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Abstract 

Background 

Alcohol-to-jet (ATJ) is one of the technical feasible biofuel technologies. It produces jet fuel 

from sugary, starchy, and lignocellulosic biomass, such as sugarcane, corn grain, and 

switchgrass, via fermentation of sugars to ethanol or other alcohols. This study assesses the ATJ 

biofuel production pathway for these three biomass feedstocks, and advances existing techno-

economic analyses (TEA) of biofuels in three ways. First, we incorporate technical uncertainty 

for all by-products and co-products though statistical linkages between conversion efficiencies 

and input and output levels. Second, future price uncertainty is based on case-by-case time-series 

estimation, and a local sensitivity analysis is conducted with respect to each uncertain variable. 

Third, breakeven price distributions are developed to communicate the inherent uncertainty in 

breakeven price. This research also considers uncertainties in utility input requirements, fuel and 

by-product outputs, as well as price uncertainties for all major inputs, products, and co-products. 

All analyses are done from the perspective of a private firm. 

Results 

The stochastic dominance results of net present values (NPV) and breakeven price distributions 

show that sugarcane is the lowest cost feedstock over the entire range of uncertainty with the 

least risks, followed by corn grain and switchgrass, with the mean breakeven jet fuel prices being 

$0.96/liter ($3.65/gal), $1.01/liter ($3.84/gal), and $1.38/liter ($5.21/gal), respectively. The 

variation of revenues from by-products in corn grain pathway can significantly impact its 

profitability. Sensitivity analyses show that technical uncertainty significantly impacts breakeven 

price and NPV distributions. 

Conclusions 
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Technical uncertainty is critical in determining the economic performance of the ATJ fuel 

pathway. Technical uncertainty needs to be considered in future economic analyses. The 

variation of revenues from by-products plays a significant role in profitability. With the 

distribution of breakeven prices, potential investors can apply whatever risk preferences they like 

to determine an appropriate bid or breakeven price that matches their risk profile. 

 

Keywords: Stochastic techno-economic analysis, breakeven price distributions, stochastic 

dominance, aviation biofuel, alcohol-to-jet, Monte Carlo simulation. 

 

Background 

Aviation currently accounts for approximately 5% of total anthropogenic radiative forcing [1, 2]. 

In the absence of mitigation measures, total greenhouse gas (GHG) emissions associated with 

aviation are expected to be 400–600% higher in 2050 than in 2010, driven by an increase in 

global air traffic of up to seven times [3]. Against this backdrop, the International Air Transport 

Association [4] (IATA) has set a goal of carbon-neutral growth of aviation by 2020, and a 50% 

reduction of CO2 emissions by 2050 compared to 2005 levels. Similarly, the United States (US) 

Federal Aviation Administration [5] (FAA) aims for carbon-neutral growth of aviation by 2020. 

These goals are to be achieved by improvements in aircraft operations, airport and air traffic 

management, airframe and engine technologies, as well as through the large-scale introduction of 

biofuels with significantly lower GHG emissions than petroleum-derived jet fuel, on a life cycle 

basis [6]. To date no mandate exists specifically for aviation biofuel usage, however these fuels 

can qualify under the Renewable Fuel Standard (RFS). Moreover, the US FAA has set a short-
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term goal of 1 billion gallons of alternative fuel consumption by 2018 for military and 

commercial applications [5]. 

Reduction in the climate impact of aviation may be achieved via the use of biofuels. 

However, unlike ground transportation which can transition to ethanol or electricity, aviation 

requires the use of energy dense, non-oxygenate, hydrocarbon, liquid fuels [7]. There are four 

major aviation biofuel technologies that are currently technically feasible: Fischer-Tropsch (F-

T), hydroprocessed renewable esters and fatty acids (HEFA), sugar conversion (fermentation, 

thermochemical), and direct liquefaction (pyrolysis) [8]. In addition to the potential climate 

benefits, aviation biofuel production could help to meet the 36 million RFS targets by 2022, and 

could help reduce US dependence on energy imports and increase energy security [9]. More than 

twenty airlines have already used aviation biofuels blended with petroleum-derived jet fuel on 

thousands of passenger flights [10]. 

The existing biofuels TEA literature focuses mainly on bioethanol and biodiesel 

production. Recent biodiesel TEA literature focuses on vegetable oils for carbon chain attributes 

similar to petroleum diesel [11-13]. Other existing biofuel TEA literature emphasizes bioethanol 

production from lignocellulosic biomass, because lignocellulosic feedstocks have lower expected 

feedstock costs and avoid direct competition with food [14-19]. Generally, the TEA literature 

calculates breakeven prices, internal rates of return (IRR), and net present values (NPV), and 

uncertainty has been incorporated in a number of studies in order to estimate distributions of 

these values. F Bauer and C Hulteberg [20] developed a probability distribution for production 

cost by using Monte Carlo simulation when evaluating a new thermochemical production 

process for isobutanol. U Abubakar, S Sriramula and NC Renton [21] graphed the variations of 

mean NPV with the increase of the sample size. Sensitivity analyses conducted by C Reyes 
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Valle, AL Villanueva Perales, F Vidal-Barrero and A Gómez-Barea [22] estimated how 

breakeven prices respond to ±30% uncertainty in fixed capital costs. Y Zhu, MJ Biddy, SB 

Jones, DC Elliott and AJ Schmidt [23] used a sample size of 100 experimental cases to derive a 

breakeven price distribution when evaluating a Bench-scale woody biomass hydrothermal 

liquefaction (HTL) upgrading plant, however their sample size is insufficient to estimate a 

breakeven price distribution without randomization and the authors did not consider how price 

projections and price uncertainties would influence the distribution results. 

Very little existing TEA literature focuses specifically on aviation biofuel production, and 

most studies in the literature are deterministic. K Atsonios, M-A Kougioumtzis, K D. 

Panopoulos and E Kakaras [24] modeled the ATJ process and evaluated five pathways of 

converting corn stover and wheat straw to aviation fuels deterministically. They obtained a 

$1.39/liter breakeven price for an F-T plant, which is lower than for a mixed alcohols synthesis 

(MAS) plant. They concluded that the expected breakeven price of ATJ is higher, despite better 

performance in terms of carbon utilization and thermal efficiency, than the F-T Synthesis (FTS) 

route. MD Staples, R Malina, H Olcay, MN Pearlson, JI Hileman, A Boies and SRH Barrett [25] 

calculated breakeven prices of renewable middle distillate (diesel and jet) fuels from 

fermentation and advanced fermentation technologies, using sugarcane, corn grain and 

switchgrass as feedstocks. The authors employed three scenarios and found that breakeven prices 

for sugarcane, corn grain and switchgrass range from $0.61-2.63, $0.84-3.65, and $1.09-6.30 per 

liter of middle distillate fuel, respectively. Their analysis showed that breakeven prices are the 

most sensitive to feedstock type, fuel conversion efficiency, and feedstock costs. M Pearlson, C 

Wollersheim and J Hileman [26] estimated baseline breakeven prices for HEFA production 

ranging from $1.01-1.16 per liter. Maximizing jet fuel yield rather than total fuel yield in the 
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HEFA process adds $0.07-0.08 per liter to the breakeven prices due to the increased hydrogen 

requirements and reduced middle distillate fuel yield. Similarly, G Seber, R Malina, MN 

Pearlson, H Olcay, JI Hileman and SRH Barrett [27] assessed the breakeven price of HEFA 

middle distillate fuel production from waste oils and tallow. The estimated breakeven prices 

were $0.88 -$1.06/ per liter for yellow grease (YG)-derived HEFA and $1.05-1.25 per liter for 

tallow-derived HEFA. The authors found that feedstock cost contributes the most to breakeven 

price, and that the breakeven price of middle distillate HEFA from YG and tallow was higher 

than petroleum-derived diesel fuel prices, but lower than the breakeven price of soybean oil 

HEFA. S de Jong, R Hoefnagels, A Faaij, R Slade, R Mawhood and M Junginger [28] compared 

six short term renewable jet fuel pathways by combining possible feedstocks and technologies, 

as well as ten greenfield, three retro-fitting and nine co-locating strategies. Their results showed 

that HEFA is the most competitive pathway in the short term. However, none of the pathways 

can compete with petroleum-derived jet fuels on a price basis. Their analyses pointed out that 

conversion efficiency in fermentation is critical in determining breakeven prices.  The authors 

examined the breakeven price and NPV variation ranges in different scenarios of investments, 

yields, feedstock prices and hydrogen consumption. However, they didn’t estimate the 

distribution patterns of breakeven prices and NPV. 

To the best of our knowledge, only one other TEA study for aviation biofuels 

incorporates stochasticity into key input and output variables:  A Bittner, WE Tyner and X Zhao 

[29] carried out a stochastic TEA of aviation biofuel from corn stover using a fast pyrolysis 

process. They investigated policies of reverse auction and capital subsidies, and found that 

reverse auction is more risk reducing. 
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This study makes three contributions to the existing biofuel TEA literature. First, most 

existing stochastic TEA analyses do not integrate the individual uncertain variables with other 

related variables in the process. We evaluate uncertainty in the conversion efficiency of two 

steps of the ATJ process, and then link related model variables by statistical estimation to the 

random draws from distributions of the conversion efficiency factors. The linked variables 

include capital costs, utility requirements, feedstock quantity, fuel and by-products output 

quantity, and natural gas costs, among others. 

Second, we employ time-series price projection based on historical case-by-case patterns 

instead of conventional Brownian motion or mean reversion price assumption. Time-series 

estimation captures the uniqueness of the motion processes of each product market, based on 

historical prices [30].  

Third, TEA studies generally translate all the uncertainties into NPV distributions and 

only calculate the breakeven prices for most likely cases. In this study, we derive breakeven 

price distributions by considering all combinations of uncertainties. This approach also permits 

stochastic dominance comparison and gives a guidance of benchmark investing price at each 

uncertainty level for private investors. 

The point of departure for this research is previous analysis by Staples et al. on renewable 

middle distillate production via fermentation and advanced fermentation technologies [25]. We 

extend this work by considering future price projections and introducing technical uncertainties 

in ATJ production, thereby developing a deeper and more comprehensive understanding of the 

ATJ pathway. 
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Methods 

Pathway and feedstock descriptions 

ATJ involves upgrading of biomass-derived alcohols to a drop-in jet fuel or blendstock 

specification. Typically, ATJ technologies extract polymer sugars from a biomass feedstock via 

mechanical, chemical or biological means. The polymer sugars are then decomposed to 

monomer sugars, and metabolized (or fermented) by an engineered microorganism to an alcohol 

platform molecule (ethanol or isobutanol). Finally, the alcohol is dehydrated, oligomerized and 

hydrogenated to a final fuel product slate which includes some proportion of drop-in jet fuel or 

blendstock. A number of private corporations, such as Byogy Renewables, Inc. and Gevo, Inc., 

has been pursuing ASTM certification and commercialization of ATJ technologies. Gevo’s ATJ 

production has been approved by ASTM standard in March, 2016 and up to a 30% blend in 

conventional jet fuel is anticipated to be used for commercial flights [31]. The subject of this 

analysis is a subset of ATJ technologies that includes sugars derived from sugarcane, corn grain 

or switchgrass, followed by fermentation to an ethanol platform molecule. These feedstocks are 

selected to represent the present and future of renewable fuel production: corn grain and 

sugarcane are commonly used for the production of ethanol in the US and Brazil, respectively, 

and herbaceous lignocellulosic crops, such as switchgrass, can be used for the production of 

second-generation renewable fuels such as cellulosic ethanol. The final fuel product slate 

includes diesel, jet, heavy fuel oil, and naphtha, and we also consider non-fuel co-products from 

the ATJ process. ATJ derived from corn grain results in the co-production of distiller dry grains 

and solubles (DDGS). Bagasse produced after juice extraction from sugarcane, and biomass 

residues generated after sugar extraction and fermentation from switchgrass, can be co-fired to 
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meet the utility requirements of the biorefinery, and excess electricity can be exported to the grid 

[25]. A simplified schematic of the ATJ process is shown in Figure 1. 

Figure 1. A simplified schematic of the ATJ process 

 

 

Model framework and basic assumptions 

Our model is designed to capture and quantify variation in ATJ process inputs, fuel outputs, and 

co-products. Mass and energy balance relationships, the base case scenario and the range of 

feasible parameter values are derived from MD Staples, R Malina, H Olcay, MN Pearlson, JI 

Hileman, A Boies and SRH Barrett [25], where the base case is defined as the most likely or 

mode value. We present ATJ by two main process steps: feedstock-to-ethanol conversion and 

ethanol-to-fuel conversion. Both steps require water, electricity and heat (generated from natural 

gas) inputs. Two conversion efficiency factors are developed corresponding to the two steps, 

denoted as Cfs-et and Cet-fl in Figure 2, and the product of the two conversion efficiency factors is 

overall conversion efficiency (see next section for more details). The two conversion efficiency 

factors link feedstock inputs in with fuel outputs and drive variation in the utility requirements, 

quantities of co-product generated, and capital costs associated with the ATJ process. Cfs-et, Cet-fl 

and other price variables have independent stochastic distributions, represented by ovals in 

Figure 2. Each iteration of the Monte Carlo simulation yields a random value from each 

independent stochastic distribution, and drives the changes of variables shown as rectangles in 
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Figure 2. Variables shown as parallelograms, such as water, power and other inputs (enzymes, 

yeast, and chemicals), are less than 0.01%, 0.1%, and 1% of the total costs for each feedstock, 

respectively. Their variations do not significantly impact calculated NPV and breakeven price 

distributions. We treat them as exogenous and deterministic. We use @Risk, an excel add-in 

software, to perform Monte Carlo simulations [32].  

Figure 2.  Graphical overview of technical and economic uncertainty linkages from inputs to 

outputs in stochastic techno-economic analysis model 

 

All the price projections and breakeven price distributions are presented in real dollars. 

Financial analysis in this study first conducted in nominal terms and then converted to real. The 

deterministic assumptions in this analysis are taken from previous research by MD Staples, R 

Malina, H Olcay, MN Pearlson, JI Hileman, A Boies and SRH Barrett [25] and G Seber, R 

Malina, MN Pearlson, H Olcay, JI Hileman and SRH Barrett [27] assuming a facility size of 

4000 bpd with 8400 operating hours per year. We assume a construction period of 3 years, 

followed by 20 years of production, and 8%, 60% and 32% of the initial fixed capital 
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investments are expended during the construction phase. We assume 20% equity and 80% of 

capital investment, financed through loans at a 5.5% interest rate for the first 10 years, and 

working capital is calculated as 20% of first production year (4th project year) operating costs. 

Since working capital is added back in the last production year, the only financial cost is the 

implicit interest cost of the working capital advance. We adopt the variable declining balance 

(VDB) depreciation method for the first 10 production years. The nominal discount rate is 15%; 

the income tax rate is 16.9%; and all values are presented in 2012 US dollars.  

 

Technical uncertainty 

Conversion efficiency 

Cfs-et and Cet-fl reflect the conversion efficiency of the feedstock-to-ethanol and ethanol-to-fuel 

processes, respectively. The three feedstocks considered in this analysis have different feedstock-

to-ethanol conversion factors, but share the same ethanol-to-fuel conversion factor. The two 

conversion efficiency factors are expressed in units of kg feedstock per kg of ethanol and kg 

ethanol per MJ fuel, respectively, and the product of the two is the overall conversion efficiency 

factor in units of kg feedstock per MJ fuel.  

Both the feedstock-to-ethanol and ethanol-to-fuel conversion factors are bounded and 

assumed to follow a PERT distribution. The PERT distribution shares the same parameters as a 

triangular distribution (defined by min, mode and max values), but more of the probability 

density is located around the mode than a triangular distribution. The min, mode and max values 

are obtained from MD Staples, R Malina, H Olcay, MN Pearlson, JI Hileman, A Boies and SRH 

Barrett [25] original technical estimation work, and the mean value of the PERT distribution is 
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calculated as (min+4*mode+max)/6. The min, mode, max and mean values of the low, base and 

high cases are shown in Table 1. 

Table 1. PERT Distribution parameters of two conversion efficiency factors 

  Min Mode Max Mean 
Feedstock to EtOH 
(kg feedstock per kg 
EtOH) 

Corn Grain 3.29 3.56 3.90 3.57 
Sugarcane 11.38 13.19 14.38 13.09 
Switchgrass 4.00 4.82 8.22 5.25 

EtOH to Fuel (kg 
EtOH per MJ Fuel) 

Corn Grain 
Sugarcane 
Swtichgrass 

0.03 0.04 0.07 0.04 

 

We assume that the total final fuel output quantities are the same for all three feedstocks, 

and we use statistical regressions to link the two conversion efficiency factors with feedstock 

inputs, utility requirements, and the share of each fuel for total fuel output. Therefore, both 

inputs and outputs are varied based on random draws of the two conversion efficiency factors 

generated in the Monte Carlo simulation.  

The feedstock-to-ethanol process includes preprocessing, saccharification and 

fermentation process steps. In each of these three sub-processes, the electricity, water and heat 

utility requirements and output fuel shares, are correlated to the two conversion factors, Cfs-et and 

Cet-fl, as well as the interaction between the two conversion efficiency factors. In the interaction 

terms, Cfs-et takes either quadratic or linear form and all of the resulting regression equations are 

significant with R2 values over 0.98. The resulting equations are:  

𝑖𝑛𝑝𝑢𝑡 = 𝛽( + 𝛽*𝐶,-./0 + 𝛽1𝐶/0.,; + 𝛽3𝐶,-./0𝐶/0.,4    (1) 

𝑖𝑛𝑝𝑢𝑡 = 𝛽( + 𝛽*𝐶,-./0 + 𝛽1𝐶/0.,; + 𝛽3𝐶,-./01 𝐶/0.,4    (2) 

The ethanol-to-fuel process consists of separation and postprocessing. In each of these 

sub-processes, utility inputs of electricity, water and heat, and the output fuel product shares, are 

determined by a quadratic function of Cet-fl: 



13 
 

𝑖𝑛𝑝𝑢𝑡 = 𝛾( + 𝛾*𝐶/0.,4 + 𝛾1𝐶/0.,41        (3) 

 

A detailed list of regressions for each utility input in each sub-process is presented in the 

Additional File 1 Table A1. Feedstock inputs are calculated from the input-output mass balances, 

and determined by the overall conversion efficiency factor. Through the three equations shown 

above, all input and output quantities are subject to variations in the two conversion efficiency 

levels. 

Capital cost 

Uncertainty in capital investment presents another aspect of technical uncertainty. Capital cost 

consists of two components: preprocessing and fermenter costs; and dehydration, 

oligomerization and hydrotreating costs. Dehydration, oligomerization and hydrotreating costs 

are treated as a linear function of facility size. Feedstock preprocessing and fermenter costs are a 

function of feedstock input quantity and dollars-per-unit-mass of feedstock processing capacities 

estimated from MD Staples, R Malina, H Olcay, MN Pearlson, JI Hileman, A Boies and SRH 

Barrett [25]. For sugarcane, the range is from $20-30 per kilogram of capacity [33, 34], for corn 

grain the range is $55-95 per kilogram of capacity [35, 36], and for switchgrass the range is 

$115-215 per kilogram of capacity [36, 37]. Since these capital costs are also bounded, we again 

choose a PERT distribution for the stochastic analysis. The modes of the preprocessing and 

fermenter capital cost distributions for corn grain, sugarcane and switchgrass are $300, $347 and 

$697 million, respectively. The total capital cost distribution for corn grain and sugarcane follow 

a Beta General distribution with 90% of the values falling into the range $261-341 and $305-390 

million, respectively. The total capital costs for switchgrass follows a gamma distribution with 

90% of the values falling into the range from $537-899 million.  The capital costs of 
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preprocessing and fermenter capacity are lowest for corn grain, followed by sugarcane and 

switchgrass. Corn grain preprocessing is well established and is feedstock intensive; sugarcane 

milling involves handling the bagasse co-product; and switchgrass is a lignocellulosic process 

involving handling large volumes of feedstock material, as well as costly feedstock 

preprocessing steps. 

 

Price uncertainty 

The future prices of the three biomass feedstocks, natural gas inputs, and diesel are projected 

with uncertainty. We employ two major price estimation methods: case-by-case time series 

estimation is used for corn, sugarcane feedstock prices, natural gas prices and diesel prices; and 

contract-based price estimation, indexed by yield, is used for switchgrass prices.  

Time-series price estimation 

Future price projection is a central challenge for stochastic TEA, and in much of the literature 

either Brownian motion or mean reversion techniques are employed. However, neither approach 

is completely satisfactory: N Meade [38] compared Brownian motion and mean reversion by 

examining daily Brent and West Texas Intermediate (WTI) crude oil prices via density forecasts. 

He found that Brownian motion is only accurate for one or two years, and that the addition of 

mean reversion does not improve the performance of the model. FAS Postali and P Picchetti [39] 

found that mean reversion is more accurate in representing the evolution of oil prices over time 

without considering structural breaks, and that geometric Brownian motion (GBM) had fewer 

evaluation errors with low mean reversion rate. GBM may be a better choice when no reverting 

trend is apparent, otherwise mean reversion is a superior choice [39]. JJ Lucia and ES Schwartz 

[40] proposed three mean reversion models with jumps and spikes when studying energy 
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commodity prices. He found that a price derived from a proper jump-diffusion model is closer to 

market price data than the GBM model in the short term. R Petter and WE Tyner [41] found that 

mean reversion is a more appropriate method for diesel and gasoline price projections. From this 

review of the literature, there is no consistent conclusion about which method is preferred for 

estimating future fossil fuel prices. In addition, the motion processes underlying price 

movements may be different for unique commodity markets. 

Given the existence of mature markets for all of the non-switchgrass inputs and outputs 

for the ATJ process, future prices can be projected using historical price data. Historical prices 

can also be used for the fuel products of the pathway, because the renewable fuels produced via 

the ATJ pathway have very similar performance characteristics to their petroleum-derived 

analogues. Therefore, we assume ATJ-derived and petroleum-derived fuels to be fungible 

products, up to a blend of 50% ATJ, with identical market prices. We go beyond previous 

analyses by employing time-series estimation using historical price data for each commodity 

price series, in order to forecast future feedstock, natural gas and fuel product prices. Historical 

data for each commodity price is tested in order to determine the time series process that best fits 

each commodity. 

Corn grain and sugarcane are commodities with mature markets, and annual historical 

prices from 1980 to 2014 are available from the US Department of Agriculture [42, 43]. Based 

on Akaike information criterion (AIC), the second-order moving average (MA2) turns out to be 

the best price projection for corn grain and sugarcane by following the form [44]: 

P7 = µ + b*ε7.* + b1ε7.1 + ε7       (4) 

Where 

(1) 𝑃0 is the corn grain or sugar prices in time t; 
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(2) 𝜇 = 𝐸(𝑃0); 

(3) 𝜀0 = 𝜎𝑁0, 𝜎 is the volatility parameter, and 𝑁0~𝑁𝑜𝑟𝑚𝑎𝑙	(0,1); 

(4) 𝑉𝑎𝑟 𝑃0 = 𝜎1(1 + 𝑏*1 + 𝑏11), and 𝑏*, 𝑏1 are the moving average coefficients. 

The upper bounds for corn grain and sugar price time-series simulation are approximately 

identical to their maximum historical prices, while the lower bounds sometimes generate 

negative values. Since negative commodity prices are unrealistic, we truncate each year’s price 

distribution at 0.75 times their minimum historical prices, and the fraction of the lower bound 

tails generated by truncation is negligible. Sugar prices are converted to sugarcane prices 

assuming a yield of 1 kg raw sugar from 10 kg of sugarcane [25]. All parameter estimates are 

presented in Table 2.  

Table 2. Parameter estimates of time-series price projection functions 

Parameters Function Type µ σ a1 b1 b2 ε0 ε-1 
Corn Grain ($/bushel) MA2 4.8 0.66 - 0.87 0.46 0.25 1.81 
Sugar (cents/lb) MA2 19.5 3.24 - 0.91 0.42 -1.85 1.54 
Natural Gas 
($/thousand cubic  feet) MA1 6.9 1.3 - 0.5 - -2.1 - 

Diesel ($/gal) ARMA11 2.72 0.44 0.94 -0.59 - 0.47 - 
 

DDGS is a by-product of ATJ pathway from corn grain, and its prices are positively 

correlated with corn grain prices. It is an important revenue source in the corn grain ATJ case. 

We use a simple ordinary least square (OLS) regression to represent the relationship between 

prices of DDGS and corn grain prices with a R2 of 0.87: 

𝑃𝑟𝑖𝑐𝑒_𝐷𝐷𝐺𝑆0 = −0.016 + 0.956 ∗ 𝑃𝑟𝑖𝑐𝑒_𝐶𝑜𝑟𝑛0     (5) 

Natural gas accounts for over 90% of utility input costs in the base case ATJ for all three 

feedstocks. Natural gas is used for both heat and hydrogen production. Therefore, the variability 

in natural gas prices make the profitability of ATJ production more uncertain. Time-series 
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estimation based on historical prices since 1997 is used to project future natural gas prices. AIC 

criterion indicates that the first-order moving average process (MA1) is the time-series stochastic 

projection method with the best fit, following Eq. (6), defined by the parameters shown below: 

𝑃0 = 𝜇 + 𝑏*𝜀0.* + 𝜀0         (6) 

Where 

(1) 𝑃0 is the natural gas prices in time t; 

(2) 𝜇 = 𝐸(𝑃0); 

(3) 𝜀0 = 𝜎𝑁0 , 𝜎 is the volatility parameter, and 𝑁0~𝑁𝑜𝑟𝑚𝑎𝑙	(0,1); 

(4) 𝑉𝑎𝑟 𝑃0 = 𝜎1(1 + 𝑏*1), and 𝑏* is the moving average coefficient. 

Similar to corn grain and sugar prices, the natural gas price distributions are truncated on 

the low end at 0.75 times of the minimum historical prices in order to avoid negative prices, and 

are converted to units of 2012 US dollars per MJ. 

Sale of fuel products is the major revenue stream for the ATJ pathway. In addition to 

variation in the quantity of fuel produced, driven by the two conversion efficiency factors, future 

prices for jet, diesel, naphtha and heavy fuel oil are also uncertain. Diesel prices are forecasted 

using time-series estimation, and jet, naphtha and heavy fuel oil prices are calculated on the basis 

of their historical correlation with diesel prices. 

Future diesel prices follow a first-order autoregressive moving average (ARMA11) 

process shown in Eq. (7), following the parameter estimates shown in Table 2 [45]. 

𝑃0 − 𝜇 = 𝑎* 𝑃0.* − 𝜇 + 𝑏*𝜀0.* + 𝜀0	 	 	 	 	 	 (7)	

Where 

(1)  is the diesel prices in time t; 

(2) 𝜇 = 𝐸(𝑃0); 

tP
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(3) 𝜀0 = 𝜎𝑁0 and 𝜎 is the volatility parameter, and 𝑁0~𝑁𝑜𝑟𝑚𝑎𝑙	(0,1); 

(4) 𝑉𝑎𝑟 𝑃0 = 𝜎1(1 + 𝑏*1 + 2𝑎*𝑏*)/(1 − 𝑎*1),  is the autoregressive coefficient,  is the 

moving average coefficient. 

Historical data demonstrates that jet and diesel prices are almost identical, with 

correlations up to 0.996 in some periods. Ordinary least squares regression is used to regress 

diesel price on jet fuel, and the final regression relationship is 

𝑃𝑟𝑖𝑐𝑒_𝐽𝑒𝑡0 = 0.004 + 0.988 ∗ 𝑃𝑟𝑖𝑐𝑒_𝐷𝑖𝑒𝑠𝑒𝑙0	     (8) 

Our analysis also demonstrates that heavy fuel oil, and naphtha prices are highly 

correlated with diesel prices. We link the prices of these products to diesel prices by using their 

historical price ratios. 

Contract-based price estimation indexed by yield for switchgrass 

In contrast to corn grain and sugarcane feedstocks, switchgrass is not currently a traded 

commodity, and there are no historical price data to draw upon for price forecasting. Therefore, a 

different approach is required for this feedstock. The cultivation of switchgrass would require 

farmers to make a change in their land use for a period of at least 10 years. In order to mitigate 

risk associated with future revenues, switchgrass producers may choose to operate under long-

term price contracts [46]. Significant research exists on contract design to effectively share risk 

between farmers and biofuel plants. For example, J Yoder, C Alexander, R Ivanic, S Rosch, W 

Tyner and S Wu [46] found that contracts based on dollars-per-hectare prices, regardless of 

yield, were the best option for risk-averse farmers growing miscanthus, a herbaceous cellulosic 

crop similar to switchgrass. Therefore, this analysis assumes that switchgrass is planted and 

contracted using fixed dollars-per-hectare contracts. 

1a 1b
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In addition, a number of studies have estimated switchgrass yields under different 

production conditions. To derive our switchgrass price uncertainty ($/kg), we combine the fixed 

annual payment ($/ha) with varying annual yield (kg/ha) to estimate the uncertainty in unit 

switchgrass cost ($/kg). 

The yield of switchgrass varies according to the weather conditions each year, and the 

ecosystem in which the crop is cultivated: switchgrass yields in upland and lowland ecosystems 

are reported to be distributed with mean (±standard deviation) 8.7±4.2 and 12.9±5.9 1000kg/ha, 

respectively [47]. The coefficient of variation (CV) for upland and lowland conditions are 0.483 

and 0.457, respectively. The mean of the two CVs is 0.47, the average yield for upland and 

lowland switchgrass is 10.8 1000kg/ha, and we use these values to calculate the standard 

deviation for the average yield, which is 5.08 1000kg/ha.  

We assume the above-derived values for mean and standard deviation of switchgrass 

yield in order to gauge switchgrass yield uncertainty. To capture a realistic range of real world 

yields, we assume a bounded PERT distribution that approximates a normal distribution with the 

above mean and standard deviation. We set the mode to the estimated mean (10.8 1000kg/ha) 

and the minimum and maximum values to ± 2 standard deviations, leading to a minimum value 

of 0.6 ton/ha and a maximum of 21.0 1000kg/ha, respectively. The resulting mean of the PERT 

distribution is exactly 10.8 1000 kg/ha, with a standard deviation of 3.8 1000kg/ha.  

To derive uncertainty in unit switchgrass feedstock prices ($/kg), we combine the 

payment from the fixed annual farmer contract ($/ha) with varying annual yield (kg/ha). The 

average costs of switchgrass is estimated as $116.5/1000kg according to a report published by 

the National Academy of Sciences (NAS) [48]. We use this cost together with the yield to 

calculate the farmer payment ($1,258.2/ha): 
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𝐹𝑎𝑟𝑚𝑒𝑟	𝑃𝑎𝑦𝑚𝑒𝑛𝑡($/ℎ𝑎) = 𝑆𝑤𝑖𝑡𝑐ℎ𝑔𝑟𝑎𝑠𝑠	𝐶𝑜𝑠𝑡	($/𝑘𝑔) ∗ 𝑀𝑒𝑎𝑛	𝑌𝑖𝑒𝑙𝑑𝑠	(𝑘𝑔/ℎ𝑎)(9) 

Using this procedure, we derive the stochastic feedstock price ($/kg) each year, which is 

the fixed farmer payment ($/ha) from Eq. (9) divided each year by a random draw from the 

switchgrass yield distribution.  

Quantities of the base case for all inputs and outputs and associated prices are presented 

in Table 3 for an annual production of 232 million liters (61 million gallons), or approximately 

4000 bpd (barrels per day), of total fuel production [25]. 

Table 3. Base case input and output quantity and price assumptions 

 Corn Grain Sugarcane Switchgrass Base Prices 
Water (Mliter)  1.39E+02 2.51E+02 1.47E+02 88.16 
Power (kWh)  1.62E+08 - - 0.07 
Natural Gas (MJ)  3.73E+09 6.80E+08 1.81E+09 3.88 
Feedstock (kg/year) 9.75E+08 3.61E+09 1.32E+09 - 
Other (enzymes, yeast, 
chemicals) 1.45E+07 2.09E+07 1.34E+07 1.00 
DDGS (kg/yr) 3.16E+8 - - 0.17 
Power for export (kWh/yr) - 4.08E+07 3.90E+07 0.05 
Heavy fuel oil (liters/yr) 4.43E+6 4.43E+06 4.43E+06 0.65 
Propane (liters/yr) - - - 0.27 
Naphtha (liters/yr) 1.74E+7 1.74E+07 1.74E+06 0.67 
Jet (liters/yr) 1.96E+8 1.96E+08 1.96E+08 0.72 
Diesel (liters/yr) 1.51E+7 1.51E+07 1.51E+07 0.72 

(Source: MD Staples, R Malina, H Olcay, MN Pearlson, JI Hileman, A Boies and SRH Barrett 
[25]) 
 

Breakeven jet price distributions 

In addition to NPV distributions, we also develop a way to calculate and present breakeven jet 

price distributions. Breakeven jet price is the constant real jet price through the entire production 

period that makes NPV equal to zero. With the variation of the stochastic variables described 

previously, the diesel and jet prices that make the present value of accumulated revenues equal to 

the costs also changes. Breakeven price distributions permit potential investors to select any 
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desired risk level, and then to determine the corresponding breakeven price. It also permits 

comparison among feedstocks. 

The basic procedure is to run the standard Monte Carlo simulation and to save all the 

simulated values. Then the simulated values are used to calculate the breakeven price for each 

iteration using the Excel Goal Seek function. The breakeven prices are then fit to an appropriate 

standard distribution. This distribution then can be used to determine the probability for any 

breakeven price.  

 

Results and Discussion 

NPV distributions 

A summary of NPV distribution results is presented in  

Table 4. The mean NPV for corn grain-, sugarcane- and switchgrass-derived ATJ are all 

negative. Sugarcane has the highest NPV and smallest standard deviation, and switchgrass has 

the lowest NPV and largest standard deviation (Figure 3). All three feedstocks’ probability of 

loss is higher than 85%, and there is more uncertainty in switchgrass ATJ fuel production. We 

applied stochastic dominance tests to the three distributions and found that sugarcane first-order 

stochastic dominates (FSD) corn, and corn FSD switchgrass. The definitions of first-order and 

second-order stochastic dominance relationship are introduced in Additional File 1 Section A2. 

These results imply that under current diesel, jet and feedstock prices, technology levels, and 

projected future product prices, incentives would be needed to stimulate investment in aviation 

biofuel production via ATJ (Additional File 1 A2, Figure A1). 
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Table 4. Base case stochastic NPV distribution results for corn grain, sugarcane and switchgrass 

ATJ 

Statistics (Million $) Corn Grain Sugarcane Switchgrass 
Mean (203) (167) (579) 
Std Dev 123 144 239 
Minimum (610) (829) (1665) 
Maximum 198 320 69 
Probability of Loss 95% 88% 100% 

 

Figure 3. NPV probability density distributions for corn grain, sugarcane and switchgrass ATJ 

 

 

The NPV results show that sugarcane is the least-cost option for the ATJ pathway among 

the three feedstocks considered, under all circumstances. Sugarcane ATJ production does not 

require heat and electricity utility inputs because co-firing of the co-produced sugarcane bagasse 

provides more than sufficient heat and power for fuel production, and permits 168 GWh of 

electricity to be exported to the grid annually, in the base case. Although the combustion of 
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biomass residues generated during switchgrass ATJ production can also offset heat and 

electricity requirements, it still requires more natural gas and generates less power for export 

than sugarcane ATJ. In addition, the conversion efficiency of switchgrass ATJ is also lower than 

corn grain ATJ. In general, we find that the mean NPV of the different renewable jet fuel 

pathways are inversely proportional to the recalcitrance of simple sugars in the raw feedstock to 

be converted to ethanol: switchgrass is the most recalcitrant feedstock examined (requiring 

greater utility, energetic and feedstock inputs per unit of monomer sugar extracted) and has the 

lowest NPV and, in contrast, sugarcane is the least recalcitrant feedstock (requiring fewer utility, 

energetic and feedstock inputs per unit of monomer sugar extracted) and has the highest mean 

NPV. 

Breakeven price distributions and policy implications 

Fitted breakeven price distributions for corn grain-, sugarcane- and switchgrass-derived ATJ 

follow normal, Beta General and PERT distributions, respectively. The statistics and quintiles of 

these distributions are presented in  

Table 5. We find that the breakeven price distribution for switchgrass ATJ has the largest 

standard deviation, which is because it is represented with higher technical uncertainty than the 

other two processes. 

Table 5. Fitted breakeven price distribution statistics for corn, sugarcane and switchgrass ATJ 

($/liter) 

Feedstocks Corn Sugarcane Switchgrass 
Distribution Normal BetaGeneral Gamma 
Minimum −∞ 0.64 (2.42) 0.84 (3.17) 
Maximum ∞ 1.56 (5.91) ∞ 
Mean 1.01 (3.84) 0.97 (3.68) 1.41 (5.32) 
Mode 1.01 (3.84) 0.95 (3.59) 1.32 (4.99) 
Median 1.01 (3.84) 0.96 (3.65) 1.38 (5.21) 
Std Dev 0.08 (0.31) 0.12 (0.44) 0.22 (0.84) 
1% 0.83 (3.13) 0.74 (2.81) 1.02 (3.85) 
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5% 0.88 (3.34) 0.79 (3.00) 1.10 (4.15) 
15% 0.93 (3.53) 0.85 (3.21) 1.18 (4.48) 
25% 0.96 (3.64) 0.89 (3.36) 1.24 (4.71) 
50% 1.01 (3.84) 0.96 (3.65) 1.38 (5.21) 
75% 1.07 (4.05) 1.05 (3.97) 1.53 (5.81) 
95% 1.15 (4.35) 1.17 (4.44) 1.81 (6.87) 
99% 1.20 (4.56) 1.25 (4.75) 1.25 (7.75) 

Notes: Values in parenthesis are measured in $/gallon. 

The stochastic dominance relationship is presented in Figure 4. The distribution with 

higher probability to have lower breakeven ATJ fuel prices is more cost efficient. By definition, 

switchgrass ATJ FSD corn grain and sugarcane ATJ. While we find that switchgrass-derived jet 

fuel first-order stochastically dominates corn and sugarcane-derived fuels, corn-grain does not 

with regard to sugarcane, as the cumulative density functions intersect at the 90% probability 

level (sugarcane only second-order stochastically dominates corn). This is because DDGS prices 

increase with corn grain prices, which generates additional revenue when corn grain prices are 

high. Therefore, at higher feedstock prices, corn grain ATJ is less costly than sugarcane ATJ. 

However, sugarcane is the best feedstock option in ATJ fuel production under 90% of 

circumstances analyzed. 
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Figure 4. Breakeven jet price cumulative density distribution for corn grain, sugarcane and 

switchgrass ATJ 

 

 

The mean [5 percentile; 95 percentile] breakeven jet prices per liter of ATJ from corn 

grain, sugarcane and switchgrass are $1.01 [$0.88; $1.15], $0.96 [$0.79; $1.17] and $1.38 

[$1.10; $1.81], respectively. The mean values are the price for jet fuel at which investors have a 

50% probability of earning more than their threshold discount rate. The breakeven price 

distributions are within the deterministic range calculated by MD Staples, R Malina, H Olcay, 

MN Pearlson, JI Hileman, A Boies and SRH Barrett [25] confirming that our results are 

consistent with this analysis. Our breakeven prices for corn and sugarcane ATJ are at the lower 

range of breakeven prices calculated by M Pearlson, C Wollersheim and J Hileman [26] and G 

Seber, R Malina, MN Pearlson, H Olcay, JI Hileman and SRH Barrett [27] for HEFA pathways. 

We also conduct Welch’s t-test to determine whether the three breakeven price 

distributions are statistically different from each other. The two-sample test assuming unequal 
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variances, conducted for three pairwise breakeven price samples, confirms that the mean values 

of the three breakeven price distributions are significantly different from each other (Additional 

File 1 A3, Table A2). 

From a policy-perspective, risk profiles as those developed in this paper can also be used 

to assess the impact of alternative policies such as loan guarantees, tax credits, crop insurance, 

end user off-take agreements, reverse auction based on off-take contract and capital subsidy on 

reducing project risk [49]. This is especially important given that de-risking investment has been 

shown to be one of the core levers for incentivizing a more rapid scale-up of the aviation biofuel 

industry [50].  

 

Sensitivity analysis 

Figure 5 presents the sensitivity summary for corn grain, sugarcane and switchgrass ATJ. The 

results indicate the minimum and maximum values that the NPV can achieve with variation of 

each individual parameter with the uncertainty ranges assumed in this analysis [51, 52]. The base 

case NPV is the mean value of NPV distributions with all mode input values. We only report the 

sensitivity results for the feedstock-to-ethanol and ethanol-to-fuel conversion factors, and the 

feedstock preprocessing and fermentation capital costs. Price uncertainty is not included here 

because there is a stochastic price variable each year for each price, which cannot be simply 

aggregated to a single range. The results show that the two conversion factors cause the largest 

impacts on NPV variation. Corn grain and sugarcane ATJ are most sensitive to ethanol-to-fuel 

conversion factors, followed by feedstock-to-ethanol conversion factors. In contrast, switchgrass 

ATJ is more sensitive to feedstock-to-ethanol conversion factors, followed by ethanol-to-fuel 

conversion factors. The feedstock-to-ethanol conversion factor imposes greater uncertainty for 
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switchgrass ATJ, as compared to corn grain and sugarcane ATJ. The feedstock-to-ethanol 

conversion factors’ effects on corn grain and sugarcane ATJ are very similar, while its impact on 

switchgrass ATJ is four times larger than the impacts on corn grain and sugarcane ATJ. 

Figure 5. Sensitivity analyses for corn grain, sugarcane and switchgrass ATJ 
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Conclusions 

This study makes three contributions to current stochastic TEA: 1) we take technical uncertainty 

into account by linking conversion efficiency with input and output quantities through statistical 

methods; 2) in addition to NPV, we develop breakeven price distributions to provide potential 

investors the price level required to achieve their stipulated rate of return at each probability 

level; 3) Price forecasts are based on case-by-case historical time-series analyses. Sugarcane is 

the lowest cost feedstock over the entire range of uncertainty with the least risks, followed by 

corn grain and switchgrass, with the mean breakeven jet fuel prices being $0.96/liter ($3.65/gal), 

$1.01/liter ($3.84/gal), and $1.38/liter ($5.21/gal), respectively. The probability of loss given the 

future fuel market price projections for sugarcane, corn grain and switchgrass ATJ are 88%, 

95%, and 100%, respectively. Price support policies based on breakeven price distributions 

should be implemented to avoid potential losses and achieve targeted profitability. 

Incorporating both technical and economic uncertainty is critical in characterizing the 

economic performance of any new technology and needs to be considered in future economic 

analyses. We find that the variation of revenues from by-products can impact profitability 

differently at different probability levels. 
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