reason why some models have larger σ̂i values for Abell 2744 than for
MACS J0416 is likely to be the approximate mass sheet degeneracy (see
Section 4).

Figure 16. A demonstration of an approximate Mass Sheet Degeneracy.
The two models, 1 and 2, presented in Liesenborgs et al. (2008) are
MSD-degenerate. The black dashed histogram shows the distribution of
log(µ1/µ2), taken over many locations, placed on a regular grid within the
mass distribution. The scaling s used to generate model 1 from model 2 is
s = 0.75, but the projected mass density of the added sheet varies with posi-
tion, such that the two mass models reproduce the image positions exactly,
even though the two sources are at different redshifts. The red vertical line
is at − log(s2) = 0.2499. If the histogram were centred on log(µ1/µ2) = 0
(gray vertical line) that would indicate no MSD. See Section 4.

for lensing. The source locations are transformed as β→ sβ, and
hence all magnifications are scaled by s2. This global exact degen-
eracy, which we will call classic MSD, is broken in all HFF clusters
because of sources at multiple redshifts. Another exact global de-
generacy is the source-plane transformation, or SPT (Schneider &
Sluse 2013, 2014; Unruh et al. 2016), which generalizes MSD by re-
placing constant s with a function of source location, β. As a result,
the image magnification ratios are not affected, but actual magnifi-
cations are, by different amounts. Because it affects axisymmetric
lenses only, the exact SPT is broken in all HFF clusters.

However, in this section we demonstrate that other degenera-
cies (Liesenborgs et al. 2012) are not broken. This includes the
generalized MSD, where the scaling, s, of the mass and the added
mass sheet vary somewhat as a function of location within the clus-
ter. Hereafter we use MSD to mean generalized MSD. Note that the
generalized MSD still allows for multiple lens model solutions that
reproduce the positions of images exactly. If that condition is loos-
ened somewhat, allowing for small positional differences between
observed and model generated images, the range of degenerate lens
solutions becomes even wider. Both exact and approximate general-
ized MSD operate in real cluster reconstructions. Approximate SPT
(Schneider & Sluse 2014) may also be present in mass reconstruc-
tions, and affect the magnifications of images. Note that MSD and
SPT, and especially their approximate versions may be the same
transformation in some cases. We will not attempt to differentiate
between them, and will concentrate on how these—and possibly
other—degeneracies affect magnification predictions of the vari-
ous lens models. A recent paper examining another HFF cluster,
MACS J0717.5+3745 (Limousin et al. 2016) concluded that be-
cause of degeneracies one cannot differentiate between cuspy and
cored Lenstool-based parametric models of the cluster, and that the
differences in magnifications obtained by various reconstruction
methods using pre-HFF data can be considerable.

The diagnostic we will use is log(µ1/µ2), where µ1 and µ2 are
magnifications at the same sky locations of two different models,
so the comparison is between any two models. This quantity can
also be thought of as quantifying how much two models deviate in
their predicted magnifications.

Because magnifications can become very large near critical
lines (formally infinite for point sources), some care has to be
taken when using our proposed metric. We carried out our analysis
after eliminating all sky locations where any one of the models
exceeded some µmax. Results with varying µmax between 50 and 500
are very similar (within Poisson noise), so below we quote results
for µmax = 200, which reduces the original number of sky locations
by 5%-10%. (To facilitate comparison between Abell 2744 and
MACS J0416, we renormalized the results below as if the same
number of sky locations were used.)

If both models give exactly the same magnifications at all loca-
tions, then the histogram of log(µ1/µ2) values will be a δ-function at
zero. If one model can be obtained from the other by an application
of the classic MSD, then the histogram will still be a δ-function, but
now displaced from zero. In the language of the MSD, log(µ1/µ2)
will be − log(s2). Note that we use logs, instead of just the ratio
µ1/µ2, because interchanging models 1 and 2 simply shifts the δ-
function from − log(s2) to log(s2). Thus, the classic MSD is easy
to identify using such histograms. A generalized MSD, such as
described in Liesenborgs et al. (2008, 2012), will, in effect, produce
a range of s values across the face of the cluster, and the δ-function
histogram will get smeared into a broader peak. This is illustrated in
Fig. 16, where model 2 is the mass distributions shown in fig. 1 of
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Figure 17. Magnification correlations for six pairs of models of Abell 2744. Each panel compares two models. Model 1 is always GLAFIC v3, while model 2
is as indicated above each panel. All models are v3 unless indicated otherwise. (These plots are similar to Fig. 16.) The black dashed lines are histograms of
log(µ1/µ2) distributions, and magnifications are taken at the grid sky locations shown as blue points in Fig. 4. The orange solid line histogram is similar, but
uses magnifications at the observed GOLD+SILVER multiple images (red squares in Fig. 4).

Liesenborgs et al. (2008), while model 1 was obtained from model
2 by an application of the MSD, and is shown in figs 6 and 7 of that
paper. Sources at two different redshifts are present, so the classic
MSD is broken. The value of s used in these simulated lenses is
0.75, giving − log(s2) = 0.25 (shown as the red vertical line in our
Fig. 16), which corresponds well to the spike in the black dashed
histogram.

Figs 17 and 18 present histograms of log(µ1/µ2) for the Abell
2744 and MACS J0416 clusters respectively, and for pairs of mod-
els, as black dashed lines. In each pair, model 1 is always GLAFIC
v3, while models 2 are all the other models, plotted in turn. GLAFIC
was chosen as the reference model because it performed best in the
Meneghetti et al. (2016) synthetic cluster comparison project.

As in all the previous analyses in this paper we use the same
grid of sky locations. It is apparent that MACS J0416 models show
very little evidence for the MSD as all black dashed histograms peak
at log(µ1/µ2) ≈ 0. The largest deviation from 0 occurs probably in
GLAFIC v3 vs. CATS v3, where the typical log(µ1/µ2) ∼ −0.15,
which corresponds to µ1/µ2 ∼ 0.7, or s ∼ 1.19. The situation is very
different for Abell 2744, where some histograms are displaced from
zero. The locations of the peaks imply s values between 1.33 and
0.78, so the MSD is not broken in this cluster. Because GLAFIC v3
vs. CATS v3 histogram peaks furthest to the left, while GLAFIC
v3 vs. Zitrin-LTM-Gauss v3 peaks furthest to the right, the largest
difference in magnifications is between CATS v3 and Zitrin-LTM-

Gauss v3, and corresponds to log(µ1/µ2) ∼ −0.47, µ1/µ2 ∼ 0.34,
or s ∼ 1.72. The reason why the MSD is mostly broken in MACS
J0416, but not in Abell 2744 is not clear. It could be because Abell
2744 contains a smaller number of images than MACS J0416 (by
about a factor of 2), but other reasons are also possible.

The MSD is most clearly seen in the upper left and upper mid-
dle panels of Fig. 17, in the sense that the black dashed histograms
are the most peaked compared to all other similar histograms, and
displaced from zero. We speculate that this is because the MSD can
operate best between models with similar mass parametrizations.
Both GLAFIC and CATS use a superposition of cluster-wide com-
ponent(s), represented by NFW or PIEMD, and individual galaxies,
whose mass properties are tied to their observed magnitude in the
visible. In such models, changing the amplitude and/or the scale ra-
dius of the cluster-wide potential can mimic the effect of the MSD.
One could have expected GLAFIC, Sharon/Johnson and Zitrin-
NFW also to show the MSD, but evidently, they do not. The MSD
is least pronounced in the bottom right panel of Fig. 17, which com-
pares a parametric GLAFIC v3 and free-form Williams/Grale v3,
suggesting that the very different parametrizations of the two tech-
niques reduce the effect of global degeneracies. However, even here
CATS v3 magnification predictions are systematically higher. That
CATS v3 and v3.1 predict higher magnifications is already seen in
Fig. 2. This means that in the source plane, CATS v3 and CATS
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Figure 18. Same as Fig. 17 but for eight pairs of models of MACS J0416.

v3.1 sources will look smaller than those from the other models,
but by amounts that will depend on their sky location.

While MSD and SPT are transformations that apply every-
where within the cluster, including the locations of lensed images,
some other degeneracies are local. The most notable among local
degeneracies is the monopole degeneracy described in Liesenborgs
et al. (2012), which redistributes mass between images. It is not
surprising that there are degeneracies that work around the images,
so to speak, and not at image locations, because lens modeling uses
observed lensed image positions as constraints.

Therefore it is interesting to ask if the magnifications are better
constrained at the locations of the images, where fewer degeneracies
are at work, as opposed to other locations. To that end we redid

the analysis using the sky locations of the GOLD+SILVER images,
shown as red squares in Fig. 4. These histograms are shown as
solid orange lines. Since the number of these images is different for
Abell 2744 and MACS J0416, 53 and 88 respectively, and both are
different from the number of grid sky locations used for the black
dashed histograms, we renormalized all histograms in this section
to have the same area under the curve.

In Figs 17 and 18, but especially in the former, the histograms
of log(µ1/µ2) that use image locations (orange solid lines) show
more prominent spikes compared to the histograms that use grid sky
locations (black dashed). This is likely because more degeneracies,
including monopole degeneracy can act between the locations of the
images, while image locations suffer primarily from the MSD. The
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difference in the presence of the MSD in the two clusters is likely
to be the reason why the Normalized Median Absolute Deviation
values σ̂i are larger for Abell 2744 than for MACS J0416. (We note
that the displacements between the observed and model predicted
image locations, which are typically <

∼ 1′′, are too small to account
for the magnification differences seen here.)

This section has explored how degeneracies in mass recon-
structions impact magnification predictions. For most locations
in the multiple image regions of the two clusters we studied, the
ratios of high-to-low magnifications of any two models are <

∼2, as
can be seen in Figs 17 and 18, but can rise to significantly higher
values over a small fraction of the cluster area. Uncertainties in
the magnification translate into those in absolute fluxes of high
redshift sources being studied, their volume number density, and
hence the luminosity function, i.e. the primary science goal of the
HST Frontier Fields project. For example, higher magnification
translates into smaller volume at high z, higher source intrinsic
luminosity, and hence larger luminosity function. (See Bouwens
et al. (2016) for a detailed discussion.) Proper accounting of the
systematic uncertainties in magnifications is critical for the real-
ization of HFF’s primary goal of using clusters as accurate cosmic
telescopes.

5 CONCLUSIONS

The comparison of models presented here provides a birds-eye view
of the state of the art of cluster lensing reconstruction. We show
that despite the overall agreement among models, the differences
are not insignificant, and often exceed the statistical errors of in-
dividual reconstructions. We have argued that the most important
source for the differences in predicted magnifications are lensing
degeneracies. While the classic global mass sheet degeneracy is
broken by sources at multiple redshifts, the generalized version
of that degeneracy (where the scaling of the mass and the added
mass sheet vary somewhat across the face of the cluster), as well
as other, local degeneracies are alive and well. A corollary is that a
small lens plane rms is not a sufficient condition for the model to
be a good representation of the true magnification distribution of
the cluster. Despite degeneracies, the total cluster mass is likely to
be well constrained by all models. Degeneracies redistribute mass
within the lens, but have little affect on the total mass, which is
an integral quantity, largely determined by the radial extent of the
lensed images from the cluster centre.

Model comparison of the type presented here can be used to
determine how well the data constrains the mass and magnification
map of a cluster: if there is a significant dispersion between models’
predictions, then a cluster is not well constrained, despite what the
statistical uncertainties from individual models may imply. In the
present case, MACS J0416 is constrained considerably better than
Abell 2744, whose models suffer from the generalized mass sheet
degeneracy, and possibly from the source-plane transformation
(Section 4). The reason why the MSD is not an issue in MACS
J0416, but is present among models of Abell 2744 is not clear. One
possibility is that MACS J0416 has more multiple images, thereby
restricting the MSD. Quality of lensing data, like accurate redshifts,
may play a role, however, MSD-degenerate models of clusters with
perfectly known data are easy to construct (Liesenborgs et al. 2008).

We show that the same set of models (for example, the 7 mod-
els that are in common between Abell 2744 and MACS J0416) can
perform differently in two clusters. For example, in one cluster,
a given model may consistently over-predict the magnifications,

while in another, its predictions could track the median very well.
This conclusion has implications for model testing on simulated
data. Even if a given model performs well in tests where a synthetic
cluster is being reconstructed, one must be careful in claiming
that method to be superior to others: the method may work well
on clusters generated using certain prescriptions, but not neces-
sarily on real ones, whose physics may differ from that assumed
in simulations. This makes the analysis presented in this paper,
which does not rely on synthetic clusters, an essential part of model
comparison.

For the v3 and v3.1 round of HFF reconstructions, the number
of submitted parametric models far outnumbered free-form ones:
Williams/Grale is fully free-form, and Diego is hybrid. The rest
are parametric, and 3 (CATS v3, v3.1, and Sharon/Johnson) use
the same modeling software, Lenstool. Because of that, we cannot
currently assess the differences in the performance of the two types
of reconstructions: parametric vs. free-form, but hope to do so in the
future, when more models become available. Another interesting
avenue is to explore the differences between v1 and v3 models.
Preliminary examination suggests that v1 models of Abell 2744
were in better agreement with each other than is the case with v3
models.

In this study we represented the actual magnifications—which
are unknown—with the median values from all models. While there
is no guarantee that the median is the true magnification, it is the
best guess. In the future it will be interesting to repeat this analysis
with synthetic clusters instead of observed ones. This will provide
information both about how well a single model’s magnifications
match the true ones, as well as how well the median of all models,
µ̃, tracks this true magnification. The remark made earlier stays
relevant of course: while it is certainly a good idea to benchmark
different models against simulated clusters, one must avoid the
pitfall of declaring one model to be superior simply because it
performs the best on simulated data.
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